
MySQL 5.0 Reference Manual

MySQL 5.0 Reference Manual
Abstract

This is the MySQL Reference Manual. It documents MySQL 5.0 through 5.0.25.

Document generated on: 2006-10-01 (revision: 3517)

Copyright 1997-2006 MySQL AB

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the following terms: You may
create a printed copy of this documentation solely for your own personal use. Conversion to other formats is allowed as long as the
actual content is not altered or edited in any way. You shall not publish or distribute this documentation in any form or on any me-
dia, except if you distribute the documentation in a manner similar to how MySQL disseminates it (that is, electronically for down-
load on a website with the software) or on a CD-ROM or similar medium, provided however that the documentation is dissemin-
ated together with the software on the same medium. Any other use, such as any dissemination of printed copies or use of this doc-
umentation, in whole or in part, in another publication, requires the prior written consent from an authorized representative of
MySQL AB. MySQL AB reserves any and all rights to this documentation not expressly granted above.

Please email <docs@mysql.com> for more information.

Table of Contents
Preface ... xxiii
1. General Information ... 1

1.1. About This Manual .. 1
1.2. Conventions Used in This Manual .. 2
1.3. Overview of MySQL AB .. 4
1.4. Overview of the MySQL Database Management System 5

1.4.1. History of MySQL .. 6
1.4.2. The Main Features of MySQL ... 6
1.4.3. MySQL Stability .. 9
1.4.4. How Large MySQL Tables Can Be .. 10
1.4.5. Year 2000 Compliance .. 11

1.5. Overview of the MaxDB Database Management System 12
1.5.1. What is MaxDB? .. 12
1.5.2. History of MaxDB .. 13
1.5.3. Features of MaxDB ... 13
1.5.4. Licensing and Support ... 14
1.5.5. Feature Differences Between MaxDB and MySQL 14
1.5.6. Interoperability Features Between MaxDB and MySQL 15
1.5.7. MaxDB-Related Links ... 15

1.6. MySQL Development Roadmap ... 15
1.6.1. What's New in MySQL 5.0 ... 16

1.7. MySQL Information Sources ... 18
1.7.1. MySQL Mailing Lists .. 18
1.7.2. MySQL Community Support at the MySQL Forums 21
1.7.3. MySQL Community Support on Internet Relay Chat (IRC) 21

1.8. How to Report Bugs or Problems ... 21
1.9. MySQL Standards Compliance .. 26

1.9.1. What Standards MySQL Follows ... 26
1.9.2. Selecting SQL Modes .. 26
1.9.3. Running MySQL in ANSI Mode ... 27
1.9.4. MySQL Extensions to Standard SQL .. 27
1.9.5. MySQL Differences from Standard SQL ... 30
1.9.6. How MySQL Deals with Constraints .. 36

2. Installing and Upgrading MySQL ... 40
2.1. General Installation Issues .. 40

2.1.1. Operating Systems Supported by MySQL .. 41
2.1.2. Choosing Which MySQL Distribution to Install 42
2.1.3. How to Get MySQL .. 53
2.1.4. Verifying Package Integrity Using MD5 Checksums or GnuPG 53
2.1.5. Installation Layouts ... 56

2.2. Standard MySQL Installation Using a Binary Distribution 57
2.3. Installing MySQL on Windows .. 58

2.3.1. Choosing An Installation Package .. 59
2.3.2. Installing MySQL with the Automated Installer 59
2.3.3. Using the MySQL Installation Wizard .. 59
2.3.4. Using the Configuration Wizard .. 62
2.3.5. Installing MySQL from a Noinstall Zip Archive 67
2.3.6. Extracting the Install Archive .. 67
2.3.7. Creating an Option File .. 68
2.3.8. Selecting a MySQL Server type ... 69
2.3.9. Starting the Server for the First Time .. 69
2.3.10. Starting MySQL from the Windows Command Line 71
2.3.11. Starting MySQL as a Windows Service ... 71

iv

2.3.12. Testing The MySQL Installation .. 74
2.3.13. Troubleshooting a MySQL Installation Under Windows 74
2.3.14. Upgrading MySQL on Windows .. 76
2.3.15. MySQL on Windows Compared to MySQL on Unix 77

2.4. Installing MySQL on Linux ... 79
2.5. Installing MySQL on Mac OS X .. 81
2.6. Installing MySQL on Solaris ... 84
2.7. Installing MySQL on NetWare .. 85
2.8. Installing MySQL on Other Unix-Like Systems .. 87
2.9. MySQL Installation Using a Source Distribution ... 89

2.9.1. Source Installation Overview .. 90
2.9.2. Typical configure Options ... 93
2.9.3. Installing from the Development Source Tree ... 96
2.9.4. Dealing with Problems Compiling MySQL .. 98
2.9.5. MIT-pthreads Notes .. 101
2.9.6. Installing MySQL from Source on Windows .. 102
2.9.7. Compiling MySQL Clients on Windows ... 106

2.10. Post-Installation Setup and Testing ... 106
2.10.1. Windows Post-Installation Procedures ... 107
2.10.2. Unix Post-Installation Procedures ... 107
2.10.3. Securing the Initial MySQL Accounts ... 118

2.11. Upgrading MySQL .. 121
2.11.1. Upgrading from MySQL 5.0 to 5.1 ... 122
2.11.2. Upgrading from MySQL 4.1 to 5.0 ... 122
2.11.3. Copying MySQL Databases to Another Machine 130

2.12. Downgrading MySQL .. 131
2.12.1. Downgrading to MySQL 4.1 ... 131

2.13. Operating System-Specific Notes .. 132
2.13.1. Linux Notes ... 132
2.13.2. Mac OS X Notes ... 139
2.13.3. Solaris Notes .. 140
2.13.4. BSD Notes ... 144
2.13.5. Other Unix Notes .. 147
2.13.6. OS/2 Notes .. 163

2.14. Perl Installation Notes .. 164
2.14.1. Installing Perl on Unix ... 164
2.14.2. Installing ActiveState Perl on Windows ... 165
2.14.3. Problems Using the Perl DBI/DBD Interface 166

3. Tutorial .. 169
3.1. Connecting to and Disconnecting from the Server .. 169
3.2. Entering Queries ... 170
3.3. Creating and Using a Database ... 173

3.3.1. Creating and Selecting a Database .. 174
3.3.2. Creating a Table ... 175
3.3.3. Loading Data into a Table .. 176
3.3.4. Retrieving Information from a Table .. 177

3.4. Getting Information About Databases and Tables .. 189
3.5. Using mysql in Batch Mode .. 190
3.6. Examples of Common Queries ... 192

3.6.1. The Maximum Value for a Column .. 192
3.6.2. The Row Holding the Maximum of a Certain Column 192
3.6.3. Maximum of Column per Group .. 193
3.6.4. The Rows Holding the Group-wise Maximum of a Certain Field 193
3.6.5. Using User-Defined Variables ... 193
3.6.6. Using Foreign Keys .. 194
3.6.7. Searching on Two Keys ... 195
3.6.8. Calculating Visits Per Day .. 195
3.6.9. Using AUTO_INCREMENT ... 196

MySQL 5.0 Reference Manual

v

3.7. Queries from the Twin Project ... 198
3.7.1. Find All Non-distributed Twins ... 198
3.7.2. Show a Table of Twin Pair Status .. 200

3.8. Using MySQL with Apache .. 200
4. Using MySQL Programs ... 202

4.1. Overview of MySQL Programs .. 202
4.2. Invoking MySQL Programs .. 203
4.3. Specifying Program Options .. 204

4.3.1. Using Options on the Command Line ... 205
4.3.2. Using Option Files .. 207
4.3.3. Using Environment Variables to Specify Options 211
4.3.4. Using Options to Set Program Variables .. 212

5. Database Administration ... 214
5.1. Overview of Server-Side Programs ... 214
5.2. mysqld — The MySQL Server .. 215

5.2.1. Option and Variable Reference .. 216
5.2.2. Command Options .. 230
5.2.3. System Variables .. 242
5.2.4. Using System Variables ... 268
5.2.5. Status Variables .. 277
5.2.6. SQL Modes ... 288
5.2.7. The Shutdown Process ... 293
5.2.8. Server-Side Help .. 295

5.3. The mysqld-max Extended MySQL Server ... 295
5.4. MySQL Server Startup Programs ... 297

5.4.1. mysqld_safe — MySQL Server Startup Script 298
5.4.2. mysql.server — MySQL Server Startup Script 301
5.4.3. mysqld_multi — Manage Multiple MySQL Servers 301

5.5. mysqlmanager — The MySQL Instance Manager 305
5.5.1. MySQL Instance Manager Command Options 306
5.5.2. MySQL Instance Manager Configuration Files 308
5.5.3. Starting the MySQL Server with MySQL Instance Manager 310
5.5.4. Instance Manager User and Password Management 311
5.5.5. MySQL Server Instance Status Monitoring .. 312
5.5.6. Connecting to MySQL Instance Manager .. 312
5.5.7. MySQL Instance Manager Commands .. 312

5.6. Installation-Related Programs .. 315
5.6.1. mysql_fix_privilege_tables — Upgrade MySQL System Tables 315
5.6.2. mysql_upgrade — Check Tables for MySQL Upgrade 316

5.7. General Security Issues .. 317
5.7.1. General Security Guidelines .. 317
5.7.2. Making MySQL Secure Against Attackers .. 320
5.7.3. Security-Related mysqld Options ... 321
5.7.4. Security Issues with LOAD DATA LOCAL .. 323
5.7.5. How to Run MySQL as a Normal User ... 324

5.8. The MySQL Access Privilege System ... 324
5.8.1. What the Privilege System Does .. 324
5.8.2. How the Privilege System Works ... 324
5.8.3. Privileges Provided by MySQL ... 329
5.8.4. Connecting to the MySQL Server .. 332
5.8.5. Access Control, Stage 1: Connection Verification 334
5.8.6. Access Control, Stage 2: Request Verification 337
5.8.7. When Privilege Changes Take Effect .. 339
5.8.8. Causes of Access denied Errors .. 340
5.8.9. Password Hashing as of MySQL 4.1 ... 345

5.9. MySQL User Account Management ... 349
5.9.1. MySQL Usernames and Passwords .. 350
5.9.2. Adding New User Accounts to MySQL .. 351

MySQL 5.0 Reference Manual

vi

5.9.3. Removing User Accounts from MySQL .. 354
5.9.4. Limiting Account Resources ... 354
5.9.5. Assigning Account Passwords ... 355
5.9.6. Keeping Your Password Secure ... 357
5.9.7. Using Secure Connections .. 358

5.10. Backup and Recovery ... 365
5.10.1. Database Backups ... 365
5.10.2. Example Backup and Recovery Strategy .. 367
5.10.3. Point-in-Time Recovery ... 370
5.10.4. Table Maintenance and Crash Recovery .. 371

5.11. MySQL Localization and International Usage ... 382
5.11.1. The Character Set Used for Data and Sorting 382
5.11.2. Setting the Error Message Language ... 384
5.11.3. Adding a New Character Set ... 384
5.11.4. The Character Definition Arrays .. 386
5.11.5. String Collating Support ... 386
5.11.6. Multi-Byte Character Support .. 387
5.11.7. Problems With Character Sets ... 387
5.11.8. MySQL Server Time Zone Support .. 387

5.12. MySQL Server Logs .. 389
5.12.1. The Error Log .. 389
5.12.2. The General Query Log .. 389
5.12.3. The Binary Log .. 390
5.12.4. The Slow Query Log ... 394
5.12.5. Server Log Maintenance ... 394

5.13. Running Multiple MySQL Servers on the Same Machine 395
5.13.1. Running Multiple Servers on Windows ... 397
5.13.2. Running Multiple Servers on Unix ... 400
5.13.3. Using Client Programs in a Multiple-Server Environment 401

5.14. The MySQL Query Cache ... 402
5.14.1. How the Query Cache Operates ... 403
5.14.2. Query Cache SELECT Options .. 404
5.14.3. Query Cache Configuration ... 404
5.14.4. Query Cache Status and Maintenance ... 406

6. Replication ... 408
6.1. Introduction to Replication .. 408
6.2. Replication Implementation Overview ... 408
6.3. Replication Implementation Details .. 409

6.3.1. Replication Master Thread States ... 410
6.3.2. Replication Slave I/O Thread States ... 410
6.3.3. Replication Slave SQL Thread States .. 412
6.3.4. Replication Relay and Status Files ... 412

6.4. How to Set Up Replication .. 414
6.5. Replication Compatibility Between MySQL Versions 418
6.6. Upgrading a Replication Setup ... 418

6.6.1. Upgrading Replication to 5.0 .. 418
6.7. Replication Features and Known Problems ... 419
6.8. Replication Startup Options ... 424
6.9. How Servers Evaluate Replication Rules ... 431
6.10. Replication FAQ ... 434
6.11. Troubleshooting Replication .. 440
6.12. How to Report Replication Bugs or Problems ... 441
6.13. Auto-Increment in Multiple-Master Replication ... 441

7. Optimization ... 443
7.1. Optimization Overview .. 443

7.1.1. MySQL Design Limitations and Tradeoffs .. 443
7.1.2. Designing Applications for Portability .. 444
7.1.3. What We Have Used MySQL For .. 445

MySQL 5.0 Reference Manual

vii

7.1.4. The MySQL Benchmark Suite ... 445
7.1.5. Using Your Own Benchmarks ... 446

7.2. Optimizing SELECT and Other Statements .. 447
7.2.1. Optimizing Queries with EXPLAIN ... 447
7.2.2. Estimating Query Performance .. 456
7.2.3. Speed of SELECT Queries .. 457
7.2.4. WHERE Clause Optimization ... 457
7.2.5. Range Optimization .. 459
7.2.6. Index Merge Optimization .. 462
7.2.7. IS NULL Optimization ... 465
7.2.8. DISTINCT Optimization ... 466
7.2.9. LEFT JOIN and RIGHT JOIN Optimization 466
7.2.10. Nested Join Optimization .. 467
7.2.11. Outer Join Simplification .. 473
7.2.12. ORDER BY Optimization ... 475
7.2.13. GROUP BY Optimization ... 477
7.2.14. LIMIT Optimization ... 479
7.2.15. How to Avoid Table Scans .. 480
7.2.16. Speed of INSERT Statements .. 480
7.2.17. Speed of UPDATE Statements .. 482
7.2.18. Speed of DELETE Statements .. 482
7.2.19. Other Optimization Tips ... 483

7.3. Locking Issues .. 485
7.3.1. Locking Methods .. 485
7.3.2. Table Locking Issues ... 488
7.3.3. Concurrent Inserts ... 489

7.4. Optimizing Database Structure ... 490
7.4.1. Design Choices .. 490
7.4.2. Make Your Data as Small as Possible ... 490
7.4.3. Column Indexes ... 491
7.4.4. Multiple-Column Indexes ... 492
7.4.5. How MySQL Uses Indexes ... 492
7.4.6. The MyISAM Key Cache .. 495
7.4.7. MyISAM Index Statistics Collection ... 499
7.4.8. How MySQL Opens and Closes Tables ... 501
7.4.9. Drawbacks to Creating Many Tables in the Same Database 503

7.5. Optimizing the MySQL Server .. 503
7.5.1. System Factors and Startup Parameter Tuning 503
7.5.2. Tuning Server Parameters ... 503
7.5.3. Controlling Query Optimizer Performance ... 506
7.5.4. How Compiling and Linking Affects the Speed of MySQL 507
7.5.5. How MySQL Uses Memory ... 508
7.5.6. How MySQL Uses DNS .. 510

7.6. Disk Issues ... 510
7.6.1. Using Symbolic Links ... 511

8. Client and Utility Programs ... 515
8.1. Overview of Client and Utility Programs ... 515
8.2. myisam_ftdump — Display Full-Text Index information 517
8.3. myisamchk — MyISAM Table-Maintenance Utility 518

8.3.1. myisamchk General Options ... 519
8.3.2. myisamchk Check Options ... 521
8.3.3. myisamchk Repair Options .. 522
8.3.4. Other myisamchk Options .. 524
8.3.5. myisamchk Memory Usage .. 524

8.4. myisamlog — Display MyISAM Log File Contents 525
8.5. myisampack — Generate Compressed, Read-Only MyISAM Tables 526
8.6. mysql — The MySQL Command-Line Tool ... 532

8.6.1. mysql Options .. 533

MySQL 5.0 Reference Manual

viii

8.6.2. mysql Commands ... 538
8.6.3. mysql Server-Side Help ... 541
8.6.4. Executing SQL Statements from a Text File ... 542
8.6.5. mysql Tips ... 543

8.7. mysql_explain_log — Use EXPLAIN on Statements in Query Log 544
8.8. mysqlaccess — Client for Checking Access Privileges 545
8.9. mysqladmin — Client for Administering a MySQL Server 547
8.10. mysqlbinlog — Utility for Processing Binary Log Files 552
8.11. mysqlcheck — A Table Maintenance and Repair Program 558
8.12. mysqldump — A Database Backup Program .. 562
8.13. mysqlhotcopy — A Database Backup Program .. 570
8.14. mysqlimport — A Data Import Program ... 573
8.15. mysqlshow — Display Database, Table, and Column Information 575
8.16. mysql_zap — Kill Processes That Match a Pattern 578
8.17. perror — Explain Error Codes .. 578
8.18. replace — A String-Replacement Utility .. 579

9. Language Structure .. 581
9.1. Literal Values ... 581

9.1.1. Strings .. 581
9.1.2. Numbers ... 583
9.1.3. Hexadecimal Values .. 583
9.1.4. Boolean Values .. 584
9.1.5. Bit-Field Values ... 584
9.1.6. NULL Values ... 584

9.2. Database, Table, Index, Column, and Alias Names .. 584
9.2.1. Identifier Qualifiers ... 586
9.2.2. Identifier Case Sensitivity ... 586

9.3. User-Defined Variables .. 588
9.4. Comment Syntax ... 589
9.5. Treatment of Reserved Words in MySQL .. 590

10. Character Set Support ... 594
10.1. Character Sets and Collations in General .. 594
10.2. Character Sets and Collations in MySQL ... 595
10.3. Specifying Character Sets and Collations ... 596

10.3.1. Server Character Set and Collation ... 596
10.3.2. Database Character Set and Collation .. 597
10.3.3. Table Character Set and Collation .. 598
10.3.4. Column Character Set and Collation ... 598
10.3.5. Character String Literal Character Set and Collation 599
10.3.6. National Character Set ... 600
10.3.7. Examples of Character Set and Collation Assignment 600
10.3.8. Compatibility with Other DBMSs .. 601

10.4. Connection Character Sets and Collations .. 601
10.5. Collation Issues ... 603

10.5.1. Using COLLATE in SQL Statements ... 603
10.5.2. COLLATE Clause Precedence .. 604
10.5.3. BINARY Operator ... 604
10.5.4. Some Special Cases Where the Collation Determination Is Tricky 605
10.5.5. Collations Must Be for the Right Character Set 606
10.5.6. An Example of the Effect of Collation ... 606

10.6. Operations Affected by Character Set Support ... 607
10.6.1. Result Strings ... 607
10.6.2. CONVERT() and CAST() ... 608
10.6.3. SHOW Statements and INFORMATION_SCHEMA 609

10.7. Unicode Support ... 610
10.8. UTF-8 for Metadata ... 611
10.9. Character Sets and Collations That MySQL Supports 612

10.9.1. Unicode Character Sets .. 613

MySQL 5.0 Reference Manual

ix

10.9.2. West European Character Sets ... 615
10.9.3. Central European Character Sets .. 617
10.9.4. South European and Middle East Character Sets 618
10.9.5. Baltic Character Sets .. 618
10.9.6. Cyrillic Character Sets ... 619
10.9.7. Asian Character Sets .. 619

10.10. FAQ: MySQL Chinese, Japanese, and Korean Character Sets 623
10.10.1. SELECT shows non-Latin characters as "?"s. Why? 623
10.10.2. Troubles with GB character sets (Chinese) 624
10.10.3. Troubles with big5 character set (Chinese) 625
10.10.4. Troubles with character-set conversions (Japanese) 625
10.10.5. The Great Yen Sign problem (Japanese) .. 626
10.10.6. Troubles with euckr character set (Korean) 626
10.10.7. The “Data truncated” message ... 626
10.10.8. Troubles with Access, Perl, PHP, etc. .. 627
10.10.9. How can I get old MySQL 4.0 behaviour back? 628
10.10.10. Why do some LIKE and FULLTEXT searches fail? 629
10.10.11. What CJK character sets are available? .. 629
10.10.12. Is character X available in all character sets? 630
10.10.13. Strings don't sort correctly in Unicode (I) 631
10.10.14. Strings don't sort correctly in Unicode (II) 632
10.10.15. My supplementary characters get rejected 632
10.10.16. Shouldn't it be CJKV (V for Vietnamese)? 632
10.10.17. Will MySQL fix any CJK problems in version 5.1? 633
10.10.18. When will MySQL translate the manual again? 633
10.10.19. Whom can I talk to? ... 633

11. Data Types ... 635
11.1. Data Type Overview .. 635

11.1.1. Overview of Numeric Types ... 635
11.1.2. Overview of Date and Time Types ... 639
11.1.3. Overview of String Types ... 640
11.1.4. Data Type Default Values ... 643

11.2. Numeric Types .. 644
11.3. Date and Time Types ... 647

11.3.1. The DATETIME, DATE, and TIMESTAMP Types 648
11.3.2. The TIME Type .. 653
11.3.3. The YEAR Type .. 653
11.3.4. Y2K Issues and Date Types .. 654

11.4. String Types ... 654
11.4.1. The CHAR and VARCHAR Types .. 654
11.4.2. The BINARY and VARBINARY Types .. 656
11.4.3. The BLOB and TEXT Types .. 657
11.4.4. The ENUM Type .. 659
11.4.5. The SET Type .. 661

11.5. Data Type Storage Requirements .. 663
11.6. Choosing the Right Type for a Column .. 666
11.7. Using Data Types from Other Database Engines .. 666

12. Functions and Operators .. 668
12.1. Operators ... 668

12.1.1. Operator Precedence .. 668
12.1.2. Type Conversion in Expression Evaluation .. 669
12.1.3. Comparison Functions and Operators .. 670
12.1.4. Logical Operators .. 675

12.2. Control Flow Functions .. 676
12.3. String Functions .. 678

12.3.1. String Comparison Functions .. 687
12.4. Numeric Functions ... 689

12.4.1. Arithmetic Operators ... 689

MySQL 5.0 Reference Manual

x

12.4.2. Mathematical Functions ... 691
12.5. Date and Time Functions .. 697
12.6. What Calendar Is Used By MySQL? ... 713
12.7. Full-Text Search Functions .. 714

12.7.1. Boolean Full-Text Searches .. 717
12.7.2. Full-Text Searches with Query Expansion .. 719
12.7.3. Full-Text Stopwords .. 720
12.7.4. Full-Text Restrictions .. 723
12.7.5. Fine-Tuning MySQL Full-Text Search .. 723

12.8. Cast Functions and Operators ... 725
12.9. Other Functions ... 727

12.9.1. Bit Functions .. 727
12.9.2. Encryption and Compression Functions ... 728
12.9.3. Information Functions .. 733
12.9.4. Miscellaneous Functions .. 739

12.10. Functions and Modifiers for Use with GROUP BY Clauses 742
12.10.1. GROUP BY (Aggregate) Functions ... 742
12.10.2. GROUP BY Modifiers .. 746
12.10.3. GROUP BY and HAVING with Hidden Fields 748

13. SQL Statement Syntax .. 750
13.1. Data Definition Statements .. 750

13.1.1. ALTER DATABASE Syntax .. 750
13.1.2. ALTER TABLE Syntax .. 750
13.1.3. CREATE DATABASE Syntax .. 756
13.1.4. CREATE INDEX Syntax .. 756
13.1.5. CREATE TABLE Syntax .. 758
13.1.6. DROP DATABASE Syntax .. 768
13.1.7. DROP INDEX Syntax .. 769
13.1.8. DROP TABLE Syntax .. 769
13.1.9. RENAME TABLE Syntax .. 770

13.2. Data Manipulation Statements .. 771
13.2.1. DELETE Syntax .. 771
13.2.2. DO Syntax .. 773
13.2.3. HANDLER Syntax .. 773
13.2.4. INSERT Syntax .. 775
13.2.5. LOAD DATA INFILE Syntax .. 781
13.2.6. REPLACE Syntax .. 790
13.2.7. SELECT Syntax .. 791
13.2.8. Subquery Syntax ... 806
13.2.9. TRUNCATE Syntax .. 816
13.2.10. UPDATE Syntax .. 816

13.3. MySQL Utility Statements .. 818
13.3.1. DESCRIBE Syntax .. 818
13.3.2. HELP Syntax .. 819
13.3.3. USE Syntax .. 821

13.4. MySQL Transactional and Locking Statements ... 821
13.4.1. START TRANSACTION, COMMIT, and ROLLBACK Syntax 821
13.4.2. Statements That Cannot Be Rolled Back .. 823
13.4.3. Statements That Cause an Implicit Commit .. 823
13.4.4. SAVEPOINT and ROLLBACK TO SAVEPOINT Syntax 824
13.4.5. LOCK TABLES and UNLOCK TABLES Syntax 825
13.4.6. SET TRANSACTION Syntax .. 827
13.4.7. XA Transactions ... 828

13.5. Database Administration Statements ... 831
13.5.1. Account Management Statements ... 831
13.5.2. Table Maintenance Statements ... 841
13.5.3. SET Syntax .. 847
13.5.4. SHOW Syntax .. 852

MySQL 5.0 Reference Manual

xi

13.5.5. Other Administrative Statements .. 875
13.6. Replication Statements ... 879

13.6.1. SQL Statements for Controlling Master Servers 879
13.6.2. SQL Statements for Controlling Slave Servers 882

13.7. SQL Syntax for Prepared Statements ... 890
14. Storage Engines and Table Types .. 894

14.1. The MyISAM Storage Engine ... 896
14.1.1. MyISAM Startup Options .. 898
14.1.2. Space Needed for Keys .. 899
14.1.3. MyISAM Table Storage Formats .. 900
14.1.4. MyISAM Table Problems .. 902

14.2. The InnoDB Storage Engine ... 904
14.2.1. InnoDB Overview .. 904
14.2.2. InnoDB Contact Information .. 904
14.2.3. InnoDB Configuration .. 904
14.2.4. InnoDB Startup Options and System Variables 910
14.2.5. Creating the InnoDB Tablespace ... 917
14.2.6. Creating and Using InnoDB Tables ... 918
14.2.7. Adding and Removing InnoDB Data and Log Files 926
14.2.8. Backing Up and Recovering an InnoDB Database 927
14.2.9. Moving an InnoDB Database to Another Machine 930
14.2.10. InnoDB Transaction Model and Locking .. 930
14.2.11. InnoDB Performance Tuning Tips ... 939
14.2.12. Implementation of Multi-Versioning ... 945
14.2.13. InnoDB Table and Index Structures ... 946
14.2.14. InnoDB File Space Management and Disk I/O 949
14.2.15. InnoDB Error Handling ... 950
14.2.16. Restrictions on InnoDB Tables ... 956
14.2.17. InnoDB Troubleshooting ... 959

14.3. The MERGE Storage Engine ... 960
14.3.1. MERGE Table Problems .. 962

14.4. The MEMORY (HEAP) Storage Engine .. 963
14.5. The BDB (BerkeleyDB) Storage Engine .. 965

14.5.1. Operating Systems Supported by BDB ... 966
14.5.2. Installing BDB .. 966
14.5.3. BDB Startup Options .. 967
14.5.4. Characteristics of BDB Tables .. 968
14.5.5. Restrictions on BDB Tables ... 970
14.5.6. Errors That May Occur When Using BDB Tables 970

14.6. The EXAMPLE Storage Engine ... 970
14.7. The FEDERATED Storage Engine ... 971

14.7.1. Description of the FEDERATED Storage Engine 971
14.7.2. How to use FEDERATED Tables .. 972
14.7.3. Limitations of the FEDERATED Storage Engine 973

14.8. The ARCHIVE Storage Engine ... 973
14.9. The CSV Storage Engine ... 974
14.10. The BLACKHOLE Storage Engine ... 975

15. MySQL Cluster ... 977
15.1. MySQL Cluster Overview ... 978
15.2. Basic MySQL Cluster Concepts ... 979

15.2.1. MySQL Cluster Nodes, Node Groups, Replicas, and Partitions 980
15.3. Simple Multi-Computer How-To .. 982

15.3.1. Hardware, Software, and Networking .. 984
15.3.2. Multi-Computer Installation .. 985
15.3.3. Multi-Computer Configuration .. 987
15.3.4. Initial Startup ... 988
15.3.5. Loading Sample Data and Performing Queries 989
15.3.6. Safe Shutdown and Restart ... 992

MySQL 5.0 Reference Manual

xii

15.4. MySQL Cluster Configuration ... 993
15.4.1. Building MySQL Cluster from Source Code 993
15.4.2. Installing the Software ... 994
15.4.3. Quick Test Setup of MySQL Cluster ... 994
15.4.4. Configuration File ... 996
15.4.5. Overview of Cluster Configuration Parameters 1025
15.4.6. Configuring Parameters for Local Checkpoints 1035

15.5. Upgrading and Downgrading MySQL Cluster .. 1037
15.5.1. Performing a Rolling Restart of the Cluster 1037
15.5.2. Cluster Upgrade and Downgrade Compatibility 1038

15.6. Process Management in MySQL Cluster ... 1040
15.6.1. MySQL Server Process Usage for MySQL Cluster 1041
15.6.2. ndbd, the Storage Engine Node Process ... 1042
15.6.3. ndb_mgmd, the Management Server Process 1043
15.6.4. ndb_mgm, the Management Client Process 1044
15.6.5. Command Options for MySQL Cluster Processes 1044

15.7. Management of MySQL Cluster .. 1047
15.7.1. MySQL Cluster Startup Phases ... 1048
15.7.2. Commands in the Management Client .. 1050
15.7.3. Event Reports Generated in MySQL Cluster 1052
15.7.4. Single-User Mode .. 1058

15.8. On-line Backup of MySQL Cluster .. 1059
15.8.1. Cluster Backup Concepts ... 1059
15.8.2. Using The Management Client to Create a Backup 1060
15.8.3. How to Restore a Cluster Backup .. 1061
15.8.4. Configuration for Cluster Backup .. 1063
15.8.5. Backup Troubleshooting .. 1064

15.9. Cluster Utility Programs .. 1064
15.9.1. ndb_delete_all ... 1066
15.9.2. ndb_desc ... 1066
15.9.3. ndb_drop_index ... 1067
15.9.4. ndb_drop_table ... 1068
15.9.5. ndb_error_reporter ... 1068
15.9.6. ndb_print_backup_file ... 1069
15.9.7. ndb_print_schema_file ... 1069
15.9.8. ndb_print_sys_file ... 1069
15.9.9. ndb_select_all ... 1070
15.9.10. ndb_select_count ... 1072
15.9.11. ndb_show_tables ... 1072
15.9.12. ndb_size.pl ... 1073
15.9.13. ndb_waiter ... 1075

15.10. Using High-Speed Interconnects with MySQL Cluster 1077
15.10.1. Configuring MySQL Cluster to use SCI Sockets 1077
15.10.2. Understanding the Impact of Cluster Interconnects 1081

15.11. Known Limitations of MySQL Cluster .. 1082
15.12. MySQL Cluster Development Roadmap .. 1088

15.12.1. MySQL Cluster Changes in MySQL 5.0 ... 1088
15.12.2. MySQL 5.1 Development Roadmap for MySQL Cluster 1089

15.13. MySQL Cluster FAQ ... 1090
15.14. MySQL Cluster Glossary ... 1097

16. Spatial Extensions ... 1103
16.1. Introduction to MySQL Spatial Support .. 1103
16.2. The OpenGIS Geometry Model ... 1104

16.2.1. The Geometry Class Hierarchy ... 1104
16.2.2. Class Geometry ... 1105
16.2.3. Class Point ... 1106
16.2.4. Class Curve ... 1107
16.2.5. Class LineString ... 1107

MySQL 5.0 Reference Manual

xiii

16.2.6. Class Surface ... 1107
16.2.7. Class Polygon ... 1108
16.2.8. Class GeometryCollection ... 1108
16.2.9. Class MultiPoint ... 1109
16.2.10. Class MultiCurve ... 1109
16.2.11. Class MultiLineString ... 1109
16.2.12. Class MultiSurface ... 1110
16.2.13. Class MultiPolygon ... 1110

16.3. Supported Spatial Data Formats .. 1110
16.3.1. Well-Known Text (WKT) Format ... 1111
16.3.2. Well-Known Binary (WKB) Format .. 1111

16.4. Creating a Spatially Enabled MySQL Database .. 1112
16.4.1. MySQL Spatial Data Types .. 1112
16.4.2. Creating Spatial Values ... 1113
16.4.3. Creating Spatial Columns .. 1116
16.4.4. Populating Spatial Columns ... 1116
16.4.5. Fetching Spatial Data .. 1117

16.5. Analyzing Spatial Information .. 1118
16.5.1. Geometry Format Conversion Functions ... 1118
16.5.2. Geometry Functions ... 1119
16.5.3. Functions That Create New Geometries from Existing Ones 1124
16.5.4. Functions for Testing Spatial Relations Between Geometric Objects 1125
16.5.5. Relations on Geometry Minimal Bounding Rectangles (MBRs) 1125
16.5.6. Functions That Test Spatial Relationships Between Geometries 1126

16.6. Optimizing Spatial Analysis ... 1128
16.6.1. Creating Spatial Indexes .. 1128
16.6.2. Using a Spatial Index .. 1129

16.7. MySQL Conformance and Compatibility .. 1131
17. Stored Procedures and Functions .. 1132

17.1. Stored Routines and the Grant Tables ... 1132
17.2. Stored Routine Syntax ... 1133

17.2.1. CREATE PROCEDURE and CREATE FUNCTION Syntax 1133
17.2.2. ALTER PROCEDURE and ALTER FUNCTION Syntax 1137
17.2.3. DROP PROCEDURE and DROP FUNCTION Syntax 1137
17.2.4. CALL Statement Syntax .. 1138
17.2.5. BEGIN ... END Compound Statement Syntax 1138
17.2.6. DECLARE Statement Syntax .. 1139
17.2.7. Variables in Stored Routines .. 1139
17.2.8. Conditions and Handlers .. 1140
17.2.9. Cursors .. 1142
17.2.10. Flow Control Constructs .. 1143

17.3. Stored Procedures, Functions, Triggers, and LAST_INSERT_ID() 1146
17.4. Stored Procedures, Functions, Triggers, and Replication: Frequently Asked Questions
.. 1146
17.5. Binary Logging of Stored Routines and Triggers .. 1147

18. Triggers .. 1156
18.1. CREATE TRIGGER Syntax ... 1156
18.2. DROP TRIGGER Syntax ... 1159
18.3. Using Triggers ... 1160

19. Views ... 1163
19.1. ALTER VIEW Syntax ... 1163
19.2. CREATE VIEW Syntax ... 1163
19.3. DROP VIEW Syntax ... 1170

20. The INFORMATION_SCHEMA Database ... 1171
20.1. The INFORMATION_SCHEMA SCHEMATA Table 1173
20.2. The INFORMATION_SCHEMA TABLES Table ... 1173
20.3. The INFORMATION_SCHEMA COLUMNS Table ... 1174
20.4. The INFORMATION_SCHEMA STATISTICS Table 1175

MySQL 5.0 Reference Manual

xiv

20.5. The INFORMATION_SCHEMA USER_PRIVILEGES Table 1176
20.6. The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table 1176
20.7. The INFORMATION_SCHEMA TABLE_PRIVILEGES Table 1177
20.8. The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table 1177
20.9. The INFORMATION_SCHEMA CHARACTER_SETS Table 1178
20.10. The INFORMATION_SCHEMA COLLATIONS Table 1178
20.11. The INFORMATION_SCHEMA COLLA-
TION_CHARACTER_SET_APPLICABILITY Table .. 1179
20.12. The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table 1179
20.13. The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table 1180
20.14. The INFORMATION_SCHEMA ROUTINES Table 1181
20.15. The INFORMATION_SCHEMA VIEWS Table ... 1182
20.16. The INFORMATION_SCHEMA TRIGGERS Table 1182
20.17. Other INFORMATION_SCHEMA Tables ... 1184
20.18. Extensions to SHOW Statements ... 1184

21. Precision Math ... 1187
21.1. Types of Numeric Values ... 1187
21.2. DECIMAL Data Type Changes .. 1188
21.3. Expression Handling ... 1190
21.4. Rounding Behavior ... 1191
21.5. Precision Math Examples ... 1192

22. APIs and Libraries .. 1197
22.1. libmysqld, the Embedded MySQL Server Library ... 1197
22.2. MySQL C API ... 1197

22.2.1. C API Data types ... 1198
22.2.2. C API Function Overview .. 1202
22.2.3. C API Function Descriptions .. 1206
22.2.4. C API Prepared Statements .. 1253
22.2.5. C API Prepared Statement Data types .. 1253
22.2.6. C API Prepared Statement Function Overview 1257
22.2.7. C API Prepared Statement Function Descriptions 1260
22.2.8. C API Prepared statement problems ... 1281
22.2.9. C API Handling of Multiple Statement Execution 1282
22.2.10. C API Handling of Date and Time Values 1282
22.2.11. C API Threaded Function Descriptions ... 1284
22.2.12. C API Embedded Server Function Descriptions 1285
22.2.13. Common Questions and Problems When Using the C API 1286
22.2.14. Building Client Programs ... 1288
22.2.15. How to Make a Threaded Client .. 1288

22.3. MySQL PHP API ... 1290
22.3.1. Common Problems with MySQL and PHP .. 1290
22.3.2. Enabling Both mysql and mysqli in PHP 1291

22.4. MySQL Perl API .. 1291
22.5. MySQL C++ API ... 1292

22.5.1. Borland C++ ... 1292
22.6. MySQL Python API .. 1292
22.7. MySQL Tcl API ... 1292
22.8. MySQL Eiffel Wrapper ... 1292
22.9. MySQL Program Development Utilities .. 1292

22.9.1. msql2mysql — Convert mSQL Programs for Use with MySQL 1293
22.9.2. mysql_config — Get Compile Options for Compiling Clients 1293

23. Connectors .. 1295
23.1. MySQL Connector/ODBC ... 1295

23.1.1. Introduction to MyODBC .. 1296
23.1.2. How to Install MyODBC ... 1299
23.1.3. MyODBC Configuration ... 1319
23.1.4. MyODBC Examples ... 1335
23.1.5. MyODBC Reference .. 1351

MySQL 5.0 Reference Manual

xv

23.1.6. MyODBC Notes and Tips .. 1357
23.1.7. MyODBC Support ... 1367

23.2. Connector/NET .. 1368
23.2.1. Connector/NET Versions ... 1369
23.2.2. How to install Connector/NET .. 1369
23.2.3. Connector/NET Examples ... 1376
23.2.4. Connector/NET Reference ... 1425
23.2.5. Connector/NET Notes and Tips .. 1539
23.2.6. Connector/NET Support .. 1556

23.3. MySQL Connector/J ... 1557
23.3.1. Connector/J Versions .. 1558
23.3.2. Installing Connector/J ... 1559
23.3.3. Connector/J Examples ... 1563
23.3.4. Connector/J (JDBC) Reference ... 1563
23.3.5. Connector/J Notes and Tips .. 1581
23.3.6. Connector/J Support ... 1598

23.4. MySQL Connector/MXJ .. 1600
23.4.1. Introduction to Connector/MXJ .. 1600
23.4.2. Installing Connector/MXJ .. 1602
23.4.3. Connector/MXJ Configuration .. 1606
23.4.4. Connector/MXJ Reference ... 1609
23.4.5. Connector/MXJ Notes and Tips .. 1610
23.4.6. Connector/MXJ Support .. 1614

23.5. Connector/PHP .. 1615
24. Extending MySQL .. 1616

24.1. MySQL Internals .. 1616
24.1.1. MySQL Threads .. 1616
24.1.2. MySQL Test Suite ... 1616

24.2. Adding New Functions to MySQL ... 1617
24.2.1. Features of the User-Defined Function Interface 1618
24.2.2. CREATE FUNCTION Syntax ... 1618
24.2.3. DROP FUNCTION Syntax ... 1619
24.2.4. Adding a New User-Defined Function .. 1619
24.2.5. Adding a New Native Function ... 1628

24.3. Adding New Procedures to MySQL ... 1630
24.3.1. Procedure Analyse ... 1630
24.3.2. Writing a Procedure .. 1630

A. Problems and Common Errors .. 1631
A.1. How to Determine What Is Causing a Problem .. 1631
A.2. Common Errors When Using MySQL Programs .. 1632

A.2.1. Access denied .. 1632
A.2.2. Can't connect to [local] MySQL server 1632
A.2.3. Client does not support authentication protocol 1635
A.2.4. Password Fails When Entered Interactively .. 1636
A.2.5. Host 'host_name' is blocked .. 1637
A.2.6. Too many connections .. 1637
A.2.7. Out of memory .. 1637
A.2.8. MySQL server has gone away .. 1638
A.2.9. Packet too large .. 1640
A.2.10. Communication Errors and Aborted Connections 1640
A.2.11. The table is full .. 1641
A.2.12. Can't create/write to file .. 1642
A.2.13. Commands out of sync .. 1643
A.2.14. Ignoring user .. 1643
A.2.15. Table 'tbl_name' doesn't exist 1643
A.2.16. Can't initialize character set 1644
A.2.17. File Not Found .. 1644

A.3. Installation-Related Issues ... 1645

MySQL 5.0 Reference Manual

xvi

A.3.1. Problems Linking to the MySQL Client Library 1645
A.3.2. Problems with File Permissions ... 1646

A.4. Administration-Related Issues .. 1646
A.4.1. How to Reset the Root Password .. 1646
A.4.2. What to Do If MySQL Keeps Crashing ... 1649
A.4.3. How MySQL Handles a Full Disk .. 1651
A.4.4. Where MySQL Stores Temporary Files ... 1651
A.4.5. How to Protect or Change the MySQL Unix Socket File 1652
A.4.6. Time Zone Problems ... 1653

A.5. Query-Related Issues ... 1653
A.5.1. Case Sensitivity in Searches .. 1653
A.5.2. Problems Using DATE Columns .. 1654
A.5.3. Problems with NULL Values ... 1655
A.5.4. Problems with Column Aliases .. 1656
A.5.5. Rollback Failure for Non-Transactional Tables 1656
A.5.6. Deleting Rows from Related Tables .. 1657
A.5.7. Solving Problems with No Matching Rows .. 1657
A.5.8. Problems with Floating-Point Comparisons .. 1658

A.6. Optimizer-Related Issues .. 1660
A.7. Table Definition-Related Issues .. 1660

A.7.1. Problems with ALTER TABLE ... 1660
A.7.2. How to Change the Order of Columns in a Table 1661
A.7.3. TEMPORARY TABLE Problems .. 1662

A.8. Known Issues in MySQL .. 1662
A.8.1. Open Issues in MySQL .. 1662

B. Error Codes and Messages ... 1666
B.1. Server Error Codes and Messages ... 1666
B.2. Client Error Codes and Messages .. 1699

C. Credits ... 1704
C.1. Developers at MySQL AB ... 1704
C.2. Contributors to MySQL .. 1709
C.3. Documenters and translators .. 1713
C.4. Libraries used by and included with MySQL ... 1715
C.5. Packages that support MySQL ... 1716
C.6. Tools that were used to create MySQL ... 1716
C.7. Supporters of MySQL .. 1717

D. MySQL Change History .. 1718
D.1. Changes in release 5.0.x (Production) .. 1718

D.1.1. Changes in release 5.0.26 (Not yet released) 1719
D.1.2. Changes in release 5.0.25 (15 September 2006) 1720
D.1.3. Changes in release 5.0.24a (25 August 2006) 1733
D.1.4. Changes in release 5.0.24 (27 July 2006) ... 1733
D.1.5. Changes in release 5.0.23 (Not released) .. 1735
D.1.6. Changes in release 5.0.22 (24 May 2006) ... 1745
D.1.7. Changes in release 5.0.21 (02 May 2006) ... 1746
D.1.8. Changes in release 5.0.20a (18 April 2006) .. 1751
D.1.9. Changes in release 5.0.20 (31 March 2006) .. 1752
D.1.10. Changes in release 5.0.19 (04 March 2006) 1756
D.1.11. Changes in release 5.0.18 (21 December 2005) 1765
D.1.12. Changes in release 5.0.17 (14 December 2005) 1767
D.1.13. Changes in release 5.0.16 (10 November 2005) 1772
D.1.14. Changes in release 5.0.15 (19 October 2005: Production) 1777
D.1.15. Changes in release 5.0.14 (Not released) .. 1781
D.1.16. Changes in release 5.0.13 (22 September 2005: Release Candidate) 1784
D.1.17. Changes in release 5.0.12 (02 September 2005) 1789
D.1.18. Changes in release 5.0.11 (06 August 2005) 1795
D.1.19. Changes in release 5.0.10 (27 July 2005) ... 1797
D.1.20. Changes in release 5.0.9 (15 July 2005) ... 1802

MySQL 5.0 Reference Manual

xvii

D.1.21. Changes in release 5.0.8 (Not released) .. 1804
D.1.22. Changes in release 5.0.7 (10 June 2005) ... 1809
D.1.23. Changes in release 5.0.6 (26 May 2005) ... 1813
D.1.24. Changes in release 5.0.5 (Not released) .. 1818
D.1.25. Changes in release 5.0.4 (16 April 2005) .. 1820
D.1.26. Changes in release 5.0.3 (23 March 2005: Beta) 1823
D.1.27. Changes in release 5.0.2 (01 December 2004) 1834
D.1.28. Changes in release 5.0.1 (27 July 2004) ... 1837
D.1.29. Changes in release 5.0.0 (22 December 2003: Alpha) 1842

D.2. Changes in MySQL Cluster ... 1842
D.2.1. Changes in MySQL Cluster-5.0.7 (10 June 2005) 1842
D.2.2. Changes in MySQL Cluster-5.0.6 (26 May 2005) 1843
D.2.3. Changes in MySQL Cluster-5.0.5 (Not released) 1843
D.2.4. Changes in MySQL Cluster-5.0.4 (16 April 2005) 1844
D.2.5. Changes in MySQL Cluster-5.0.3 (23 March 2005: Beta) 1844
D.2.6. Changes in MySQL Cluster-5.0.1 (27 July 2004) 1845
D.2.7. Changes in MySQL Cluster-4.1.13 (15 July 2005) 1845
D.2.8. Changes in MySQL Cluster-4.1.12 (13 May 2005) 1846
D.2.9. Changes in MySQL Cluster-4.1.11 (01 April 2005) 1846
D.2.10. Changes in MySQL Cluster-4.1.10 (12 February 2005) 1847
D.2.11. Changes in MySQL Cluster-4.1.9 (13 January 2005) 1848
D.2.12. Changes in MySQL Cluster-4.1.8 (14 December 2004) 1848
D.2.13. Changes in MySQL Cluster-4.1.7 (23 October 2004) 1851
D.2.14. Changes in MySQL Cluster-4.1.6 (10 October 2004) 1851
D.2.15. Changes in MySQL Cluster-4.1.5 (16 September 2004) 1852
D.2.16. Changes in MySQL Cluster-4.1.4 (31 August 2004) 1854
D.2.17. Changes in MySQL Cluster-4.1.3 (28 June 2004) 1854

D.3. MySQL Connector/ODBC (MyODBC) Change History 1854
D.3.1. Changes in MyODBC 3.51.13 ... 1854
D.3.2. Changes in MyODBC 3.51.12 ... 1855
D.3.3. Changes in MyODBC 3.51.11 ... 1855

D.4. MySQL Connector/NET Change History ... 1855
D.4.1. Version 5.0.1 (not yet released) .. 1855
D.4.2. Version 5.0.0 .. 1856
D.4.3. Version 1.0.8 (not yet released) .. 1857
D.4.4. Version 1.0.7 .. 1858
D.4.5. Version 1.0.6 .. 1858
D.4.6. Version 1.0.5 .. 1858
D.4.7. Version 1.0.4 1-20-05 .. 1859
D.4.8. Version 1.0.3-gamma 12-10-04 .. 1860
D.4.9. Version 1.0.2-gamma 04-11-15 .. 1861
D.4.10. Version 1.0.1-beta2 04-10-27 .. 1861
D.4.11. Version 1.0.0 04-09-01 ... 1863
D.4.12. Version 0.9.0 04-08-30 ... 1863
D.4.13. Version 0.76 ... 1867
D.4.14. Version 0.75 ... 1868
D.4.15. Version 0.74 ... 1868
D.4.16. Version 0.71 ... 1870
D.4.17. Version 0.70 ... 1871
D.4.18. Version 0.68 ... 1873
D.4.19. Version 0.65 ... 1873
D.4.20. Version 0.60 ... 1874
D.4.21. Version 0.50 ... 1874

D.5. MySQL Connector/J Change History .. 1874
D.5.1. Changes in MySQL Connector/J 5.0.3 (26 July 2006) 1874
D.5.2. Changes in MySQL Connector/J 5.0.2-beta (11 July 2006) 1874
D.5.3. Changes in MySQL Connector/J 5.0.1-beta (Not Released) 1875
D.5.4. Changes in MySQL Connector/J 5.0.0-beta (22 December 2005) 1875

MySQL 5.0 Reference Manual

xviii

D.5.5. Changes in MySQL Connector/J 3.1.14 (not yet released) 1876
D.5.6. Changes in MySQL Connector/J 3.1.13 (26 May 2006) 1877
D.5.7. Changes in MySQL Connector/J 3.1.12 (30 November 2005) 1879
D.5.8. Changes in MySQL Connector/J 3.1.11-stable (07 October 2005) 1880
D.5.9. Changes in MySQL Connector/J 3.1.10-stable (23 June 2005) 1883
D.5.10. Changes in MySQL Connector/J 3.1.9-stable (22 June 2005) 1884
D.5.11. Changes in MySQL Connector/J 3.1.8-stable (14 April 2005) 1886
D.5.12. Changes in MySQL Connector/J 3.1.7-stable (18 February 2005) 1888
D.5.13. Changes in MySQL Connector/J 3.1.6-stable (23 December 2004) 1889
D.5.14. Changes in MySQL Connector/J 3.1.5-gamma (02 December 2004) 1890
D.5.15. Changes in MySQL Connector/J 3.1.4-beta (04 September 2004) 1891
D.5.16. Changes in MySQL Connector/J 3.1.3-beta (07 July 2004) 1892
D.5.17. Changes in MySQL Connector/J 3.1.2-alpha (09 June 2004) 1893
D.5.18. Changes in MySQL Connector/J 3.1.1-alpha (14 February 2004) 1894
D.5.19. Changes in MySQL Connector/J 3.1.0-alpha (18 February 2003) 1896
D.5.20. Changes in MySQL Connector/J 3.0.17-ga (23 June 2005) 1896
D.5.21. Changes in MySQL Connector/J 3.0.16-ga (15 November 2004) 1898
D.5.22. Changes in MySQL Connector/J 3.0.15-production (04 September 2004) 1898
D.5.23. Changes in MySQL Connector/J 3.0.14-production (28 May 2004) 1899
D.5.24. Changes in MySQL Connector/J 3.0.13-production (27 May 2004) 1899
D.5.25. Changes in MySQL Connector/J 3.0.12-production (18 May 2004) 1899
D.5.26. Changes in MySQL Connector/J 3.0.11-stable (19 February 2004) 1901
D.5.27. Changes in MySQL Connector/J 3.0.10-stable (13 January 2004) 1901
D.5.28. Changes in MySQL Connector/J 3.0.9-stable (07 October 2003) 1903
D.5.29. Changes in MySQL Connector/J 3.0.8-stable (23 May 2003) 1904
D.5.30. Changes in MySQL Connector/J 3.0.7-stable (08 April 2003) 1905
D.5.31. Changes in MySQL Connector/J 3.0.6-stable (18 February 2003) 1906
D.5.32. Changes in MySQL Connector/J 3.0.5-gamma (22 January 2003) 1906
D.5.33. Changes in MySQL Connector/J 3.0.4-gamma (06 January 2003) 1907
D.5.34. Changes in MySQL Connector/J 3.0.3-dev (17 December 2002) 1907
D.5.35. Changes in MySQL Connector/J 3.0.2-dev (08 November 2002) 1908
D.5.36. Changes in MySQL Connector/J 3.0.1-dev (21 September 2002) 1910
D.5.37. Changes in MySQL Connector/J 3.0.0-dev (31 July 2002) 1910
D.5.38. Changes in MySQL Connector/J 2.0.14 (16 May 2002) 1911
D.5.39. Changes in MySQL Connector/J 2.0.13 (24 April 2002) 1911
D.5.40. Changes in MySQL Connector/J 2.0.12 (07 April 2002) 1912
D.5.41. Changes in MySQL Connector/J 2.0.11 (27 January 2002) 1912
D.5.42. Changes in MySQL Connector/J 2.0.10 (24 January 2002) 1913
D.5.43. Changes in MySQL Connector/J 2.0.9 (13 January 2002) 1913
D.5.44. Changes in MySQL Connector/J 2.0.8 (25 November 2001) 1913
D.5.45. Changes in MySQL Connector/J 2.0.7 (24 October 2001) 1914
D.5.46. Changes in MySQL Connector/J 2.0.6 (16 June 2001) 1914
D.5.47. Changes in MySQL Connector/J 2.0.5 (13 June 2001) 1914
D.5.48. Changes in MySQL Connector/J 2.0.3 (03 December 2000) 1915
D.5.49. Changes in MySQL Connector/J 2.0.1 (06 April 2000) 1915
D.5.50. Changes in MySQL Connector/J 2.0.0pre5 (21 February 2000) 1916
D.5.51. Changes in MySQL Connector/J 2.0.0pre4 (10 January 2000) 1916
D.5.52. Changes in MySQL Connector/J 2.0.0pre (17 August 1999) 1916
D.5.53. Changes in MySQL Connector/J 1.2b (04 July 1999) 1917
D.5.54. Changes in MySQL Connector/J 1.2a (14 April 1999) 1917
D.5.55. Changes in MySQL Connector/J 1.1i (24 March 1999) 1917
D.5.56. Changes in MySQL Connector/J 1.1h (08 March 1999) 1918
D.5.57. Changes in MySQL Connector/J 1.1g (19 February 1999) 1918
D.5.58. Changes in MySQL Connector/J 1.1f (31 December 1998) 1918
D.5.59. Changes in MySQL Connector/J 1.1b (03 November 1998) 1919
D.5.60. Changes in MySQL Connector/J 1.1 (02 September 1998) 1919
D.5.61. Changes in MySQL Connector/J 1.0 (24 August 1998) 1920
D.5.62. Changes in MySQL Connector/J 0.9d (04 August 1998) 1920

MySQL 5.0 Reference Manual

xix

D.5.63. Changes in MySQL Connector/J 0.9 (28 July 1998) 1920
D.5.64. Changes in MySQL Connector/J 0.8 (06 July 1998) 1921
D.5.65. Changes in MySQL Connector/J 0.7 (01 July 1998) 1921
D.5.66. Changes in MySQL Connector/J 0.6 (21 May 1998) 1921

E. Porting to Other Systems ... 1922
E.1. Debugging a MySQL Server .. 1923

E.1.1. Compiling MySQL for Debugging .. 1923
E.1.2. Creating Trace Files ... 1924
E.1.3. Debugging mysqld under gdb ... 1924
E.1.4. Using a Stack Trace ... 1926
E.1.5. Using Server Logs to Find Causes of Errors in mysqld 1927
E.1.6. Making a Test Case If You Experience Table Corruption 1927

E.2. Debugging a MySQL Client ... 1928
E.3. The DBUG Package ... 1928
E.4. Comments about RTS Threads ... 1930
E.5. Differences Between Thread Packages ... 1931

F. Environment Variables .. 1933
G. Regular Expressions ... 1934
H. Limits in MySQL ... 1938

H.1. Limits of Joins .. 1938
I. Feature Restrictions ... 1939

I.1. Restrictions on Stored Routines and Triggers ... 1939
I.2. Restrictions on Server-Side Cursors .. 1940
I.3. Restrictions on Subqueries .. 1941
I.4. Restrictions on Views .. 1944
I.5. Restrictions on XA Transactions .. 1945

J. GNU General Public License ... 1947
K. MySQL FLOSS License Exception ... 1952
Index ... 1955

MySQL 5.0 Reference Manual

xx

List of Tables
15.1. Steps for Cluster rolling restarts — by type ..

xxi

List of Examples
23.1. Obtaining a connection from the DriverManager ... 1581
23.2. Using java.sql.Statement to execute a SELECT query .. 1582
23.3. Stored Procedures ... 1583
23.4. Using Connection.prepareCall() .. 1583
23.5. Registering output parameters ... 1584
23.6. Setting CallableStatement input parameters .. 1585
23.7. Retrieving results and output parameter values ... 1585
23.8. Retrieving AUTO_INCREMENT column values using State-
ment.getGeneratedKeys() ... 1586
23.9. Retrieving AUTO_INCREMENT column values using SELECT LAST_INSERT_ID() 1587
23.10. Retrieving AUTO_INCREMENT column values in Updatable ResultSets 1588
23.11. Using a connection pool with a J2EE application server 1590
23.12. Example of transaction with retry logic ... 1596

xxii

Preface
This is the Reference Manual for the MySQL Database System, version 5.0, up to release 5.0.25. It is
not intended for use with older versions of the MySQL software due to the many functional and other
differences between MySQL 5.0 and previous versions. If you are using an earlier release of the MySQL
software, please refer to the MySQL 3.23, 4.0, 4.1 Reference Manual, which provides coverage of the
3.22, 3.23, 4.0, and 4.1 series of MySQL software releases. Differences between minor versions of
MySQL 5.0 are noted in the present text with reference to release numbers (5.0.x).

xxiii

Chapter 1. General Information
The MySQL® software delivers a very fast, multi-threaded, multi-user, and robust SQL (Structured
Query Language) database server. MySQL Server is intended for mission-critical, heavy-load produc-
tion systems as well as for embedding into mass-deployed software. MySQL is a registered trademark of
MySQL AB.

The MySQL software is Dual Licensed. Users can choose to use the MySQL software as an Open
Source product under the terms of the GNU General Public License (http://www.fsf.org/licenses/) or can
purchase a standard commercial license from MySQL AB. See ht-
tp://www.mysql.com/company/legal/licensing/ for more information on our licensing policies.

The following list describes some sections of particular interest in this manual:

• For a discussion about the capabilities of the MySQL Database Server, see Section 1.4.2, “The Main
Features of MySQL”.

• For installation instructions, see Chapter 2, Installing and Upgrading MySQL. For information about
upgrading MySQL, see Section 2.11, “Upgrading MySQL”.

• For information about configuring and administering MySQL Server, see Chapter 5, Database Ad-
ministration.

• For information about setting up replication servers, see Chapter 6, Replication.

• For tips on porting the MySQL Database Software to new architectures or operating systems, see
Appendix E, Porting to Other Systems.

• For a tutorial introduction to the MySQL Database Server, see Chapter 3, Tutorial.

• For benchmarking information, see the sql-bench benchmarking directory in your MySQL distri-
bution.

• For a history of new features and bugfixes, see Appendix D, MySQL Change History.

• For a list of currently known bugs and misfeatures, see Section A.8, “Known Issues in MySQL”.

• For future plans, see Section 1.6, “MySQL Development Roadmap”.

• For a list of all the contributors to this project, see Appendix C, Credits.

Important:

To report errors (often called “bugs”), please use the instructions at Section 1.8, “How to Report Bugs or
Problems”.

If you have found a sensitive security bug in MySQL Server, please let us know immediately by sending
an email message to <security@mysql.com>.

1.1. About This Manual
This is the Reference Manual for the MySQL Database System, version 5.0, through release 5.0.25. It is
not intended for use with older versions of the MySQL software due to the many functional and other
differences between MySQL 5.0 and previous versions. If you are using a version 4.1 release of the
MySQL software, please refer to the MySQL 3.23, 4.0, 4.1 Reference Manual, which covers the 3.23,

1

http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/
http://www.mysql.com/company/legal/licensing/

4.0, and 4.1 series of MySQL software releases. Differences between minor versions of MySQL 5.0 are
noted in the present text with reference to release numbers (5.0.x).

Because this manual serves as a reference, it does not provide general instruction on SQL or relational
database concepts. It also does not teach you how to use your operating system or command-line inter-
preter.

The MySQL Database Software is under constant development, and the Reference Manual is updated
frequently as well. The most recent version of the manual is available online in searchable form at ht-
tp://dev.mysql.com/doc/. Other formats also are available there, including HTML, PDF, and Windows
CHM versions.

The Reference Manual source files are written in DocBook XML format. The HTML version and other
formats are produced automatically, primarily using the DocBook XSL stylesheets. For information
about DocBook, see http://docbook.org/

The DocBook XML sources of this manual are available from ht-
tp://dev.mysql.com/tech-resources/sources.html. You can check out a copy of the documentation repos-
itory with this command:

svn checkout http://svn.mysql.com/svnpublic/mysqldoc/

If you have any suggestions concerning additions or corrections to this manual, please send them to the
documentation team at <docs@mysql.com>.

This manual was originally written by David Axmark and Michael “Monty” Widenius. It is maintained
by the MySQL Documentation Team, consisting of Paul DuBois, Stefan Hinz, Mike Hillyer, and Jon
Stephens. For the many other contributors, see Appendix C, Credits.

The copyright to this manual is owned by the Swedish company MySQL AB. MySQL® and the
MySQL logo are registered trademarks of MySQL AB. Other trademarks and registered trademarks re-
ferred to in this manual are the property of their respective owners, and are used for identification pur-
poses only.

1.2. Conventions Used in This Manual
This manual uses certain typographical conventions:

• Text in this style is used for SQL statements; database, table, and column names; program
listings and source code; and environment variables. Example: “To reload the grant tables, use the
FLUSH PRIVILEGES statement.”

• Text in this style indicates input that you type in examples.

• Text in this style indicates the names of executable programs and scripts, examples being
mysql (the MySQL command line client program) and mysqld (the MySQL server executable).

• Text in this style is used for variable input for which you should substitute a value of your
own choosing.

• Filenames and directory names are written like this: “The global my.cnf file is located in the /etc
directory.”

• Character sequences are written like this: “To specify a wildcard, use the ‘%’ character.”

• Text in this style is used for emphasis.

• Text in this style is used in table headings and to convey especially strong emphasis.

General Information

2

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/
http://docbook.org/
http://dev.mysql.com/tech-resources/sources.html
http://dev.mysql.com/tech-resources/sources.html

When commands are shown that are meant to be executed from within a particular program, the prompt
shown preceding the command indicates which command to use. For example, shell> indicates a
command that you execute from your login shell, and mysql> indicates a statement that you execute
from the mysql client program:

shell> type a shell command here
mysql> type a mysql statement here

The “shell” is your command interpreter. On Unix, this is typically a program such as sh, csh, or
bash. On Windows, the equivalent program is command.com or cmd.exe, typically run in a console
window.

When you enter a command or statement shown in an example, do not type the prompt shown in the ex-
ample.

Database, table, and column names must often be substituted into statements. To indicate that such sub-
stitution is necessary, this manual uses db_name, tbl_name, and col_name. For example, you
might see a statement like this:

mysql> SELECT col_name FROM db_name.tbl_name;

This means that if you were to enter a similar statement, you would supply your own database, table,
and column names, perhaps like this:

mysql> SELECT author_name FROM biblio_db.author_list;

SQL keywords are not case sensitive and may be written in any lettercase. This manual uses uppercase.

In syntax descriptions, square brackets (‘[’ and ‘]’) indicate optional words or clauses. For example, in
the following statement, IF EXISTS is optional:

DROP TABLE [IF EXISTS] tbl_name

When a syntax element consists of a number of alternatives, the alternatives are separated by vertical
bars (‘|’). When one member from a set of choices may be chosen, the alternatives are listed within
square brackets (‘[’ and ‘]’):

TRIM([[BOTH | LEADING | TRAILING] [remstr] FROM] str)

When one member from a set of choices must be chosen, the alternatives are listed within braces (‘{’
and ‘}’):

{DESCRIBE | DESC} tbl_name [col_name | wild]

An ellipsis (...) indicates the omission of a section of a statement, typically to provide a shorter ver-
sion of more complex syntax. For example, INSERT ... SELECT is shorthand for the form of IN-
SERT statement that is followed by a SELECT statement.

An ellipsis can also indicate that the preceding syntax element of a statement may be repeated. In the
following example, multiple reset_option values may be given, with each of those after the first
preceded by commas:

RESET reset_option [,reset_option] ...

Commands for setting shell variables are shown using Bourne shell syntax. For example, the sequence
to set the CC environment variable and run the configure command looks like this in Bourne shell

General Information

3

syntax:

shell> CC=gcc ./configure

If you are using csh or tcsh, you must issue commands somewhat differently:

shell> setenv CC gcc
shell> ./configure

1.3. Overview of MySQL AB
MySQL AB is the company of the MySQL founders and main developers. MySQL AB was originally
established in Sweden by David Axmark, Allan Larsson, and Michael “Monty” Widenius.

We are dedicated to developing the MySQL database software and promoting it to new users. MySQL
AB owns the copyright to the MySQL source code, the MySQL logo and (registered) trademark, and
this manual. See Section 1.4, “Overview of the MySQL Database Management System”.

The MySQL core values show our dedication to MySQL and Open Source.

These core values direct how MySQL AB works with the MySQL server software:

• To be the best and the most widely used database in the world

• To be available and affordable by all

• To be easy to use

• To be continuously improved while remaining fast and safe

• To be fun to use and improve

• To be free from bugs

These are the core values of the company MySQL AB and its employees:

• We subscribe to the Open Source philosophy and support the Open Source community

• We aim to be good citizens

• We prefer partners that share our values and mindset

• We answer email and provide support

• We are a virtual company, networking with others

• We work against software patents

The MySQL Web site (http://www.mysql.com/) provides the latest information about MySQL and
MySQL AB.

By the way, the “AB” part of the company name is the acronym for the Swedish “aktiebolag,” or “stock
company.” It translates to “MySQL, Inc.” In fact, MySQL, Inc. and MySQL GmbH are examples of
MySQL AB subsidiaries. They are located in the United States and Germany, respectively.

General Information

4

http://www.mysql.com/

1.4. Overview of the MySQL Database Management
System

MySQL, the most popular Open Source SQL database management system, is developed, distributed,
and supported by MySQL AB. MySQL AB is a commercial company, founded by the MySQL de-
velopers. It is a second generation Open Source company that unites Open Source values and methodo-
logy with a successful business model.

The MySQL Web site (http://www.mysql.com/) provides the latest information about MySQL software
and MySQL AB.

• MySQL is a database management system.

A database is a structured collection of data. It may be anything from a simple shopping list to a pic-
ture gallery or the vast amounts of information in a corporate network. To add, access, and process
data stored in a computer database, you need a database management system such as MySQL Serv-
er. Since computers are very good at handling large amounts of data, database management systems
play a central role in computing, as standalone utilities, or as parts of other applications.

• MySQL is a relational database management system.

A relational database stores data in separate tables rather than putting all the data in one big store-
room. This adds speed and flexibility. The SQL part of “MySQL” stands for “Structured Query Lan-
guage.” SQL is the most common standardized language used to access databases and is defined by
the ANSI/ISO SQL Standard. The SQL standard has been evolving since 1986 and several versions
exist. In this manual, “SQL-92” refers to the standard released in 1992, “SQL:1999” refers to the
standard released in 1999, and “SQL:2003” refers to the current version of the standard. We use the
phrase “the SQL standard” to mean the current version of the SQL Standard at any time.

• MySQL software is Open Source.

Open Source means that it is possible for anyone to use and modify the software. Anybody can
download the MySQL software from the Internet and use it without paying anything. If you wish,
you may study the source code and change it to suit your needs. The MySQL software uses the GPL
(GNU General Public License), http://www.fsf.org/licenses/, to define what you may and may not do
with the software in different situations. If you feel uncomfortable with the GPL or need to embed
MySQL code into a commercial application, you can buy a commercially licensed version from us.
See the MySQL Licensing Overview for more information (ht-
tp://www.mysql.com/company/legal/licensing/).

• The MySQL Database Server is very fast, reliable, and easy to use.

If that is what you are looking for, you should give it a try. MySQL Server also has a practical set of
features developed in close cooperation with our users. You can find a performance comparison of
MySQL Server with other database managers on our benchmark page. See Section 7.1.4, “The
MySQL Benchmark Suite”.

MySQL Server was originally developed to handle large databases much faster than existing solu-
tions and has been successfully used in highly demanding production environments for several years.
Although under constant development, MySQL Server today offers a rich and useful set of func-
tions. Its connectivity, speed, and security make MySQL Server highly suited for accessing data-
bases on the Internet.

• MySQL Server works in client/server or embedded systems.

The MySQL Database Software is a client/server system that consists of a multi-threaded SQL serv-
er that supports different backends, several different client programs and libraries, administrative

General Information

5

http://www.mysql.com/
http://www.fsf.org/licenses/
http://www.mysql.com/company/legal/licensing/
http://www.mysql.com/company/legal/licensing/

tools, and a wide range of application programming interfaces (APIs).

We also provide MySQL Server as an embedded multi-threaded library that you can link into your
application to get a smaller, faster, easier-to-manage standalone product.

• A large amount of contributed MySQL software is available.

It is very likely that your favorite application or language supports the MySQL Database Server.

The official way to pronounce “MySQL” is “My Ess Que Ell” (not “my sequel”), but we don't mind if
you pronounce it as “my sequel” or in some other localized way.

1.4.1. History of MySQL
We started out with the intention of using the mSQL database system to connect to our tables using our
own fast low-level (ISAM) routines. However, after some testing, we came to the conclusion that mSQL
was not fast enough or flexible enough for our needs. This resulted in a new SQL interface to our data-
base but with almost the same API interface as mSQL. This API was designed to allow third-party code
that was written for use with mSQL to be ported easily for use with MySQL.

The derivation of the name MySQL is not clear. Our base directory and a large number of our libraries
and tools have had the prefix “my” for well over 10 years. However, co-founder Monty Widenius's
daughter is also named My. Which of the two gave its name to MySQL is still a mystery, even for us.

The name of the MySQL Dolphin (our logo) is “Sakila,” which was chosen by the founders of MySQL
AB from a huge list of names suggested by users in our “Name the Dolphin” contest. The winning name
was submitted by Ambrose Twebaze, an Open Source software developer from Swaziland, Africa. Ac-
cording to Ambrose, the feminine name Sakila has its roots in SiSwati, the local language of Swaziland.
Sakila is also the name of a town in Arusha, Tanzania, near Ambrose's country of origin, Uganda.

1.4.2. The Main Features of MySQL
The following list describes some of the important characteristics of the MySQL Database Software. See
also Section 1.6, “MySQL Development Roadmap”, for more information about current and upcoming
features.

Internals and Portability:

• Written in C and C++.

• Tested with a broad range of different compilers.

• Works on many different platforms. See Section 2.1.1, “Operating Systems Supported by MySQL”.

• Uses GNU Automake, Autoconf, and Libtool for portability.

• APIs for C, C++, Eiffel, Java, Perl, PHP, Python, Ruby, and Tcl are available. See Chapter 22, APIs
and Libraries.

• Fully multi-threaded using kernel threads. It can easily use multiple CPUs if they are available.

• Provides transactional and non-transactional storage engines.

• Uses very fast B-tree disk tables (MyISAM) with index compression.

General Information

6

• Relatively easy to add other storage engines. This is useful if you want to add an SQL interface to an
in-house database.

• A very fast thread-based memory allocation system.

• Very fast joins using an optimized one-sweep multi-join.

• In-memory hash tables, which are used as temporary tables.

• SQL functions are implemented using a highly optimized class library and should be as fast as pos-
sible. Usually there is no memory allocation at all after query initialization.

• The MySQL code is tested with Purify (a commercial memory leakage detector) as well as with Val-
grind, a GPL tool (http://developer.kde.org/~sewardj/).

• The server is available as a separate program for use in a client/server networked environment. It is
also available as a library that can be embedded (linked) into standalone applications. Such applica-
tions can be used in isolation or in environments where no network is available.

Data Types:

• Many data types: signed/unsigned integers 1, 2, 3, 4, and 8 bytes long, FLOAT, DOUBLE, CHAR,
VARCHAR, TEXT, BLOB, DATE, TIME, DATETIME, TIMESTAMP, YEAR, SET, ENUM, and Open-
GIS spatial types. See Chapter 11, Data Types.

• Fixed-length and variable-length records.

Statements and Functions:

• Full operator and function support in the SELECT and WHERE clauses of queries. For example:

mysql> SELECT CONCAT(first_name, ' ', last_name)
-> FROM citizen
-> WHERE income/dependents > 10000 AND age > 30;

• Full support for SQL GROUP BY and ORDER BY clauses. Support for group functions (COUNT(),
COUNT(DISTINCT ...), AVG(), STD(), SUM(), MAX(), MIN(), and GROUP_CONCAT()).

• Support for LEFT OUTER JOIN and RIGHT OUTER JOIN with both standard SQL and ODBC
syntax.

• Support for aliases on tables and columns as required by standard SQL.

• DELETE, INSERT, REPLACE, and UPDATE return the number of rows that were changed
(affected). It is possible to return the number of rows matched instead by setting a flag when con-
necting to the server.

• The MySQL-specific SHOW statement can be used to retrieve information about databases, storage
engines, tables, and indexes.

The EXPLAIN statement can be used to determine how the optimizer resolves a query.

• Function names do not clash with table or column names. For example, ABS is a valid column name.
The only restriction is that for a function call, no spaces are allowed between the function name and
the ‘(’ that follows it. See Section 9.5, “Treatment of Reserved Words in MySQL”.

General Information

7

http://developer.kde.org/~sewardj/

• You can mix tables from different databases in the same query (as of MySQL 3.22).

Security:

• A privilege and password system that is very flexible and secure, and that allows host-based verifica-
tion. Passwords are secure because all password traffic is encrypted when you connect to a server.

Scalability and Limits:

• Handles large databases. We use MySQL Server with databases that contain 50 million records. We
also know of users who use MySQL Server with 60,000 tables and about 5,000,000,000 rows.

• Up to 64 indexes per table are allowed (32 before MySQL 4.1.2). Each index may consist of 1 to 16
columns or parts of columns. The maximum index width is 1000 bytes (767 for InnoDB); before
MySQL 4.1.2, the limit is 500 bytes. An index may use a prefix of a column for CHAR, VARCHAR,
BLOB, or TEXT column types.

Connectivity:

• Clients can connect to the MySQL server using TCP/IP sockets on any platform. On Windows sys-
tems in the NT family (NT, 2000, XP, 2003, or Vista), clients can connect using named pipes. On
Unix systems, clients can connect using Unix domain socket files.

• In MySQL 4.1 and higher, Windows servers also support shared-memory connections if started with
the --shared-memory option. Clients can connect through shared memory by using the -
-protocol=memory option.

• The Connector/ODBC (MyODBC) interface provides MySQL support for client programs that use
ODBC (Open Database Connectivity) connections. For example, you can use MS Access to connect
to your MySQL server. Clients can be run on Windows or Unix. MyODBC source is available. All
ODBC 2.5 functions are supported, as are many others. See Chapter 23, Connectors.

• The Connector/J interface provides MySQL support for Java client programs that use JDBC connec-
tions. Clients can be run on Windows or Unix. Connector/J source is available. See Chapter 23, Con-
nectors.

• MySQL Connector/NET enables developers to easily create .NET applications that require secure,
high-performance data connectivity with MySQL. It implements the required ADO.NET interfaces
and integrates into ADO.NET aware tools. Developers can build applications using their choice of
.NET languages. MySQL Connector/NET is a fully managed ADO.NET driver written in 100% pure
C#. See Chapter 23, Connectors.

Localization:

• The server can provide error messages to clients in many languages. See Section 5.11.2, “Setting the
Error Message Language”.

• Full support for several different character sets, including latin1 (cp1252), german, big5,
ujis, and more. For example, the Scandinavian characters ‘å’, ‘ä’ and ‘ö’ are allowed in table and
column names. Unicode support is available as of MySQL 4.1.

• All data is saved in the chosen character set. All comparisons for normal string columns are case-

General Information

8

insensitive.

• Sorting is done according to the chosen character set (using Swedish collation by default). It is pos-
sible to change this when the MySQL server is started. To see an example of very advanced sorting,
look at the Czech sorting code. MySQL Server supports many different character sets that can be
specified at compile time and runtime.

Clients and Tools:

• MySQL Server has built-in support for SQL statements to check, optimize, and repair tables. These
statements are available from the command line through the mysqlcheck client. MySQL also in-
cludes myisamchk, a very fast command-line utility for performing these operations on MyISAM
tables. See Chapter 5, Database Administration.

• All MySQL programs can be invoked with the --help or -? options to obtain online assistance.

1.4.3. MySQL Stability
This section addresses the questions, “How stable is MySQL Server?” and, “Can I depend on MySQL
Server in this project?” We will try to clarify these issues and answer some important questions that
concern many potential users. The information in this section is based on data gathered from the mailing
lists, which are very active in identifying problems as well as reporting types of use.

The original code stems back to the early 1980s. It provides a stable code base, and the ISAM table
format used by the original storage engine remains backward-compatible. At TcX, the predecessor of
MySQL AB, MySQL code has worked in projects since mid-1996, without any problems. When the
MySQL Database Software initially was released to a wider public, our new users quickly found some
pieces of untested code. Each new release since then has had fewer portability problems, even though
each new release has also had many new features.

Each release of the MySQL Server has been usable. Problems have occurred only when users try code
from the “gray zones.” Naturally, new users don't know what the gray zones are; this section therefore
attempts to document those areas that are currently known. The descriptions mostly deal with Versions
3.23 and later of MySQL Server. All known and reported bugs are fixed in the latest version, with the
exception of those listed in the bugs section, which are design-related. See Section A.8, “Known Issues
in MySQL”.

The MySQL Server design is multi-layered with independent modules. Some of the newer modules are
listed here with an indication of how well-tested each of them is:

• Replication (Stable)

Large groups of servers using replication are in production use, with good results. Work on en-
hanced replication features is continuing.

• InnoDB tables (Stable)

The InnoDB transactional storage engine has been stable since version 3.23.49. InnoDB is being
used in large, heavy-load production systems.

• Full-text searches (Stable)

Full-text searching is widely used. Important feature enhancements were added in MySQL 4.0 and
4.1.

General Information

9

• MyODBC 3.51 (Stable)

MyODBC 3.51 uses ODBC SDK 3.51 and is in wide production use. Some issues brought up appear
to be application-related and independent of the ODBC driver or underlying database server.

1.4.4. How Large MySQL Tables Can Be
MySQL 3.22 had a 4GB (4 gigabyte) limit on table size. With the MyISAM storage engine in MySQL
3.23, the maximum table size was increased to 65536 terabytes (2567 – 1 bytes). With this larger al-
lowed table size, the maximum effective table size for MySQL databases is usually determined by oper-
ating system constraints on file sizes, not by MySQL internal limits.

The InnoDB storage engine maintains InnoDB tables within a tablespace that can be created from sev-
eral files. This allows a table to exceed the maximum individual file size. The tablespace can include
raw disk partitions, which allows extremely large tables. The maximum tablespace size is 64TB.

The following table lists some examples of operating system file-size limits. This is only a rough guide
and is not intended to be definitive. For the most up-to-date information, be sure to check the document-
ation specific to your operating system.

Operating System File-size Limit

Linux 2.2-Intel 32-bit 2GB (LFS: 4GB)

Linux 2.4+ (using ext3 filesystem) 4TB

Solaris 9/10 16TB

NetWare w/NSS filesystem 8TB

Win32 w/ FAT/FAT32 2GB/4GB

Win32 w/ NTFS 2TB (possibly larger)

MacOS X w/ HFS+ 2TB

On Linux 2.2, you can get MyISAM tables larger than 2GB in size by using the Large File Support
(LFS) patch for the ext2 filesystem. On Linux 2.4, patches also exist for ReiserFS to get support for big
files (up to 2TB). Most current Linux distributions are based on kernel 2.4 or higher and include all the
required LFS patches. With JFS and XFS, petabyte and larger files are possible on Linux. However, the
maximum available file size still depends on several factors, one of them being the filesystem used to
store MySQL tables.

For a detailed overview about LFS in Linux, have a look at Andreas Jaeger's Large File Support in
Linux page at http://www.suse.de/~aj/linux_lfs.html.

Windows users please note: FAT and VFAT (FAT32) are not considered suitable for production use
with MySQL. Use NTFS instead.

By default, MySQL creates MyISAM tables with an internal structure that allows a maximum size of
about 4GB. You can check the maximum table size for a MyISAM table with the SHOW TABLE
STATUS statement or with myisamchk -dv tbl_name. See Section 13.5.4, “SHOW Syntax”.

If you need a MyISAM table that is larger than 4GB and your operating system supports large files, the
CREATE TABLE statement supports AVG_ROW_LENGTH and MAX_ROWS options. See Section 13.1.5,
“CREATE TABLE Syntax”. You can also change these options with ALTER TABLE to increase a ta-
ble's maximum allowable size after the table has been created. See Section 13.1.2, “ALTER TABLE
Syntax”.

Other ways to work around file-size limits for MyISAM tables are as follows:

General Information

10

http://www.suse.de/~aj/linux_lfs.html

• If your large table is read-only, you can use myisampack to compress it. myisampack usually
compresses a table by at least 50%, so you can have, in effect, much bigger tables. myisampack
also can merge multiple tables into a single table. See Section 8.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”.

• MySQL includes a MERGE library that allows you to handle a collection of MyISAM tables that have
identical structure as a single MERGE table. See Section 14.3, “The MERGE Storage Engine”.

1.4.5. Year 2000 Compliance
The MySQL Server itself has no problems with Year 2000 (Y2K) compliance:

• MySQL Server uses Unix time functions that handle dates into the year 2037 for TIMESTAMP val-
ues. For DATE and DATETIME values, dates through the year 9999 are accepted.

• All MySQL date functions are implemented in one source file, sql/time.cc, and are coded very
carefully to be year 2000-safe.

• In MySQL, the YEAR data type can store the years 0 and 1901 to 2155 in one byte and display
them using two or four digits. All two-digit years are considered to be in the range 1970 to 2069,
which means that if you store 01 in a YEAR column, MySQL Server treats it as 2001.

The following simple demonstration illustrates that MySQL Server has no problems with DATE or
DATETIME values through the year 9999, and no problems with TIMESTAMP values until after the year
2030:

mysql> DROP TABLE IF EXISTS y2k;
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE y2k (date DATE,
-> date_time DATETIME,
-> time_stamp TIMESTAMP);

Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO y2k VALUES
-> ('1998-12-31','1998-12-31 23:59:59','1998-12-31 23:59:59'),
-> ('1999-01-01','1999-01-01 00:00:00','1999-01-01 00:00:00'),
-> ('1999-09-09','1999-09-09 23:59:59','1999-09-09 23:59:59'),
-> ('2000-01-01','2000-01-01 00:00:00','2000-01-01 00:00:00'),
-> ('2000-02-28','2000-02-28 00:00:00','2000-02-28 00:00:00'),
-> ('2000-02-29','2000-02-29 00:00:00','2000-02-29 00:00:00'),
-> ('2000-03-01','2000-03-01 00:00:00','2000-03-01 00:00:00'),
-> ('2000-12-31','2000-12-31 23:59:59','2000-12-31 23:59:59'),
-> ('2001-01-01','2001-01-01 00:00:00','2001-01-01 00:00:00'),
-> ('2004-12-31','2004-12-31 23:59:59','2004-12-31 23:59:59'),
-> ('2005-01-01','2005-01-01 00:00:00','2005-01-01 00:00:00'),
-> ('2030-01-01','2030-01-01 00:00:00','2030-01-01 00:00:00'),
-> ('2040-01-01','2040-01-01 00:00:00','2040-01-01 00:00:00'),
-> ('9999-12-31','9999-12-31 23:59:59','9999-12-31 23:59:59');

Query OK, 14 rows affected, 2 warnings (0.00 sec)
Records: 14 Duplicates: 0 Warnings: 2

mysql> SELECT * FROM y2k;
+------------+---------------------+---------------------+
| date | date_time | time_stamp |
+------------+---------------------+---------------------+
1998-12-31	1998-12-31 23:59:59	1998-12-31 23:59:59
1999-01-01	1999-01-01 00:00:00	1999-01-01 00:00:00
1999-09-09	1999-09-09 23:59:59	1999-09-09 23:59:59
2000-01-01	2000-01-01 00:00:00	2000-01-01 00:00:00
2000-02-28	2000-02-28 00:00:00	2000-02-28 00:00:00
2000-02-29	2000-02-29 00:00:00	2000-02-29 00:00:00
2000-03-01	2000-03-01 00:00:00	2000-03-01 00:00:00
2000-12-31	2000-12-31 23:59:59	2000-12-31 23:59:59
2001-01-01	2001-01-01 00:00:00	2001-01-01 00:00:00
2004-12-31	2004-12-31 23:59:59	2004-12-31 23:59:59

General Information

11

2005-01-01	2005-01-01 00:00:00	2005-01-01 00:00:00
2030-01-01	2030-01-01 00:00:00	2030-01-01 00:00:00
2040-01-01	2040-01-01 00:00:00	0000-00-00 00:00:00
9999-12-31	9999-12-31 23:59:59	0000-00-00 00:00:00
+------------+---------------------+---------------------+
14 rows in set (0.00 sec)

The final two TIMESTAMP column values are zero because the year values (2040, 9999) exceed the
TIMESTAMP maximum. The TIMESTAMP data type, which is used to store the current time, supports
values that range from '1970-01-01 00:00:00' to '2030-01-01 00:00:00' on 32-bit ma-
chines (signed value). On 64-bit machines, TIMESTAMP handles values up to 2106 (unsigned value).

Although MySQL Server itself is Y2K-safe, you may run into problems if you use it with applications
that are not Y2K-safe. For example, many old applications store or manipulate years using two-digit val-
ues (which are ambiguous) rather than four-digit values. This problem may be compounded by applica-
tions that use values such as 00 or 99 as “missing” value indicators. Unfortunately, these problems may
be difficult to fix because different applications may be written by different programmers, each of whom
may use a different set of conventions and date-handling functions.

Thus, even though MySQL Server has no Y2K problems, it is the application's responsibility to provide
unambiguous input. See Section 11.3.4, “Y2K Issues and Date Types”, for MySQL Server's rules for
dealing with ambiguous date input data that contains two-digit year values.

1.5. Overview of the MaxDB Database Management
System

MaxDB is a heavy-duty enterprise database. The database management system is SAP-certified.

MaxDB is the new name of a database management system formerly called SAP DB. In 2003 SAP AG
and MySQL AB joined a partnership and re-branded the database system to MaxDB. The development
of MaxDB has continued since then as it was done before—through the SAP developer team.

MySQL AB cooperates closely with the MaxDB team at SAP around delivering improvements to the
MaxDB product. Joint efforts include development of new native drivers to enable more efficient usage
of MaxDB in the Open Source community, and improvement of documentation to expand the MaxDB
user base. Interoperability features between MySQL and MaxDB database also are seen as important.
For example, the new MaxDB Synchronization Manager supports data synchronization from MaxDB to
MySQL.

The MaxDB database management system does not share a common code-base with the MySQL data-
base management system. The MaxDB and MySQL database management systems are independent
products provided by MySQL AB.

MySQL AB offers a complete portfolio of Professional Services for MaxDB.

1.5.1. What is MaxDB?
MaxDB is an ANSI SQL-92 (entry level) compliant relational database management system (RDBMS)
from SAP AG, that is delivered by MySQL AB as well. MaxDB fulfills the needs for enterprise usage:
safety, scalability, high concurrency, and performance. It runs on all major operating systems. Over the
years it has proven able to run SAP R/3 and terabytes of data in 24×7 operation.

The database development started in 1977 as a research project at the Technical University of Berlin. In
the early 1980s it became a database product that subsequently was owned by Nixdorf, Siemens Nix-
dorf, Software AG, and today by SAP AG. Along the way, it has been named VDN, Reflex, Supra 2,
DDB/4, Entire SQL-DB-Server, and ADABAS D. In 1997, SAP took over the software from Software
AG and renamed it to SAP DB. Since October 2000, SAP DB sources additionally were released as
Open Source under the GNU General Public License (see Appendix J, GNU General Public License).

General Information

12

In 2003, SAP AG and MySQL AB formed a partnership and re-branded the database system to MaxDB.

1.5.2. History of MaxDB
The history of MaxDB goes back to SAP DB, SAP AG's DBMS. That is, MaxDB is a re-branded and
enhanced version of SAP DB. For many years, MaxDB has been used for small, medium, and large in-
stallations of the mySAP Business Suite and other demanding SQL applications requiring an enterprise-
class DBMS with regard to the number of users, the transactional workload, and the size of the database.

SAP DB was meant to provide an alternative to third-party database systems such as Oracle, Microsoft
SQL Server, and DB2 by IBM. In October 2000, SAP AG released SAP DB under the GNU GPL li-
cense (see Appendix J, GNU General Public License), thus making it Open Source software.

Today, MaxDB is used in about 3,500 SAP customer installations worldwide. Moreover, the majority of
all DBMS installations on Unix and Linux within SAP’s IT department rely on MaxDB. MaxDB is
tuned toward heavy-duty online transaction processing (OLTP) with several thousand users and database
sizes ranging from several hundred GB to multiple TB.

In 2003, SAP and MySQL concluded a partnership and development cooperation agreement. As a result,
SAP's database system SAP DB has been delivered under the name of MaxDB by MySQL since the re-
lease of version 7.5 (November 2003).

Version 7.5 of MaxDB is a direct advancement of the SAP DB 7.4 code base. Therefore, the MaxDB
software version 7.5 can be used as a direct upgrade of previous SAP DB versions starting 7.2.04 and
higher.

The former SAP DB development team at SAP AG is responsible, now as before, for developing and
supporting MaxDB. MySQL AB cooperates closely with the MaxDB team at SAP around delivering im-
provements to the MaxDB product, see Section 1.5, “Overview of the MaxDB Database Management
System”. Both SAP AG and MySQL AB handle the sale and distribution of MaxDB. The advancement
of MaxDB and the MySQL Server leverages synergies that benefit both product lines.

MaxDB is subjected to SAP AG's complete quality assurance process before it is shipped with SAP
solutions or provided as a download from the MySQL site.

1.5.3. Features of MaxDB
MaxDB is a heavy-duty, SAP-certified Open Source database for OLTP and OLAP usage which offers
high reliability, availability, scalability, and a very comprehensive feature set. It is targeted for large
mySAP Business Suite environments and other applications that require maximum enterprise-level data-
base functionality and complements the MySQL database server.

MaxDB operates as a client/server product. It was developed to meet the needs of installations in OLTP
and Data Warehouse/OLAP/Decision Support scenarios and offers these benefits:

• Easy configuration and administration: GUI-based Installation Manager and Database Manager
as single administration tools for DBMS operations

• Around-the-clock operation, no planned downtimes, no permanent attendance required: Auto-
matic space management, no need for reorganizations

• Sophisticated backup and restore capabilities: Online and incremental backups, recovery wizard
to guide you through the recovery scenario

• Supports large number of users, database sizes in the terabytes, and demanding workloads:
Proven reliability, performance, and scalability

General Information

13

• High availability: Cluster support, standby configuration, hot standby configuration

1.5.4. Licensing and Support
MaxDB can be used under the same licenses available for the other products distributed by MySQL AB.
Thus, MaxDB is available under the GNU General Public License, and a commercial license. For more
information on licensing, see http://www.mysql.com/company/legal/licensing/.

MySQL AB offers MaxDB technical support to non-SAP customers. MaxDB support is available on
various levels (Basic, Silver, and Gold), which expand from unlimited email/web-support to 24×7 phone
support for business critical systems.

MySQL AB also offers Licenses and Support for MaxDB when used with SAP Applications, like SAP
NetWeaver and mySAP Business Suite. For more information on licenses and support for your needs,
please contact MySQL AB. (See http://www.mysql.com/company/contact/.)

Consulting and training services are available. MySQL gives classes on MaxDB at regular intervals. See
http://www.mysql.com/training/ for a list of classes.

1.5.5. Feature Differences Between MaxDB and MySQL
MaxDB is MySQL AB's SAP-certified database. The MaxDB database server complements the MySQL
AB product portfolio. Some MaxDB features are not available on the MySQL database management
server and vice versa.

The following list summarizes the main differences between MaxDB and MySQL; it is not complete.

• MaxDB runs as a client/server system. MySQL can run as a client/server system or as an embedded
system.

• MaxDB might not run on all platforms supported by MySQL.

• MaxDB uses a proprietary network protocol for client/server communication. MySQL uses either
TCP/IP (with or without SSL encryption), sockets (under Unix-like systems), or named pipes or
shared memory (under Windows NT-family systems).

• MaxDB supports stored procedures and functions. MySQL 5.0 and up also supports stored proced-
ures and functions. MaxDB supports programming of triggers through an SQL extension. MySQL
5.0 supports triggers. MaxDB contains a debugger for stored procedure languages, can cascade nes-
ted triggers, and supports multiple triggers per action and row.

• MaxDB is distributed with user interfaces that are text-based, graphical, or Web-based. MySQL is
distributed with text-based user interfaces only; graphical user interfaces such as MySQL Query
Browser or MySQL Administrator are shipped separately from the main distributions. Web-based
user interfaces for MySQL are offered by third parties.

• MaxDB supports a number of programming interfaces that also are supported by MySQL. For devel-
oping with MaxDB, the MaxDB ODBC Driver, SQL Database Connectivity (SQLDBC), JDBC
Driver, Perl and Python modules and a MaxDB PHP extension, which provides access to MySQL
MaxDB databases using PHP, are available. Third Party Programming Interfaces: Support for OLE
DB, ADO, DAO, RDO and .NET through ODBC. MaxDB supports embedded SQL with C/C++.

• MaxDB includes administrative features that MySQL does not have: job scheduling by time
(included in MySQL as of 5.1), event, and alert, and sending messages to a database administrator
on alert thresholds. (MySQL has scheduling support starting with version 5.1.6.)

General Information

14

http://www.mysql.com/company/legal/licensing/
http://www.mysql.com/company/contact/
http://www.mysql.com/training/

1.5.6. Interoperability Features Between MaxDB and MySQL
MaxDB and MySQL are independent database management servers. The interoperation of the systems is
possible in a way that the systems can exchange their data. To exchange data between MaxDB and
MySQL, you can use the import and export tools of the systems or the MaxDB Synchronization Man-
ager. The import and export tools can be used to transfer data in an infrequent, manual fashion. The
MaxDB Synchronization Manager offers faster, automatic data transfer capabilities.

The MaxDB Loader can be used to export data and object definitions. The Loader can export data using
MaxDB internal, binary formats and text formats (CSV). Data exported from MaxDB in text formats
can be imported into MySQL using the mysqlimport client program. To export MySQL data, you
can use either mysqldump to create INSERT statements or SELECT ... INTO OUTFILE to create
a text file (CSV). Use the MaxDB Loader to import the data files generated by MySQL.

Object definitions can be exchanged between the systems using MaxDB Loader and the MySQL tool
mysqldump. As the SQL dialects of both systems differ slightly and MaxDB has features currently not
supported by MySQL like SQL constraints, we recommend to hand-tune the definition files. The
mysqldump tool offers an option --compatible=maxdb to produce output that is compatible with
MaxDB to make porting easier.

The MaxDB Synchronization Manager is available as part of MaxDB 7.6. The Synchronization Man-
ager supports creation of asynchronous replication scenarios between several MaxDB instances.
However, interoperability features also are planned, so that the Synchronization Manager supports rep-
lication to and from a MySQL server.

1.5.7. MaxDB-Related Links
The main page for MaxDB information is http://www.mysql.com/products/maxdb, which provides de-
tails about the features of the MaxDB database management systems and has pointers to available docu-
mentation.

The MySQL Reference Manual does not contain any MaxDB documentation other than the introduction
given in this section. MaxDB has its own documentation, which is called the MaxDB library and is
available at http://dev.mysql.com/doc/maxdb/index.html.

MySQL AB runs a community mailing list on MaxDB; see http://lists.mysql.com/maxdb. The list shows
a vivid community discussion. Many of the core developers contribute to it. Product announcements are
sent to the list.

A Web forum on MaxDB is available at http://forums.mysql.com/. The forum focuses on MaxDB ques-
tions not related to SAP applications.

1.6. MySQL Development Roadmap
This section provides a snapshot of the MySQL development roadmap, including major features imple-
mented in or planned for various MySQL releases. The following sections provide information for each
release series.

The current production release series is MySQL 5.0, which was declared stable for production use as of
MySQL 5.0.15, released in October 2005. The previous production release series was MySQL 4.1,
which was declared stable for production use as of MySQL 4.1.7, released in October 2004. “Production
status” means that future 5.0 and 4.1 development is limited only to bugfixes. For the older MySQL 4.0
and 3.23 series, only critical bugfixes are made.

Active MySQL development is currently taking place in the MySQL 5.0 and 5.1 release series, and new
features are being added only to the latter.

General Information

15

http://www.mysql.com/products/maxdb
http://dev.mysql.com/doc/maxdb/index.html
http://lists.mysql.com/maxdb
http://forums.mysql.com/

Before upgrading from one release series to the next, please see the notes in Section 2.11, “Upgrading
MySQL”.

The most requested features and the versions in which they were implemented or are scheduled for im-
plementation are summarized in the following table:

Feature MySQL Series

Foreign keys 3.23 (for the InnoDB storage engine)

Unions 4.0

Subqueries 4.1

R-trees 4.1 (for the MyISAM storage engine)

Stored procedures 5.0

Views 5.0

Cursors 5.0

XA transactions 5.0

Foreign keys 5.2 (implemented in 3.23 for InnoDB)

Triggers 5.0 and 5.1

Partitioning 5.1

Pluggable Storage Engine API 5.1

Row-Based Replication 5.1

1.6.1. What's New in MySQL 5.0
The following features are implemented in MySQL 5.0.

• BIT Data Type: Can be used to store numbers in binary notation. See Section 11.1.1, “Overview of
Numeric Types”.

• Cursors: Elementary support for server-side cursors. For information about using cursors within
stored routines, see Section 17.2.9, “Cursors”. For information about using cursors from within the C
API, see Section 22.2.7.3, “mysql_stmt_attr_set()”.

• Information Schema: The introduction of the INFORMATION_SCHEMA database in MySQL 5.0
provided a standards-compliant means for accessing the MySQL Server's metadata; that is, data
about the databases (schemas) on the server and the objects which they contain. See Chapter 20, The
INFORMATION_SCHEMA Database.

• Instance Manager: Can be used to start and stop the MySQL Server, even from a remote host. See
Section 5.5, “mysqlmanager — The MySQL Instance Manager”.

• Precision Math: MySQL 5.0 introduced stricter criteria for acceptance or rejection of data, and im-
plemented a new library for fixed-point arithmetic. These contributed to a much higher degree of ac-
curacy for mathematical operations and greater control over invalid values. See Chapter 21, Preci-
sion Math.

• Storage Engines: Storage engines added in MySQL 5.0 include ARCHIVE and FEDERATED. See
Section 14.8, “The ARCHIVE Storage Engine”, and Section 14.7, “The FEDERATED Storage En-
gine”.

• Stored Routines: Support for named stored procedures and stored functions was implemented in

General Information

16

MySQL 5.0. See Chapter 17, Stored Procedures and Functions.

• Strict Mode and Standard Error Handling: MySQL 5.0 added a strict mode where by it follows
standard SQL in a number of ways in which it did not previously. Support for standard SQLSTATE
error messages was also implemented. See Section 5.2.6, “SQL Modes”.

• Triggers: MySQL 5.0 added limited support for triggers. See Chapter 18, Triggers, and Sec-
tion 1.9.5.4, “Stored Routines and Triggers”.

• VARCHAR Data Type: The maximum effective length of a VARCHAR column was increased to
65,532 bytes, and stripping of trailing whitespace was eliminated. See Section 11.4, “String Types”.

• Views: MySQL 5.0 added support for named, updatable views. See Chapter 19, Views, and Sec-
tion 1.9.5.6, “Views”.

• XA Transactions: See Section 13.4.7, “XA Transactions”.

• Performance enhancements: A number of improvements were made in MySQL 5.0 to improve the
speed of certain types of queries and in the handling of certain types. These include:

• MySQL 5.0 introduces a new “greedy” optimizer which can greatly reduce the time required to
arrive at a query execution plan. This is particularly noticeable where several tables are to be
joined and no good join keys can otherwise be found. Without the greedy optimizer, the com-
plexity of the search for an execution plan is calculated as N!, where N is the number of tables to
be joined. The greedy optimizer reduces this to N!/(D-1)!, where D is the depth of the search.
Although the greedy optimizer does not guarantee the best possible of all execution plans (this is
currently being worked on), it can reduce the time spent arriving at an execution plan for a join
involving a great many tables — 30, 40, or more — by a factor of as much as 1,000. This should
eliminate most if not all situations where users thought that the optimizer had hung when trying
to perform joins across many tables.

• Use of the Index Merge method to obtain better optimization of AND and OR relations over dif-
ferent keys. (Previously, these were optimized only where both relations in the WHERE clause in-
volved the same key.) This also applies to other one-to-one comparison operators (>, <, and so
on), including = and the IN operator. This means that MySQL can use multiple indexes in re-
trieving results for conditions such as WHERE key1 > 4 OR key2 < 7 and even combina-
tions of conditions such as WHERE (key1 > 4 OR key2 < 7) AND (key3 >= 10
OR key4 = 1). See Section 7.2.6, “Index Merge Optimization”.

• A new equality detector finds and optimizes “hidden” equalities in joins. For example, a WHERE
clause such as

t1.c1=t2.c2 AND t2.c2=t3.c3 AND t1.c1 < 5

implies these other conditions

t1.c1=t3.c3 AND t2.c2 < 5 AND t3.c3 < 5

These optimizations can be applied with any combination of AND and OR operators. See Sec-
tion 7.2.10, “Nested Join Optimization”, and Section 7.2.11, “Outer Join Simplification”.

• Optimization of NOT IN and NOT BETWEEN relations, reducing or eliminating table scans for
queries making use of them by mean of range analysis. The performance of MySQL with regard
to these relations now matches its performance with regard to IN and BETWEEN.

• The VARCHAR data type as implemented in MySQL 5.0 is more efficient than in previous ver-
sions, due to the elimination of the old (and nonstandard) removal of trailing spaces during re-
trieval.

General Information

17

• The addition of a true BIT column type; this type is much more efficient for storage and retrieval
of Boolean values than the workarounds required in MySQL in versions previous to 5.0.

• Performance Improvements in the InnoDB Storage Engine:

• New compact storage format which can save up to 20% of the disk space required in previ-
ous MySQL/InnoDB versions.

• Faster recovery from a failed or aborted ALTER TABLE.

• Faster implementation of TRUNCATE.

(See Section 14.2, “The InnoDB Storage Engine”.)

• Performance Improvements in the NDBCluster Storage Engine:

• Faster handling of queries that use IN and BETWEEN.

• Condition pushdown: In cases involving the comparison of an unindexed column with a
constant, this condition is “pushed down” to the cluster where it is evaluated in all partitions
simultaneously, eliminating the need to send non-matching records over the network. This
can make such queries 10 to 100 times faster than in MySQL 4.1 Cluster.

See Section 7.2.1, “Optimizing Queries with EXPLAIN”, for more information.

(See Chapter 15, MySQL Cluster.)

For those wishing to take a look at the bleeding edge of MySQL development, we make our BitKeeper
repository for MySQL publicly available. See Section 2.9.3, “Installing from the Development Source
Tree”.

1.7. MySQL Information Sources
This section lists sources of additional information that you may find helpful, such as the MySQL mail-
ing lists and user forums, and Internet Relay Chat.

1.7.1. MySQL Mailing Lists
This section introduces the MySQL mailing lists and provides guidelines as to how the lists should be
used. When you subscribe to a mailing list, you receive all postings to the list as email messages. You
can also send your own questions and answers to the list.

To subscribe to or unsubscribe from any of the mailing lists described in this section, visit ht-
tp://lists.mysql.com/. For most of them, you can select the regular version of the list where you get indi-
vidual messages, or a digest version where you get one large message per day.

Please do not send messages about subscribing or unsubscribing to any of the mailing lists, because such
messages are distributed automatically to thousands of other users.

Your local site may have many subscribers to a MySQL mailing list. If so, the site may have a local
mailing list, so that messages sent from lists.mysql.com to your site are propagated to the local
list. In such cases, please contact your system administrator to be added to or dropped from the local
MySQL list.

If you wish to have traffic for a mailing list go to a separate mailbox in your mail program, set up a filter
based on the message headers. You can use either the List-ID: or Delivered-To: headers to

General Information

18

http://lists.mysql.com/
http://lists.mysql.com/

identify list messages.

The MySQL mailing lists are as follows:

• announce

This list is for announcements of new versions of MySQL and related programs. This is a low-
volume list to which all MySQL users should subscribe.

• mysql

This is the main list for general MySQL discussion. Please note that some topics are better discussed
on the more-specialized lists. If you post to the wrong list, you may not get an answer.

• bugs

This list is for people who want to stay informed about issues reported since the last release of
MySQL or who want to be actively involved in the process of bug hunting and fixing. See Sec-
tion 1.8, “How to Report Bugs or Problems”.

• internals

This list is for people who work on the MySQL code. This is also the forum for discussions on
MySQL development and for posting patches.

• mysqldoc

This list is for people who work on the MySQL documentation: people from MySQL AB, translat-
ors, and other community members.

• benchmarks

This list is for anyone interested in performance issues. Discussions concentrate on database per-
formance (not limited to MySQL), but also include broader categories such as performance of the
kernel, filesystem, disk system, and so on.

• packagers

This list is for discussions on packaging and distributing MySQL. This is the forum used by distribu-
tion maintainers to exchange ideas on packaging MySQL and on ensuring that MySQL looks and
feels as similar as possible on all supported platforms and operating systems.

• java

This list is for discussions about the MySQL server and Java. It is mostly used to discuss JDBC
drivers such as MySQL Connector/J.

• win32

This list is for all topics concerning the MySQL software on Microsoft operating systems, such as
Windows 9x, Me, NT, 2000, XP, and 2003.

• myodbc

This list is for all topics concerning connecting to the MySQL server with ODBC.

• gui-tools

This list is for all topics concerning MySQL graphical user interface tools such as MySQL Admin-
istrator and MySQL Query Browser.

General Information

19

• cluster

This list is for discussion of MySQL Cluster.

• dotnet

This list is for discussion of the MySQL server and the .NET platform. It is mostly related to
MySQL Connector/Net.

• plusplus

This list is for all topics concerning programming with the C++ API for MySQL.

• perl

This list is for all topics concerning Perl support for MySQL with DBD::mysql.

If you're unable to get an answer to your questions from a MySQL mailing list or forum, one option is to
purchase support from MySQL AB. This puts you in direct contact with MySQL developers.

The following table shows some MySQL mailing lists in languages other than English. These lists are
not operated by MySQL AB.

• <mysql-france-subscribe@yahoogroups.com>

A French mailing list.

• <list@tinc.net>

A Korean mailing list. To subscribe, email subscribe mysql your@email.address to this
list.

• <mysql-de-request@lists.4t2.com>

A German mailing list. To subscribe, email subscribe mysql-de your@email.address
to this list. You can find information about this mailing list at http://www.4t2.com/mysql/.

• <mysql-br-request@listas.linkway.com.br>

A Portuguese mailing list. To subscribe, email subscribe mysql-br
your@email.address to this list.

• <mysql-alta@elistas.net>

A Spanish mailing list. To subscribe, email subscribe mysql your@email.address to
this list.

1.7.1.1. Guidelines for Using the Mailing Lists

Please don't post mail messages from your browser with HTML mode turned on. Many users don't read
mail with a browser.

When you answer a question sent to a mailing list, if you consider your answer to have broad interest,
you may want to post it to the list instead of replying directly to the individual who asked. Try to make
your answer general enough that people other than the original poster may benefit from it. When you
post to the list, please make sure that your answer is not a duplication of a previous answer.

General Information

20

http://www.4t2.com/mysql/

Try to summarize the essential part of the question in your reply. Don't feel obliged to quote the entire
original message.

When answers are sent to you individually and not to the mailing list, it is considered good etiquette to
summarize the answers and send the summary to the mailing list so that others may have the benefit of
responses you received that helped you solve your problem.

1.7.2. MySQL Community Support at the MySQL Forums
The forums at http://forums.mysql.com are an important community resource. Many forums are avail-
able, grouped into these general categories:

• Migration

• MySQL Usage

• MySQL Connectors

• Programming Languages

• Tools

• 3rd-Party Applications

• Storage Engines

• MySQL Technology

• SQL Standards

• Business

1.7.3. MySQL Community Support on Internet Relay Chat
(IRC)

In addition to the various MySQL mailing lists and forums, you can find experienced community people
on Internet Relay Chat (IRC). These are the best networks/channels currently known to us:

freenode (see http://www.freenode.net/ for servers)

• #mysql is primarily for MySQL questions, but other database and general SQL questions are wel-
come. Questions about PHP, Perl, or C in combination with MySQL are also common.

If you are looking for IRC client software to connect to an IRC network, take a look at xChat (ht-
tp://www.xchat.org/). X-Chat (GPL licensed) is available for Unix as well as for Windows platforms (a
free Windows build of X-Chat is available at http://www.silverex.org/download/).

1.8. How to Report Bugs or Problems
Before posting a bug report about a problem, please try to verify that it is a bug and that it has not been
reported already:

General Information

21

http://forums.mysql.com
http://www.freenode.net/
http://www.xchat.org/
http://www.xchat.org/
http://www.silverex.org/download/

• Start by searching the MySQL online manual at http://dev.mysql.com/doc/. We try to keep the
manual up to date by updating it frequently with solutions to newly found problems. The change his-
tory (http://dev.mysql.com/doc/mysql/en/news.html) can be particularly useful since it is quite pos-
sible that a newer version contains a solution to your problem.

• If you get a parse error for a SQL statement, please check your syntax closely. If you can't find
something wrong with it, it's extremely likely that your current version of MySQL Server doesn't
support the syntax you are using. If you are using the current version and the manual doesn't cover
the syntax that you are using, MySQL Server doesn't support your statement. In this case, your op-
tions are to implement the syntax yourself or email <licensing@mysql.com> and ask for an
offer to implement it.

If the manual covers the syntax you are using, but you have an older version of MySQL Server, you
should check the MySQL change history to see when the syntax was implemented. In this case, you
have the option of upgrading to a newer version of MySQL Server.

• For solutions to some common problems, see Appendix A, Problems and Common Errors.

• Search the bugs database at http://bugs.mysql.com/ to see whether the bug has been reported and
fixed.

• Search the MySQL mailing list archives at http://lists.mysql.com/. See Section 1.7.1, “MySQL Mail-
ing Lists”.

• You can also use http://www.mysql.com/search/ to search all the Web pages (including the manual)
that are located at the MySQL AB Web site.

If you can't find an answer in the manual, the bugs database, or the mailing list archives, check with
your local MySQL expert. If you still can't find an answer to your question, please use the following
guidelines for reporting the bug.

The normal way to report bugs is to visit http://bugs.mysql.com/, which is the address for our bugs data-
base. This database is public and can be browsed and searched by anyone. If you log in to the system,
you can enter new reports. If you have no Web access, you can generate a bug report by using the
mysqlbug script described at the end of this section.

Bugs posted in the bugs database at http://bugs.mysql.com/ that are corrected for a given release are
noted in the change history.

If you have found a sensitive security bug in MySQL, you can send email to
<security@mysql.com>.

To discuss problems with other users, you can use one of the MySQL mailing lists. Section 1.7.1,
“MySQL Mailing Lists”.

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for
yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix
the bug in the next release. This section helps you write your report correctly so that you don't waste
your time doing things that may not help us much or at all. Please read this section carefully and make
sure that all the information described here is included in your report.

Preferably, you should test the problem using the latest production or development version of MySQL
Server before posting. Anyone should be able to repeat the bug by just using mysql test <
script_file on your test case or by running the shell or Perl script that you include in the bug re-
port. Any bug that we are able to repeat has a high chance of being fixed in the next MySQL release.

It is most helpful when a good description of the problem is included in the bug report. That is, give a
good example of everything you did that led to the problem and describe, in exact detail, the problem it-

General Information

22

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/mysql/en/news.html
http://bugs.mysql.com/
http://lists.mysql.com/
http://www.mysql.com/search/
http://bugs.mysql.com/
http://bugs.mysql.com/

self. The best reports are those that include a full example showing how to reproduce the bug or prob-
lem. See Section E.1.6, “Making a Test Case If You Experience Table Corruption”.

Remember that it is possible for us to respond to a report containing too much information, but not to
one containing too little. People often omit facts because they think they know the cause of a problem
and assume that some details don't matter. A good principle to follow is that if you are in doubt about
stating something, state it. It is faster and less troublesome to write a couple more lines in your report
than to wait longer for the answer if we must ask you to provide information that was missing from the
initial report.

The most common errors made in bug reports are (a) not including the version number of the MySQL
distribution that you use, and (b) not fully describing the platform on which the MySQL server is in-
stalled (including the platform type and version number). These are highly relevant pieces of informa-
tion, and in 99 cases out of 100, the bug report is useless without them. Very often we get questions like,
“Why doesn't this work for me?” Then we find that the feature requested wasn't implemented in that
MySQL version, or that a bug described in a report has been fixed in newer MySQL versions. Errors of-
ten are platform-dependent. In such cases, it is next to impossible for us to fix anything without knowing
the operating system and the version number of the platform.

If you compiled MySQL from source, remember also to provide information about your compiler if it is
related to the problem. Often people find bugs in compilers and think the problem is MySQL-related.
Most compilers are under development all the time and become better version by version. To determine
whether your problem depends on your compiler, we need to know what compiler you used. Note that
every compiling problem should be regarded as a bug and reported accordingly.

If a program produces an error message, it is very important to include the message in your report. If we
try to search for something from the archives, it is better that the error message reported exactly matches
the one that the program produces. (Even the lettercase should be observed.) It is best to copy and paste
the entire error message into your report. You should never try to reproduce the message from memory.

If you have a problem with Connector/ODBC (MyODBC), please try to generate a trace file and send it
with your report. See the MyODBC section of Chapter 23, Connectors.

If your report includes long query output lines from test cases that you run with the mysql command-
line tool, you can make the output more readable by using the --vertical option or the \G statement
terminator. The EXPLAIN SELECT example later in this section demonstrates the use of \G.

Please include the following information in your report:

• The version number of the MySQL distribution you are using (for example, MySQL 5.0.19). You
can find out which version you are running by executing mysqladmin version. The mysql-
admin program can be found in the bin directory under your MySQL installation directory.

• The manufacturer and model of the machine on which you experience the problem.

• The operating system name and version. If you work with Windows, you can usually get the name
and version number by double-clicking your My Computer icon and pulling down the “Help/About
Windows” menu. For most Unix-like operating systems, you can get this information by executing
the command uname -a.

• Sometimes the amount of memory (real and virtual) is relevant. If in doubt, include these values.

• If you are using a source distribution of the MySQL software, include the name and version number
of the compiler that you used. If you have a binary distribution, include the distribution name.

• If the problem occurs during compilation, include the exact error messages and also a few lines of
context around the offending code in the file where the error occurs.

General Information

23

• If mysqld died, you should also report the statement that crashed mysqld. You can usually get
this information by running mysqld with query logging enabled, and then looking in the log after
mysqld crashes. See Section E.1.5, “Using Server Logs to Find Causes of Errors in mysqld”.

• If a database table is related to the problem, include the output from the SHOW CREATE TABLE
db_name.tbl_name statement in the bug report. This is a very easy way to get the definition of
any table in a database. The information helps us create a situation matching the one that you have
experienced.

• For performance-related bugs or problems with SELECT statements, you should always include the
output of EXPLAIN SELECT ..., and at least the number of rows that the SELECT statement
produces. You should also include the output from SHOW CREATE TABLE tbl_name for each
table that is involved. The more information you provide about your situation, the more likely it is
that someone can help you.

The following is an example of a very good bug report. The statements are run using the mysql
command-line tool. Note the use of the \G statement terminator for statements that would otherwise
provide very long output lines that are difficult to read.

mysql> SHOW VARIABLES;
mysql> SHOW COLUMNS FROM ...\G

<output from SHOW COLUMNS>
mysql> EXPLAIN SELECT ...\G

<output from EXPLAIN>
mysql> FLUSH STATUS;
mysql> SELECT ...;

<A short version of the output from SELECT,
including the time taken to run the query>

mysql> SHOW STATUS;
<output from SHOW STATUS>

• If a bug or problem occurs while running mysqld, try to provide an input script that reproduces the
anomaly. This script should include any necessary source files. The more closely the script can re-
produce your situation, the better. If you can make a reproducible test case, you should upload it to
be attached to the bug report.

If you can't provide a script, you should at least include the output from mysqladmin vari-
ables extended-status processlist in your report to provide some information on how
your system is performing.

• If you can't produce a test case with only a few rows, or if the test table is too big to be included in
the bug report (more than 10 rows), you should dump your tables using mysqldump and create a
README file that describes your problem. Create a compressed archive of your files using tar and
gzip or zip, and use FTP to transfer the archive to ftp://ftp.mysql.com/pub/mysql/upload/. Then
enter the problem into our bugs database at http://bugs.mysql.com/.

• If you believe that the MySQL server produces a strange result from a statement, include not only
the result, but also your opinion of what the result should be, and an explanation describing the basis
for your opinion.

• When you provide an example of the problem, it's better to use the table names, variable names, and
so forth that exist in your actual situation than to come up with new names. The problem could be re-
lated to the name of a table or variable. These cases are rare, perhaps, but it is better to be safe than
sorry. After all, it should be easier for you to provide an example that uses your actual situation, and
it is by all means better for us. If you have data that you don't want to be visible to others in the bug
report, you can use FTP to transfer it to ftp://ftp.mysql.com/pub/mysql/upload/. If the information is
really top secret and you don't want to show it even to us, go ahead and provide an example using
other names, but please regard this as the last choice.

• Include all the options given to the relevant programs, if possible. For example, indicate the options
that you use when you start the mysqld server, as well as the options that you use to run any

General Information

24

ftp://ftp.mysql.com/pub/mysql/upload/
http://bugs.mysql.com/
ftp://ftp.mysql.com/pub/mysql/upload/

MySQL client programs. The options to programs such as mysqld and mysql, and to the con-
figure script, are often key to resolving problems and are very relevant. It is never a bad idea to
include them. If your problem involves a program written in a language such as Perl or PHP, please
include the language processor's version number, as well as the version for any modules that the pro-
gram uses. For example, if you have a Perl script that uses the DBI and DBD::mysql modules, in-
clude the version numbers for Perl, DBI, and DBD::mysql.

• If your question is related to the privilege system, please include the output of mysqlaccess, the
output of mysqladmin reload, and all the error messages you get when trying to connect.
When you test your privileges, you should first run mysqlaccess. After this, execute mysqlad-
min reload version and try to connect with the program that gives you trouble. mysqlac-
cess can be found in the bin directory under your MySQL installation directory.

• If you have a patch for a bug, do include it. But don't assume that the patch is all we need, or that we
can use it, if you don't provide some necessary information such as test cases showing the bug that
your patch fixes. We might find problems with your patch or we might not understand it at all. If so,
we can't use it.

If we can't verify the exact purpose of the patch, we won't use it. Test cases help us here. Show that
the patch handles all the situations that may occur. If we find a borderline case (even a rare one)
where the patch won't work, it may be useless.

• Guesses about what the bug is, why it occurs, or what it depends on are usually wrong. Even the
MySQL team can't guess such things without first using a debugger to determine the real cause of a
bug.

• Indicate in your bug report that you have checked the reference manual and mail archive so that oth-
ers know you have tried to solve the problem yourself.

• If the problem is that your data appears corrupt or you get errors when you access a particular table,
you should first check your tables and then try to repair them with CHECK TABLE and REPAIR
TABLE or with myisamchk. See Chapter 5, Database Administration.

If you are running Windows, please verify the value of lower_case_table_names using the
SHOW VARIABLES LIKE 'lower_case_table_names' command. This variable affects
how the server handles lettercase of database and table names. Its effect for a given value should be
as described in Section 9.2.2, “Identifier Case Sensitivity”.

• If you often get corrupted tables, you should try to find out when and why this happens. In this case,
the error log in the MySQL data directory may contain some information about what happened.
(This is the file with the .err suffix in the name.) See Section 5.12.1, “The Error Log”. Please in-
clude any relevant information from this file in your bug report. Normally mysqld should never
crash a table if nothing killed it in the middle of an update. If you can find the cause of mysqld dy-
ing, it's much easier for us to provide you with a fix for the problem. See Section A.1, “How to De-
termine What Is Causing a Problem”.

• If possible, download and install the most recent version of MySQL Server and check whether it
solves your problem. All versions of the MySQL software are thoroughly tested and should work
without problems. We believe in making everything as backward-compatible as possible, and you
should be able to switch MySQL versions without difficulty. See Section 2.1.2, “Choosing Which
MySQL Distribution to Install”.

If you have no Web access and cannot report a bug by visiting http://bugs.mysql.com/, you can use the
mysqlbug script to generate a bug report (or a report about any problem). mysqlbug helps you gen-
erate a report by determining much of the following information automatically, but if something import-
ant is missing, please include it with your message. mysqlbug can be found in the scripts directory
(source distribution) and in the bin directory under your MySQL installation directory (binary distribu-

General Information

25

http://bugs.mysql.com/

tion).

1.9. MySQL Standards Compliance
This section describes how MySQL relates to the ANSI/ISO SQL standards. MySQL Server has many
extensions to the SQL standard, and here you can find out what they are and how to use them. You can
also find information about functionality missing from MySQL Server, and how to work around some of
the differences.

The SQL standard has been evolving since 1986 and several versions exist. In this manual, “SQL-92”
refers to the standard released in 1992, “SQL:1999” refers to the standard released in 1999, and
“SQL:2003” refers to the current version of the standard. We use the phrase “the SQL standard” or
“standard SQL” to mean the current version of the SQL Standard at any time.

One of our main goals with the product is to continue to work toward compliance with the SQL stand-
ard, but without sacrificing speed or reliability. We are not afraid to add extensions to SQL or support
for non-SQL features if this greatly increases the usability of MySQL Server for a large segment of our
user base. The HANDLER interface is an example of this strategy. See Section 13.2.3, “HANDLER Syn-
tax”.

We continue to support transactional and non-transactional databases to satisfy both mission-critical
24/7 usage and heavy Web or logging usage.

MySQL Server was originally designed to work with medium-sized databases (10-100 million rows, or
about 100MB per table) on small computer systems. Today MySQL Server handles terabyte-sized data-
bases, but the code can also be compiled in a reduced version suitable for hand-held and embedded
devices. The compact design of the MySQL server makes development in both directions possible
without any conflicts in the source tree.

Currently, we are not targeting real-time support, although MySQL replication capabilities offer signi-
ficant functionality.

MySQL supports high-availability database clustering using the NDBCluster storage engine. See
Chapter 15, MySQL Cluster.

XML support is to be implemented in a future version of the database server.

1.9.1. What Standards MySQL Follows
Our aim is to support the full ANSI/ISO SQL standard, but without making concessions to speed and
quality of the code.

ODBC levels 0-3.51.

1.9.2. Selecting SQL Modes
The MySQL server can operate in different SQL modes, and can apply these modes differentially for
different clients. This capability enables each application to tailor the server's operating mode to its own
requirements.

SQL modes control aspects of server operation such as what SQL syntax MySQL should support and
what kind of data validation checks it should perform. This makes it easier to use MySQL in different
environments and to use MySQL together with other database servers.

You can set the default SQL mode by starting mysqld with the --sql-mode="mode_value" op-
tion. Beginning with MySQL 4.1, you can also change the mode at runtime by setting the sql_mode
system variable with a SET [SESSION|GLOBAL] sql_mode='mode_value' statement.

General Information

26

For more information on setting the SQL mode, see Section 5.2.6, “SQL Modes”.

1.9.3. Running MySQL in ANSI Mode
You can tell mysqld to run in ANSI mode with the --ansi startup option. Running the server in AN-
SI mode is the same as starting it with the following options:

--transaction-isolation=SERIALIZABLE --sql-mode=ANSI

As of MySQL 4.1.1, you can achieve the same effect at runtime by executing these two statements:

SET GLOBAL TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET GLOBAL sql_mode = 'ANSI';

You can see that setting the sql_mode system variable to 'ANSI' enables all SQL mode options that
are relevant for ANSI mode as follows:

mysql> SET GLOBAL sql_mode='ANSI';
mysql> SELECT @@global.sql_mode;

-> 'REAL_AS_FLOAT,PIPES_AS_CONCAT,ANSI_QUOTES,IGNORE_SPACE,ANSI'

Note that running the server in ANSI mode with --ansi is not quite the same as setting the SQL mode
to 'ANSI'. The --ansi option affects the SQL mode and also sets the transaction isolation level. Set-
ting the SQL mode to 'ANSI' has no effect on the isolation level.

See Section 5.2.2, “Command Options”, and Section 1.9.2, “Selecting SQL Modes”.

1.9.4. MySQL Extensions to Standard SQL
MySQL Server supports some extensions that you probably won't find in other SQL DBMSs. Be warned
that if you use them, your code won't be portable to other SQL servers. In some cases, you can write
code that includes MySQL extensions, but is still portable, by using comments of the following form:

/*! MySQL-specific code */

In this case, MySQL Server parses and executes the code within the comment as it would any other SQL
statement, but other SQL servers will ignore the extensions. For example, MySQL Server recognizes the
STRAIGHT_JOIN keyword in the following statement, but other servers will not:

SELECT /*! STRAIGHT_JOIN */ col1 FROM table1,table2 WHERE ...

If you add a version number after the ‘!’ character, the syntax within the comment is executed only if
the MySQL version is greater than or equal to the specified version number. The TEMPORARY keyword
in the following comment is executed only by servers from MySQL 3.23.02 or higher:

CREATE /*!32302 TEMPORARY */ TABLE t (a INT);

The following descriptions list MySQL extensions, organized by category.

• Organization of data on disk

MySQL Server maps each database to a directory under the MySQL data directory, and maps tables
within a database to filenames in the database directory. This has a few implications:

• Database and table names are case sensitive in MySQL Server on operating systems that have

General Information

27

case-sensitive filenames (such as most Unix systems). See Section 9.2.2, “Identifier Case Sensit-
ivity”.

• You can use standard system commands to back up, rename, move, delete, and copy tables that
are managed by the MyISAM storage engine. For example, it is possible to rename a MyISAM ta-
ble by renaming the .MYD, .MYI, and .frm files to which the table corresponds. (Nevertheless,
it is preferable to use RENAME TABLE or ALTER TABLE ... RENAME and let the server re-
name the files.)

Database and table names cannot contain pathname separator characters (‘/’, ‘\’).

• General language syntax

• By default, strings can be enclosed by either ‘"’ or ‘'’, not just by ‘'’. (If the ANSI_QUOTES
SQL mode is enabled, strings can be enclosed only by ‘'’ and the server interprets strings en-
closed by ‘"’ as identifiers.)

• ‘\’ is the escape character in strings.

• In SQL statements, you can access tables from different databases with the
db_name.tbl_name syntax. Some SQL servers provide the same functionality but call this
User space. MySQL Server doesn't support tablespaces such as used in statements like this:
CREATE TABLE ralph.my_table ... IN my_tablespace.

• SQL statement syntax

• The ANALYZE TABLE, CHECK TABLE, OPTIMIZE TABLE, and REPAIR TABLE state-
ments.

• The CREATE DATABASE, DROP DATABASE, and ALTER DATABASE statements. See Sec-
tion 13.1.3, “CREATE DATABASE Syntax”, Section 13.1.6, “DROP DATABASE Syntax”, and
Section 13.1.1, “ALTER DATABASE Syntax”.

• The DO statement.

• EXPLAIN SELECT to obtain a description of how tables are processed by the query optimizer.

• The FLUSH and RESET statements.

• The SET statement. See Section 13.5.3, “SET Syntax”.

• The SHOW statement. See Section 13.5.4, “SHOW Syntax”. As of MySQL 5.0, the information
produced by many of the MySQL-specific SHOW statements can be obtained in more standard
fashion by using SELECT to query INFORMATION_SCHEMA. See Chapter 20, The INFORMA-
TION_SCHEMA Database.

• Use of LOAD DATA INFILE. In many cases, this syntax is compatible with Oracle's LOAD
DATA INFILE. See Section 13.2.5, “LOAD DATA INFILE Syntax”.

• Use of RENAME TABLE. See Section 13.1.9, “RENAME TABLE Syntax”.

• Use of REPLACE instead of DELETE plus INSERT. See Section 13.2.6, “REPLACE Syntax”.

• Use of CHANGE col_name, DROP col_name, or DROP INDEX, IGNORE or RENAME in
ALTER TABLE statements. Use of multiple ADD, ALTER, DROP, or CHANGE clauses in an AL-
TER TABLE statement. See Section 13.1.2, “ALTER TABLE Syntax”.

• Use of index names, indexes on a prefix of a column, and use of INDEX or KEY in CREATE

General Information

28

TABLE statements. See Section 13.1.5, “CREATE TABLE Syntax”.

• Use of TEMPORARY or IF NOT EXISTS with CREATE TABLE.

• Use of IF EXISTS with DROP TABLE and DROP DATABASE.

• The capability of dropping multiple tables with a single DROP TABLE statement.

• The ORDER BY and LIMIT clauses of the UPDATE and DELETE statements.

• INSERT INTO tbl_name SET col_name = ... syntax.

• The DELAYED clause of the INSERT and REPLACE statements.

• The LOW_PRIORITY clause of the INSERT, REPLACE, DELETE, and UPDATE statements.

• Use of INTO OUTFILE or INTO DUMPFILE in SELECT statements. See Section 13.2.7,
“SELECT Syntax”.

• Options such as STRAIGHT_JOIN or SQL_SMALL_RESULT in SELECT statements.

• You don't need to name all selected columns in the GROUP BY clause. This gives better per-
formance for some very specific, but quite normal queries. See Section 12.10, “Functions and
Modifiers for Use with GROUP BY Clauses”.

• You can specify ASC and DESC with GROUP BY, not just with ORDER BY.

• The ability to set variables in a statement with the := assignment operator:

mysql> SELECT @a:=SUM(total),@b=COUNT(*),@a/@b AS avg
-> FROM test_table;

mysql> SELECT @t1:=(@t2:=1)+@t3:=4,@t1,@t2,@t3;

• Data types

• The MEDIUMINT, SET, and ENUM data types, and the various BLOB and TEXT data types.

• The AUTO_INCREMENT, BINARY, NULL, UNSIGNED, and ZEROFILL data type attributes.

• Functions and operators

• To make it easier for users who migrate from other SQL environments, MySQL Server supports
aliases for many functions. For example, all string functions support both standard SQL syntax
and ODBC syntax.

• MySQL Server understands the || and && operators to mean logical OR and AND, as in the C
programming language. In MySQL Server, || and OR are synonyms, as are && and AND. Be-
cause of this nice syntax, MySQL Server doesn't support the standard SQL || operator for string
concatenation; use CONCAT() instead. Because CONCAT() takes any number of arguments, it's
easy to convert use of the || operator to MySQL Server.

• Use of COUNT(DISTINCT value_list) where value_list has more than one element.

• String comparisons are case-insensitive by default, with sort ordering determined by collation of
the current character set, which is latin1 (cp1252 West European) by default. If you don't like
this, you should declare your columns with the BINARY attribute or use the BINARY cast, which
causes comparisons to be done using the underlying character code values rather then a lexical
ordering.

General Information

29

• The % operator is a synonym for MOD(). That is, N % M is equivalent to MOD(N,M). % is sup-
ported for C programmers and for compatibility with PostgreSQL.

• The =, <>, <=,<, >=,>, <<, >>, <=>, AND, OR, or LIKE operators may be used in expressions
in the output column list (to the left of the FROM) in SELECT statements. For example:

mysql> SELECT col1=1 AND col2=2 FROM my_table;

• The LAST_INSERT_ID() function returns the most recent AUTO_INCREMENT value. See
Section 12.9.3, “Information Functions”.

• LIKE is allowed on numeric values.

• The REGEXP and NOT REGEXP extended regular expression operators.

• CONCAT() or CHAR() with one argument or more than two arguments. (In MySQL Server,
these functions can take a variable number of arguments.)

• The BIT_COUNT(), CASE, ELT(), FROM_DAYS(), FORMAT(), IF(), PASSWORD(), EN-
CRYPT(), MD5(), ENCODE(), DECODE(), PERIOD_ADD(), PERIOD_DIFF(),
TO_DAYS(), and WEEKDAY() functions.

• Use of TRIM() to trim substrings. Standard SQL supports removal of single characters only.

• The GROUP BY functions STD(), BIT_OR(), BIT_AND(), BIT_XOR(), and
GROUP_CONCAT(). See Section 12.10, “Functions and Modifiers for Use with GROUP BY
Clauses”.

For a prioritized list indicating when new extensions are added to MySQL Server, you should consult
the online MySQL development roadmap at http://dev.mysql.com/doc/mysql/en/roadmap.html.

1.9.5. MySQL Differences from Standard SQL
We try to make MySQL Server follow the ANSI SQL standard and the ODBC SQL standard, but
MySQL Server performs operations differently in some cases:

• For VARCHAR columns, trailing spaces are removed when the value is stored. (This is fixed in
MySQL 5.0.3). See Section A.8, “Known Issues in MySQL”.

• In some cases, CHAR columns are silently converted to VARCHAR columns when you define a table
or alter its structure. (This is fixed in MySQL 5.0.3). See Section 13.1.5.1, “Silent Column Specific-
ation Changes”.

• There are several differences between the MySQL and standard SQL privilege systems. For ex-
ample, in MySQL, privileges for a table are not automatically revoked when you delete a table. You
must explicitly issue a REVOKE statement to revoke privileges for a table. For more information, see
Section 13.5.1.5, “REVOKE Syntax”.

• The CAST() function does not support cast to REAL or BIGINT. See Section 12.8, “Cast Functions
and Operators”.

• Standard SQL requires that a HAVING clause in a SELECT statement be able to refer to columns in
the GROUP BY clause. This cannot be done before MySQL 5.0.2.

General Information

30

http://dev.mysql.com/doc/mysql/en/roadmap.html

1.9.5.1. Subquery Support

MySQL 4.1 and up supports subqueries and derived tables. A “subquery” is a SELECT statement nested
within another statement. A “derived table” (an unnamed view) is a subquery in the FROM clause of an-
other statement. See Section 13.2.8, “Subquery Syntax”.

For MySQL versions older than 4.1, most subqueries can be rewritten using joins or other methods. See
Section 13.2.8.11, “Rewriting Subqueries as Joins for Earlier MySQL Versions”, for examples that show
how to do this.

1.9.5.2. SELECT INTO TABLE

MySQL Server doesn't support the SELECT ... INTO TABLE Sybase SQL extension. Instead,
MySQL Server supports the INSERT INTO ... SELECT standard SQL syntax, which is basically
the same thing. See Section 13.2.4.1, “INSERT ... SELECT Syntax”. For example:

INSERT INTO tbl_temp2 (fld_id)
SELECT tbl_temp1.fld_order_id
FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

Alternatively, you can use SELECT ... INTO OUTFILE or CREATE TABLE ... SELECT.

As of MySQL 5.0, you can use SELECT ... INTO with user-defined variables. The same syntax can
also be used inside stored routines using cursors and local variables. See Section 17.2.7.3, “SELECT
... INTO Statement”.

1.9.5.3. Transactions and Atomic Operations

MySQL Server (version 3.23-max and all versions 4.0 and above) supports transactions with the In-
noDB and BDB transactional storage engines. InnoDB provides full ACID compliance. See Chapter 14,
Storage Engines and Table Types. For information about InnoDB differences from standard SQL with
regard to treatment of transaction errors, see Section 14.2.15, “InnoDB Error Handling”.

The other non-transactional storage engines in MySQL Server (such as MyISAM) follow a different
paradigm for data integrity called “atomic operations.” In transactional terms, MyISAM tables effect-
ively always operate in AUTOCOMMIT=1 mode. Atomic operations often offer comparable integrity
with higher performance.

Because MySQL Server supports both paradigms, you can decide whether your applications are best
served by the speed of atomic operations or the use of transactional features. This choice can be made on
a per-table basis.

As noted, the trade-off for transactional versus non-transactional storage engines lies mostly in perform-
ance. Transactional tables have significantly higher memory and disk space requirements, and more
CPU overhead. On the other hand, transactional storage engines such as InnoDB also offer many signi-
ficant features. MySQL Server's modular design allows the concurrent use of different storage engines
to suit different requirements and deliver optimum performance in all situations.

But how do you use the features of MySQL Server to maintain rigorous integrity even with the non-
transactional MyISAM tables, and how do these features compare with the transactional storage engines?

• If your applications are written in a way that is dependent on being able to call ROLLBACK rather
than COMMIT in critical situations, transactions are more convenient. Transactions also ensure that
unfinished updates or corrupting activities are not committed to the database; the server is given the
opportunity to do an automatic rollback and your database is saved.

If you use non-transactional tables, MySQL Server in almost all cases allows you to resolve potential

General Information

31

problems by including simple checks before updates and by running simple scripts that check the
databases for inconsistencies and automatically repair or warn if such an inconsistency occurs. Note
that just by using the MySQL log or even adding one extra log, you can normally fix tables perfectly
with no data integrity loss.

• More often than not, critical transactional updates can be rewritten to be atomic. Generally speaking,
all integrity problems that transactions solve can be done with LOCK TABLES or atomic updates,
ensuring that there are no automatic aborts from the server, which is a common problem with trans-
actional database systems.

• To be safe with MySQL Server, regardless of whether you use transactional tables, you only need to
have backups and have binary logging turned on. When that is true, you can recover from any situ-
ation that you could with any other transactional database system. It is always good to have backups,
regardless of which database system you use.

The transactional paradigm has its benefits and its drawbacks. Many users and application developers
depend on the ease with which they can code around problems where an abort appears to be necessary,
or is necessary. However, even if you are new to the atomic operations paradigm, or more familiar with
transactions, do consider the speed benefit that non-transactional tables can offer on the order of three to
five times the speed of the fastest and most optimally tuned transactional tables.

In situations where integrity is of highest importance, MySQL Server offers transaction-level reliability
and integrity even for non-transactional tables. If you lock tables with LOCK TABLES, all updates stall
until integrity checks are made. If you obtain a READ LOCAL lock (as opposed to a write lock) for a ta-
ble that allows concurrent inserts at the end of the table, reads are allowed, as are inserts by other clients.
The newly inserted records are not be seen by the client that has the read lock until it releases the lock.
With INSERT DELAYED, you can write inserts that go into a local queue until the locks are released,
without having the client wait for the insert to complete. See Section 7.3.3, “Concurrent Inserts”, and
Section 13.2.4.2, “INSERT DELAYED Syntax”.

“Atomic,” in the sense that we mean it, is nothing magical. It only means that you can be sure that while
each specific update is running, no other user can interfere with it, and there can never be an automatic
rollback (which can happen with transactional tables if you are not very careful). MySQL Server also
guarantees that there are no dirty reads.

Following are some techniques for working with non-transactional tables:

• Loops that need transactions normally can be coded with the help of LOCK TABLES, and you don't
need cursors to update records on the fly.

• To avoid using ROLLBACK, you can employ the following strategy:

1. Use LOCK TABLES to lock all the tables you want to access.

2. Test the conditions that must be true before performing the update.

3. Update if the conditions are satisfied.

4. Use UNLOCK TABLES to release your locks.

This is usually a much faster method than using transactions with possible rollbacks, although not al-
ways. The only situation this solution doesn't handle is when someone kills the threads in the middle
of an update. In that case, all locks are released but some of the updates may not have been executed.

• You can also use functions to update records in a single operation. You can get a very efficient ap-
plication by using the following techniques:

General Information

32

• Modify columns relative to their current value.

• Update only those columns that actually have changed.

For example, when we are updating customer information, we update only the customer data that has
changed and test only that none of the changed data, or data that depends on the changed data, has
changed compared to the original row. The test for changed data is done with the WHERE clause in
the UPDATE statement. If the record wasn't updated, we give the client a message: “Some of the data
you have changed has been changed by another user.” Then we show the old row versus the new
row in a window so that the user can decide which version of the customer record to use.

This gives us something that is similar to column locking but is actually even better because we only
update some of the columns, using values that are relative to their current values. This means that
typical UPDATE statements look something like these:

UPDATE tablename SET pay_back=pay_back+125;

UPDATE customer
SET
customer_date='current_date',
address='new address',
phone='new phone',
money_owed_to_us=money_owed_to_us-125

WHERE
customer_id=id AND address='old address' AND phone='old phone';

This is very efficient and works even if another client has changed the values in the pay_back or
money_owed_to_us columns.

• In many cases, users have wanted LOCK TABLES or ROLLBACK for the purpose of managing
unique identifiers. This can be handled much more efficiently without locking or rolling back by us-
ing an AUTO_INCREMENT column and either the LAST_INSERT_ID() SQL function or the
mysql_insert_id() C API function. See Section 12.9.3, “Information Functions”, and Sec-
tion 22.2.3.36, “mysql_insert_id()”.

You can generally code around the need for row-level locking. Some situations really do need it, and
InnoDB tables support row-level locking. Otherwise, with MyISAM tables, you can use a flag
column in the table and do something like the following:

UPDATE tbl_name SET row_flag=1 WHERE id=ID;

MySQL returns 1 for the number of affected rows if the row was found and row_flag wasn't 1 in
the original row. You can think of this as though MySQL Server changed the preceding statement to:

UPDATE tbl_name SET row_flag=1 WHERE id=ID AND row_flag <> 1;

1.9.5.4. Stored Routines and Triggers

Stored procedures and functions are implemented beginning with MySQL 5.0. See Chapter 17, Stored
Procedures and Functions.

Basic trigger functionality is implemented beginning with MySQL 5.0.2, with further development
planned for MySQL 5.1. See Chapter 18, Triggers.

1.9.5.5. Foreign Keys

In MySQL Server 3.23.44 and up, the InnoDB storage engine supports checking of foreign key con-

General Information

33

straints, including CASCADE, ON DELETE, and ON UPDATE. See Section 14.2.6.4, “FOREIGN KEY
Constraints”.

For storage engines other than InnoDB, MySQL Server parses the FOREIGN KEY syntax in CREATE
TABLE statements, but does not use or store it. In the future, the implementation will be extended to
store this information in the table specification file so that it may be retrieved by mysqldump and
ODBC. At a later stage, foreign key constraints will be implemented for MyISAM tables as well.

Foreign key enforcement offers several benefits to database developers:

• Assuming proper design of the relationships, foreign key constraints make it more difficult for a pro-
grammer to introduce an inconsistency into the database.

• Centralized checking of constraints by the database server makes it unnecessary to perform these
checks on the application side. This eliminates the possibility that different applications may not all
check the constraints in the same way.

• Using cascading updates and deletes can simplify the application code.

• Properly designed foreign key rules aid in documenting relationships between tables.

Do keep in mind that these benefits come at the cost of additional overhead for the database server to
perform the necessary checks. Additional checking by the server affects performance, which for some
applications may be sufficiently undesirable as to be avoided if possible. (Some major commercial ap-
plications have coded the foreign key logic at the application level for this reason.)

MySQL gives database developers the choice of which approach to use. If you don't need foreign keys
and want to avoid the overhead associated with enforcing referential integrity, you can choose another
storage engine instead, such as MyISAM. (For example, the MyISAM storage engine offers very fast per-
formance for applications that perform only INSERT and SELECT operations. In this case, the table has
no holes in the middle and the inserts can be performed concurrently with retrievals. See Section 7.3.3,
“Concurrent Inserts”.)

If you choose not to take advantage of referential integrity checks, keep the following considerations in
mind:

• In the absence of server-side foreign key relationship checking, the application itself must handle re-
lationship issues. For example, it must take care to insert rows into tables in the proper order, and to
avoid creating orphaned child records. It must also be able to recover from errors that occur in the
middle of multiple-record insert operations.

• If ON DELETE is the only referential integrity capability an application needs, you can achieve a
similar effect as of MySQL Server 4.0 by using multiple-table DELETE statements to delete rows
from many tables with a single statement. See Section 13.2.1, “DELETE Syntax”.

• A workaround for the lack of ON DELETE is to add the appropriate DELETE statements to your ap-
plication when you delete records from a table that has a foreign key. In practice, this is often as
quick as using foreign keys and is more portable.

Be aware that the use of foreign keys can sometimes lead to problems:

• Foreign key support addresses many referential integrity issues, but it is still necessary to design key
relationships carefully to avoid circular rules or incorrect combinations of cascading deletes.

• It is not uncommon for a DBA to create a topology of relationships that makes it difficult to restore

General Information

34

individual tables from a backup. (MySQL alleviates this difficulty by allowing you to temporarily
disable foreign key checks when reloading a table that depends on other tables. See Section 14.2.6.4,
“FOREIGN KEY Constraints”. As of MySQL 4.1.1, mysqldump generates dump files that take ad-
vantage of this capability automatically when they are reloaded.)

Note that foreign keys in SQL are used to check and enforce referential integrity, not to join tables. If
you want to get results from multiple tables from a SELECT statement, you do this by performing a join
between them:

SELECT * FROM t1 INNER JOIN t2 ON t1.id = t2.id;

See Section 13.2.7.1, “JOIN Syntax”, and Section 3.6.6, “Using Foreign Keys”.

The FOREIGN KEY syntax without ON DELETE ... is often used by ODBC applications to produce
automatic WHERE clauses.

1.9.5.6. Views

Views (including updatable views) are implemented beginning with MySQL Server 5.0.1. See
Chapter 19, Views.

Views are useful for allowing users to access a set of relations (tables) as if it were a single table, and
limiting their access to just that. Views can also be used to restrict access to rows (a subset of a particu-
lar table). For access control to columns, you can also use the sophisticated privilege system in MySQL
Server. See Section 5.8, “The MySQL Access Privilege System”.

In designing an implementation of views, our ambitious goal, as much as is possible within the confines
of SQL, has been full compliance with “Codd's Rule #6” for relational database systems: “All views that
are theoretically updatable, should in practice also be updatable.”

1.9.5.7. '--' as the Start of a Comment

Standard SQL uses the C syntax /* this is a comment */ for comments, and MySQL Server
supports this syntax as well. MySQL also support extensions to this syntax that allow MySQL-specific
SQL to be embedded in the comment, as described in Section 9.4, “Comment Syntax”.

Standard SQL uses ‘--’ as a start-comment sequence. MySQL Server uses ‘#’ as the start comment
character. MySQL Server 3.23.3 and up also supports a variant of the ‘--’ comment style. That is, the
‘--’ start-comment sequence must be followed by a space (or by a control character such as a newline).
The space is required to prevent problems with automatically generated SQL queries that use constructs
such as the following, where we automatically insert the value of the payment for payment:

UPDATE account SET credit=credit-payment

Consider about what happens if payment has a negative value such as -1:

UPDATE account SET credit=credit--1

credit--1 is a legal expression in SQL, but ‘--’ is interpreted as the start of a comment, part of the
expression is discarded. The result is a statement that has a completely different meaning than intended:

UPDATE account SET credit=credit

The statement produces no change in value at all. This illustrates that allowing comments to start with ‘-
-’ can have serious consequences.

General Information

35

Using our implementation requires a space following the ‘--’ in order for it to be recognized as a start-
comment sequence in MySQL Server 3.23.3 and newer. Therefore, credit--1 is safe to use.

Another safe feature is that the mysql command-line client ignores lines that start with ‘--’.

The following information is relevant only if you are running a MySQL version earlier than 3.23.3:

If you have an SQL script in a text file that contains ‘--’ comments, you should use the replace util-
ity as follows to convert the comments to use ‘#’ characters before executing the script:

shell> replace " --" " #" < text-file-with-funny-comments.sql \
| mysql db_name

That is safer than executing the script in the usual way:

shell> mysql db_name < text-file-with-funny-comments.sql

You can also edit the script file “in place” to change the ‘--’ comments to ‘#’ comments:

shell> replace " --" " #" -- text-file-with-funny-comments.sql

Change them back with this command:

shell> replace " #" " --" -- text-file-with-funny-comments.sql

See Section 8.18, “replace — A String-Replacement Utility”.

1.9.6. How MySQL Deals with Constraints
MySQL allows you to work both with transactional tables that allow rollback and with non-transactional
tables that do not. Because of this, constraint handling is a bit different in MySQL than in other DBMSs.
We must handle the case when you have inserted or updated a lot of rows in a non-transactional table for
which changes cannot be rolled back when an error occurs.

The basic philosophy is that MySQL Server tries to produce an error for anything that it can detect while
parsing a statement to be executed, and tries to recover from any errors that occur while executing the
statement. We do this in most cases, but not yet for all.

The options MySQL has when an error occurs are to stop the statement in the middle or to recover as
well as possible from the problem and continue. By default, the server follows the latter course. This
means, for example, that the server may coerce illegal values to the closest legal values.

Beginning with MySQL 5.0.2, several SQL mode options are available to provide greater control over
handling of bad data values and whether to continue statement execution or abort when errors occur. Us-
ing these options, you can configure MySQL Server to act in a more traditional fashion that is like other
DBMSs that reject improper input. The SQL mode can be set globally at server startup to affect all cli-
ents. Individual clients can set the SQL mode at runtime, which enables each client to select the behavi-
or most appropriate for its requirements. See Section 5.2.6, “SQL Modes”.

The following sections describe how MySQL Server handles different types of constraints.

1.9.6.1. PRIMARY KEY and UNIQUE Index Constraints

Normally, an error occurs when you try to INSERT or UPDATE a row that causes a primary key, unique
key, or foreign key violation. If you are using a transactional storage engine such as InnoDB, MySQL
automatically rolls back the statement. If you are using a non-transactional storage engine, MySQL stops
processing the statement at the row for which the error occurred and leaves any remaining rows unpro-

General Information

36

cessed.

If you want to ignore such key violations, MySQL supports an IGNORE keyword for INSERT and UP-
DATE. In this case, MySQL ignores any key violations and continues processing with the next row. See
Section 13.2.4, “INSERT Syntax”, and Section 13.2.10, “UPDATE Syntax”.

You can get information about the number of rows actually inserted or updated with the
mysql_info() C API function. In MySQL 4.1 and up, you also can use the SHOW WARNINGS state-
ment. See Section 22.2.3.34, “mysql_info()”, and Section 13.5.4.26, “SHOW WARNINGS Syntax”.

Currently, only InnoDB tables support foreign keys. See Section 14.2.6.4, “FOREIGN KEY Con-
straints”. Foreign key support in MyISAM tables is scheduled for implementation in MySQL 5.2. See
Section 1.6, “MySQL Development Roadmap”.

1.9.6.2. Constraints on Invalid Data

Before MySQL 5.0.2, MySQL is forgiving of illegal or improper data values and coerces them to legal
values for data entry. In MySQL 5.0.2 and up, that remains the default behavior, but you can change the
server SQL mode to select more traditional treatment of bad values such that the server rejects them and
aborts the statement in which they occur. Section 5.2.6, “SQL Modes”.

This section describes the default (forgiving) behavior of MySQL, as well as the newer strict SQL mode
and how it differs.

If you are not using strict mode, then whenever you insert an “incorrect” value into a column, such as a
NULL into a NOT NULL column or a too-large numeric value into a numeric column, MySQL sets the
column to the “best possible value” instead of producing an error: The following rules describe in more
detail how this works:

• If you try to store an out of range value into a numeric column, MySQL Server instead stores zero,
the smallest possible value, or the largest possible value, whichever is closest to the invalid value.

• For strings, MySQL stores either the empty string or as much of the string as can be stored in the
column.

• If you try to store a string that doesn't start with a number into a numeric column, MySQL Server
stores 0.

• Invalid values for ENUM and SET columns ae handled as described in Section 1.9.6.3, “ENUM and
SET Constraints”.

• MySQL allows you to store certain incorrect date values into DATE and DATETIME columns (such
as '2000-02-31' or '2000-02-00'). The idea is that it's not the job of the SQL server to val-
idate dates. If MySQL can store a date value and retrieve exactly the same value, MySQL stores it as
given. If the date is totally wrong (outside the server's ability to store it), the special “zero” date
value '0000-00-00' is stored in the column instead.

• If you try to store NULL into a column that doesn't take NULL values, an error occurs for single-row
INSERT statements. For multiple-row INSERT statements or for INSERT INTO ... SELECT
statements, MySQL Server stores the implicit default value for the column data type. In general, this
is 0 for numeric types, the empty string ('') for string types, and the “zero” value for date and time
types. Implicit default values are discussed in Section 11.1.4, “Data Type Default Values”.

• If an INSERT statement specifies no value for a column, MySQL inserts its default value if the
column definition includes an explicit DEFAULT clause. If the definition has no such DEFAULT
clause, MySQL inserts the implicit default value for the column data type.

General Information

37

The reason for using the preceding rules in non-strict mode is that we can't check these conditions until
the statement has begun executing. We can't just roll back if we encounter a problem after updating a
few rows, because the storage engine may not support rollback. The option of terminating the statement
is not that good; in this case, the update would be “half done,” which is probably the worst possible
scenario. In this case, it's better to “do the best you can” and then continue as if nothing happened.

In MySQL 5.0.2 and up, you can select stricter treatment of input values by using the
STRICT_TRANS_TABLES or STRICT_ALL_TABLES SQL modes:

SET sql_mode = 'STRICT_TRANS_TABLES';
SET sql_mode = 'STRICT_ALL_TABLES';

STRICT_TRANS_TABLES enables strict mode for transactional storage engines, and also to some ex-
tent for non-transactional engines. It works like this:

• For transactional storage engines, bad data values occurring anywhere in a statement cause the state-
ment to abort and roll back.

• For non-transactional storage engines, a statement aborts if the error occurs in the first row to be in-
serted or updated. (When the error occurs in the first row, the statement can be aborted to leave the
table unchanged, just as for a transactional table.) Errors in rows after the first do not abort the state-
ment, because the table has already been changed by the first row. Instead, bad data values are adjus-
ted and result in warnings rather than errors. In other words, with STRICT_TRANS_TABLES, a
wrong value causes MySQL to roll back all updates done so far, if that can be done without chan-
ging the table. But once the table has been changed, further errors result in adjustments and warn-
ings.

For even stricter checking, enable STRICT_ALL_TABLES. This is the same as
STRICT_TRANS_TABLES except that for non-transactional storage engines, errors abort the statement
even for bad data in rows following the first row. This means that if an error occurs partway through a
multiple-row insert or update for a non-transactional table, a partial update results. Earlier rows are in-
serted or updated, but those from the point of the error on are not. To avoid this for non-transactional
tables, either use single-row statements or else use STRICT_TRANS_TABLES if conversion warnings
rather than errors are acceptable. To avoid problems in the first place, do not use MySQL to check
column content. It is safest (and often faster) to let the application ensure that it passes only legal values
to the database.

With either of the strict mode options, you can cause errors to be treated as warnings by using INSERT
IGNORE or UPDATE IGNORE rather than INSERT or UPDATE without IGNORE.

1.9.6.3. ENUM and SET Constraints

ENUM and SET columns provide an efficient way to define columns that can contain only a given set of
values. See Section 11.4.4, “The ENUM Type”, and Section 11.4.5, “The SET Type”. However, before
MySQL 5.0.2, ENUM and SET columns do not provide true constraints on entry of invalid data:

• ENUM columns always have a default value. If you specify no default value, then it is NULL for
columns that can have NULL, otherwise it is the first enumeration value in the column definition.

• If you insert an incorrect value into an ENUM column or if you force a value into an ENUM column
with IGNORE, it is set to the reserved enumeration value of 0, which is displayed as an empty string
in string context.

• If you insert an incorrect value into a SET column, the incorrect value is ignored. For example, if the
column can contain the values 'a', 'b', and 'c', an attempt to assign 'a,x,b,y' results in a

General Information

38

value of 'a,b'.

As of MySQL 5.0.2, you can configure the server to use strict SQL mode. See Section 5.2.6, “SQL
Modes”. With strict mode enabled, the definition of a ENUM or SET column does act as a constraint on
values entered into the column. An error occurs for values that do not satisfy these conditions:

• An ENUM value must be one of those listed in the column definition, or the internal numeric equival-
ent thereof. The value cannot be the error value (that is, 0 or the empty string). For a column defined
as ENUM('a','b','c'), values such as '', 'd', or 'ax' are illegal and are rejected.

• A SET value must be the empty string or a value consisting only of the values listed in the column
definition separated by commas. For a column defined as SET('a','b','c'), values such as
'd' or 'a,b,c,d' are illegal and are rejected.

Errors for invalid values can be suppressed in strict mode if you use INSERT IGNORE or UPDATE
IGNORE. In this case, a warning is generated rather than an error. For ENUM, the value is inserted as the
error member (0). For SET, the value is inserted as given except that any invalid substrings are deleted.
For example, 'a,x,b,y' results in a value of 'a,b'.

General Information

39

Chapter 2. Installing and Upgrading MySQL
This chapter describes how to obtain and install MySQL. A summary of the procedure follows and later
sections provide the details. If you plan to upgrade an existing version of MySQL to a newer version
rather than install MySQL for the first time, see Section 2.11, “Upgrading MySQL”, for information
about upgrade procedures and about issues that you should consider before upgrading.

1. Determine whether your platform is supported. Please note that not all supported systems are
equally suitable for running MySQL. On some platforms it is much more robust and efficient than
others. See Section 2.1.1, “Operating Systems Supported by MySQL”, for details.

2. Choose which distribution to install. Several versions of MySQL are available, and most are
available in several distribution formats. You can choose from pre-packaged distributions contain-
ing binary (precompiled) programs or source code. When in doubt, use a binary distribution. We
also provide public access to our current source tree for those who want to see our most recent de-
velopments and help us test new code. To determine which version and type of distribution you
should use, see Section 2.1.2, “Choosing Which MySQL Distribution to Install”.

3. Download the distribution that you want to install. For instructions, see Section 2.1.3, “How to
Get MySQL”. To verify the integrity of the distribution, use the instructions in Section 2.1.4,
“Verifying Package Integrity Using MD5 Checksums or GnuPG”.

4. Install the distribution. To install MySQL from a binary distribution, use the instructions in Sec-
tion 2.2, “Standard MySQL Installation Using a Binary Distribution”. To install MySQL from a
source distribution or from the current development source tree, use the instructions in Section 2.9,
“MySQL Installation Using a Source Distribution”.

If you encounter installation difficulties, see Section 2.13, “Operating System-Specific Notes”, for
information on solving problems for particular platforms.

5. Perform any necessary post-installation setup. After installing MySQL, read Section 2.10,
“Post-Installation Setup and Testing”. This section contains important information about making
sure the MySQL server is working properly. It also describes how to secure the initial MySQL user
accounts, which have no passwords until you assign passwords. The section applies whether you
install MySQL using a binary or source distribution.

6. If you want to run the MySQL benchmark scripts, Perl support for MySQL must be available. See
Section 2.14, “Perl Installation Notes”.

2.1. General Installation Issues
Before installing MySQL, you should do the following:

1. Determine whether MySQL runs on your platform.

2. Choose a distribution to install.

3. Download the distribution and verify its integrity.

This section contains the information necessary to carry out these steps. After doing so, you can use the
instructions in later sections of the chapter to install the distribution that you choose.

40

2.1.1. Operating Systems Supported by MySQL
This section lists the operating systems on which you can expect to be able to run MySQL.

We use GNU Autoconf, so it is possible to port MySQL to all modern systems that have a C++ compiler
and a working implementation of POSIX threads. (Thread support is needed for the server. To compile
only the client code, the only requirement is a C++ compiler.) We use and develop the software
ourselves primarily on Linux (SuSE and Red Hat), FreeBSD, and Sun Solaris (versions 8 and 9).

MySQL has been reported to compile successfully on the following combinations of operating system
and thread package. Note that for many operating systems, native thread support works only in the latest
versions.

• AIX 4.x, 5.x with native threads. See Section 2.13.5.3, “IBM-AIX notes”.

• Amiga.

• BSDI 2.x with the MIT-pthreads package. See Section 2.13.4.4, “BSD/OS Version 2.x Notes”.

• BSDI 3.0, 3.1 and 4.x with native threads. See Section 2.13.4.4, “BSD/OS Version 2.x Notes”.

• Digital Unix 4.x with native threads. See Section 2.13.5.5, “Alpha-DEC-UNIX Notes (Tru64)”.

• FreeBSD 2.x with the MIT-pthreads package. See Section 2.13.4.1, “FreeBSD Notes”.

• FreeBSD 3.x and 4.x with native threads. See Section 2.13.4.1, “FreeBSD Notes”.

• FreeBSD 4.x with LinuxThreads. See Section 2.13.4.1, “FreeBSD Notes”.

• HP-UX 10.20 with the DCE threads or the MIT-pthreads package. See Section 2.13.5.1, “HP-UX
Version 10.20 Notes”.

• HP-UX 11.x with the native threads. See Section 2.13.5.2, “HP-UX Version 11.x Notes”.

• Linux 2.0+ with LinuxThreads 0.7.1+ or glibc 2.0.7+ for various CPU architectures. See Sec-
tion 2.13.1, “Linux Notes”.

• Mac OS X. See Section 2.13.2, “Mac OS X Notes”.

• NetBSD 1.3/1.4 Intel and NetBSD 1.3 Alpha (requires GNU make). See Section 2.13.4.2, “NetBSD
Notes”.

• Novell NetWare 6.0 and 6.5. See Section 2.7, “Installing MySQL on NetWare”.

• OpenBSD 2.5 and with native threads. OpenBSD earlier than 2.5 with the MIT-pthreads package.
See Section 2.13.4.3, “OpenBSD 2.5 Notes”.

• OS/2 Warp 3, FixPack 29 and OS/2 Warp 4, FixPack 4. See Section 2.13.6, “OS/2 Notes”.

• SCO OpenServer 5.0.X with a recent port of the FSU Pthreads package. See Section 2.13.5.8, “SCO
UNIX and OpenServer 5.0.x Notes”.

• SCO Openserver 6.0.x. See Section 2.13.5.9, “SCO OpenServer 6.0.x Notes”.

• SCO UnixWare 7.1.x. See Section 2.13.5.10, “SCO UnixWare 7.1.x and OpenUNIX 8.0.0 Notes”.

• SGI Irix 6.x with native threads. See Section 2.13.5.7, “SGI Irix Notes”.

• Solaris 2.5 and above with native threads on SPARC and x86. See Section 2.13.3, “Solaris Notes”.

Installing and Upgrading MySQL

41

• SunOS 4.x with the MIT-pthreads package. See Section 2.13.3, “Solaris Notes”.

• Tru64 Unix. See Section 2.13.5.5, “Alpha-DEC-UNIX Notes (Tru64)”.

• Windows 9x, Me, NT, 2000, XP, and Windows Server 2003. See Section 2.3, “Installing MySQL on
Windows”.

Not all platforms are equally well-suited for running MySQL. How well a certain platform is suited for a
high-load mission-critical MySQL server is determined by the following factors:

• General stability of the thread library. A platform may have an excellent reputation otherwise, but
MySQL is only as stable as the thread library it calls, even if everything else is perfect.

• The capability of the kernel and the thread library to take advantage of symmetric multi-processor
(SMP) systems. In other words, when a process creates a thread, it should be possible for that thread
to run on a CPU different from the original process.

• The capability of the kernel and the thread library to run many threads that acquire and release a mu-
tex over a short critical region frequently without excessive context switches. If the implementation
of pthread_mutex_lock() is too anxious to yield CPU time, this hurts MySQL tremendously.
If this issue is not taken care of, adding extra CPUs actually makes MySQL slower.

• General filesystem stability and performance.

• If your tables are large, performance is affected by the ability of the filesystem to deal with large
files at all and to deal with them efficiently.

• Our level of expertise here at MySQL AB with the platform. If we know a platform well, we enable
platform-specific optimizations and fixes at compile time. We can also provide advice on configur-
ing your system optimally for MySQL.

• The amount of testing we have done internally for similar configurations.

• The number of users that have run MySQL successfully on the platform in similar configurations. If
this number is high, the likelihood of encountering platform-specific surprises is much smaller.

Based on the preceding criteria, the best platforms for running MySQL at this point are x86 with SuSE
Linux using a 2.4 or 2.6 kernel, and ReiserFS (or any similar Linux distribution) and SPARC with Solar-
is (2.7-9). FreeBSD comes third, but we really hope it joins the top club once the thread library is im-
proved. We also hope that at some point we are able to include into the top category all other platforms
on which MySQL currently compiles and runs, but not quite with the same level of stability and per-
formance. This requires some effort on our part in cooperation with the developers of the operating sys-
tems and library components that MySQL depends on. If you are interested in improving one of those
components, are in a position to influence its development, and need more detailed instructions on what
MySQL needs to run better, send an email message to the MySQL internals mailing list. See Sec-
tion 1.7.1, “MySQL Mailing Lists”.

Please note that the purpose of the preceding comparison is not to say that one operating system is better
or worse than another in general. We are talking only about choosing an OS for the specific purpose of
running MySQL. With this in mind, the result of this comparison might be different if other factors were
considered. In some cases, the reason one OS is better for MySQL than another might simply be that we
have been able to put more effort into testing and optimizing for a particular platform. We are just stat-
ing our observations to help you decide which platform to use for running MySQL.

2.1.2. Choosing Which MySQL Distribution to Install

Installing and Upgrading MySQL

42

When preparing to install MySQL, you should decide which version to use. MySQL development oc-
curs in several release series, and you can pick the one that best fits your needs. After deciding which
version to install, you can choose a distribution format. Releases are available in binary or source
format.

2.1.2.1. Choosing Which Version of MySQL to Install

The first decision to make is whether you want to use a production (stable) release or a development re-
lease. In the MySQL development process, multiple release series co-exist, each at a different stage of
maturity:

• MySQL 5.1 is the current development release series.

• MySQL 5.0 is the current stable (production-quality) release series. New releases are issued for bug-
fixes only; no new features are being added that could effect stability.

• MySQL 4.1 is the previous stable (production-quality) release series. New releases are issued for
critical bugfixes and security fixes. No significant new features are to be added to this series.

• MySQL 4.0 and 3.23 are the old stable (production-quality) release series. These versions are now
retired, so new releases are issued only to fix extremely critical bugs (primarily security issues).

We do not believe in a complete code freeze because this prevents us from making bugfixes and other
fixes that must be done. By “somewhat frozen” we mean that we may add small things that should not
affect anything that currently works in a production release. Naturally, relevant bugfixes from an earlier
series propagate to later series.

Normally, if you are beginning to use MySQL for the first time or trying to port it to some system for
which there is no binary distribution, we recommend going with the production release series. Currently,
this is MySQL 5.0. All MySQL releases, even those from development series, are checked with the
MySQL benchmarks and an extensive test suite before being issued.

If you are running an older system and want to upgrade, but do not want to take the chance of having a
non-seamless upgrade, you should upgrade to the latest version in the same release series you are using
(where only the last part of the version number is newer than yours). We have tried to fix only fatal bugs
and make only small, relatively “safe” changes to that version.

If you want to use new features not present in the production release series, you can use a version from a
development series. Note that development releases are not as stable as production releases.

If you want to use the very latest sources containing all current patches and bugfixes, you can use one of
our BitKeeper repositories. These are not “releases” as such, but are available as previews of the code on
which future releases are to be based.

The MySQL naming scheme uses release names that consist of three numbers and a suffix; for example,
mysql-5.0.12-beta. The numbers within the release name are interpreted as follows:

• The first number (5) is the major version and describes the file format. All MySQL 5 releases have
the same file format.

• The second number (0) is the release level. Taken together, the major version and release level con-
stitute the release series number.

• The third number (12) is the version number within the release series. This is incremented for each
new release. Usually you want the latest version for the series you have chosen.

Installing and Upgrading MySQL

43

For each minor update, the last number in the version string is incremented. When there are major new
features or minor incompatibilities with previous versions, the second number in the version string is in-
cremented. When the file format changes, the first number is increased.

Release names also include a suffix to indicates the stability level of the release. Releases within a series
progress through a set of suffixes to indicate how the stability level improves. The possible suffixes are:

• alpha indicates that the release contains new features that have not been thoroughly tested. Known
bugs should be documented in the News section. See Appendix D, MySQL Change History. Most al-
pha releases implement new commands and extensions. Active development that may involve major
code changes can occur in an alpha release. However, we do conduct testing before issuing a release.

• beta means that the release is intended to be feature-complete and that all new code has been tested.
No major new features that are added. There should be no known critical bugs. A version changes
from alpha to beta when there have been no reported fatal bugs within an alpha version for at least a
month and we have no plans to add any new features that could make previously implemented fea-
tures unreliable.

All APIs, externally visible structures, and columns for SQL statements will not change during fu-
ture beta, release candidate, or production releases.

• rc is a release candidate; that is, a beta that has been around for a while and seems to work well.
Only minor fixes are added. (A release candidate is what formerly was known as a gamma release.)

• If there is no suffix, it means that the version has been run for a while at many different sites with no
reports of critical repeatable bugs other than platform-specific bugs. Only critical bugfixes are ap-
plied to the release. This is what we call a production (stable) or “General Availability” (GA) re-
lease.

MySQL uses a naming scheme that is slightly different from most other products. In general, it is usu-
ally safe to use any version that has been out for a couple of weeks without being replaced by a new ver-
sion within the same release series.

All releases of MySQL are run through our standard tests and benchmarks to ensure that they are relat-
ively safe to use. Because the standard tests are extended over time to check for all previously found
bugs, the test suite keeps getting better.

All releases have been tested at least with these tools:

• An internal test suite

The mysql-test directory contains an extensive set of test cases. We run these tests for virtually
every server binary. See Section 24.1.2, “MySQL Test Suite”, for more information about this test
suite.

• The MySQL benchmark suite

This suite runs a range of common queries. It is also a test to determine whether the latest batch of
optimizations actually made the code faster. See Section 7.1.4, “The MySQL Benchmark Suite”.

• The crash-me test

This test tries to determine what features the database supports and what its capabilities and limita-
tions are. See Section 7.1.4, “The MySQL Benchmark Suite”.

Installing and Upgrading MySQL

44

We also test the newest MySQL version in our internal production environment, on at least one ma-
chine. We have more than 100GB of data to work with.

2.1.2.2. Choosing a Distribution Format

After choosing which version of MySQL to install, you should decide whether to use a binary distribu-
tion or a source distribution. In most cases, you should probably use a binary distribution, if one exists
for your platform. Binary distributions are available in native format for many platforms, such as RPM
files for Linux or PKG package installers for Mac OS X or Solaris. Distributions also are available as
Zip archives or compressed tar files.

Reasons to choose a binary distribution include the following:

• Binary distributions generally are easier to install than source distributions.

• To satisfy different user requirements, we provide two different binary versions. One is compiled
with the core feature set. The other (MySQL-Max) is compiled with an extended feature set. Both
versions are compiled from the same source distribution. All native MySQL clients can connect to
servers from either MySQL version.

The extended MySQL binary distribution is identified by the -max suffix and is configured with the
same options as mysqld-max. See Section 5.3, “The mysqld-max Extended MySQL Server”.

For RPM distributions, if you want to use the MySQL-Max RPM, you must first install the standard
MySQL-server RPM.

Under some circumstances, you may be better off installing MySQL from a source distribution:

• You want to install MySQL at some explicit location. The standard binary distributions are ready to
run at any installation location, but you might require even more flexibility to place MySQL com-
ponents where you want.

• You want to configure mysqld to ensure that features are available that might not be included in
the standard binary distributions. Here is a list of the most common extra options that you may want
to use to ensure feature availability:

• --with-berkeley-db (not available on all platforms)

• --with-libwrap

• --with-named-z-libs (this is done for some of the binaries)

• --with-debug[=full]

• You want to configure mysqld without some features that are included in the standard binary distri-
butions. For example, distributions normally are compiled with support for all character sets. If you
want a smaller MySQL server, you can recompile it with support for only the character sets you
need.

• You have a special compiler (such as pgcc) or want to use compiler options that are better optim-
ized for your processor. Binary distributions are compiled with options that should work on a variety
of processors from the same processor family.

• You want to use the latest sources from one of the BitKeeper repositories to have access to all cur-
rent bugfixes. For example, if you have found a bug and reported it to the MySQL development
team, the bugfix is committed to the source repository and you can access it there. The bugfix does

Installing and Upgrading MySQL

45

not appear in a release until a release actually is issued.

• You want to read (or modify) the C and C++ code that makes up MySQL. For this purpose, you
should get a source distribution, because the source code is always the ultimate manual.

• Source distributions contain more tests and examples than binary distributions.

2.1.2.3. How and When Updates Are Released

MySQL is evolving quite rapidly and we want to share new developments with other MySQL users. We
try to produce a new release whenever we have new and useful features that others also seem to have a
need for.

We also try to help users who request features that are easy to implement. We take note of what our li-
censed users want, and we especially take note of what our support customers want and try to help them
in this regard.

No one is required to download a new release. The News section helps you determine whether the new
release has something you really want. See Appendix D, MySQL Change History.

We use the following policy when updating MySQL:

• Releases are issued within each series. For each release, the last number in the version is one more
than the previous release within the same series.

• Production (stable) releases are meant to appear about 1-2 times a year. However, if small bugs are
found, a release with only bugfixes is issued.

• Working releases/bugfixes to old releases are meant to appear about every 4-8 weeks.

• Binary distributions for some platforms are made by us for major releases. Other people may make
binary distributions for other systems, but probably less frequently.

• We make fixes available as soon as we have identified and corrected small or non-critical but annoy-
ing bugs. The fixes are available immediately from our public BitKeeper repositories, and are in-
cluded in the next release.

• If by any chance a fatal bug is found in a release, our policy is to fix it in a new release as soon as
possible. (We would like other companies to do this, too!)

2.1.2.4. Release Philosophy—No Known Bugs in Releases

We put considerable time and effort into making our releases bug-free. Our policy is never to release a
version of MySQL intended for production use that has any known fatal, repeatable bugs.

We have documented all open problems, bugs, and issues that are dependent on design decisions. See
Section A.8, “Known Issues in MySQL”.

Our aim is to fix everything that is fixable without making a stable MySQL version less stable. In cer-
tain cases, this means we can fix an issue in the development versions, but not in the stable (production)
version. Naturally, we document such issues so that users are aware of them.

Here is a description of our build process:

• We monitor bugs from our customer support list, the bugs database at http://bugs.mysql.com/, and

Installing and Upgrading MySQL

46

http://bugs.mysql.com/

the MySQL external mailing lists.

• All reported bugs for live versions are entered into the bugs database.

• When we fix a bug, we always try to make a test case for it and include it into our test system to en-
sure that the bug can never recur without being detected. (About 90% of all fixed bugs have test
cases.)

• We create test cases for each new feature that we add to MySQL.

• Before we start to build a new MySQL release, we ensure that all reported repeatable bugs for that
MySQL version (3.23.x, 4.0.x, 4.1.x, 5.0.x, 5.1.x, and so on) are fixed. If something is impossible to
fix due to some internal design decision in MySQL, we document this in the manual. See Sec-
tion A.8, “Known Issues in MySQL”.

• We do a build on all platforms for which we support binaries and run our test suite and benchmark
suite on all of them.

• We do not publish a binary for a platform for which the test or benchmark suite fails. If the problem
is due to a general error in the source, we fix it and do the build plus tests on all systems again from
scratch.

• The build and test process takes a week. If we receive a report regarding a fatal bug during this pro-
cess (for example, one that causes a core dump), we fix the problem and restart the build process.

• After publishing the binaries on http://dev.mysql.com/, we send out an announcement message to the
mysql and announce mailing lists. See Section 1.7.1, “MySQL Mailing Lists”. The announce-
ment message contains a list of all changes to the release and any known problems with the release.
The Known Problems section in the release notes has been needed for only a handful of releases.

• To quickly give our users access to the latest MySQL features, we try to produce a new MySQL re-
lease every 4-8 weeks. Source code snapshots are built daily and are available at ht-
tp://downloads.mysql.com/snapshots.php.

• If, despite our best efforts, we receive any bug reports after a release is issued that a critical problem
exists for the build on a specific platform, we fix it at once and build a new 'a' release for that plat-
form. Thanks to our large user base, problems are found and resolved very quickly.

• Our track record for making stable releases is quite good. In the last 150 releases, we had to do a
new build for fewer than 10 of them. In three of these cases, the bug was a faulty glibc library on
one of our build machines that took us a long time to track down.

2.1.2.5. MySQL Binaries Compiled by MySQL AB

As a service of MySQL AB, we provide a set of binary distributions of MySQL that are compiled on
systems at our site or on systems where supporters of MySQL kindly have given us access to their ma-
chines.

In addition to the binaries provided in platform-specific package formats, we offer binary distributions
for a number of platforms in the form of compressed tar files (.tar.gz files). See Section 2.2,
“Standard MySQL Installation Using a Binary Distribution”.

The RPM distributions for MySQL 5.0 releases that we make available through our Web site are gener-
ated by MySQL AB.

For Windows distributions, see Section 2.3, “Installing MySQL on Windows”.

These distributions are generated using the script Build-tools/Do-compile, which compiles the

Installing and Upgrading MySQL

47

http://dev.mysql.com/
http://downloads.mysql.com/snapshots.php
http://downloads.mysql.com/snapshots.php

source code and creates the binary tar.gz archive using scripts/
make_binary_distribution.

These binaries are configured and built with the following compilers and options. This information can
also be obtained by looking at the variables COMP_ENV_INFO and CONFIGURE_LINE inside the
script bin/mysqlbug of every binary tar file distribution.

Anyone who has more optimal options for any of the following configure commands can mail them
to the MySQL internals mailing list. See Section 1.7.1, “MySQL Mailing Lists”.

If you want to compile a debug version of MySQL, you should add --with-debug or -
-with-debug=full to the following configure commands and remove any -
fomit-frame-pointer options.

The following binaries are built on MySQL AB development systems:

• Linux 2.4.xx x86 with gcc 2.95.3:

CFLAGS="-O2 -mcpu=pentiumpro" CXX=gcc CXXFLAGS="-O2 -mcpu=pentiumpro
-felide-constructors" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --enable-assembler --disable-shared
--with-client-ldflags=-all-static --with-mysqld-ldflags=-all-static

• Linux 2.4.x x86 with icc (Intel C++ Compiler 8.1 or later releases):

CC=icc CXX=icpc CFLAGS="-O3 -unroll2 -ip -mp -no-gcc -restrict"
CXXFLAGS="-O3 -unroll2 -ip -mp -no-gcc -restrict" ./configure
--prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --enable-assembler
--disable-shared --with-client-ldflags=-all-static
--with-mysqld-ldflags=-all-static --with-embedded-server --with-innodb

Note that versions 8.1 and newer of the Intel compiler have separate drivers for 'pure' C (icc) and
C++ (icpc); if you use icc version 8.0 or older for building MySQL, you will need to set
CXX=icc.

• Linux 2.4.xx Intel Itanium 2 with ecc (Intel C++ Itanium Compiler 7.0):

CC=ecc CFLAGS="-O2 -tpp2 -ip -nolib_inline" CXX=ecc CXXFLAGS="-O2
-tpp2 -ip -nolib_inline" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile

• Linux 2.4.xx Intel Itanium with ecc (Intel C++ Itanium Compiler 7.0):

CC=ecc CFLAGS=-tpp1 CXX=ecc CXXFLAGS=-tpp1 ./configure
--prefix=/usr/local/mysql --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile

• Linux 2.4.xx alpha with ccc (Compaq C V6.2-505 / Compaq C++ V6.3-006):

CC=ccc CFLAGS="-fast -arch generic" CXX=cxx CXXFLAGS="-fast -arch
generic -noexceptions -nortti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-mysqld-ldflags=-non_shared
--with-client-ldflags=-non_shared --disable-shared

• Linux 2.x.xx ppc with gcc 2.95.4:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions

Installing and Upgrading MySQL

48

-fno-rtti" ./configure --prefix=/usr/local/mysql
--localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared --with-embedded-server
--with-innodb

• Linux 2.4.xx s390 with gcc 2.95.3:

CFLAGS="-O2" CXX=gcc CXXFLAGS="-O2 -felide-constructors" ./configure
--prefix=/usr/local/mysql --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --disable-shared
--with-client-ldflags=-all-static --with-mysqld-ldflags=-all-static

• Linux 2.4.xx x86_64 (AMD64) with gcc 3.2.1:

CXX=gcc ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared

• Sun Solaris 8 x86 with gcc 3.2.3:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared --with-innodb

• Sun Solaris 8 SPARC with gcc 3.2:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --enable-assembler --with-named-z-libs=no
--with-named-curses-libs=-lcurses --disable-shared

• Sun Solaris 8 SPARC 64-bit with gcc 3.2:

CC=gcc CFLAGS="-O3 -m64 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-m64 -fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-named-z-libs=no
--with-named-curses-libs=-lcurses --disable-shared

• Sun Solaris 9 SPARC with gcc 2.95.3:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --enable-assembler --with-named-curses-libs=-lcurses
--disable-shared

• Sun Solaris 9 SPARC with cc-5.0 (Sun Forte 5.0):

CC=cc-5.0 CXX=CC ASFLAGS="-xarch=v9" CFLAGS="-Xa -xstrconst -mt
-D_FORTEC_ -xarch=v9" CXXFLAGS="-noex -mt -D_FORTEC_ -xarch=v9"
./configure --prefix=/usr/local/mysql --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --enable-assembler
--with-named-z-libs=no --enable-thread-safe-client --disable-shared

• IBM AIX 4.3.2 ppc with gcc 3.2.3:

Installing and Upgrading MySQL

49

CFLAGS="-O2 -mcpu=powerpc -Wa,-many " CXX=gcc CXXFLAGS="-O2
-mcpu=powerpc -Wa,-many -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-named-z-libs=no --disable-shared

• IBM AIX 4.3.3 ppc with xlC_r (IBM Visual Age C/C++ 6.0):

CC=xlc_r CFLAGS="-ma -O2 -qstrict -qoptimize=2 -qmaxmem=8192"
CXX=xlC_r CXXFLAGS ="-ma -O2 -qstrict -qoptimize=2 -qmaxmem=8192"
./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --with-named-z-libs=no
--disable-shared --with-innodb

• IBM AIX 5.1.0 ppc with gcc 3.3:

CFLAGS="-O2 -mcpu=powerpc -Wa,-many" CXX=gcc CXXFLAGS="-O2 -mcpu=powerpc
-Wa,-many -felide-constructors -fno-exceptions -fno-rtti" ./configure
--prefix=/usr/local/mysql --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --with-named-z-libs=no
--disable-shared

• IBM AIX 5.2.0 ppc with xlC_r (IBM Visual Age C/C++ 6.0):

CC=xlc_r CFLAGS="-ma -O2 -qstrict -qoptimize=2 -qmaxmem=8192"
CXX=xlC_r CXXFLAGS="-ma -O2 -qstrict -qoptimize=2 -qmaxmem=8192"
./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --with-named-z-libs=no
--disable-shared --with-embedded-server --with-innodb

• HP-UX 10.20 pa-risc1.1 with gcc 3.1:

CFLAGS="-DHPUX -I/opt/dce/include -O3 -fPIC" CXX=gcc CXXFLAGS="-DHPUX
-I/opt/dce /include -felide-constructors -fno-exceptions -fno-rtti
-O3 -fPIC" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-pthread --with-named-thread-libs=-ldce
--with-lib-ccflags=-fPIC --disable-shared

• HP-UX 11.00 pa-risc with aCC (HP ANSI C++ B3910B A.03.50):

CC=cc CXX=aCC CFLAGS=+DAportable CXXFLAGS=+DAportable ./configure
--prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --disable-shared
--with-embedded-server --with-innodb

• HP-UX 11.11 pa-risc2.0 64bit with aCC (HP ANSI C++ B3910B A.03.33):

CC=cc CXX=aCC CFLAGS=+DD64 CXXFLAGS=+DD64 ./configure
--prefix=/usr/local/mysql --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --disable-shared

• HP-UX 11.11 pa-risc2.0 32bit with aCC (HP ANSI C++ B3910B A.03.33):

CC=cc CXX=aCC CFLAGS="+DAportable" CXXFLAGS="+DAportable" ./configure
--prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --disable-shared
--with-innodb

• HP-UX 11.22 ia64 64bit with aCC (HP aC++/ANSI C B3910B A.05.50):

Installing and Upgrading MySQL

50

CC=cc CXX=aCC CFLAGS="+DD64 +DSitanium2" CXXFLAGS="+DD64 +DSitanium2"
./configure --prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile --disable-shared
--with-embedded-server --with-innodb

• Apple Mac OS X 10.2 powerpc with gcc 3.1:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared

• FreeBSD 4.7 i386 with gcc 2.95.4:

CFLAGS=-DHAVE_BROKEN_REALPATH ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --enable-assembler --with-named-z-libs=not-used
--disable-shared

• FreeBSD 4.7 i386 using LinuxThreads with gcc 2.95.4:

CFLAGS="-DHAVE_BROKEN_REALPATH -D__USE_UNIX98 -D_REENTRANT
-D_THREAD_SAFE -I/usr/local/include/pthread/linuxthreads"
CXXFLAGS="-DHAVE_BROKEN_REALPATH -D__USE_UNIX98 -D_REENTRANT
-D_THREAD_SAFE -I/usr/local/include/pthread/linuxthreads" ./configure
--prefix=/usr/local/mysql --localstatedir=/usr/local/mysql/data
--libexecdir=/usr/local/mysql/bin --enable-thread-safe-client
--enable-local-infile --enable-assembler
--with-named-thread-libs="-DHAVE_GLIBC2_STYLE_GETHOSTBYNAME_R
-D_THREAD_SAFE -I /usr/local/include/pthread/linuxthreads
-L/usr/local/lib -llthread -llgcc_r" --disable-shared
--with-embedded-server --with-innodb

• QNX Neutrino 6.2.1 i386 with gcc 2.95.3qnx-nto 20010315:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared

The following binaries are built on third-party systems kindly provided to MySQL AB by other users.
These are provided only as a courtesy; MySQL AB does not have full control over these systems, so we
can provide only limited support for the binaries built on them.

• SCO Unix 3.2v5.0.7 i386 with gcc 2.95.3:

CFLAGS="-O3 -mpentium" LDFLAGS=-static CXX=gcc CXXFLAGS="-O3 -mpentium
-felide-constructors" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-named-z-libs=no --enable-thread-safe-client
--disable-shared

• SCO UnixWare 7.1.4 i386 with CC 3.2:

CC=cc CFLAGS="-O" CXX=CC ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-named-z-libs=no --enable-thread-safe-client
--disable-shared --with-readline

Installing and Upgrading MySQL

51

• SCO OpenServer 6.0.0 i386 with CC 3.2:

CC=cc CFLAGS="-O" CXX=CC ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --with-named-z-libs=no --enable-thread-safe-client
--disable-shared --with-readline

• Compaq Tru64 OSF/1 V5.1 732 alpha with cc/cxx (Compaq C V6.3-029i / DIGITAL C++
V6.1-027):

CC="cc -pthread" CFLAGS="-O4 -ansi_alias -ansi_args -fast -inline
speed -speculate all" CXX="cxx -pthread" CXXFLAGS="-O4 -ansi_alias
-fast -inline speed -speculate all -noexceptions -nortti" ./configure
--prefix=/usr/local/mysql --with-extra-charsets=complex
--enable-thread-safe-client --enable-local-infile
--with-named-thread-libs="-lpthread -lmach -lexc -lc" --disable-shared
--with-mysqld-ldflags=-all-static

• SGI Irix 6.5 IP32 with gcc 3.0.1:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared

• FreeBSD/sparc64 5.0 with gcc 3.2.1:

CFLAGS=-DHAVE_BROKEN_REALPATH ./configure --prefix=/usr/local/mysql
--localstatedir=/usr/local/mysql/data --libexecdir=/usr/local/mysql/bin
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --disable-shared --with-innodb

The following compile options have been used for binary packages that MySQL AB provided in the
past. These binaries no longer are being updated, but the compile options are listed here for reference
purposes.

• Linux 2.2.xx SPARC with egcs 1.1.2:

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc CXXFLAGS="-O3
-fno-omit-frame-pointer -felide-constructors -fno-exceptions
-fno-rtti" ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex --enable-thread-safe-client
--enable-local-infile --enable-assembler --disable-shared

• Linux 2.2.x with x686 with gcc 2.95.2:

CFLAGS="-O3 -mpentiumpro" CXX=gcc CXXFLAGS="-O3 -mpentiumpro
-felide-constructors -fno-exceptions -fno-rtti" ./configure
--prefix=/usr/local/mysql --enable-assembler
--with-mysqld-ldflags=-all-static --disable-shared
--with-extra-charsets=complex

• SunOS 4.1.4 2 sun4c with gcc 2.7.2.1:

CC=gcc CXX=gcc CXXFLAGS="-O3 -felide-constructors" ./configure
--prefix=/usr/local/mysql --disable-shared --with-extra-charsets=complex
--enable-assembler

• SunOS 5.5.1 (and above) sun4u with egcs 1.0.3a or 2.90.27 or gcc 2.95.2 and newer:

CC=gcc CFLAGS="-O3" CXX=gcc CXXFLAGS="-O3 -felide-constructors

Installing and Upgrading MySQL

52

-fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql
--with-low-memory --with-extra-charsets=complex --enable-assembler

• SunOS 5.6 i86pc with gcc 2.8.1:

CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql
--with-low-memory --with-extra-charsets=complex

• BSDI BSD/OS 3.1 i386 with gcc 2.7.2.1:

CC=gcc CXX=gcc CXXFLAGS=-O ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex

• BSDI BSD/OS 2.1 i386 with gcc 2.7.2:

CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex

• AIX 4.2 with gcc 2.7.2.2:

CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql
--with-extra-charsets=complex

2.1.3. How to Get MySQL
Check our downloads page at http://dev.mysql.com/downloads/ for information about the current ver-
sion of MySQL and for downloading instructions. For a complete up-to-date list of MySQL download
mirror sites, see http://dev.mysql.com/downloads/mirrors.html. You can also find information there
about becoming a MySQL mirror site and how to report a bad or out-of-date mirror.

Our main mirror is located at http://mirrors.sunsite.dk/mysql/.

2.1.4. Verifying Package Integrity Using MD5 Checksums or
GnuPG

After you have downloaded the MySQL package that suits your needs and before you attempt to install
it, you should make sure that it is intact and has not been tampered with. MySQL AB offers three means
of integrity checking:

• MD5 checksums

• Cryptographic signatures using GnuPG, the GNU Privacy Guard

• For RPM packages, the built-in RPM integrity verification mechanism

The following sections describe how to use these methods.

If you notice that the MD5 checksum or GPG signatures do not match, first try to download the respect-
ive package one more time, perhaps from another mirror site. If you repeatedly cannot successfully veri-
fy the integrity of the package, please notify us about such incidents, including the full package name
and the download site you have been using, at <webmaster@mysql.com> or
<build@mysql.com>. Do not report downloading problems using the bug-reporting system.

Installing and Upgrading MySQL

53

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/mirrors.html
http://mirrors.sunsite.dk/mysql/

2.1.4.1. Verifying the MD5 Checksum

After you have downloaded a MySQL package, you should make sure that its MD5 checksum matches
the one provided on the MySQL download pages. Each package has an individual checksum that you
can verify with the following command, where package_name is the name of the package you down-
loaded:

shell> md5sum package_name

Example:

shell> md5sum mysql-standard-5.0.25-linux-i686.tar.gz
aaab65abbec64d5e907dcd41b8699945 mysql-standard-5.0.25-linux-i686.tar.gz

You should verify that the resulting checksum (the string of hexadecimal digits) matches the one dis-
played on the download page immediately below the respective package.

Note: Make sure to verify the checksum of the archive file (for example, the .zip or .tar.gz file)
and not of the files that are contained inside of the archive.

Note that not all operating systems support the md5sum command. On some, it is simply called md5,
and others do not ship it at all. On Linux, it is part of the GNU Text Utilities package, which is avail-
able for a wide range of platforms. You can download the source code from ht-
tp://www.gnu.org/software/textutils/ as well. If you have OpenSSL installed, you can use the command
openssl md5 package_name instead. A Windows implementation of the md5 command line util-
ity is available from http://www.fourmilab.ch/md5/. winMd5Sum is a graphical MD5 checking tool that
can be obtained from http://www.nullriver.com/index/products/winmd5sum.

2.1.4.2. Signature Checking Using GnuPG

Another method of verifying the integrity and authenticity of a package is to use cryptographic signa-
tures. This is more reliable than using MD5 checksums, but requires more work.

At MySQL AB, we sign MySQL downloadable packages with GnuPG (GNU Privacy Guard). GnuPG is
an Open Source alternative to the well-known Pretty Good Privacy (PGP) by Phil Zimmermann. See ht-
tp://www.gnupg.org/ for more information about GnuPG and how to obtain and install it on your sys-
tem. Most Linux distributions ship with GnuPG installed by default. For more information about
GnuPG, see http://www.openpgp.org/.

To verify the signature for a specific package, you first need to obtain a copy of MySQL AB's public
GPG build key, which you can download from http://www.keyserver.net/. The key that you want to ob-
tain is named build@mysql.com. Alternatively, you can cut and paste the key directly from the fol-
lowing text:

Key ID:
pub 1024D/5072E1F5 2003-02-03

MySQL Package signing key (www.mysql.com) <build@mysql.com>
Fingerprint: A4A9 4068 76FC BD3C 4567 70C8 8C71 8D3B 5072 E1F5

Public Key (ASCII-armored):

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.0.6 (GNU/Linux)
Comment: For info see http://www.gnupg.org

mQGiBD4+owwRBAC14GIfUfCyEDSIePvEW3SAFUdJBtoQHH/nJKZyQT7h9bPlUWC3
RODjQReyCITRrdwyrKUGku2FmeVGwn2u2WmDMNABLnpprWPkBdCk96+OmSLN9brZ
fw2vOUgCmYv2hW0hyDHuvYlQA/BThQoADgj8AW6/0Lo7V1W9/8VuHP0gQwCgvzV3
BqOxRznNCRCRxAuAuVztHRcEAJooQK1+iSiunZMYD1WufeXfshc57S/+yeJkegNW
hxwR9pRWVArNYJdDRT+rf2RUe3vpquKNQU/hnEIUHJRQqYHo8gTxvxXNQc7fJYLV
K2HtkrPbP72vwsEKMYhhr0eKCbtLGfls9krjJ6sBgACyP/Vb7hiPwxh6rDZ7ITnE
kYpXBACmWpP8NJTkamEnPCia2ZoOHODANwpUkP43I7jsDmgtobZX9qnrAXw+uNDI
QJEXM6FSbi0LLtZciNlYsafwAPEOMDKpMqAK6IyisNtPvaLd8lH0bPAnWqcyefep

Installing and Upgrading MySQL

54

http://www.gnu.org/software/textutils/
http://www.gnu.org/software/textutils/
http://www.fourmilab.ch/md5/
http://www.nullriver.com/index/products/winmd5sum
http://www.gnupg.org/
http://www.gnupg.org/
http://www.openpgp.org/
http://www.keyserver.net/

rv0sxxqUEMcM3o7wwgfN83POkDasDbs3pjwPhxvhz6//62zQJ7Q7TXlTUUwgUGFj
a2FnZSBzaWduaW5nIGtleSAod3d3Lm15c3FsLmNvbSkgPGJ1aWxkQG15c3FsLmNv
bT6IXQQTEQIAHQUCPj6jDAUJCWYBgAULBwoDBAMVAwIDFgIBAheAAAoJEIxxjTtQ
cuH1cY4AnilUwTXn8MatQOiG0a/bPxrvK/gCAJ4oinSNZRYTnblChwFaazt7PF3q
zIhMBBMRAgAMBQI+PqPRBYMJZgC7AAoJEElQ4SqycpHyJOEAn1mxHijft00bKXvu
cSo/pECUmppiAJ41M9MRVj5VcdH/KN/KjRtW6tHFPYhMBBMRAgAMBQI+QoIDBYMJ
YiKJAAoJELb1zU3GuiQ/lpEAoIhpp6BozKI8p6eaabzF5MlJH58pAKCu/ROofK8J
Eg2aLos+5zEYrB/LsrkCDQQ+PqMdEAgA7+GJfxbMdY4wslPnjH9rF4N2qfWsEN/l
xaZoJYc3a6M02WCnHl6ahT2/tBK2w1QI4YFteR47gCvtgb6O1JHffOo2HfLmRDRi
Rjd1DTCHqeyX7CHhcghj/dNRlW2Z0l5QFEcmV9U0Vhp3aFfWC4Ujfs3LU+hkAWzE
7zaD5cH9J7yv/6xuZVw411x0h4UqsTcWMu0iM1BzELqX1DY7LwoPEb/O9Rkbf4fm
Le11EzIaCa4PqARXQZc4dhSinMt6K3X4BrRsKTfozBu74F47D8Ilbf5vSYHbuE5p
/1oIDznkg/p8kW+3FxuWrycciqFTcNz215yyX39LXFnlLzKUb/F5GwADBQf+Lwqq
a8CGrRfsOAJxim63CHfty5mUc5rUSnTslGYEIOCR1BeQauyPZbPDsDD9MZ1ZaSaf
anFvwFG6Llx9xkU7tzq+vKLoWkm4u5xf3vn55VjnSd1aQ9eQnUcXiL4cnBGoTbOW
I39EcyzgslzBdC++MPjcQTcA7p6JUVsP6oAB3FQWg54tuUo0Ec8bsM8b3Ev42Lmu
QT5NdKHGwHsXTPtl0klk4bQk4OajHsiy1BMahpT27jWjJlMiJc+IWJ0mghkKHt92
6s/ymfdf5HkdQ1cyvsz5tryVI3Fx78XeSYfQvuuwqp2H139pXGEkg0n6KdUOetdZ
Whe70YGNPw1yjWJT1IhMBBgRAgAMBQI+PqMdBQkJZgGAAAoJEIxxjTtQcuH17p4A
n3r1QpVC9yhnW2cSAjq+kr72GX0eAJ4295kl6NxYEuFApmr1+0uUq/SlsQ==
=YJkx
-----END PGP PUBLIC KEY BLOCK-----

To import the build key into your personal public GPG keyring, use gpg --import. For example, if
you have saved the key in a file named mysql_pubkey.asc, the import command looks like this:

shell> gpg --import mysql_pubkey.asc

After you have downloaded and imported the public build key, download your desired MySQL package
and the corresponding signature, which also is available from the download page. The signature file has
the same name as the distribution file with an .asc extension. For example:

Distribution file mysql-standard-5.0.25-linux-i686.tar.gz

Signature file mysql-standard-5.0.25-linux-i686.tar.gz.asc

Make sure that both files are stored in the same directory and then run the following command to verify
the signature for the distribution file:

shell> gpg --verify package_name.asc

Example:

shell> gpg --verify mysql-standard-5.0.25-linux-i686.tar.gz.asc
gpg: Signature made Tue 12 Jul 2005 23:35:41 EST using DSA key ID 5072E1F5
gpg: Good signature from "MySQL Package signing key (www.mysql.com) <build@mysql.com>"

The Good signature message indicates that everything is all right. You can ignore any insecure
memory warning you might obtain.

See the GPG documentation for more information on how to work with public keys.

2.1.4.3. Signature Checking Using RPM

For RPM packages, there is no separate signature. RPM packages have a built-in GPG signature and
MD5 checksum. You can verify a package by running the following command:

shell> rpm --checksig package_name.rpm

Example:

shell> rpm --checksig MySQL-server-5.0.25-0.i386.rpm
MySQL-server-5.0.25-0.i386.rpm: md5 gpg OK

Installing and Upgrading MySQL

55

Note: If you are using RPM 4.1 and it complains about (GPG) NOT OK (MISSING KEYS:
GPG#5072e1f5), even though you have imported the MySQL public build key into your own GPG
keyring, you need to import the key into the RPM keyring first. RPM 4.1 no longer uses your personal
GPG keyring (or GPG itself). Rather, it maintains its own keyring because it is a system-wide applica-
tion and a user's GPG public keyring is a user-specific file. To import the MySQL public key into the
RPM keyring, first obtain the key as described in Section 2.1.4.2, “Signature Checking Using GnuPG”.
Then use rpm --import to import the key. For example, if you have saved the public key in a file
named mysql_pubkey.asc, import it using this command:

shell> rpm --import mysql_pubkey.asc

If you need to obtain the MySQL public key, see Section 2.1.4.2, “Signature Checking Using GnuPG”.

2.1.5. Installation Layouts
This section describes the default layout of the directories created by installing binary or source distribu-
tions provided by MySQL AB. A distribution provided by another vendor might use a layout different
from those shown here.

For MySQL 5.0 on Windows, the default installation directory is C:\Program
Files\MySQL\MySQL Server 5.0. (Some Windows users prefer to install in C:\mysql, the
directory that formerly was used as the default. However, the layout of the subdirectories remains the
same.) The installation directory has the following subdirectories:

Directory Contents of Directory

bin Client programs and the mysqld server

data Log files, databases

Docs Documentation

examples Example programs and scripts

include Include (header) files

lib Libraries

scripts Utility scripts

share Error message files

Installations created from MySQL AB's Linux RPM distributions result in files under the following sys-
tem directories:

Directory Contents of Directory

/usr/bin Client programs and scripts

/usr/sbin The mysqld server

/var/lib/mysql Log files, databases

/usr/share/doc/packages Documentation

/usr/include/mysql Include (header) files

/usr/lib/mysql Libraries

/usr/share/mysql Error message and character set files

/usr/share/sql-bench Benchmarks

Installing and Upgrading MySQL

56

On Unix, a tar file binary distribution is installed by unpacking it at the installation location you
choose (typically /usr/local/mysql) and creates the following directories in that location:

Directory Contents of Directory

bin Client programs and the mysqld server

data Log files, databases

docs Documentation, ChangeLog

include Include (header) files

lib Libraries

scripts mysql_install_db

share/mysql Error message files

sql-bench Benchmarks

A source distribution is installed after you configure and compile it. By default, the installation step in-
stalls files under /usr/local, in the following subdirectories:

Directory Contents of Directory

bin Client programs and scripts

include/mysql Include (header) files

info Documentation in Info format

lib/mysql Libraries

libexec The mysqld server

share/mysql Error message files

sql-bench Benchmarks and crash-me test

var Databases and log files

Within its installation directory, the layout of a source installation differs from that of a binary installa-
tion in the following ways:

• The mysqld server is installed in the libexec directory rather than in the bin directory.

• The data directory is var rather than data.

• mysql_install_db is installed in the bin directory rather than in the scripts directory.

• The header file and library directories are include/mysql and lib/mysql rather than in-
clude and lib.

You can create your own binary installation from a compiled source distribution by executing the
scripts/make_binary_distribution script from the top directory of the source distribution.

2.2. Standard MySQL Installation Using a Binary Dis-
tribution

The next several sections cover the installation of MySQL on platforms where we offer packages using
the native packaging format of the respective platform. (This is also known as performing a “binary in-

Installing and Upgrading MySQL

57

stall.”) However, binary distributions of MySQL are available for many other platforms as well. See
Section 2.8, “Installing MySQL on Other Unix-Like Systems”, for generic installation instructions for
these packages that apply to all platforms.

See Section 2.1, “General Installation Issues”, for more information on what other binary distributions
are available and how to obtain them.

2.3. Installing MySQL on Windows
A native Windows distribution of MySQL has been available from MySQL AB since version 3.21 and
represents a sizable percentage of the daily downloads of MySQL. This section describes the process for
installing MySQL on Windows.

Note: If you are upgrading MySQL from an existing installation older than MySQL 4.1.5, you must first
perform the the procedure described in Section 2.3.14, “Upgrading MySQL on Windows”.

To run MySQL on Windows, you need the following:

• A 32-bit Windows operating system such as 9x, Me, NT, 2000, XP, or Windows Server 2003.

A Windows NT-based operating system (NT, 2000, XP, 2003) permits you to run the MySQL server
as a service. The use of a Windows NT-based operating system is strongly recommended. See Sec-
tion 2.3.11, “Starting MySQL as a Windows Service”.

Generally, you should install MySQL on Windows using an account that has administrator rights.
Otherwise, you may encounter problems with certain operations such as editing the PATH environ-
ment variable or accessing the Service Control Manager.

• TCP/IP protocol support.

• Enough space on the hard drive to unpack, install, and create the databases in accordance with your
requirements (generally a minimum of 200 megabytes is recommended.)

There may also be other requirements, depending on how you plan to use MySQL:

• If you plan to connect to the MySQL server via ODBC, you need a Connector/ODBC driver. See
Chapter 23, Connectors.

• If you need tables with a size larger than 4GB, install MySQL on an NTFS or newer filesystem.
Don't forget to use MAX_ROWS and AVG_ROW_LENGTH when you create tables. See Section 13.1.5,
“CREATE TABLE Syntax”.

MySQL for Windows is available in several distribution formats:

• Binary distributions are available that contain a setup program that installs everything you need so
that you can start the server immediately. Another binary distribution format contains an archive that
you simply unpack in the installation location and then configure yourself. For details, see Sec-
tion 2.3.1, “Choosing An Installation Package”.

• The source distribution contains all the code and support files for building the executables using the
Visual Studio compiler system.

Generally speaking, you should use a binary distribution that includes an installer. It is simpler to use

Installing and Upgrading MySQL

58

than the others, and you need no additional tools to get MySQL up and running. The installer for the
Windows version of MySQL, combined with a GUI Configuration Wizard, automatically installs
MySQL, creates an option file, starts the server, and secures the default user accounts.

The following section describes how to install MySQL on Windows using a binary distribution. To use
an installation package that does not include an installer, follow the procedure described in Sec-
tion 2.3.5, “Installing MySQL from a Noinstall Zip Archive”. To install using a source distribution, see
Section 2.9.6, “Installing MySQL from Source on Windows”.

MySQL distributions for Windows can be downloaded from http://dev.mysql.com/downloads/. See Sec-
tion 2.1.3, “How to Get MySQL”.

2.3.1. Choosing An Installation Package
For MySQL 5.0, there are three installation packages to choose from when installing MySQL on Win-
dows:

• The Essentials Package: This package has a filename similar to mysql-essen-
tial-5.0.25-win32.msi and contains the minimum set of files needed to install MySQL on
Windows, including the Configuration Wizard. This package does not include optional components
such as the embedded server and benchmark suite.

• The Complete Package: This package has a filename similar to mysql-5.0.25-win32.zip
and contains all files needed for a complete Windows installation, including the Configuration Wiz-
ard. This package includes optional components such as the embedded server and benchmark suite.

• The Noinstall Archive: This package has a filename similar to mysql-noin-
stall-5.0.25-win32.zip and contains all the files found in the Complete install package,
with the exception of the Configuration Wizard. This package does not include an automated in-
staller, and must be manually installed and configured.

The Essentials package is recommended for most users. It is provided as an .msi file for use with the
Windows Installer. The Complete and Noinstall distributions are packaged as Zip archives. To use them,
you must have a tool that can unpack .zip files.

Your choice of install package affects the installation process you must follow. If you choose to install
either the Essentials or Complete install packages, see Section 2.3.2, “Installing MySQL with the Auto-
mated Installer”. If you choose to install MySQL from the Noinstall archive, see Section 2.3.5,
“Installing MySQL from a Noinstall Zip Archive”.

2.3.2. Installing MySQL with the Automated Installer
New MySQL users can use the MySQL Installation Wizard and MySQL Configuration Wizard to install
MySQL on Windows. These are designed to install and configure MySQL in such a way that new users
can immediately get started using MySQL.

The MySQL Installation Wizard and MySQL Configuration Wizard are available in the Essentials and
Complete install packages. They are recommended for most standard MySQL installations. Exceptions
include users who need to install multiple instances of MySQL on a single server host and advanced
users who want complete control of server configuration.

2.3.3. Using the MySQL Installation Wizard

2.3.3.1. Introduction to the Installation Wizard

Installing and Upgrading MySQL

59

http://dev.mysql.com/downloads/

MySQL Installation Wizard is an installer for the MySQL server that uses the latest installer technolo-
gies for Microsoft Windows. The MySQL Installation Wizard, in combination with the MySQL Config-
uration Wizard, allows a user to install and configure a MySQL server that is ready for use immediately
after installation.

The MySQL Installation Wizard is the standard installer for all MySQL server distributions, version
4.1.5 and higher. Users of previous versions of MySQL need to shut down and remove their existing
MySQL installations manually before installing MySQL with the MySQL Installation Wizard. See Sec-
tion 2.3.3.7, “Upgrading MySQL with the Installation Wizard”, for more information on upgrading from
a previous version.

Microsoft has included an improved version of their Microsoft Windows Installer (MSI) in the recent
versions of Windows. MSI has become the de-facto standard for application installations on Windows
2000, Windows XP, and Windows Server 2003. The MySQL Installation Wizard makes use of this tech-
nology to provide a smoother and more flexible installation process.

The Microsoft Windows Installer Engine was updated with the release of Windows XP; those using a
previous version of Windows can reference this Microsoft Knowledge Base article
[http://support.microsoft.com/default.aspx?scid=kb;EN-US;292539] for information on upgrading to the
latest version of the Windows Installer Engine.

In addition, Microsoft has introduced the WiX (Windows Installer XML) toolkit recently. This is the
first highly acknowledged Open Source project from Microsoft. We have switched to WiX because it is
an Open Source project and it allows us to handle the complete Windows installation process in a flex-
ible manner using scripts.

Improving the MySQL Installation Wizard depends on the support and feedback of users like you. If
you find that the MySQL Installation Wizard is lacking some feature important to you, or if you discov-
er a bug, please report it in our bugs database using the instructions given in Section 1.8, “How to Re-
port Bugs or Problems”.

2.3.3.2. Downloading and Starting the MySQL Installation Wizard

The MySQL installation packages can be downloaded from http://dev.mysql.com/downloads/. If the
package you download is contained within a Zip archive, you need to extract the archive first.

The process for starting the wizard depends on the contents of the installation package you download. If
there is a setup.exe file present, double-click it to start the installation process. If there is an .msi
file present, double-click it to start the installation process.

2.3.3.3. Choosing an Install Type

There are three installation types available: Typical, Complete, and Custom.

The Typical installation type installs the MySQL server, the mysql command-line client, and the com-
mand-line utilities. The command-line clients and utilities include mysqldump, myisamchk, and sev-
eral other tools to help you manage the MySQL server.

The Complete installation type installs all components included in the installation package. The full in-
stallation package includes components such as the embedded server library, the benchmark suite, sup-
port scripts, and documentation.

The Custom installation type gives you complete control over which packages you wish to install and
the installation path that is used. See Section 2.3.3.4, “The Custom Install Dialog”, for more information
on performing a custom install.

If you choose the Typical or Complete installation types and click the Next button, you advance to the
confirmation screen to verify your choices and begin the installation. If you choose the Custom installa-

Installing and Upgrading MySQL

60

http://support.microsoft.com/default.aspx?scid=kb;EN-US;292539
http://dev.mysql.com/downloads/

tion type and click the Next button, you advance to the custom installation dialog, described in Sec-
tion 2.3.3.4, “The Custom Install Dialog”.

2.3.3.4. The Custom Install Dialog

If you wish to change the installation path or the specific components that are installed by the MySQL
Installation Wizard, choose the Custom installation type.

A tree view on the left side of the custom install dialog lists all available components. Components that
are not installed have a red X icon; components that are installed have a gray icon. To change whether a
component is installed, click on that component's icon and choose a new option from the drop-down list
that appears.

You can change the default installation path by clicking the Change... button to the right of the dis-
played installation path.

After choosing your installation components and installation path, click the Next button to advance to
the confirmation dialog.

2.3.3.5. The Confirmation Dialog

Once you choose an installation type and optionally choose your installation components, you advance
to the confirmation dialog. Your installation type and installation path are displayed for you to review.

To install MySQL if you are satisfied with your settings, click the Install button. To change your
settings, click the Back button. To exit the MySQL Installation Wizard without installing MySQL, click
the Cancel button.

After installation is complete, you have the option of registering with the MySQL web site. Registration
gives you access to post in the MySQL forums at forums.mysql.com [http://forums.mysql.com], along
with the ability to report bugs at bugs.mysql.com [http://bugs.mysql.com] and to subscribe to our news-
letter. The final screen of the installer provides a summary of the installation and gives you the option to
launch the MySQL Configuration Wizard, which you can use to create a configuration file, install the
MySQL service, and configure security settings.

2.3.3.6. Changes Made by MySQL Installation Wizard

Once you click the Install button, the MySQL Installation Wizard begins the installation process and
makes certain changes to your system which are described in the sections that follow.

Changes to the Registry

The MySQL Installation Wizard creates one Windows registry key in a typical install situation, located
in HKEY_LOCAL_MACHINE\SOFTWARE\MySQL AB.

The MySQL Installation Wizard creates a key named after the major version of the server that is being
installed, such as MySQL Server 5.0. It contains two string values, Location and Version. The
Location string contains the path to the installation directory. In a default installation it contains
C:\Program Files\MySQL\MySQL Server 5.0\. The Version string contains the release
number. For example, for an installation of MySQL Server 5.0.25, the key contains a value of 5.0.25.

These registry keys are used to help external tools identify the installed location of the MySQL server,
preventing a complete scan of the hard-disk to determine the installation path of the MySQL server. The
registry keys are not required to run the server, and if you install MySQL using the noinstall Zip
archive, the registry keys are not created.

Changes to the Start Menu

The MySQL Installation Wizard creates a new entry in the Windows Start menu under a common

Installing and Upgrading MySQL

61

http://forums.mysql.com
http://bugs.mysql.com

MySQL menu heading named after the major version of MySQL that you have installed. For example, if
you install MySQL 5.0, the MySQL Installation Wizard creates a MySQL Server 5.0 section in the Start
menu.

The following entries are created within the new Start menu section:

• MySQL Command Line Client: This is a shortcut to the mysql command-line client and is con-
figured to connect as the root user. The shortcut prompts for a root user password when you con-
nect.

• MySQL Server Instance Config Wizard: This is a shortcut to the MySQL Configuration Wizard. Use
this shortcut to configure a newly installed server, or to reconfigure an existing server.

• MySQL Documentation: This is a link to the MySQL server documentation that is stored locally in
the MySQL server installation directory. This option is not available when the MySQL server is in-
stalled using the Essentials installation package.

Changes to the File System

The MySQL Installation Wizard by default installs the MySQL 5.0 server to C:\Program
Files\MySQL\MySQL Server 5.0, where Program Files is the default location for applica-
tions in your system, and 5.0 is the major version of your MySQL server. This is the recommended
location for the MySQL server, replacing the former default location C:\mysql.

By default, all MySQL applications are stored in a common directory at C:\Program
Files\MySQL, where Program Files is the default location for applications in your Windows in-
stallation. A typical MySQL installation on a developer machine might look like this:

C:\Program Files\MySQL\MySQL Server 5.0
C:\Program Files\MySQL\MySQL Administrator 1.0
C:\Program Files\MySQL\MySQL Query Browser 1.0

This approach makes it easier to manage and maintain all MySQL applications installed on a particular
system.

2.3.3.7. Upgrading MySQL with the Installation Wizard

The MySQL Installation Wizard can perform server upgrades automatically using the upgrade capabilit-
ies of MSI. That means you do not need to remove a previous installation manually before installing a
new release. The installer automatically shuts down and removes the previous MySQL service before in-
stalling the new version.

Automatic upgrades are available only when upgrading between installations that have the same major
and minor version numbers. For example, you can upgrade automatically from MySQL 4.1.5 to MySQL
4.1.6, but not from MySQL 4.1 to MySQL 5.0.

See Section 2.3.14, “Upgrading MySQL on Windows”.

2.3.4. Using the Configuration Wizard

2.3.4.1. Introduction to the Configuration Wizard

The MySQL Configuration Wizard helps automate the process of configuring your server under Win-
dows. The MySQL Configuration Wizard creates a custom my.ini file by asking you a series of ques-
tions and then applying your responses to a template to generate a my.ini file that is tuned to your in-
stallation.

Installing and Upgrading MySQL

62

The MySQL Configuration Wizard is included with the MySQL 5.0 server, and is currently available for
Windows users only.

The MySQL Configuration Wizard is to a large extent the result of feedback that MySQL AB has re-
ceived from many users over a period of several years. However, if you find that it lacks some feature
important to you, please report it in our bugs database using the instructions given in Section 1.8, “How
to Report Bugs or Problems”.

2.3.4.2. Starting the MySQL Configuration Wizard

The MySQL Configuration Wizard is typically launched from the MySQL Installation Wizard, as the
MySQL Installation Wizard exits. You can also launch the MySQL Configuration Wizard by clicking
the MySQL Server Instance Config Wizard entry in the MySQL section of the Windows Start menu.

Alternatively, you can navigate to the bin directory of your MySQL installation and launch the
MySQLInstanceConfig.exe file directly.

2.3.4.3. Choosing a Maintenance Option

If the MySQL Configuration Wizard detects an existing my.ini file, you have the option of either re-
configuring your existing server, or removing the server instance by deleting the my.ini file and stop-
ping and removing the MySQL service.

To reconfigure an existing server, choose the Re-configure Instance option and click the Next button.
Your existing my.ini file is renamed to mytimestamp.ini.bak, where timestamp is the date
and time at which the existing my.ini file was created. To remove the existing server instance, choose
the Remove Instance option and click the Next button.

If you choose the Remove Instance option, you advance to a confirmation window. Click the Execute
button. The MySQL Configuration Wizard stops and removes the MySQL service, and then deletes the
my.ini file. The server installation and its data folder are not removed.

If you choose the Re-configure Instance option, you advance to the Configuration Type dialog where
you can choose the type of installation that you wish to configure.

2.3.4.4. Choosing a Configuration Type

When you start the MySQL Configuration Wizard for a new MySQL installation, or choose the Re-
configure Instance option for an existing installation, you advance to the Configuration Type dialog.

There are two configuration types available: Detailed Configuration and Standard Configuration. The
Standard Configuration option is intended for new users who want to get started with MySQL quickly
without having to make many decisions about server configuration. The Detailed Configuration option is
intended for advanced users who want more fine-grained control over server configuration.

If you are new to MySQL and need a server configured as a single-user developer machine, the Standard
Configuration should suit your needs. Choosing the Standard Configuration option causes the MySQL
Configuration Wizard to set all configuration options automatically with the exception of Service Op-
tions and Security Options.

The Standard Configuration sets options that may be incompatible with systems where there are existing
MySQL installations. If you have an existing MySQL installation on your system in addition to the in-
stallation you wish to configure, the Detailed Configuration option is recommended.

To complete the Standard Configuration, please refer to the sections on Service Options and Security
Options in Section 2.3.4.11, “The Service Options Dialog”, and Section 2.3.4.12, “The Security Options
Dialog”, respectively.

Installing and Upgrading MySQL

63

2.3.4.5. The Server Type Dialog

There are three different server types available to choose from. The server type that you choose affects
the decisions that the MySQL Configuration Wizard makes with regard to memory, disk, and processor
usage.

• Developer Machine: Choose this option for a typical desktop workstation where MySQL is intended
only for personal use. It is assumed that many other desktop applications are running. The MySQL
server is configured to use minimal system resources.

• Server Machine: Choose this option for a server machine where the MySQL server is running along-
side other server applications such as FTP, email, and Web servers. The MySQL server is configured
to use a moderate portion of the system resources.

• Dedicated MySQL Server Machine: Choose this option for a server machine that is intended to run
only the MySQL server. It is assumed that no other applications are running. The MySQL server is
configured to use all available system resources.

2.3.4.6. The Database Usage Dialog

The Database Usage dialog allows you to indicate the storage engines that you expect to use when creat-
ing MySQL tables. The option you choose determines whether the InnoDB storage engine is available
and what percentage of the server resources are available to InnoDB.

• Multifunctional Database: This option enables both the InnoDB and MyISAM storage engines and
divides resources evenly between the two. This option is recommended for users who use both stor-
age engines on a regular basis.

• Transactional Database Only: This option enables both the InnoDB and MyISAM storage engines,
but dedicates most server resources to the InnoDB storage engine. This option is recommended for
users who use InnoDB almost exclusively and make only minimal use of MyISAM.

• Non-Transactional Database Only: This option disables the InnoDB storage engine completely and
dedicates all server resources to the MyISAM storage engine. This option is recommended for users
who do not use InnoDB.

2.3.4.7. The InnoDB Tablespace Dialog

Some users may want to locate the InnoDB tablespace files in a different location than the MySQL
server data directory. Placing the tablespace files in a separate location can be desirable if your system
has a higher capacity or higher performance storage device available, such as a RAID storage system.

To change the default location for the InnoDB tablespace files, choose a new drive from the drop-down
list of drive letters and choose a new path from the drop-down list of paths. To create a custom path,
click the ... button.

If you are modifying the configuration of an existing server, you must click the Modify button before
you change the path. In this situation you must move the existing tablespace files to the new location
manually before starting the server.

2.3.4.8. The Concurrent Connections Dialog

To prevent the server from running out of resources, it is important to limit the number of concurrent

Installing and Upgrading MySQL

64

connections to the MySQL server that can be established. The Concurrent Connections dialog allows
you to choose the expected usage of your server, and sets the limit for concurrent connections accord-
ingly. It is also possible to set the concurrent connection limit manually.

• Decision Support (DSS)/OLAP: Choose this option if your server does not require a large number of
concurrent connections. The maximum number of connections is set at 100, with an average of 20
concurrent connections assumed.

• Online Transaction Processing (OLTP): Choose this option if your server requires a large number of
concurrent connections. The maximum number of connections is set at 500.

• Manual Setting: Choose this option to set the maximum number of concurrent connections to the
server manually. Choose the number of concurrent connections from the drop-down box provided,
or enter the maximum number of connections into the drop-down box if the number you desire is not
listed.

2.3.4.9. The Networking and Strict Mode Options Dialog

Use the Networking Options dialog to enable or disable TCP/IP networking and to configure the port
number that is used to connect to the MySQL server.

TCP/IP networking is enabled by default. To disable TCP/IP networking, uncheck the box next to the
Enable TCP/IP Networking option.

Port 3306 is used by default. To change the port used to access MySQL, choose a new port number from
the drop-down box or type a new port number directly into the drop-down box. If the port number you
choose is in use, you are prompted to confirm your choice of port number.

Set the Server SQL Mode to either enable or disable strict mode. Enabling strict mode (default) makes
MySQL behave more like other database management systems. If you run applications that rely on
MySQL's old “forgiving” behavior, make sure to either adapt those applications or to disable strict
mode. For more information about strict mode, see Section 5.2.6, “SQL Modes”.

2.3.4.10. The Character Set Dialog

The MySQL server supports multiple character sets and it is possible to set a default server character set
that is applied to all tables, columns, and databases unless overridden. Use the Character Set dialog to
change the default character set of the MySQL server.

• Standard Character Set: Choose this option if you want to use latin1 as the default server charac-
ter set. latin1 is used for English and many Western European languages.

• Best Support For Multilingualism: Choose this option if you want to use utf8 as the default server
character set. This is a Unicode character set that can store characters from many different lan-
guages.

• Manual Selected Default Character Set / Collation: Choose this option if you want to pick the serv-
er's default character set manually. Choose the desired character set from the provided drop-down
list.

2.3.4.11. The Service Options Dialog

On Windows NT-based platforms, the MySQL server can be installed as a Windows service. When in-
stalled this way, the MySQL server can be started automatically during system startup, and even restar-

Installing and Upgrading MySQL

65

ted automatically by Windows in the event of a service failure.

The MySQL Configuration Wizard installs the MySQL server as a service by default, using the service
name MySQL. If you do not wish to install the service, uncheck the box next to the Install As Windows
Service option. You can change the service name by picking a new service name from the drop-down
box provided or by entering a new service name into the drop-down box.

To install the MySQL server as a service but not have it started automatically at startup, uncheck the box
next to the Launch the MySQL Server Automatically option.

2.3.4.12. The Security Options Dialog

It is strongly recommended that you set a root password for your MySQL server, and the MySQL
Configuration Wizard requires by default that you do so. If you do not wish to set a root password, un-
check the box next to the Modify Security Settings option.

To set the root password, enter the desired password into both the New root password and Confirm
boxes. If you are reconfiguring an existing server, you need to enter the existing root password into the
Current root password box.

To prevent root logins from across the network, check the box next to the Root may only connect from
localhost option. This increases the security of your root account.

To create an anonymous user account, check the box next to the Create An Anonymous Account option.
Creating an anonymous account can decrease server security and cause login and permission difficulties.
For this reason, it is not recommended.

2.3.4.13. The Confirmation Dialog

The final dialog in the MySQL Configuration Wizard is the Confirmation Dialog. To start the configura-
tion process, click the Execute button. To return to a previous dialog, click the Back button. To exit
the MySQL Configuration Wizard without configuring the server, click the Cancel button.

After you click the Execute button, the MySQL Configuration Wizard performs a series of tasks and
displays the progress onscreen as the tasks are performed.

The MySQL Configuration Wizard first determines configuration file options based on your choices us-
ing a template prepared by MySQL AB developers and engineers. This template is named my-
template.ini and is located in your server installation directory.

The MySQL Configuration Wizard then writes these options to a my.ini file. The final location of the
my.ini file is displayed next to the Write configuration file task.

If you chose to create a service for the MySQL server, the MySQL Configuration Wizard creates and
starts the service. If you are reconfiguring an existing service, the MySQL Configuration Wizard restarts
the service to apply your configuration changes.

If you chose to set a root password, the MySQL Configuration Wizard connects to the server, sets
your new root password and applies any other security settings you may have selected.

After the MySQL Configuration Wizard has completed its tasks, it displays a summary. Click the Fin-
ish button to exit the MySQL Configuration Wizard.

2.3.4.14. The Location of the my.ini File

The MySQL Configuration Wizard places the my.ini file in the installation directory for the MySQL
server. This helps associate configuration files with particular server instances.

Installing and Upgrading MySQL

66

To ensure that the MySQL server knows where to look for the my.ini file, an argument similar to this
is passed to the MySQL server as part of the service installation:

--defaults-file="C:\Program Files\MySQL\MySQL Server 5.0\my.ini"

Here, C:\Program Files\MySQL\MySQL Server 5.0 is replaced with the installation path to
the MySQL Server. The --defaults-file option instructs the MySQL server to read the specified
file for configuration options when it starts.

2.3.4.15. Editing the my.ini File

To modify the my.ini file, open it with a text editor and make any necessary changes. You can also
modify the server configuration with the MySQL Administrator
[http://www.mysql.com/products/administrator/] utility.

MySQL clients and utilities such as the mysql and mysqldump command-line clients are not able to
locate the my.ini file located in the server installation directory. To configure the client and utility ap-
plications, create a new my.ini file in the C:\WINDOWS or C:\WINNT directory (whichever is ap-
plicable to your Windows version).

2.3.5. Installing MySQL from a Noinstall Zip Archive
Users who are installing from the Noinstall package can use the instructions in this section to manually
install MySQL. The process for installing MySQL from a Zip archive is as follows:

1. Extract the archive to the desired install directory

2. Create an option file

3. Choose a MySQL server type

4. Start the MySQL server

5. Secure the default user accounts

This process is described in the sections that follow.

2.3.6. Extracting the Install Archive
To install MySQL manually, do the following:

1. If you are upgrading from a previous version please refer to Section 2.3.14, “Upgrading MySQL on
Windows”, before beginning the upgrade process.

2. If you are using a Windows NT-based operating system such as Windows NT, Windows 2000,
Windows XP, or Windows Server 2003, make sure that you are logged in as a user with adminis-
trator privileges.

3. Choose an installation location. Traditionally, the MySQL server is installed in C:\mysql. The
MySQL Installation Wizard installs MySQL under C:\Program Files\MySQL. If you do not
install MySQL at C:\mysql, you must specify the path to the install directory during startup or in
an option file. See Section 2.3.7, “Creating an Option File”.

4. Extract the install archive to the chosen installation location using your preferred Zip archive tool.

Installing and Upgrading MySQL

67

http://www.mysql.com/products/administrator/

Some tools may extract the archive to a folder within your chosen installation location. If this oc-
curs, you can move the contents of the subfolder into the chosen installation location.

2.3.7. Creating an Option File
If you need to specify startup options when you run the server, you can indicate them on the command
line or place them in an option file. For options that are used every time the server starts, you may find it
most convenient to use an option file to specify your MySQL configuration. This is particularly true un-
der the following circumstances:

• The installation or data directory locations are different from the default locations (C:\Program
Files\MySQL\MySQL Server 5.0 and C:\Program Files\MySQL\MySQL Server
5.0\data).

• You need to tune the server settings.

When the MySQL server starts on Windows, it looks for options in two files: the my.ini file in the
Windows directory, and the C:\my.cnf file. The Windows directory typically is named something
like C:\WINDOWS or C:\WINNT. You can determine its exact location from the value of the WINDIR
environment variable using the following command:

C:\> echo %WINDIR%

MySQL looks for options first in the my.ini file, and then in the my.cnf file. However, to avoid con-
fusion, it's best if you use only one file. If your PC uses a boot loader where C: is not the boot drive,
your only option is to use the my.ini file. Whichever option file you use, it must be a plain text file.

You can also make use of the example option files included with your MySQL distribution; see Sec-
tion 4.3.2.1, “Preconfigured Option Files”.

An option file can be created and modified with any text editor, such as Notepad. For example, if
MySQL is installed in E:\mysql and the data directory is in E:\mydata\data, you can create an
option file containing a [mysqld] section to specify values for the basedir and datadir paramet-
ers:

[mysqld]
set basedir to your installation path
basedir=E:/mysql
set datadir to the location of your data directory
datadir=E:/mydata/data

Note that Windows pathnames are specified in option files using (forward) slashes rather than back-
slashes. If you do use backslashes, you must double them:

[mysqld]
set basedir to your installation path
basedir=E:\\mysql
set datadir to the location of your data directory
datadir=E:\\mydata\\data

On Windows, the MySQL installer places the data directory directly under the directory where you in-
stall MySQL. If you would like to use a data directory in a different location, you should copy the entire
contents of the data directory to the new location. For example, if MySQL is installed in
C:\Program Files\MySQL\MySQL Server 5.0, the data directory is by default in
C:\Program Files\MySQL\MySQL Server 5.0\data. If you want to use E:\mydata as
the data directory instead, you must do two things:

Installing and Upgrading MySQL

68

1. Move the entire data directory and all of its contents from C:\Program
Files\MySQL\MySQL Server 5.0\data to E:\mydata.

2. Use a --datadir option to specify the new data directory location each time you start the server.

2.3.8. Selecting a MySQL Server type
The following table shows the available servers for Windows in MySQL 5.0:

Binary Description

mysqld-debug Compiled with full debugging and automatic memory allocation checking, as well
as InnoDB and BDB support.

mysqld Optimized binary with InnoDB support.

mysqld-nt Optimized binary for Windows NT, 2000, and XP with support for named pipes.

mysqld-max Optimized binary with InnoDB and BDB support.

mysqld-max-nt Like mysqld-max, but compiled with support for named pipes.

All of the preceding binaries are optimized for modern Intel processors, but should work on any Intel
i386-class or higher processor.

All Windows MySQL 5.0 servers have support for symbolic linking of database directories.

MySQL supports TCP/IP on all Windows platforms. The mysqld-nt and mysql-max-nt servers
support named pipes on Windows NT, 2000, XP, and 2003. However, the default is to use TCP/IP re-
gardless of platform. (Named pipes are slower than TCP/IP in many Windows configurations.)

Use of named pipes is subject to these conditions:

• Named pipes are enabled only if you start the server with the --enable-named-pipe option. It
is necessary to use this option explicitly because some users have experienced problems with shut-
ting down the MySQL server when named pipes were used.

• Named-pipe connections are allowed only by the mysqld-nt or mysqld-max-nt servers, and
only if the server is run on a version of Windows that supports named pipes (NT, 2000, XP, 2003).

• These servers can be run on Windows 98 or Me, but only if TCP/IP is installed; named-pipe connec-
tions cannot be used.

• These servers cannot be run on Windows 95.

Note: Most of the examples in this manual use mysqld as the server name. If you choose to use a dif-
ferent server, such as mysqld-nt, make the appropriate substitutions in the commands that are shown
in the examples.

2.3.9. Starting the Server for the First Time
This section gives a general overview of starting the MySQL server. The following sections provide
more specific information for starting the MySQL server from the command line or as a Windows ser-
vice.

The information here applies primarily if you installed MySQL using the Noinstall version, or if
you wish to configure and test MySQL manually rather than with the GUI tools.

Installing and Upgrading MySQL

69

The examples in these sections assume that MySQL is installed under the default location of
C:\Program Files\MySQL\MySQL Server 5.0. Adjust the pathnames shown in the examples
if you have MySQL installed in a different location.

On NT-based systems such as Windows NT, 2000, XP, or 2003, clients have two options. They can use
TCP/IP, or they can use a named pipe if the server supports named-pipe connections. For MySQL to
work with TCP/IP on Windows NT 4, you must install service pack 3 (or newer).

On Windows 95, 98, or Me, MySQL clients always connect to the server using TCP/IP. (This allows
any machine on your network to connect to your MySQL server.) Because of this, you must make sure
that TCP/IP support is installed on your machine before starting MySQL. You can find TCP/IP on your
Windows CD-ROM.

Note that if you are using an old Windows 95 release (for example, OSR2), it is likely that you have an
old Winsock package; MySQL requires Winsock 2. You can get the newest Winsock from ht-
tp://www.microsoft.com/. Windows 98 has the new Winsock 2 library, so it is unnecessary to update the
library.

MySQL for Windows also supports shared-memory connections if the server is started with the -
-shared-memory option. Clients can connect through shared memory by using the -
-protocol=memory option.

For information about which server binary to run, see Section 2.3.8, “Selecting a MySQL Server type”.

Testing is best done from a command prompt in a console window (or “DOS window”). In this way you
can have the server display status messages in the window where they are easy to see. If something is
wrong with your configuration, these messages make it easier for you to identify and fix any problems.

To start the server, enter this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqld" --console

For a server that includes InnoDB support, you should see the messages similar to those following as it
starts (the pathnames and sizes may differ):

InnoDB: The first specified datafile c:\ibdata\ibdata1 did not exist:
InnoDB: a new database to be created!
InnoDB: Setting file c:\ibdata\ibdata1 size to 209715200
InnoDB: Database physically writes the file full: wait...
InnoDB: Log file c:\iblogs\ib_logfile0 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile0 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile1 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile1 size to 31457280
InnoDB: Log file c:\iblogs\ib_logfile2 did not exist: new to be created
InnoDB: Setting log file c:\iblogs\ib_logfile2 size to 31457280
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: creating foreign key constraint system tables
InnoDB: foreign key constraint system tables created
011024 10:58:25 InnoDB: Started

When the server finishes its startup sequence, you should see something like this, which indicates that
the server is ready to service client connections:

mysqld: ready for connections
Version: '5.0.25' socket: '' port: 3306

The server continues to write to the console any further diagnostic output it produces. You can open a
new console window in which to run client programs.

If you omit the --console option, the server writes diagnostic output to the error log in the data dir-
ectory (C:\Program Files\MySQL\MySQL Server 5.0\data by default). The error log is

Installing and Upgrading MySQL

70

http://www.microsoft.com/
http://www.microsoft.com/

the file with the .err extension.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords. After starting
the server, you should set up passwords for them using the instructions in Section 2.10,
“Post-Installation Setup and Testing”.

2.3.10. Starting MySQL from the Windows Command Line
The MySQL server can be started manually from the command line. This can be done on any version of
Windows.

To start the mysqld server from the command line, you should start a console window (or “DOS win-
dow”) and enter this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqld"

The path to mysqld may vary depending on the install location of MySQL on your system.

On non-NT versions of Windows, this command starts mysqld in the background. That is, after the
server starts, you should see another command prompt. If you start the server this way on Windows NT,
2000, XP, or 2003, the server runs in the foreground and no command prompt appears until the server
exits. Because of this, you should open another console window to run client programs while the server
is running.

You can stop the MySQL server by executing this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqladmin" -u root shutdown

Note: If the MySQL root user account has a password, you need to invoke mysqladmin with the -p
option and supply the password when prompted.

This command invokes the MySQL administrative utility mysqladmin to connect to the server and tell
it to shut down. The command connects as the MySQL root user, which is the default administrative
account in the MySQL grant system. Note that users in the MySQL grant system are wholly independent
from any login users under Windows.

If mysqld doesn't start, check the error log to see whether the server wrote any messages there to indic-
ate the cause of the problem. The error log is located in the C:\Program Files\MySQL\MySQL
Server 5.0\data directory. It is the file with a suffix of .err. You can also try to start the server
as mysqld --console; in this case, you may get some useful information on the screen that may
help solve the problem.

The last option is to start mysqld with the --standalone and --debug options. In this case,
mysqld writes a log file C:\mysqld.trace that should contain the reason why mysqld doesn't
start. See Section E.1.2, “Creating Trace Files”.

Use mysqld --verbose --help to display all the options that mysqld understands.

2.3.11. Starting MySQL as a Windows Service
On the NT family (Windows NT, 2000, XP, 2003), the recommended way to run MySQL is to install it
as a Windows service, whereby MySQL starts and stops automatically when Windows starts and stops.
A MySQL server installed as a service can also be controlled from the command line using NET com-
mands, or with the graphical Services utility.

The Services utility (the Windows Service Control Manager) can be found in the Windows
Control Panel (under Administrative Tools on Windows 2000, XP, and Server 2003). To avoid conflicts,
it is advisable to close the Services utility while performing server installation or removal operations

Installing and Upgrading MySQL

71

from the command line.

Before installing MySQL as a Windows service, you should first stop the current server if it is running
by using the following command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqladmin" -u root shutdown

Note: If the MySQL root user account has a password, you need to invoke mysqladmin with the -p
option and supply the password when prompted.

This command invokes the MySQL administrative utility mysqladmin to connect to the server and tell
it to shut down. The command connects as the MySQL root user, which is the default administrative
account in the MySQL grant system. Note that users in the MySQL grant system are wholly independent
from any login users under Windows.

Install the server as a service using this command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqld" --install

The service-installation command does not start the server. Instructions for that are given later in this
section.

To make it easier to invoke MySQL programs, you can add the pathname of the MySQL bin directory
to your Windows system PATH environment variable:

• On the Windows desktop, right-click on the My Computer icon, and select Properties

• Next select the Advanced tab from the System Properties menu that appears, and click the Envir-
onment Variables button.

• Under System Variables, select Path, and then click the Edit button. The Edit System Vari-
able dialogue should appear.

• Place your cursor at the end of the text appearing in the space marked Variable Value. (Use the
End key to ensure that your cursor is positioned at the very end of the text in this space.) Then enter
the complete pathname of your MySQL bin directory (for example, C:\Program
Files\MySQL\MySQL Server 5.0\bin), Note that there should be a semicolon separating
this path from any values present in this field. Dismiss this dialogue, and each dialogue in turn, by
clicking OK until all of the dialogues that were opened have been dismissed. You should now be able
to invoke any MySQL executable program by typing its name at the DOS prompt from any directory
on the system, without having to supply the path. This includes the servers, the mysql client, and all
MySQL command-line utilities such as mysqladmin and mysqldump.

You should not add the MySQL bin directory to your Windows PATH if you are running multiple
MySQL servers on the same machine.

Warning: You must exercise great care when editing your system PATH by hand; accidental deletion or
modification of any portion of the existing PATH value can leave you with a malfunctioning or even un-
usable system.

The following additional arguments can be used in MySQL 5.0 when installing the service:

• You can specify a service name immediately following the --install option. The default service
name is MySQL.

• If a service name is given, it can be followed by a single option. By convention, this should be -

Installing and Upgrading MySQL

72

-defaults-file=file_name to specify the name of an option file from which the server
should read options when it starts.

It is possible to use a single option other than --defaults-file, but this is discouraged. -
-defaults-file is more flexible because it enables you to specify multiple startup options for
the server by placing them in the named option file. Also, in MySQL 5.0, use of an option different
from --defaults-file is not supported until 5.0.3.

• As of MySQL 5.0.1, you can also specify a --local-service option following the service
name. This causes the server to run using the LocalService Windows account that has limited
system privileges. This account is available only for Windows XP or newer. If both -
-defaults-file and --local-service are given following the service name, they can be in
any order.

For a MySQL server that is installed as a Windows service, the following rules determine the service
name and option files that the server uses:

• If the service-installation command specifies no service name or the default service name (MySQL)
following the --install option, the server uses the a service name of MySQL and reads options
from the [mysqld] group in the standard option files.

• If the service-installation command specifies a service name other than MySQL following the -
-install option, the server uses that service name. It reads options from the group that has the
same name as the service, and reads options from the standard option files.

The server also reads options from the [mysqld] group from the standard option files. This allows
you to use the [mysqld] group for options that should be used by all MySQL services, and an op-
tion group with the same name as a service for use by the server installed with that service name.

• If the service-installation command specifies a --defaults-file option after the service name,
the server reads options only from the [mysqld] group of the named file and ignores the standard
option files.

As a more complex example, consider the following command:

C:\> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqld"
--install MySQL --defaults-file=C:\my-opts.cnf

Here, the default service name (MySQL) is given after the --install option. If no -
-defaults-file option had been given, this command would have the effect of causing the server
to read the [mysqld] group from the standard option files. However, because the -
-defaults-file option is present, the server reads options from the [mysqld] option group, and
only from the named file.

You can also specify options as Start parameters in the Windows Services utility before you start the
MySQL service.

Once a MySQL server has been installed as a service, Windows starts the service automatically whenev-
er Windows starts. The service also can be started immediately from the Services utility, or by using
a NET START MySQL command. The NET command is not case sensitive.

When run as a service, mysqld has no access to a console window, so no messages can be seen there.
If mysqld does not start, check the error log to see whether the server wrote any messages there to in-
dicate the cause of the problem. The error log is located in the MySQL data directory (for example,
C:\Program Files\MySQL\MySQL Server 5.0\data). It is the file with a suffix of .err.

Installing and Upgrading MySQL

73

When a MySQL server has been installed as a service, and the service is running, Windows stops the
service automatically when Windows shuts down. The server also can be stopped manually by using the
Services utility, the NET STOP MySQL command, or the mysqladmin shutdown command.

You also have the choice of installing the server as a manual service if you do not wish for the service to
be started automatically during the boot process. To do this, use the --install-manual option
rather than the --install option:

C:\> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqld" --install-manual

To remove a server that is installed as a service, first stop it if it is running by executing NET STOP
MySQL. Then use the --remove option to remove it:

C:\> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqld" --remove

If mysqld is not running as a service, you can start it from the command line. For instructions, see Sec-
tion 2.3.10, “Starting MySQL from the Windows Command Line”.

Please see Section 2.3.13, “Troubleshooting a MySQL Installation Under Windows”, if you encounter
difficulties during installation.

2.3.12. Testing The MySQL Installation
You can test whether the MySQL server is working by executing any of the following commands:

C:\> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqlshow"
C:\> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqlshow" -u root mysql
C:\> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqladmin" version status proc
C:\> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysql" test

If mysqld is slow to respond to TCP/IP connections from client programs, there is probably a problem
with your DNS. In this case, start mysqld with the --skip-name-resolve option and use only
localhost and IP numbers in the Host column of the MySQL grant tables.

You can force a MySQL client to use a named-pipe connection rather than TCP/IP by specifying the -
-pipe or --protocol=PIPE option, or by specifying . (period) as the host name. Use the -
-socket option to specify the name of the pipe if you do not want to use the default pipe name.

Note that if you have set a password for the root account, deleted the anonymous account, or ceated a
new user account, then you must use the appropriate -u and -p options with the commands shown
above in order to connect with the MySQL Server. See Section 5.8.4, “Connecting to the MySQL Serv-
er”.

For more information about mysqlshow, see Section 8.15, “mysqlshow — Display Database, Table,
and Column Information”.

2.3.13. Troubleshooting a MySQL Installation Under Windows
When installing and running MySQL for the first time, you may encounter certain errors that prevent the
MySQL server from starting. The purpose of this section is to help you diagnose and correct some of
these errors.

Your first resource when troubleshooting server issues is the error log. The MySQL server uses the error
log to record information relevant to the error that prevents the server from starting. The error log is loc-
ated in the data directory specified in your my.ini file. The default data directory location is
C:\Program Files\MySQL\MySQL Server 5.0\data. See Section 5.12.1, “The Error Log”.

Installing and Upgrading MySQL

74

Another source of information regarding possible errors is the console messages displayed when the
MySQL service is starting. Use the NET START MySQL command from the command line after in-
stalling mysqld as a service to see any error messages regarding the starting of the MySQL server as a
service. See Section 2.3.11, “Starting MySQL as a Windows Service”.

The following examples show other common error messages you may encounter when installing
MySQL and starting the server for the first time:

• If the MySQL server cannot find the mysql privileges database or other critical files, you may see
these messsages:

System error 1067 has occurred.
Fatal error: Can't open privilege tables: Table 'mysql.host' doesn't exist

These messages often occur when the MySQL base or data directories are installed in different loca-
tions than the default locations (C:\Program Files\MySQL\MySQL Server 5.0 and
C:\Program Files\MySQL\MySQL Server 5.0\data, respectively).

This situation may occur when MySQL is upgraded and installed to a new location, but the configur-
ation file is not updated to reflect the new location. In addition, there may be old and new configura-
tion files that conflict. Be sure to delete or rename any old configuration files when upgrading
MySQL.

If you have installed MySQL to a directory other than C:\Program Files\MySQL\MySQL
Server 5.0, you need to ensure that the MySQL server is aware of this through the use of a con-
figuration (my.ini) file. The my.ini file needs to be located in your Windows directory, typically
C:\WINDOWS or C:\WINNT. You can determine its exact location from the value of the WINDIR
environment variable by issuing the following command from the command prompt:

C:\> echo %WINDIR%

An option file can be created and modified with any text editor, such as Notepad. For example, if
MySQL is installed in E:\mysql and the data directory is D:\MySQLdata, you can create the
option file and set up a [mysqld] section to specify values for the basedir and datadir para-
meters:

[mysqld]
set basedir to your installation path
basedir=E:/mysql
set datadir to the location of your data directory
datadir=D:/MySQLdata

Note that Windows pathnames are specified in option files using (forward) slashes rather than back-
slashes. If you do use backslashes, you must double them:

[mysqld]
set basedir to your installation path
basedir=C:\\Program Files\\MySQL\\MySQL Server 5.0
set datadir to the location of your data directory
datadir=D:\\MySQLdata

If you change the datadir value in your MySQL configuration file, you must move the contents
of the existing MySQL data directory before restarting the MySQL server.

See Section 2.3.7, “Creating an Option File”.

• If you reinstall or upgrade MySQL without first stopping and removing the existing MySQL service
and install MySQL using the MySQL Configuration Wizard, you may see this error:

Installing and Upgrading MySQL

75

Error: Cannot create Windows service for MySql. Error: 0

This occurs when the Configuration Wizard tries to install the service and finds an existing service
with the same name.

One solution to this problem is to choose a service name other than mysql when using the configur-
ation wizard. This allows the new service to be installed correctly, but leaves the outdated service in
place. Although this is harmless, it is best to remove old services that are no longer in use.

To permanently remove the old mysql service, execute the following command as a user with ad-
ministrative privileges, on the command-line:

C:\> sc delete mysql
[SC] DeleteService SUCCESS

If the sc utility is not available for your version of Windows, download the delsrv utility from ht-
tp://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp and use the
delsrv mysql syntax.

2.3.14. Upgrading MySQL on Windows
This section lists some of the steps you should take when upgrading MySQL on Windows.

1. Review Section 2.11, “Upgrading MySQL”, for additional information on upgrading MySQL that
is not specific to Windows.

2. You should always back up your current MySQL installation before performing an upgrade. See
Section 5.10.1, “Database Backups”.

3. Download the latest Windows distribution of MySQL from http://dev.mysql.com/downloads/.

4. Before upgrading MySQL, you must stop the server. If the server is installed as a service, stop the
service with the following command from the command prompt:

C:\> NET STOP MySQL

If you are not running the MySQL server as a service, use the following command to stop it:

C:\> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqladmin" -u root shutdown

Note: If the MySQL root user account has a password, you need to invoke mysqladmin with
the -p option and supply the password when prompted.

5. When upgrading to MySQL 5.0 from a version previous to 4.1.5, or when upgrading from a version
of MySQL installed from a Zip archive to a version of MySQL installed with the MySQL Installa-
tion Wizard, you must manually remove the previous installation and MySQL service (if the server
is installed as a service).

To remove the MySQL service, use the following command:

C:\> C:\mysql\bin\mysqld --remove

If you do not remove the existing service, the MySQL Installation Wizard may fail to prop-
erly install the new MySQL service.

Installing and Upgrading MySQL

76

http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp
http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/delsrv-o.asp
http://dev.mysql.com/downloads/

6. If you are using the MySQL Installation Wizard, start the wizard as described in Section 2.3.3,
“Using the MySQL Installation Wizard”.

7. If you are installing MySQL from a Zip archive, extract the archive. You may either overwrite your
existing MySQL installation (usually located at C:\mysql), or install it into a different directory,
such as C:\mysql5. Overwriting the existing installation is recommended.

8. If you were running MySQL as a Windows service and you had to remove the service earlier in this
procedure, reinstall the service. (See Section 2.3.11, “Starting MySQL as a Windows Service”.)

9. Restart the server. For example, use NET START MySQL if you run MySQL as a service, or in-
voke mysqld directly otherwise.

10. If you encounter errors, see Section 2.3.13, “Troubleshooting a MySQL Installation Under Win-
dows”.

2.3.15. MySQL on Windows Compared to MySQL on Unix
MySQL for Windows has proven itself to be very stable. The Windows version of MySQL has the same
features as the corresponding Unix version, with the following exceptions:

• Windows 95 and threads

Windows 95 leaks about 200 bytes of main memory for each thread creation. Each connection in
MySQL creates a new thread, so you shouldn't run mysqld for an extended time on Windows 95 if
your server handles many connections! Newer versions of Windows don't suffer from this bug.

• Limited number of ports

Windows systems have about 4,000 ports available for client connections, and after a connection on
a port closes, it takes two to four minutes before the port can be reused. In situations where clients
connect to and disconnect from the server at a high rate, it is possible for all available ports to be
used up before closed ports become available again. If this happens, the MySQL server appears to be
unresponsive even though it is running. Note that ports may be used by other applications running on
the machine as well, in which case the number of ports available to MySQL is lower.

For more information about this problem, see ht-
tp://support.microsoft.com/default.aspx?scid=kb;en-us;196271.

• Concurrent reads

MySQL depends on the pread() and pwrite() system calls to be able to mix INSERT and SE-
LECT. Currently, we use mutexes to emulate pread() and pwrite(). We intend to replace the
file level interface with a virtual interface in the future so that we can use the
readfile()/writefile() interface on NT, 2000, and XP to get more speed. The current im-
plementation limits the number of open files that MySQL 5.0 can use to 2,048, which means that
you cannot run as many concurrent threads on Windows NT, 2000, XP, and 2003 as on Unix.

• Blocking read

MySQL uses a blocking read for each connection. That has the following implications if named-pipe
connections are enabled:

• A connection is not disconnected automatically after eight hours, as happens with the Unix ver-
sion of MySQL.

• If a connection hangs, it is not possible to break it without killing MySQL.

Installing and Upgrading MySQL

77

http://support.microsoft.com/default.aspx?scid=kb;en-us;196271
http://support.microsoft.com/default.aspx?scid=kb;en-us;196271

• mysqladmin kill does not work on a sleeping connection.

• mysqladmin shutdown cannot abort as long as there are sleeping connections.

We plan to fix this problem in the future.

• ALTER TABLE

While you are executing an ALTER TABLE statement, the table is locked from being used by other
threads. This has to do with the fact that on Windows, you can't delete a file that is in use by another
thread. In the future, we may find some way to work around this problem.

• DROP TABLE

DROP TABLE on a table that is in use by a MERGE table does not work on Windows because the
MERGE handler does the table mapping hidden from the upper layer of MySQL. Because Windows
does not allow dropping files that are open, you first must flush all MERGE tables (with FLUSH
TABLES) or drop the MERGE table before dropping the table.

• DATA DIRECTORY and INDEX DIRECTORY

The DATA DIRECTORY and INDEX DIRECTORY options for CREATE TABLE are ignored on
Windows, because Windows doesn't support symbolic links. These options also are ignored on sys-
tems that have a non-functional realpath() call.

• DROP DATABASE

You cannot drop a database that is in use by some thread.

• Killing MySQL from the Task Manager

On Windows 95, you cannot kill MySQL from the Task Manager or with the shutdown utility. You
must stop it with mysqladmin shutdown.

• Case-insensitive names

Filenames are not case sensitive on Windows, so MySQL database and table names are also not case
sensitive on Windows. The only restriction is that database and table names must be specified using
the same case throughout a given statement. See Section 9.2.2, “Identifier Case Sensitivity”.

• The ‘\’ pathname separator character

Pathname components in Windows are separated by the ‘\’ character, which is also the escape char-
acter in MySQL. If you are using LOAD DATA INFILE or SELECT ... INTO OUTFILE, use
Unix-style filenames with ‘/’ characters:

mysql> LOAD DATA INFILE 'C:/tmp/skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:/tmp/skr.txt' FROM skr;

Alternatively, you must double the ‘\’ character:

mysql> LOAD DATA INFILE 'C:\\tmp\\skr.txt' INTO TABLE skr;
mysql> SELECT * INTO OUTFILE 'C:\\tmp\\skr.txt' FROM skr;

• Problems with pipes

Pipes do not work reliably from the Windows command-line prompt. If the pipe includes the charac-
ter ^Z / CHAR(24), Windows thinks that it has encountered end-of-file and aborts the program.

Installing and Upgrading MySQL

78

This is mainly a problem when you try to apply a binary log as follows:

C:\> mysqlbinlog binary_log_file | mysql --user=root

If you have a problem applying the log and suspect that it is because of a ^Z / CHAR(24) character,
you can use the following workaround:

C:\> mysqlbinlog binary_log_file --result-file=/tmp/bin.sql
C:\> mysql --user=root --execute "source /tmp/bin.sql"

The latter command also can be used to reliably read in any SQL file that may contain binary data.

• Access denied for user error

If MySQL cannot resolve your hostname properly, you may get the following error when you at-
tempt to run a MySQL client program to connect to a server running on the same machine:

Access denied for user 'some_user'@'unknown'
to database 'mysql'

To fix this problem, you should create a file named \windows\hosts containing the following
information:

127.0.0.1 localhost

Here are some open issues for anyone who might want to help us improve MySQL on Windows:

• Add macros to use the faster thread-safe increment/decrement methods provided by Windows.

2.4. Installing MySQL on Linux
The recommended way to install MySQL on Linux is by using the RPM packages. The MySQL RPMs
are currently built on a SuSE Linux 7.3 system, but should work on most versions of Linux that support
rpm and use glibc. To obtain RPM packages, see Section 2.1.3, “How to Get MySQL”.

MySQL AB does provide some platform-specific RPMs; the difference between a platform-specific
RPM and a generic RPM is that a platform-specific RPM is built on the targeted platform and is linked
dynamically whereas a generic RPM is linked statically with LinuxThreads.

Note: RPM distributions of MySQL often are provided by other vendors. Be aware that they may differ
in features and capabilities from those built by MySQL AB, and that the instructions in this manual do
not necessarily apply to installing them. The vendor's instructions should be consulted instead.

If you have problems with an RPM file (for example, if you receive the error Sorry, the host
'xxxx' could not be looked up), see Section 2.13.1.2, “Linux Binary Distribution Notes”.

In most cases, you need to install only the MySQL-server and MySQL-client packages to get a
functional MySQL installation. The other packages are not required for a standard installation. If you
want to run a MySQL-Max server that has additional capabilities, you should also install the MySQL-
Max RPM. However, you should do so only after installing the MySQL-server RPM. See Sec-
tion 5.3, “The mysqld-max Extended MySQL Server”.

If you get a dependency failure when trying to install MySQL packages (for example, error: re-

Installing and Upgrading MySQL

79

moving these packages would break dependencies: libmysqlclient.so.10
is needed by ...), you should also install the MySQL-shared-compat package, which in-
cludes both the shared libraries for backward compatibility (libmysqlclient.so.12 for MySQL
4.0 and libmysqlclient.so.10 for MySQL 3.23).

Some Linux distributions still ship with MySQL 3.23 and they usually link applications dynamically to
save disk space. If these shared libraries are in a separate package (for example, MySQL-shared), it is
sufficient to simply leave this package installed and just upgrade the MySQL server and client packages
(which are statically linked and do not depend on the shared libraries). For distributions that include the
shared libraries in the same package as the MySQL server (for example, Red Hat Linux), you could
either install our 3.23 MySQL-shared RPM, or use the MySQL-shared-compat package instead.
(Do not install both.)

The following RPM packages are available:

• MySQL-server-VERSION.i386.rpm

The MySQL server. You need this unless you only want to connect to a MySQL server running on
another machine.

Note: Server RPM files were called MySQL-VERSION.i386.rpm before MySQL 4.0.10. That is,
they did not have -server in the name.

• MySQL-Max-VERSION.i386.rpm

The MySQL-Max server. This server has additional capabilities that the one provided in the
MySQL-server RPM does not. You must install the MySQL-server RPM first, because the
MySQL-Max RPM depends on it.

• MySQL-client-VERSION.i386.rpm

The standard MySQL client programs. You probably always want to install this package.

• MySQL-bench-VERSION.i386.rpm

Tests and benchmarks. Requires Perl and the DBI and DBD::mysql modules.

• MySQL-devel-VERSION.i386.rpm

The libraries and include files that are needed if you want to compile other MySQL clients, such as
the Perl modules.

• MySQL-shared-VERSION.i386.rpm

This package contains the shared libraries (libmysqlclient.so*) that certain languages and
applications need to dynamically load and use MySQL. It contains single-threaded and thread-safe
libraries. If you install this package, do not install the MySQL-shared-compat package.

• MySQL-shared-compat-VERSION.i386.rpm

This package includes the shared libraries for MySQL 3.23, 4.0, 4.1, and 5.0. It contains single-
threaded and thread-safe libraries. Install this package instead of MySQL-shared if you have ap-
plications installed that are dynamically linked against older versions of MySQL but you want to up-
grade to the current version without breaking the library dependencies.

• MySQL-embedded-VERSION.i386.rpm

The embedded MySQL server library (available as of MySQL 4.0).

Installing and Upgrading MySQL

80

• MySQL-VERSION.src.rpm

This contains the source code for all of the previous packages. It can also be used to rebuild the
RPMs on other architectures (for example, Alpha or SPARC).

To see all files in an RPM package (for example, a MySQL-server RPM), run a commnd like this:

shell> rpm -qpl MySQL-server-VERSION.i386.rpm

To perform a standard minimal installation, install the server and client RPMs:

shell> rpm -i MySQL-server-VERSION.i386.rpm
shell> rpm -i MySQL-client-VERSION.i386.rpm

To install only the client programs, install just the client RPM:

shell> rpm -i MySQL-client-VERSION.i386.rpm

RPM provides a feature to verify the integrity and authenticity of packages before installing them. If you
would like to learn more about this feature, see Section 2.1.4, “Verifying Package Integrity Using MD5
Checksums or GnuPG”.

The server RPM places data under the /var/lib/mysql directory. The RPM also creates a login ac-
count for a user named mysql (if one does not exist) to use for running the MySQL server, and creates
the appropriate entries in /etc/init.d/ to start the server automatically at boot time. (This means
that if you have performed a previous installation and have made changes to its startup script, you may
want to make a copy of the script so that you don't lose it when you install a newer RPM.) See Sec-
tion 2.10.2.2, “Starting and Stopping MySQL Automatically”, for more information on how MySQL can
be started automatically on system startup.

If you want to install the MySQL RPM on older Linux distributions that do not support initialization
scripts in /etc/init.d (directly or via a symlink), you should create a symbolic link that points to
the location where your initialization scripts actually are installed. For example, if that location is /
etc/rc.d/init.d, use these commands before installing the RPM to create /etc/init.d as a
symbolic link that points there:

shell> cd /etc
shell> ln -s rc.d/init.d .

However, all current major Linux distributions should support the new directory layout that uses /
etc/init.d, because it is required for LSB (Linux Standard Base) compliance.

If the RPM files that you install include MySQL-server, the mysqld server should be up and running
after installation. You should be able to start using MySQL.

If something goes wrong, you can find more information in the binary installation section. See Sec-
tion 2.8, “Installing MySQL on Other Unix-Like Systems”.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords. After starting
the server, you should set up passwords for them using the instructions in Section 2.10,
“Post-Installation Setup and Testing”.

2.5. Installing MySQL on Mac OS X
You can install MySQL on Mac OS X 10.3.x (“Panther”) or newer using a Mac OS X binary package in
PKG format instead of the binary tarball distribution. Please note that older versions of Mac OS X (for

Installing and Upgrading MySQL

81

example, 10.1.x or 10.2.x) are not supported by this package.

The package is located inside a disk image (.dmg) file that you first need to mount by double-clicking
its icon in the Finder. It should then mount the image and display its contents.

To obtain MySQL, see Section 2.1.3, “How to Get MySQL”.

Note: Before proceeding with the installation, be sure to shut down all running MySQL server instances
by either using the MySQL Manager Application (on Mac OS X Server) or via mysqladmin shut-
down on the command line.

To actually install the MySQL PKG file, double-click on the package icon. This launches the Mac OS X
Package Installer, which guides you through the installation of MySQL.

Due to a bug in the Mac OS X package installer, you may see this error message in the destination disk
selection dialog:

You cannot install this software on this disk. (null)

If this error occurs, simply click the Go Back button once to return to the previous screen. Then click
Continue to advance to the destination disk selection again, and you should be able to choose the des-
tination disk correctly. We have reported this bug to Apple and it is investigating this problem.

The Mac OS X PKG of MySQL installs itself into /usr/local/mysql-VERSION and also installs
a symbolic link, /usr/local/mysql, that points to the new location. If a directory named /
usr/local/mysql exists, it is renamed to /usr/local/mysql.bak first. Additionally, the in-
staller creates the grant tables in the mysql database by executing mysql_install_db.

The installation layout is similar to that of a tar file binary distribution; all MySQL binaries are located
in the directory /usr/local/mysql/bin. The MySQL socket file is created as /
tmp/mysql.sock by default. See Section 2.1.5, “Installation Layouts”.

MySQL installation requires a Mac OS X user account named mysql. A user account with this name
should exist by default on Mac OS X 10.2 and up.

If you are running Mac OS X Server, a version of MySQL should already be installed. The following ta-
ble shows the versions of MySQL that ship with Mac OS X Server versions.

Mac OS X Server Version MySQL Version

10.2-10.2.2 3.23.51

10.2.3-10.2.6 3.23.53

10.3 4.0.14

10.3.2 4.0.16

10.4.0 4.1.10a

This manual section covers the installation of the official MySQL Mac OS X PKG only. Make sure to
read Apple's help information about installing MySQL: Run the “Help View” application, select “Mac
OS X Server” help, do a search for “MySQL,” and read the item entitled “Installing MySQL.”

For pre-installed versions of MySQL on Mac OS X Server, note especially that you should start
mysqld with safe_mysqld instead of mysqld_safe if MySQL is older than version 4.0.

If you previously used Marc Liyanage's MySQL packages for Mac OS X from http://www.entropy.ch,
you can simply follow the update instructions for packages using the binary installation layout as given
on his pages.

Installing and Upgrading MySQL

82

http://www.entropy.ch

If you are upgrading from Marc's 3.23.x versions or from the Mac OS X Server version of MySQL to
the official MySQL PKG, you also need to convert the existing MySQL privilege tables to the current
format, because some new security privileges have been added. See Section 5.6.2, “mysql_upgrade
— Check Tables for MySQL Upgrade”.

If you want MySQL to start automatically during system startup, you also need to install the MySQL
Startup Item. It is part of the Mac OS X installation disk images as a separate installation package.
Simply double-click the MySQLStartupItem.pkg icon and follow the instructions to install it. The Star-
tup Item need be installed only once. There is no need to install it each time you upgrade the MySQL
package later.

The Startup Item for MySQL is installed into /Library/StartupItems/MySQLCOM. (Before
MySQL 4.1.2, the location was /Library/StartupItems/MySQL, but that collided with the
MySQL Startup Item installed by Mac OS X Server.) Startup Item installation adds a variable MYSQL-
COM=-YES- to the system configuration file /etc/hostconfig. If you want to disable the automat-
ic startup of MySQL, simply change this variable to MYSQLCOM=-NO-.

On Mac OS X Server, the default MySQL installation uses the variable MYSQL in the /
etc/hostconfig file. The MySQL AB Startup Item installer disables this variable by setting it to
MYSQL=-NO-. This avoids boot time conflicts with the MYSQLCOM variable used by the MySQL AB
Startup Item. However, it does not shut down a running MySQL server. You should do that yourself.

After the installation, you can start up MySQL by running the following commands in a terminal win-
dow. You must have administrator privileges to perform this task.

If you have installed the Startup Item, use this command:

shell> sudo /Library/StartupItems/MySQLCOM/MySQLCOM start
(Enter your password, if necessary)
(Press Control-D or enter "exit" to exit the shell)

If you don't use the Startup Item, enter the following command sequence:

shell> cd /usr/local/mysql
shell> sudo ./bin/mysqld_safe
(Enter your password, if necessary)
(Press Control-Z)
shell> bg
(Press Control-D or enter "exit" to exit the shell)

You should be able to connect to the MySQL server, for example, by running /
usr/local/mysql/bin/mysql.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords. After starting
the server, you should set up passwords for them using the instructions in Section 2.10,
“Post-Installation Setup and Testing”.

You might want to add aliases to your shell's resource file to make it easier to access commonly used
programs such as mysql and mysqladmin from the command line. The syntax for bash is:

alias mysql=/usr/local/mysql/bin/mysql
alias mysqladmin=/usr/local/mysql/bin/mysqladmin

For tcsh, use:

alias mysql /usr/local/mysql/bin/mysql
alias mysqladmin /usr/local/mysql/bin/mysqladmin

Even better, add /usr/local/mysql/bin to your PATH environment variable. For example, add
the following line to your $HOME/.bashrc file if your shell is bash:

Installing and Upgrading MySQL

83

PATH=${PATH}:/usr/local/mysql/bin

Add the following line to your $HOME/.tcshrc file if your shell is tcsh:

setenv PATH ${PATH}:/usr/local/mysql/bin

If no .bashrc or .tcshrc file exists in your home directory, create it with a text editor.

If you are upgrading an existing installation, note that installing a new MySQL PKG does not remove
the directory of an older installation. Unfortunately, the Mac OS X Installer does not yet offer the func-
tionality required to properly upgrade previously installed packages.

To use your existing databases with the new installation, you'll need to copy the contents of the old data
directory to the new data directory. Make sure that neither the old server nor the new one is running
when you do this. After you have copied over the MySQL database files from the previous installation
and have successfully started the new server, you should consider removing the old installation files to
save disk space. Additionally, you should also remove older versions of the Package Receipt directories
located in /Library/Receipts/mysql-VERSION.pkg.

2.6. Installing MySQL on Solaris
If you install MySQL using a binary tarball distribution on Solaris, you may run into trouble even before
you get the MySQL distribution unpacked, as the Solaris tar cannot handle long filenames. This means
that you may see errors when you try to unpack MySQL.

If this occurs, you must use GNU tar (gtar) to unpack the distribution. You can find a precompiled
copy for Solaris at http://dev.mysql.com/downloads/os-solaris.html.

You can install MySQL on Solaris using a binary package in PKG format instead of the binary tarball
distribution. Before installing using the binary PKG format, you should create the mysql user and
group, for example:

groupadd mysql
useradd -g mysql mysql

Some basic PKG-handling commands follow:

• To add a package:

pkgadd -d package_name.pkg

• To remove a package:

pkgrm package_name

• To get a full list of installed packages:

pkginfo

• To get detailed information for a package:

pkginfo -l package_name

• To list the files belonging to a package:

Installing and Upgrading MySQL

84

http://dev.mysql.com/downloads/os-solaris.html

pkgchk -v package_name

• To get packaging information for an arbitrary file:

pkgchk -l -p file_name

For additional information about installing MySQL on Solaris, see Section 2.13.3, “Solaris Notes”.

2.7. Installing MySQL on NetWare
Porting MySQL to NetWare was an effort spearheaded by Novell. Novell customers should be pleased
to note that NetWare 6.5 ships with bundled MySQL binaries, complete with an automatic commercial
use license for all servers running that version of NetWare.

MySQL for NetWare is compiled using a combination of Metrowerks CodeWarrior for NetWare and
special cross-compilation versions of the GNU autotools.

The latest binary packages for NetWare can be obtained at http://dev.mysql.com/downloads/. See Sec-
tion 2.1.3, “How to Get MySQL”.

To host MySQL, the NetWare server must meet these requirements:

• The latest Support Pack of NetWare 6.5 [http://support.novell.com/filefinder/18197/index.html]
must be installed.

• The system must meet Novell's minimum requirements to run the respective version of NetWare.

• MySQL data and the program binaries must be installed on an NSS volume; traditional volumes are
not supported.

To install MySQL for NetWare, use the following procedure:

1. If you are upgrading from a prior installation, stop the MySQL server. This is done from the server
console, using the following command:

SERVER: mysqladmin -u root shutdown

Note: If the MySQL root user account has a password, you need to invoke mysqladmin with
the -p option and supply the password when prompted.

2. Log on to the target server from a client machine with access to the location where you are in-
stalling MySQL.

3. Extract the binary package Zip file onto the server. Be sure to allow the paths in the Zip file to be
used. It is safe to simply extract the file to SYS:\.

If you are upgrading from a prior installation, you may need to copy the data directory (for ex-
ample, SYS:MYSQL\DATA), as well as my.cnf, if you have customized it. You can then delete
the old copy of MySQL.

4. You might want to rename the directory to something more consistent and easy to use. The ex-
amples in this manual use SYS:MYSQL to refer to the installation directory.

Installing and Upgrading MySQL

85

http://dev.mysql.com/downloads/
http://support.novell.com/filefinder/18197/index.html

Note that MySQL installation on NetWare does not detect if a version of MySQL is already in-
stalled outside the NetWare release. Therefore, if you have installed the latest MySQL version from
the Web (for example, MySQL 4.1 or later) in SYS:\MYSQL, you must rename the folder before
upgrading the NetWare server; otherwise, files in SYS:\MySQL are overwritten by the MySQL
version present in NetWare Support Pack.

5. At the server console, add a search path for the directory containing the MySQL NLMs. For ex-
ample:

SERVER: SEARCH ADD SYS:MYSQL\BIN

6. Initialize the data directory and the grant tables, if necessary, by executing mysql_install_db
at the server console.

7. Start the MySQL server using mysqld_safe at the server console.

8. To finish the installation, you should also add the following commands to autoexec.ncf. For
example, if your MySQL installation is in SYS:MYSQL and you want MySQL to start automatic-
ally, you could add these lines:

#Starts the MySQL 5.0.x database server
SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE

If you are running MySQL on NetWare 6.0, we strongly suggest that you use the -
-skip-external-locking option on the command line:

#Starts the MySQL 5.0.x database server
SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE --skip-external-locking

It is also necessary to use CHECK TABLE and REPAIR TABLE instead of myisamchk, because
myisamchk makes use of external locking. External locking is known to have problems on Net-
Ware 6.0; the problem has been eliminated in NetWare 6.5. Note that the use of MySQL on Net-
ware 6.0 is not officially supported.

mysqld_safe on NetWare provides a screen presence. When you unload (shut down) the
mysqld_safe NLM, the screen does not go away by default. Instead, it prompts for user input:

<NLM has terminated; Press any key to close the screen>

If you want NetWare to close the screen automatically instead, use the --autoclose option to
mysqld_safe. For example:

#Starts the MySQL 5.0.x database server
SEARCH ADD SYS:MYSQL\BIN
MYSQLD_SAFE --autoclose

The behavior of mysqld_safe on NetWare is described further in Section 5.4.1,
“mysqld_safe — MySQL Server Startup Script”.

9. When installing MySQL, either for the first time or upgrading from a previous version, download
and install the latest and appropriate Perl module and PHP extensions for NetWare:

• Perl: http://forge.novell.com/modules/xfcontent/downloads.php/perl/Modules/

• PHP: http://forge.novell.com/modules/xfcontent/downloads.php/php/Modules/

Installing and Upgrading MySQL

86

http://forge.novell.com/modules/xfcontent/downloads.php/perl/Modules/
http://forge.novell.com/modules/xfcontent/downloads.php/php/Modules/

If there was an existing installation of MySQL on the NetWare server, be sure to check for existing
MySQL startup commands in autoexec.ncf, and edit or delete them as necessary.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords. After starting
the server, you should set up passwords for them using the instructions in Section 2.10,
“Post-Installation Setup and Testing”.

2.8. Installing MySQL on Other Unix-Like Systems
This section covers the installation of MySQL binary distributions that are provided for various plat-
forms in the form of compressed tar files (files with a .tar.gz extension). See Section 2.1.2.5,
“MySQL Binaries Compiled by MySQL AB”, for a detailed list.

To obtain MySQL, see Section 2.1.3, “How to Get MySQL”.

MySQL tar file binary distributions have names of the form mysql-VERSION-OS.tar.gz, where
VERSION is a number (for example, 5.0.25), and OS indicates the type of operating system for which
the distribution is intended (for example, pc-linux-i686).

In addition to these generic packages, we also offer binaries in platform-specific package formats for se-
lected platforms. See Section 2.2, “Standard MySQL Installation Using a Binary Distribution”, for more
information on how to install these.

You need the following tools to install a MySQL tar file binary distribution:

• GNU gunzip to uncompress the distribution.

• A reasonable tar to unpack the distribution. GNU tar is known to work. Some operating systems
come with a pre-installed version of tar that is known to have problems. For example, Mac OS X
tar and Sun tar are known to have problems with long filenames. On Mac OS X, you can use the
pre-installed gnutar program. On other systems with a deficient tar, you should install GNU
tar first.

If you run into problems and need to file a bug report, please use the instructions in Section 1.8, “How to
Report Bugs or Problems”.

The basic commands that you must execute to install and use a MySQL binary distribution are:

shell> groupadd mysql
shell> useradd -g mysql mysql
shell> cd /usr/local
shell> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -
shell> ln -s full-path-to-mysql-VERSION-OS mysql
shell> cd mysql
shell> scripts/mysql_install_db --user=mysql
shell> chown -R root .
shell> chown -R mysql data
shell> chgrp -R mysql .
shell> bin/mysqld_safe --user=mysql &

Note: This procedure does not set up any passwords for MySQL accounts. After following the proced-
ure, proceed to Section 2.10, “Post-Installation Setup and Testing”.

A more detailed version of the preceding description for installing a binary distribution follows:

1. Add a login user and group for mysqld to run as:

shell> groupadd mysql

Installing and Upgrading MySQL

87

shell> useradd -g mysql mysql

These commands add the mysql group and the mysql user. The syntax for useradd and
groupadd may differ slightly on different versions of Unix, or they may have different names
such as adduser and addgroup.

You might want to call the user and group something else instead of mysql. If so, substitute the
appropriate name in the following steps.

2. Pick the directory under which you want to unpack the distribution and change location into it. In
the following example, we unpack the distribution under /usr/local. (The instructions, there-
fore, assume that you have permission to create files and directories in /usr/local. If that dir-
ectory is protected, you must perform the installation as root.)

shell> cd /usr/local

3. Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL”. For a given
release, binary distributions for all platforms are built from the same MySQL source distribution.

4. Unpack the distribution, which creates the installation directory. Then create a symbolic link to that
directory:

shell> gunzip < /path/to/mysql-VERSION-OS.tar.gz | tar xvf -
shell> ln -s full-path-to-mysql-VERSION-OS mysql

The tar command creates a directory named mysql-VERSION-OS. The ln command makes a
symbolic link to that directory. This lets you refer more easily to the installation directory as /
usr/local/mysql.

With GNU tar, no separate invocation of gunzip is necessary. You can replace the first line
with the following alternative command to uncompress and extract the distribution:

shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz

5. Change location into the installation directory:

shell> cd mysql

You will find several files and subdirectories in the mysql directory. The most important for in-
stallation purposes are the bin and scripts subdirectories:

• The bin directory contains client programs and the server. You should add the full pathname
of this directory to your PATH environment variable so that your shell finds the MySQL pro-
grams properly. See Appendix F, Environment Variables.

• The scripts directory contains the mysql_install_db script used to initialize the
mysql database containing the grant tables that store the server access permissions.

6. If you have not installed MySQL before, you must create the MySQL grant tables:

shell> scripts/mysql_install_db --user=mysql

If you run the command as root, you must use the --user option as shown. The value of the op-
tion should be the name of the login account that you created in the first step to use for running the
server. If you run the command while logged in as that user, you can omit the --user option.

After creating or updating the grant tables, you need to restart the server manually.

Installing and Upgrading MySQL

88

7. Change the ownership of program binaries to root and ownership of the data directory to the user
that you run mysqld as. Assuming that you are located in the installation directory (/
usr/local/mysql), the commands look like this:

shell> chown -R root .
shell> chown -R mysql data
shell> chgrp -R mysql .

The first command changes the owner attribute of the files to the root user. The second changes
the owner attribute of the data directory to the mysql user. The third changes the group attribute to
the mysql group.

8. If you want MySQL to start automatically when you boot your machine, you can copy support-
files/mysql.server to the location where your system has its startup files. More information
can be found in the support-files/mysql.server script itself and in Section 2.10.2.2,
“Starting and Stopping MySQL Automatically”.

9. You can set up new accounts using the bin/mysql_setpermission script if you install the
DBI and DBD::mysql Perl modules. For instructions, see Section 2.14, “Perl Installation Notes”.

10. If you would like to use mysqlaccess and have the MySQL distribution in some non-standard
location, you must change the location where mysqlaccess expects to find the mysql client.
Edit the bin/mysqlaccess script at approximately line 18. Search for a line that looks like this:

$MYSQL = '/usr/local/bin/mysql'; # path to mysql executable

Change the path to reflect the location where mysql actually is stored on your system. If you do
not do this, a Broken pipe error will occur when you run mysqlaccess.

After everything has been unpacked and installed, you should test your distribution. To start the MySQL
server, use the following command:

shell> bin/mysqld_safe --user=mysql &

If that command fails immediately and prints mysqld ended, you can find some information in the
host_name.err file in the data directory.

More information about mysqld_safe is given in Section 5.4.1, “mysqld_safe — MySQL Server
Startup Script”.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords. After starting
the server, you should set up passwords for them using the instructions in Section 2.10,
“Post-Installation Setup and Testing”.

2.9. MySQL Installation Using a Source Distribution
Before you proceed with an installation from source, first check whether our binary is available for your
platform and whether it works for you. We put a great deal of effort into ensuring that our binaries are
built with the best possible options.

To obtain a source distribution for MySQL, Section 2.1.3, “How to Get MySQL”.

MySQL source distributions are provided as compressed tar archives and have names of the form
mysql-VERSION.tar.gz, where VERSION is a number like 5.0.25.

You need the following tools to build and install MySQL from source:

Installing and Upgrading MySQL

89

• GNU gunzip to uncompress the distribution.

• A reasonable tar to unpack the distribution. GNU tar is known to work. Some operating systems
come with a pre-installed version of tar that is known to have problems. For example, the tar
provided with early versions of Mac OS X tar, SunOS 4.x and Solaris 8 and earlier are known to
have problems with long filenames. On Mac OS X, you can use the pre-installed gnutar program.
On other systems with a deficient tar, you should install GNU tar first.

• A working ANSI C++ compiler. gcc 2.95.2 or later, egcs 1.0.2 or later or egcs 2.91.66, SGI
C++, and SunPro C++ are some of the compilers that are known to work. libg++ is not needed
when using gcc. gcc 2.7.x has a bug that makes it impossible to compile some perfectly legal C++
files, such as sql/sql_base.cc. If you have only gcc 2.7.x, you must upgrade your gcc to be
able to compile MySQL. gcc 2.8.1 is also known to have problems on some platforms, so it should
be avoided if a new compiler exists for the platform.

gcc 2.95.2 or later is recommended when compiling MySQL 3.23.x.

• A good make program. GNU make is always recommended and is sometimes required. If you have
problems, we recommend GNU make 3.75 or newer.

If you are using a version of gcc recent enough to understand the -fno-exceptions option, it is
very important that you use this option. Otherwise, you may compile a binary that crashes randomly. We
also recommend that you use -felide-constructors and -fno-rtti along with -
fno-exceptions. When in doubt, do the following:

CFLAGS="-O3" CXX=gcc CXXFLAGS="-O3 -felide-constructors \
-fno-exceptions -fno-rtti" ./configure \
--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static

On most systems, this gives you a fast and stable binary.

If you run into problems and need to file a bug report, please use the instructions in Section 1.8, “How to
Report Bugs or Problems”.

2.9.1. Source Installation Overview
The basic commands that you must execute to install a MySQL source distribution are:

shell> groupadd mysql
shell> useradd -g mysql mysql
shell> gunzip < mysql-VERSION.tar.gz | tar -xvf -
shell> cd mysql-VERSION
shell> ./configure --prefix=/usr/local/mysql
shell> make
shell> make install
shell> cp support-files/my-medium.cnf /etc/my.cnf
shell> cd /usr/local/mysql
shell> bin/mysql_install_db --user=mysql
shell> chown -R root .
shell> chown -R mysql var
shell> chgrp -R mysql .
shell> bin/mysqld_safe --user=mysql &

If you start from a source RPM, do the following:

shell> rpmbuild --rebuild --clean MySQL-VERSION.src.rpm

This makes a binary RPM that you can install. For older versions of RPM, you may have to replace the
command rpmbuild with rpm instead.

Installing and Upgrading MySQL

90

Note: This procedure does not set up any passwords for MySQL accounts. After following the proced-
ure, proceed to Section 2.10, “Post-Installation Setup and Testing”, for post-installation setup and test-
ing.

A more detailed version of the preceding description for installing MySQL from a source distribution
follows:

1. Add a login user and group for mysqld to run as:

shell> groupadd mysql
shell> useradd -g mysql mysql

These commands add the mysql group and the mysql user. The syntax for useradd and
groupadd may differ slightly on different versions of Unix, or they may have different names
such as adduser and addgroup.

You might want to call the user and group something else instead of mysql. If so, substitute the
appropriate name in the following steps.

2. Pick the directory under which you want to unpack the distribution and change location into it.

3. Obtain a distribution file using the instructions in Section 2.1.3, “How to Get MySQL”.

4. Unpack the distribution into the current directory:

shell> gunzip < /path/to/mysql-VERSION.tar.gz | tar xvf -

This command creates a directory named mysql-VERSION.

With GNU tar, no separate invocation of gunzip is necessary. You can use the following altern-
ative command to uncompress and extract the distribution:

shell> tar zxvf /path/to/mysql-VERSION-OS.tar.gz

5. Change location into the top-level directory of the unpacked distribution:

shell> cd mysql-VERSION

Note that currently you must configure and build MySQL from this top-level directory. You cannot
build it in a different directory.

6. Configure the release and compile everything:

shell> ./configure --prefix=/usr/local/mysql
shell> make

When you run configure, you might want to specify other options. Run ./configure -
-help for a list of options. Section 2.9.2, “Typical configure Options”, discusses some of the
more useful options.

If configure fails and you are going to send mail to a MySQL mailing list to ask for assistance,
please include any lines from config.log that you think can help solve the problem. Also in-
clude the last couple of lines of output from configure. To file a bug report, please use the in-
structions in Section 1.8, “How to Report Bugs or Problems”.

If the compile fails, see Section 2.9.4, “Dealing with Problems Compiling MySQL”, for help.

Installing and Upgrading MySQL

91

7. Install the distribution:

shell> make install

If you want to set up an option file, use one of those present in the support-files directory as
a template. For example:

shell> cp support-files/my-medium.cnf /etc/my.cnf

You might need to run these commands as root.

If you want to configure support for InnoDB tables, you should edit the /etc/my.cnf file, re-
move the # character before the option lines that start with innodb_..., and modify the option
values to be what you want. See Section 4.3.2, “Using Option Files”, and Section 14.2.3, “InnoDB
Configuration”.

8. Change location into the installation directory:

shell> cd /usr/local/mysql

9. If you haven't installed MySQL before, you must create the MySQL grant tables:

shell> bin/mysql_install_db --user=mysql

If you run the command as root, you should use the --user option as shown. The value of the
option should be the name of the login account that you created in the first step to use for running
the server. If you run the command while logged in as that user, you can omit the --user option.

After using mysql_install_db to create the grant tables for MySQL, you must restart the
server manually. The mysqld_safe command to do this is shown in a later step.

10. Change the ownership of program binaries to root and ownership of the data directory to the user
that you run mysqld as. Assuming that you are located in the installation directory (/
usr/local/mysql), the commands look like this:

shell> chown -R root .
shell> chown -R mysql var
shell> chgrp -R mysql .

The first command changes the owner attribute of the files to the root user. The second changes
the owner attribute of the data directory to the mysql user. The third changes the group attribute to
the mysql group.

11. If you want MySQL to start automatically when you boot your machine, you can copy support-
files/mysql.server to the location where your system has its startup files. More information
can be found in the support-files/mysql.server script itself; see also Section 2.10.2.2,
“Starting and Stopping MySQL Automatically”.

12. You can set up new accounts using the bin/mysql_setpermission script if you install the
DBI and DBD::mysql Perl modules. For instructions, see Section 2.14, “Perl Installation Notes”.

After everything has been installed, you should test your distribution. To start the MySQL server, use
the following command:

shell> /usr/local/mysql/bin/mysqld_safe --user=mysql &

Installing and Upgrading MySQL

92

If that command fails immediately and prints mysqld ended, you can find some information in the
host_name.err file in the data directory.

More information about mysqld_safe is given in Section 5.4.1, “mysqld_safe — MySQL Server
Startup Script”.

Note: The accounts that are listed in the MySQL grant tables initially have no passwords. After starting
the server, you should set up passwords for them using the instructions in Section 2.10,
“Post-Installation Setup and Testing”.

2.9.2. Typical configure Options
The configure script gives you a great deal of control over how you configure a MySQL source dis-
tribution. Typically you do this using options on the configure command line. You can also affect
configure using certain environment variables. See Appendix F, Environment Variables. For a list of
options supported by configure, run this command:

shell> ./configure --help

Some of the more commonly used configure options are described here:

• To compile just the MySQL client libraries and client programs and not the server, use the -
-without-server option:

shell> ./configure --without-server

If you have no C++ compiler, some client programs such as mysql cannot be compiled because
they require C++.. In this case, you can remove the code in configure that tests for the C++ com-
piler and then run ./configure with the --without-server option. The compile step should
still try to build all clients, but you can ignore any warnings about files such as mysql.cc. (If
make stops, try make -k to tell it to continue with the rest of the build even if errors occur.)

• If you want to build the embedded MySQL library (libmysqld.a), use the -
-with-embedded-server option.

• If you don't want your log files and database directories located under /usr/local/var, use a
configure command something like one of these:

shell> ./configure --prefix=/usr/local/mysql
shell> ./configure --prefix=/usr/local \

--localstatedir=/usr/local/mysql/data

The first command changes the installation prefix so that everything is installed under /
usr/local/mysql rather than the default of /usr/local. The second command preserves the
default installation prefix, but overrides the default location for database directories (normally /
usr/local/var) and changes it to /usr/local/mysql/data.

You can also specify the installation directory and data directory locations at server startup time by
using the --basedir and --datadir options. These can be given on the command line or in an
MySQL option file, although it is more common to use an option file. See Section 4.3.2, “Using Op-
tion Files”.

• If you are using Unix and you want the MySQL socket file location to be somewhere other than the
default location (normally in the directory /tmp or /var/run), use a configure command like
this:

shell> ./configure \

Installing and Upgrading MySQL

93

--with-unix-socket-path=/usr/local/mysql/tmp/mysql.sock

The socket filename must be an absolute pathname. You can also change the location of
mysql.sock at server startup by using a MySQL option file. See Section A.4.5, “How to Protect
or Change the MySQL Unix Socket File”.

• If you want to compile statically linked programs (for example, to make a binary distribution, to get
better performance, or to work around problems with some Red Hat Linux distributions), run con-
figure like this:

shell> ./configure --with-client-ldflags=-all-static \
--with-mysqld-ldflags=-all-static

• If you are using gcc and don't have libg++ or libstdc++ installed, you can tell configure to
use gcc as your C++ compiler:

shell> CC=gcc CXX=gcc ./configure

When you use gcc as your C++ compiler, it does not attempt to link in libg++ or libstdc++.
This may be a good thing to do even if you have those libraries installed. Some versions of them
have caused strange problems for MySQL users in the past.

The following list indicates some compilers and environment variable settings that are commonly
used with each one.

• gcc 2.7.2:

CC=gcc CXX=gcc CXXFLAGS="-O3 -felide-constructors"

• egcs 1.0.3a:

CC=gcc CXX=gcc CXXFLAGS="-O3 -felide-constructors \
-fno-exceptions -fno-rtti"

• gcc 2.95.2:

CFLAGS="-O3 -mpentiumpro" CXX=gcc CXXFLAGS="-O3 -mpentiumpro \
-felide-constructors -fno-exceptions -fno-rtti"

• pgcc 2.90.29 or newer:

CFLAGS="-O3 -mpentiumpro -mstack-align-double" CXX=gcc \
CXXFLAGS="-O3 -mpentiumpro -mstack-align-double \
-felide-constructors -fno-exceptions -fno-rtti"

In most cases, you can get a reasonably optimized MySQL binary by using the options from the pre-
ceding list and adding the following options to the configure line:

--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static

The full configure line would, in other words, be something like the following for all recent gcc
versions:

CFLAGS="-O3 -mpentiumpro" CXX=gcc CXXFLAGS="-O3 -mpentiumpro \
-felide-constructors -fno-exceptions -fno-rtti" ./configure \
--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static

Installing and Upgrading MySQL

94

The binaries we provide on the MySQL Web site at http://dev.mysql.com/downloads/ are all com-
piled with full optimization and should be perfect for most users. See Section 2.1.2.5, “MySQL Bin-
aries Compiled by MySQL AB”. There are some configuration settings you can tweak to build an
even faster binary, but these are only for advanced users. See Section 7.5.4, “How Compiling and
Linking Affects the Speed of MySQL”.

If the build fails and produces errors about your compiler or linker not being able to create the shared
library libmysqlclient.so.N (where N is a version number), you can work around this prob-
lem by giving the --disable-shared option to configure. In this case, configure does
not build a shared libmysqlclient.so.N library.

• By default, MySQL uses the latin1 (cp1252 West European) character set. To change the default
set, use the --with-charset option:

shell> ./configure --with-charset=CHARSET

CHARSET may be one of big5, cp1251, cp1257, czech, danish, dec8, dos, euc_kr,
gb2312, gbk, german1, hebrew, hp8, hungarian, koi8_ru, koi8_ukr, latin1, lat-
in2, sjis, swe7, tis620, ujis, usa7, or win1251ukr. See Section 5.11.1, “The Character
Set Used for Data and Sorting”. (Additional character sets might be available. Check the output from
./configure --help for the current list.)

The default collation may also be specified. MySQL uses the latin1_swedish_ci collation by
default. To change this, use the --with-collation option:

shell> ./configure --with-collation=COLLATION

To change both the character set and the collation, use both the --with-charset and -
-with-collation options. The collation must be a legal collation for the character set. (Use the
SHOW COLLATION statement to determine which collations are available for each character set.)

Warning: If you change character sets after having created any tables, you must run myisamchk
-r -q --set-collation=collation_name on every MyISAM table. Your indexes may be
sorted incorrectly otherwise. This can happen if you install MySQL, create some tables, and then re-
configure MySQL to use a different character set and reinstall it.

With the configure option --with-extra-charsets=LIST, you can define which addi-
tional character sets should be compiled into the server. LIST is one of the following:

• A list of character set names separated by spaces

• complex to include all character sets that can't be dynamically loaded

• all to include all character sets into the binaries

Clients that want to convert characters between the server and the client should use the SET NAMES
statement. See Section 13.5.3, “SET Syntax”, and Section 10.4, “Connection Character Sets and
Collations”.

• To configure MySQL with debugging code, use the --with-debug option:

shell> ./configure --with-debug

This causes a safe memory allocator to be included that can find some errors and that provides out-
put about what is happening. See Section E.1, “Debugging a MySQL Server”.

• If your client programs are using threads, you must compile a thread-safe version of the MySQL cli-

Installing and Upgrading MySQL

95

http://dev.mysql.com/downloads/

ent library with the --enable-thread-safe-client configure option. This creates a
libmysqlclient_r library with which you should link your threaded applications. See Sec-
tion 22.2.15, “How to Make a Threaded Client”.

• It is possible to build MySQL 5.0 with large table support using the --with-big-tables op-
tion, beginning with MySQL 5.0.4.

This option causes the variables that store table row counts to be declared as unsigned long
long rather than unsigned long. This enables tables to hold up to approximately 1.844E+19
((232)2) rows rather than 232 (~4.295E+09) rows. Previously it was necessary to pass -
DBIG_TABLES to the compiler manually in order to enable this feature.

• See Section 2.13, “Operating System-Specific Notes”, for options that pertain to particular operating
systems.

• See Section 5.9.7.2, “Using SSL Connections”, for options that pertain to configuring MySQL to
support secure (encrypted) connections.

2.9.3. Installing from the Development Source Tree
Caution: You should read this section only if you are interested in helping us test our new code. If you
just want to get MySQL up and running on your system, you should use a standard release distribution
(either a binary or source distribution).

To obtain our most recent development source tree, first download and install the BitKeeper free client
if you do not have it. The client can be obtained from http://www.bitmover.com/bk-client.shar.

To install the BitKeeper client on Unix, use these commands:

shell> sh bk-client.shar
shell> cd bk_client-1.1
shell> make all
shell> PATH=$PWD:$PATH

To install the BitKeeper client on Windows, use these instructions:

1. Download and install Cygwin from http://cygwin.com [http://cygwin.com/].

2. Make sure gcc and make have been installed under Cygwin. You can test this by issuing which
gcc and which make commands. If either one is not installed, run Cygwin's package manager,
select gcc, make, or both, and install them.

3. Under Cygwin, execute these commands:

shell> sh bk-client.shar
shell> cd bk_client-1.1

Then edit the Makefile and change the line that reads $(CC) $(CFLAGS) -o sfio -lz
sfio.c to this:

$(CC) $(CFLAGS) -o sfio sfio.c -lz

Now run the make command and set the path:

shell> make all
shell> PATH=$PWD:$PATH

Installing and Upgrading MySQL

96

http://www.bitmover.com/bk-client.shar
http://cygwin.com/

The BitKeeper free client is shipped with its source code. The only documentation available for the free
client is the source code itself.

After you have installed the BitKeeper client, you can access the MySQL development source tree:

1. Change location to the directory you want to work from, and then use the following command to
make a local copy of the MySQL 5.0 branch:

shell> sfioball -r+ bk://mysql.bkbits.net/mysql-5.0 mysql-5.0

In the preceding example, the source tree is set up in the mysql-5.0/ subdirectory of your cur-
rent directory.

The initial download of the source tree may take a while, depending on the speed of your connec-
tion. Please be patient.

2. You need GNU make, autoconf 2.58 (or newer), automake 1.8, libtool 1.5, and m4 to run
the next set of commands. Even though many operating systems come with their own implementa-
tion of make, chances are high that the compilation fails with strange error messages. Therefore, it
is highly recommended that you use GNU make (sometimes named gmake) instead.

Fortunately, a large number of operating systems ship with the GNU toolchain preinstalled or sup-
ply installable packages of these. In any case, they can also be downloaded from the following loc-
ations:

• http://www.gnu.org/software/autoconf/

• http://www.gnu.org/software/automake/

• http://www.gnu.org/software/libtool/

• http://www.gnu.org/software/m4/

• http://www.gnu.org/software/make/

To configure MySQL 5.0, you also need GNU bison 1.75 or later. Older versions of bison may
report this error:

sql_yacc.yy:#####: fatal error: maximum table size (32767) exceeded

Note: The maximum table size is not actually exceeded; the error is caused by bugs in older ver-
sions of bison.

The following example shows the typical commands required to configure a source tree. The first
cd command changes location into the top-level directory of the tree; replace mysql-5.0 with
the appropriate directory name.

shell> cd mysql-5.0
shell> (cd bdb/dist; sh s_all)
shell> (cd innobase; autoreconf --force --install)
shell> autoreconf --force --install
shell> ./configure # Add your favorite options here
shell> make

Or you can use BUILD/autorun.sh as a shortcut for the following sequence of commands:

shell> aclocal; autoheader
shell> libtoolize --automake --force
shell> automake --force --add-missing; autoconf
shell> (cd innobase; aclocal; autoheader; autoconf; automake)

Installing and Upgrading MySQL

97

http://www.gnu.org/software/autoconf/
http://www.gnu.org/software/automake/
http://www.gnu.org/software/libtool/
http://www.gnu.org/software/m4/
http://www.gnu.org/software/make/

shell> (cd bdb/dist; sh s_all)

The command lines that change directory into the innobase and bdb/dist directories are used
to configure the InnoDB and Berkeley DB (BDB) storage engines. You can omit these command
lines if you to not require InnoDB or BDB support.

If you get some strange errors during this stage, verify that you really have libtool installed.

A collection of our standard configuration scripts is located in the BUILD/ subdirectory. You may
find it more convenient to use the BUILD/compile-pentium-debug script than the preced-
ing set of shell commands. To compile on a different architecture, modify the script by removing
flags that are Pentium-specific.

3. When the build is done, run make install. Be careful with this on a production machine; the
command may overwrite your live release installation. If you have another installation of MySQL,
we recommend that you run ./configure with different values for the --prefix, -
-with-tcp-port, and --unix-socket-path options than those used for your production
server.

4. Play hard with your new installation and try to make the new features crash. Start by running make
test. See Section 24.1.2, “MySQL Test Suite”.

5. If you have gotten to the make stage, but the distribution does not compile, please enter the prob-
lem into our bugs database using the instructions given in Section 1.8, “How to Report Bugs or
Problems”. If you have installed the latest versions of the required GNU tools, and they crash trying
to process our configuration files, please report that also. However, if you execute aclocal and
get a command not found error or a similar problem, do not report it. Instead, make sure that
all the necessary tools are installed and that your PATH variable is set correctly so that your shell
can find them.

6. After initially copying the repository with sfioball to obtain the source tree, you should use
update periodically to update your local copy. To do this any time after you have set up the re-
pository, use this command:

shell> update bk://mysql.bkbits.net/mysql-5.0

7. You can examine the change history for the tree with all the diffs by viewing the BK/ChangeLog
file in the source tree and looking at the ChangeSet descriptions listed there. To examine a par-
ticular changeset, you would have to use the sfioball command to extract two particular revi-
sions of the source tree, and then use an external diff command to compare them. If you see
some funny diffs or code that you have a question about, do not hesitate to send email to the
MySQL internals mailing list. See Section 1.7.1, “MySQL Mailing Lists”. Also, if you think
you have a better idea on how to do something, send an email message to the list with a patch.

You can also browse changesets, comments, and source code online. To browse this information for
MySQL 5.0, go to http://mysql.bkbits.net:8080/mysql-5.0.

2.9.4. Dealing with Problems Compiling MySQL
All MySQL programs compile cleanly for us with no warnings on Solaris or Linux using gcc. On other
systems, warnings may occur due to differences in system include files. See Section 2.9.5,
“MIT-pthreads Notes”, for warnings that may occur when using MIT-pthreads. For other problems,
check the following list.

The solution to many problems involves reconfiguring. If you do need to reconfigure, take note of the
following:

Installing and Upgrading MySQL

98

http://mysql.bkbits.net:8080/mysql-5.0

• If configure is run after it has previously been run, it may use information that was gathered dur-
ing its previous invocation. This information is stored in config.cache. When configure
starts up, it looks for that file and reads its contents if it exists, on the assumption that the informa-
tion is still correct. That assumption is invalid when you reconfigure.

• Each time you run configure, you must run make again to recompile. However, you may want to
remove old object files from previous builds first because they were compiled using different config-
uration options.

To prevent old configuration information or object files from being used, run these commands before re-
running configure:

shell> rm config.cache
shell> make clean

Alternatively, you can run make distclean.

The following list describes some of the problems when compiling MySQL that have been found to oc-
cur most often:

• If you get errors such as the ones shown here when compiling sql_yacc.cc, you probably have
run out of memory or swap space:

Internal compiler error: program cc1plus got fatal signal 11
Out of virtual memory
Virtual memory exhausted

The problem is that gcc requires a huge amount of memory to compile sql_yacc.cc with inline
functions. Try running configure with the --with-low-memory option:

shell> ./configure --with-low-memory

This option causes -fno-inline to be added to the compile line if you are using gcc and -O0 if
you are using something else. You should try the --with-low-memory option even if you have
so much memory and swap space that you think you can't possibly have run out. This problem has
been observed to occur even on systems with generous hardware configurations, and the -
-with-low-memory option usually fixes it.

• By default, configure picks c++ as the compiler name and GNU c++ links with -lg++. If you
are using gcc, that behavior can cause problems during configuration such as this:

configure: error: installation or configuration problem:
C++ compiler cannot create executables.

You might also observe problems during compilation related to g++, libg++, or libstdc++.

One cause of these problems is that you may not have g++, or you may have g++ but not libg++,
or libstdc++. Take a look at the config.log file. It should contain the exact reason why your
C++ compiler didn't work. To work around these problems, you can use gcc as your C++ compiler.
Try setting the environment variable CXX to "gcc -O3". For example:

shell> CXX="gcc -O3" ./configure

This works because gcc compiles C++ source files as well as g++ does, but does not link in
libg++ or libstdc++ by default.

Installing and Upgrading MySQL

99

Another way to fix these problems is to install g++, libg++, and libstdc++. However, we re-
commend that you not use libg++ or libstdc++ with MySQL because this only increases the
binary size of mysqld without providing any benefits. Some versions of these libraries have also
caused strange problems for MySQL users in the past.

• If your compile fails with errors such as any of the following, you must upgrade your version of
make to GNU make:

making all in mit-pthreads
make: Fatal error in reader: Makefile, line 18:
Badly formed macro assignment

Or:

make: file `Makefile' line 18: Must be a separator (:

Or:

pthread.h: No such file or directory

Solaris and FreeBSD are known to have troublesome make programs.

GNU make 3.75 is known to work.

• If you want to define flags to be used by your C or C++ compilers, do so by adding the flags to the
CFLAGS and CXXFLAGS environment variables. You can also specify the compiler names this way
using CC and CXX. For example:

shell> CC=gcc
shell> CFLAGS=-O3
shell> CXX=gcc
shell> CXXFLAGS=-O3
shell> export CC CFLAGS CXX CXXFLAGS

See Section 2.1.2.5, “MySQL Binaries Compiled by MySQL AB”, for a list of flag definitions that
have been found to be useful on various systems.

• If you get errors such as those shown here when compiling mysqld, configure did not correctly
detect the type of the last argument to accept(), getsockname(), or getpeername():

cxx: Error: mysqld.cc, line 645: In this statement, the referenced
type of the pointer value ''length'' is ''unsigned long'',
which is not compatible with ''int''.

new_sock = accept(sock, (struct sockaddr *)&cAddr, &length);

To fix this, edit the config.h file (which is generated by configure). Look for these lines:

/* Define as the base type of the last arg to accept */
#define SOCKET_SIZE_TYPE XXX

Change XXX to size_t or int, depending on your operating system. (You must do this each time
you run configure because configure regenerates config.h.)

• The sql_yacc.cc file is generated from sql_yacc.yy. Normally, the build process does not
need to create sql_yacc.cc because MySQL comes with a pre-generated copy. However, if you
do need to re-create it, you might encounter this error:

"sql_yacc.yy", line xxx fatal: default action causes potential...

Installing and Upgrading MySQL

100

This is a sign that your version of yacc is deficient. You probably need to install bison (the GNU
version of yacc) and use that instead.

• On Debian Linux 3.0, you need to install gawk instead of the default mawk if you want to compile
MySQL with Berkeley DB support.

• If you need to debug mysqld or a MySQL client, run configure with the --with-debug op-
tion, and then recompile and link your clients with the new client library. See Section E.2,
“Debugging a MySQL Client”.

• If you get a compilation error on Linux (for example, SuSE Linux 8.1 or Red Hat Linux 7.3) similar
to the following one, you probably do not have g++ installed:

libmysql.c:1329: warning: passing arg 5 of `gethostbyname_r' from
incompatible pointer type
libmysql.c:1329: too few arguments to function `gethostbyname_r'
libmysql.c:1329: warning: assignment makes pointer from integer
without a cast
make[2]: *** [libmysql.lo] Error 1

By default, the configure script attempts to determine the correct number of arguments by using
g++ (the GNU C++ compiler). This test yields incorrect results if g++ is not installed. There are two
ways to work around this problem:

• Make sure that the GNU C++ g++ is installed. On some Linux distributions, the required pack-
age is called gpp; on others, it is named gcc-c++.

• Use gcc as your C++ compiler by setting the CXX environment variable to gcc:

export CXX="gcc"

You must run configure again after making either of those changes.

2.9.5. MIT-pthreads Notes
This section describes some of the issues involved in using MIT-pthreads.

On Linux, you should not use MIT-pthreads. Use the installed LinuxThreads implementation instead.
See Section 2.13.1, “Linux Notes”.

If your system does not provide native thread support, you should build MySQL using the MIT-pthreads
package. This includes older FreeBSD systems, SunOS 4.x, Solaris 2.4 and earlier, and some others. See
Section 2.1.1, “Operating Systems Supported by MySQL”.

MIT-pthreads is not part of the MySQL 5.0 source distribution. If you require this package, you need to
download it separately from ht-
tp://dev.mysql.com/Downloads/Contrib/pthreads-1_60_beta6-mysql.tar.gz

After downloading, extract this source archive into the top level of the MySQL source directory. It cre-
ates a new subdirectory named mit-pthreads.

• On most systems, you can force MIT-pthreads to be used by running configure with the -
-with-mit-threads option:

shell> ./configure --with-mit-threads

Installing and Upgrading MySQL

101

http://dev.mysql.com/Downloads/Contrib/pthreads-1_60_beta6-mysql.tar.gz
http://dev.mysql.com/Downloads/Contrib/pthreads-1_60_beta6-mysql.tar.gz

Building in a non-source directory is not supported when using MIT-pthreads because we want to
minimize our changes to this code.

• The checks that determine whether to use MIT-pthreads occur only during the part of the configura-
tion process that deals with the server code. If you have configured the distribution using -
-without-server to build only the client code, clients do not know whether MIT-pthreads is
being used and use Unix socket file connections by default. Because Unix socket files do not work
under MIT-pthreads on some platforms, this means you need to use -h or --host with a value oth-
er than localhost when you run client programs.

• When MySQL is compiled using MIT-pthreads, system locking is disabled by default for perform-
ance reasons. You can tell the server to use system locking with the --external-locking op-
tion. This is needed only if you want to be able to run two MySQL servers against the same data
files, but that is not recommended, anyway.

• Sometimes the pthread bind() command fails to bind to a socket without any error message (at
least on Solaris). The result is that all connections to the server fail. For example:

shell> mysqladmin version
mysqladmin: connect to server at '' failed;
error: 'Can't connect to mysql server on localhost (146)'

The solution to this problem is to kill the mysqld server and restart it. This has happened to us only
when we have forcibly stopped the server and restarted it immediately.

• With MIT-pthreads, the sleep() system call isn't interruptible with SIGINT (break). This is no-
ticeable only when you run mysqladmin --sleep. You must wait for the sleep() call to ter-
minate before the interrupt is served and the process stops.

• When linking, you might receive warning messages like these (at least on Solaris); they can be ig-
nored:

ld: warning: symbol `_iob' has differing sizes:
(file /my/local/pthreads/lib/libpthread.a(findfp.o) value=0x4;

file /usr/lib/libc.so value=0x140);
/my/local/pthreads/lib/libpthread.a(findfp.o) definition taken

ld: warning: symbol `__iob' has differing sizes:
(file /my/local/pthreads/lib/libpthread.a(findfp.o) value=0x4;

file /usr/lib/libc.so value=0x140);
/my/local/pthreads/lib/libpthread.a(findfp.o) definition taken

• Some other warnings also can be ignored:

implicit declaration of function `int strtoll(...)'
implicit declaration of function `int strtoul(...)'

• We have not been able to make readline work with MIT-pthreads. (This is not necessary, but
may be of interest to some.)

2.9.6. Installing MySQL from Source on Windows
These instructions describe how to build binaries from source for MySQL 5.0 on Windows. Instructions
are provided for building binaries from a standard source distribution or from the BitKeeper tree that
contains the latest development source.

Note: The instructions here are strictly for users who want to test MySQL on Windows from the latest
source distribution or from the BitKeeper tree. For production use, MySQL AB does not advise using a
MySQL server built by yourself from source. Normally, it is best to use precompiled binary distributions

Installing and Upgrading MySQL

102

of MySQL that are built specifically for optimal performance on Windows by MySQL AB. Instructions
for installing a binary distributions are available in Section 2.3, “Installing MySQL on Windows”.

To build MySQL on Windows from source, you need the following compiler and resources available on
your Windows system:

• Visual Studio .Net 2003 (7.1) compiler system

• Between 3GB and 5GB disk space.

• Windows XP, Windows 2000 or higher.

The exact system requirements can be found here: ht-
tp://msdn.microsoft.com/vstudio/Previous/2003/sysreqs/default.aspx

You also need a MySQL source distribution for Windows. There are two ways to obtain a source distri-
bution:

1. Obtain a Windows source distribution packaged by MySQL AB for the particular version of
MySQL in which you are interested. These are available from http://dev.mysql.com/downloads/.

2. You can package a source distribution yourself from the latest BitKeeper developer source tree. If
you plan to do this, you must create the package on a Unix system and then transfer it to your Win-
dows system. (Some of the configuration and build steps require tools that work only on Unix.) The
BitKeeper approach thus requires:

• A system running Unix, or a Unix-like system such as Linux.

• BitKeeper installed on that system. See Section 2.9.3, “Installing from the Development Source
Tree”, for instructions how to download and install BitKeeper.

If you are using a Windows source distribution, you can go directly to Section 2.9.6.1, “Building
MySQL Using VC++”. To build from the BitKeeper tree, proceed to Section 2.9.6.2, “Creating a Win-
dows Source Package from the Latest Development Source”.

If you find something not working as expected, or you have suggestions about ways to improve the cur-
rent build process on Windows, please send a message to the win32 mailing list. See Section 1.7.1,
“MySQL Mailing Lists”.

2.9.6.1. Building MySQL Using VC++

Note: VC++ workspace files for MySQL 4.1 and above are compatible with Microsoft Visual Studio 7.1
and tested by MySQL AB staff before each release.

Follow this procedure to build MySQL:

1. Create a work directory (for example, C:\workdir).

2. Unpack the source distribution in the aforementioned directory using WinZip or another Windows
tool that can read .zip files.

3. Start Visual Studio .Net 2003 (7.1).

4. From the File menu, select Open Solution....

Installing and Upgrading MySQL

103

http://msdn.microsoft.com/vstudio/Previous/2003/sysreqs/default.aspx
http://msdn.microsoft.com/vstudio/Previous/2003/sysreqs/default.aspx
http://dev.mysql.com/downloads/

5. Open the mysql.sln solution you find in the work directory.

6. From the Build menu, select Configuration Manager....

7. In the Active Solution Configuration pop-up menu, select the configuration to use. You likely want
to use one of nt (normal server, not for Windows 98/ME), Max nt (more engines and features, not
for 98/ME) or Debug configuration.

8. From the Build menu, select Build Solution.

9. Debug versions of the programs and libraries are placed in the client_debug and lib_debug
directories. Release versions of the programs and libraries are placed in the client_release
and lib_release directories.

10. Test the server. The server built using the preceding instructions expects that the MySQL base dir-
ectory and data directory are C:\mysql and C:\mysql\data by default. If you want to test
your server using the source tree root directory and its data directory as the base directory and data
directory, you need to tell the server their pathnames. You can either do this on the command line
with the --basedir and --datadir options, or by placing appropriate options in an option
file. (See Section 4.3.2, “Using Option Files”.) If you have an existing data directory elsewhere that
you want to use, you can specify its pathname instead.

11. Start your server from the client_release or client_debug directory, depending on which
server you built or want to use. The general server startup instructions are in Section 2.3, “Installing
MySQL on Windows”. You must adapt the instructions appropriately if you want to use a different
base directory or data directory.

12. When the server is running in standalone fashion or as a service based on your configuration, try to
connect to it from the mysql interactive command-line utility that exists in your cli-
ent_release or client_debug directory.

When you are satisfied that the programs you have built are working correctly, stop the server. Then in-
stall MySQL as follows:

1. Create the directories where you want to install MySQL. For example, to install into C:\mysql,
use these commands:

C:\> mkdir C:\mysql
C:\> mkdir C:\mysql\bin
C:\> mkdir C:\mysql\data
C:\> mkdir C:\mysql\share
C:\> mkdir C:\mysql\scripts

If you want to compile other clients and link them to MySQL, you should also create several addi-
tional directories:

C:\> mkdir C:\mysql\include
C:\> mkdir C:\mysql\lib
C:\> mkdir C:\mysql\lib\debug
C:\> mkdir C:\mysql\lib\opt

If you want to benchmark MySQL, create this directory:

C:\> mkdir C:\mysql\sql-bench

Benchmarking requires Perl support. See Section 2.14, “Perl Installation Notes”.

2. From the workdir directory, copy into the C:\mysql directory the following directories:

Installing and Upgrading MySQL

104

C:\> cd \workdir
C:\workdir> copy client_release*.exe C:\mysql\bin
C:\workdir> copy client_debug\mysqld.exe C:\mysql\bin\mysqld-debug.exe
C:\workdir> xcopy scripts*.* C:\mysql\scripts /E
C:\workdir> xcopy share*.* C:\mysql\share /E

If you want to compile other clients and link them to MySQL, you should also copy several librar-
ies and header files:

C:\workdir> copy lib_debug\mysqlclient.lib C:\mysql\lib\debug
C:\workdir> copy lib_debug\libmysql.* C:\mysql\lib\debug
C:\workdir> copy lib_debug\zlib.* C:\mysql\lib\debug
C:\workdir> copy lib_release\mysqlclient.lib C:\mysql\lib\opt
C:\workdir> copy lib_release\libmysql.* C:\mysql\lib\opt
C:\workdir> copy lib_release\zlib.* C:\mysql\lib\opt
C:\workdir> copy include*.h C:\mysql\include
C:\workdir> copy libmysql\libmysql.def C:\mysql\include

If you want to benchmark MySQL, you should also do this:

C:\workdir> xcopy sql-bench*.* C:\mysql\bench /E

Set up and start the server in the same way as for the binary Windows distribution. See Section 2.3,
“Installing MySQL on Windows”.

2.9.6.2. Creating a Windows Source Package from the Latest Develop-
ment Source

To create a Windows source package from the current BitKeeper source tree, use the instructions here.
This procedure must be performed on a system running a Unix or Unix-like operating system because
some of the configuration and build steps require tools that work only on Unix. For example, the follow-
ing procedure is known to work well on Linux.

1. Copy the BitKeeper source tree for MySQL 5.0. For instructions on how to do this, see Sec-
tion 2.9.3, “Installing from the Development Source Tree”.

2. Configure and build the distribution so that you have a server binary to work with. One way to do
this is to run the following command in the top-level directory of your source tree:

shell> ./BUILD/compile-pentium-max

3. After making sure that the build process completed successfully, run the following utility script
from top-level directory of your source tree:

shell> ./scripts/make_win_src_distribution

This script creates a Windows source package to be used on your Windows system. You can supply
different options to the script based on your needs. It accepts the following options:

• --help

Display a help message.

• --debug

Print information about script operations, do not create package.

Installing and Upgrading MySQL

105

• --tmp

Specify the temporary location.

• --suffix

The suffix name for the package.

• --dirname

Directory name to copy files (intermediate).

• --silent

Do not print verbose list of files processed.

• --tar

Create tar.gz package instead of .zip package.

By default, make_win_src_distribution creates a Zip-format archive with the name
mysql-VERSION-win-src.zip, where VERSION represents the version of your MySQL
source tree.

4. Copy or upload the Windows source package that you have just created to your Windows machine.
To compile it, use the instructions in Section 2.9.6.1, “Building MySQL Using VC++”.

2.9.7. Compiling MySQL Clients on Windows
In your source files, you should include my_global.h before mysql.h:

#include <my_global.h>
#include <mysql.h>

my_global.h includes any other files needed for Windows compatibility (such as windows.h) if
you compile your program on Windows.

You can either link your code with the dynamic libmysql.lib library, which is just a wrapper to
load in libmysql.dll on demand, or link with the static mysqlclient.lib library.

The MySQL client libraries are compiled as threaded libraries, so you should also compile your code to
be multi-threaded.

2.10. Post-Installation Setup and Testing
After installing MySQL, there are some issues that you should address. For example, on Unix, you
should initialize the data directory and create the MySQL grant tables. On all platforms, an important se-
curity concern is that the initial accounts in the grant tables have no passwords. You should assign pass-
words to prevent unauthorized access to the MySQL server. Optionally, you can create time zone tables
to enable recognition of named time zones.

The following sections include post-installation procedures that are specific to Windows systems and to
Unix systems. Another section, Section 2.10.2.3, “Starting and Troubleshooting the MySQL Server”,
applies to all platforms; it describes what to do if you have trouble getting the server to start. Sec-
tion 2.10.3, “Securing the Initial MySQL Accounts”, also applies to all platforms. You should follow its
instructions to make sure that you have properly protected your MySQL accounts by assigning pass-

Installing and Upgrading MySQL

106

words to them.

When you are ready to create additional user accounts, you can find information on the MySQL access
control system and account management in Section 5.8, “The MySQL Access Privilege System”, and
Section 5.9, “MySQL User Account Management”.

2.10.1. Windows Post-Installation Procedures
On Windows, the data directory and the grant tables do not have to be created. MySQL Windows distri-
butions include the grant tables with a set of preinitialized accounts in the mysql database under the
data directory. It is unnecessary to run the mysql_install_db script that is used on Unix. Regard-
ing passwords, if you installed MySQL using the Windows Installation Wizard, you may have already
assigned passwords to the accounts. (See Section 2.3.3, “Using the MySQL Installation Wizard”.) Oth-
erwise, use the password-assignment procedure given in Section 2.10.3, “Securing the Initial MySQL
Accounts”.

Before setting up passwords, you might want to try running some client programs to make sure that you
can connect to the server and that it is operating properly. Make sure that the server is running (see Sec-
tion 2.3.9, “Starting the Server for the First Time”), and then issue the following commands to verify
that you can retrieve information from the server. The output should be similar to what is shown here:

C:\> C:\mysql\bin\mysqlshow
+-----------+
| Databases |
+-----------+
| mysql |
| test |
+-----------+

C:\> C:\mysql\bin\mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| func |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| proc |
| procs_priv |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+

C:\> C:\mysql\bin\mysql -e "SELECT Host,Db,User FROM db" mysql
+------+-------+------+
| host | db | user |
+------+-------+------+
| % | test% | |
+------+-------+------+

If you are running a version of Windows that supports services and you want the MySQL server to run
automatically when Windows starts, see Section 2.3.11, “Starting MySQL as a Windows Service”.

2.10.2. Unix Post-Installation Procedures
After installing MySQL on Unix, you need to initialize the grant tables, start the server, and make sure
that the server works satisfactorily. You may also wish to arrange for the server to be started and
stopped automatically when your system starts and stops. You should also assign passwords to the ac-

Installing and Upgrading MySQL

107

counts in the grant tables.

On Unix, the grant tables are set up by the mysql_install_db program. For some installation meth-
ods, this program is run for you automatically:

• If you install MySQL on Linux using RPM distributions, the server RPM runs
mysql_install_db.

• If you install MySQL on Mac OS X using a PKG distribution, the installer runs
mysql_install_db.

Otherwise, you will need to run mysql_install_db yourself.

The following procedure describes how to initialize the grant tables (if that has not previously been
done) and then start the server. It also suggests some commands that you can use to test whether the
server is accessible and working properly. For information about starting and stopping the server auto-
matically, see Section 2.10.2.2, “Starting and Stopping MySQL Automatically”.

After you complete the procedure and have the server running, you should assign passwords to the ac-
counts created by mysql_install_db. Instructions for doing so are given in Section 2.10.3,
“Securing the Initial MySQL Accounts”.

In the examples shown here, the server runs under the user ID of the mysql login account. This as-
sumes that such an account exists. Either create the account if it does not exist, or substitute the name of
a different existing login account that you plan to use for running the server.

1. Change location into the top-level directory of your MySQL installation, represented here by
BASEDIR:

shell> cd BASEDIR

BASEDIR is likely to be something like /usr/local/mysql or /usr/local. The following
steps assume that you are located in this directory.

2. If necessary, run the mysql_install_db program to set up the initial MySQL grant tables con-
taining the privileges that determine how users are allowed to connect to the server. You'll need to
do this if you used a distribution type for which the installation procedure doesn't run the program
for you.

Typically, mysql_install_db needs to be run only the first time you install MySQL, so you
can skip this step if you are upgrading an existing installation, However, mysql_install_db
does not overwrite any existing privilege tables, so it should be safe to run in any circumstances.

To initialize the grant tables, use one of the following commands, depending on whether
mysql_install_db is located in the bin or scripts directory:

shell> bin/mysql_install_db --user=mysql
shell> scripts/mysql_install_db --user=mysql

The mysql_install_db script creates the server's data directory. Under the data directory, it
creates directories for the mysql database that holds all database privileges and the test database
that you can use to test MySQL. The script also creates privilege table entries for root and an-
onymous-user accounts. The accounts have no passwords initially. A description of their initial
privileges is given in Section 2.10.3, “Securing the Initial MySQL Accounts”. Briefly, these priv-
ileges allow the MySQL root user to do anything, and allow anybody to create or use databases

Installing and Upgrading MySQL

108

with a name of test or starting with test_.

It is important to make sure that the database directories and files are owned by the mysql login
account so that the server has read and write access to them when you run it later. To ensure this,
the --user option should be used as shown if you run mysql_install_db as root. Other-
wise, you should execute the script while logged in as mysql, in which case you can omit the -
-user option from the command.

mysql_install_db creates several tables in the mysql database, including user, db, host,
tables_priv, columns_priv, func, and others. See Section 5.8, “The MySQL Access Priv-
ilege System”, for a complete listing and description of these tables.

If you don't want to have the test database, you can remove it with mysqladmin -u root
drop test after starting the server.

If you have trouble with mysql_install_db at this point, see Section 2.10.2.1, “Problems Run-
ning mysql_install_db”.

3. Start the MySQL server:

shell> bin/mysqld_safe --user=mysql &

It is important that the MySQL server be run using an unprivileged (non-root) login account. To
ensure this, the --user option should be used as shown if you run mysql_safe as system
root. Otherwise, you should execute the script while logged in to the system as mysql, in which
case you can omit the --user option from the command.

Further instructions for running MySQL as an unprivileged user are given in Section 5.7.5, “How
to Run MySQL as a Normal User”.

If you neglected to create the grant tables before proceeding to this step, the following message ap-
pears in the error log file when you start the server:

mysqld: Can't find file: 'host.frm'

If you have other problems starting the server, see Section 2.10.2.3, “Starting and Troubleshooting
the MySQL Server”.

4. Use mysqladmin to verify that the server is running. The following commands provide simple
tests to check whether the server is up and responding to connections:

shell> bin/mysqladmin version
shell> bin/mysqladmin variables

The output from mysqladmin version varies slightly depending on your platform and version
of MySQL, but should be similar to that shown here:

shell> bin/mysqladmin version
mysqladmin Ver 14.12 Distrib 5.0.25, for pc-linux-gnu on i686
Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
This software comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to modify and redistribute it under the GPL license

Server version 5.0.25-Max
Protocol version 10
Connection Localhost via UNIX socket
UNIX socket /var/lib/mysql/mysql.sock
Uptime: 14 days 5 hours 5 min 21 sec

Threads: 1 Questions: 366 Slow queries: 0
Opens: 0 Flush tables: 1 Open tables: 19
Queries per second avg: 0.000

Installing and Upgrading MySQL

109

To see what else you can do with mysqladmin, invoke it with the --help option.

5. Verify that you can shut down the server:

shell> bin/mysqladmin -u root shutdown

6. Verify that you can start the server again. Do this by using mysqld_safe or by invoking
mysqld directly. For example:

shell> bin/mysqld_safe --user=mysql --log &

If mysqld_safe fails, see Section 2.10.2.3, “Starting and Troubleshooting the MySQL Server”.

7. Run some simple tests to verify that you can retrieve information from the server. The output
should be similar to what is shown here:

shell> bin/mysqlshow
+-----------+
| Databases |
+-----------+
| mysql |
| test |
+-----------+

shell> bin/mysqlshow mysql
Database: mysql
+---------------------------+
| Tables |
+---------------------------+
| columns_priv |
| db |
| func |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| proc |
| procs_priv |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+---------------------------+

shell> bin/mysql -e "SELECT Host,Db,User FROM db" mysql
+------+--------+------+
| host | db | user |
+------+--------+------+
| % | test | |
| % | test_% | |
+------+--------+------+

8. There is a benchmark suite in the sql-bench directory (under the MySQL installation directory)
that you can use to compare how MySQL performs on different platforms. The benchmark suite is
written in Perl. It requires the Perl DBI module that provides a database-independent interface to
the various databases, and some other additional Perl modules:

DBI
DBD::mysql
Data::Dumper
Data::ShowTable

Installing and Upgrading MySQL

110

These modules can be obtained from CPAN (http://www.cpan.org/). See also Section 2.14.1,
“Installing Perl on Unix”.

The sql-bench/Results directory contains the results from many runs against different data-
bases and platforms. To run all tests, execute these commands:

shell> cd sql-bench
shell> perl run-all-tests

If you don't have the sql-bench directory, you probably installed MySQL using RPM files other
than the source RPM. (The source RPM includes the sql-bench benchmark directory.) In this
case, you must first install the benchmark suite before you can use it. There are separate benchmark
RPM files named mysql-bench-VERSION-i386.rpm that contain benchmark code and data.

If you have a source distribution, there are also tests in its tests subdirectory that you can run.
For example, to run auto_increment.tst, execute this command from the top-level directory
of your source distribution:

shell> mysql -vvf test < ./tests/auto_increment.tst

The expected result of the test can be found in the ./tests/auto_increment.res file.

9. At this point, you should have the server running. However, none of the initial MySQL accounts
have a password, so you should assign passwords using the instructions found in Section 2.10.3,
“Securing the Initial MySQL Accounts”.

The MySQL 5.0 installation procedure creates time zone tables in the mysql database. However, you
must populate the tables manually using the instructions in Section 5.11.8, “MySQL Server Time Zone
Support”.

2.10.2.1. Problems Running mysql_install_db

The purpose of the mysql_install_db script is to generate new MySQL privilege tables. It does not
overwrite existing MySQL privilege tables, and it does not affect any other data.

If you want to re-create your privilege tables, first stop the mysqld server if it's running. Then rename
the mysql directory under the data directory to save it, and then run mysql_install_db. Suppose
that your current directory is the MySQL installation directory and that mysql_install_db is loc-
ated in the bin directory and the data directory is named data. To rename the mysql database and re-
run mysql_install_db, use these commands.

shell> mv data/mysql data/mysql.old
shell> bin/mysql_install_db --user=mysql

When you run mysql_install_db, you might encounter the following problems:

• mysql_install_db fails to install the grant tables

You may find that mysql_install_db fails to install the grant tables and terminates after dis-
playing the following messages:

Starting mysqld daemon with databases from XXXXXX
mysqld ended

In this case, you should examine the error log file very carefully. The log should be located in the

Installing and Upgrading MySQL

111

http://www.cpan.org/

directory XXXXXX named by the error message and should indicate why mysqld didn't start. If you
do not understand what happened, include the log when you post a bug report. See Section 1.8,
“How to Report Bugs or Problems”.

• There is a mysqld process running

This indicates that the server is running, in which case the grant tables have probably been created
already. If so, there is no need to run mysql_install_db at all because it needs to be run only
once (when you install MySQL the first time).

• Installing a second mysqld server does not work when one server is running

This can happen when you have an existing MySQL installation, but want to put a new installation
in a different location. For example, you might have a production installation, but you want to create
a second installation for testing purposes. Generally the problem that occurs when you try to run a
second server is that it tries to use a network interface that is in use by the first server. In this case,
you should see one of the following error messages:

Can't start server: Bind on TCP/IP port:
Address already in use
Can't start server: Bind on unix socket...

For instructions on setting up multiple servers, see Section 5.13, “Running Multiple MySQL Servers
on the Same Machine”.

• You do not have write access to the /tmp directory

If you do not have write access to create temporary files or a Unix socket file in the default location
(the /tmp directory), an error occurs when you run mysql_install_db or the mysqld server.

You can specify different locations for the temporary directory and Unix socket file by executing
these commands prior to starting mysql_install_db or mysqld, where some_tmp_dir is
the full pathname to some directory for which you have write permission:

shell> TMPDIR=/some_tmp_dir/
shell> MYSQL_UNIX_PORT=/some_tmp_dir/mysql.sock
shell> export TMPDIR MYSQL_UNIX_PORT

Then you should be able to run mysql_install_db and start the server with these commands:

shell> bin/mysql_install_db --user=mysql
shell> bin/mysqld_safe --user=mysql &

If mysql_install_db is located in the scripts directory, modify the first command to
scripts/mysql_install_db.

See Section A.4.5, “How to Protect or Change the MySQL Unix Socket File”, and Appendix F, En-
vironment Variables.

There are some alternatives to running the mysql_install_db script provided in the MySQL distri-
bution:

• If you want the initial privileges to be different from the standard defaults, you can modify
mysql_install_db before you run it. However, it is preferable to use GRANT and REVOKE to
change the privileges after the grant tables have been set up. In other words, you can run
mysql_install_db, and then use mysql -u root mysql to connect to the server as the

Installing and Upgrading MySQL

112

MySQL root user so that you can issue the necessary GRANT and REVOKE statements.

If you want to install MySQL on several machines with the same privileges, you can put the GRANT
and REVOKE statements in a file and execute the file as a script using mysql after running
mysql_install_db. For example:

shell> bin/mysql_install_db --user=mysql
shell> bin/mysql -u root < your_script_file

By doing this, you can avoid having to issue the statements manually on each machine.

• It is possible to re-create the grant tables completely after they have previously been created. You
might want to do this if you're just learning how to use GRANT and REVOKE and have made so
many modifications after running mysql_install_db that you want to wipe out the tables and
start over.

To re-create the grant tables, remove all the .frm, .MYI, and .MYD files in the mysql database
directory. Then run the mysql_install_db script again.

• You can start mysqld manually using the --skip-grant-tables option and add the privilege
information yourself using mysql:

shell> bin/mysqld_safe --user=mysql --skip-grant-tables &
shell> bin/mysql mysql

From mysql, manually execute the SQL commands contained in mysql_install_db. Make
sure that you run mysqladmin flush-privileges or mysqladmin reload afterward to
tell the server to reload the grant tables.

Note that by not using mysql_install_db, you not only have to populate the grant tables manu-
ally, you also have to create them first.

2.10.2.2. Starting and Stopping MySQL Automatically

Generally, you start the mysqld server in one of these ways:

• By invoking mysqld directly. This works on any platform.

• By running the MySQL server as a Windows service. This can be done on versions of Windows that
support services (such as NT, 2000, XP, and 2003). The service can be set to start the server auto-
matically when Windows starts, or as a manual service that you start on request. For instructions, see
Section 2.3.11, “Starting MySQL as a Windows Service”.

• By invoking mysqld_safe, which tries to determine the proper options for mysqld and then runs
it with those options. This script is used on Unix and Unix-like systems. See Section 5.4.1,
“mysqld_safe — MySQL Server Startup Script”.

• By invoking mysql.server. This script is used primarily at system startup and shutdown on sys-
tems that use System V-style run directories, where it usually is installed under the name mysql.
The mysql.server script starts the server by invoking mysqld_safe. See Section 5.4.2,
“mysql.server — MySQL Server Startup Script”.

• On Mac OS X, you can install a separate MySQL Startup Item package to enable the automatic star-
tup of MySQL on system startup. The Startup Item starts the server by invoking mysql.server.
See Section 2.5, “Installing MySQL on Mac OS X”, for details.

Installing and Upgrading MySQL

113

The mysqld_safe and mysql.server scripts and the Mac OS X Startup Item can be used to start
the server manually, or automatically at system startup time. mysql.server and the Startup Item also
can be used to stop the server.

To start or stop the server manually using the mysql.server script, invoke it with start or stop
arguments:

shell> mysql.server start
shell> mysql.server stop

Before mysql.server starts the server, it changes location to the MySQL installation directory, and
then invokes mysqld_safe. If you want the server to run as some specific user, add an appropriate
user option to the [mysqld] group of the /etc/my.cnf option file, as shown later in this section.
(It is possible that you will need to edit mysql.server if you've installed a binary distribution of
MySQL in a non-standard location. Modify it to cd into the proper directory before it runs
mysqld_safe. If you do this, your modified version of mysql.server may be overwritten if you
upgrade MySQL in the future, so you should make a copy of your edited version that you can reinstall.)

mysql.server stop stops the server by sending a signal to it. You can also stop the server manu-
ally by executing mysqladmin shutdown.

To start and stop MySQL automatically on your server, you need to add start and stop commands to the
appropriate places in your /etc/rc* files.

If you use the Linux server RPM package (MySQL-server-VERSION.rpm), the mysql.server
script is installed in the /etc/init.d directory with the name mysql. You need not install it manu-
ally. See Section 2.4, “Installing MySQL on Linux”, for more information on the Linux RPM packages.

Some vendors provide RPM packages that install a startup script under a different name such as
mysqld.

If you install MySQL from a source distribution or using a binary distribution format that does not in-
stall mysql.server automatically, you can install it manually. The script can be found in the sup-
port-files directory under the MySQL installation directory or in a MySQL source tree.

To install mysql.server manually, copy it to the /etc/init.d directory with the name mysql,
and then make it executable. Do this by changing location into the appropriate directory where
mysql.server is located and executing these commands:

shell> cp mysql.server /etc/init.d/mysql
shell> chmod +x /etc/init.d/mysql

Older Red Hat systems use the /etc/rc.d/init.d directory rather than /etc/init.d. Adjust
the preceding commands accordingly. Alternatively, first create /etc/init.d as a symbolic link that
points to /etc/rc.d/init.d:

shell> cd /etc
shell> ln -s rc.d/init.d .

After installing the script, the commands needed to activate it to run at system startup depend on your
operating system. On Linux, you can use chkconfig:

shell> chkconfig --add mysql

On some Linux systems, the following command also seems to be necessary to fully enable the mysql
script:

shell> chkconfig --level 345 mysql on

Installing and Upgrading MySQL

114

On FreeBSD, startup scripts generally should go in /usr/local/etc/rc.d/. The rc(8) manual
page states that scripts in this directory are executed only if their basename matches the *.sh shell file-
name pattern. Any other files or directories present within the directory are silently ignored. In other
words, on FreeBSD, you should install the mysql.server script as /
usr/local/etc/rc.d/mysql.server.sh to enable automatic startup.

As an alternative to the preceding setup, some operating systems also use /etc/rc.local or /
etc/init.d/boot.local to start additional services on startup. To start up MySQL using this
method, you could append a command like the one following to the appropriate startup file:

/bin/sh -c 'cd /usr/local/mysql; ./bin/mysqld_safe --user=mysql &'

For other systems, consult your operating system documentation to see how to install startup scripts.

You can add options for mysql.server in a global /etc/my.cnf file. A typical /etc/my.cnf
file might look like this:

[mysqld]
datadir=/usr/local/mysql/var
socket=/var/tmp/mysql.sock
port=3306
user=mysql

[mysql.server]
basedir=/usr/local/mysql

The mysql.server script understands the following options: basedir, datadir, and pid-file.
If specified, they must be placed in an option file, not on the command line. mysql.server under-
stands only start and stop as command-line arguments.

The following table shows which option groups the server and each startup script read from option files:

Script Option Groups

mysqld [mysqld], [server], [mysqld-major_version]

mysqld_safe [mysqld], [server], [mysqld_safe]

mysql.server [mysqld], [mysql.server], [server]

[mysqld-major_version] means that groups with names like [mysqld-4.1] and
[mysqld-5.0] are read by servers having versions 4.1.x, 5.0.x, and so forth. This feature can be used
to specify options that can be read only by servers within a given release series.

For backward compatibility, mysql.server also reads the [mysql_server] group and
mysqld_safe also reads the [safe_mysqld] group. However, you should update your option files
to use the [mysql.server] and [mysqld_safe] groups instead when using MySQL 5.0.

See Section 4.3.2, “Using Option Files”.

2.10.2.3. Starting and Troubleshooting the MySQL Server

This section provides troubleshooting suggestions for problems starting the server on Unix. If you are
using Windows, see Section 2.3.13, “Troubleshooting a MySQL Installation Under Windows”.

If you have problems starting the server, here are some things to try:

• Check the error log to see why the server does not start.

Installing and Upgrading MySQL

115

• Specify any special options needed by the storage engines you are using.

• Make sure that the server knows where to find the data directory.

• Make sure that the server can access the data directory. The ownership and permissions of the data
directory and its contents must be set such that the server can read and modify them.

• Verify that the network interfaces the server wants to use are available.

Some storage engines have options that control their behavior. You can create a my.cnf file and spe-
cify startup options for the engines that you plan to use. If you are going to use storage engines that sup-
port transactional tables (InnoDB, BDB, NDB), be sure that you have them configured the way you want
before starting the server:

• If you are using InnoDB tables, see Section 14.2.3, “InnoDB Configuration”.

• If you are using BDB (Berkeley DB) tables, see Section 14.5.3, “BDB Startup Options”.

• If you are using MySQL Cluster, see Section 15.4, “MySQL Cluster Configuration”.

Storage engines will use default option values if you specify none, but it is recommended that you re-
view the available options and specify explicit values for those for which the defaults are not appropriate
for your installation.

When the mysqld server starts, it changes location to the data directory. This is where it expects to find
databases and where it expects to write log files. The server also writes the pid (process ID) file in the
data directory.

The data directory location is hardwired in when the server is compiled. This is where the server looks
for the data directory by default. If the data directory is located somewhere else on your system, the
server will not work properly. You can determine what the default path settings are by invoking
mysqld with the --verbose and --help options.

If the default locations don't match the MySQL installation layout on your system, you can override
them by specifying options to mysqld or mysqld_safe on the command line or in an option file.

To specify the location of the data directory explicitly, use the --datadir option. However, normally
you can tell mysqld the location of the base directory under which MySQL is installed and it looks for
the data directory there. You can do this with the --basedir option.

To check the effect of specifying path options, invoke mysqld with those options followed by the -
-verbose and --help options. For example, if you change location into the directory where
mysqld is installed and then run the following command, it shows the effect of starting the server with
a base directory of /usr/local:

shell> ./mysqld --basedir=/usr/local --verbose --help

You can specify other options such as --datadir as well, but --verbose and --help must be the
last options.

Once you determine the path settings you want, start the server without --verbose and --help.

If mysqld is currently running, you can find out what path settings it is using by executing this com-
mand:

shell> mysqladmin variables

Installing and Upgrading MySQL

116

Or:

shell> mysqladmin -h host_name variables

host_name is the name of the MySQL server host.

If you get Errcode 13 (which means Permission denied) when starting mysqld, this means
that the privileges of the data directory or its contents do not allow the server access. In this case, you
change the permissions for the involved files and directories so that the server has the right to use them.
You can also start the server as root, but this raises security issues and should be avoided.

On Unix, change location into the data directory and check the ownership of the data directory and its
contents to make sure the server has access. For example, if the data directory is /
usr/local/mysql/var, use this command:

shell> ls -la /usr/local/mysql/var

If the data directory or its files or subdirectories are not owned by the login account that you use for run-
ning the server, change their ownership to that account. If the account is named mysql, use these com-
mands:

shell> chown -R mysql /usr/local/mysql/var
shell> chgrp -R mysql /usr/local/mysql/var

If the server fails to start up correctly, check the error log. Log files are located in the data directory
(typically C:\Program Files\MySQL\MySQL Server 5.0\data on Windows, /
usr/local/mysql/data for a Unix binary distribution, and /usr/local/var for a Unix source
distribution). Look in the data directory for files with names of the form host_name.err and
host_name.log, where host_name is the name of your server host. Then examine the last few
lines of these files. On Unix, you can use tail to display them:

shell> tail host_name.err
shell> tail host_name.log

The error log should contain information that indicates why the server couldn't start. For example, you
might see something like this in the log:

000729 14:50:10 bdb: Recovery function for LSN 1 27595 failed
000729 14:50:10 bdb: warning: ./test/t1.db: No such file or directory
000729 14:50:10 Can't init databases

This means that you did not start mysqld with the --bdb-no-recover option and Berkeley DB
found something wrong with its own log files when it tried to recover your databases. To be able to con-
tinue, you should move the old Berkeley DB log files from the database directory to some other place,
where you can later examine them. The BDB log files are named in sequence beginning with
log.0000000001, where the number increases over time.

If you are running mysqld with BDB table support and mysqld dumps core at startup, this could be
due to problems with the BDB recovery log. In this case, you can try starting mysqld with -
-bdb-no-recover. If that helps, you should remove all BDB log files from the data directory and try
starting mysqld again without the --bdb-no-recover option.

If either of the following errors occur, it means that some other program (perhaps another mysqld serv-
er) is using the TCP/IP port or Unix socket file that mysqld is trying to use:

Can't start server: Bind on TCP/IP port: Address already in use
Can't start server: Bind on unix socket...

Installing and Upgrading MySQL

117

Use ps to determine whether you have another mysqld server running. If so, shut down the server be-
fore starting mysqld again. (If another server is running, and you really want to run multiple servers,
you can find information about how to do so in Section 5.13, “Running Multiple MySQL Servers on the
Same Machine”.)

If no other server is running, try to execute the command telnet your_host_name
tcp_ip_port_number. (The default MySQL port number is 3306.) Then press Enter a couple of
times. If you don't get an error message like telnet: Unable to connect to remote
host: Connection refused, some other program is using the TCP/IP port that mysqld is try-
ing to use. You'll need to track down what program this is and disable it, or else tell mysqld to listen to
a different port with the --port option. In this case, you'll also need to specify the port number for cli-
ent programs when connecting to the server via TCP/IP.

Another reason the port might be inaccessible is that you have a firewall running that blocks connections
to it. If so, modify the firewall settings to allow access to the port.

If the server starts but you can't connect to it, you should make sure that you have an entry in /
etc/hosts that looks like this:

127.0.0.1 localhost

This problem occurs only on systems that do not have a working thread library and for which MySQL
must be configured to use MIT-pthreads.

If you cannot get mysqld to start, you can try to make a trace file to find the problem by using the -
-debug option. See Section E.1.2, “Creating Trace Files”.

2.10.3. Securing the Initial MySQL Accounts
Part of the MySQL installation process is to set up the mysql database that contains the grant tables:

• Windows distributions contain preinitialized grant tables that are installed automatically.

• On Unix, the grant tables are populated by the mysql_install_db program. Some installation
methods run this program for you. Others require that you execute it manually. For details, see Sec-
tion 2.10.2, “Unix Post-Installation Procedures”.

The grant tables define the initial MySQL user accounts and their access privileges. These accounts are
set up as follows:

• Accounts with the username root are created. These are superuser accounts that can do anything.
The initial root account passwords are empty, so anyone can connect to the MySQL server as
root — without a password — and be granted all privileges.

• On Windows, one root account is created; this account allows connecting from the local host
only. The Windows installer will optionally create an account allowing for connections from any
host only if the user selects the Enable root access from remote machines option
during installation.

• On Unix, both root accounts are for connections from the local host. Connections must be
made from the local host by specifying a hostname of localhost for one of the accounts, or
the actual hostname or IP number for the other.

• Two anonymous-user accounts are created, each with an empty username. The anonymous accounts
have no password, so anyone can use them to connect to the MySQL server.

Installing and Upgrading MySQL

118

• On Windows, one anonymous account is for connections from the local host. It has all privileges,
just like the root accounts. The other is for connections from any host and has all privileges for
the test database and for other databases with names that start with test.

• On Unix, both anonymous accounts are for connections from the local host. Connections must be
made from the local host by specifying a hostname of localhost for one of the accounts, or
the actual hostname or IP number for the other. These accounts have all privileges for the test
database and for other databases with names that start with test_.

As noted, none of the initial accounts have passwords. This means that your MySQL installation is un-
protected until you do something about it:

• If you want to prevent clients from connecting as anonymous users without a password, you should
either assign a password to each anonymous account or else remove the accounts.

• You should assign a password to each MySQL root account.

The following instructions describe how to set up passwords for the initial MySQL accounts, first for the
anonymous accounts and then for the root accounts. Replace “newpwd” in the examples with the ac-
tual password that you want to use. The instructions also cover how to remove the anonymous accounts,
should you prefer not to allow anonymous access at all.

You might want to defer setting the passwords until later, so that you don't need to specify them while
you perform additional setup or testing. However, be sure to set them before using your installation for
production purposes.

Anonymous Account Password Assignment

To assign passwords to the anonymous accounts, connect to the server as root and then use either SET
PASSWORD or UPDATE. In either case, be sure to encrypt the password using the PASSWORD() func-
tion.

To use SET PASSWORD on Windows, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR ''@'%' = PASSWORD('newpwd');

To use SET PASSWORD on Unix, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR ''@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR ''@'host_name' = PASSWORD('newpwd');

In the second SET PASSWORD statement, replace host_name with the name of the server host. This
is the name that is specified in the Host column of the non-localhost record for root in the user
table. If you don't know what hostname this is, issue the following statement before using SET PASS-
WORD:

mysql> SELECT Host, User FROM mysql.user;

Look for the record that has root in the User column and something other than localhost in the
Host column. Then use that Host value in the second SET PASSWORD statement.

The other way to assign passwords to the anonymous accounts is by using UPDATE to modify the user

Installing and Upgrading MySQL

119

table directly. Connect to the server as root and issue an UPDATE statement that assigns a value to the
Password column of the appropriate user table records. The procedure is the same for Windows and
Unix. The following UPDATE statement assigns a password to both anonymous accounts at once:

shell> mysql -u root
mysql> UPDATE mysql.user SET Password = PASSWORD('newpwd')

-> WHERE User = '';
mysql> FLUSH PRIVILEGES;

After you update the passwords in the user table directly using UPDATE, you must tell the server to re-
read the grant tables with FLUSH PRIVILEGES. Otherwise, the change goes unnoticed until you re-
start the server.

Anonymous Account Removal

If you prefer to remove the anonymous accounts instead, do so as follows:

shell> mysql -u root
mysql> DELETE FROM mysql.user WHERE User = '';
mysql> FLUSH PRIVILEGES;

The DELETE statement applies both to Windows and to Unix. On Windows, if you want to remove only
the anonymous account that has the same privileges as root, do this instead:

shell> mysql -u root
mysql> DELETE FROM mysql.user WHERE Host='localhost' AND User='';
mysql> FLUSH PRIVILEGES;

That account allows anonymous access but has full privileges, so removing it improves security.

root Account Password Assignment

You can assign passwords to the root accounts in several ways. The following discussion demonstrates
three methods:

• Use the SET PASSWORD statement

• Use the mysqladmin command-line client program

• Use the UPDATE statement

To assign passwords using SET PASSWORD, connect to the server as root and issue two SET
PASSWORD statements. Be sure to encrypt the password using the PASSWORD() function.

For Windows, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'%' = PASSWORD('newpwd');

For Unix, do this:

shell> mysql -u root
mysql> SET PASSWORD FOR 'root'@'localhost' = PASSWORD('newpwd');
mysql> SET PASSWORD FOR 'root'@'host_name' = PASSWORD('newpwd');

In the second SET PASSWORD statement, replace host_name with the name of the server host. This
is the same hostname that you used when you assigned the anonymous account passwords.

Installing and Upgrading MySQL

120

To assign passwords to the root accounts using mysqladmin, execute the following commands:

shell> mysqladmin -u root password "newpwd"
shell> mysqladmin -u root -h host_name password "newpwd"

These commands apply both to Windows and to Unix. In the second command, replace host_name
with the name of the server host. The double quotes around the password are not always necessary, but
you should use them if the password contains spaces or other characters that are special to your com-
mand interpreter.

You can also use UPDATE to modify the user table directly. The following UPDATE statement assigns
a password to both root accounts at once:

shell> mysql -u root
mysql> UPDATE mysql.user SET Password = PASSWORD('newpwd')

-> WHERE User = 'root';
mysql> FLUSH PRIVILEGES;

The UPDATE statement applies both to Windows and to Unix.

After the passwords have been set, you must supply the appropriate password whenever you connect to
the server. For example, if you want to use mysqladmin to shut down the server, you can do so using
this command:

shell> mysqladmin -u root -p shutdown
Enter password: (enter root password here)

Note: If you forget your root password after setting it up, Section A.4.1, “How to Reset the Root Pass-
word”, covers the procedure for resetting it.

To set up additional accounts, you can use the GRANT statement. For instructions, see Section 5.9.2,
“Adding New User Accounts to MySQL”.

2.11. Upgrading MySQL
As a general rule, we recommend that when upgrading from one release series to another, you should go
to the next series rather than skipping a series. For example, if you currently are running MySQL 3.23
and wish to upgrade to a newer series, upgrade to MySQL 4.0 rather than to 4.1 or 5.0.

The following items form a checklist of things that you should do whenever you perform an upgrade:

• Before upgrading from MySQL 4.1 to 5.0, read Section 2.11.2, “Upgrading from MySQL 4.1 to
5.0”) as well as Appendix D, MySQL Change History. These provide information about features that
are new in MySQL 5.0 or differ from those found in MySQL 4.1. If you wish to upgrade from a re-
lease series previous to MySQL 4.1, you should upgrade to each successive release series in turn un-
til you have reached MySQL 4.1, and then proceed with the upgrade to MySQL 5.0. For information
on upgrading from MySQL 4.1 or earlier releases, see the MySQL 3.23, 4.0, 4.1 Reference Manual.

• Before you perform an upgrade, back up your databases, including the mysql database that contains
the grant tables.

• Some releases of MySQL introduce incompatible changes to tables. (Our aim is to avoid these
changes, but occasionally they are necessary to correct problems that would be worse than an incom-
patibility between releases.) Some releases of MySQL introduce changes to the structure of the grant
tables to add new privileges or features.

To avoid problems due to such changes, after you upgrade to a new version of MySQL, you should

Installing and Upgrading MySQL

121

run mysql_upgrade to check your tables (and repair them if necessary), and to update your grant
tables to make sure that they have the current structure so that you can take advantage of any new
capabilities. See Section 5.6.2, “mysql_upgrade — Check Tables for MySQL Upgrade”.

• If you are running MySQL Server on Windows, see Section 2.3.14, “Upgrading MySQL on Win-
dows”.

• If you are using replication, see Section 6.6, “Upgrading a Replication Setup”, for information on
upgrading your replication setup.

• If you previously installed a MySQL-Max distribution that includes a server named mysqld-max,
and then upgrade later to a non-Max version of MySQL, mysqld_safe still attempts to run the old
mysqld-max server. If you perform such an upgrade, you should remove the old mysqld-max
server manually to ensure that mysqld_safe runs the new mysqld server.

You can always move the MySQL format files and data files between different versions on the same ar-
chitecture as long as you stay within versions for the same release series of MySQL. If you change the
character set when running MySQL, you must run myisamchk -r -q --set-collation=col-
lation_name on all MyISAM tables. Otherwise, your indexes may not be ordered correctly, because
changing the character set may also change the sort order.

If you are cautious about using new versions, you can always rename your old mysqld before installing
a newer one. For example, if you are using MySQL 4.1.13 and want to upgrade to 5.0.10, rename your
current server from mysqld to mysqld-4.1.13. If your new mysqld then does something unex-
pected, you can simply shut it down and restart with your old mysqld.

If, after an upgrade, you experience problems with recompiled client programs, such as Commands
out of sync or unexpected core dumps, you probably have used old header or library files when
compiling your programs. In this case, you should check the date for your mysql.h file and
libmysqlclient.a library to verify that they are from the new MySQL distribution. If not, recom-
pile your programs with the new headers and libraries.

If problems occur, such as that the new mysqld server does not start or that you cannot connect without
a password, verify that you do not have an old my.cnf file from your previous installation. You can
check this with the --print-defaults option (for example, mysqld --print-defaults). If
this command displays anything other than the program name, you have an active my.cnf file that af-
fects server or client operation.

It is a good idea to rebuild and reinstall the Perl DBD::mysql module whenever you install a new re-
lease of MySQL. The same applies to other MySQL interfaces as well, such as the PHP mysql exten-
sion and the Python MySQLdb module.

2.11.1. Upgrading from MySQL 5.0 to 5.1
When upgrading a 5.0 installation to 5.0.10 or above note that it is necessary to upgrade your grant
tables. Otherwise, creating stored procedures and functions might not work. The procedure for doing
this is described in Section 5.6.2, “mysql_upgrade — Check Tables for MySQL Upgrade”.

2.11.2. Upgrading from MySQL 4.1 to 5.0
Note: It is good practice to back up your data before installing any new version of software. Although
MySQL works very hard to ensure a high level of quality, you should protect your data by making a
backup. MySQL generally recommends that you dump and reload your tables from any previous version
to upgrade to 5.0.

In general, you should do the following when upgrading from MySQL 4.1 from 5.0:

Installing and Upgrading MySQL

122

• Check the items in the change lists found later in this section to see whether any of them might affect
your applications. Note particularly any that are marked Incompatible change. These result in in-
compatibilities with earlier versions of MySQL, and may require your attention before you upgrade.

• Some releases of MySQL introduce incompatible changes to tables. (Our aim is to avoid these
changes, but occasionally they are necessary to correct problems that would be worse than an incom-
patibility between releases.) Some releases of MySQL introduce changes to the structure of the grant
tables to add new privileges or features.

To avoid problems due to such changes, after you upgrade to a new version of MySQL, you should
check your tables (and repair them if necessary), and update your grant tables to make sure that they
have the current structure so that you can take advantage of any new capabilities. See Section 5.6.2,
“mysql_upgrade — Check Tables for MySQL Upgrade”.

• Read the MySQL 5.0 change history to see what significant new features you can use in 5.0. See
Section D.1, “Changes in release 5.0.x (Production)”.

• If you are running MySQL Server on Windows, see Section 2.3.14, “Upgrading MySQL on Win-
dows”.

• MySQL 5.0 adds support for stored procedures. This support requires the mysql.proc table. To
create this table, you should run the mysql_upgrade program as described in Section 5.6.2,
“mysql_upgrade — Check Tables for MySQL Upgrade”.

• MySQL 5.0 adds support for views. This support requires extra privilege columns in the
mysql.user and mysql.db tables. To create these columns, you should run the
mysql_upgrade program as described in Section 5.6.2, “mysql_upgrade — Check Tables for
MySQL Upgrade”.

• If you are using replication, see Section 6.6, “Upgrading a Replication Setup”, for information on
upgrading your replication setup.

Several visible behaviors have changed between MySQL 4.1 and MySQL 5.0 to make MySQL more
compatible with standard SQL. These changes may affect your applications.

The following lists describe changes that may affect applications and that you should watch out for
when upgrading to MySQL 5.0.

Server Changes:

• Incompatible change: The indexing order for end-space in TEXT columns for InnoDB and MyIS-
AM tables has changed. Starting from 5.0.3, TEXT indexes are compared as space-padded at the end
(just as MySQL sorts CHAR, VARCHAR and TEXT fields). If you have a index on a TEXT column,
you should run CHECK TABLE on it. If the check reports errors, rebuild the indexes: Dump and re-
load the table if it is an InnoDB table, or run OPTIMIZE TABLE or REPAIR TABLE if it is a
MyISAM table.

• Warning: Incompatible change. For BINARY columns, the pad value and how it is handled has
changed as of MySQL 5.0.15. The pad value for inserts now is 0x00 rather than space, and there is
no stripping of the pad value for retrievals. For details, see Section 11.4.2, “The BINARY and VAR-
BINARY Types”.

• Incompatible change: As of MySQL 5.0.3, the server by default no longer loads user-defined func-
tions (UDFs) unless they have at least one auxiliary symbol (for example, an xxx_init or
xxx_deinit symbol) defined in addition to the main function symbol. This behavior can be over-
ridden with the --allow-suspicious-udfs option. See Section 24.2.4.6, “User-Defined
Function Security Precautions”.

Installing and Upgrading MySQL

123

• Incompatible change: The update log has been removed in MySQL 5.0. If you had enabled it previ-
ously, you should enable the binary log instead.

• Incompatible change: Support for the ISAM storage engine has been removed in MySQL 5.0. If
you have any ISAM tables, you should convert them before upgrading. For example, to convert an
ISAM table to use the MyISAM storage engine, use this statement:

ALTER TABLE tbl_name ENGINE = MyISAM;

Use a similar statement for every ISAM table in each of your databases.

• Incompatible change: Support for RAID options in MyISAM tables has been removed in MySQL
5.0. If you have tables that use these options, you should convert them before upgrading. One way to
do this is to dump them with mysqldump, edit the dump file to remove the RAID options in the
CREATE TABLE statements, and reload the dump file. Another possibility is to use CREATE TA-
BLE new_tbl ... SELECT raid_tbl to create a new table from the RAID table. However,
the CREATE TABLE part of the statement must contain sufficient information to re-create column
attributes as well as indexes, or column attributes may be lost and indexes will not appear in the new
table. See Section 13.1.5, “CREATE TABLE Syntax”.

The .MYD files for RAID tables in a given database are stored under the database directory in sub-
directories that have names consisting of two hex digits in the range from 00 to ff. After converting
all tables that use RAID options, these RAID-related subdirectories still will exist but can be re-
moved. Verify that they are empty, and then remove them manually. (If they are not empty, there is
some RAID table that has not been converted.)

• In MySQL 5.0.6, binary logging of stored routines and triggers was changed. This change has im-
plications for security, replication, and data recovery, as discussed in Section 17.5, “Binary Logging
of Stored Routines and Triggers”.

SQL Changes:

• Incompatible change: Beginning with MySQL 5.0.12, natural joins and joins with USING, includ-
ing outer join variants, are processed according to the SQL:2003 standard. The changes include
elimination of redundant output columns for NATURAL joins and joins specified with a USING
clause and proper ordering of output columns. The precedence of the comma operator also now is
lower compared to JOIN, LEFT JOIN, and so forth.

These changes make MySQL more compliant with standard SQL. However, they can result in differ-
ent output columns for some joins. Also, some queries that appeared to work correctly prior to 5.0.12
must be rewritten to comply with the standard. For details about the scope of the changes and ex-
amples that show what query rewrites are necessary, see Section 13.2.7.1, “JOIN Syntax”.

• Incompatible change: Previously, a lock wait timeout caused InnoDB to roll back the entire cur-
rent transaction. As of MySQL 5.0.13, it rolls back only the most recent SQL statement.

• Incompatible change: The namespace for triggers has changed in MySQL 5.0.10. Previously, trig-
ger names had to be unique per table. Now they must be unique within the schema (database). An
implication of this change is that DROP TRIGGER syntax now uses a schema name instead of a ta-
ble name (schema name is optional and, if omitted, the current schema will be used).

When upgrading from a previous version of MySQL 5 to MySQL 5.0.10 or newer, you must drop all
triggers and re-create them or DROP TRIGGER will not work after the upgrade. Here is a suggested
procedure for doing this:

1. Upgrade to MySQL 5.0.10 or later to be able to access trigger information in the INFORMA-

Installing and Upgrading MySQL

124

TION_SCHEMA.TRIGGERS table. (It should work even for pre-5.0.10 triggers.)

2. Dump all trigger definitions using the following SELECT statement:

SELECT CONCAT('CREATE TRIGGER ', t.TRIGGER_SCHEMA, '.', t.TRIGGER_NAME,
' ', t.ACTION_TIMING, ' ', t.EVENT_MANIPULATION, ' ON ',
t.EVENT_OBJECT_SCHEMA, '.', t.EVENT_OBJECT_TABLE,
' FOR EACH ROW ', t.ACTION_STATEMENT, '//')

INTO OUTFILE '/tmp/triggers.sql'
FROM INFORMATION_SCHEMA.TRIGGERS AS t;

The statement uses INTO OUTFILE, so you must have the FILE privilege. The file will be
created on the server host. Use a different filename if you like. To be 100% safe, inspect the
trigger definitions in the triggers.sql file, and perhaps make a backup of the file.

3. Stop the server and drop all triggers by removing all .TRG files in your database directories.
Change location to your data directory and issue this command:

shell> rm */*.TRG

4. Start the server and re-create all triggers using the triggers.sql file. For the file created
earlier, use these commands in the mysql program:

mysql> delimiter // ;
mysql> source /tmp/triggers.sql //

5. Use the SHOW TRIGGERS statement to check that all triggers were created successfully.

• Incompatible change: As of MySQL 5.0.15, the CHAR() function returns a binary string rather
than a string in the connection character set. An optional USING charset_name clause may be
used to produce a result in a specific character set instead. Also, arguments larger than 256 produce
multiple characters. They are no longer interpreted modulo 256 to produce a single character each.
These changes may cause some incompatibilities:

• CHAR(ORD('A')) = 'a' is no longer true:

mysql> SELECT CHAR(ORD('A')) = 'a';
+----------------------+
| CHAR(ORD('A')) = 'a' |
+----------------------+
| 0 |
+----------------------+

To perform a case-insensitive comparison, you can produce a result string in a non-binary char-
acter set by adding a USING clause or converting the result:

mysql> SELECT CHAR(ORD('A') USING latin1) = 'a';
+-----------------------------------+
| CHAR(ORD('A') USING latin1) = 'a' |
+-----------------------------------+
| 1 |
+-----------------------------------+
mysql> SELECT CONVERT(CHAR(ORD('A')) USING latin1) = 'a';
+--+
| CONVERT(CHAR(ORD('A')) USING latin1) = 'a' |
+--+
| 1 |
+--+

• CREATE TABLE ... SELECT CHAR(...) produces a VARBINARY column, not a
VARCHAR column. To produce a VARCHAR column, use USING or CONVERT() as just de-
scribed to convert the CHAR() result into a non-binary character set.

Installing and Upgrading MySQL

125

• Previously, the following statements inserted the value 0x00410041 ('AA' as a ucs2 string)
into the table:

CREATE TABLE t (ucs2_column CHAR(2) CHARACTER SET ucs2);
INSERT INTO t VALUES (CHAR(0x41,0x41));

As of MySQL 5.0.15, the statements insert a single ucs2 character with value 0x4141.

• Incompatible change: By default, integer subtraction involving an unsigned value should produce
an unsigned result. Tracking of the “unsignedness” of an expression was improved in MySQL
5.0.13. This means that, in some cases where an unsigned subtraction would have resulted in a
signed integer, it now results in an unsigned integer. One context in which this difference manifests
itself is when a subtraction involving an unsigned operand would be negative.

Suppose that i is a TINYINT UNSIGNED column and has a value of 0. The server evaluates the
following expression using 64-bit unsigned integer arithmetic with the following result:

mysql> SELECT i - 1 FROM t;
+----------------------+
| i - 1 |
+----------------------+
| 18446744073709551615 |
+----------------------+

If the expression is used in an UPDATE t SET i = i - 1 statement, the expression is evalu-
ated and the result assigned to i according to the usual rules for handling values outide the column
range or 0 to 255. That is, the value is clipped to the nearest endpoint of the range. However, the res-
ult is version-specific:

• Before MySQL 5.0.13, the expression is evaluated but is treated as the equivalent 64-bit signed
value (–1) for the assignment. The value of –1 is clipped to the nearest endpoint of the column
range, resulting in a value of 0:

mysql> UPDATE t SET i = i - 1; SELECT i FROM t;
+------+
| i |
+------+
| 0 |
+------+

• As of MySQL 5.0.13, the expression is evaluated and retains its unsigned attribute for the assign-
ment. The value of 18446744073709551615 is clipped to the nearest endpoint of the column
range, resulting in a value of 255:

mysql> UPDATE t SET i = i - 1; SELECT i FROM t;
+------+
| i |
+------+
| 255 |
+------+

To get the older behavior, use CAST() to convert the expression result to a signed value:

UPDATE t SET i = CAST(i - 1 AS SIGNED);

Alternatively, set the NO_UNSIGNED_SUBTRACTION SQL mode. However, this will affect all in-
teger subtractions involving unsigned values.

• Incompatible change: Before MySQL 5.0.13, NOW() and SYSDATE() return the same value (the
time at which the statement in which the function occurs begins executing). As of MySQL 5.0.13,

Installing and Upgrading MySQL

126

SYSDATE() returns the time at which it it executes, which can differ from the value returned by
NOW(). For information about the implications for binary logging and replication, see the descrip-
tion for SYSDATE() in Section 12.5, “Date and Time Functions” and for SET TIMESTAMP in
Section 13.5.3, “SET Syntax”. To restore the former behavior for SYSDATE() and cause it to be an
alias for NOW(), start the server with the --sysdate-is-now option (available as of MySQL
5.0.20).

• Incompatible change: Before MySQL 5.0.13, GREATEST(x,NULL) and LEAST(x,NULL) re-
turn x when x is a non-NULL value. As of 5.0.3, both functions return NULL if any argument is
NULL, the same as Oracle. This change can cause problems for applications that rely on the old be-
havior.

• Incompatible change: Before MySQL 4.1.13/5.0.8, conversion of DATETIME values to numeric
form by adding zero produced a result in YYYYMMDDHHMMSS format. The result of DATETIME+0
is now in YYYYMMDDHHMMSS.000000 format.

• Incompatible change: In MySQL 4.1.12/5.0.6, the behavior of LOAD DATA INFILE and SE-
LECT ... INTO OUTFILE has changed when the FIELDS TERMINATED BY and FIELDS
ENCLOSED BY values both are empty. Formerly, a column was read or written the display width of
the column. For example, INT(4) was read or written using a field with a width of 4. Now columns
are read and written using a field width wide enough to hold all values in the field. However, data
files written before this change was made might not be reloaded correctly with LOAD DATA IN-
FILE for MySQL 4.1.12/5.0.6 and up. This change also affects data files read by mysqlimport
and written by mysqldump --tab, which use LOAD DATA INFILE and SELECT ... INTO
OUTFILE. For more information, see Section 13.2.5, “LOAD DATA INFILE Syntax”.

• Incompatible change: The implementation of DECIMAL has changed in MySQL 5.0.3. You should
make your applications aware of this change. For information about this change, and about possible
incompatibilities with old applications, see Chapter 21, Precision Math.

DECIMAL columns are stored in a more efficient format. To convert a table to use the new DECIM-
AL type, you should do an ALTER TABLE on it. (The ALTER TABLE also will change the table's
VARCHAR columns to use the new VARCHAR data type properties, described in a separate item.)

A consequence of the change in handling of the DECIMAL and NUMERIC fixed-point data types is
that the server is more strict to follow standard SQL. For example, a data type of DECIMAL(3,1)
stores a maximum value of 99.9. Before MySQL 5.0.3, the server allowed larger numbers to be
stored. That is, it stored a value such as 100.0 as 100.0. As of MySQL 5.0.3, the server clips 100.0 to
the maximum allowable value of 99.9. If you have tables that were created before MySQL 5.0.3 and
that contain floating-point data not strictly legal for the data type, you should alter the data types of
those columns. For example:

ALTER TABLE tbl_name MODIFY col_name DECIMAL(4,1);

The behavior used by the server for DECIMAL columns in a table depends on the version of MySQL
used to create the table. If your server is from MySQL 5.0.3 or higher, but you have DECIMAL
columns in tables that were created before 5.0.3, the old behavior still applies to those columns. To
convert the tables to the newer DECIMAL format, dump them with mysqldump and reload them.

• Incompatible change: MySQL 5.0.3 and up uses precision math when calculating with DECIMAL
and integer columns (64 decimal digits) and for rounding exact-value numbers. Rounding behavior
is well-defined, not dependent on the implementation of the underlying C library. However, this
might result in incompatibilities for applications that rely on the old behavior. (For example, insert-
ing .5 into an INT column results in 1 as of MySQL 5.0.3, but might be 0 in older versions.) For
more information about rounding behavior, see Section 21.4, “Rounding Behavior”, and Sec-
tion 21.5, “Precision Math Examples”.

• Incompatible change: MyISAM and InnoDB tables created with DECIMAL columns in MySQL

Installing and Upgrading MySQL

127

5.0.3 to 5.0.5 will appear corrupt after an upgrade to MySQL 5.0.6. (The same incompatibility will
occur for these tables created in MySQL 5.0.6 after a downgrade to MySQL 5.0.3 to 5.0.5.) If you
have such tables, check and repair them with mysql_upgrade after upgrading. See Section 5.6.2,
“mysql_upgrade — Check Tables for MySQL Upgrade”.

• Warning: Incompatible change: For user-defined functions, exact-value decimal arguments such
as 1.3 or DECIMAL column values were passed as REAL_RESULT values prior to MySQL 5.0.3.
As of 5.0.3, they are passed as strings with a type of DECIMAL_RESULT. If you upgrade to 5.0.3
and find that your UDF now receives string values, use the initialization function to coerce the argu-
ments to numbers as described in Section 24.2.4.3, “UDF Argument Processing”.

• Incompatible change: Before MySQL 5.0.2, SHOW STATUS returned global status values. The de-
fault as of 5.0.2 is to return session values, which is incompatible with previous versions. To issue a
SHOW STATUS statement that will retrieve global status values for all versions of MySQL, write it
like this:

SHOW /*!50002 GLOBAL */ STATUS;

• Incompatible change: User variables are not case sensitive in MySQL 5.0. In MySQL 4.1, SET @x
= 0; SET @X = 1; SELECT @x; created two variables and returned 0. In MySQL 5.0, it cre-
ates one variable and returns 1. Replication setups that rely on the old behavior may be affected by
this change.

• Some keywords are reserved in MySQL 5.0 that were not reserved in MySQL 4.1. See Section 9.5,
“Treatment of Reserved Words in MySQL”.

• The LOAD DATA FROM MASTER and LOAD TABLE FROM MASTER statements are deprecated.
See Section 13.6.2.2, “LOAD DATA FROM MASTER Syntax”, for recommended alternatives.

• As of MySQL 5.0.3, trailing spaces no longer are removed from values stored in VARCHAR and
VARBINARY columns. The maximum lengths for VARCHAR and VARBINARY columns in MySQL
5.0.3 and later are 65,535 characters and 65,535 bytes, respectively.

When a binary upgrade (filesystem-level copy of data files) to MySQL 5.0 is performed for a table
with a VARBINARY column, the column is space-padded to the full allowable width of the column.
This causes values in VARBINARY columns that do not occupy the full width of the column to in-
clude extra trailing spaces after the upgrade, which means that the data in the column is different.

In addition, new rows inserted into a table upgraded in this way will be space padded to the full
width of the column.

This issue can be resolved as follows:

1. For each table containing VARBINARY columns, execute the statement

ALTER TABLE table_name ENGINE=engine_name;

where table_name is the name of the table and engine_name is the name of the storage
engine currently used by table_name. In other words, if the table named mytable uses the
MyISAM storage engine, then you would use this statement:

ALTER TABLE mytable ENGINE=MYISAM;

This rebuilds the table so that it uses the 5.0 VARBINARY format.

2. Then you must remove all trailing spaces from any VARBINARY column values. For each
VARBINARY column varbinary_column, you should perform the following statement
(where table_name is the name of the table containing the VARBINARY column):

Installing and Upgrading MySQL

128

UPDATE table_name SET varbinary_column = RTRIM(varbinary_column);

This is necessary and safe because trailing spaces are stripped before 5.0.3, meaning that any
trailing spaces are erroneous.

This problem does not occur (and thus these two steps are not required) for tables upgraded using the
recommended procedure of dumping tables prior to the upgrade and reloading them afterwards.

Note: If you create a table with new VARCHAR or VARBINARY columns in MySQL 5.0.3 or later,
the table will not be usable if you downgrade to a version older than 5.0.3. Dump the table with
mysqldump before downgrading and reload it after downgrading.

• Comparisons made between FLOAT or DOUBLE values that happened to work in MySQL 4.1 may
not do so in 5.0. Values of these types are imprecise in all MySQL versions, and you are strongly ad-
vised to avoid such comparisons as WHERE col_name=some_double, regardless of the MySQL
version you are using. See Section A.5.8, “Problems with Floating-Point Comparisons”.

• As of MySQL 5.0.3, BIT is a separate data type, not a synonym for TINYINT(1). See Sec-
tion 11.1.1, “Overview of Numeric Types”.

• MySQL 5.0.2 adds several SQL modes that allow stricter control over rejecting records that have in-
valid or missing values. See Section 5.2.6, “SQL Modes”, and Section 1.9.6.2, “Constraints on In-
valid Data”. If you want to enable this control but continue to use MySQL's capability for storing in-
correct dates such as '2004-02-31', you should start the server with -
-sql_mode="TRADITIONAL,ALLOW_INVALID_DATES".

• As of MySQL 5.0.2, the SCHEMA and SCHEMAS keywords are accepted as synonyms for DATA-
BASE and DATABASES, respectively. (While “schemata” is grammatically correct and even appears
in some MySQL 5.0 system database and table names, it cannot be used as a keyword.)

• As of MySQL 5.0.25, TIMESTAMP columns that are NOT NULL now are reported that way by
SHOW COLUMNS and INFORMATION_SCHEMA, rather than as NULL.

• A new startup option named innodb_table_locks was added that causes LOCK TABLE to
also acquire InnoDB table locks. This option is enabled by default. This can cause deadlocks in ap-
plications that use AUTOCOMMIT=1 and LOCK TABLES. If you application encounters deadlocks
after upgrading, you may need to add innodb_table_locks=0 to your my.cnf file.

C API Changes:

• Incompatible change: Because the MySQL 5.0 server has a new implementation of the DECIMAL
data type, a problem may occur if the server is used by older clients that still are linked against
MySQL 4.1 client libraries. If a client uses the binary client/server protocol to execute prepared
statements that generate result sets containing numeric values, an error will be raised: 'Using un-
supported buffer type: 246'

This error occurs because the 4.1 client libraries do not support the new
MYSQL_TYPE_NEWDECIMAL type value added in 5.0. There is no way to disable the new DECIM-
AL data type on the server side. You can avoid the problem by relinking the application with the cli-
ent libraries from MySQL 5.0.

• Incompatible change: The ER_WARN_DATA_TRUNCATED warning symbol was renamed to
WARN_DATA_TRUNCATED in MySQL 5.0.3.

• The reconnect flag in the MYSQL structure is set to 0 by mysql_real_connect(). Only

Installing and Upgrading MySQL

129

those client programs which did not explicitly set this flag to 0 or 1 after
mysql_real_connect() experience a change. Having automatic reconnection enabled by de-
fault was considered too dangerous (due to the fact that table locks, temporary tables, user variables,
and session variables are lost after reconnection).

2.11.3. Copying MySQL Databases to Another Machine
You can copy the .frm, .MYI, and .MYD files for MyISAM tables between different architectures that
support the same floating-point format. (MySQL takes care of any byte-swapping issues.) See Sec-
tion 14.1, “The MyISAM Storage Engine”.

In cases where you need to transfer databases between different architectures, you can use mysqldump
to create a file containing SQL statements. You can then transfer the file to the other machine and feed it
as input to the mysql client.

Use mysqldump --help to see what options are available. If you are moving the data to a newer
version of MySQL, you should use mysqldump --opt to take advantage of any optimizations that
result in a dump file that is smaller and can be processed more quickly.

The easiest (although not the fastest) way to move a database between two machines is to run the fol-
lowing commands on the machine on which the database is located:

shell> mysqladmin -h 'other_hostname' create db_name
shell> mysqldump --opt db_name | mysql -h 'other_hostname' db_name

If you want to copy a database from a remote machine over a slow network, you can use these com-
mands:

shell> mysqladmin create db_name
shell> mysqldump -h 'other_hostname' --opt --compress db_name | mysql db_name

You can also store the dump in a file, transfer the file to the target machine, and then load the file into
the database there. For example, you can dump a database to a compressed file on the source machine
like this:

shell> mysqldump --quick db_name | gzip > db_name.gz

Transfer the file containing the database contents to the target machine and run these commands there:

shell> mysqladmin create db_name
shell> gunzip < db_name.gz | mysql db_name

You can also use mysqldump and mysqlimport to transfer the database. For large tables, this is
much faster than simply using mysqldump. In the following commands, DUMPDIR represents the full
pathname of the directory you use to store the output from mysqldump.

First, create the directory for the output files and dump the database:

shell> mkdir DUMPDIR
shell> mysqldump --tab=DUMPDIR db_name

Then transfer the files in the DUMPDIR directory to some corresponding directory on the target machine
and load the files into MySQL there:

shell> mysqladmin create db_name # create database
shell> cat DUMPDIR/*.sql | mysql db_name # create tables in database
shell> mysqlimport db_name DUMPDIR/*.txt # load data into tables

Installing and Upgrading MySQL

130

Do not forget to copy the mysql database because that is where the grant tables are stored. You might
have to run commands as the MySQL root user on the new machine until you have the mysql data-
base in place.

After you import the mysql database on the new machine, execute mysqladmin flush-
privileges so that the server reloads the grant table information.

2.12. Downgrading MySQL
This section describes what you should do to downgrade to an older MySQL version in the unlikely case
that the previous version worked better than the new one.

If you are downgrading within the same release series (for example, from 4.1.13 to 4.1.12) the general
rule is that you just have to install the new binaries on top of the old ones. There is no need to do any-
thing with the databases. As always, however, it is always a good idea to make a backup.

The following items form a checklist of things you should do whenever you perform a downgrade:

• Read the upgrading section for the release series from which you are downgrading to be sure that it
does not have any features you really need. Section 2.11, “Upgrading MySQL”.

• If there is a downgrading section for that version, you should read that as well.

In most cases, you can move the MySQL format files and data files between different versions on the
same architecture as long as you stay within versions for the same release series of MySQL.

If you downgrade from one release series to another, there may be incompatibilities in table storage
formats. In this case, you can use mysqldump to dump your tables before downgrading. After down-
grading, reload the dump file using mysql or mysqlimport to re-create your tables. For examples,
see Section 2.11.3, “Copying MySQL Databases to Another Machine”.

The normal symptom of a downward-incompatible table format change when you downgrade is that you
can't open tables. In that case, use the following procedure:

1. Stop the older MySQL server that you are downgrading to.

2. Restart the newer MySQL server you are downgrading from.

3. Dump any tables that were inaccessible to the older server by using mysqldump to create a dump
file.

4. Stop the newer MySQL server and restart the older one.

5. Reload the dump file into the older server. Your tables should be accessible.

2.12.1. Downgrading to MySQL 4.1
MySQL 4.1 does not support stored routines or triggers. If your databases contain stored routines or trig-
gers, prevent them from being dumped when you use mysqldump by using the --skip-routines
and --skip-triggers options. (See Section 8.12, “mysqldump — A Database Backup Program”.)

MySQL 4.1 does not support views. If your databases contain views, remove them with DROP VIEW
before using mysqldump. (See Section 19.3, “DROP VIEW Syntax”.)

Installing and Upgrading MySQL

131

After downgrading from MySQL 5.0, you may see the following information in the mysql.err file:

Incorrect information in file: './mysql/user.frm'

In this case, you can do the following:

1. Start MySQL 5.0.4 (or newer).

2. Run mysql_fix_privilege_tables, which will change the mysql.user table to a format
that both MySQL 4.1 and 5.0 can use.

3. Stop the MySQL server.

4. Start MySQL 4.1.

If the preceding procedure fails, you should be able to do the following instead:

1. Start MySQL 5.0.4 (or newer).

2. Run mysqldump --opt --add-drop-table mysql > /tmp/mysql.dump.

3. Stop the MySQL server.

4. Start MySQL 4.1 with the --skip-grant option.

5. Run mysql mysql < /tmp/mysql.dump.

6. Run mysqladmin flush-privileges.

2.13. Operating System-Specific Notes

2.13.1. Linux Notes
This section discusses issues that have been found to occur on Linux. The first few subsections describe
general operating system-related issues, problems that can occur when using binary or source distribu-
tions, and post-installation issues. The remaining subsections discuss problems that occur with Linux on
specific platforms.

Note that most of these problems occur on older versions of Linux. If you are running a recent version,
you may see none of them.

2.13.1.1. Linux Operating System Notes

MySQL needs at least Linux version 2.0.

Warning: We have seen some strange problems with Linux 2.2.14 and MySQL on SMP systems. We
also have reports from some MySQL users that they have encountered serious stability problems using
MySQL with kernel 2.2.14. If you are using this kernel, you should upgrade to 2.2.19 (or newer) or to a
2.4 kernel. If you have a multiple-CPU box, you should seriously consider using 2.4 because it gives
you a significant speed boost. Your system should be more stable.

When using LinuxThreads, you should see a minimum of three mysqld processes running. These are in
fact threads. There is one thread for the LinuxThreads manager, one thread to handle connections, and

Installing and Upgrading MySQL

132

one thread to handle alarms and signals.

2.13.1.2. Linux Binary Distribution Notes

The Linux-Intel binary and RPM releases of MySQL are configured for the highest possible speed. We
are always trying to use the fastest stable compiler available.

The binary release is linked with -static, which means you do not normally need to worry about
which version of the system libraries you have. You need not install LinuxThreads, either. A program
linked with -static is slightly larger than a dynamically linked program, but also slightly faster
(3-5%). However, one problem with a statically linked program is that you can't use user-defined func-
tions (UDFs). If you are going to write or use UDFs (this is something for C or C++ programmers only),
you must compile MySQL yourself using dynamic linking.

A known issue with binary distributions is that on older Linux systems that use libc (such as Red Hat
4.x or Slackware), you get some (non-fatal) issues with hostname resolution. If your system uses libc
rather than glibc2, you probably will encounter some difficulties with hostname resolution and
getpwnam(). This happens because glibc (unfortunately) depends on some external libraries to im-
plement hostname resolution and getpwent(), even when compiled with -static. These problems
manifest themselves in two ways:

• You may see the following error message when you run mysql_install_db:

Sorry, the host 'xxxx' could not be looked up

You can deal with this by executing mysql_install_db --force, which does not execute the
resolveip test in mysql_install_db. The downside is that you cannot use hostnames in the
grant tables: except for localhost, you must use IP numbers instead. If you are using an old ver-
sion of MySQL that does not support --force, you must manually remove the resolveip test
in mysql_install using a text editor.

• You also may see the following error when you try to run mysqld with the --user option:

getpwnam: No such file or directory

To work around this problem, start mysqld by using the su command rather than by specifying the
--user option. This causes the system itself to change the user ID of the mysqld process so that
mysqld need not do so.

Another solution, which solves both problems, is not to use a binary distribution. Obtain a MySQL
source distribution (in RPM or tar.gz format) and install that instead.

On some Linux 2.2 versions, you may get the error Resource temporarily unavailable
when clients make a great many new connections to a mysqld server over TCP/IP. The problem is that
Linux has a delay between the time that you close a TCP/IP socket and the time that the system actually
frees it. There is room for only a finite number of TCP/IP slots, so you encounter the resource-un-
available error if clients attempt too many new TCP/IP connections over a short period of time. For ex-
ample, you may see the error when you run the MySQL test-connect benchmark over TCP/IP.

We have inquired about this problem a few times on different Linux mailing lists but have never been
able to find a suitable resolution. The only known “fix” is for clients to use persistent connections, or, if
you are running the database server and clients on the same machine, to use Unix socket file connections
rather than TCP/IP connections.

2.13.1.3. Linux Source Distribution Notes

Installing and Upgrading MySQL

133

The following notes regarding glibc apply only to the situation when you build MySQL yourself. If
you are running Linux on an x86 machine, in most cases it is much better for you to use our binary. We
link our binaries against the best patched version of glibc we can find and with the best compiler op-
tions, in an attempt to make it suitable for a high-load server. For a typical user, even for setups with a
lot of concurrent connections or tables exceeding the 2GB limit, our binary is the best choice in most
cases. After reading the following text, if you are in doubt about what to do, try our binary first to de-
termine whether it meets your needs. If you discover that it is not good enough, you may want to try
your own build. In that case, we would appreciate a note about it so that we can build a better binary
next time.

MySQL uses LinuxThreads on Linux. If you are using an old Linux version that doesn't have glibc2,
you must install LinuxThreads before trying to compile MySQL. You can obtain LinuxThreads from ht-
tp://dev.mysql.com/downloads/os-linux.html.

Note that glibc versions before and including version 2.1.1 have a fatal bug in
pthread_mutex_timedwait() handling, which is used when INSERT DELAYED statements are
issued. We recommend that you not use INSERT DELAYED before upgrading glibc.

Note that Linux kernel and the LinuxThread library can by default handle a maximum of 1,024 threads.
If you plan to have more than 1,000 concurrent connections, you need to make some changes to
LinuxThreads, as follows:

• Increase PTHREAD_THREADS_MAX in sysdeps/unix/sysv/linux/bits/local_lim.h
to 4096 and decrease STACK_SIZE in linuxthreads/internals.h to 256KB. The paths are
relative to the root of glibc. (Note that MySQL is not stable with 600-1000 connections if
STACK_SIZE is the default of 2MB.)

• Recompile LinuxThreads to produce a new libpthread.a library, and relink MySQL against it.

Additional information about circumventing thread limits in LinuxThreads can be found at ht-
tp://www.volano.com/linuxnotes.html.

There is another issue that greatly hurts MySQL performance, especially on SMP systems. The mutex
implementation in LinuxThreads in glibc 2.1 is very poor for programs with many threads that hold
the mutex only for a short time. This produces a paradoxical result: If you link MySQL against an un-
modified LinuxThreads, removing processors from an SMP actually improves MySQL performance in
many cases. We have made a patch available for glibc 2.1.3 to correct this behavior (ht-
tp://dev.mysql.com/Downloads/Linux/linuxthreads-2.1-patch).

With glibc 2.2.2, MySQL uses the adaptive mutex, which is much better than even the patched one in
glibc 2.1.3. Be warned, however, that under some conditions, the current mutex code in glibc 2.2.2
overspins, which hurts MySQL performance. The likelihood that this condition occurs can be reduced
by re-nicing the mysqld process to the highest priority. We have also been able to correct the overspin
behavior with a patch, available at http://dev.mysql.com/Downloads/Linux/linuxthreads-2.2.2.patch. It
combines the correction of overspin, maximum number of threads, and stack spacing all in one. You
need to apply it in the linuxthreads directory with patch -p0
</tmp/linuxthreads-2.2.2.patch. We hope it is included in some form in future releases of
glibc 2.2. In any case, if you link against glibc 2.2.2, you still need to correct STACK_SIZE and
PTHREAD_THREADS_MAX. We hope that the defaults is corrected to some more acceptable values for
high-load MySQL setup in the future, so that the commands needed to produce your own build can be
reduced to ./configure; make; make install.

We recommend that you use these patches to build a special static version of libpthread.a and use
it only for statically linking against MySQL. We know that these patches are safe for MySQL and signi-
ficantly improve its performance, but we cannot say anything about their effects on other applications. If
you link other applications that require LinuxThreads against the patched static version of the library, or

Installing and Upgrading MySQL

134

http://dev.mysql.com/downloads/os-linux.html
http://dev.mysql.com/downloads/os-linux.html
http://www.volano.com/linuxnotes.html
http://www.volano.com/linuxnotes.html
http://dev.mysql.com/Downloads/Linux/linuxthreads-2.1-patch
http://dev.mysql.com/Downloads/Linux/linuxthreads-2.1-patch
http://dev.mysql.com/Downloads/Linux/linuxthreads-2.2.2.patch

build a patched shared version and install it on your system, you do so at your own risk.

If you experience any strange problems during the installation of MySQL, or with some common utilit-
ies hanging, it is very likely that they are either library or compiler related. If this is the case, using our
binary resolves them.

If you link your own MySQL client programs, you may see the following error at runtime:

ld.so.1: fatal: libmysqlclient.so.#:
open failed: No such file or directory

This problem can be avoided by one of the following methods:

• Link clients with the -Wl,r/full/path/to/libmysqlclient.so flag rather than with -
Lpath).

• Copy libmysqclient.so to /usr/lib.

• Add the pathname of the directory where libmysqlclient.so is located to the LD_RUN_PATH
environment variable before running your client.

If you are using the Fujitsu compiler (fcc/FCC), you may have some problems compiling MySQL be-
cause the Linux header files are very gcc oriented. The following configure line should work with
fcc/FCC:

CC=fcc CFLAGS="-O -K fast -K lib -K omitfp -Kpreex -D_GNU_SOURCE \
-DCONST=const -DNO_STRTOLL_PROTO" \

CXX=FCC CXXFLAGS="-O -K fast -K lib \
-K omitfp -K preex --no_exceptions --no_rtti -D_GNU_SOURCE \
-DCONST=const -Dalloca=__builtin_alloca -DNO_STRTOLL_PROTO \
'-D_EXTERN_INLINE=static __inline'" \

./configure \
--prefix=/usr/local/mysql --enable-assembler \
--with-mysqld-ldflags=-all-static --disable-shared \
--with-low-memory

2.13.1.4. Linux Post-Installation Notes

mysql.server can be found in the support-files directory under the MySQL installation dir-
ectory or in a MySQL source tree. You can install it as /etc/init.d/mysql for automatic MySQL
startup and shutdown. See Section 2.10.2.2, “Starting and Stopping MySQL Automatically”.

If MySQL cannot open enough files or connections, it may be that you have not configured Linux to
handle enough files.

In Linux 2.2 and onward, you can check the number of allocated file handles as follows:

shell> cat /proc/sys/fs/file-max
shell> cat /proc/sys/fs/dquot-max
shell> cat /proc/sys/fs/super-max

If you have more than 16MB of memory, you should add something like the following to your init
scripts (for example, /etc/init.d/boot.local on SuSE Linux):

echo 65536 > /proc/sys/fs/file-max
echo 8192 > /proc/sys/fs/dquot-max
echo 1024 > /proc/sys/fs/super-max

You can also run the echo commands from the command line as root, but these settings are lost the
next time your computer restarts.

Installing and Upgrading MySQL

135

Alternatively, you can set these parameters on startup by using the sysctl tool, which is used by many
Linux distributions (including SuSE Linux 8.0 and later). Put the following values into a file named /
etc/sysctl.conf:

Increase some values for MySQL
fs.file-max = 65536
fs.dquot-max = 8192
fs.super-max = 1024

You should also add the following to /etc/my.cnf:

[mysqld_safe]
open-files-limit=8192

This should allow the server a limit of 8,192 for the combined number of connections and open files.

The STACK_SIZE constant in LinuxThreads controls the spacing of thread stacks in the address space.
It needs to be large enough so that there is plenty of room for each individual thread stack, but small
enough to keep the stack of some threads from running into the global mysqld data. Unfortunately, as
we have experimentally discovered, the Linux implementation of mmap() successfully unmaps a
mapped region if you ask it to map out an address currently in use, zeroing out the data on the entire
page instead of returning an error. So, the safety of mysqld or any other threaded application depends
on the “gentlemanly” behavior of the code that creates threads. The user must take measures to make
sure that the number of running threads at any given time is sufficiently low for thread stacks to stay
away from the global heap. With mysqld, you should enforce this behavior by setting a reasonable
value for the max_connections variable.

If you build MySQL yourself, you can patch LinuxThreads for better stack use. See Section 2.13.1.3,
“Linux Source Distribution Notes”. If you do not want to patch LinuxThreads, you should set
max_connections to a value no higher than 500. It should be even less if you have a large key buf-
fer, large heap tables, or some other things that make mysqld allocate a lot of memory, or if you are
running a 2.2 kernel with a 2GB patch. If you are using our binary or RPM version, you can safely set
max_connections at 1500, assuming no large key buffer or heap tables with lots of data. The more
you reduce STACK_SIZE in LinuxThreads the more threads you can safely create. We recommend val-
ues between 128KB and 256KB.

If you use a lot of concurrent connections, you may suffer from a “feature” in the 2.2 kernel that at-
tempts to prevent fork bomb attacks by penalizing a process for forking or cloning a child. This causes
MySQL not to scale well as you increase the number of concurrent clients. On single-CPU systems, we
have seen this manifest as very slow thread creation; it may take a long time to connect to MySQL (as
long as one minute), and it may take just as long to shut it down. On multiple-CPU systems, we have ob-
served a gradual drop in query speed as the number of clients increases. In the process of trying to find a
solution, we have received a kernel patch from one of our users who claimed it helped for his site. This
patch is available at http://dev.mysql.com/Downloads/Patches/linux-fork.patch. We have done rather ex-
tensive testing of this patch on both development and production systems. It has significantly improved
MySQL performance without causing any problems and we recommend it to our users who still run
high-load servers on 2.2 kernels.

This issue has been fixed in the 2.4 kernel, so if you are not satisfied with the current performance of
your system, rather than patching your 2.2 kernel, it might be easier to upgrade to 2.4. On SMP systems,
upgrading also gives you a nice SMP boost in addition to fixing the fairness bug.

We have tested MySQL on the 2.4 kernel on a two-CPU machine and found MySQL scales much better.
There was virtually no slowdown on query throughput all the way up to 1,000 clients, and the MySQL
scaling factor (computed as the ratio of maximum throughput to the throughput for one client) was
180%. We have observed similar results on a four-CPU system: Virtually no slowdown as the number of
clients was increased up to 1,000, and a 300% scaling factor. Based on these results, for a high-load
SMP server using a 2.2 kernel, we definitely recommend upgrading to the 2.4 kernel at this point.

Installing and Upgrading MySQL

136

http://dev.mysql.com/Downloads/Patches/linux-fork.patch

We have discovered that it is essential to run the mysqld process with the highest possible priority on
the 2.4 kernel to achieve maximum performance. This can be done by adding a renice -20 $$ com-
mand to mysqld_safe. In our testing on a four-CPU machine, increasing the priority resulted in a
60% throughput increase with 400 clients.

We are currently also trying to collect more information on how well MySQL performs with a 2.4 kernel
on four-way and eight-way systems. If you have access such a system and have done some benchmarks,
please send an email message to <benchmarks@mysql.com> with the results. We will review them
for inclusion in the manual.

If you see a dead mysqld server process with ps, this usually means that you have found a bug in
MySQL or you have a corrupted table. See Section A.4.2, “What to Do If MySQL Keeps Crashing”.

To get a core dump on Linux if mysqld dies with a SIGSEGV signal, you can start mysqld with the -
-core-file option. Note that you also probably need to raise the core file size by adding ulimit -
c 1000000 to mysqld_safe or starting mysqld_safe with --core-file-size=1000000.
See Section 5.4.1, “mysqld_safe — MySQL Server Startup Script”.

2.13.1.5. Linux x86 Notes

MySQL requires libc 5.4.12 or newer. It is known to work with libc 5.4.46. glibc 2.0.6 and later
should also work. There have been some problems with the glibc RPMs from Red Hat, so if you have
problems, check whether there are any updates. The glibc 2.0.7-19 and 2.0.7-29 RPMs are known to
work.

If you are using Red Hat 8.0 or a new glibc 2.2.x library, you may see mysqld die in gethostby-
addr(). This happens because the new glibc library requires a stack size greater than 128KB for this
call. To fix the problem, start mysqld with the --thread-stack=192K option. (Use -O
thread_stack=192K before MySQL 4.) This stack size is the default on MySQL 4.0.10 and above,
so you should not see the problem.

If you are using gcc 3.0 and above to compile MySQL, you must install the libstdc++v3 library be-
fore compiling MySQL; if you don't do this, you get an error about a missing __cxa_pure_virtual
symbol during linking.

On some older Linux distributions, configure may produce an error like this:

Syntax error in sched.h. Change _P to __P in the
/usr/include/sched.h file.
See the Installation chapter in the Reference Manual.

Just do what the error message says. Add an extra underscore to the _P macro name that has only one
underscore, and then try again.

You may get some warnings when compiling. Those shown here can be ignored:

mysqld.cc -o objs-thread/mysqld.o
mysqld.cc: In function `void init_signals()':
mysqld.cc:315: warning: assignment of negative value `-1' to
`long unsigned int'
mysqld.cc: In function `void * signal_hand(void *)':
mysqld.cc:346: warning: assignment of negative value `-1' to
`long unsigned int'

If mysqld always dumps core when it starts, the problem may be that you have an old /lib/libc.a.
Try renaming it, and then remove sql/mysqld and do a new make install and try again. This
problem has been reported on some Slackware installations.

If you get the following error when linking mysqld, it means that your libg++.a is not installed cor-
rectly:

Installing and Upgrading MySQL

137

/usr/lib/libc.a(putc.o): In function `_IO_putc':
putc.o(.text+0x0): multiple definition of `_IO_putc'

You can avoid using libg++.a by running configure like this:

shell> CXX=gcc ./configure

2.13.1.6. Linux SPARC Notes

In some implementations, readdir_r() is broken. The symptom is that the SHOW DATABASES
statement always returns an empty set. This can be fixed by removing HAVE_READDIR_R from con-
fig.h after configuring and before compiling.

2.13.1.7. Linux Alpha Notes

We have tested MySQL 5.0 on Alpha with our benchmarks and test suite, and it appears to work well.

We currently build the MySQL binary packages on SuSE Linux 7.0 for AXP, kernel 2.4.4-SMP, Com-
paq C compiler (V6.2-505) and Compaq C++ compiler (V6.3-006) on a Compaq DS20 machine with an
Alpha EV6 processor.

You can find the preceding compilers at http://www.support.compaq.com/alpha-tools/. By using these
compilers rather than gcc, we get about 9-14% better MySQL performance.

For MySQL on Alpha, we use the -arch generic flag to our compile options, which ensures that
the binary runs on all Alpha processors. We also compile statically to avoid library problems. The con-
figure command looks like this:

CC=ccc CFLAGS="-fast -arch generic" CXX=cxx \
CXXFLAGS="-fast -arch generic -noexceptions -nortti" \
./configure --prefix=/usr/local/mysql --disable-shared \

--with-extra-charsets=complex --enable-thread-safe-client \
--with-mysqld-ldflags=-non_shared --with-client-ldflags=-non_shared

If you want to use egcs, the following configure line worked for us:

CFLAGS="-O3 -fomit-frame-pointer" CXX=gcc \
CXXFLAGS="-O3 -fomit-frame-pointer -felide-constructors \

-fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql --disable-shared

Some known problems when running MySQL on Linux-Alpha:

• Debugging threaded applications like MySQL does not work with gdb 4.18. You should use gdb
5.1 instead.

• If you try linking mysqld statically when using gcc, the resulting image dumps core at startup
time. In other words, do not use --with-mysqld-ldflags=-all-static with gcc.

2.13.1.8. Linux PowerPC Notes

MySQL should work on MkLinux with the newest glibc package (tested with glibc 2.0.7).

2.13.1.9. Linux MIPS Notes

To get MySQL to work on Qube2 (Linux Mips), you need the newest glibc libraries. glibc-

Installing and Upgrading MySQL

138

http://www.support.compaq.com/alpha-tools/

2.0.7-29C2 is known to work. You must also use the egcs C++ compiler (egcs 1.0.2-9, gcc
2.95.2 or newer).

2.13.1.10. Linux IA-64 Notes

To get MySQL to compile on Linux IA-64, we use the following configure command for building
with gcc 2.96:

CC=gcc \
CFLAGS="-O3 -fno-omit-frame-pointer" \
CXX=gcc \
CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors \

-fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql \
"--with-comment=Official MySQL binary" \
--with-extra-charsets=complex

On IA-64, the MySQL client binaries use shared libraries. This means that if you install our binary dis-
tribution at a location other than /usr/local/mysql, you need to add the path of the directory
where you have libmysqlclient.so installed either to the /etc/ld.so.conf file or to the
value of your LD_LIBRARY_PATH environment variable.

See Section A.3.1, “Problems Linking to the MySQL Client Library”.

2.13.1.11. SELinux Notes

RHEL4 comes with SELinux, which supports tighter access control for processes. If SELinux is enabled
(SELINUX in /etc/selinux/config is set to enforcing, SELINUXTYPE is set to either tar-
geted or strict), you might encounter problems installing MySQL AB RPM packages.

Red Hat has an update that solves this. It involves an update of the “security policy” specification to
handle the install structure of the RPMs provided by MySQL AB. For further information, see ht-
tps://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=167551 and ht-
tp://rhn.redhat.com/errata/RHBA-2006-0049.html.

2.13.2. Mac OS X Notes
On Mac OS X, tar cannot handle long filenames. If you need to unpack a .tar.gz distribution, use
gnutar instead.

2.13.2.1. Mac OS X 10.x (Darwin)

MySQL should work without major problems on Mac OS X 10.x (Darwin).

Known issues:

• If you have problems with performance under heavy load, try using the -
-skip-thread-priority option to mysqld. This runs all threads with the same priority. On
Mac OS X, this gives better performance, at least until Apple fixes its thread scheduler.

• The connection times (wait_timeout, interactive_timeout and net_read_timeout)
values are not honored.

This is probably a signal handling problem in the thread library where the signal doesn't break a
pending read and we hope that a future update to the thread libraries will fix this.

Our binary for Mac OS X is compiled on Darwin 6.3 with the following configure line:

Installing and Upgrading MySQL

139

https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=167551
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=167551
http://rhn.redhat.com/errata/RHBA-2006-0049.html
http://rhn.redhat.com/errata/RHBA-2006-0049.html

CC=gcc CFLAGS="-O3 -fno-omit-frame-pointer" CXX=gcc \
CXXFLAGS="-O3 -fno-omit-frame-pointer -felide-constructors \

-fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql \
--with-extra-charsets=complex --enable-thread-safe-client \
--enable-local-infile --disable-shared

See Section 2.5, “Installing MySQL on Mac OS X”.

2.13.2.2. Mac OS X Server 1.2 (Rhapsody)

For current versions of Mac OS X Server, no operating system changes are necessary before compiling
MySQL. Compiling for the Server platform is the same as for the client version of Mac OS X.

For older versions (Mac OS X Server 1.2, a.k.a. Rhapsody), you must first install a pthread package be-
fore trying to configure MySQL.

See Section 2.5, “Installing MySQL on Mac OS X”.

2.13.3. Solaris Notes
For information about installing MySQL on Solaris using PKG distributions, see Section 2.6, “Installing
MySQL on Solaris”.

On Solaris, you may run into trouble even before you get the MySQL distribution unpacked, as the Sol-
aris tar cannot handle long filenames. This means that you may see errors when you try to unpack
MySQL.

If this occurs, you must use GNU tar (gtar) to unpack the distribution. You can find a precompiled
copy for Solaris at http://dev.mysql.com/downloads/os-solaris.html.

Sun native threads work only on Solaris 2.5 and higher. For Solaris 2.4 and earlier, MySQL automatic-
ally uses MIT-pthreads. See Section 2.9.5, “MIT-pthreads Notes”.

If you get the following error from configure, it means that you have something wrong with your
compiler installation:

checking for restartable system calls... configure: error can not
run test programs while cross compiling

In this case, you should upgrade your compiler to a newer version. You may also be able to solve this
problem by inserting the following row into the config.cache file:

ac_cv_sys_restartable_syscalls=${ac_cv_sys_restartable_syscalls='no'}

If you are using Solaris on a SPARC, the recommended compiler is gcc 2.95.2 or 3.2. You can find this
at http://gcc.gnu.org/. Note that egcs 1.1.1 and gcc 2.8.1 do not work reliably on SPARC.

The recommended configure line when using gcc 2.95.2 is:

CC=gcc CFLAGS="-O3" \
CXX=gcc CXXFLAGS="-O3 -felide-constructors -fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql --with-low-memory \

--enable-assembler

If you have an UltraSPARC system, you can get 4% better performance by adding -mcpu=v8 -
Wa,-xarch=v8plusa to the CFLAGS and CXXFLAGS environment variables.

If you have Sun's Forte 5.0 (or newer) compiler, you can run configure like this:

Installing and Upgrading MySQL

140

http://dev.mysql.com/downloads/os-solaris.html
http://gcc.gnu.org/

CC=cc CFLAGS="-Xa -fast -native -xstrconst -mt" \
CXX=CC CXXFLAGS="-noex -mt" \
./configure --prefix=/usr/local/mysql --enable-assembler

To create a 64-bit binary with Sun's Forte compiler, use the following configuration options:

CC=cc CFLAGS="-Xa -fast -native -xstrconst -mt -xarch=v9" \
CXX=CC CXXFLAGS="-noex -mt -xarch=v9" ASFLAGS="-xarch=v9" \
./configure --prefix=/usr/local/mysql --enable-assembler

To create a 64-bit Solaris binary using gcc, add -m64 to CFLAGS and CXXFLAGS and remove -
-enable-assembler from the configure line.

In the MySQL benchmarks, we obtained a 4% speed increase on UltraSPARC when using Forte 5.0 in
32-bit mode, as compared to using gcc 3.2 with the -mcpu flag.

If you create a 64-bit mysqld binary, it is 4% slower than the 32-bit binary, but can handle more
threads and memory.

When using Solaris 10 for x86_64, you should mount any filesystems on which you intend to store In-
noDB files with the forcedirectio option. (By default mounting is done without this option.) Fail-
ing to do so will cause a significant drop in performance when using the InnoDB storage engine on this
platform.

If you get a problem with fdatasync or sched_yield, you can fix this by adding LIBS=-lrt to
the configure line

For compilers older than WorkShop 5.3, you might have to edit the configure script. Change this
line:

#if !defined(__STDC__) || __STDC__ != 1

To this:

#if !defined(__STDC__)

If you turn on __STDC__ with the -Xc option, the Sun compiler can't compile with the Solaris
pthread.h header file. This is a Sun bug (broken compiler or broken include file).

If mysqld issues the following error message when you run it, you have tried to compile MySQL with
the Sun compiler without enabling the -mt multi-thread option:

libc internal error: _rmutex_unlock: rmutex not held

Add -mt to CFLAGS and CXXFLAGS and recompile.

If you are using the SFW version of gcc (which comes with Solaris 8), you must add /opt/sfw/lib
to the environment variable LD_LIBRARY_PATH before running configure.

If you are using the gcc available from sunfreeware.com, you may have many problems. To avoid
this, you should recompile gcc and GNU binutils on the machine where you are running them.

If you get the following error when compiling MySQL with gcc, it means that your gcc is not con-
figured for your version of Solaris:

shell> gcc -O3 -g -O2 -DDBUG_OFF -o thr_alarm ...
./thr_alarm.c: In function `signal_hand':
./thr_alarm.c:556: too many arguments to function `sigwait'

Installing and Upgrading MySQL

141

The proper thing to do in this case is to get the newest version of gcc and compile it with your current
gcc compiler. At least for Solaris 2.5, almost all binary versions of gcc have old, unusable include files
that break all programs that use threads, and possibly other programs as well.

Solaris does not provide static versions of all system libraries (libpthreads and libdl), so you
cannot compile MySQL with --static. If you try to do so, you get one of the following errors:

ld: fatal: library -ldl: not found
undefined reference to `dlopen'
cannot find -lrt

If you link your own MySQL client programs, you may see the following error at runtime:

ld.so.1: fatal: libmysqlclient.so.#:
open failed: No such file or directory

This problem can be avoided by one of the following methods:

• Link clients with the -Wl,r/full/path/to/libmysqlclient.so flag rather than with -
Lpath).

• Copy libmysqclient.so to /usr/lib.

• Add the pathname of the directory where libmysqlclient.so is located to the LD_RUN_PATH
environment variable before running your client.

If you have problems with configure trying to link with -lz when you don't have zlib installed,
you have two options:

• If you want to be able to use the compressed communication protocol, you need to get and install
zlib from ftp.gnu.org.

• Run configure with the --with-named-z-libs=no option when building MySQL.

If you are using gcc and have problems with loading user-defined functions (UDFs) into MySQL, try
adding -lgcc to the link line for the UDF.

If you would like MySQL to start automatically, you can copy support-files/mysql.server to
/etc/init.d and create a symbolic link to it named /etc/rc3.d/S99mysql.server.

If too many processes try to connect very rapidly to mysqld, you should see this error in the MySQL
log:

Error in accept: Protocol error

You might try starting the server with the --back_log=50 option as a workaround for this. (Use -O
back_log=50 before MySQL 4.)

Solaris doesn't support core files for setuid() applications, so you can't get a core file from mysqld
if you are using the --user option.

2.13.3.1. Solaris 2.7/2.8 Notes

Normally, you can use a Solaris 2.6 binary on Solaris 2.7 and 2.8. Most of the Solaris 2.6 issues also ap-
ply for Solaris 2.7 and 2.8.

Installing and Upgrading MySQL

142

MySQL should be able to detect new versions of Solaris automatically and enable workarounds for the
following problems.

Solaris 2.7 / 2.8 has some bugs in the include files. You may see the following error when you use gcc:

/usr/include/widec.h:42: warning: `getwc' redefined
/usr/include/wchar.h:326: warning: this is the location of the previous
definition

If this occurs, you can fix the problem by copying /usr/include/widec.h to
.../lib/gcc-lib/os/gcc-version/include and changing line 41 from this:

#if !defined(lint) && !defined(__lint)

To this:

#if !defined(lint) && !defined(__lint) && !defined(getwc)

Alternatively, you can edit /usr/include/widec.h directly. Either way, after you make the fix,
you should remove config.cache and run configure again.

If you get the following errors when you run make, it's because configure didn't detect the
curses.h file (probably because of the error in /usr/include/widec.h):

In file included from mysql.cc:50:
/usr/include/term.h:1060: syntax error before `,'
/usr/include/term.h:1081: syntax error before `;'

The solution to this problem is to do one of the following:

• Configure with CFLAGS=-DHAVE_CURSES_H CXXFLAGS=-DHAVE_CURSES_H
./configure.

• Edit /usr/include/widec.h as indicated in the preceding discussion and re-run configure.

• Remove the #define HAVE_TERM line from the config.h file and run make again.

If your linker cannot find -lz when linking client programs, the problem is probably that your
libz.so file is installed in /usr/local/lib. You can fix this problem by one of the following
methods:

• Add /usr/local/lib to LD_LIBRARY_PATH.

• Add a link to libz.so from /lib.

• If you are using Solaris 8, you can install the optional zlib from your Solaris 8 CD distribution.

• Run configure with the --with-named-z-libs=no option when building MySQL.

2.13.3.2. Solaris x86 Notes

On Solaris 8 on x86, mysqld dumps core if you remove the debug symbols using strip.

If you are using gcc or egcs on Solaris x86 and you experience problems with core dumps under load,
you should use the following configure command:

Installing and Upgrading MySQL

143

CC=gcc CFLAGS="-O3 -fomit-frame-pointer -DHAVE_CURSES_H" \
CXX=gcc \
CXXFLAGS="-O3 -fomit-frame-pointer -felide-constructors \

-fno-exceptions -fno-rtti -DHAVE_CURSES_H" \
./configure --prefix=/usr/local/mysql

This avoids problems with the libstdc++ library and with C++ exceptions.

If this doesn't help, you should compile a debug version and run it with a trace file or under gdb. See
Section E.1.3, “Debugging mysqld under gdb”.

2.13.4. BSD Notes
This section provides information about using MySQL on variants of BSD Unix.

2.13.4.1. FreeBSD Notes

FreeBSD 4.x or newer is recommended for running MySQL, because the thread package is much more
integrated. To get a secure and stable system, you should use only FreeBSD kernels that are marked -
RELEASE.

The easiest (and preferred) way to install MySQL is to use the mysql-server and mysql-client
ports available at http://www.freebsd.org/. Using these ports gives you the following benefits:

• A working MySQL with all optimizations enabled that are known to work on your version of
FreeBSD.

• Automatic configuration and build.

• Startup scripts installed in /usr/local/etc/rc.d.

• The ability to use pkg_info -L to see which files are installed.

• The ability to use pkg_delete to remove MySQL if you no longer want it on your machine.

It is recommended you use MIT-pthreads on FreeBSD 2.x, and native threads on FreeBSD 3 and up. It
is possible to run with native threads on some late 2.2.x versions, but you may encounter problems shut-
ting down mysqld.

Unfortunately, certain function calls on FreeBSD are not yet fully thread-safe. Most notably, this in-
cludes the gethostbyname() function, which is used by MySQL to convert hostnames into IP ad-
dresses. Under certain circumstances, the mysqld process suddenly causes 100% CPU load and is un-
responsive. If you encounter this problem, try to start MySQL using the --skip-name-resolve op-
tion.

Alternatively, you can link MySQL on FreeBSD 4.x against the LinuxThreads library, which avoids a
few of the problems that the native FreeBSD thread implementation has. For a very good comparison of
LinuxThreads versus native threads, see Jeremy Zawodny's article FreeBSD or Linux for your MySQL
Server? at http://jeremy.zawodny.com/blog/archives/000697.html.

Known problem when using LinuxThreads on FreeBSD is:

• The connection times (wait_timeout, interactive_timeout and net_read_timeout)
values are not honored. The symptom is that persistent connections can hang for a very long time
without getting closed down and that a 'kill' for a thread will not take affect until the thread does it a
new command

Installing and Upgrading MySQL

144

http://www.freebsd.org/
http://jeremy.zawodny.com/blog/archives/000697.html

This is probably a signal handling problem in the thread library where the signal doesn't break a
pending read. This is supposed to be fixed in FreeBSD 5.0

The MySQL build process requires GNU make (gmake) to work. If GNU make is not available, you
must install it first before compiling MySQL.

The recommended way to compile and install MySQL on FreeBSD with gcc (2.95.2 and up) is:

CC=gcc CFLAGS="-O2 -fno-strength-reduce" \
CXX=gcc CXXFLAGS="-O2 -fno-rtti -fno-exceptions \
-felide-constructors -fno-strength-reduce" \
./configure --prefix=/usr/local/mysql --enable-assembler

gmake
gmake install
cd /usr/local/mysql
bin/mysql_install_db --user=mysql
bin/mysqld_safe &

If you notice that configure uses MIT-pthreads, you should read the MIT-pthreads notes. See Sec-
tion 2.9.5, “MIT-pthreads Notes”.

If you get an error from make install that it can't find /usr/include/pthreads, config-
ure didn't detect that you need MIT-pthreads. To fix this problem, remove config.cache, and then
re-run configure with the --with-mit-threads option.

Be sure that your name resolver setup is correct. Otherwise, you may experience resolver delays or fail-
ures when connecting to mysqld. Also make sure that the localhost entry in the /etc/hosts file
is correct. The file should start with a line similar to this:

127.0.0.1 localhost localhost.your.domain

FreeBSD is known to have a very low default file handle limit. See Section A.2.17, “File Not Found”.
Start the server by using the --open-files-limit option for mysqld_safe, or raise the limits
for the mysqld user in /etc/login.conf and rebuild it with cap_mkdb /etc/login.conf.
Also be sure that you set the appropriate class for this user in the password file if you are not using the
default (use chpass mysqld-user-name). See Section 5.4.1, “mysqld_safe — MySQL Server
Startup Script”.

FreeBSD limits the size of a process to 512MB, even if you have much more RAM available on the sys-
tem. So you may get an error such as this:

Out of memory (Needed 16391 bytes)

In current versions of FreeBSD (at least 4.x and greater), you may increase this limit by adding the fol-
lowing entries to the /boot/loader.conf file and rebooting the machine (these are not settings that
can be changed at run time with the sysctl command):

kern.maxdsiz="1073741824" # 1GB
kern.dfldsiz="1073741824" # 1GB
kern.maxssiz="134217728" # 128MB

For older versions of FreeBSD, you must recompile your kernel to change the maximum data segment
size for a process. In this case, you should look at the MAXDSIZ option in the LINT config file for more
information.

If you get problems with the current date in MySQL, setting the TZ variable should help. See Ap-
pendix F, Environment Variables.

Installing and Upgrading MySQL

145

2.13.4.2. NetBSD Notes

To compile on NetBSD, you need GNU make. Otherwise, the build process fails when make tries to
run lint on C++ files.

2.13.4.3. OpenBSD 2.5 Notes

On OpenBSD 2.5, you can compile MySQL with native threads with the following options:

CFLAGS=-pthread CXXFLAGS=-pthread ./configure --with-mit-threads=no

2.13.4.4. BSD/OS Version 2.x Notes

If you get the following error when compiling MySQL, your ulimit value for virtual memory is too
low:

item_func.h: In method
`Item_func_ge::Item_func_ge(const Item_func_ge &)':
item_func.h:28: virtual memory exhausted
make[2]: *** [item_func.o] Error 1

Try using ulimit -v 80000 and run make again. If this doesn't work and you are using bash, try
switching to csh or sh; some BSDI users have reported problems with bash and ulimit.

If you are using gcc, you may also use have to use the --with-low-memory flag for configure
to be able to compile sql_yacc.cc.

If you get problems with the current date in MySQL, setting the TZ variable should help. See Ap-
pendix F, Environment Variables.

2.13.4.5. BSD/OS Version 3.x Notes

Upgrade to BSD/OS 3.1. If that is not possible, install BSDIpatch M300-038.

Use the following command when configuring MySQL:

env CXX=shlicc++ CC=shlicc2 \
./configure \

--prefix=/usr/local/mysql \
--localstatedir=/var/mysql \
--without-perl \
--with-unix-socket-path=/var/mysql/mysql.sock

The following is also known to work:

env CC=gcc CXX=gcc CXXFLAGS=-O3 \
./configure \

--prefix=/usr/local/mysql \
--with-unix-socket-path=/var/mysql/mysql.sock

You can change the directory locations if you wish, or just use the defaults by not specifying any loca-
tions.

If you have problems with performance under heavy load, try using the --skip-thread-priority
option to mysqld. This runs all threads with the same priority. On BSDI 3.1, this gives better perform-
ance, at least until BSDI fixes its thread scheduler.

If you get the error virtual memory exhausted while compiling, you should try using ulimit
-v 80000 and running make again. If this doesn't work and you are using bash, try switching to csh

Installing and Upgrading MySQL

146

or sh; some BSDI users have reported problems with bash and ulimit.

2.13.4.6. BSD/OS Version 4.x Notes

BSDI 4.x has some thread-related bugs. If you want to use MySQL on this, you should install all thread-
related patches. At least M400-023 should be installed.

On some BSDI 4.x systems, you may get problems with shared libraries. The symptom is that you can't
execute any client programs, for example, mysqladmin. In this case, you need to reconfigure not to
use shared libraries with the --disable-shared option to configure.

Some customers have had problems on BSDI 4.0.1 that the mysqld binary after a while can't open
tables. This occurs because some library/system-related bug causes mysqld to change current directory
without having asked for that to happen.

The fix is to either upgrade MySQL to at least version 3.23.34 or, after running configure, remove
the line #define HAVE_REALPATH from config.h before running make.

Note that this means that you can't symbolically link a database directories to another database directory
or symbolic link a table to another database on BSDI. (Making a symbolic link to another disk is okay).

2.13.5. Other Unix Notes

2.13.5.1. HP-UX Version 10.20 Notes

There are a couple of small problems when compiling MySQL on HP-UX. We recommend that you use
gcc instead of the HP-UX native compiler, because gcc produces better code.

We recommend using gcc 2.95 on HP-UX. Don't use high optimization flags (such as -O6) because
they may not be safe on HP-UX.

The following configure line should work with gcc 2.95:

CFLAGS="-I/opt/dce/include -fpic" \
CXXFLAGS="-I/opt/dce/include -felide-constructors -fno-exceptions \
-fno-rtti" \
CXX=gcc \
./configure --with-pthread \

--with-named-thread-libs='-ldce' \
--prefix=/usr/local/mysql --disable-shared

The following configure line should work with gcc 3.1:

CFLAGS="-DHPUX -I/opt/dce/include -O3 -fPIC" CXX=gcc \
CXXFLAGS="-DHPUX -I/opt/dce/include -felide-constructors \

-fno-exceptions -fno-rtti -O3 -fPIC" \
./configure --prefix=/usr/local/mysql \

--with-extra-charsets=complex --enable-thread-safe-client \
--enable-local-infile --with-pthread \
--with-named-thread-libs=-ldce --with-lib-ccflags=-fPIC
--disable-shared

2.13.5.2. HP-UX Version 11.x Notes

Because of some critical bugs in the standard HP-UX libraries, you should install the following patches
before trying to run MySQL on HP-UX 11.0:

PHKL_22840 Streams cumulative
PHNE_22397 ARPA cumulative

This solves the problem of getting EWOULDBLOCK from recv() and EBADF from accept() in

Installing and Upgrading MySQL

147

threaded applications.

If you are using gcc 2.95.1 on an unpatched HP-UX 11.x system, you may get the following error:

In file included from /usr/include/unistd.h:11,
from ../include/global.h:125,
from mysql_priv.h:15,
from item.cc:19:

/usr/include/sys/unistd.h:184: declaration of C function ...
/usr/include/sys/pthread.h:440: previous declaration ...
In file included from item.h:306,

from mysql_priv.h:158,
from item.cc:19:

The problem is that HP-UX does not define pthreads_atfork() consistently. It has conflicting
prototypes in /usr/include/sys/unistd.h:184 and /usr/include/sys/pthread.h:440.

One solution is to copy /usr/include/sys/unistd.h into mysql/include and edit un-
istd.h and change it to match the definition in pthread.h. Look for this line:

extern int pthread_atfork(void (*prepare)(), void (*parent)(),
void (*child)());

Change it to look like this:

extern int pthread_atfork(void (*prepare)(void), void (*parent)(void),
void (*child)(void));

After making the change, the following configure line should work:

CFLAGS="-fomit-frame-pointer -O3 -fpic" CXX=gcc \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti -O3" \
./configure --prefix=/usr/local/mysql --disable-shared

If you are using HP-UX compiler, you can use the following command (which has been tested with cc
B.11.11.04):

CC=cc CXX=aCC CFLAGS=+DD64 CXXFLAGS=+DD64 ./configure \
--with-extra-character-set=complex

You can ignore any errors of the following type:

aCC: warning 901: unknown option: `-3': use +help for online
documentation

If you get the following error from configure, verify that you don't have the path to the K&R com-
piler before the path to the HP-UX C and C++ compiler:

checking for cc option to accept ANSI C... no
configure: error: MySQL requires an ANSI C compiler (and a C++ compiler).
Try gcc. See the Installation chapter in the Reference Manual.

Another reason for not being able to compile is that you didn't define the +DD64 flags as just described.

Another possibility for HP-UX 11 is to use the MySQL binaries provided at ht-
tp://dev.mysql.com/downloads/, which we have built and tested ourselves. We have also received re-
ports that the HP-UX 10.20 binaries supplied by MySQL can be run successfully on HP-UX 11. If you
encounter problems, you should be sure to check your HP-UX patch level.

2.13.5.3. IBM-AIX notes

Installing and Upgrading MySQL

148

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/

Automatic detection of xlC is missing from Autoconf, so a number of variables need to be set before
running configure. The following example uses the IBM compiler:

export CC="xlc_r -ma -O3 -qstrict -qoptimize=3 -qmaxmem=8192 "
export CXX="xlC_r -ma -O3 -qstrict -qoptimize=3 -qmaxmem=8192"
export CFLAGS="-I /usr/local/include"
export LDFLAGS="-L /usr/local/lib"
export CPPFLAGS=$CFLAGS
export CXXFLAGS=$CFLAGS

./configure --prefix=/usr/local \
--localstatedir=/var/mysql \
--sbindir='/usr/local/bin' \
--libexecdir='/usr/local/bin' \
--enable-thread-safe-client \
--enable-large-files

The preceding options are used to compile the MySQL distribution that can be found at ht-
tp://www-frec.bull.com/.

If you change the -O3 to -O2 in the preceding configure line, you must also remove the -
qstrict option. This is a limitation in the IBM C compiler.

If you are using gcc or egcs to compile MySQL, you must use the -fno-exceptions flag, be-
cause the exception handling in gcc/egcs is not thread-safe! (This is tested with egcs 1.1.) There are
also some known problems with IBM's assembler that may cause it to generate bad code when used with
gcc.

We recommend the following configure line with egcs and gcc 2.95 on AIX:

CC="gcc -pipe -mcpu=power -Wa,-many" \
CXX="gcc -pipe -mcpu=power -Wa,-many" \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti" \
./configure --prefix=/usr/local/mysql --with-low-memory

The -Wa,-many option is necessary for the compile to be successful. IBM is aware of this problem but
is in no hurry to fix it because of the workaround that is available. We don't know if the -
fno-exceptions is required with gcc 2.95, but because MySQL doesn't use exceptions and the op-
tion generates faster code, we recommend that you should always use it with egcs / gcc.

If you get a problem with assembler code, try changing the -mcpu=xxx option to match your CPU.
Typically power2, power, or powerpc may need to be used. Alternatively, you might need to use
604 or 604e. We are not positive but suspect that power would likely be safe most of the time, even
on a power2 machine.

If you don't know what your CPU is, execute a uname -m command. It produces a string that looks
like 000514676700, with a format of xxyyyyyymmss where xx and ss are always 00, yyyyyy is
a unique system ID and mm is the ID of the CPU Planar. A chart of these values can be found at ht-
tp://www16.boulder.ibm.com/pseries/en_US/cmds/aixcmds5/uname.htm.

This gives you a machine type and a machine model you can use to determine what type of CPU you
have.

If you have problems with signals (MySQL dies unexpectedly under high load), you may have found an
OS bug with threads and signals. In this case, you can tell MySQL not to use signals by configuring as
follows:

CFLAGS=-DDONT_USE_THR_ALARM CXX=gcc \
CXXFLAGS="-felide-constructors -fno-exceptions -fno-rtti \
-DDONT_USE_THR_ALARM" \
./configure --prefix=/usr/local/mysql --with-debug \

--with-low-memory

Installing and Upgrading MySQL

149

http://www-frec.bull.com/
http://www-frec.bull.com/
http://www16.boulder.ibm.com/pseries/en_US/cmds/aixcmds5/uname.htm
http://www16.boulder.ibm.com/pseries/en_US/cmds/aixcmds5/uname.htm

This doesn't affect the performance of MySQL, but has the side effect that you can't kill clients that are
“sleeping” on a connection with mysqladmin kill or mysqladmin shutdown. Instead, the cli-
ent dies when it issues its next command.

On some versions of AIX, linking with libbind.a makes getservbyname() dump core. This is
an AIX bug and should be reported to IBM.

For AIX 4.2.1 and gcc, you have to make the following changes.

After configuring, edit config.h and include/my_config.h and change the line that says this:

#define HAVE_SNPRINTF 1

to this:

#undef HAVE_SNPRINTF

And finally, in mysqld.cc, you need to add a prototype for initgroups().

#ifdef _AIX41
extern "C" int initgroups(const char *,int);
#endif

If you need to allocate a lot of memory to the mysqld process, it's not enough to just use ulimit -d
unlimited. You may also have to modify mysqld_safe to add a line something like this:

export LDR_CNTRL='MAXDATA=0x80000000'

You can find more information about using a lot of memory at ht-
tp://publib16.boulder.ibm.com/pseries/en_US/aixprggd/genprogc/lrg_prg_support.htm.

Users of AIX 4.3 should use gmake instead of the make utility included with AIX.

As of AIX 4.1, the C compiler has been unbundled from AIX as a separate product. We recommend us-
ing gcc 3.3.2, which can be obtained here:
ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/gcc/

The steps for compiling MySQL on AIX with gcc 3.3.2 are similar to those for using gcc 2.95 (in par-
ticular, the need to edit config.h and my_config.h after running configure). However, before
running configure, you should also patch the curses.h file as follows:

/opt/freeware/lib/gcc-lib/powerpc-ibm-aix5.2.0.0/3.3.2/include/curses.h.ORIG
Mon Dec 26 02:17:28 2005

--- /opt/freeware/lib/gcc-lib/powerpc-ibm-aix5.2.0.0/3.3.2/include/curses.h
Mon Dec 26 02:40:13 2005

*** 2023,2029 ****

#endif /* _AIX32_CURSES */
! #if defined(__USE_FIXED_PROTOTYPES__) || defined(__cplusplus) || defined
(__STRICT_ANSI__)

extern int delwin (WINDOW *);
extern int endwin (void);
extern int getcurx (WINDOW *);

--- 2023,2029 ----

#endif /* _AIX32_CURSES */
! #if 0 && (defined(__USE_FIXED_PROTOTYPES__) || defined(__cplusplus)
|| defined
(__STRICT_ANSI__))

extern int delwin (WINDOW *);
extern int endwin (void);

Installing and Upgrading MySQL

150

http://publib16.boulder.ibm.com/pseries/en_US/aixprggd/genprogc/lrg_prg_support.htm
http://publib16.boulder.ibm.com/pseries/en_US/aixprggd/genprogc/lrg_prg_support.htm
ftp://ftp.software.ibm.com/aix/freeSoftware/aixtoolbox/RPMS/ppc/gcc/

extern int getcurx (WINDOW *);

2.13.5.4. SunOS 4 Notes

On SunOS 4, MIT-pthreads is needed to compile MySQL. This in turn means you need GNU make.

Some SunOS 4 systems have problems with dynamic libraries and libtool. You can use the follow-
ing configure line to avoid this problem:

./configure --disable-shared --with-mysqld-ldflags=-all-static

When compiling readline, you may get warnings about duplicate defines. These can be ignored.

When compiling mysqld, there are some implicit declaration of function warnings.
These can be ignored.

2.13.5.5. Alpha-DEC-UNIX Notes (Tru64)

If you are using egcs 1.1.2 on Digital Unix, you should upgrade to gcc 2.95.2, because egcs on DEC
has some serious bugs!

When compiling threaded programs under Digital Unix, the documentation recommends using the -
pthread option for cc and cxx and the -lmach -lexc libraries (in addition to -lpthread). You
should run configure something like this:

CC="cc -pthread" CXX="cxx -pthread -O" \
./configure --with-named-thread-libs="-lpthread -lmach -lexc -lc"

When compiling mysqld, you may see a couple of warnings like this:

mysqld.cc: In function void handle_connections()':
mysqld.cc:626: passing long unsigned int *' as argument 3 of
accept(int,sockadddr *, int *)'

You can safely ignore these warnings. They occur because configure can detect only errors, not
warnings.

If you start the server directly from the command line, you may have problems with it dying when you
log out. (When you log out, your outstanding processes receive a SIGHUP signal.) If so, try starting the
server like this:

nohup mysqld [options] &

nohup causes the command following it to ignore any SIGHUP signal sent from the terminal. Alternat-
ively, start the server by running mysqld_safe, which invokes mysqld using nohup for you. See
Section 5.4.1, “mysqld_safe — MySQL Server Startup Script”.

If you get a problem when compiling mysys/get_opt.c, just remove the #define _NO_PROTO
line from the start of that file.

If you are using Compaq's CC compiler, the following configure line should work:

CC="cc -pthread"
CFLAGS="-O4 -ansi_alias -ansi_args -fast -inline speed \

-speculate all -arch host"
CXX="cxx -pthread"
CXXFLAGS="-O4 -ansi_alias -ansi_args -fast -inline speed \

-speculate all -arch host -noexceptions -nortti"
export CC CFLAGS CXX CXXFLAGS

Installing and Upgrading MySQL

151

./configure \
--prefix=/usr/local/mysql \
--with-low-memory \
--enable-large-files \
--enable-shared=yes \
--with-named-thread-libs="-lpthread -lmach -lexc -lc"

gnumake

If you get a problem with libtool when compiling with shared libraries as just shown, when linking
mysql, you should be able to get around this by issuing these commands:

cd mysql
/bin/sh ../libtool --mode=link cxx -pthread -O3 -DDBUG_OFF \

-O4 -ansi_alias -ansi_args -fast -inline speed \
-speculate all \ -arch host -DUNDEF_HAVE_GETHOSTBYNAME_R \
-o mysql mysql.o readline.o sql_string.o completion_hash.o \
../readline/libreadline.a -lcurses \
../libmysql/.libs/libmysqlclient.so -lm

cd ..
gnumake
gnumake install
scripts/mysql_install_db

2.13.5.6. Alpha-DEC-OSF/1 Notes

If you have problems compiling and have DEC CC and gcc installed, try running configure like
this:

CC=cc CFLAGS=-O CXX=gcc CXXFLAGS=-O3 \
./configure --prefix=/usr/local/mysql

If you get problems with the c_asm.h file, you can create and use a 'dummy' c_asm.h file with:

touch include/c_asm.h
CC=gcc CFLAGS=-I./include \
CXX=gcc CXXFLAGS=-O3 \
./configure --prefix=/usr/local/mysql

Note that the following problems with the ld program can be fixed by downloading the latest DEC
(Compaq) patch kit from: http://ftp.support.compaq.com/public/unix/.

On OSF/1 V4.0D and compiler "DEC C V5.6-071 on Digital Unix V4.0 (Rev. 878)," the compiler had
some strange behavior (undefined asm symbols). /bin/ld also appears to be broken (problems with
_exit undefined errors occurring while linking mysqld). On this system, we have managed to
compile MySQL with the following configure line, after replacing /bin/ld with the version from
OSF 4.0C:

CC=gcc CXX=gcc CXXFLAGS=-O3 ./configure --prefix=/usr/local/mysql

With the Digital compiler "C++ V6.1-029," the following should work:

CC=cc -pthread
CFLAGS=-O4 -ansi_alias -ansi_args -fast -inline speed \

-speculate all -arch host
CXX=cxx -pthread
CXXFLAGS=-O4 -ansi_alias -ansi_args -fast -inline speed \

-speculate all -arch host -noexceptions -nortti
export CC CFLAGS CXX CXXFLAGS
./configure --prefix=/usr/mysql/mysql \

--with-mysqld-ldflags=-all-static --disable-shared \
--with-named-thread-libs="-lmach -lexc -lc"

In some versions of OSF/1, the alloca() function is broken. Fix this by removing the line in con-
fig.h that defines 'HAVE_ALLOCA'.

Installing and Upgrading MySQL

152

http://ftp.support.compaq.com/public/unix/

The alloca() function also may have an incorrect prototype in /usr/include/alloca.h. This
warning resulting from this can be ignored.

configure uses the following thread libraries automatically: -
-with-named-thread-libs="-lpthread -lmach -lexc -lc".

When using gcc, you can also try running configure like this:

CFLAGS=-D_PTHREAD_USE_D4 CXX=gcc CXXFLAGS=-O3 ./configure ...

If you have problems with signals (MySQL dies unexpectedly under high load), you may have found an
OS bug with threads and signals. In this case, you can tell MySQL not to use signals by configuring
with:

CFLAGS=-DDONT_USE_THR_ALARM \
CXXFLAGS=-DDONT_USE_THR_ALARM \
./configure ...

This does not affect the performance of MySQL, but has the side effect that you can't kill clients that are
“sleeping” on a connection with mysqladmin kill or mysqladmin shutdown. Instead, the cli-
ent dies when it issues its next command.

With gcc 2.95.2, you may encounter the following compile error:

sql_acl.cc:1456: Internal compiler error in `scan_region',
at except.c:2566
Please submit a full bug report.

To fix this, you should change to the sql directory and do a cut-and-paste of the last gcc line, but
change -O3 to -O0 (or add -O0 immediately after gcc if you don't have any -O option on your com-
pile line). After this is done, you can just change back to the top-level directory and run make again.

2.13.5.7. SGI Irix Notes

As of MySQL 5.0, we don't provide binaries for Irix any more.

If you are using Irix 6.5.3 or newer, mysqld is able to create threads only if you run it as a user that has
CAP_SCHED_MGT privileges (such as root) or give the mysqld server this privilege with the follow-
ing shell command:

chcap "CAP_SCHED_MGT+epi" /opt/mysql/libexec/mysqld

You may have to undefine some symbols in config.h after running configure and before compil-
ing.

In some Irix implementations, the alloca() function is broken. If the mysqld server dies on some
SELECT statements, remove the lines from config.h that define HAVE_ALLOC and
HAVE_ALLOCA_H. If mysqladmin create doesn't work, remove the line from config.h that
defines HAVE_READDIR_R. You may have to remove the HAVE_TERM_H line as well.

SGI recommends that you install all the patches on this page as a set: ht-
tp://support.sgi.com/surfzone/patches/patchset/6.2_indigo.rps.html

At the very minimum, you should install the latest kernel rollup, the latest rld rollup, and the latest
libc rollup.

You definitely need all the POSIX patches on this page, for pthreads support:

Installing and Upgrading MySQL

153

http://support.sgi.com/surfzone/patches/patchset/6.2_indigo.rps.html
http://support.sgi.com/surfzone/patches/patchset/6.2_indigo.rps.html

http://support.sgi.com/surfzone/patches/patchset/6.2_posix.rps.html

If you get the something like the following error when compiling mysql.cc:

"/usr/include/curses.h", line 82: error(1084):
invalid combination of type

Type the following in the top-level directory of your MySQL source tree:

extra/replace bool curses_bool < /usr/include/curses.h > include/curses.h
make

There have also been reports of scheduling problems. If only one thread is running, performance is slow.
Avoid this by starting another client. This may lead to a two-to-tenfold increase in execution speed
thereafter for the other thread. This is a poorly understood problem with Irix threads; you may have to
improvise to find solutions until this can be fixed.

If you are compiling with gcc, you can use the following configure command:

CC=gcc CXX=gcc CXXFLAGS=-O3 \
./configure --prefix=/usr/local/mysql --enable-thread-safe-client \

--with-named-thread-libs=-lpthread

On Irix 6.5.11 with native Irix C and C++ compilers ver. 7.3.1.2, the following is reported to work

CC=cc CXX=CC CFLAGS='-O3 -n32 -TARG:platform=IP22 -I/usr/local/include \
-L/usr/local/lib' CXXFLAGS='-O3 -n32 -TARG:platform=IP22 \
-I/usr/local/include -L/usr/local/lib' \
./configure --prefix=/usr/local/mysql --with-innodb --with-berkeley-db \

--with-libwrap=/usr/local \
--with-named-curses-libs=/usr/local/lib/libncurses.a

2.13.5.8. SCO UNIX and OpenServer 5.0.x Notes

The current port is tested only on sco3.2v5.0.5, sco3.2v5.0.6, and sco3.2v5.0.7 systems.
There has also been progress on a port to sco3.2v4.2. Open Server 5.0.8 (Legend) has native threads
and allows files greater than 2GB. The current maximum file size is 2GB.

We have been able to compile MySQL with the following configure command on OpenServer with
gcc 2.95.3.

CC=gcc CFLAGS="-D_FILE_OFFSET_BITS=64 -O3" \
CXX=gcc CXXFLAGS="-D_FILE_OFFSET_BITS=64 -O3" \
./configure --prefix=/usr/local/mysql \

--enable-thread-safe-client --with-innodb \
--with-openssl --with-vio --with-extra-charsets=complex

gcc is available at ftp://ftp.sco.com/pub/openserver5/opensrc/gnutools-5.0.7Kj.

This development system requires the OpenServer Execution Environment Supplement oss646B on
OpenServer 5.0.6 and oss656B and The OpenSource libraries found in gwxlibs. All OpenSource tools
are in the opensrc directory. They are available at ftp://ftp.sco.com/pub/openserver5/opensrc/.

We recommend using the latest production release of MySQL.

SCO provides operating system patches at ftp://ftp.sco.com/pub/openserver5 for OpenServer 5.0.[0-6]
and ftp://ftp.sco.com/pub/openserverv5/507 for OpenServer 5.0.7.

SCO provides information about security fixes at ftp://ftp.sco.com/pub/security/OpenServer for
OpenServer 5.0.x.

Installing and Upgrading MySQL

154

http://support.sgi.com/surfzone/patches/patchset/6.2_posix.rps.html
ftp://ftp.sco.com/pub/openserver5/opensrc/gnutools-5.0.7Kj
ftp://ftp.sco.com/pub/openserver5/opensrc/
ftp://ftp.sco.com/pub/openserver5
ftp://ftp.sco.com/pub/openserverv5/507
ftp://ftp.sco.com/pub/security/OpenServer

The maximum file size on an OpenSever 5.0.x system is 2GB.

The total memory which can be allocated for streams buffers, clists, and lock records cannot exceed
60MB on OpenServer 5.0.x.

Streams buffers are allocated in units of 4096 byte pages, clists are 70 bytes each, and lock records are
64 bytes each, so:

(NSTRPAGES × 4096) + (NCLIST × 70) + (MAX_FLCKREC × 64) <= 62914560

Follow this procedure to configure the Database Services option. If you are unsure whether an applica-
tion requires this, see the documentation provided with the application.

1. Log in as root.

2. Enable the SUDS driver by editing the /etc/conf/sdevice.d/suds file. Change the N in
the second field to a Y.

3. Use mkdev aio or the Hardware/Kernel Manager to enable support for asynchronous I/O and re-
link the kernel. To allow users to lock down memory for use with this type of I/O, update the
aiomemlock(F) file. This file should be updated to include the names of users that can use AIO and
the maximum amounts of memory they can lock down.

4. Many applications use setuid binaries so that you need to specify only a single user. See the docu-
mentation provided with the application to determine whether this is the case for your application.

After you complete this process, reboot the system to create a new kernel incorporating these changes.

By default, the entries in /etc/conf/cf.d/mtune are set as follows:

Value Default Min Max
----- ------- --- ---
NBUF 0 24 450000
NHBUF 0 32 524288
NMPBUF 0 12 512
MAX_INODE 0 100 64000
MAX_FILE 0 100 64000
CTBUFSIZE 128 0 256
MAX_PROC 0 50 16000
MAX_REGION 0 500 160000
NCLIST 170 120 16640
MAXUP 100 15 16000
NOFILES 110 60 11000
NHINODE 128 64 8192
NAUTOUP 10 0 60
NGROUPS 8 0 128
BDFLUSHR 30 1 300
MAX_FLCKREC 0 50 16000
PUTBUFSZ 8000 2000 20000
MAXSLICE 100 25 100
ULIMIT 4194303 2048 4194303
* Streams Parameters
NSTREAM 64 1 32768
NSTRPUSH 9 9 9
NMUXLINK 192 1 4096
STRMSGSZ 16384 4096 524288
STRCTLSZ 1024 1024 1024
STRMAXBLK 524288 4096 524288
NSTRPAGES 500 0 8000
STRSPLITFRAC 80 50 100
NLOG 3 3 3
NUMSP 64 1 256
NUMTIM 16 1 8192
NUMTRW 16 1 8192
* Semaphore Parameters
SEMMAP 10 10 8192
SEMMNI 10 10 8192

Installing and Upgrading MySQL

155

SEMMNS 60 60 8192
SEMMNU 30 10 8192
SEMMSL 25 25 150
SEMOPM 10 10 1024
SEMUME 10 10 25
SEMVMX 32767 32767 32767
SEMAEM 16384 16384 16384
* Shared Memory Parameters
SHMMAX 524288 131072 2147483647
SHMMIN 1 1 1
SHMMNI 100 100 2000
FILE 0 100 64000
NMOUNT 0 4 256
NPROC 0 50 16000
NREGION 0 500 160000

We recommend setting these values as follows:

• NOFILES should be 4096 or 2048.

• MAXUP should be 2048.

To make changes to the kernel, use the idtune name parameter command. idtune modifies the
/etc/conf/cf.d/stune file for you. For example, to change SEMMS to 200, execute this com-
mand as root:

/etc/conf/bin/idtune SEMMNS 200

Then rebuild and reboot the kernel by issuing this command:

/etc/conf/bin/idbuild -B && init 6

We recommend tuning the system, but the proper parameter values to use depend on the number of users
accessing the application or database and size the of the database (that is, the used buffer pool). The fol-
lowing kernel parameters can be set with idtune:

• SHMMAX (recommended setting: 128MB) and SHMSEG (recommended setting: 15). These paramet-
ers have an influence on the MySQL database engine to create user buffer pools.

• NOFILES and MAXUP should be set to at least 2048.

• MAXPROC should be set to at least 3000/4000 (depends on number of users) or more.

• We also recommend using the following formulas to calculate values for SEMMSL, SEMMNS, and
SEMMNU:

SEMMSL = 13

13 is what has been found to be the best for both Progress and MySQL.

SEMMNS = SEMMSL × number of db servers to be run on the system

Set SEMMNS to the value of SEMMSL multiplied by the number of database servers (maximum) that
you are running on the system at one time.

SEMMNU = SEMMNS

Set the value of SEMMNU to equal the value of SEMMNS. You could probably set this to 75% of

Installing and Upgrading MySQL

156

SEMMNS, but this is a conservative estimate.

You need to at least install the SCO OpenServer Linker and Application Development Libraries or the
OpenServer Development System to use gcc. You cannot use the GCC Dev system without installing
one of these.

You should get the FSU Pthreads package and install it first. This can be found at ht-
tp://moss.csc.ncsu.edu/~mueller/ftp/pub/PART/pthreads.tar.gz. You can also get a precompiled package
from ftp://ftp.zenez.com/pub/zenez/prgms/FSU-threads-3.14.tar.gz.

FSU Pthreads can be compiled with SCO Unix 4.2 with tcpip, or using OpenServer 3.0 or Open Desktop
3.0 (OS 3.0 ODT 3.0) with the SCO Development System installed using a good port of GCC 2.5.x. For
ODT or OS 3.0, you need a good port of GCC 2.5.x. There are a lot of problems without a good port.
The port for this product requires the SCO Unix Development system. Without it, you are missing the
libraries and the linker that is needed. You also need SCO-3.2v4.2-includes.tar.gz. This file
contains the changes to the SCO Development include files that are needed to get MySQL to build. You
need to replace the existing system include files with these modified header files. They can be obtained
from ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz.

To build FSU Pthreads on your system, all you should need to do is run GNU make. The Makefile in
FSU-threads-3.14.tar.gz is set up to make FSU-threads.

You can run ./configure in the threads/src directory and select the SCO OpenServer option.
This command copies Makefile.SCO5 to Makefile. Then run make.

To install in the default /usr/include directory, log in as root, and then cd to the thread/src
directory and run make install.

Remember that you must use GNU make to build MySQL.

Note: If you don't start mysqld_safe as root, you should get only the default 110 open files per pro-
cess. mysqld writes a note about this in the log file.

With SCO 3.2V4.2, you should use FSU Pthreads version 3.14 or newer. The following configure
command should work:

CFLAGS="-D_XOPEN_XPG4" CXX=gcc CXXFLAGS="-D_XOPEN_XPG4" \
./configure \

--prefix=/usr/local/mysql \
--with-named-thread-libs="-lgthreads -lsocket -lgen -lgthreads" \
--with-named-curses-libs="-lcurses"

You may have problems with some include files. In this case, you can find new SCO-specific include
files at ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz.

You should unpack this file in the include directory of your MySQL source tree.

SCO development notes:

• MySQL should automatically detect FSU Pthreads and link mysqld with -lgthreads -
lsocket -lgthreads.

• The SCO development libraries are re-entrant in FSU Pthreads. SCO claims that its library functions
are re-entrant, so they must be re-entrant with FSU Pthreads. FSU Pthreads on OpenServer tries to
use the SCO scheme to make re-entrant libraries.

• FSU Pthreads (at least the version at ftp::/ftp.zenez.com) comes linked with GNU malloc. If you
encounter problems with memory usage, make sure that gmalloc.o is included in libg-

Installing and Upgrading MySQL

157

http://moss.csc.ncsu.edu/~mueller/ftp/pub/PART/pthreads.tar.gz
http://moss.csc.ncsu.edu/~mueller/ftp/pub/PART/pthreads.tar.gz
ftp://ftp.zenez.com/pub/zenez/prgms/FSU-threads-3.14.tar.gz
ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz
ftp://ftp.zenez.com/pub/zenez/prgms/SCO-3.2v4.2-includes.tar.gz
ftp::/ftp.zenez.com

threads.a and libgthreads.so.

• In FSU Pthreads, the following system calls are pthreads-aware: read(), write(), getmsg(),
connect(), accept(), select(), and wait().

• The CSSA-2001-SCO.35.2 (the patch is listed in custom as erg711905-dscr_remap security patch
(version 2.0.0)) breaks FSU threads and makes mysqld unstable. You have to remove this one if
you want to run mysqld on an OpenServer 5.0.6 machine.

• If you use SCO OpenServer 5, you may need to recompile FSU pthreads with -DDRAFT7 in
CFLAGS. Otherwise, InnoDB may hang at a mysqld startup.

• SCO provides operating system patches at ftp://ftp.sco.com/pub/openserver5 for OpenServer 5.0.x.

• SCO provides security fixes and libsocket.so.2 at ftp://ftp.sco.com/pub/security/OpenServer
and ftp://ftp.sco.com/pub/security/sse for OpenServer 5.0.x.

• Pre-OSR506 security fixes. Also, the telnetd fix at
ftp://stage.caldera.com/pub/security/openserver/ or
ftp://stage.caldera.com/pub/security/openserver/CSSA-2001-SCO.10/ as both libsocket.so.2
and libresolv.so.1 with instructions for installing on pre-OSR506 systems.

It's probably a good idea to install these patches before trying to compile/use MySQL.

Beginning with Legend/OpenServer 6.0.0, there are native threads and no 2GB file size limit.

2.13.5.9. SCO OpenServer 6.0.x Notes

OpenServer 6 includes these key improvements:

• Larger file support up to 1 TB

• Multiprocessor support increased from 4 to 32 processors

• Increased memory support up to 64GB

• Extending the power of UnixWare into OpenServer 6

• Dramatic performance improvement

OpenServer 6.0.0 commands are organized as follows:

• /bin is for commands that behave exactly the same as on OpenServer 5.0.x.

• /u95/bin is for commands that have better standards conformance, for example Large File Sys-
tem (LFS) support.

• /udk/bin is for commands that behave the same as on UnixWare 7.1.4. The default is for the LFS
support.

The following is a guide to setting PATH on OpenServer 6. If the user wants the traditional OpenServer
5.0.x then PATH should be /bin first. If the user wants LFS support, the path should be /
u95/bin:/bin. If the user wants UnixWare 7 support first, the path would be /
udk/bin:/u95/bin:/bin:.

Installing and Upgrading MySQL

158

ftp://ftp.sco.com/pub/openserver5
ftp://ftp.sco.com/pub/security/OpenServer
ftp://ftp.sco.com/pub/security/sse
ftp://stage.caldera.com/pub/security/openserver/
ftp://stage.caldera.com/pub/security/openserver/CSSA-2001-SCO.10/

We recommend using the latest production release of MySQL. Should you choose to use an older re-
lease of MySQL on OpenServer 6.0.x, you must use a version of MySQL at least as recent as 3.22.13 to
get fixes for some portability and OS problems.

MySQL distribution files with names of the following form are tar archives of media are tar archives
of media images suitable for installation with the SCO Software Manager (/etc/custom) on SCO
OpenServer 6:

mysql-PRODUCT-5.0.25-sco-osr6-i686.VOLS.tar

A distribution where PRODUCT is pro-cert is the Commercially licensed MySQL Pro Certified serv-
er. A distribution where PRODUCT is pro-gpl-cert is the MySQL Pro Certified server licensed un-
der the terms of the General Public License (GPL).

Select whichever distribution you wish to install and, after download, extract the tar archive into an
empty directory. For example:

shell> mkdir /tmp/mysql-pro
shell> cd /tmp/mysql-pro
shell> tar xf /tmp/mysql-pro-cert-5.0.25-sco-osr6-i686.VOLS.tar

Prior to installation, back up your data in accordance with the procedures outlined in Section 2.11,
“Upgrading MySQL”.

Remove any previously installed pkgadd version of MySQL:

shell> pkginfo mysql 2>&1 > /dev/null && pkgrm mysql

Install MySQL Pro from media images using the SCO Software Manager:

shell> /etc/custom -p SCO:MySQL -i -z /tmp/mysql-pro

Alternatively, the SCO Software Manager can be displayed graphically by clicking on the Software
Manager icon on the desktop, selecting Software -> Install New, selecting the host, selecting
Media Images for the Media Device, and entering /tmp/mysql-pro as the Image Directory.

After installation, run mkdev mysql as the root user to configure your newly installed MySQL Pro
Certified server.

Note: The installation procedure for VOLS packages does not create the mysql user and group that the
package uses by default. You should either create the mysql user and group, or else select a different
user and group using an option in mkdev mysql.

If you wish to configure your MySQL Pro server to interface with the Apache Web server via PHP,
download and install the PHP update from SCO at
ftp://ftp.sco.com/pub/updates/OpenServer/SCOSA-2006.17/.

We have been able to compile MySQL with the following configure command on OpenServer 6.0.x:

CC=cc CFLAGS="-D_FILE_OFFSET_BITS=64 -O3" \
CXX=CC CXXFLAGS="-D_FILE_OFFSET_BITS=64 -O3" \
./configure --prefix=/usr/local/mysql \

--enable-thread-safe-client --with-berkeley-db \
--with-extra-charsets=complex \
--build=i686-unknown-sysv5SCO_SV6.0.0

If you use gcc, you must use gcc 2.95.3 or newer.

CC=gcc CXX=g++/configure ...

Installing and Upgrading MySQL

159

ftp://ftp.sco.com/pub/updates/OpenServer/SCOSA-2006.17/

The version of Berkeley DB that comes with either UnixWare 7.1.4 or OpenServer 6.0.0 is not used
when building MySQL. MySQL instead uses its own version of Berkeley DB. The configure com-
mand needs to build both a static and a dynamic library in src_directory/bdb/build_unix/,
but it does not with MySQL's own BDB version. The workaround is as follows.

1. Configure as normal for MySQL.

2. cd bdb/build_unix/

3. cp -p Makefile Makefile.sav

4. Use same options and run ../dist/configure.

5. Run gmake.

6. cp -p Makefile.sav Makefile

7. Change location to the top source directory and run gmake.

This allows both the shared and dynamic libraries to be made and work.

SCO provides OpenServer 6 operating system patches at ftp://ftp.sco.com/pub/openserver6.

SCO provides information about security fixes at ftp://ftp.sco.com/pub/security/OpenServer.

By default, the maximum file size on a OpenServer 6.0.0 system is 1TB. Some operating system utilities
have a limitation of 2GB. The maximum possible file size on UnixWare 7 is 1TB with VXFS or HTFS.

OpenServer 6 can be configured for large file support (file sizes greater than 2GB) by tuning the UNIX
kernel.

By default, the entries in /etc/conf/cf.d/mtune are set as follows:

Value Default Min Max
----- ------- --- ---
SVMMLIM 0x9000000 0x1000000 0x7FFFFFFF
HVMMLIM 0x9000000 0x1000000 0x7FFFFFFF

To make changes to the kernel, use the idtune name parameter command. idtune modifies the
/etc/conf/cf.d/stune file for you. We recommend setting the kernel values by executing the
following commands as root:

/etc/conf/bin/idtune SDATLIM 0x7FFFFFFF
/etc/conf/bin/idtune HDATLIM 0x7FFFFFFF
/etc/conf/bin/idtune SVMMLIM 0x7FFFFFFF
/etc/conf/bin/idtune HVMMLIM 0x7FFFFFFF
/etc/conf/bin/idtune SFNOLIM 2048
/etc/conf/bin/idtune HFNOLIM 2048

Then rebuild and reboot the kernel by issuing this command:

/etc/conf/bin/idbuild -B && init 6

We recommend tuning the system, but the proper parameter values to use depend on the number of users
accessing the application or database and size the of the database (that is, the used buffer pool). The fol-
lowing kernel parameters can be set with idtune:

Installing and Upgrading MySQL

160

ftp://ftp.sco.com/pub/openserver6
ftp://ftp.sco.com/pub/security/OpenServer

• SHMMAX (recommended setting: 128MB) and SHMSEG (recommended setting: 15). These paramet-
ers have an influence on the MySQL database engine to create user buffer pools.

• SFNOLIM and HFNOLIM should be at maximum 2048.

• NPROC should be set to at least 3000/4000 (depends on number of users).

• We also recommend using the following formulas to calculate values for SEMMSL, SEMMNS, and
SEMMNU:

SEMMSL = 13

13 is what has been found to be the best for both Progress and MySQL.

SEMMNS = SEMMSL × number of db servers to be run on the system

Set SEMMNS to the value of SEMMSL multiplied by the number of database servers (maximum) that
you are running on the system at one time.

SEMMNU = SEMMNS

Set the value of SEMMNU to equal the value of SEMMNS. You could probably set this to 75% of
SEMMNS, but this is a conservative estimate.

2.13.5.10. SCO UnixWare 7.1.x and OpenUNIX 8.0.0 Notes

We recommend using the latest production release of MySQL. Should you choose to use an older re-
lease of MySQL on UnixWare 7.1.x, you must use a version of MySQL at least as recent as 3.22.13 to
get fixes for some portability and OS problems.

We have been able to compile MySQL with the following configure command on UnixWare 7.1.x:

CC="cc" CFLAGS="-I/usr/local/include" \
CXX="CC" CXXFLAGS="-I/usr/local/include" \
./configure --prefix=/usr/local/mysql \

--enable-thread-safe-client --with-berkeley-db=./bdb \
--with-innodb --with-openssl --with-extra-charsets=complex

If you want to use gcc, you must use gcc 2.95.3 or newer.

CC=gcc CXX=g++/configure ...

The version of Berkeley DB that comes with either UnixWare 7.1.4 or OpenServer 6.0.0 is not used
when building MySQL. MySQL instead uses its own version of Berkeley DB. The configure com-
mand needs to build both a static and a dynamic library in src_directory/bdb/build_unix/,
but it does not with MySQL's own BDB version. The workaround is as follows.

1. Configure as normal for MySQL.

2. cd bdb/build_unix/

3. cp -p Makefile Makefile.sav

4. Use same options and run ../dist/configure.

5. Run gmake.

Installing and Upgrading MySQL

161

6. cp -p Makefile.sav Makefile

7. Change to top source directory and run gmake.

This allows both the shared and dynamic libraries to be made and work.

SCO provides operating system patches at ftp://ftp.sco.com/pub/unixware7 for UnixWare 7.1.1,
ftp://ftp.sco.com/pub/unixware7/713/ for UnixWare 7.1.3, ftp://ftp.sco.com/pub/unixware7/714/ for
UnixWare 7.1.4, and ftp://ftp.sco.com/pub/openunix8 for OpenUNIX 8.0.0.

SCO provides information about security fixes at ftp://ftp.sco.com/pub/security/OpenUNIX for Open-
UNIX and ftp://ftp.sco.com/pub/security/UnixWare for UnixWare.

The UnixWare 7 file size limit is 1 TB with VXFS. Some OS utilities have a limitation of 2GB.

On UnixWare 7.1.4 you do not need to do anything to get large file support, but to enable large file sup-
port on prior versions of UnixWare 7.1.x, run fsadm.

fsadm -Fvxfs -o largefiles /
fsadm / * Note
ulimit unlimited
/etc/conf/bin/idtune SFSZLIM 0x7FFFFFFF ** Note
/etc/conf/bin/idtune HFSZLIM 0x7FFFFFFF ** Note
/etc/conf/bin/idbuild -B

* This should report "largefiles".
** 0x7FFFFFFF represents infinity for these values.

Reboot the system using shutdown.

By default, the entries in /etc/conf/cf.d/mtune are set as follows:

Value Default Min Max
----- ------- --- ---
SVMMLIM 0x9000000 0x1000000 0x7FFFFFFF
HVMMLIM 0x9000000 0x1000000 0x7FFFFFFF

To make changes to the kernel, use the idtune name parameter command. idtune modifies the
/etc/conf/cf.d/stune file for you. We recommend setting the kernel values by executing the
following commands as root:

/etc/conf/bin/idtune SDATLIM 0x7FFFFFFF
/etc/conf/bin/idtune HDATLIM 0x7FFFFFFF
/etc/conf/bin/idtune SVMMLIM 0x7FFFFFFF
/etc/conf/bin/idtune HVMMLIM 0x7FFFFFFF
/etc/conf/bin/idtune SFNOLIM 2048
/etc/conf/bin/idtune HFNOLIM 2048

Then rebuild and reboot the kernel by issuing this command:

/etc/conf/bin/idbuild -B && init 6

We recommend tuning the system, but the proper parameter values to use depend on the number of users
accessing the application or database and size the of the database (that is, the used buffer pool). The fol-
lowing kernel parameters can be set with idtune:

• SHMMAX (recommended setting: 128MB) and SHMSEG (recommended setting: 15). These paramet-
ers have an influence on the MySQL database engine to create user buffer pools.

• SFNOLIM and HFNOLIM should be at maximum 2048.

Installing and Upgrading MySQL

162

ftp://ftp.sco.com/pub/unixware7
ftp://ftp.sco.com/pub/unixware7/713/
ftp://ftp.sco.com/pub/unixware7/714/
ftp://ftp.sco.com/pub/openunix8
ftp://ftp.sco.com/pub/security/OpenUNIX
ftp://ftp.sco.com/pub/security/UnixWare

• NPROC should be set to at least 3000/4000 (depends on number of users).

• We also recommend using the following formulas to calculate values for SEMMSL, SEMMNS, and
SEMMNU:

SEMMSL = 13

13 is what has been found to be the best for both Progress and MySQL.

SEMMNS = SEMMSL × number of db servers to be run on the system

Set SEMMNS to the value of SEMMSL multiplied by the number of database servers (maximum) that
you are running on the system at one time.

SEMMNU = SEMMNS

Set the value of SEMMNU to equal the value of SEMMNS. You could probably set this to 75% of
SEMMNS, but this is a conservative estimate.

2.13.6. OS/2 Notes
MySQL uses quite a few open files. Because of this, you should add something like the following to
your CONFIG.SYS file:

SET EMXOPT=-c -n -h1024

If you do not do this, you may encounter the following error:

File 'xxxx' not found (Errcode: 24)

When using MySQL with OS/2 Warp 3, FixPack 29 or above is required. With OS/2 Warp 4, FixPack 4
or above is required. This is a requirement of the Pthreads library. MySQL must be installed on a parti-
tion with a type that supports long filenames, such as HPFS, FAT32, and so on.

The INSTALL.CMD script must be run from OS/2's own CMD.EXE and may not work with replace-
ment shells such as 4OS2.EXE.

The scripts/mysql-install-db script has been renamed. It is called install.cmd and is a
REXX script, which sets up the default MySQL security settings and creates the WorkPlace Shell icons
for MySQL.

Dynamic module support is compiled in but not fully tested. Dynamic modules should be compiled us-
ing the Pthreads runtime library.

gcc -Zdll -Zmt -Zcrtdll=pthrdrtl -I../include -I../regex -I.. \
-o example udf_example.cc -L../lib -lmysqlclient udf_example.def

mv example.dll example.udf

Note: Due to limitations in OS/2, UDF module name stems must not exceed eight characters. Modules
are stored in the /mysql2/udf directory; the safe-mysqld.cmd script puts this directory in the
BEGINLIBPATH environment variable. When using UDF modules, specified extensions are ignored-
--it is assumed to be .udf. For example, in Unix, the shared module might be named example.so
and you would load a function from it like this:

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME 'example.so';

Installing and Upgrading MySQL

163

In OS/2, the module would be named example.udf, but you would not specify the module extension:

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME 'example';

2.14. Perl Installation Notes
Perl support for MySQL is provided by means of the DBI/DBD client interface. The interface requires
Perl 5.6.1 or later. It does not work if you have an older version of Perl.

If you want to use transactions with Perl DBI, you need to have DBD::mysql version 1.2216 or newer.
DBD::mysql 2.9003 or newer is recommended.

If you are using the MySQL 4.1 or newer client library, you must use DBD::mysql 2.9003 or newer.

Perl support is not included with MySQL distributions. You can obtain the necessary modules from ht-
tp://search.cpan.org for Unix, or by using the ActiveState ppm program on Windows. The following
sections describe how to do this.

Perl support for MySQL must be installed if you want to run the MySQL benchmark scripts. See Sec-
tion 7.1.4, “The MySQL Benchmark Suite”.

2.14.1. Installing Perl on Unix
MySQL Perl support requires that you have installed MySQL client programming support (libraries and
header files). Most installation methods install the necessary files. However, if you installed MySQL
from RPM files on Linux, be sure that you've installed the developer RPM. The client programs are in
the client RPM, but client programming support is in the developer RPM.

If you want to install Perl support, the files you need can be obtained from the CPAN (Comprehensive
Perl Archive Network) at http://search.cpan.org.

The easiest way to install Perl modules on Unix is to use the CPAN module. For example:

shell> perl -MCPAN -e shell
cpan> install DBI
cpan> install DBD::mysql

The DBD::mysql installation runs a number of tests. These tests attempt to connect to the local
MySQL server using the default username and password. (The default username is your login name on
Unix, and ODBC on Windows. The default password is “no password.”) If you cannot connect to the
server with those values (for example, if your account has a password), the tests fail. You can use
force install DBD::mysql to ignore the failed tests.

DBI requires the Data::Dumper module. It may be installed; if not, you should install it before in-
stalling DBI.

It is also possible to download the module distributions in the form of compressed tar archives and
build the modules manually. For example, to unpack and build a DBI distribution, use a procedure such
as this:

1. Unpack the distribution into the current directory:

shell> gunzip < DBI-VERSION.tar.gz | tar xvf -

This command creates a directory named DBI-VERSION.

Installing and Upgrading MySQL

164

http://search.cpan.org
http://search.cpan.org
http://search.cpan.org

2. Change location into the top-level directory of the unpacked distribution:

shell> cd DBI-VERSION

3. Build the distribution and compile everything:

shell> perl Makefile.PL
shell> make
shell> make test
shell> make install

The make test command is important because it verifies that the module is working. Note that when
you run that command during the DBD::mysql installation to exercise the interface code, the MySQL
server must be running or the test fails.

It is a good idea to rebuild and reinstall the DBD::mysql distribution whenever you install a new re-
lease of MySQL, particularly if you notice symptoms such as that all your DBI scripts fail after you up-
grade MySQL.

If you do not have access rights to install Perl modules in the system directory or if you want to install
local Perl modules, the following reference may be useful: ht-
tp://servers.digitaldaze.com/extensions/perl/modules.html#modules

Look under the heading “Installing New Modules that Require Locally Installed Modules.”

2.14.2. Installing ActiveState Perl on Windows
On Windows, you should do the following to install the MySQL DBD module with ActiveState Perl:

1. Get ActiveState Perl from http://www.activestate.com/Products/ActivePerl/ and install it.

2. Open a console window (a “DOS window”).

3. If necessary, set the HTTP_proxy variable. For example, you might try a setting like this:

set HTTP_proxy=my.proxy.com:3128

4. Start the PPM program:

C:\> C:\perl\bin\ppm.pl

5. If you have not previously done so, install DBI:

ppm> install DBI

6. If this succeeds, run the following command:

ppm> install \
ftp://ftp.de.uu.net/pub/CPAN/authors/id/JWIED/DBD-mysql-1.2212.x86.ppd

This procedure should work with ActiveState Perl 5.6 or newer.

If you cannot get the procedure to work, you should install the MyODBC driver instead and connect to
the MySQL server through ODBC:

Installing and Upgrading MySQL

165

http://servers.digitaldaze.com/extensions/perl/modules.html#modules
http://servers.digitaldaze.com/extensions/perl/modules.html#modules
http://www.activestate.com/Products/ActivePerl/

use DBI;
$dbh= DBI->connect("DBI:ODBC:$dsn",$user,$password) ||

die "Got error $DBI::errstr when connecting to $dsn\n";

2.14.3. Problems Using the Perl DBI/DBD Interface
If Perl reports that it cannot find the ../mysql/mysql.so module, the problem is probably that Perl
cannot locate the libmysqlclient.so shared library. You should be able to fix this problem by one
of the following methods:

• Compile the DBD::mysql distribution with perl Makefile.PL -static -config rather
than perl Makefile.PL.

• Copy libmysqlclient.so to the directory where your other shared libraries are located
(probably /usr/lib or /lib).

• Modify the -L options used to compile DBD::mysql to reflect the actual location of libmysql-
client.so.

• On Linux, you can add the pathname of the directory where libmysqlclient.so is located to
the /etc/ld.so.conf file.

• Add the pathname of the directory where libmysqlclient.so is located to the LD_RUN_PATH
environment variable. Some systems use LD_LIBRARY_PATH instead.

Note that you may also need to modify the -L options if there are other libraries that the linker fails to
find. For example, if the linker cannot find libc because it is in /lib and the link command specifies
-L/usr/lib, change the -L option to -L/lib or add -L/lib to the existing link command.

If you get the following errors from DBD::mysql, you are probably using gcc (or using an old binary
compiled with gcc):

/usr/bin/perl: can't resolve symbol '__moddi3'
/usr/bin/perl: can't resolve symbol '__divdi3'

Add -L/usr/lib/gcc-lib/... -lgcc to the link command when the mysql.so library gets
built (check the output from make for mysql.so when you compile the Perl client). The -L option
should specify the pathname of the directory where libgcc.a is located on your system.

Another cause of this problem may be that Perl and MySQL are not both compiled with gcc. In this
case, you can solve the mismatch by compiling both with gcc.

You may see the following error from DBD::mysql when you run the tests:

t/00base............install_driver(mysql) failed:
Can't load '../blib/arch/auto/DBD/mysql/mysql.so' for module DBD::mysql:
../blib/arch/auto/DBD/mysql/mysql.so: undefined symbol:
uncompress at /usr/lib/perl5/5.00503/i586-linux/DynaLoader.pm line 169.

This means that you need to include the -lz compression library on the link line. That can be done by
changing the following line in the file lib/DBD/mysql/Install.pm:

$sysliblist .= " -lm";

Change that line to:

$sysliblist .= " -lm -lz";

Installing and Upgrading MySQL

166

After this, you must run make realclean and then proceed with the installation from the beginning.

If you want to install DBI on SCO, you have to edit the Makefile in DBI-xxx and each subdirectory.
Note that the following assumes gcc 2.95.2 or newer:

OLD: NEW:
CC = cc CC = gcc
CCCDLFLAGS = -KPIC -W1,-Bexport CCCDLFLAGS = -fpic
CCDLFLAGS = -wl,-Bexport CCDLFLAGS =

LD = ld LD = gcc -G -fpic
LDDLFLAGS = -G -L/usr/local/lib LDDLFLAGS = -L/usr/local/lib
LDFLAGS = -belf -L/usr/local/lib LDFLAGS = -L/usr/local/lib

LD = ld LD = gcc -G -fpic
OPTIMISE = -Od OPTIMISE = -O1

OLD:
CCCFLAGS = -belf -dy -w0 -U M_XENIX -DPERL_SCO5 -I/usr/local/include

NEW:
CCFLAGS = -U M_XENIX -DPERL_SCO5 -I/usr/local/include

These changes are necessary because the Perl dynaloader does not load the DBI modules if they were
compiled with icc or cc.

If you want to use the Perl module on a system that does not support dynamic linking (such as SCO),
you can generate a static version of Perl that includes DBI and DBD::mysql. The way this works is
that you generate a version of Perl with the DBI code linked in and install it on top of your current Perl.
Then you use that to build a version of Perl that additionally has the DBD code linked in, and install that.

On SCO, you must have the following environment variables set:

LD_LIBRARY_PATH=/lib:/usr/lib:/usr/local/lib:/usr/progressive/lib

Or:

LD_LIBRARY_PATH=/usr/lib:/lib:/usr/local/lib:/usr/ccs/lib:\
/usr/progressive/lib:/usr/skunk/lib

LIBPATH=/usr/lib:/lib:/usr/local/lib:/usr/ccs/lib:\
/usr/progressive/lib:/usr/skunk/lib

MANPATH=scohelp:/usr/man:/usr/local1/man:/usr/local/man:\
/usr/skunk/man:

First, create a Perl that includes a statically linked DBI module by running these commands in the dir-
ectory where your DBI distribution is located:

shell> perl Makefile.PL -static -config
shell> make
shell> make install
shell> make perl

Then you must install the new Perl. The output of make perl indicates the exact make command you
need to execute to perform the installation. On SCO, this is make -f Makefile.aperl
inst_perl MAP_TARGET=perl.

Next, use the just-created Perl to create another Perl that also includes a statically linked DBD::mysql
by running these commands in the directory where your DBD::mysql distribution is located:

shell> perl Makefile.PL -static -config
shell> make
shell> make install
shell> make perl

Installing and Upgrading MySQL

167

Finally, you should install this new Perl. Again, the output of make perl indicates the command to
use.

Installing and Upgrading MySQL

168

Chapter 3. Tutorial
This chapter provides a tutorial introduction to MySQL by showing how to use the mysql client pro-
gram to create and use a simple database. mysql (sometimes referred to as the “terminal monitor” or
just “monitor”) is an interactive program that allows you to connect to a MySQL server, run queries, and
view the results. mysql may also be used in batch mode: you place your queries in a file beforehand,
then tell mysql to execute the contents of the file. Both ways of using mysql are covered here.

To see a list of options provided by mysql, invoke it with the --help option:

shell> mysql --help

This chapter assumes that mysql is installed on your machine and that a MySQL server is available to
which you can connect. If this is not true, contact your MySQL administrator. (If you are the adminis-
trator, you need to consult the relevant portions of this manual, such as Chapter 5, Database Administra-
tion.)

This chapter describes the entire process of setting up and using a database. If you are interested only in
accessing an existing database, you may want to skip over the sections that describe how to create the
database and the tables it contains.

Because this chapter is tutorial in nature, many details are necessarily omitted. Consult the relevant sec-
tions of the manual for more information on the topics covered here.

3.1. Connecting to and Disconnecting from the Server
To connect to the server, you will usually need to provide a MySQL user name when you invoke
mysql and, most likely, a password. If the server runs on a machine other than the one where you log
in, you will also need to specify a host name. Contact your administrator to find out what connection
parameters you should use to connect (that is, what host, user name, and password to use). Once you
know the proper parameters, you should be able to connect like this:

shell> mysql -h host -u user -p
Enter password: ********

host and user represent the host name where your MySQL server is running and the user name of
your MySQL account. Substitute appropriate values for your setup. The ******** represents your
password; enter it when mysql displays the Enter password: prompt.

If that works, you should see some introductory information followed by a mysql> prompt:

shell> mysql -h host -u user -p
Enter password: ********
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 25338 to server version: 5.0.25-standard

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

The mysql> prompt tells you that mysql is ready for you to enter commands.

If you are logging in on the same machine that MySQL is running on, you can omit the host, and simply
use the following:

shell> mysql -u user -p

169

If, when you attempt to log in, you get an error message such as ERROR 2002 (HY000): Can't connect
to local MySQL server through socket '/tmp/mysql.sock' (2), it means that that MySQL server daemon
(Unix) or service (Windows) is not running. Consult the administrator or see the section of Chapter 2,
Installing and Upgrading MySQL that is appropriate to your operating system.

For help with other problems often encountered when trying to log in, see Section A.2, “Common Errors
When Using MySQL Programs”.

Some MySQL installations allow users to connect as the anonymous (unnamed) user to the server run-
ning on the local host. If this is the case on your machine, you should be able to connect to that server by
invoking mysql without any options:

shell> mysql

After you have connected successfully, you can disconnect any time by typing QUIT (or \q) at the
mysql> prompt:

mysql> QUIT
Bye

On Unix, you can also disconnect by pressing Control-D.

Most examples in the following sections assume that you are connected to the server. They indicate this
by the mysql> prompt.

3.2. Entering Queries
Make sure that you are connected to the server, as discussed in the previous section. Doing so does not
in itself select any database to work with, but that's okay. At this point, it's more important to find out a
little about how to issue queries than to jump right in creating tables, loading data into them, and retriev-
ing data from them. This section describes the basic principles of entering commands, using several
queries you can try out to familiarize yourself with how mysql works.

Here's a simple command that asks the server to tell you its version number and the current date. Type it
in as shown here following the mysql> prompt and press Enter:

mysql> SELECT VERSION(), CURRENT_DATE;
+----------------+--------------+
| VERSION() | CURRENT_DATE |
+----------------+--------------+
| 5.0.7-beta-Max | 2005-07-11 |
+----------------+--------------+
1 row in set (0.01 sec)
mysql>

This query illustrates several things about mysql:

• A command normally consists of an SQL statement followed by a semicolon. (There are some ex-
ceptions where a semicolon may be omitted. QUIT, mentioned earlier, is one of them. We'll get to
others later.)

• When you issue a command, mysql sends it to the server for execution and displays the results,
then prints another mysql> prompt to indicate that it is ready for another command.

• mysql displays query output in tabular form (rows and columns). The first row contains labels for
the columns. The rows following are the query results. Normally, column labels are the names of the
columns you fetch from database tables. If you're retrieving the value of an expression rather than a
table column (as in the example just shown), mysql labels the column using the expression itself.

Tutorial

170

• mysql shows how many rows were returned and how long the query took to execute, which gives
you a rough idea of server performance. These values are imprecise because they represent wall
clock time (not CPU or machine time), and because they are affected by factors such as server load
and network latency. (For brevity, the “rows in set” line is sometimes not shown in the remaining
examples in this chapter.)

Keywords may be entered in any lettercase. The following queries are equivalent:

mysql> SELECT VERSION(), CURRENT_DATE;
mysql> select version(), current_date;
mysql> SeLeCt vErSiOn(), current_DATE;

Here's another query. It demonstrates that you can use mysql as a simple calculator:

mysql> SELECT SIN(PI()/4), (4+1)*5;
+------------------+---------+
| SIN(PI()/4) | (4+1)*5 |
+------------------+---------+
| 0.70710678118655 | 25 |
+------------------+---------+
1 row in set (0.02 sec)

The queries shown thus far have been relatively short, single-line statements. You can even enter mul-
tiple statements on a single line. Just end each one with a semicolon:

mysql> SELECT VERSION(); SELECT NOW();
+----------------+
| VERSION() |
+----------------+
| 5.0.7-beta-Max |
+----------------+
1 row in set (0.00 sec)

+---------------------+
| NOW() |
+---------------------+
| 2005-07-11 17:59:36 |
+---------------------+
1 row in set (0.00 sec)

A command need not be given all on a single line, so lengthy commands that require several lines are
not a problem. mysql determines where your statement ends by looking for the terminating semicolon,
not by looking for the end of the input line. (In other words, mysql accepts free-format input: it collects
input lines but does not execute them until it sees the semicolon.)

Here's a simple multiple-line statement:

mysql> SELECT
-> USER()
-> ,
-> CURRENT_DATE;

+---------------+--------------+
| USER() | CURRENT_DATE |
+---------------+--------------+
| jon@localhost | 2005-07-11 |
+---------------+--------------+

In this example, notice how the prompt changes from mysql> to -> after you enter the first line of a
multiple-line query. This is how mysql indicates that it has not yet seen a complete statement and is
waiting for the rest. The prompt is your friend, because it provides valuable feedback. If you use that
feedback, you can always be aware of what mysql is waiting for.

If you decide you do not want to execute a command that you are in the process of entering, cancel it by
typing \c:

Tutorial

171

mysql> SELECT
-> USER()
-> \c

mysql>

Here, too, notice the prompt. It switches back to mysql> after you type \c, providing feedback to in-
dicate that mysql is ready for a new command.

The following table shows each of the prompts you may see and summarizes what they mean about the
state that mysql is in:

Prompt Meaning

mysql> Ready for new command.

-> Waiting for next line of multiple-line command.

'> Waiting for next line, waiting for completion of a string that began with a single quote
(‘'’).

"> Waiting for next line, waiting for completion of a string that began with a double quote
(‘"’).

`> Waiting for next line, waiting for completion of an identifier that began with a backtick
(‘`’).

/*> Waiting for next line, waiting for completion of a comment that began with /*.

In the MySQL 5.0 series, the /*> prompt was implemented in MySQL 5.0.6.

Multiple-line statements commonly occur by accident when you intend to issue a command on a single
line, but forget the terminating semicolon. In this case, mysql waits for more input:

mysql> SELECT USER()
->

If this happens to you (you think you've entered a statement but the only response is a -> prompt), most
likely mysql is waiting for the semicolon. If you don't notice what the prompt is telling you, you might
sit there for a while before realizing what you need to do. Enter a semicolon to complete the statement,
and mysql executes it:

mysql> SELECT USER()
-> ;

+---------------+
| USER() |
+---------------+
| jon@localhost |
+---------------+

The '> and "> prompts occur during string collection (another way of saying that MySQL is waiting
for completion of a string). In MySQL, you can write strings surrounded by either ‘'’ or ‘"’ characters
(for example, 'hello' or "goodbye"), and mysql lets you enter strings that span multiple lines.
When you see a '> or "> prompt, it means that you have entered a line containing a string that begins
with a ‘'’ or ‘"’ quote character, but have not yet entered the matching quote that terminates the string.
This often indicates that you have inadvertently left out a quote character. For example:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
'>

If you enter this SELECT statement, then press Enter and wait for the result, nothing happens. Instead
of wondering why this query takes so long, notice the clue provided by the '> prompt. It tells you that
mysql expects to see the rest of an unterminated string. (Do you see the error in the statement? The

Tutorial

172

string 'Smith is missing the second single quote mark.)

At this point, what do you do? The simplest thing is to cancel the command. However, you cannot just
type \c in this case, because mysql interprets it as part of the string that it is collecting. Instead, enter
the closing quote character (so mysql knows you've finished the string), then type \c:

mysql> SELECT * FROM my_table WHERE name = 'Smith AND age < 30;
'> '\c

mysql>

The prompt changes back to mysql>, indicating that mysql is ready for a new command.

The `> prompt is similar to the '> and "> prompts, but indicates that you have begun but not com-
pleted a backtick-quoted identifier.

It is important to know what the '>, ">, and `> prompts signify, because if you mistakenly enter an un-
terminated string, any further lines you type appear to be ignored by mysql — including a line contain-
ing QUIT. This can be quite confusing, especially if you do not know that you need to supply the ter-
minating quote before you can cancel the current command.

3.3. Creating and Using a Database
Once you know how to enter commands, you are ready to access a database.

Suppose that you have several pets in your home (your menagerie) and you would like to keep track of
various types of information about them. You can do so by creating tables to hold your data and loading
them with the desired information. Then you can answer different sorts of questions about your animals
by retrieving data from the tables. This section shows you how to:

• Create a database

• Create a table

• Load data into the table

• Retrieve data from the table in various ways

• Use multiple tables

The menagerie database is simple (deliberately), but it is not difficult to think of real-world situations in
which a similar type of database might be used. For example, a database like this could be used by a
farmer to keep track of livestock, or by a veterinarian to keep track of patient records. A menagerie dis-
tribution containing some of the queries and sample data used in the following sections can be obtained
from the MySQL Web site. It is available in both compressed tar file and Zip formats at ht-
tp://dev.mysql.com/doc/.

Use the SHOW statement to find out what databases currently exist on the server:

mysql> SHOW DATABASES;
+----------+
| Database |
+----------+
| mysql |
| test |
| tmp |
+----------+

The list of databases is probably different on your machine, but the mysql and test databases are
likely to be among them. The mysql database is required because it describes user access privileges.

Tutorial

173

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/

The test database is often provided as a workspace for users to try things out.

Note that you may not see all databases if you do not have the SHOW DATABASES privilege. See Sec-
tion 13.5.1.3, “GRANT Syntax”.

If the test database exists, try to access it:

mysql> USE test
Database changed

Note that USE, like QUIT, does not require a semicolon. (You can terminate such statements with a
semicolon if you like; it does no harm.) The USE statement is special in another way, too: it must be giv-
en on a single line.

You can use the test database (if you have access to it) for the examples that follow, but anything you
create in that database can be removed by anyone else with access to it. For this reason, you should
probably ask your MySQL administrator for permission to use a database of your own. Suppose that you
want to call yours menagerie. The administrator needs to execute a command like this:

mysql> GRANT ALL ON menagerie.* TO 'your_mysql_name'@'your_client_host';

where your_mysql_name is the MySQL user name assigned to you and your_client_host is
the host from which you connect to the server.

3.3.1. Creating and Selecting a Database
If the administrator creates your database for you when setting up your permissions, you can begin using
it. Otherwise, you need to create it yourself:

mysql> CREATE DATABASE menagerie;

Under Unix, database names are case sensitive (unlike SQL keywords), so you must always refer to your
database as menagerie, not as Menagerie, MENAGERIE, or some other variant. This is also true for
table names. (Under Windows, this restriction does not apply, although you must refer to databases and
tables using the same lettercase throughout a given query. However, for a variety of reasons, our recom-
mended best practice is always to use the same lettercase that was used when the database was created.)

Note: If you get an error such as ERROR 1044 (42000): Access denied for user 'monty'@'localhost' to
database 'menagerie' when attempting to create a database, this means that your user account does not
have the necessary privileges to do so. Discuss this with the administrator or see Section 5.8, “The
MySQL Access Privilege System”.

Creating a database does not select it for use; you must do that explicitly. To make menagerie the
current database, use this command:

mysql> USE menagerie;
Database changed

Your database needs to be created only once, but you must select it for use each time you begin a
mysql session. You can do this by issuing a USE statement as shown in the example. Alternatively, you
can select the database on the command line when you invoke mysql. Just specify its name after any
connection parameters that you might need to provide. For example:

shell> mysql -h host -u user -p menagerie
Enter password: ********

Note that menagerie in the command just shown is not your password. If you want to supply your
password on the command line after the -p option, you must do so with no intervening space (for ex-

Tutorial

174

ample, as -pmypassword, not as -p mypassword). However, putting your password on the com-
mand line is not recommended, because doing so exposes it to snooping by other users logged in on
your machine.

3.3.2. Creating a Table
Creating the database is the easy part, but at this point it's empty, as SHOW TABLES tells you:

mysql> SHOW TABLES;
Empty set (0.00 sec)

The harder part is deciding what the structure of your database should be: what tables you need and what
columns should be in each of them.

You want a table that contains a record for each of your pets. This can be called the pet table, and it
should contain, as a bare minimum, each animal's name. Because the name by itself is not very interest-
ing, the table should contain other information. For example, if more than one person in your family
keeps pets, you might want to list each animal's owner. You might also want to record some basic de-
scriptive information such as species and sex.

How about age? That might be of interest, but it's not a good thing to store in a database. Age changes as
time passes, which means you'd have to update your records often. Instead, it's better to store a fixed
value such as date of birth. Then, whenever you need age, you can calculate it as the difference between
the current date and the birth date. MySQL provides functions for doing date arithmetic, so this is not
difficult. Storing birth date rather than age has other advantages, too:

• You can use the database for tasks such as generating reminders for upcoming pet birthdays. (If you
think this type of query is somewhat silly, note that it is the same question you might ask in the con-
text of a business database to identify clients to whom you need to send out birthday greetings in the
current week or month, for that computer-assisted personal touch.)

• You can calculate age in relation to dates other than the current date. For example, if you store death
date in the database, you can easily calculate how old a pet was when it died.

You can probably think of other types of information that would be useful in the pet table, but the ones
identified so far are sufficient: name, owner, species, sex, birth, and death.

Use a CREATE TABLE statement to specify the layout of your table:

mysql> CREATE TABLE pet (name VARCHAR(20), owner VARCHAR(20),
-> species VARCHAR(20), sex CHAR(1), birth DATE, death DATE);

VARCHAR is a good choice for the name, owner, and species columns because the column values
vary in length. The lengths in those column definitions need not all be the same, and need not be 20.
You can normally pick any length from 1 to 65535, whatever seems most reasonable to you. (Note:
Prior to MySQL 5.0.3, the upper limit was 255.) If you make a poor choice and it turns out later that you
need a longer field, MySQL provides an ALTER TABLE statement.

Several types of values can be chosen to represent sex in animal records, such as 'm' and 'f', or per-
haps 'male' and 'female'. It is simplest to use the single characters 'm' and 'f'.

The use of the DATE data type for the birth and death columns is a fairly obvious choice.

Once you have created a table, SHOW TABLES should produce some output:

mysql> SHOW TABLES;
+---------------------+
| Tables in menagerie |

Tutorial

175

+---------------------+
| pet |
+---------------------+

To verify that your table was created the way you expected, use a DESCRIBE statement:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

You can use DESCRIBE any time, for example, if you forget the names of the columns in your table or
what types they have.

For more information about MySQL data types, see Chapter 11, Data Types.

3.3.3. Loading Data into a Table
After creating your table, you need to populate it. The LOAD DATA and INSERT statements are useful
for this.

Suppose that your pet records can be described as shown here. (Observe that MySQL expects dates in
'YYYY-MM-DD' format; this may be different from what you are used to.)

name owner species sex birth death

Fluffy Harold cat f 1993-02-04

Claws Gwen cat m 1994-03-17

Buffy Harold dog f 1989-05-13

Fang Benny dog m 1990-08-27

Bowser Diane dog m 1979-08-31 1995-07-29

Chirpy Gwen bird f 1998-09-11

Whistler Gwen bird 1997-12-09

Slim Benny snake m 1996-04-29

Because you are beginning with an empty table, an easy way to populate it is to create a text file con-
taining a row for each of your animals, then load the contents of the file into the table with a single state-
ment.

You could create a text file pet.txt containing one record per line, with values separated by tabs, and
given in the order in which the columns were listed in the CREATE TABLE statement. For missing val-
ues (such as unknown sexes or death dates for animals that are still living), you can use NULL values. To
represent these in your text file, use \N (backslash, capital-N). For example, the record for Whistler the
bird would look like this (where the whitespace between values is a single tab character):

Whistler Gwen bird \N 1997-12-09 \N

To load the text file pet.txt into the pet table, use this command:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet;

Tutorial

176

Note that if you created the file on Windows with an editor that uses \r\n as a line terminator, you
should use:

mysql> LOAD DATA LOCAL INFILE '/path/pet.txt' INTO TABLE pet
-> LINES TERMINATED BY '\r\n';

(On an Apple machine running OS X, you would likely want to use LINES TERMINATED BY
'\r'.)

You can specify the column value separator and end of line marker explicitly in the LOAD DATA state-
ment if you wish, but the defaults are tab and linefeed. These are sufficient for the statement to read the
file pet.txt properly.

If the statement fails, it is likely that your MySQL installation does not have local file capability enabled
by default. See Section 5.7.4, “Security Issues with LOAD DATA LOCAL”, for information on how to
change this.

When you want to add new records one at a time, the INSERT statement is useful. In its simplest form,
you supply values for each column, in the order in which the columns were listed in the CREATE TA-
BLE statement. Suppose that Diane gets a new hamster named “Puffball.” You could add a new record
using an INSERT statement like this:

mysql> INSERT INTO pet
-> VALUES ('Puffball','Diane','hamster','f','1999-03-30',NULL);

Note that string and date values are specified as quoted strings here. Also, with INSERT, you can insert
NULL directly to represent a missing value. You do not use \N like you do with LOAD DATA.

From this example, you should be able to see that there would be a lot more typing involved to load your
records initially using several INSERT statements rather than a single LOAD DATA statement.

3.3.4. Retrieving Information from a Table
The SELECT statement is used to pull information from a table. The general form of the statement is:

SELECT what_to_select
FROM which_table
WHERE conditions_to_satisfy;

what_to_select indicates what you want to see. This can be a list of columns, or * to indicate “all
columns.” which_table indicates the table from which you want to retrieve data. The WHERE clause
is optional. If it is present, conditions_to_satisfy specifies one or more conditions that rows
must satisfy to qualify for retrieval.

3.3.4.1. Selecting All Data

The simplest form of SELECT retrieves everything from a table:

mysql> SELECT * FROM pet;
+----------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+--------+---------+------+------------+------------+
Fluffy	Harold	cat	f	1993-02-04	NULL
Claws	Gwen	cat	m	1994-03-17	NULL
Buffy	Harold	dog	f	1989-05-13	NULL
Fang	Benny	dog	m	1990-08-27	NULL
Bowser	Diane	dog	m	1979-08-31	1995-07-29
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
Puffball	Diane	hamster	f	1999-03-30	NULL
+----------+--------+---------+------+------------+------------+

Tutorial

177

This form of SELECT is useful if you want to review your entire table, for example, after you've just
loaded it with your initial dataset. For example, you may happen to think that the birth date for Bowser
doesn't seem quite right. Consulting your original pedigree papers, you find that the correct birth year
should be 1989, not 1979.

There are at least two ways to fix this:

• Edit the file pet.txt to correct the error, then empty the table and reload it using DELETE and
LOAD DATA:

mysql> DELETE FROM pet;
mysql> LOAD DATA LOCAL INFILE 'pet.txt' INTO TABLE pet;

However, if you do this, you must also re-enter the record for Puffball.

• Fix only the erroneous record with an UPDATE statement:

mysql> UPDATE pet SET birth = '1989-08-31' WHERE name = 'Bowser';

The UPDATE changes only the record in question and does not require you to reload the table.

3.3.4.2. Selecting Particular Rows

As shown in the preceding section, it is easy to retrieve an entire table. Just omit the WHERE clause from
the SELECT statement. But typically you don't want to see the entire table, particularly when it becomes
large. Instead, you're usually more interested in answering a particular question, in which case you spe-
cify some constraints on the information you want. Let's look at some selection queries in terms of ques-
tions about your pets that they answer.

You can select only particular rows from your table. For example, if you want to verify the change that
you made to Bowser's birth date, select Bowser's record like this:

mysql> SELECT * FROM pet WHERE name = 'Bowser';
+--------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+-------+---------+------+------------+------------+
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+-------+---------+------+------------+------------+

The output confirms that the year is correctly recorded as 1989, not 1979.

String comparisons normally are case-insensitive, so you can specify the name as 'bowser', 'BOW-
SER', and so forth. The query result is the same.

You can specify conditions on any column, not just name. For example, if you want to know which an-
imals were born during or after 1998, test the birth column:

mysql> SELECT * FROM pet WHERE birth >= '1998-1-1';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
| Chirpy | Gwen | bird | f | 1998-09-11 | NULL |
| Puffball | Diane | hamster | f | 1999-03-30 | NULL |
+----------+-------+---------+------+------------+-------+

You can combine conditions, for example, to locate female dogs:

mysql> SELECT * FROM pet WHERE species = 'dog' AND sex = 'f';

Tutorial

178

+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The preceding query uses the AND logical operator. There is also an OR operator:

mysql> SELECT * FROM pet WHERE species = 'snake' OR species = 'bird';
+----------+-------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+-------+
Chirpy	Gwen	bird	f	1998-09-11	NULL
Whistler	Gwen	bird	NULL	1997-12-09	NULL
Slim	Benny	snake	m	1996-04-29	NULL
+----------+-------+---------+------+------------+-------+

AND and OR may be intermixed, although AND has higher precedence than OR. If you use both operat-
ors, it is a good idea to use parentheses to indicate explicitly how conditions should be grouped:

mysql> SELECT * FROM pet WHERE (species = 'cat' AND sex = 'm')
-> OR (species = 'dog' AND sex = 'f');

+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

3.3.4.3. Selecting Particular Columns

If you do not want to see entire rows from your table, just name the columns in which you are interested,
separated by commas. For example, if you want to know when your animals were born, select the name
and birth columns:

mysql> SELECT name, birth FROM pet;
+----------+------------+
| name | birth |
+----------+------------+
Fluffy	1993-02-04
Claws	1994-03-17
Buffy	1989-05-13
Fang	1990-08-27
Bowser	1989-08-31
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Puffball	1999-03-30
+----------+------------+

To find out who owns pets, use this query:

mysql> SELECT owner FROM pet;
+--------+
| owner |
+--------+
| Harold |
| Gwen |
| Harold |
| Benny |
| Diane |
| Gwen |
| Gwen |
| Benny |
| Diane |
+--------+

Notice that the query simply retrieves the owner column from each record, and some of them appear
more than once. To minimize the output, retrieve each unique output record just once by adding the

Tutorial

179

keyword DISTINCT:

mysql> SELECT DISTINCT owner FROM pet;
+--------+
| owner |
+--------+
| Benny |
| Diane |
| Gwen |
| Harold |
+--------+

You can use a WHERE clause to combine row selection with column selection. For example, to get birth
dates for dogs and cats only, use this query:

mysql> SELECT name, species, birth FROM pet
-> WHERE species = 'dog' OR species = 'cat';

+--------+---------+------------+
| name | species | birth |
+--------+---------+------------+
Fluffy	cat	1993-02-04
Claws	cat	1994-03-17
Buffy	dog	1989-05-13
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
+--------+---------+------------+

3.3.4.4. Sorting Rows

You may have noticed in the preceding examples that the result rows are displayed in no particular or-
der. It's often easier to examine query output when the rows are sorted in some meaningful way. To sort
a result, use an ORDER BY clause.

Here are animal birthdays, sorted by date:

mysql> SELECT name, birth FROM pet ORDER BY birth;
+----------+------------+
| name | birth |
+----------+------------+
Buffy	1989-05-13
Bowser	1989-08-31
Fang	1990-08-27
Fluffy	1993-02-04
Claws	1994-03-17
Slim	1996-04-29
Whistler	1997-12-09
Chirpy	1998-09-11
Puffball	1999-03-30
+----------+------------+

On character type columns, sorting — like all other comparison operations — is normally performed in
a case-insensitive fashion. This means that the order is undefined for columns that are identical except
for their case. You can force a case-sensitive sort for a column by using BINARY like so: ORDER BY
BINARY col_name.

The default sort order is ascending, with smallest values first. To sort in reverse (descending) order, add
the DESC keyword to the name of the column you are sorting by:

mysql> SELECT name, birth FROM pet ORDER BY birth DESC;
+----------+------------+
| name | birth |
+----------+------------+
Puffball	1999-03-30
Chirpy	1998-09-11
Whistler	1997-12-09
Slim	1996-04-29
Claws	1994-03-17
Fluffy	1993-02-04
Fang	1990-08-27
Bowser	1989-08-31

Tutorial

180

| Buffy | 1989-05-13 |
+----------+------------+

You can sort on multiple columns, and you can sort different columns in different directions. For ex-
ample, to sort by type of animal in ascending order, then by birth date within animal type in descending
order (youngest animals first), use the following query:

mysql> SELECT name, species, birth FROM pet
-> ORDER BY species, birth DESC;

+----------+---------+------------+
| name | species | birth |
+----------+---------+------------+
Chirpy	bird	1998-09-11
Whistler	bird	1997-12-09
Claws	cat	1994-03-17
Fluffy	cat	1993-02-04
Fang	dog	1990-08-27
Bowser	dog	1989-08-31
Buffy	dog	1989-05-13
Puffball	hamster	1999-03-30
Slim	snake	1996-04-29
+----------+---------+------------+

Note that the DESC keyword applies only to the column name immediately preceding it (birth); it
does not affect the species column sort order.

3.3.4.5. Date Calculations

MySQL provides several functions that you can use to perform calculations on dates, for example, to
calculate ages or extract parts of dates.

To determine how many years old each of your pets is, compute the difference in the year part of the
current date and the birth date, then subtract one if the current date occurs earlier in the calendar year
than the birth date. The following query shows, for each pet, the birth date, the current date, and the age
in years.

mysql> SELECT name, birth, CURDATE(),
-> (YEAR(CURDATE())-YEAR(birth))
-> - (RIGHT(CURDATE(),5)<RIGHT(birth,5))
-> AS age
-> FROM pet;

+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Fluffy	1993-02-04	2003-08-19	10
Claws	1994-03-17	2003-08-19	9
Buffy	1989-05-13	2003-08-19	14
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Chirpy	1998-09-11	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Puffball	1999-03-30	2003-08-19	4
+----------+------------+------------+------+

Here, YEAR() pulls out the year part of a date and RIGHT() pulls off the rightmost five characters that
represent the MM-DD (calendar year) part of the date. The part of the expression that compares the MM-
DD values evaluates to 1 or 0, which adjusts the year difference down a year if CURDATE() occurs
earlier in the year than birth. The full expression is somewhat ungainly, so an alias (age) is used to
make the output column label more meaningful.

The query works, but the result could be scanned more easily if the rows were presented in some order.
This can be done by adding an ORDER BY name clause to sort the output by name:

mysql> SELECT name, birth, CURDATE(),
-> (YEAR(CURDATE())-YEAR(birth))
-> - (RIGHT(CURDATE(),5)<RIGHT(birth,5))
-> AS age

Tutorial

181

-> FROM pet ORDER BY name;
+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
Chirpy	1998-09-11	2003-08-19	4
Claws	1994-03-17	2003-08-19	9
Fang	1990-08-27	2003-08-19	12
Fluffy	1993-02-04	2003-08-19	10
Puffball	1999-03-30	2003-08-19	4
Slim	1996-04-29	2003-08-19	7
Whistler	1997-12-09	2003-08-19	5
+----------+------------+------------+------+

To sort the output by age rather than name, just use a different ORDER BY clause:

mysql> SELECT name, birth, CURDATE(),
-> (YEAR(CURDATE())-YEAR(birth))
-> - (RIGHT(CURDATE(),5)<RIGHT(birth,5))
-> AS age
-> FROM pet ORDER BY age;

+----------+------------+------------+------+
| name | birth | CURDATE() | age |
+----------+------------+------------+------+
Chirpy	1998-09-11	2003-08-19	4
Puffball	1999-03-30	2003-08-19	4
Whistler	1997-12-09	2003-08-19	5
Slim	1996-04-29	2003-08-19	7
Claws	1994-03-17	2003-08-19	9
Fluffy	1993-02-04	2003-08-19	10
Fang	1990-08-27	2003-08-19	12
Bowser	1989-08-31	2003-08-19	13
Buffy	1989-05-13	2003-08-19	14
+----------+------------+------------+------+

A similar query can be used to determine age at death for animals that have died. You determine which
animals these are by checking whether the death value is NULL. Then, for those with non-NULL val-
ues, compute the difference between the death and birth values:

mysql> SELECT name, birth, death,
-> (YEAR(death)-YEAR(birth)) - (RIGHT(death,5)<RIGHT(birth,5))
-> AS age
-> FROM pet WHERE death IS NOT NULL ORDER BY age;

+--------+------------+------------+------+
| name | birth | death | age |
+--------+------------+------------+------+
| Bowser | 1989-08-31 | 1995-07-29 | 5 |
+--------+------------+------------+------+

The query uses death IS NOT NULL rather than death <> NULL because NULL is a special
value that cannot be compared using the usual comparison operators. This is discussed later. See Sec-
tion 3.3.4.6, “Working with NULL Values”.

What if you want to know which animals have birthdays next month? For this type of calculation, year
and day are irrelevant; you simply want to extract the month part of the birth column. MySQL
provides several functions for extracting parts of dates, such as YEAR(), MONTH(), and DAYOF-
MONTH(). MONTH() is the appropriate function here. To see how it works, run a simple query that dis-
plays the value of both birth and MONTH(birth):

mysql> SELECT name, birth, MONTH(birth) FROM pet;
+----------+------------+--------------+
| name | birth | MONTH(birth) |
+----------+------------+--------------+
Fluffy	1993-02-04	2
Claws	1994-03-17	3
Buffy	1989-05-13	5
Fang	1990-08-27	8
Bowser	1989-08-31	8
Chirpy	1998-09-11	9
Whistler	1997-12-09	12
Slim	1996-04-29	4

Tutorial

182

| Puffball | 1999-03-30 | 3 |
+----------+------------+--------------+

Finding animals with birthdays in the upcoming month is also simple. Suppose that the current month is
April. Then the month value is 4 and you can look for animals born in May (month 5) like this:

mysql> SELECT name, birth FROM pet WHERE MONTH(birth) = 5;
+-------+------------+
| name | birth |
+-------+------------+
| Buffy | 1989-05-13 |
+-------+------------+

There is a small complication if the current month is December. You cannot merely add one to the
month number (12) and look for animals born in month 13, because there is no such month. Instead,
you look for animals born in January (month 1).

You can write the query so that it works no matter what the current month is, so that you do not have to
use the number for a particular month. DATE_ADD() allows you to add a time interval to a given date.
If you add a month to the value of CURDATE(), then extract the month part with MONTH(), the result
produces the month in which to look for birthdays:

mysql> SELECT name, birth FROM pet
-> WHERE MONTH(birth) = MONTH(DATE_ADD(CURDATE(),INTERVAL 1 MONTH));

A different way to accomplish the same task is to add 1 to get the next month after the current one after
using the modulo function (MOD) to wrap the month value to 0 if it is currently 12:

mysql> SELECT name, birth FROM pet
-> WHERE MONTH(birth) = MOD(MONTH(CURDATE()), 12) + 1;

Note that MONTH returns a number between 1 and 12. And MOD(something,12) returns a number
between 0 and 11. So the addition has to be after the MOD(), otherwise we would go from November
(11) to January (1).

3.3.4.6. Working with NULL Values

The NULL value can be surprising until you get used to it. Conceptually, NULL means “a missing un-
known value” and it is treated somewhat differently from other values. To test for NULL, you cannot use
the arithmetic comparison operators such as =, <, or <>. To demonstrate this for yourself, try the follow-
ing query:

mysql> SELECT 1 = NULL, 1 <> NULL, 1 < NULL, 1 > NULL;
+----------+-----------+----------+----------+
| 1 = NULL | 1 <> NULL | 1 < NULL | 1 > NULL |
+----------+-----------+----------+----------+
| NULL | NULL | NULL | NULL |
+----------+-----------+----------+----------+

Clearly you get no meaningful results from these comparisons. Use the IS NULL and IS NOT NULL
operators instead:

mysql> SELECT 1 IS NULL, 1 IS NOT NULL;
+-----------+---------------+
| 1 IS NULL | 1 IS NOT NULL |
+-----------+---------------+
| 0 | 1 |
+-----------+---------------+

Note that in MySQL, 0 or NULL means false and anything else means true. The default truth value from
a boolean operation is 1.

Tutorial

183

This special treatment of NULL is why, in the previous section, it was necessary to determine which an-
imals are no longer alive using death IS NOT NULL instead of death <> NULL.

Two NULL values are regarded as equal in a GROUP BY.

When doing an ORDER BY, NULL values are presented first if you do ORDER BY ... ASC and last
if you do ORDER BY ... DESC.

A common error when working with NULL is to assume that it is not possible to insert a zero or an
empty string into a column defined as NOT NULL, but this is not the case. These are in fact values,
whereas NULL means “not having a value.” You can test this easily enough by using IS [NOT] NULL
as shown:

mysql> SELECT 0 IS NULL, 0 IS NOT NULL, '' IS NULL, '' IS NOT NULL;
+-----------+---------------+------------+----------------+
| 0 IS NULL | 0 IS NOT NULL | '' IS NULL | '' IS NOT NULL |
+-----------+---------------+------------+----------------+
| 0 | 1 | 0 | 1 |
+-----------+---------------+------------+----------------+

Thus it is entirely possible to insert a zero or empty string into a NOT NULL column, as these are in fact
NOT NULL. See Section A.5.3, “Problems with NULL Values”.

3.3.4.7. Pattern Matching

MySQL provides standard SQL pattern matching as well as a form of pattern matching based on exten-
ded regular expressions similar to those used by Unix utilities such as vi, grep, and sed.

SQL pattern matching allows you to use ‘_’ to match any single character and ‘%’ to match an arbitrary
number of characters (including zero characters). In MySQL, SQL patterns are case-insensitive by de-
fault. Some examples are shown here. Note that you do not use = or <> when you use SQL patterns; use
the LIKE or NOT LIKE comparison operators instead.

To find names beginning with ‘b’:

mysql> SELECT * FROM pet WHERE name LIKE 'b%';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

To find names ending with ‘fy’:

mysql> SELECT * FROM pet WHERE name LIKE '%fy';
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

To find names containing a ‘w’:

mysql> SELECT * FROM pet WHERE name LIKE '%w%';
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

Tutorial

184

To find names containing exactly five characters, use five instances of the ‘_’ pattern character:

mysql> SELECT * FROM pet WHERE name LIKE '_____';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

The other type of pattern matching provided by MySQL uses extended regular expressions. When you
test for a match for this type of pattern, use the REGEXP and NOT REGEXP operators (or RLIKE and
NOT RLIKE, which are synonyms).

Some characteristics of extended regular expressions are:

• ‘.’ matches any single character.

• A character class ‘[...]’ matches any character within the brackets. For example, ‘[abc]’
matches ‘a’, ‘b’, or ‘c’. To name a range of characters, use a dash. ‘[a-z]’ matches any letter,
whereas ‘[0-9]’ matches any digit.

• ‘*’ matches zero or more instances of the thing preceding it. For example, ‘x*’ matches any number
of ‘x’ characters, ‘[0-9]*’ matches any number of digits, and ‘.*’ matches any number of any-
thing.

• A REGEXP pattern match succeeds if the pattern matches anywhere in the value being tested. (This
differs from a LIKE pattern match, which succeeds only if the pattern matches the entire value.)

• To anchor a pattern so that it must match the beginning or end of the value being tested, use ‘^’ at
the beginning or ‘$’ at the end of the pattern.

To demonstrate how extended regular expressions work, the LIKE queries shown previously are rewrit-
ten here to use REGEXP.

To find names beginning with ‘b’, use ‘^’ to match the beginning of the name:

mysql> SELECT * FROM pet WHERE name REGEXP '^b';
+--------+--------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+------------+
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
| Bowser | Diane | dog | m | 1989-08-31 | 1995-07-29 |
+--------+--------+---------+------+------------+------------+

If you really want to force a REGEXP comparison to be case sensitive, use the BINARY keyword to
make one of the strings a binary string. This query matches only lowercase ‘b’ at the beginning of a
name:

mysql> SELECT * FROM pet WHERE name REGEXP BINARY '^b';

To find names ending with ‘fy’, use ‘$’ to match the end of the name:

mysql> SELECT * FROM pet WHERE name REGEXP 'fy$';
+--------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+--------+--------+---------+------+------------+-------+
| Fluffy | Harold | cat | f | 1993-02-04 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+--------+--------+---------+------+------------+-------+

Tutorial

185

To find names containing a ‘w’, use this query:

mysql> SELECT * FROM pet WHERE name REGEXP 'w';
+----------+-------+---------+------+------------+------------+
| name | owner | species | sex | birth | death |
+----------+-------+---------+------+------------+------------+
Claws	Gwen	cat	m	1994-03-17	NULL
Bowser	Diane	dog	m	1989-08-31	1995-07-29
Whistler	Gwen	bird	NULL	1997-12-09	NULL
+----------+-------+---------+------+------------+------------+

Because a regular expression pattern matches if it occurs anywhere in the value, it is not necessary in the
previous query to put a wildcard on either side of the pattern to get it to match the entire value like it
would be if you used an SQL pattern.

To find names containing exactly five characters, use ‘^’ and ‘$’ to match the beginning and end of the
name, and five instances of ‘.’ in between:

mysql> SELECT * FROM pet WHERE name REGEXP '^.....$';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

You could also write the previous query using the {n} (“repeat-n-times”) operator:

mysql> SELECT * FROM pet WHERE name REGEXP '^.{5}$';
+-------+--------+---------+------+------------+-------+
| name | owner | species | sex | birth | death |
+-------+--------+---------+------+------------+-------+
| Claws | Gwen | cat | m | 1994-03-17 | NULL |
| Buffy | Harold | dog | f | 1989-05-13 | NULL |
+-------+--------+---------+------+------------+-------+

Appendix G, Regular Expressions, provides more information about the syntax for regular expressions.

3.3.4.8. Counting Rows

Databases are often used to answer the question, “How often does a certain type of data occur in a ta-
ble?” For example, you might want to know how many pets you have, or how many pets each owner
has, or you might want to perform various kinds of census operations on your animals.

Counting the total number of animals you have is the same question as “How many rows are in the pet
table?” because there is one record per pet. COUNT(*) counts the number of rows, so the query to
count your animals looks like this:

mysql> SELECT COUNT(*) FROM pet;
+----------+
| COUNT(*) |
+----------+
| 9 |
+----------+

Earlier, you retrieved the names of the people who owned pets. You can use COUNT() if you want to
find out how many pets each owner has:

mysql> SELECT owner, COUNT(*) FROM pet GROUP BY owner;
+--------+----------+
| owner | COUNT(*) |
+--------+----------+
Benny	2
Diane	2
Gwen	3
Harold	2

Tutorial

186

+--------+----------+

Note the use of GROUP BY to group all records for each owner. Without it, all you get is an error mes-
sage:

mysql> SELECT owner, COUNT(*) FROM pet;
ERROR 1140 (42000): Mixing of GROUP columns (MIN(),MAX(),COUNT(),...)
with no GROUP columns is illegal if there is no GROUP BY clause

COUNT() and GROUP BY are useful for characterizing your data in various ways. The following ex-
amples show different ways to perform animal census operations.

Number of animals per species:

mysql> SELECT species, COUNT(*) FROM pet GROUP BY species;
+---------+----------+
| species | COUNT(*) |
+---------+----------+
bird	2
cat	2
dog	3
hamster	1
snake	1
+---------+----------+

Number of animals per sex:

mysql> SELECT sex, COUNT(*) FROM pet GROUP BY sex;
+------+----------+
| sex | COUNT(*) |
+------+----------+
NULL	1
f	4
m	4
+------+----------+

(In this output, NULL indicates that the sex is unknown.)

Number of animals per combination of species and sex:

mysql> SELECT species, sex, COUNT(*) FROM pet GROUP BY species, sex;
+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	NULL	1
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

You need not retrieve an entire table when you use COUNT(). For example, the previous query, when
performed just on dogs and cats, looks like this:

mysql> SELECT species, sex, COUNT(*) FROM pet
-> WHERE species = 'dog' OR species = 'cat'
-> GROUP BY species, sex;

+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
cat	f	1
cat	m	1
dog	f	1
dog	m	2
+---------+------+----------+

Tutorial

187

Or, if you wanted the number of animals per sex only for animals whose sex is known:

mysql> SELECT species, sex, COUNT(*) FROM pet
-> WHERE sex IS NOT NULL
-> GROUP BY species, sex;

+---------+------+----------+
| species | sex | COUNT(*) |
+---------+------+----------+
bird	f	1
cat	f	1
cat	m	1
dog	f	1
dog	m	2
hamster	f	1
snake	m	1
+---------+------+----------+

3.3.4.9. Using More Than one Table

The pet table keeps track of which pets you have. If you want to record other information about them,
such as events in their lives like visits to the vet or when litters are born, you need another table. What
should this table look like? It needs:

• To contain the pet name so that you know which animal each event pertains to.

• A date so that you know when the event occurred.

• A field to describe the event.

• An event type field, if you want to be able to categorize events.

Given these considerations, the CREATE TABLE statement for the event table might look like this:

mysql> CREATE TABLE event (name VARCHAR(20), date DATE,
-> type VARCHAR(15), remark VARCHAR(255));

As with the pet table, it's easiest to load the initial records by creating a tab-delimited text file contain-
ing the information:

name date type remark

Fluffy 1995-05-15 litter 4 kittens, 3 female, 1 male

Buffy 1993-06-23 litter 5 puppies, 2 female, 3 male

Buffy 1994-06-19 litter 3 puppies, 3 female

Chirpy 1999-03-21 vet needed beak straightened

Slim 1997-08-03 vet broken rib

Bowser 1991-10-12 kennel

Fang 1991-10-12 kennel

Fang 1998-08-28 birthday Gave him a new chew toy

Claws 1998-03-17 birthday Gave him a new flea collar

Whistler 1998-12-09 birthday First birthday

Load the records like this:

mysql> LOAD DATA LOCAL INFILE 'event.txt' INTO TABLE event;

Tutorial

188

Based on what you have learned from the queries that you have run on the pet table, you should be able
to perform retrievals on the records in the event table; the principles are the same. But when is the
event table by itself insufficient to answer questions you might ask?

Suppose that you want to find out the ages at which each pet had its litters. We saw earlier how to calcu-
late ages from two dates. The litter date of the mother is in the event table, but to calculate her age on
that date you need her birth date, which is stored in the pet table. This means the query requires both
tables:

mysql> SELECT pet.name,
-> (YEAR(date)-YEAR(birth)) - (RIGHT(date,5)<RIGHT(birth,5)) AS age,
-> remark
-> FROM pet INNER JOIN event
-> ON pet.name = event.name
-> WHERE event.type = 'litter';

+--------+------+-----------------------------+
| name | age | remark |
+--------+------+-----------------------------+
Fluffy	2	4 kittens, 3 female, 1 male
Buffy	4	5 puppies, 2 female, 3 male
Buffy	5	3 puppies, 3 female
+--------+------+-----------------------------+

There are several things to note about this query:

• The FROM clause joins two tables because the query needs to pull information from both of them.

• When combining (joining) information from multiple tables, you need to specify how records in one
table can be matched to records in the other. This is easy because they both have a name column.
The query uses WHERE clause to match up records in the two tables based on the name values.

The query uses an INNER JOIN to combine the tables. An INNER JOIN allows for rows from
either table to appear in the result if and only if both tables meet the conditions specified in the ON
clause. In this example, the ON clause specifies that the name column in the pet table must match
the name column in the event table. If a name appears in one table but not the other, the row will
not appear in the result because the condition in the ON clause fails.

• Because the name column occurs in both tables, you must be specific about which table you mean
when referring to the column. This is done by prepending the table name to the column name.

You need not have two different tables to perform a join. Sometimes it is useful to join a table to itself,
if you want to compare records in a table to other records in that same table. For example, to find breed-
ing pairs among your pets, you can join the pet table with itself to produce candidate pairs of males and
females of like species:

mysql> SELECT p1.name, p1.sex, p2.name, p2.sex, p1.species
-> FROM pet AS p1 INNER JOIN pet AS p2
-> ON p1.species = p2.species AND p1.sex = 'f' AND p2.sex = 'm';

+--------+------+--------+------+---------+
| name | sex | name | sex | species |
+--------+------+--------+------+---------+
Fluffy	f	Claws	m	cat
Buffy	f	Fang	m	dog
Buffy	f	Bowser	m	dog
+--------+------+--------+------+---------+

In this query, we specify aliases for the table name to refer to the columns and keep straight which in-
stance of the table each column reference is associated with.

3.4. Getting Information About Databases and Tables

Tutorial

189

What if you forget the name of a database or table, or what the structure of a given table is (for example,
what its columns are called)? MySQL addresses this problem through several statements that provide in-
formation about the databases and tables it supports.

You have previously seen SHOW DATABASES, which lists the databases managed by the server. To
find out which database is currently selected, use the DATABASE() function:

mysql> SELECT DATABASE();
+------------+
| DATABASE() |
+------------+
| menagerie |
+------------+

If you have not yet selected any database, the result is NULL.

To find out what tables the default database contains (for example, when you are not sure about the
name of a table), use this command:

mysql> SHOW TABLES;
+---------------------+
| Tables in menagerie |
+---------------------+
| event |
| pet |
+---------------------+

If you want to find out about the structure of a table, the DESCRIBE command is useful; it displays in-
formation about each of a table's columns:

mysql> DESCRIBE pet;
+---------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+---------+-------------+------+-----+---------+-------+
name	varchar(20)	YES		NULL	
owner	varchar(20)	YES		NULL	
species	varchar(20)	YES		NULL	
sex	char(1)	YES		NULL	
birth	date	YES		NULL	
death	date	YES		NULL	
+---------+-------------+------+-----+---------+-------+

Field indicates the column name, Type is the data type for the column, NULL indicates whether the
column can contain NULL values, Key indicates whether the column is indexed, and Default spe-
cifies the column's default value.

If you have indexes on a table, SHOW INDEX FROM tbl_name produces information about them.

3.5. Using mysql in Batch Mode
In the previous sections, you used mysql interactively to enter queries and view the results. You can
also run mysql in batch mode. To do this, put the commands you want to run in a file, then tell mysql
to read its input from the file:

shell> mysql < batch-file

If you are running mysql under Windows and have some special characters in the file that cause prob-
lems, you can do this:

C:\> mysql -e "source batch-file"

If you need to specify connection parameters on the command line, the command might look like this:

Tutorial

190

shell> mysql -h host -u user -p < batch-file
Enter password: ********

When you use mysql this way, you are creating a script file, then executing the script.

If you want the script to continue even if some of the statements in it produce errors, you should use the
--force command-line option.

Why use a script? Here are a few reasons:

• If you run a query repeatedly (say, every day or every week), making it a script allows you to avoid
retyping it each time you execute it.

• You can generate new queries from existing ones that are similar by copying and editing script files.

• Batch mode can also be useful while you're developing a query, particularly for multiple-line com-
mands or multiple-statement sequences of commands. If you make a mistake, you don't have to re-
type everything. Just edit your script to correct the error, then tell mysql to execute it again.

• If you have a query that produces a lot of output, you can run the output through a pager rather than
watching it scroll off the top of your screen:

shell> mysql < batch-file | more

• You can catch the output in a file for further processing:

shell> mysql < batch-file > mysql.out

• You can distribute your script to other people so that they can also run the commands.

• Some situations do not allow for interactive use, for example, when you run a query from a cron
job. In this case, you must use batch mode.

The default output format is different (more concise) when you run mysql in batch mode than when
you use it interactively. For example, the output of SELECT DISTINCT species FROM pet
looks like this when mysql is run interactively:

+---------+
| species |
+---------+
| bird |
| cat |
| dog |
| hamster |
| snake |
+---------+

In batch mode, the output looks like this instead:

species
bird
cat
dog
hamster
snake

If you want to get the interactive output format in batch mode, use mysql -t. To echo to the output
the commands that are executed, use mysql -vvv.

Tutorial

191

You can also use scripts from the mysql prompt by using the source or \. command:

mysql> source filename;
mysql> \. filename

3.6. Examples of Common Queries
Here are examples of how to solve some common problems with MySQL.

Some of the examples use the table shop to hold the price of each article (item number) for certain
traders (dealers). Supposing that each trader has a single fixed price per article, then (article, deal-
er) is a primary key for the records.

Start the command-line tool mysql and select a database:

shell> mysql your-database-name

(In most MySQL installations, you can use the database named test).

You can create and populate the example table with these statements:

mysql> CREATE TABLE shop (
-> article INT(4) UNSIGNED ZEROFILL DEFAULT '0000' NOT NULL,
-> dealer CHAR(20) DEFAULT '' NOT NULL,
-> price DOUBLE(16,2) DEFAULT '0.00' NOT NULL,
-> PRIMARY KEY(article, dealer));

mysql> INSERT INTO shop VALUES
-> (1,'A',3.45),(1,'B',3.99),(2,'A',10.99),(3,'B',1.45),
-> (3,'C',1.69),(3,'D',1.25),(4,'D',19.95);

After issuing the statements, the table should have the following contents:

mysql> SELECT * FROM shop;
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
0001	A	3.45
0001	B	3.99
0002	A	10.99
0003	B	1.45
0003	C	1.69
0003	D	1.25
0004	D	19.95
+---------+--------+-------+

3.6.1. The Maximum Value for a Column
“What's the highest item number?”

SELECT MAX(article) AS article FROM shop;

+---------+
| article |
+---------+
| 4 |
+---------+

3.6.2. The Row Holding the Maximum of a Certain Column
Task: Find the number, dealer, and price of the most expensive article.

This is easily done with a subquery:

Tutorial

192

SELECT article, dealer, price
FROM shop
WHERE price=(SELECT MAX(price) FROM shop);

Another solution is to sort all rows descending by price and get only the first row using the MySQL-spe-
cific LIMIT clause:

SELECT article, dealer, price
FROM shop
ORDER BY price DESC
LIMIT 1;

Note: If there were several most expensive articles, each with a price of 19.95, the LIMIT solution
would show only one of them.

3.6.3. Maximum of Column per Group
Task: Find the highest price per article.

SELECT article, MAX(price) AS price
FROM shop
GROUP BY article

+---------+-------+
| article | price |
+---------+-------+
0001	3.99
0002	10.99
0003	1.69
0004	19.95
+---------+-------+

3.6.4. The Rows Holding the Group-wise Maximum of a Cer-
tain Field

Task: For each article, find the dealer or dealers with the most expensive price.

This problem can be solved with a subquery like this one:

SELECT article, dealer, price
FROM shop s1
WHERE price=(SELECT MAX(s2.price)

FROM shop s2
WHERE s1.article = s2.article);

3.6.5. Using User-Defined Variables
You can employ MySQL user variables to remember results without having to store them in temporary
variables in the client. (See Section 9.3, “User-Defined Variables”.)

For example, to find the articles with the highest and lowest price you can do this:

mysql> SELECT @min_price:=MIN(price),@max_price:=MAX(price) FROM shop;
mysql> SELECT * FROM shop WHERE price=@min_price OR price=@max_price;
+---------+--------+-------+
| article | dealer | price |
+---------+--------+-------+
| 0003 | D | 1.25 |
| 0004 | D | 19.95 |
+---------+--------+-------+

Tutorial

193

3.6.6. Using Foreign Keys
In MySQL, InnoDB tables support checking of foreign key constraints. See Section 14.2, “The In-
noDB Storage Engine”, and Section 1.9.5.5, “Foreign Keys”.

A foreign key constraint is not required merely to join two tables. For storage engines other than In-
noDB, it is possible when defining a column to use a REFERENCES tbl_name(col_name) clause,
which has no actual effect, and serves only as a memo or comment to you that the column which you are
currently defining is intended to refer to a column in another table. It is extremely important to realize
when using this syntax that:

• MySQL does not perform any sort of CHECK to make sure that col_name actually exists in
tbl_name (or even that tbl_name itself exists).

• MySQL does not perform any sort of action on tbl_name such as deleting rows in response to ac-
tions taken on rows in the table which you are defining; in other words, this syntax induces no ON
DELETE or ON UPDATE behavior whatsoever. (Although you can write an ON DELETE or ON
UPDATE clause as part of the REFERENCES clause, it is also ignored.)

• This syntax creates a column; it does not create any sort of index or key.

• This syntax will cause an error if used in trying to define an InnoDB table.

You can use a column so created as a join column, as shown here:

CREATE TABLE person (
id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
name CHAR(60) NOT NULL,
PRIMARY KEY (id)

);

CREATE TABLE shirt (
id SMALLINT UNSIGNED NOT NULL AUTO_INCREMENT,
style ENUM('t-shirt', 'polo', 'dress') NOT NULL,
color ENUM('red', 'blue', 'orange', 'white', 'black') NOT NULL,
owner SMALLINT UNSIGNED NOT NULL REFERENCES person(id),
PRIMARY KEY (id)

);

INSERT INTO person VALUES (NULL, 'Antonio Paz');

SELECT @last := LAST_INSERT_ID();

INSERT INTO shirt VALUES
(NULL, 'polo', 'blue', @last),
(NULL, 'dress', 'white', @last),
(NULL, 't-shirt', 'blue', @last);

INSERT INTO person VALUES (NULL, 'Lilliana Angelovska');

SELECT @last := LAST_INSERT_ID();

INSERT INTO shirt VALUES
(NULL, 'dress', 'orange', @last),
(NULL, 'polo', 'red', @last),
(NULL, 'dress', 'blue', @last),
(NULL, 't-shirt', 'white', @last);

SELECT * FROM person;
+----+---------------------+
| id | name |
+----+---------------------+
| 1 | Antonio Paz |
| 2 | Lilliana Angelovska |
+----+---------------------+

SELECT * FROM shirt;
+----+---------+--------+-------+
| id | style | color | owner |

Tutorial

194

+----+---------+--------+-------+
1	polo	blue	1
2	dress	white	1
3	t-shirt	blue	1
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
7	t-shirt	white	2
+----+---------+--------+-------+

SELECT s.* FROM person p INNER JOIN shirt s
ON s.owner = p.id

WHERE p.name LIKE 'Lilliana%'
AND s.color <> 'white';

+----+-------+--------+-------+
| id | style | color | owner |
+----+-------+--------+-------+
4	dress	orange	2
5	polo	red	2
6	dress	blue	2
+----+-------+--------+-------+

When used in this fashion, the REFERENCES clause is not displayed in the output of SHOW CREATE
TABLE or DESCRIBE:

SHOW CREATE TABLE shirt\G
*************************** 1. row ***************************
Table: shirt
Create Table: CREATE TABLE `shirt` (
`id` smallint(5) unsigned NOT NULL auto_increment,
`style` enum('t-shirt','polo','dress') NOT NULL,
`color` enum('red','blue','orange','white','black') NOT NULL,
`owner` smallint(5) unsigned NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1

The use of REFERENCES in this way as a comment or “reminder” in a column definition works with
both MyISAM and BerkeleyDB tables.

3.6.7. Searching on Two Keys
An OR using a single key is well optimized, as is the handling of AND.

The one tricky case is that of searching on two different keys combined with OR:

SELECT field1_index, field2_index FROM test_table
WHERE field1_index = '1' OR field2_index = '1'

This case is optimized from MySQL 5.0.0. See Section 7.2.6, “Index Merge Optimization”.

You can also solve the problem efficiently by using a UNION that combines the output of two separate
SELECT statements. See Section 13.2.7.2, “UNION Syntax”.

Each SELECT searches only one key and can be optimized:

SELECT field1_index, field2_index
FROM test_table WHERE field1_index = '1'

UNION
SELECT field1_index, field2_index

FROM test_table WHERE field2_index = '1';

3.6.8. Calculating Visits Per Day
The following example shows how you can use the bit group functions to calculate the number of days

Tutorial

195

per month a user has visited a Web page.

CREATE TABLE t1 (year YEAR(4), month INT(2) UNSIGNED ZEROFILL,
day INT(2) UNSIGNED ZEROFILL);

INSERT INTO t1 VALUES(2000,1,1),(2000,1,20),(2000,1,30),(2000,2,2),
(2000,2,23),(2000,2,23);

The example table contains year-month-day values representing visits by users to the page. To determ-
ine how many different days in each month these visits occur, use this query:

SELECT year,month,BIT_COUNT(BIT_OR(1<<day)) AS days FROM t1
GROUP BY year,month;

Which returns:

+------+-------+------+
| year | month | days |
+------+-------+------+
| 2000 | 01 | 3 |
| 2000 | 02 | 2 |
+------+-------+------+

The query calculates how many different days appear in the table for each year/month combination, with
automatic removal of duplicate entries.

3.6.9. Using AUTO_INCREMENT

The AUTO_INCREMENT attribute can be used to generate a unique identity for new rows:

CREATE TABLE animals (
id MEDIUMINT NOT NULL AUTO_INCREMENT,
name CHAR(30) NOT NULL,
PRIMARY KEY (id)

);

INSERT INTO animals (name) VALUES
('dog'),('cat'),('penguin'),
('lax'),('whale'),('ostrich');

SELECT * FROM animals;

Which returns:

+----+---------+
| id | name |
+----+---------+
1	dog
2	cat
3	penguin
4	lax
5	whale
6	ostrich
+----+---------+

You can retrieve the most recent AUTO_INCREMENT value with the LAST_INSERT_ID() SQL func-
tion or the mysql_insert_id() C API function. These functions are connection-specific, so their
return values are not affected by another connection which is also performing inserts.

Note: For a multiple-row insert, LAST_INSERT_ID() and mysql_insert_id() actually return
the AUTO_INCREMENT key from the first of the inserted rows. This allows multiple-row inserts to be
reproduced correctly on other servers in a replication setup.

For MyISAM and BDB tables you can specify AUTO_INCREMENT on a secondary column in a multiple-
column index. In this case, the generated value for the AUTO_INCREMENT column is calculated as

Tutorial

196

MAX(auto_increment_column) + 1 WHERE prefix=given-prefix. This is useful when
you want to put data into ordered groups.

CREATE TABLE animals (
grp ENUM('fish','mammal','bird') NOT NULL,
id MEDIUMINT NOT NULL AUTO_INCREMENT,
name CHAR(30) NOT NULL,
PRIMARY KEY (grp,id)

);

INSERT INTO animals (grp,name) VALUES
('mammal','dog'),('mammal','cat'),
('bird','penguin'),('fish','lax'),('mammal','whale'),
('bird','ostrich');

SELECT * FROM animals ORDER BY grp,id;

Which returns:

+--------+----+---------+
| grp | id | name |
+--------+----+---------+
fish	1	lax
mammal	1	dog
mammal	2	cat
mammal	3	whale
bird	1	penguin
bird	2	ostrich
+--------+----+---------+

Note that in this case (when the AUTO_INCREMENT column is part of a multiple-column index),
AUTO_INCREMENT values are reused if you delete the row with the biggest AUTO_INCREMENT value
in any group. This happens even for MyISAM tables, for which AUTO_INCREMENT values normally are
not reused.

If the AUTO_INCREMENT column is part of multiple indexes, MySQL will generate sequence values
using the index that begins with the AUTO_INCREMENT column, if there is one. For example, if the
animals table contained indexes PRIMARY KEY (grp, id) and INDEX (id), MySQL would
ignore the PRIMARY KEY for generating sequence values. As a result, the table would contain a single
sequence, not a sequence per grp value.

To start with an AUTO_INCREMENT value other than 1, you can set that value with CREATE TABLE
or ALTER TABLE, like this:

mysql> ALTER TABLE tbl AUTO_INCREMENT = 100;

More information about AUTO_INCREMENT is available here:

• How to assign the AUTO_INCREMENT attribute to a column: Section 13.1.5, “CREATE TABLE
Syntax”, and Section 13.1.2, “ALTER TABLE Syntax”.

• How AUTO_INCREMENT behaves depending on the SQL mode: Section 5.2.6, “SQL Modes”.

• Find the row that contains the most recent AUTO_INCREMENT value: Section 12.1.3,
“Comparison Functions and Operators”.

• Set the AUTO_INCREMENT value to be used: Section 13.5.3, “SET Syntax”.

• AUTO_INCREMENT and replication: Section 6.7, “Replication Features and Known Problems”.

• Server-system variables related to AUTO_INCREMENT (auto_increment_increment and
auto_increment_offset) that can be used for replication: Section 5.2.3, “System Variables”.

Tutorial

197

3.7. Queries from the Twin Project
At Analytikerna and Lentus, we have been doing the systems and field work for a big research project.
This project is a collaboration between the Institute of Environmental Medicine at Karolinska Institutet
Stockholm and the Section on Clinical Research in Aging and Psychology at the University of Southern
California.

The project involves a screening part where all twins in Sweden older than 65 years are interviewed by
telephone. Twins who meet certain criteria are passed on to the next stage. In this latter stage, twins who
want to participate are visited by a doctor/nurse team. Some of the examinations include physical and
neuropsychological examination, laboratory testing, neuroimaging, psychological status assessment, and
family history collection. In addition, data are collected on medical and environmental risk factors.

More information about Twin studies can be found at: http://www.mep.ki.se/twinreg/index_en.html

The latter part of the project is administered with a Web interface written using Perl and MySQL.

Each night all data from the interviews is moved into a MySQL database.

3.7.1. Find All Non-distributed Twins
The following query is used to determine who goes into the second part of the project:

SELECT
CONCAT(p1.id, p1.tvab) + 0 AS tvid,
CONCAT(p1.christian_name, ' ', p1.surname) AS Name,
p1.postal_code AS Code,
p1.city AS City,
pg.abrev AS Area,
IF(td.participation = 'Aborted', 'A', ' ') AS A,
p1.dead AS dead1,
l.event AS event1,
td.suspect AS tsuspect1,
id.suspect AS isuspect1,
td.severe AS tsevere1,
id.severe AS isevere1,
p2.dead AS dead2,
l2.event AS event2,
h2.nurse AS nurse2,
h2.doctor AS doctor2,
td2.suspect AS tsuspect2,
id2.suspect AS isuspect2,
td2.severe AS tsevere2,
id2.severe AS isevere2,
l.finish_date

FROM
twin_project AS tp
/* For Twin 1 */
LEFT JOIN twin_data AS td ON tp.id = td.id

AND tp.tvab = td.tvab
LEFT JOIN informant_data AS id ON tp.id = id.id

AND tp.tvab = id.tvab
LEFT JOIN harmony AS h ON tp.id = h.id

AND tp.tvab = h.tvab
LEFT JOIN lentus AS l ON tp.id = l.id

AND tp.tvab = l.tvab
/* For Twin 2 */
LEFT JOIN twin_data AS td2 ON p2.id = td2.id

AND p2.tvab = td2.tvab
LEFT JOIN informant_data AS id2 ON p2.id = id2.id

AND p2.tvab = id2.tvab
LEFT JOIN harmony AS h2 ON p2.id = h2.id

AND p2.tvab = h2.tvab
LEFT JOIN lentus AS l2 ON p2.id = l2.id

AND p2.tvab = l2.tvab,
person_data AS p1,
person_data AS p2,
postal_groups AS pg

WHERE
/* p1 gets main twin and p2 gets his/her twin. */

Tutorial

198

http://www.mep.ki.se/twinreg/index_en.html

/* ptvab is a field inverted from tvab */
p1.id = tp.id AND p1.tvab = tp.tvab AND
p2.id = p1.id AND p2.ptvab = p1.tvab AND
/* Just the screening survey */
tp.survey_no = 5 AND
/* Skip if partner died before 65 but allow emigration (dead=9) */
(p2.dead = 0 OR p2.dead = 9 OR
(p2.dead = 1 AND
(p2.death_date = 0 OR
(((TO_DAYS(p2.death_date) - TO_DAYS(p2.birthday)) / 365)
>= 65))))

AND
(
/* Twin is suspect */
(td.future_contact = 'Yes' AND td.suspect = 2) OR
/* Twin is suspect - Informant is Blessed */
(td.future_contact = 'Yes' AND td.suspect = 1

AND id.suspect = 1) OR
/* No twin - Informant is Blessed */
(ISNULL(td.suspect) AND id.suspect = 1

AND id.future_contact = 'Yes') OR
/* Twin broken off - Informant is Blessed */
(td.participation = 'Aborted'
AND id.suspect = 1 AND id.future_contact = 'Yes') OR

/* Twin broken off - No inform - Have partner */
(td.participation = 'Aborted' AND ISNULL(id.suspect)

AND p2.dead = 0))
AND
l.event = 'Finished'
/* Get at area code */
AND SUBSTRING(p1.postal_code, 1, 2) = pg.code
/* Not already distributed */
AND (h.nurse IS NULL OR h.nurse=00 OR h.doctor=00)
/* Has not refused or been aborted */
AND NOT (h.status = 'Refused' OR h.status = 'Aborted'
OR h.status = 'Died' OR h.status = 'Other')

ORDER BY
tvid;

Some explanations:

• CONCAT(p1.id, p1.tvab) + 0 AS tvid

We want to sort on the concatenated id and tvab in numerical order. Adding 0 to the result causes
MySQL to treat the result as a number.

• column id

This identifies a pair of twins. It is a key in all tables.

• column tvab

This identifies a twin in a pair. It has a value of 1 or 2.

• column ptvab

This is an inverse of tvab. When tvab is 1 this is 2, and vice versa. It exists to save typing and to
make it easier for MySQL to optimize the query.

This query demonstrates, among other things, how to do lookups on a table from the same table with a
join (p1 and p2). In the example, this is used to check whether a twin's partner died before the age of
65. If so, the row is not returned.

All of the above exist in all tables with twin-related information. We have a key on both id,tvab (all
tables), and id,ptvab (person_data) to make queries faster.

On our production machine (A 200MHz UltraSPARC), this query returns about 150-200 rows and takes

Tutorial

199

less than one second.

The current number of records in the tables used in the query:

Table Rows

person_data 71074

lentus 5291

twin_project 5286

twin_data 2012

informant_data 663

harmony 381

postal_groups 100

3.7.2. Show a Table of Twin Pair Status
Each interview ends with a status code called event. The query shown here is used to display a table
over all twin pairs combined by event. This indicates in how many pairs both twins are finished, in how
many pairs one twin is finished and the other refused, and so on.

SELECT
t1.event,
t2.event,
COUNT(*)

FROM
lentus AS t1,
lentus AS t2,
twin_project AS tp

WHERE
/* We are looking at one pair at a time */
t1.id = tp.id
AND t1.tvab=tp.tvab
AND t1.id = t2.id
/* Just the screening survey */
AND tp.survey_no = 5
/* This makes each pair only appear once */
AND t1.tvab='1' AND t2.tvab='2'

GROUP BY
t1.event, t2.event;

3.8. Using MySQL with Apache
There are programs that let you authenticate your users from a MySQL database and also let you write
your log files into a MySQL table.

You can change the Apache logging format to be easily readable by MySQL by putting the following in-
to the Apache configuration file:

LogFormat \
"\"%h\",%{%Y%m%d%H%M%S}t,%>s,\"%b\",\"%{Content-Type}o\", \
\"%U\",\"%{Referer}i\",\"%{User-Agent}i\""

To load a log file in that format into MySQL, you can use a statement something like this:

LOAD DATA INFILE '/local/access_log' INTO TABLE tbl_name
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"' ESCAPED BY '\\'

The named table should be created to have columns that correspond to those that the LogFormat line

Tutorial

200

writes to the log file.

Tutorial

201

Chapter 4. Using MySQL Programs
This chapter provides a brief overview of the command-line programs provided by MySQL AB and dis-
cusses the general syntax for specifying options when you run these programs. Most programs have op-
tions that are specific to their own operation, but the option syntax is similar for all of them. Later
chapters provide more detailed descriptions of individual programs, including which options they recog-
nize.

MySQL AB also provides three GUI client programs for use with MySQL Server:

• MySQL Administrator: This tool is used for administering MySQL servers, databases, tables, and
user accounts.

• MySQL Query Browser: This graphical tool is provided by MySQL AB for creating, executing, and
optimizing queries on MySQL databases.

• MySQL Migration Toolkit: This tool helps you migrate schemas and data from other relational data-
base management systems for use with MySQL.

These GUI programs each have their own manuals that you can access at http://dev.mysql.com/doc/.

4.1. Overview of MySQL Programs
MySQL AB provides several types of programs:

• The MySQL server and server startup scripts:

• mysqld is the MySQL server.

• mysqld_safe, mysql.server, and mysqld_multi are server startup scripts.

• mysql_install_db initializes the data directory and the initial databases.

• MySQL Instance Manager monitors and manages MySQL Server instances.

Chapter 5, Database Administration, discusses these programs further

• Client programs that access the server:

• mysql is a command-line client for executing SQL statements interactively or in batch mode.

• mysqladmin is an administrative client.

• mysqlcheck performs table maintenance operations.

• mysqldump and mysqlhotcopy make database backups.

• mysqlimport imports data files.

• mysqlshow displays information about databases and tables.

Chapter 8, Client and Utility Programs, discusses these programs further

• Utility programs that operate independently of the server:

202

http://dev.mysql.com/doc/

• myisamchk performs table maintenance operations.

• myisampack produces compressed, read-only tables.

• mysqlbinlog is a tool for processing binary log files.

• perror displays the meaning of error codes.

Chapter 8, Client and Utility Programs, discusses these programs further

Most MySQL distributions include all of these programs, except for those programs that are platform-
specific. (For example, the server startup scripts are not used on Windows.) The exception is that RPM
distributions are more specialized. There is one RPM for the server, another for client programs, and so
forth. If you appear to be missing one or more programs, see Chapter 2, Installing and Upgrading
MySQL, for information on types of distributions and what they contain. It may be that you have a distri-
bution that does not include all programs and you need to install something else.

4.2. Invoking MySQL Programs
To invoke a MySQL program from the command line (that is, from your shell or command prompt),
enter the program name followed by any options or other arguments needed to instruct the program what
you want it to do. The following commands show some sample program invocations. “shell>” repres-
ents the prompt for your command interpreter; it is not part of what you type. The particular prompt you
see depends on your command interpreter. Typical prompts are $ for sh or bash, % for csh or tcsh,
and C:\> for the Windows command.com or cmd.exe command interpreters.

shell> mysql -u root test
shell> mysqladmin extended-status variables
shell> mysqlshow --help
shell> mysqldump --user=root personnel

Arguments that begin with a single or double dash (‘-’, ‘--’) are option arguments. Options typically
specify the type of connection a program should make to the server or affect its operational mode. Op-
tion syntax is described in Section 4.3, “Specifying Program Options”.

Non-option arguments (arguments with no leading dash) provide additional information to the program.
For example, the mysql program interprets the first non-option argument as a database name, so the
command mysql -u root test indicates that you want to use the test database.

Later sections that describe individual programs indicate which options a program understands and de-
scribe the meaning of any additional non-option arguments.

Some options are common to a number of programs. The most common of these are the --host (or
-h), --user (or -u), and --password (or -p) options that specify connection parameters. They in-
dicate the host where the MySQL server is running, and the username and password of your MySQL ac-
count. All MySQL client programs understand these options; they allow you to specify which server to
connect to and the account to use on that server.

Other connection options are --port (or -P) to specify a TCP/IP port number and --socket (or -S)
to specify a Unix socket file on Unix (or named pipe name on Windows).

The default hostname is localhost. For client programs on Unix, the hostname localhost is spe-
cial. It causes the client to connect to the MySQL server through a Unix socket file. This occurs even if a
--port or -P option is given to specify a port number. To ensure that the client makes a TCP/IP con-
nection to the local server, use --host or -h to specify a hostname value of 127.0.0.1, or the IP
address or name of the local server. You can also specify the connection protocol explicitly, even for

Using MySQL Programs

203

localhost, by using the --protocol=tcp option.

You may find it necessary to invoke MySQL programs using the pathname to the bin directory in
which they are installed. This is likely to be the case if you get a “program not found” error whenever
you attempt to run a MySQL program from any directory other than the bin directory. To make it more
convenient to use MySQL, you can add the pathname of the bin directory to your PATH environment
variable setting. That enables you to run a program by typing only its name, not its entire pathname. For
example, if mysql is installed in /usr/local/mysql/bin, you'll be able to run it by invoking it as
mysql; it will not be necessary to invoke it as /usr/local/mysql/bin/mysql.

Consult the documentation for your command interpreter for instructions on setting your PATH variable.
The syntax for setting environment variables is interpreter-specific. (Some information is given in Sec-
tion 4.3.3, “Using Environment Variables to Specify Options”.)

4.3. Specifying Program Options
There are several ways to specify options for MySQL programs:

• List the options on the command line following the program name. This is most common for options
that apply to a specific invocation of the program.

• List the options in an option file that the program reads when it starts. This is common for options
that you want the program to use each time it runs.

• List the options in environment variables. This method is useful for options that you want to apply
each time the program runs. In practice, option files are used more commonly for this purpose.
However, Section 5.13.2, “Running Multiple Servers on Unix”, discusses one situation in which en-
vironment variables can be very helpful. It describes a handy technique that uses such variables to
specify the TCP/IP port number and Unix socket file for both the server and client programs.

MySQL programs determine which options are given first by examining environment variables, then by
reading option files, and then by checking the command line. This means that environment variables
have the lowest precedence and command-line options the highest.

Because options are processed in order, if an option is specified multiple times, the last occurrence takes
precedence. The following command causes mysql to connect to the server running on localhost:

shell> mysql -h example.com -h localhost

If conflicting or related options are given, later options take precedence over earlier options. The follow-
ing command runs mysql in “no column names” mode:

shell> mysql --column-names --skip-column-names

An option can be specified by writing it in full or as any unambiguous prefix. For example, the -
-compress option can be given to mysqldump as --compr, but not as --comp because that is am-
biguous:

shell> mysqldump --comp
mysqldump: ambiguous option '--comp' (compatible, compress)

Be aware that the use of option prefixes can cause problems in the event that new options are implemen-
ted for a program. A prefix that is unambigious now might become ambiguous in the future.

You can take advantage of the way that MySQL programs process options by specifying default values
for a program's options in an option file. That enables you to avoid typing them each time you run the

Using MySQL Programs

204

program, but also allows you to override the defaults if necessary by using command-line options.

4.3.1. Using Options on the Command Line
Program options specified on the command line follow these rules:

• Options are given after the command name.

• An option argument begins with one dash or two dashes, depending on whether it has a short name
or a long name. Many options have both forms. For example, -? and --help are the short and long
forms of the option that instructs a MySQL program to display its help message.

• Option names are case sensitive. -v and -V are both legal and have different meanings. (They are
the corresponding short forms of the --verbose and --version options.)

• Some options take a value following the option name. For example, -h localhost or -
-host=localhost indicate the MySQL server host to a client program. The option value tells
the program the name of the host where the MySQL server is running.

• For a long option that takes a value, separate the option name and the value by an ‘=’ sign. For a
short option that takes a value, the option value can immediately follow the option letter, or there can
be a space between: -hlocalhost and -h localhost are equivalent. An exception to this rule
is the option for specifying your MySQL password. This option can be given in long form as -
-password=pass_val or as --password. In the latter case (with no password value given),
the program prompts you for the password. The password option also may be given in short form as
-ppass_val or as -p. However, for the short form, if the password value is given, it must follow
the option letter with no intervening space. The reason for this is that if a space follows the option
letter, the program has no way to tell whether a following argument is supposed to be the password
value or some other kind of argument. Consequently, the following two commands have two com-
pletely different meanings:

shell> mysql -ptest
shell> mysql -p test

The first command instructs mysql to use a password value of test, but specifies no default data-
base. The second instructs mysql to prompt for the password value and to use test as the default
database.

Some options control behavior that can be turned on or off. For example, the mysql client supports a -
-column-names option that determines whether or not to display a row of column names at the be-
ginning of query results. By default, this option is enabled. However, you may want to disable it in some
instances, such as when sending the output of mysql into another program that expects to see only data
and not an initial header line.

To disable column names, you can specify the option using any of these forms:

--disable-column-names
--skip-column-names
--column-names=0

The --disable and --skip prefixes and the =0 suffix all have the same effect: They turn the option
off.

The “enabled” form of the option may be specified in any of these ways:

--column-names
--enable-column-names

Using MySQL Programs

205

--column-names=1

If an option is prefixed by --loose, a program does not exit with an error if it does not recognize the
option, but instead issues only a warning:

shell> mysql --loose-no-such-option
mysql: WARNING: unknown option '--no-such-option'

The --loose prefix can be useful when you run programs from multiple installations of MySQL on
the same machine and list options in an option file, An option that may not be recognized by all versions
of a program can be given using the --loose prefix (or loose in an option file). Versions of the pro-
gram that recognize the option process it normally, and versions that do not recognize it issue a warning
and ignore it.

Another option that may occasionally be useful with mysql is the --execute or -e option, which
can be used to pass SQL statements to the server. The statements must be enclosed by single or double
quotation marks. If you wish to use quoted values within a statement, you should use double quotes for
the statement, and single quotes for any quoted values within the statement. When this option is used,
mysql executes the statements and exits.

For example, you can use the following command to obtain a list of user accounts:

shell> mysql -u root -p --execute="SELECT User, Host FROM user" mysql
Enter password: ******
+------+-----------+
| User | Host |
+------+-----------+
	gigan
root	gigan
	localhost
jon	localhost
root	localhost
+------+-----------+
shell>

Note that the long form (--execute) is followed by an equals sign (=).

In the preceding example, the name of the mysql database was passed as a separate argument.
However, the same statement could have been executed using this command, which specifies no default
database:

mysql> mysql -u root -p --execute="SELECT User, Host FROM mysql.user"

Multiple SQL statements may be passed on the command line, separated by semicolons:

shell> mysql -u root -p -e "SELECT VERSION();SELECT NOW()"
Enter password: ******
+------------+
| VERSION() |
+------------+
| 5.0.19-log |
+------------+
+---------------------+
| NOW() |
+---------------------+
| 2006-01-05 21:19:04 |
+---------------------+

The --execute or -e option may also be used to pass commands in an analogous fashion to the
ndb_mgm management client for MySQL Cluster. See Section 15.3.6, “Safe Shutdown and Restart”, for
an example.

Using MySQL Programs

206

4.3.2. Using Option Files
Most MySQL programs can read startup options from option files (also sometimes called configuration
files). Option files provide a convenient way to specify commonly used options so that they need not be
entered on the command line each time you run a program. For the MySQL server, MySQL provides a
number of preconfigured option files.

To determine whether a program reads option files, invoke it with the --help option (--verbose
and --help for mysqld). If the program reads option files, the help message indicates which files it
looks for and which option groups it recognizes.

Note: Option files used with MySQL Cluster programs are covered in Section 15.4, “MySQL Cluster
Configuration”.

On Windows, MySQL programs read startup options from the following files:

Filename Purpose

WINDIR\my.ini Global options

C:\my.cnf Global options

INSTALLDIR\my.ini Global Options

defaults-extra-file The file specified with --defaults-extra-file=path, if any

WINDIR represents the location of your Windows directory. This is commonly C:\WINDOWS or
C:\WINNT. You can determine its exact location from the value of the WINDIR environment variable
using the following command:

C:\> echo %WINDIR%

INSTALLDIR represents the installation directory of MySQL. This is typically
C:\PROGRAMDIR\MySQL\MySQL 5.0 Server where PROGRAMDIR represents the programs
directory (usually Program Files on English-language versions of Windows), when MySQL 5.0 has
been installed using the installation and configuration wizards. See Section 2.3.4.14, “The Location of
the my.ini File”.

On Unix, MySQL programs read startup options from the following files:

Filename Purpose

/etc/my.cnf Global options

$MYSQL_HOME/my.cnf Server-specific options

defaults-extra-file The file specified with --defaults-extra-file=path, if any

~/.my.cnf User-specific options

MYSQL_HOME is an environment variable containing the path to the directory in which the server-spe-
cific my.cnf file resides. (This was DATADIR prior to MySQL version 5.0.3.)

If MYSQL_HOME is not set and you start the server using the mysqld_safe program, mysqld_safe
attempts to set MYSQL_HOME as follows:

• Let BASEDIR and DATADIR represent the pathnames of the MySQL base directory and data direct-
ory, respectively.

• If there is a my.cnf file in DATADIR but not in BASEDIR, mysqld_safe sets MYSQL_HOME to

Using MySQL Programs

207

DATADIR.

• Otherwise, if MYSQL_HOME is not set and there is no my.cnf file in DATADIR, mysqld_safe
sets MYSQL_HOME to BASEDIR.

In MySQL 5.0, use of DATADIR as the location for my.cnf is deprecated. BASEDIR is a better loca-
tion.

Typically, DATADIR is /usr/local/mysql/data for a binary installation or /usr/local/var
for a source installation. Note that this is the data directory location that was specified at configuration
time, not the one specified with the --datadir option when mysqld starts. Use of --datadir at
runtime has no effect on where the server looks for option files, because it looks for them before pro-
cessing any options.

MySQL looks for option files in the order just described and reads any that exist. If an option file that
you want to use does not exist, create it with a plain text editor.

If multiple instances of a given option are found, the last instance takes precedence. There is one excep-
tion: For mysqld, the first instance of the --user option is used as a security precaution, to prevent a
user specified in an option file from being overridden on the command line.

Note: On Unix platforms, MySQL ignores configuration files that are world-writable. This is intention-
al, and acts as a security measure.

Any long option that may be given on the command line when running a MySQL program can be given
in an option file as well. To get the list of available options for a program, run it with the --help op-
tion.

The syntax for specifying options in an option file is similar to command-line syntax, except that you
omit the leading two dashes. For example, --quick or --host=localhost on the command line
should be specified as quick or host=localhost in an option file. To specify an option of the form
--loose-opt_name in an option file, write it as loose-opt_name.

Empty lines in option files are ignored. Non-empty lines can take any of the following forms:

• #comment, ;comment

Comment lines start with ‘#’ or ‘;’. A ‘#’ comment can start in the middle of a line as well.

• [group]

group is the name of the program or group for which you want to set options. After a group line,
any option-setting lines apply to the named group until the end of the option file or another group
line is given.

• opt_name

This is equivalent to --opt_name on the command line.

• opt_name=value

This is equivalent to --opt_name=value on the command line. In an option file, you can have
spaces around the ‘=’ character, something that is not true on the command line. You can enclose the
value within single quotes or double quotes, which is useful if the value contains a ‘#’ comment
character or whitespace.

Using MySQL Programs

208

For options that take a numeric value, the value can be given with a suffix of K, M, or G (either uppercase
or lowercase) to indicate a multiplier of 1024, 10242 or 10243. For example, the following command
tells mysqladmin to ping the server 1024 times, sleeping 10 seconds between each ping:

mysql> mysqladmin --count=1K --sleep=10 ping

Leading and trailing blanks are automatically deleted from option names and values. You may use the
escape sequences ‘\b’, ‘\t’, ‘\n’, ‘\r’, ‘\\’, and ‘\s’ in option values to represent the backspace, tab,
newline, carriage return, backslash, and space characters.

Because the ‘\\’ escape sequence represents a single backslash, you must write each ‘\’ as ‘\\’. Al-
ternatively, you can specify the value using ‘/’ rather than ‘\’ as the pathname separator.

If an option group name is the same as a program name, options in the group apply specifically to that
program. For example, the [mysqld] and [mysql] groups apply to the mysqld server and the
mysql client program, respectively.

The [client] option group is read by all client programs (but not by mysqld). This allows you to
specify options that apply to all clients. For example, [client] is the perfect group to use to specify
the password that you use to connect to the server. (But make sure that the option file is readable and
writable only by yourself, so that other people cannot find out your password.) Be sure not to put an op-
tion in the [client] group unless it is recognized by all client programs that you use. Programs that
do not understand the option quit after displaying an error message if you try to run them.

Here is a typical global option file:

[client]
port=3306
socket=/tmp/mysql.sock

[mysqld]
port=3306
socket=/tmp/mysql.sock
key_buffer_size=16M
max_allowed_packet=8M

[mysqldump]
quick

The preceding option file uses var_name=value syntax for the lines that set the
key_buffer_size and max_allowed_packet variables.

Here is a typical user option file:

[client]
The following password will be sent to all standard MySQL clients
password="my_password"

[mysql]
no-auto-rehash
connect_timeout=2

[mysqlhotcopy]
interactive-timeout

If you want to create option groups that should be read by mysqld servers from a specific MySQL re-
lease series only, you can do this by using groups with names of [mysqld-4.1], [mysqld-5.0],
and so forth. The following group indicates that the --new option should be used only by MySQL serv-
ers with 5.0.x version numbers:

[mysqld-5.0]
new

Using MySQL Programs

209

Beginning with MySQL 5.0.4, it is possible to use !include directives in option files to include other
option files and !includedir to search specific directories for option files. For example, to include
the /home/mydir/myopt.cnf file, you can use the following directive:

!include /home/me/myopt.cnf

To search the /home/mydir directory and read option files found there, you would use this directive:

!includedir /home/mydir

Note: Currently, any files to be found and included using the !includedir directive on Unix operat-
ing systems must have filenames ending in .cnf. On Windows, this directive checks for files with the
.ini or .cnf extension.

Note that options read from included files are applied in the context of the current option group. Suppose
that you were to write the following lines in my.cnf:

[mysqld]
!include /home/mydir/myopt.cnf

In this case, the myopt.cnf file is processed only for the server, and the !include directive is ig-
nored by any client applications. However, if you were to use the following lines, the directory /
home/mydir/my-dump-options is checked for option files by mysqldump only, and not by the
server or by any other client applications:

[mysqldump]
!includedir /home/mydir/my-dump-options

If you have a source distribution, you can find sample option files named my-xxxx.cnf in the sup-
port-files directory. If you have a binary distribution, look in the support-files directory un-
der your MySQL installation directory. On Windows, the sample option files may be located in the
MySQL installation directory (see earlier in this section or Chapter 2, Installing and Upgrading MySQL,
if you do not know where this is). Currently, there are sample option files for small, medium, large, and
very large systems. To experiment with one of these files, copy it to C:\my.cnf on Windows or to
.my.cnf in your home directory on Unix.

Note: On Windows, the .cnf option file extension might not be displayed.

All MySQL programs that support option files handle the following options. They affect option-file
handling, so they must be given on the command line and not in an option file. To work properly, each
of these options must immediately follow the command name, with the exception that -
-print-defaults may be used immediately after --defaults-file or -
-defaults-extra-file.

• --no-defaults

Don't read any option files.

• --print-defaults

Print the program name and all options that it gets from option files.

• --defaults-file=file_name

Use only the given option file. file_name is the full pathname to the file. If the file does not exist
or is otherwise inaccessible, the program will exit with an error.

Using MySQL Programs

210

• --defaults-extra-file=file_name

Read this option file after the global option file but (on Unix) before the user option file.
file_name is the full pathname to the file. As of MySQL 5.0.6, if the file does not exist or is oth-
erwise inaccessible, the program will exit with an error.

• --defaults-group-suffix=str

If this option is given, the program reads not only its usual option groups, but also groups with the
usual names and a suffix of str. For example, the mysql client normally reads the [client] and
[mysql] groups. If the --default-group-suffix=_other option is given, mysql also
reads the [client_other] and [mysql_other] groups. This option was added in MySQL
5.0.10.

In shell scripts, you can use the my_print_defaults program to parse option files and see what op-
tions would be used by a given program. The following example shows the output that
my_print_defaults might produce when asked to show the options found in the [client] and
[mysql] groups:

shell> my_print_defaults client mysql
--port=3306
--socket=/tmp/mysql.sock
--no-auto-rehash

Note for developers: Option file handling is implemented in the C client library simply by processing
all options in the appropriate group or groups before any command-line arguments. This works well for
programs that use the last instance of an option that is specified multiple times. If you have a C or C++
program that handles multiply specified options this way but that doesn't read option files, you need add
only two lines to give it that capability. Check the source code of any of the standard MySQL clients to
see how to do this.

Several other language interfaces to MySQL are based on the C client library, and some of them provide
a way to access option file contents. These include Perl and Python. For details, see the documentation
for your preferred interface.

4.3.2.1. Preconfigured Option Files

MySQL provides a number of preconfigured option files that can be used as a basis for tuning the
MySQL server. Look in your installation directory for files such as my-small.cnf, my-medi-
um.cnf, my-large.cnf, and my-huge.cnf, which you can rename and copy to the appropriate
location for use as a base configuration file. Regarding names and appropriate location, see the general
information provided in Section 4.3.2, “Using Option Files”. On Windows, those files have a .ini
rather than a .cnf extension.

4.3.3. Using Environment Variables to Specify Options
To specify an option using an environment variable, set the variable using the syntax appropriate for
your command processor. For example, on Windows or NetWare, you can set the USER variable to spe-
cify your MySQL account name. To do so, use this syntax:

SET USER=your_name

The syntax on Unix depends on your shell. Suppose that you want to specify the TCP/IP port number
using the MYSQL_TCP_PORT variable. Typical syntax (such as for sh, bash, zsh, and so on) is as
follows:

MYSQL_TCP_PORT=3306

Using MySQL Programs

211

export MYSQL_TCP_PORT

The first command sets the variable, and the export command exports the variable to the shell envir-
onment so that its value becomes accessible to MySQL and other processes.

For csh and tcsh, use setenv to make the shell variable available to the environment:

setenv MYSQL_TCP_PORT 3306

The commands to set environment variables can be executed at your command prompt to take effect im-
mediately, but the settings persist only until you log out. To have the settings take effect each time you
log in, place the appropriate command or commands in a startup file that your command interpreter
reads each time it starts. Typical startup files are AUTOEXEC.BAT for Windows, .bash_profile
for bash, or .tcshrc for tcsh. Consult the documentation for your command interpreter for specific
details.

Appendix F, Environment Variables, lists all environment variables that affect MySQL program opera-
tion.

4.3.4. Using Options to Set Program Variables
Many MySQL programs have internal variables that can be set at runtime. Program variables are set the
same way as any other long option that takes a value. For example, mysql has a
max_allowed_packet variable that controls the maximum size of its communication buffer. To set
the max_allowed_packet variable for mysql to a value of 16MB, use either of the following com-
mands:

shell> mysql --max_allowed_packet=16777216
shell> mysql --max_allowed_packet=16M

The first command specifies the value in bytes. The second specifies the value in megabytes. For vari-
ables that take a numeric value, the value can be given with a suffix of K, M, or G (either uppercase or
lowercase) to indicate a multiplier of 1024, 10242 or 10243. (For example, when used to set
max_allowed_packet, the suffixes indicate units of kilobytes, megabytes, or gigabygtes.)

In an option file, variable settings are given without the leading dashes:

[mysql]
max_allowed_packet=16777216

Or:

[mysql]
max_allowed_packet=16M

If you like, underscores in a variable name can be specified as dashes. The following option groups are
equivalent. Both set the size of the server's key buffer to 512MB:

[mysqld]
key_buffer_size=512M

[mysqld]
key-buffer-size=512M

Note: Before MySQL 4.0.2, the only syntax for setting program variables was
--set-variable=option=value (or set-variable=option=value in option files). This
syntax still is recognized, but is deprecated as of MySQL 4.0.2.

Using MySQL Programs

212

Many server system variables can also be set at runtime. For details, see Section 5.2.4.2, “Dynamic Sys-
tem Variables”.

Using MySQL Programs

213

Chapter 5. Database Administration
This chapter covers topics that deal with administering a MySQL installation:

• Configuring the server

• Managing user accounts

• Performing backups

• The server log files

• The query cache

5.1. Overview of Server-Side Programs
The MySQL server, mysqld, is the main program that does most of the work in a MySQL installation.
The server is accompanied by several related scripts that perform setup operations when you install
MySQL or that assist you in starting and stopping the server. This section provides an overview of the
server and related programs. The following sections provide more detailed information about each of
these programs.

Each MySQL program takes many different options. Most programs provide a --help option that you
can use to get a description of the program's different options. For example, try mysqld --help.

You can override default option values for MySQL programs by specifying options on the command
line or in an option file. Section 4.3, “Specifying Program Options”.

The following list briefly describes the MySQL server and server-related programs:

• mysqld

The SQL daemon (that is, the MySQL server). To use client programs, mysqld must be running,
because clients gain access to databases by connecting to the server. See Section 5.2, “mysqld —
The MySQL Server”.

• mysqld-max

A version of the server that includes additional features. See Section 5.3, “The mysqld-max Ex-
tended MySQL Server”.

• mysqld_safe

A server startup script. mysqld_safe attempts to start mysqld-max if it exists, and mysqld
otherwise. See Section 5.4.1, “mysqld_safe — MySQL Server Startup Script”.

• mysql.server

A server startup script. This script is used on systems that use System V-style run directories con-
taining scripts that start system services for particular run levels. It invokes mysqld_safe to start
the MySQL server. See Section 5.4.2, “mysql.server — MySQL Server Startup Script”.

• mysqld_multi

A server startup script that can start or stop multiple servers installed on the system. See Sec-

214

tion 5.4.3, “mysqld_multi — Manage Multiple MySQL Servers”. As of MySQL 5.0.3 (Unix-like
systems) or 5.0.13 (Windows), an alternative to mysqld_multi is mysqlmanager, the MySQL
Instance Manager. See Section 5.5, “mysqlmanager — The MySQL Instance Manager”.

• mysql_install_db

This script creates the MySQL database and initializes the grant tables with default privileges. It is
usually executed only once, when first installing MySQL on a system. See Section 2.10.2, “Unix
Post-Installation Procedures”.

• mysql_fix_privilege_tables

This program is used after a MySQL upgrade operation. It updates the grant tables with any changes
that have been made in newer versions of MySQL. See Section 5.6.1,
“mysql_fix_privilege_tables — Upgrade MySQL System Tables”.

Note: As of MySQL 5.0.19, this program has been superseded by mysql_upgrade.

• mysql_upgrade

This program is used after a MySQL upgrade operation. It checks tables for incompatibilities and re-
pairs them if necessary, and updates the grant tables with any changes that have been made in newer
versions of MySQL. See Section 5.6.2, “mysql_upgrade — Check Tables for MySQL Upgrade”.

• mysqlmanager

The MySQL Instance Manager, a program for monitoring and managing MySQL servers. See Sec-
tion 5.5, “mysqlmanager — The MySQL Instance Manager”.

There are several other programs that are run on the server host:

• make_binary_distribution

This program makes a binary release of a compiled MySQL. This could be sent by FTP to /
pub/mysql/upload/ on ftp.mysql.com for the convenience of other MySQL users.

5.2. mysqld — The MySQL Server
mysqld is the MySQL server. The following discussion covers these MySQL server configuration top-
ics:

• Startup options that the server supports

• Server system variables

• Server status variables

• How to set the server SQL mode

• The server shutdown process

Note: Not all storage engines are supported by all MySQL server binaries and configurations. To find
out how to determine which storage engines are supported by your MySQL server installation, see Sec-
tion 13.5.4.10, “SHOW ENGINES Syntax”.

Database Administration

215

5.2.1. Option and Variable Reference
The following table provides a list of all the command line options, server and status variables applic-
able within mysqld.

The table lists command line options (Cmd-line), options valid in configuration files (Option file), server
system variables (Server Var), and status variables (Status var) in one unified list, with notification of
where each option/variable is valid. If a server option set on the command line or in an option file differs
from the name of the corresponding server system or status variable, the variable name is noted immedi-
ately below the corresponding option. Please see the corresponding sections for details on setting and us-
ing the options and variables. Where appropriate, a direct link to further information on the item as
available.

Note

This table is part of an ongoing process to expand and simplify the information provided on
these elements. Further improvements to the table, and corresponding descriptions will be
applied over the coming months.

Name Cmd-line Option
file

Server
Var

Status
Var

abort-slave-event-count Y Y

Aborted_clients Y

Aborted_connects Y

allow-suspicious-udfs Y Y

ansi Y Y

auto-increment-increment Y Y Y

auto-increment-offset Y Y Y

autocommit Y

automatic-sp-privileges Y Y Y

back_log Y Y Y

basedir Y Y Y

bdb Y Y

- Variable: have_bdb Y

bdb-home Y Y

- Variable: bdb_home Y

bdb-lock-detect Y Y

bdb-logdir Y Y

- Variable: bdb_logdir Y

bdb-no-recover Y Y

bdb-no-sync Y Y

bdb-shared-data Y Y

- Variable: bdb_shared_data Y

bdb-tmpdir Y Y

- Variable: bdb_tmpdir Y

bdb_cache_size Y Y Y

bdb_lock_max Y Y Y

bdb_log_buffer_size Y Y Y

Database Administration

216

Name Cmd-line Option
file

Server
Var

Status
Var

bdb_max_lock Y Y Y

big-tables Y Y

- Variable: big_tables Y

bind-address Y Y Y

binlog-do-db Y Y

binlog-ignore-db Y Y

Binlog_cache_disk_use Y

binlog_cache_size Y Y Y

Binlog_cache_use Y

bootstrap Y

bulk_insert_buffer_size Y Y Y

Bytes_received Y

Bytes_sent Y

character-set-client-handshake Y

character-set-filesystem Y Y Y

character-set-server Y Y

- Variable: character_set_server Y

character-sets-dir Y Y Y

character_set_client Y

character_set_connection Y

character_set_results Y

chroot Y Y

collation-server Y Y

- Variable: collation_server Y

Com_admin_commands Y

Com_alter_db Y

Com_alter_event Y

Com_alter_table Y

Com_analyze Y

Com_backup_table Y

Com_begin Y

Com_change_db Y

Com_change_master Y

Com_check Y

Com_checksum Y

Com_commit Y

Com_create_db Y

Com_create_event Y

Com_create_function Y

Com_create_index Y

Database Administration

217

Name Cmd-line Option
file

Server
Var

Status
Var

Com_create_table Y

Com_dealloc_sql Y

Com_delete Y

Com_delete_multi Y

Com_do Y

Com_drop_db Y

Com_drop_event Y

Com_drop_function Y

Com_drop_index Y

Com_drop_table Y

Com_drop_user Y

Com_execute_sql Y

Com_flush Y

Com_grant Y

Com_ha_close Y

Com_ha_open Y

Com_ha_read Y

Com_help Y

Com_insert Y

Com_insert_select Y

Com_kill Y

Com_load Y

Com_load_master_data Y

Com_load_master_table Y

Com_lock_tables Y

Com_optimize Y

Com_preload_keys Y

Com_prepare_sql Y

Com_purge Y

Com_purge_before_date Y

Com_rename_table Y

Com_repair Y

Com_replace Y

Com_replace_select Y

Com_reset Y

Com_restore_table Y

Com_revoke Y

Com_revoke_all Y

Com_rollback Y

Com_savepoint Y

Database Administration

218

Name Cmd-line Option
file

Server
Var

Status
Var

Com_select Y

Com_set_option Y

Com_show_binlog_events Y

Com_show_binlogs Y

Com_show_charsets Y

Com_show_collations Y

Com_show_column_types Y

Com_show_create_db Y

Com_show_create_event Y

Com_show_create_table Y

Com_show_databases Y

Com_show_engine_logs Y

Com_show_engine_mutex Y

Com_show_engine_status Y

Com_show_errors Y

Com_show_events Y

Com_show_fields Y

Com_show_grants Y

Com_show_keys Y

Com_show_master_status Y

Com_show_new_master Y

Com_show_open_tables Y

Com_show_plugins Y

Com_show_privileges Y

Com_show_processlist Y

Com_show_slave_hosts Y

Com_show_slave_status Y

Com_show_status Y

Com_show_storage_engines Y

Com_show_tables Y

Com_show_triggers Y

Com_show_variables Y

Com_show_warnings Y

Com_slave_start Y

Com_slave_stop Y

Com_stmt_close Y

Com_stmt_execute Y

Com_stmt_fetch Y

Com_stmt_prepare Y

Com_stmt_reset Y

Database Administration

219

Name Cmd-line Option
file

Server
Var

Status
Var

Com_stmt_send_long_data Y

Com_truncate Y

Com_unlock_tables Y

Com_update Y

Com_update_multi Y

Com_xa_commit Y

Com_xa_end Y

Com_xa_prepare Y

Com_xa_recover Y

Com_xa_rollback Y

Com_xa_start Y

completion-type Y Y Y

Compression Y

concurrent-insert Y Y

- Variable: concurrent_insert Y

connect_timeout Y Y Y

Connections Y

console Y Y

core-file Y Y

Created_tmp_disk_tables Y

Created_tmp_files Y

Created_tmp_tables Y

datadir Y Y Y

date_format Y Y

datetime_format Y Y

default-character-set Y Y Y

default-collation Y Y

default-storage-engine Y Y

default-table-type Y Y

default-time-zone Y Y

default_week_format Y Y Y

defaults-extra-file Y Y

defaults-file Y Y

delay-key-write Y Y

- Variable: delay_key_write Y

delay-key-write-for-all-tables Y

Delayed_errors Y

delayed_insert_limit Y Y Y

Delayed_insert_threads Y

delayed_insert_timeout Y Y Y

Database Administration

220

Name Cmd-line Option
file

Server
Var

Status
Var

delayed_queue_size Y Y Y

Delayed_writes Y

des-key-file Y Y Y

disconnect-slave-event-count Y Y

div_precision_increment Y Y Y

enable-locking Y

enable-pstack Y Y

engine-condition-pushdown Y Y

- Variable: engine_condition_pushdown Y

error_count Y

exit-info Y Y

expire_logs_days Y Y Y

external-locking Y Y

flush Y Y Y

Flush_commands Y

flush_time Y Y Y

foreign_key_checks Y

ft_boolean_syntax Y Y Y

ft_max_word_len Y Y Y

ft_min_word_len Y Y Y

ft_query_expansion_limit Y Y Y

ft_stopword_file Y Y Y

gdb Y Y

group_concat_max_len Y Y Y

Handler_commit Y

Handler_delete Y

Handler_discover Y

Handler_prepare Y

Handler_read_first Y

Handler_read_key Y

Handler_read_next Y

Handler_read_prev Y

Handler_read_rnd Y

Handler_read_rnd_next Y

Handler_rollback Y

Handler_savepoint Y

Handler_savepoint_rollback Y

Handler_update Y

Handler_write Y

help Y

Database Administration

221

Name Cmd-line Option
file

Server
Var

Status
Var

identity Y

init-connect Y Y

- Variable: init_connect Y

init-file Y Y

- Variable: init_file Y

init-rpl-role Y Y

init-slave Y Y

- Variable: init_slave Y

innodb Y Y

innodb_additional_mem_pool_size Y Y Y

innodb_autoextend_increment Y Y Y

innodb_buffer_pool_awe_mem_mb Y Y Y

innodb_buffer_pool_size Y Y Y

innodb_checksums Y Y Y

innodb_commit_concurrency Y Y Y

innodb_concurrency_tickets Y Y Y

innodb_data_file_path Y Y Y

innodb_data_home_dir Y Y Y

innodb_doublewrite Y Y Y

innodb_fast_shutdown Y Y Y

innodb_file_io_threads Y Y Y

innodb_file_per_table Y Y Y

innodb_flush_log_at_trx_commit Y Y Y

innodb_flush_method Y Y Y

innodb_force_recovery Y Y Y

innodb_lock_wait_timeout Y Y Y

innodb_locks_unsafe_for_binlog Y Y Y

innodb_log_arch_dir Y Y Y

innodb_log_archive Y Y

innodb_log_buffer_size Y Y Y

innodb_log_file_size Y Y Y

innodb_log_files_in_group Y Y Y

innodb_log_group_home_dir Y Y Y

innodb_max_dirty_pages_pct Y Y Y

innodb_max_purge_lag Y Y Y

innodb_mirrored_log_groups Y Y Y

innodb_open_files Y Y Y

innodb_status_file Y Y Y

innodb_support_xa Y Y Y

innodb_sync_spin_loops Y Y Y

Database Administration

222

Name Cmd-line Option
file

Server
Var

Status
Var

innodb_table_locks Y Y Y

innodb_thread_concurrency Y Y Y

innodb_thread_sleep_delay Y Y Y

insert_id Y

interactive_timeout Y Y Y

isam Y Y Y

join_buffer_size Y Y Y

Key_blocks_not_flushed Y

Key_blocks_unused Y

Key_blocks_used Y

key_buffer_size Y Y Y

key_cache_age_threshold Y Y Y

key_cache_block_size Y Y Y

key_cache_division_limit Y Y Y

Key_read_requests Y

Key_reads Y

Key_write_requests Y

Key_writes Y

language Y Y Y

large-pages Y Y Y

last_insert_id Y

Last_query_cost Y

license Y

local-infile Y Y

- Variable: local_infile Y

log Y Y Y

log-bin Y Y Y

log-bin-index Y Y Y

log-bin-trust-function-creators Y Y

- Variable: log_bin_trust_function_creators Y

log-bin-trust-routine-creators Y Y Y

log-error Y Y Y

log-isam Y Y Y

log-long-format Y Y

log-short-format Y Y Y

log-slave-updates Y Y Y

log-slow-admin-statements Y Y Y

log-slow-queries Y Y

- Variable: log_slow_queries Y

log-tc Y Y Y

Database Administration

223

Name Cmd-line Option
file

Server
Var

Status
Var

log-tc-size Y Y Y

log-update Y Y

log-warnings Y Y

- Variable: log_warnings Y

long_query_time Y Y Y

low-priority-updates Y Y

- Variable: low_priority_updates Y

lower_case_table_names Y Y Y

master-connect-retry Y Y Y

master-host Y Y Y

master-info-file Y Y Y

master-password Y Y Y

master-port Y Y Y

master-retry-count Y Y Y

master-ssl Y Y Y

master-ssl-ca Y Y Y

master-ssl-capath Y Y Y

master-ssl-cert Y Y Y

master-ssl-cipher Y Y Y

master-ssl-key Y Y Y

master-user Y Y Y

max-binlog-dump-events Y Y Y

max_allowed_packet Y Y Y

max_binlog_cache_size Y Y Y

max_binlog_size Y Y Y

max_connect_errors Y Y Y

max_connections Y Y Y

max_delayed_threads Y Y Y

max_error_count Y Y Y

max_heap_table_size Y Y Y

max_insert_delayed_threads Y

max_join_size Y Y Y

max_length_for_sort_data Y Y Y

max_prepared_stmt_count Y Y Y

max_relay_log_size Y Y Y

max_seeks_for_key Y Y Y

max_sort_length Y Y Y

max_sp_recursion_depth Y Y Y

max_tmp_tables Y Y Y

Max_used_connections Y

Database Administration

224

Name Cmd-line Option
file

Server
Var

Status
Var

max_user_connections Y Y Y

max_write_lock_count Y Y Y

memlock Y Y

- Variable: locked_in_memory Y

merge Y Y Y

multi_range_count Y Y Y

multi_read_range Y

myisam-recover Y Y Y

myisam_block_size Y Y Y

myisam_data_pointer_size Y Y Y

myisam_max_extra_sort_file_size Y Y Y

myisam_max_sort_file_size Y Y Y

myisam_repair_threads Y Y Y

myisam_sort_buffer_size Y Y Y

myisam_stats_method Y Y Y

ndb-autoincrement-prefetch-sz Y

ndb-cache-check-time Y

ndb-connectstring Y

ndb-distribution Y

ndb-index-stat-cache-entries Y

ndb-index-stat-enable Y

ndb-index-stat-update-freq Y

ndb-mgmd-host Y

ndb-optimized-node-selection Y

ndb-report-thresh-binlog-epoch-slip3 Y

ndb-report-thresh-binlog-mem-usage10 Y

ndb_extra_logging Y

ndb_use_exact_count Y

ndbcluster Y Y Y

net_buffer_length Y Y Y

net_read_timeout Y Y Y

net_retry_count Y Y Y

net_write_timeout Y Y Y

new Y Y Y

no-defaults Y

Not_flushed_delayed_rows Y

old-passwords Y Y

- Variable: old_passwords Y

old-style-user-limits Y Y Y

Open_files Y

Database Administration

225

Name Cmd-line Option
file

Server
Var

Status
Var

open_files_limit Y Y Y

Open_streams Y

Open_table_definitions Y

Open_tables Y

Opened_tables Y

optimizer_prune_level Y Y Y

optimizer_search_depth Y Y Y

pid-file Y Y Y

port Y Y Y

port-open-timeout Y Y Y

preload_buffer_size Y Y Y

print-defaults Y

Qcache_free_blocks Y

Qcache_free_memory Y

Qcache_hits Y

Qcache_inserts Y

Qcache_lowmem_prunes Y

Qcache_not_cached Y

Qcache_queries_in_cache Y

Qcache_total_blocks Y

query_alloc_block_size Y Y Y

query_cache_limit Y Y Y

query_cache_min_res_unit Y Y Y

query_cache_size Y Y Y

query_cache_type Y Y Y

query_cache_wlock_invalidate Y Y Y

query_prealloc_size Y Y Y

Questions Y

range_alloc_block_size Y Y Y

read_buffer_size Y Y Y

read_only Y Y Y

read_rnd_buffer_size Y Y Y

record_buffer Y Y Y

relay-log Y Y Y

relay-log-index Y Y Y

relay-log-info-file Y Y Y

relay_log_purge Y Y Y

relay_log_space_limit Y Y Y

replicate-do-db Y Y

replicate-do-table Y

Database Administration

226

Name Cmd-line Option
file

Server
Var

Status
Var

replicate-ignore-db Y Y

replicate-ignore-table Y Y

replicate-rewrite-db Y Y

replicate-same-server-id Y Y Y

replicate-wild-do-table Y Y

replicate-wild-ignore-table Y Y

report-host Y Y Y

report-password Y Y Y

report-port Y Y Y

report-user Y Y Y

rpl-recovery-rank Y Y

- Variable: rpl_recovery_rank Y

Rpl_status Y

safe-mode Y Y

safe-show-database Y Y

- Variable: safe_show_database Y

safe-user-create Y Y Y

safemalloc-mem-limit Y Y

secure-auth Y Y

- Variable: secure_auth Y

Select_full_join Y

Select_full_range_join Y

Select_range Y

Select_range_check Y

Select_scan Y

server-id Y Y

- Variable: server_id Y

set-variable Y Y

show-slave-auth-info Y Y Y

skip-automatic-sp-privileges Y Y

skip-bdb Y Y

- Variable: have_bdb Y

skip-character-set-client-handshake Y Y

skip-external-locking Y Y

- Variable: external-locking

skip-grant-tables Y Y Y

skip-host-cache Y Y

skip-innodb Y Y

skip-innodb-checksums Y Y

skip-innodb-doublewrite Y Y

Database Administration

227

Name Cmd-line Option
file

Server
Var

Status
Var

- Variable: innodb_doublewrite Y

skip-large-pages Y Y

- Variable: large-pages Y

skip-locking Y Y

skip-merge Y Y

- Variable: merge Y

skip-name-resolve Y Y

skip-networking Y Y

skip-new Y Y

skip-show-database Y Y

skip-slave-start Y Y Y

skip-stack-trace Y Y

skip-symbolic-links Y

skip-symlink Y Y

skip-sync-bdb-logs Y Y

skip-thread-priority Y Y

slave-load-tmpdir Y Y Y

slave-skip-errors Y Y

slave_compressed_protocol Y Y Y

slave_net_timeout Y Y Y

Slave_open_temp_tables Y

Slave_retried_transactions Y

Slave_running Y

slave_transaction_retries Y Y Y

Slow_launch_threads Y

slow_launch_time Y Y Y

Slow_queries Y

socket Y Y Y

sort_buffer_size Y Y Y

Sort_merge_passes Y

Sort_range Y

Sort_rows Y

Sort_scan Y

sporadic-binlog-dump-fail Y Y Y

sql-bin-update-same Y Y Y

sql-mode Y Y

- Variable: sql_mode Y

sql_auto_is_null Y

sql_big_selects Y

sql_big_tables Y

Database Administration

228

Name Cmd-line Option
file

Server
Var

Status
Var

sql_buffer_result Y

sql_log_bin Y

sql_log_off Y

sql_log_update Y

sql_low_priority_updates Y

sql_max_join_size Y

sql_notes Y

sql_quote_show_create Y

sql_safe_updates Y

sql_select_limit Y

sql_slave_skip_counter Y

sql_warnings Y

ssl Y Y Y

ssl-ca Y Y Y

ssl-capath Y Y Y

ssl-cert Y Y Y

ssl-cipher Y Y Y

ssl-key Y Y Y

storage_engine Y

symbolic-links Y Y Y

sync-bdb-logs Y Y Y

sync-binlog Y Y

- Variable: sync_binlog Y

sync-frm Y Y

- Variable: sync_frm Y

sysdate-is-now Y Y Y

table_cache Y Y Y

table_lock_wait_timeout Y Y Y

Table_locks_immediate Y

Table_locks_waited Y

table_open_cache Y Y

table_type Y

tc-heuristic-recover Y Y

Tc_log_max_pages_used Y

Tc_log_page_size Y

Tc_log_page_waits Y

temp-pool Y Y Y

thread_cache_size Y Y Y

thread_concurrency Y Y Y

thread_stack Y Y Y

Database Administration

229

Name Cmd-line Option
file

Server
Var

Status
Var

Threads_cached Y

Threads_connected Y

Threads_created Y

Threads_running Y

time_format Y Y Y

time_zone Y

timed_mutexes Y Y Y

timestamp Y

tmp_table_size Y Y Y

tmpdir Y Y Y

transaction-isolation Y Y

transaction_alloc_block_size Y Y Y

transaction_prealloc_size Y Y Y

tx_isolation Y

unique_checks Y

updatable_views_with_limit Y Y Y

Uptime Y

user Y Y

verbose Y Y Y

version Y

wait_timeout Y Y Y

warning_count Y

warnings Y Y

with-debug Y Y

5.2.2. Command Options
When you start the mysqld server, you can specify program options using any of the methods de-
scribed in Section 4.3, “Specifying Program Options”. The most common methods are to provide op-
tions in an option file or on the command line. However, in most cases it is desirable to make sure that
the server uses the same options each time it runs. The best way to ensure this is to list them in an option
file. See Section 4.3.2, “Using Option Files”.

mysqld reads options from the [mysqld] and [server] groups. mysqld_safe reads options
from the [mysqld], [server], [mysqld_safe], and [safe_mysqld] groups.
mysql.server reads options from the [mysqld] and [mysql.server] groups.

An embedded MySQL server usually reads options from the [server], [embedded], and
[xxxxx_SERVER] groups, where xxxxx is the name of the application into which the server is em-
bedded.

mysqld accepts many command options. For a brief summary, execute mysqld --help. To see the
full list, use mysqld --verbose --help.

The following list shows some of the most common server options. Additional options are described in

Database Administration

230

other sections:

• Options that affect security: See Section 5.7.3, “Security-Related mysqld Options”.

• SSL-related options: See Section 5.9.7.3, “SSL Command Options”.

• Binary log control options: See Section 5.12.3, “The Binary Log”.

• Replication-related options: See Section 6.8, “Replication Startup Options”.

• Options specific to particular storage engines: See Section 14.1.1, “MyISAM Startup Options”, Sec-
tion 14.5.3, “BDB Startup Options”, Section 14.2.4, “InnoDB Startup Options and System Vari-
ables”, and Section 15.6.5.1, “MySQL Cluster-Related Command Options for mysqld”.

You can also set the values of server system variables by using variable names as options, as described
later in this section.

• --help, -?

Display a short help message and exit. Use both the --verbose and --help options to see the
full message.

• --allow-suspicious-udfs

This option controls whether user-defined functions that have only an xxx symbol for the main
function can be loaded. By default, the option is off and only UDFs that have at least one auxiliary
symbol can be loaded; this prevents attempts at loading functions from shared object files other than
those containing legitimate UDFs. This option was added in version 5.0.3. See Section 24.2.4.6,
“User-Defined Function Security Precautions”.

• --ansi

Use standard (ANSI) SQL syntax instead of MySQL syntax. For more precise control over the serv-
er SQL mode, use the --sql-mode option instead. See Section 1.9.3, “Running MySQL in ANSI
Mode”, and Section 5.2.6, “SQL Modes”.

• --basedir=path, -b path

The path to the MySQL installation directory. All paths are usually resolved relative to this direct-
ory.

• big-tables

Allow large result sets by saving all temporary sets in files. This option prevents most “table full” er-
rors, but also slows down queries for which in-memory tables would suffice. Since MySQL 3.23.2,
the server is able to handle large result sets automatically by using memory for small temporary
tables and switching to disk tables where necessary.

• --bind-address=IP

The IP address to bind to.

• --bootstrap

This option is used by the mysql_install_db script to create the MySQL privilege tables
without having to start a full MySQL server.

Database Administration

231

• --character-sets-dir=path

The directory where character sets are installed. See Section 5.11.1, “The Character Set Used for
Data and Sorting”.

• --character-set-client-handshake

Don't ignore character set information sent by the client. To ignore client information and use the de-
fault server character set, use --skip-character-set-client-handshake; this makes
MySQL behave like MySQL 4.0.

• --character-set-filesystem=charset_name

The filesystem character set. This option sets the character_set_filesystem system vari-
able. It was added in MySQL 5.0.19.

• --character-set-server=charset_name, -C charset_name

Use charset_name as the default server character set. See Section 5.11.1, “The Character Set
Used for Data and Sorting”. If you use this option to specify a non-default character set, you should
also use --collation-server to specify the collation.

• --chroot=path

Put the mysqld server in a closed environment during startup by using the chroot() system call.
This is a recommended security measure. Note that use of this option somewhat limits LOAD DATA
INFILE and SELECT ... INTO OUTFILE.

• --collation-server=collation_name

Use collation_name as the default server collation. See Section 5.11.1, “The Character Set
Used for Data and Sorting”.

• --console

(Windows only.) Write error log messages to stderr and stdout even if --log-error is spe-
cified. mysqld does not close the console window if this option is used.

• --core-file

Write a core file if mysqld dies. For some systems, you must also specify the -
-core-file-size option to mysqld_safe. See Section 5.4.1, “mysqld_safe — MySQL
Server Startup Script”. Note that on some systems, such as Solaris, you do not get a core file if you
are also using the --user option.

• --datadir=path, -h path

The path to the data directory.

• --debug[=debug_options], -# [debug_options]

If MySQL is configured with --with-debug, you can use this option to get a trace file of what
mysqld is doing. The debug_options string often is 'd:t:o,file_name'. The default is
'd:t:i:o,mysqld.trace'. See Section E.1.2, “Creating Trace Files”.

• --default-character-set=charset_name (DEPRECATED)

Use charset_name as the default character set. This option is deprecated in favor of -
-character-set-server. See Section 5.11.1, “The Character Set Used for Data and Sorting”.

Database Administration

232

• --default-collation=collation_name

Use collation_name as the default collation. This option is deprecated in favor of -
-collation-server. See Section 5.11.1, “The Character Set Used for Data and Sorting”.

• --default-storage-engine=type

Set the default storage engine (table type) for tables. See Chapter 14, Storage Engines and Table
Types.

• --default-table-type=type

This option is a synonym for --default-storage-engine.

• --default-time-zone=timezone

Set the default server time zone. This option sets the global time_zone system variable. If this op-
tion is not given, the default time zone is the same as the system time zone (given by the value of the
system_time_zone system variable.

• --delay-key-write[={OFF|ON|ALL}]

Specify how to use delayed key writes. Delayed key writing causes key buffers not to be flushed
between writes for MyISAM tables. OFF disables delayed key writes. ON enables delayed key writes
for those tables that were created with the DELAY_KEY_WRITE option. ALL delays key writes for
all MyISAM tables. See Section 7.5.2, “Tuning Server Parameters”, and Section 14.1.1, “MyISAM
Startup Options”.

Note: If you set this variable to ALL, you should not use MyISAM tables from within another pro-
gram (such as another MySQL server or myisamchk) when the tables are in use. Doing so leads to
index corruption.

• --des-key-file=file_name

Read the default DES keys from this file. These keys are used by the DES_ENCRYPT() and
DES_DECRYPT() functions.

• --enable-named-pipe

Enable support for named pipes. This option applies only on Windows NT, 2000, XP, and 2003 sys-
tems, and can be used only with the mysqld-nt and mysqld-max-nt servers that support
named-pipe connections.

• --exit-info[=flags], -T [flags]

This is a bit mask of different flags that you can use for debugging the mysqld server. Do not use
this option unless you know exactly what it does!

• --external-locking

Enable external locking (system locking), which is disabled by default as of MySQL 4.0. Note that if
you use this option on a system on which lockd does not fully work (such as Linux), it is easy for
mysqld to deadlock. This option previously was named --enable-locking.

Note: If you use this option to enable updates to MyISAM tables from many MySQL processes, you
must ensure that the following conditions are satisfied:

• You should not use the query cache for queries that use tables that are updated by another pro-
cess.

Database Administration

233

• You should not use --delay-key-write=ALL or DELAY_KEY_WRITE=1 on any shared
tables.

The easiest way to ensure this is to always use --external-locking together with -
-delay-key-write=OFF and --query-cache-size=0. (This is not done by default be-
cause in many setups it is useful to have a mixture of the preceding options.)

• --flush

Flush (synchronize) all changes to disk after each SQL statement. Normally, MySQL does a write of
all changes to disk only after each SQL statement and lets the operating system handle the synchron-
izing to disk. See Section A.4.2, “What to Do If MySQL Keeps Crashing”.

• --init-file=file_name

Read SQL statements from this file at startup. Each statement must be on a single line and should
not include comments.

• --innodb-safe-binlog

Adds consistency guarantees between the content of InnoDB tables and the binary log. See Sec-
tion 5.12.3, “The Binary Log”. This option was removed in MySQL 5.0.3, having been made obsol-
ete by the introduction of XA transaction support.

• --innodb-xxx

The InnoDB options are listed in Section 14.2.4, “InnoDB Startup Options and System Variables”.

• --language=lang_name, -L lang_name

Return client error messages in the given language. lang_name can be given as the language name
or as the full pathname to the directory where the language files are installed. See Section 5.11.2,
“Setting the Error Message Language”.

• --large-pages

Some hardware/operating system architectures support memory pages greater than the default
(usually 4KB). The actual implementation of this support depends on the underlying hardware and
OS. Applications that perform a lot of memory accesses may obtain performance improvements by
using large pages due to reduced Translation Lookaside Buffer (TLB) misses.

Currently, MySQL supports only the Linux implementation of large pages support (which is called
HugeTLB in Linux). We have plans to extend this support to FreeBSD, Solaris and possibly other
platforms.

Before large pages can be used on Linux, it is necessary to configure the HugeTLB memory pool.
For reference, consult the hugetlbpage.txt file in the Linux kernel source.

This option is disabled by default. It was added in MySQL 5.0.3.

• --log[=file_name], -l [file_name]

Log connections and SQL statements received from clients to this file. See Section 5.12.2, “The
General Query Log”. If you omit the filename, MySQL uses host_name.log as the filename.

• --log-bin[=base_name]

Enable binary logging. The server logs all statements that change data to the binary log, which is

Database Administration

234

used for backup and replication. See Section 5.12.3, “The Binary Log”.

The option value, if given, is the basename for the log sequence. The server creates binary log files
in sequence by adding a numeric suffix to the basename. It is recommended that you specify a base-
name (see Section A.8.1, “Open Issues in MySQL”, for the reason). Otherwise, MySQL uses
host_name-bin as the basename.

• --log-bin-index[=file_name]

The index file for binary log filenames. See Section 5.12.3, “The Binary Log”. If you omit the file-
name, and if you didn't specify one with --log-bin, MySQL uses host_name-bin.index as
the filename.

• --log-bin-trust-function-creators[={0|1}]

With no argument or an argument of 1, this option sets the
log_bin_trust_function_creators system variable to 1. With an argument of 0, this op-
tion sets the system variable to 0. log_bin_trust_function_creators affects how
MySQL enforces restrictions on stored function creation. See Section 17.5, “Binary Logging of
Stored Routines and Triggers”.

This option was added in MySQL 5.0.16.

• --log-bin-trust-routine-creators[={0|1}]

This is the old name for --log-bin-trust-function-creators. Before MySQL 5.0.16, it
also applies to stored procedures, not just stored functions and sets the
log_bin_trust_routine_creators system variable. As of 5.0.16, this option is deprecated.
It is recognized for backward compatibility but its use results in a warning.

This option was added in MySQL 5.0.6.

• --log-error[=file_name]

Log errors and startup messages to this file. See Section 5.12.1, “The Error Log”. If you omit the fi-
lename, MySQL uses host_name.err. If the filename has no extension, the server adds an exten-
sion of .err.

• --log-isam[=file_name]

Log all MyISAM changes to this file (used only when debugging MyISAM).

• --log-long-format (DEPRECATED)

Log extra information to the update log, binary update log, and slow query log, if they have been ac-
tivated. For example, the username and timestamp are logged for all queries. This option is deprec-
ated, as it now represents the default logging behavior. (See the description for -
-log-short-format.) The --log-queries-not-using-indexes option is available for
the purpose of logging queries that do not use indexes to the slow query log.

• --log-queries-not-using-indexes

If you are using this option with --log-slow-queries, queries that do not use indexes are
logged to the slow query log. See Section 5.12.4, “The Slow Query Log”.

• --log-short-format

Log less information to the update log, binary update log, and slow query log, if they have been ac-

Database Administration

235

tivated. For example, the username and timestamp are not logged for queries.

• --log-slow-admin-statements

Log slow administrative statements such as OPTIMIZE TABLE, ANALYZE TABLE, and ALTER
TABLE to the slow query log.

• --log-slow-queries[=file_name]

Log all queries that have taken more than long_query_time seconds to execute to this file. See
Section 5.12.4, “The Slow Query Log”. See the descriptions of the --log-long-format and -
-log-short-format options for details.

• --log-tc=file_name

The name of the memory-mapped transaction coordinator log file (for XA transactions that affect
multiple storage engines when the binary log is disabled). The default name is tc.log. The file is
created under the data directory if not given as a full pathname. Currently, this option is unused. Ad-
ded in MySQL 5.0.3.

• --log-tc-size=size

The size in bytes of the memory-mapped transaction coordinator log. The default size is 24KB. Ad-
ded in MySQL 5.0.3.

• --log-warnings[=level], -W [level]

Print out warnings such as Aborted connection... to the error log. Enabling this option is
recommended, for example, if you use replication (you get more information about what is happen-
ing, such as messages about network failures and reconnections). This option is enabled (1) by de-
fault, and the default level value if omitted is 1. To disable this option, use -
-log-warnings=0. Aborted connections are not logged to the error log unless the value is great-
er than 1. See Section A.2.10, “Communication Errors and Aborted Connections”.

• --low-priority-updates

Give table-modifying operations (INSERT, REPLACE, DELETE, UPDATE) lower priority than se-
lects. This can also be done via {INSERT | REPLACE | DELETE | UPDATE}
LOW_PRIORITY ... to lower the priority of only one query, or by SET
LOW_PRIORITY_UPDATES=1 to change the priority in one thread. See Section 7.3.2, “Table
Locking Issues”.

• --memlock

Lock the mysqld process in memory. This works on systems such as Solaris that support the
mlockall() system call. This might help if you have a problem where the operating system is
causing mysqld to swap on disk. Note that use of this option requires that you run the server as
root, which is normally not a good idea for security reasons. See Section 5.7.5, “How to Run
MySQL as a Normal User”.

• --myisam-recover[=option[,option]...]]

Set the MyISAM storage engine recovery mode. The option value is any combination of the values of
DEFAULT, BACKUP, FORCE, or QUICK. If you specify multiple values, separate them by commas.
You can also use a value of "" to disable this option. If this option is used, each time mysqld
opens a MyISAM table, it checks whether the table is marked as crashed or wasn't closed properly.
(The last option works only if you are running with external locking disabled.) If this is the case,
mysqld runs a check on the table. If the table was corrupted, mysqld attempts to repair it.

Database Administration

236

The following options affect how the repair works:

Option Description

DEFAULT The same as not giving any option to --myisam-recover.

BACKUP If the data file was changed during recovery, save a backup of the tbl_name.MYD
file as tbl_name-datetime.BAK.

FORCE Run recovery even if we would lose more than one row from the .MYD file.

QUICK Don't check the rows in the table if there aren't any delete blocks.

Before the server automatically repairs a table, it writes a note about the repair to the error log. If
you want to be able to recover from most problems without user intervention, you should use the op-
tions BACKUP,FORCE. This forces a repair of a table even if some rows would be deleted, but it
keeps the old data file as a backup so that you can later examine what happened.

See Section 14.1.1, “MyISAM Startup Options”.

• --ndb-connectstring=connect_string

When using the NDB storage engine, it is possible to point out the management server that distributes
the cluster configuration by setting the connect string option. See Section 15.4.4.2, “The Cluster
connectstring”, for syntax.

• --ndbcluster

If the binary includes support for the NDB Cluster storage engine, this option enables the engine,
which is disabled by default. See Chapter 15, MySQL Cluster.

• --old-passwords

Force the server to generate short (pre-4.1) password hashes for new passwords. This is useful for
compatibility when the server must support older client programs. See Section 5.8.9, “Password
Hashing as of MySQL 4.1”.

• --one-thread

Only use one thread (for debugging under Linux). This option is available only if the server is built
with debugging enabled. See Section E.1, “Debugging a MySQL Server”.

• --open-files-limit=count

Change the number of file descriptors available to mysqld. If this option is not set or is set to 0,
mysqld uses the value to reserve file descriptors with setrlimit(). If the value is 0, mysqld
reserves max_connections×5 or max_connections + table_open_cache×2 files
(whichever is larger). You should try increasing this value if mysqld gives you the error Too
many open files.

• --pid-file=path

The pathname of the process ID file. This file is used by other programs such as mysqld_safe to
determine the server's process ID.

• --port=port_num, -P port_num

The port number to use when listening for TCP/IP connections. The port number must be 1024 or
higher unless the server is started by the root system user.

Database Administration

237

• --port-open-timeout=num

On some systems, when the server is stopped, the TCP/IP port might not become available immedi-
ately. If the server is restarted quickly afterward, its attempt to reopen the port can fail. This option
indicates how many seconds the server should wait for the TCP/IP port to become free if it cannot be
opened. The default is not to wait. This option was added in MySQL 5.0.19.

• --safe-mode

Skip some optimization stages.

• --safe-show-database (DEPRECATED)

See Section 5.8.3, “Privileges Provided by MySQL”.

• --safe-user-create

If this option is enabled, a user cannot create new MySQL users by using the GRANT statement, if
the user doesn't have the INSERT privilege for the mysql.user table or any column in the table.

• --secure-auth

Disallow authentication by clients that attempt to use accounts that have old (pre-4.1) passwords.

• --shared-memory

Enable shared-memory connections by local clients. This option is available only on Windows.

• --shared-memory-base-name=name

The name of shared memory to use for shared-memory connections. This option is available only on
Windows. The default name is MYSQL. The name is case sensitive.

• --skip-bdb

Disable the BDB storage engine. This saves memory and might speed up some operations. Do not
use this option if you require BDB tables.

• --skip-concurrent-insert

Turn off the ability to select and insert at the same time on MyISAM tables. (This is to be used only
if you think you have found a bug in this feature.) See Section 7.3.3, “Concurrent Inserts”.

• --skip-external-locking

Do not use external locking (system locking). With external locking disabled, you must shut down
the server to use myisamchk. (See Section 1.4.3, “MySQL Stability”.) To avoid this requirement,
use the CHECK TABLE and REPAIR TABLE statements to check and repair MyISAM tables.

External locking has been disabled by default since MySQL 4.0.

• --skip-grant-tables

This option causes the server not to use the privilege system at all, which gives anyone with access
to the server unrestricted access to all databases. You can cause a running server to start using the
grant tables again by executing mysqladmin flush-privileges or mysqladmin reload
command from a system shell, or by issuing a MySQL FLUSH PRIVILEGES statement after con-
necting to the server. This option also suppresses loading of user-defined functions (UDFs).

• --skip-host-cache

Database Administration

238

Do not use the internal hostname cache for faster name-to-IP resolution. Instead, query the DNS
server every time a client connects. See Section 7.5.6, “How MySQL Uses DNS”.

• --skip-innodb

Disable the InnoDB storage engine. This saves memory and disk space and might speed up some
operations. Do not use this option if you require InnoDB tables.

• --skip-merge

Disable the MERGE storage engine. This option was added in MySQL 5.0.24. It can be used if the
following behavior is undesirable: If a user has access to MyISAM table t, that user can create a
MERGE table m that accesses t. However, if the user's privileges on t are subsequently revoked, the
user can continue to access t by doing so through m.

• --skip-name-resolve

Do not resolve hostnames when checking client connections. Use only IP numbers. If you use this
option, all Host column values in the grant tables must be IP numbers or localhost. See Sec-
tion 7.5.6, “How MySQL Uses DNS”.

• --skip-ndbcluster

Disable the NDB Cluster storage engine. This is the default for binaries that were built with NDB
Cluster storage engine support; the server allocates memory and other resources for this storage
engine only if the --ndbcluster option is given explicitly. See Section 15.4.3, “Quick Test
Setup of MySQL Cluster”, for an example of usage.

• --skip-networking

Don't listen for TCP/IP connections at all. All interaction with mysqld must be made via named
pipes or shared memory (on Windows) or Unix socket files (on Unix). This option is highly recom-
mended for systems where only local clients are allowed. See Section 7.5.6, “How MySQL Uses
DNS”.

• --ssl*

Options that begin with --ssl specify whether to allow clients to connect via SSL and indicate
where to find SSL keys and certificates. See Section 5.9.7.3, “SSL Command Options”.

• --standalone

Available on Windows NT-based systems only; instructs the MySQL server not to run as a service.

• --symbolic-links, --skip-symbolic-links

Enable or disable symbolic link support. This option has different effects on Windows and Unix:

• On Windows, enabling symbolic links allows you to establish a symbolic link to a database dir-
ectory by creating a db_name.sym file that contains the path to the real directory. See Sec-
tion 7.6.1.3, “Using Symbolic Links for Databases on Windows”.

• On Unix, enabling symbolic links means that you can link a MyISAM index file or data file to
another directory with the INDEX DIRECTORY or DATA DIRECTORY options of the CREATE
TABLE statement. If you delete or rename the table, the files that its symbolic links point to also
are deleted or renamed. See Section 7.6.1.2, “Using Symbolic Links for Tables on Unix”.

• --skip-safemalloc

Database Administration

239

If MySQL is configured with --with-debug=full, all MySQL programs check for memory
overruns during each memory allocation and memory freeing operation. This checking is very slow,
so for the server you can avoid it when you don't need it by using the --skip-safemalloc op-
tion.

• --skip-show-database

With this option, the SHOW DATABASES statement is allowed only to users who have the SHOW
DATABASES privilege, and the statement displays all database names. Without this option, SHOW
DATABASES is allowed to all users, but displays each database name only if the user has the SHOW
DATABASES privilege or some privilege for the database. Note that any global privilege is con-
sidered a privilege for the database.

• --skip-stack-trace

Don't write stack traces. This option is useful when you are running mysqld under a debugger. On
some systems, you also must use this option to get a core file. See Section E.1, “Debugging a
MySQL Server”.

• --skip-thread-priority

Disable using thread priorities for faster response time.

• --socket=path

On Unix, this option specifies the Unix socket file to use when listening for local connections. The
default value is /tmp/mysql.sock. On Windows, the option specifies the pipe name to use when
listening for local connections that use a named pipe. The default value is MySQL (not case sensit-
ive).

• --sql-mode=value[,value[,value...]]

Set the SQL mode. See Section 5.2.6, “SQL Modes”.

• --sysdate-is-now

As of MySQL 5.0.13, SYSDATE() by default returns the time at which it executes, not the time at
which the statement in which it occurs begins executing. This differs from the behavior of NOW().
This option causes SYSDATE() to be an alias for NOW(). For information about the implications
for binary logging and replication, see the description for SYSDATE() in Section 12.5, “Date and
Time Functions” and for SET TIMESTAMP in Section 13.5.3, “SET Syntax”.

This option was added in MySQL 5.0.20.

• --tc-heuristic-recover={COMMIT|ROLLBACK}

The type of decision to use in the heuristic recovery process. Currently, this option is unused. Added
in MySQL 5.0.3.

• --temp-pool

This option causes most temporary files created by the server to use a small set of names, rather than
a unique name for each new file. This works around a problem in the Linux kernel dealing with cre-
ating many new files with different names. With the old behavior, Linux seems to “leak” memory,
because it is being allocated to the directory entry cache rather than to the disk cache.

• --transaction-isolation=level

Database Administration

240

Sets the default transaction isolation level. The level value can be READ-UNCOMMITTED,
READ-COMMITTED, REPEATABLE-READ, or SERIALIZABLE. See Section 13.4.6, “SET
TRANSACTION Syntax”.

• --tmpdir=path, -t path

The path of the directory to use for creating temporary files. It might be useful if your default /tmp
directory resides on a partition that is too small to hold temporary tables. This option accepts several
paths that are used in round-robin fashion. Paths should be separated by colon characters (‘:’) on
Unix and semicolon characters (‘;’) on Windows, NetWare, and OS/2. If the MySQL server is act-
ing as a replication slave, you should not set --tmpdir to point to a directory on a memory-based
filesystem or to a directory that is cleared when the server host restarts. For more information about
the storage location of temporary files, see Section A.4.4, “Where MySQL Stores Temporary Files”.
A replication slave needs some of its temporary files to survive a machine restart so that it can rep-
licate temporary tables or LOAD DATA INFILE operations. If files in the temporary file directory
are lost when the server restarts, replication fails.

• --user={user_name|user_id}, -u {user_name|user_id}

Run the mysqld server as the user having the name user_name or the numeric user ID
user_id. (“User” in this context refers to a system login account, not a MySQL user listed in the
grant tables.)

This option is mandatory when starting mysqld as root. The server changes its user ID during its
startup sequence, causing it to run as that particular user rather than as root. See Section 5.7.1,
“General Security Guidelines”.

To avoid a possible security hole where a user adds a --user=root option to a my.cnf file (thus
causing the server to run as root), mysqld uses only the first --user option specified and pro-
duces a warning if there are multiple --user options. Options in /etc/my.cnf and
$MYSQL_HOME/my.cnf are processed before command-line options, so it is recommended that
you put a --user option in /etc/my.cnf and specify a value other than root. The option in /
etc/my.cnf is found before any other --user options, which ensures that the server runs as a
user other than root, and that a warning results if any other --user option is found.

• --version, -V

Display version information and exit.

You can assign a value to a server system variable by using an option of the form
--var_name=value. For example, --key_buffer_size=32M sets the key_buffer_size
variable to a value of 32MB.

Note that when you assign a value to a variable, MySQL might automatically correct the value to stay
within a given range, or adjust the value to the closest allowable value if only certain values are allowed.

If you want to restrict the maximum value to which a variable can be set at runtime with SET, you can
define this by using the --maximum-var_name=value command-line option.

It is also possible to set variables by using --set-variable=var_name=value or -O
var_name=value syntax. This syntax is deprecated.

You can change the values of most system variables for a running server with the SET statement. See
Section 13.5.3, “SET Syntax”.

Section 5.2.3, “System Variables”, provides a full description for all variables, and additional informa-
tion for setting them at server startup and runtime. Section 7.5.2, “Tuning Server Parameters”, includes

Database Administration

241

information on optimizing the server by tuning system variables.

5.2.3. System Variables
The mysql server maintains many system variables that indicate how it is configured. Each system
variable has a default value. System variables can be set at server startup using options on the command
line or in an option file. Most of them can be changed dynamically while the server is running by means
of the SET statement, which enables you to modify operation of the server without having to stop and
restart it. You can refer to system variable values in expressions.

There are several ways to see the names and values of system variables:

• To see the values that a server will use based on its compiled-in defaults and any option files that it
reads, use this command:

mysqld --verbose --help

• To see the values that a server will use based on its compiled-in defaults, ignoring the settings in any
option files, use this command:

mysqld --no-defaults --verbose --help

• To see the current values used by a running server, use the SHOW VARIABLES statement.

This section provides a description of each system variable. Variables with no version indicated are
present in all MySQL 5.0 releases. For historical information concerning their implementation, please
see MySQL 3.23, 4.0, 4.1 Reference Manual.

For additional system variable information, see these sections:

• Section 5.2.4, “Using System Variables”, discusses the syntax for setting and displaying system vari-
able values.

• Section 5.2.4.2, “Dynamic System Variables”, lists the variables that can be set at runtime.

• Information on tuning sytem variables can be found in Section 7.5.2, “Tuning Server Parameters”.

• Section 14.2.4, “InnoDB Startup Options and System Variables”, lists InnoDB system variables.

Note: Some of the following variable descriptions refer to “enabling” or “disabling” a variable. These
variables can be enabled with the SET statement by setting them to ON or 1, or disabled by setting them
to OFF or 0. However, to set such a variable on the command line or in an option file, you must set it to
1 or 0; setting it to ON or OFF will not work. For example, on the command line, -
-delay_key_write=1 works but --delay_key_write=ON does not.

Values for buffer sizes, lengths, and stack sizes are given in bytes unless otherwise specified.

• auto_increment_increment

auto_increment_increment and auto_increment_offset are intended for use with
master-to-master replication, and can be used to control the operation of AUTO_INCREMENT
columns. Both variables can be set globally or locally, and each can assume an integer value
between 1 and 65,535 inclusive. Setting the value of either of these two variables to 0 causes its
value to be set to 1 instead. Attempting to set the value of either of these two variables to an integer

Database Administration

242

greater than 65,535 or less than 0 causes its value to be set to 65,535 instead. Attempting to set the
value of auto_increment_increment or auto_increment_offset to a non-integer
value gives rise to an error, and the actual value of the variable remains unchanged.

These two variables affect AUTO_INCREMENT column behavior as follows:

• auto_increment_increment controls the interval between successive column values. For
example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 1 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> CREATE TABLE autoinc1
-> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);

Query OK, 0 rows affected (0.04 sec)

mysql> SET @@auto_increment_increment=10;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 1 |
+--------------------------+-------+
2 rows in set (0.01 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+
4 rows in set (0.00 sec)

(Note how SHOW VARIABLES is used here to obtain the current values for these variables.)

• auto_increment_offset determines the starting point for the AUTO_INCREMENT
column value. Consider the following, assuming that these statements are executed during the
same session as the example given in the description for auto_increment_increment:

mysql> SET @@auto_increment_offset=5;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> CREATE TABLE autoinc2
-> (col INT NOT NULL AUTO_INCREMENT PRIMARY KEY);

Query OK, 0 rows affected (0.06 sec)

mysql> INSERT INTO autoinc2 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

Database Administration

243

mysql> SELECT col FROM autoinc2;
+-----+
| col |
+-----+
| 5 |
| 15 |
| 25 |
| 35 |
+-----+
4 rows in set (0.02 sec)

If the value of auto_increment_offset is greater than that of
auto_increment_increment, the value of auto_increment_offset is ignored.

Should one or both of these variables be changed and then new rows inserted into a table containing
an AUTO_INCREMENT column, the results may seem counterintuitive because the series of
AUTO_INCREMENT values is calculated without regard to any values already present in the column,
and the next value inserted is the least value in the series that is greater than the maximum existing
value in the AUTO_INCREMENT column. In other words, the series is calculated like so:

auto_increment_offset + N × auto_increment_increment

where N is a positive integer value in the series [1, 2, 3, ...]. For example:

mysql> SHOW VARIABLES LIKE 'auto_inc%';
+--------------------------+-------+
| Variable_name | Value |
+--------------------------+-------+
| auto_increment_increment | 10 |
| auto_increment_offset | 5 |
+--------------------------+-------+
2 rows in set (0.00 sec)

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
+-----+
4 rows in set (0.00 sec)

mysql> INSERT INTO autoinc1 VALUES (NULL), (NULL), (NULL), (NULL);
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

mysql> SELECT col FROM autoinc1;
+-----+
| col |
+-----+
| 1 |
| 11 |
| 21 |
| 31 |
| 35 |
| 45 |
| 55 |
| 65 |
+-----+
8 rows in set (0.00 sec)

The values shown for auto_increment_increment and auto_increment_offset gen-
erate the series 5 + N × 10, that is, [5, 15, 25, 35, 45, ...]. The greatest value present in the col
column prior to the INSERT is 31, and the next available value in the AUTO_INCREMENT series is
35, so the inserted values for col begin at that point and the results are as shown for the SELECT
query.

Database Administration

244

It is important to remember that it is not possible to confine the effects of these two variables to a
single table, and thus they do not take the place of the sequences offered by some other database
management systems; these variables control the behavior of all AUTO_INCREMENT columns in all
tables on the MySQL server. If one of these variables is set globally, its effects persist until the glob-
al value is changed or overridden by setting them locally, or until mysqld is restarted. If set locally,
the new value affects AUTO_INCREMENT columns for all tables into which new rows are inserted
by the current user for the duration of the session, unless the values are changed during that session.

The auto_increment_increment variable was added in MySQL 5.0.2. Its default value is 1.
See Section 6.13, “Auto-Increment in Multiple-Master Replication”.

• > auto_increment_offset

This variable was introduced in MySQL 5.0.2. Its default value is 1. For particulars, see the descrip-
tion for auto_increment_increment.

• back_log

The number of outstanding connection requests MySQL can have. This comes into play when the
main MySQL thread gets very many connection requests in a very short time. It then takes some
time (although very little) for the main thread to check the connection and start a new thread. The
back_log value indicates how many requests can be stacked during this short time before MySQL
momentarily stops answering new requests. You need to increase this only if you expect a large
number of connections in a short period of time.

In other words, this value is the size of the listen queue for incoming TCP/IP connections. Your op-
erating system has its own limit on the size of this queue. The manual page for the Unix listen()
system call should have more details. Check your OS documentation for the maximum value for this
variable. back_log cannot be set higher than your operating system limit.

• basedir

The MySQL installation base directory. This variable can be set with the --basedir option.

• bdb_cache_size

The size of the buffer that is allocated for caching indexes and rows for BDB tables. If you don't use
BDB tables, you should start mysqld with --skip-bdb to not allocate memory for this cache.

• bdb_home

The base directory for BDB tables. This should be assigned the same value as the datadir variable.

• bdb_log_buffer_size

The size of the buffer that is allocated for caching indexes and rows for BDB tables. If you don't use
BDB tables, you should set this to 0 or start mysqld with --skip-bdb to not allocate memory for
this cache.

• bdb_logdir

The directory where the BDB storage engine writes its log files. This variable can be set with the -
-bdb-logdir option.

• bdb_max_lock

The maximum number of locks that can be active for a BDB table (10,000 by default). You should
increase this value if errors such as the following occur when you perform long transactions or when

Database Administration

245

mysqld has to examine many rows to calculate a query:

bdb: Lock table is out of available locks
Got error 12 from ...

• bdb_shared_data

This is ON if you are using --bdb-shared-data to start Berkeley DB in multi-process mode.
(Do not use DB_PRIVATE when initializing Berkeley DB.)

• bdb_tmpdir

The BDB temporary file directory.

• binlog_cache_size

The size of the cache to hold the SQL statements for the binary log during a transaction. A binary
log cache is allocated for each client if the server supports any transactional storage engines and if
the server has the binary log enabled (--log-bin option). If you often use large, multiple-state-
ment transactions, you can increase this cache size to get more performance. The Bin-
log_cache_use and Binlog_cache_disk_use status variables can be useful for tuning the
size of this variable. See Section 5.12.3, “The Binary Log”.

• bulk_insert_buffer_size

MyISAM uses a special tree-like cache to make bulk inserts faster for INSERT ... SELECT, IN-
SERT ... VALUES (...), (...), ..., and LOAD DATA INFILE when adding data to
non-empty tables. This variable limits the size of the cache tree in bytes per thread. Setting it to 0
disables this optimization. The default value is 8MB.

• character_set_client

The character set for statements that arrive from the client.

• character_set_connection

The character set used for literals that do not have a character set introducer and for number-to-string
conversion.

• character_set_database

The character set used by the default database. The server sets this variable whenever the default
database changes. If there is no default database, the variable has the same value as charac-
ter_set_server.

• character_set_filesystem

The filesystem character set. This variable is used to interpret string literals that refer to filenames,
such as in the LOAD DATA INFILE and SELECT ... INTO OUTFILE statements and the
LOAD_FILE() function. Such filenames are converted from character_set_client to
character_set_filesystem before the file opening attempt occurs. The default value is
binary, which means that no conversion occurs. For systems on which multi-byte filenames are al-
lowed, a different value may be more appropriate. For example, if the system represents filenames
using UTF-8, set character_set_filesytem to 'utf8'. This variable was added in MySQL
5.0.19.

• character_set_results

The character set used for returning query results to the client.

Database Administration

246

• character_set_server

The server's default character set.

• character_set_system

The character set used by the server for storing identifiers. The value is always utf8.

• character_sets_dir

The directory where character sets are installed.

• collation_connection

The collation of the connection character set.

• collation_database

The collation used by the default database. The server sets this variable whenever the default data-
base changes. If there is no default database, the variable has the same value as colla-
tion_server.

• collation_server

The server's default collation.

• completion_type

The transaction completion type:

• If the value is 0 (the default), COMMIT and ROLLBACK are unaffected.

• If the value is 1, COMMIT and ROLLBACK are equivalent to COMMIT AND CHAIN and ROLL-
BACK AND CHAIN, respectively. (A new transaction starts immediately with the same isolation
level as the just-terminated transaction.)

• If the value is 2, COMMIT and ROLLBACK are equivalent to COMMIT RELEASE and ROLL-
BACK RELEASE, respectively. (The server disconnects after terminating the transaction.)

This variable was added in MySQL 5.0.3

• concurrent_insert

If ON (the default), MySQL allows INSERT and SELECT statements to run concurrently for MyIS-
AM tables that have no free blocks in the middle. You can turn this option off by starting mysqld
with --safe or --skip-new.

In MySQL 5.0.6, this variable was changed to take three integer values:

Value Description

0 Off

1 (Default) Enables concurrent insert for MyISAM tables that don't have holes

2 Enables concurrent inserts for all MyISAM tables. If table has a hole and is in use by anoth-
er thread the new row will be inserted at end of table. If table is not in use, MySQL does a
normal read lock and inserts the new row into the hole.

See also Section 7.3.3, “Concurrent Inserts”.

Database Administration

247

• connect_timeout

The number of seconds that the mysqld server waits for a connect packet before responding with
Bad handshake.

• datadir

The MySQL data directory. This variable can be set with the --datadir option.

• date_format

This variable is not implemented.

• datetime_format

This variable is not implemented.

• default_week_format

The default mode value to use for the WEEK() function. See Section 12.5, “Date and Time Func-
tions”.

• delay_key_write

This option applies only to MyISAM tables. It can have one of the following values to affect hand-
ling of the DELAY_KEY_WRITE table option that can be used in CREATE TABLE statements.

Option Description

OFF DELAY_KEY_WRITE is ignored.

ON MySQL honors any DELAY_KEY_WRITE option specified in CREATE TABLE state-
ments. This is the default value.

ALL All new opened tables are treated as if they were created with the DELAY_KEY_WRITE
option enabled.

If DELAY_KEY_WRITE is enabled for a table, the key buffer is not flushed for the table on every in-
dex update, but only when the table is closed. This speeds up writes on keys a lot, but if you use this
feature, you should add automatic checking of all MyISAM tables by starting the server with the -
-myisam-recover option (for example, --myisam-recover=BACKUP,FORCE). See Sec-
tion 5.2.2, “Command Options”, and Section 14.1.1, “MyISAM Startup Options”.

Note that enabling external locking with --external-locking offers no protection against in-
dex corruption for tables that use delayed key writes.

• delayed_insert_limit

After inserting delayed_insert_limit delayed rows, the INSERT DELAYED handler thread
checks whether there are any SELECT statements pending. If so, it allows them to execute before
continuing to insert delayed rows.

• delayed_insert_timeout

How many seconds an INSERT DELAYED handler thread should wait for INSERT statements be-
fore terminating.

• delayed_queue_size

This is a per-table limit on the number of rows to queue when handling INSERT DELAYED state-

Database Administration

248

ments. If the queue becomes full, any client that issues an INSERT DELAYED statement waits until
there is room in the queue again.

• div_precision_increment

This variable indicates the number of digits of precision by which to increase the result of division
operations performed with the / operator. The default value is 4. The minimum and maximum val-
ues are 0 and 30, respectively. The following example illustrates the effect of increasing the default
value.

mysql> SELECT 1/7;
+--------+
| 1/7 |
+--------+
| 0.1429 |
+--------+
mysql> SET div_precision_increment = 12;
mysql> SELECT 1/7;
+----------------+
| 1/7 |
+----------------+
| 0.142857142857 |
+----------------+

This variable was added in MySQL 5.0.6.

• engine_condition_pushdown

This variable applies to NDB. By default it is 0 (OFF): If you execute a query such as SELECT *
FROM t WHERE mycol = 42, where mycol is a non-indexed column, the query is executed as
a full table scan on every NDB node. Each node sends every row to the MySQL server, which ap-
plies the WHERE condition. If engine_condition_pushdown is set to 1 (ON), the condition is
“pushed down” to the storage engine and sent to the NDB nodes. Each node uses the condition to
perform the scan, and only sends back to the MySQL server the rows that match the condition.

This variable was added in MySQL 5.0.3. Before that, the default NDB behavior is the same as for a
value of OFF.

• expire_logs_days

The number of days for automatic binary log removal. The default is 0, which means “no automatic
removal.” Possible removals happen at startup and at binary log rotation.

• flush

If ON, the server flushes (synchronizes) all changes to disk after each SQL statement. Normally,
MySQL does a write of all changes to disk only after each SQL statement and lets the operating sys-
tem handle the synchronizing to disk. See Section A.4.2, “What to Do If MySQL Keeps Crashing”.
This variable is set to ON if you start mysqld with the --flush option.

• flush_time

If this is set to a non-zero value, all tables are closed every flush_time seconds to free up re-
sources and synchronize unflushed data to disk. We recommend that this option be used only on
Windows 9x or Me, or on systems with minimal resources.

• ft_boolean_syntax

The list of operators supported by boolean full-text searches performed using IN BOOLEAN MODE.
See Section 12.7.1, “Boolean Full-Text Searches”.

The default variable value is '+ -><()~*:""&|'. The rules for changing the value are as fol-

Database Administration

249

lows:

• Operator function is determined by position within the string.

• The replacement value must be 14 characters.

• Each character must be an ASCII non-alphanumeric character.

• Either the first or second character must be a space.

• No duplicates are allowed except the phrase quoting operators in positions 11 and 12. These two
characters are not required to be the same, but they are the only two that may be.

• Positions 10, 13, and 14 (which by default are set to ‘:’, ‘&’, and ‘|’) are reserved for future ex-
tensions.

• ft_max_word_len

The maximum length of the word to be included in a FULLTEXT index.

Note: FULLTEXT indexes must be rebuilt after changing this variable. Use REPAIR TABLE
tbl_name QUICK.

• ft_min_word_len

The minimum length of the word to be included in a FULLTEXT index.

Note: FULLTEXT indexes must be rebuilt after changing this variable. Use REPAIR TABLE
tbl_name QUICK.

• ft_query_expansion_limit

The number of top matches to use for full-text searches performed using WITH QUERY EXPAN-
SION.

• ft_stopword_file

The file from which to read the list of stopwords for full-text searches. All the words from the file
are used; comments are not honored. By default, a built-in list of stopwords is used (as defined in the
myisam/ft_static.c file). Setting this variable to the empty string ('') disables stopword fil-
tering.

Note: FULLTEXT indexes must be rebuilt after changing this variable or the contents of the stop-
word file. Use REPAIR TABLE tbl_name QUICK.

• group_concat_max_len

The maximum allowed result length for the GROUP_CONCAT() function. The default is 1024.

• have_archive

YES if mysqld supports ARCHIVE tables, NO if not.

• have_bdb

YES if mysqld supports BDB tables. DISABLED if --skip-bdb is used.

• have_blackhole_engine

YES if mysqld supports BLACKHOLE tables, NO if not.

Database Administration

250

• have_compress

YES if the zlib compression library is available to the server, NO if not. If not, the COMPRESS()
and UNCOMPRESS() functions cannot be used.

• have_crypt

YES if the crypt() system call is available to the server, NO if not. If not, the ENCRYPT() func-
tion cannot be used.

• have_csv

YES if mysqld supports ARCHIVE tables, NO if not.

• have_example_engine

YES if mysqld supports EXAMPLE tables, NO if not.

have_federated_engine

YES if mysqld supports FEDERATED tables, NO if not. This variable was added in MySQL 5.0.3.

• have_geometry

YES if the server supports spatial data types, NO if not.

• have_innodb

YES if mysqld supports InnoDB tables. DISABLED if --skip-innodb is used.

• have_isam

In MySQL 5.0, this variable appears only for reasons of backward compatibility. It is always NO be-
cause ISAM tables are no longer supported.

• have_ndbcluster

YES if mysqld supports NDB Cluster tables. DISABLED if --skip-ndbcluster is used.

• have_openssl

YES if mysqld supports SSL connections, NO if not.

• have_query_cache

YES if mysqld supports the query cache, NO if not.

• have_raid

In MySQL 5.0, this variable appears only for reasons of backward compatibility. It is always NO be-
cause RAID tables are no longer supported.

• have_rtree_keys

YES if RTREE indexes are available, NO if not. (These are used for spatial indexes in MyISAM
tables.)

• have_symlink

YES if symbolic link support is enabled, NO if not. This is required on Unix for support of the DATA

Database Administration

251

DIRECTORY and INDEX DIRECTORY table options, and on Windows for support of data direct-
ory symlinks.

• init_connect

A string to be executed by the server for each client that connects. The string consists of one or more
SQL statements. To specify multiple statements, separate them by semicolon characters. For ex-
ample, each client begins by default with autocommit mode enabled. There is no global system vari-
able to specify that autocommit should be disabled by default, but init_connect can be used to
achieve the same effect:

SET GLOBAL init_connect='SET AUTOCOMMIT=0';

This variable can also be set on the command line or in an option file. To set the variable as just
shown using an option file, include these lines:

[mysqld]
init_connect='SET AUTOCOMMIT=0'

Note that the content of init_connect is not executed for users that have the SUPER privilege.
This is done so that an erroneous value for init_connect does not prevent all clients from con-
necting. For example, the value might contain a statement that has a syntax error, thus causing client
connections to fail. Not executing init_connect for users that have the SUPER privilege enables
them to open a connection and fix the init_connect value.

• init_file

The name of the file specified with the --init-file option when you start the server. This
should be a file containing SQL statements that you want the server to execute when it starts. Each
statement must be on a single line and should not include comments.

• init_slave

This variable is similar to init_connect, but is a string to be executed by a slave server each
time the SQL thread starts. The format of the string is the same as for the init_connect variable.

• innodb_xxx

InnoDB system variables are listed in Section 14.2.4, “InnoDB Startup Options and System Vari-
ables”.

• interactive_timeout

The number of seconds the server waits for activity on an interactive connection before closing it.
An interactive client is defined as a client that uses the CLIENT_INTERACTIVE option to
mysql_real_connect(). See also wait_timeout.

• join_buffer_size

The size of the buffer that is used for joins that do not use indexes and thus perform full table scans.
Normally, the best way to get fast joins is to add indexes. Increase the value of
join_buffer_size to get a faster full join when adding indexes is not possible. One join buffer
is allocated for each full join between two tables. For a complex join between several tables for
which indexes are not used, multiple join buffers might be necessary.

• key_buffer_size

Index blocks for MyISAM tables are buffered and are shared by all threads. key_buffer_size is

Database Administration

252

the size of the buffer used for index blocks. The key buffer is also known as the key cache.

The maximum allowable setting for key_buffer_size is 4GB. The effective maximum size
might be less, depending on your available physical RAM and per-process RAM limits imposed by
your operating system or hardware platform.

Increase the value to get better index handling (for all reads and multiple writes) to as much as you
can afford. Using a value that is 25% of total memory on a machine that mainly runs MySQL is
quite common. However, if you make the value too large (for example, more than 50% of your total
memory) your system might start to page and become extremely slow. MySQL relies on the operat-
ing system to perform filesystem caching for data reads, so you must leave some room for the
filesystem cache. Consider also the memory requirements of other storage engines.

For even more speed when writing many rows at the same time, use LOCK TABLES. See Sec-
tion 7.2.16, “Speed of INSERT Statements”.

You can check the performance of the key buffer by issuing a SHOW STATUS statement and ex-
amining the Key_read_requests, Key_reads, Key_write_requests, and
Key_writes status variables. (See Section 13.5.4, “SHOW Syntax”.) The
Key_reads/Key_read_requests ratio should normally be less than 0.01. The
Key_writes/Key_write_requests ratio is usually near 1 if you are using mostly updates
and deletes, but might be much smaller if you tend to do updates that affect many rows at the same
time or if you are using the DELAY_KEY_WRITE table option.

The fraction of the key buffer in use can be determined using key_buffer_size in conjunction
with the Key_blocks_unused status variable and the buffer block size, which is available from
the key_cache_block_size system variable:

1 - ((Key_blocks_unused × key_cache_block_size) / key_buffer_size)

This value is an approximation because some space in the key buffer may be allocated internally for
administrative structures.

It is possible to create multiple MyISAM key caches. The size limit of 4GB applies to each cache in-
dividually, not as a group. See Section 7.4.6, “The MyISAM Key Cache”.

• key_cache_age_threshold

This value controls the demotion of buffers from the hot sub-chain of a key cache to the warm sub-
chain. Lower values cause demotion to happen more quickly. The minimum value is 100. The de-
fault value is 300. See Section 7.4.6, “The MyISAM Key Cache”.

• key_cache_block_size

The size in bytes of blocks in the key cache. The default value is 1024. See Section 7.4.6, “The My-
ISAM Key Cache”.

• key_cache_division_limit

The division point between the hot and warm sub-chains of the key cache buffer chain. The value is
the percentage of the buffer chain to use for the warm sub-chain. Allowable values range from 1 to
100. The default value is 100. See Section 7.4.6, “The MyISAM Key Cache”.

• language

The language used for error messages.

• large_file_support

Database Administration

253

Whether mysqld was compiled with options for large file support.

• large_pages

Whether large page support is enabled. This variable was added in MySQL 5.0.3.

• license

The type of license the server has.

• local_infile

Whether LOCAL is supported for LOAD DATA INFILE statements. See Section 5.7.4, “Security
Issues with LOAD DATA LOCAL”.

• locked_in_memory

Whether mysqld was locked in memory with --memlock.

• log

Whether logging of all statements to the general query log is enabled. See Section 5.12.2, “The Gen-
eral Query Log”.

• log_bin

Whether the binary log is enabled. See Section 5.12.3, “The Binary Log”.

• log_bin_trust_function_creators

This variable applies when binary logging is enabled. It controls whether stored function creators
can be trusted not to create stored functions that will cause unsafe events to be written to the binary
log. If set to 0 (the default), users are not allowed to create or alter stored functions unless they have
the SUPER privilege in addition to the CREATE ROUTINE or ALTER ROUTINE privilege. A set-
ting of 0 also enforces the restriction that a function must be declared with the DETERMINISTIC
characteristic, or with the READS SQL DATA or NO SQL characteristic. If the variable is set to 1,
MySQL does not enforce these restrictions on stored function creation. See Section 17.5, “Binary
Logging of Stored Routines and Triggers”.

This variable was added in MySQL 5.0.16.

• log_bin_trust_routine_creators

This is the old name for log_bin_trust_function_creators. Before MySQL 5.0.16, it
also applies to stored procedures, not just stored functions. As of 5.0.16, this variable is deprecated.
It is recognized for backward compatibility but its use results in a warning.

This variable was added in MySQL 5.0.6.

• log_error

The location of the error log.

• log_queries_not_using_indexes

Whether queries that do not use indexes are logged to the slow query log. See Section 5.12.4, “The
Slow Query Log”. This variable was added in MySQL 5.0.23.

• log_slave_updates

Database Administration

254

Whether updates received by a slave server from a master server should be logged to the slave's own
binary log. Binary logging must be enabled on the slave for this variable to have any effect. See Sec-
tion 6.8, “Replication Startup Options”.

• log_slow_queries

Whether slow queries should be logged. “Slow” is determined by the value of the
long_query_time variable. See Section 5.12.4, “The Slow Query Log”.

• log_warnings

Whether to produce additional warning messages. It is enabled (1) by default. Aborted connections
are not logged to the error log unless the value is greater than 1.

• long_query_time

If a query takes longer than this many seconds, the server increments the Slow_queries status
variable. If you are using the --log-slow-queries option, the query is logged to the slow
query log file. This value is measured in real time, not CPU time, so a query that is under the
threshold on a lightly loaded system might be above the threshold on a heavily loaded one. The min-
imum value is 1. The default is 10. See Section 5.12.4, “The Slow Query Log”.

• low_priority_updates

If set to 1, all INSERT, UPDATE, DELETE, and LOCK TABLE WRITE statements wait until there
is no pending SELECT or LOCK TABLE READ on the affected table. This variable previously was
named sql_low_priority_updates.

• lower_case_file_system

This variable describes the case sensitivity of filenames on the filesystem where the data directory is
located. OFF means filenames are case sensitive, ON means they are not case sensitive.

• lower_case_table_names

If set to 1, table names are stored in lowercase on disk and table name comparisons are not case
sensitive. If set to 2 table names are stored as given but compared in lowercase. This option also ap-
plies to database names and table aliases. See Section 9.2.2, “Identifier Case Sensitivity”.

If you are using InnoDB tables, you should set this variable to 1 on all platforms to force names to
be converted to lowercase.

You should not set this variable to 0 if you are running MySQL on a system that does not have case-
sensitive filenames (such as Windows or Mac OS X). If this variable is not set at startup and the
filesystem on which the data directory is located does not have case-sensitive filenames, MySQL
automatically sets lower_case_table_names to 2.

• max_allowed_packet

The maximum size of one packet or any generated/intermediate string.

The packet message buffer is initialized to net_buffer_length bytes, but can grow up to
max_allowed_packet bytes when needed. This value by default is small, to catch large
(possibly incorrect) packets.

You must increase this value if you are using large BLOB columns or long strings. It should be as big
as the largest BLOB you want to use. The protocol limit for max_allowed_packet is 1GB.

Database Administration

255

• max_binlog_cache_size

If a multiple-statement transaction requires more than this amount of memory, the server generates a
Multi-statement transaction required more than
'max_binlog_cache_size' bytes of storage error.

• max_binlog_size

If a write to the binary log causes the current log file size to exceed the value of this variable, the
server rotates the binary logs (closes the current file and opens the next one). You cannot set this
variable to more than 1GB or to less than 4096 bytes. The default value is 1GB.

A transaction is written in one chunk to the binary log, so it is never split between several binary
logs. Therefore, if you have big transactions, you might see binary logs larger than
max_binlog_size.

If max_relay_log_size is 0, the value of max_binlog_size applies to relay logs as well.

• max_connect_errors

If there are more than this number of interrupted connections from a host, that host is blocked from
further connections. You can unblock blocked hosts with the FLUSH HOSTS statement.

• max_connections

The number of simultaneous client connections allowed. Increasing this value increases the number
of file descriptors that mysqld requires. See Section 7.4.8, “How MySQL Opens and Closes
Tables”, for comments on file descriptor limits. See also Section A.2.6, “Too many connec-
tions”.

• max_delayed_threads

Do not start more than this number of threads to handle INSERT DELAYED statements. If you try
to insert data into a new table after all INSERT DELAYED threads are in use, the row is inserted as
if the DELAYED attribute wasn't specified. If you set this to 0, MySQL never creates a thread to
handle DELAYED rows; in effect, this disables DELAYED entirely.

• max_error_count

The maximum number of error, warning, and note messages to be stored for display by the SHOW
ERRORS and SHOW WARNINGS statements.

• max_heap_table_size

This variable sets the maximum size to which MEMORY tables are allowed to grow. The value of the
variable is used to calculate MEMORY table MAX_ROWS values. Setting this variable has no effect on
any existing MEMORY table, unless the table is re-created with a statement such as CREATE TABLE
or altered with ALTER TABLE or TRUNCATE TABLE.

• max_insert_delayed_threads

This variable is a synonym for max_delayed_threads.

• max_join_size

Do not allow SELECT statements that probably need to examine more than max_join_size rows
(for single-table statements) or row combinations (for multiple-table statements) or that are likely to
do more than max_join_size disk seeks. By setting this value, you can catch SELECT state-
ments where keys are not used properly and that would probably take a long time. Set it if your users

Database Administration

256

tend to perform joins that lack a WHERE clause, that take a long time, or that return millions of rows.

Setting this variable to a value other than DEFAULT resets the value of SQL_BIG_SELECTS to 0.
If you set the SQL_BIG_SELECTS value again, the max_join_size variable is ignored.

If a query result is in the query cache, no result size check is performed, because the result has previ-
ously been computed and it does not burden the server to send it to the client.

This variable previously was named sql_max_join_size.

• max_length_for_sort_data

The cutoff on the size of index values that determines which filesort algorithm to use. See Sec-
tion 7.2.12, “ORDER BY Optimization”.

• max_prepared_stmt_count

This variable limits the total number of prepared statements in the server. It can be used in environ-
ments where there is the potential for denial-of-service attacks based on running the server out of
memory by preparing huge numbers of statements. The default value is 16,382. The allowable range
of values is from 0 to 1 million. If the value is set lower than the current number of prepared state-
ments, existing statements are not affected and can be used, but no new statements can be prepared
until the current number drops below the limit. This variable was added in MySQL 5.0.21.

• max_relay_log_size

If a write by a replication slave to its relay log causes the current log file size to exceed the value of
this variable, the slave rotates the relay logs (closes the current file and opens the next one). If
max_relay_log_size is 0, the server uses max_binlog_size for both the binary log and
the relay log. If max_relay_log_size is greater than 0, it constrains the size of the relay log,
which enables you to have different sizes for the two logs. You must set max_relay_log_size
to between 4096 bytes and 1GB (inclusive), or to 0. The default value is 0. See Section 6.3,
“Replication Implementation Details”.

• max_seeks_for_key

Limit the assumed maximum number of seeks when looking up rows based on a key. The MySQL
optimizer assumes that no more than this number of key seeks are required when searching for
matching rows in a table by scanning an index, regardless of the actual cardinality of the index (see
Section 13.5.4.13, “SHOW INDEX Syntax”). By setting this to a low value (say, 100), you can force
MySQL to prefer indexes instead of table scans.

• max_sort_length

The number of bytes to use when sorting BLOB or TEXT values. Only the first
max_sort_length bytes of each value are used; the rest are ignored.

• max_sp_recursion_depth

The number of times that a stored procedure may call itself. The default value for this option is 0,
which completely disallows recursion in stored procedures. The maximum value is 255.

This variable can be set globally and per session.

• max_tmp_tables

The maximum number of temporary tables a client can keep open at the same time. (This option
does not yet do anything.)

Database Administration

257

• max_user_connections

The maximum number of simultaneous connections allowed to any given MySQL account. A value
of 0 means “no limit.”

Before MySQL 5.0.3, this variable has only global scope. Beginning with MySQL 5.0.3, it also has a
read-only session scope. The session variable has the same value as the global variable unless the
current account has a non-zero MAX_USER_CONNECTIONS resource limit. In that case, the session
value reflects the account limit.

• max_write_lock_count

After this many write locks, allow some pending read lock requests to be processed in between.

• myisam_data_pointer_size

The default pointer size in bytes, to be used by CREATE TABLE for MyISAM tables when no
MAX_ROWS option is specified. This variable cannot be less than 2 or larger than 7. The default
value is 6 (4 before MySQL 5.0.6). This variable was added in MySQL 4.1.2. See Section A.2.11,
“The table is full”.

• myisam_max_extra_sort_file_size (DEPRECATED)

If the temporary file used for fast MyISAM index creation would be larger than using the key cache
by the amount specified here, prefer the key cache method. This is mainly used to force long charac-
ter keys in large tables to use the slower key cache method to create the index. The value is given in
bytes.

Note: This variable was removed in MySQL 5.0.6.

• myisam_max_sort_file_size

The maximum size of the temporary file that MySQL is allowed to use while re-creating a MyISAM
index (during REPAIR TABLE, ALTER TABLE, or LOAD DATA INFILE). If the file size would
be larger than this value, the index is created using the key cache instead, which is slower. The value
is given in bytes.

• myisam_recover_options

The value of the --myisam-recover option. See Section 5.2.2, “Command Options”.

• myisam_repair_threads

If this value is greater than 1, MyISAM table indexes are created in parallel (each index in its own
thread) during the Repair by sorting process. The default value is 1.

Note: Multi-threaded repair is still beta-quality code.

• myisam_sort_buffer_size

The size of the buffer that is allocated when sorting MyISAM indexes during a REPAIR TABLE or
when creating indexes with CREATE INDEX or ALTER TABLE.

• myisam_stats_method

How the server treats NULL values when collecting statistics about the distribution of index values
for MyISAM tables. This variable has two possible values, nulls_equal and nulls_unequal.
For nulls_equal, all NULL index values are considered equal and form a single value group that
has a size equal to the number of NULL values. For nulls_unequal, NULL values are considered

Database Administration

258

unequal, and each NULL forms a distinct value group of size 1.

The method that is used for generating table statistics influences how the optimizer chooses indexes
for query execution, as described in Section 7.4.7, “MyISAM Index Statistics Collection”.

This variable was added in MySQL 5.0.14. For older versions, the statistics collection method is
equivalent to nulls_equal.

• multi_read_range

Specifies the maximum number of ranges to send to a storage engine during range selects. The de-
fault value is 256. Sending multiple ranges to an engine is a feature that can improve the perform-
ance of certain selects dramatically, particularly for NDBCLUSTER. This engine needs to send the
range requests to all nodes, and sending many of those requests at once reduces the communication
costs significantly. This variable was added in MySQL 5.0.3.

• named_pipe

(Windows only.) Indicates whether the server supports connections over named pipes.

• ndb_autoincrement_prefetch_sz

Determines the probability of gaps in an autoincremented column. Set to 1 to minimize this. Set to a
high value for optimization — makes inserts faster, but decreases the likelihood that consecutive
autoincrement numbers will be used in a batch of inserts. Default value: 32. Mimimum value: 1.

• ndb_cache_check_time

The number of milliseconds to wait before checking the NDB query cache. Setting this to 0 (the de-
fault and minimum value) means that the NDB query cache will be checked for validation on every
query.

The recommended maximum value for this variable is 1000, which means that the query cache is
checked once per second. A larger value means the NDB query cache is less often checked and inval-
idated due to updates on a different mysqld. It is generally not desirable to set this to a value great-
er than 2000.

• ndb_force_send

Forces sending of buffers to NDB immediately, without waiting for other threads. Defaults to ON.

• ndb_index_stat_cache_entries

Sets the granularity of the statistics by determining the number of starting and ending keys to store in
the statistics memory cache. Zero means no caching takes place; in this case, the data nodes are al-
ways queries directly. Default value: 32.

• ndb_index_stat_enable

Use NDB index statistics in query optimization. Defaults to ON.

• ndb_index_stat_update_freq

How often to query data nodes instead of the statistics cache. For example, a value of 20 (the de-
fault) means to direct every 20th query to the data nodes.

• ndb_report_thresh_binlog_epoch_slip

This is a threshold on the number of epochs to be behind before reporting binlog status. For ex-

Database Administration

259

ample, a value of 3 (the default) means that if the difference between which epoch has been received
from the storage nodes and which epoch has been applied to the binlog is 3 or more, a status mes-
sage will be sent to the cluster log.

• ndb_report_thresh_binlog_mem_usage

This is a threshold on the percentage of free memory remaining before reporting binlog status. For
example, a value of 10 (the default) means that if the amount of available memory for receiving bin-
log data from the data nodes falls below 10%, a status message will be sent to the cluster log.

• ndb_use_exact_count

Forces NDB to use a count of records during SELECT COUNT(*) query planning to speed up this
type of query. The default value is ON. For faster queries overall, disable this feature by setting the
value of ndb_use_exact_count to OFF.

• ndb_use_transactions

You can disable NDB transaction support by setting this variable's values to OFF (not recommen-
ded). The default is ON.

• net_buffer_length

Each client thread is associated with a connection buffer and result buffer. Both begin with a size
given by net_buffer_length but are dynamically enlarged up to max_allowed_packet
bytes as needed. The result buffer shrinks to net_buffer_length after each SQL statement.

This variable should not normally be changed, but if you have very little memory, you can set it to
the expected length of statements sent by clients. If statements exceed this length, the connection
buffer is automatically enlarged.

• net_read_timeout

The number of seconds to wait for more data from a connection before aborting the read. This
timeout applies only to TCP/IP connections, not to connections made via Unix socket files, named
pipes, or shared memory. When the server is reading from the client, net_read_timeout is the
timeout value controlling when to abort. When the server is writing to the client,
net_write_timeout is the timeout value controlling when to abort. See also
slave_net_timeout.

• net_retry_count

If a read on a communication port is interrupted, retry this many times before giving up. This value
should be set quite high on FreeBSD because internal interrupts are sent to all threads.

• net_write_timeout

The number of seconds to wait for a block to be written to a connection before aborting the write.
This timeout applies only to TCP/IP connections, not to connections made via Unix socket files,
named pipes, or shared memory. See also net_read_timeout.

• new

This variable was used in MySQL 4.0 to turn on some 4.1 behaviors, and is retained for backward
compatibility. In MySQL 5.0, its value is always OFF.

• old_passwords

Database Administration

260

Whether the server should use pre-4.1-style passwords for MySQL user accounts. See Section A.2.3,
“Client does not support authentication protocol”.

• one_shot

This is not a variable, but it can be used when setting some variables. It is described in Sec-
tion 13.5.3, “SET Syntax”.

• open_files_limit

The number of files that the operating system allows mysqld to open. This is the real value allowed
by the system and might be different from the value you gave using the --open-files-limit
option to mysqld or mysqld_safe. The value is 0 on systems where MySQL can't change the
number of open files.

• optimizer_prune_level

Controls the heuristics applied during query optimization to prune less-promising partial plans from
the optimizer search space. A value of 0 disables heuristics so that the optimizer performs an ex-
haustive search. A value of 1 causes the optimizer to prune plans based on the number of rows re-
trieved by intermediate plans. This variable was added in MySQL 5.0.1.

• optimizer_search_depth

The maximum depth of search performed by the query optimizer. Values larger than the number of
relations in a query result in better query plans, but take longer to generate an execution plan for a
query. Values smaller than the number of relations in a query return an execution plan quicker, but
the resulting plan may be far from being optimal. If set to 0, the system automatically picks a reason-
able value. If set to the maximum number of tables used in a query plus 2, the optimizer switches to
the algorithm used in MySQL 5.0.0 (and previous versions) for performing searches. This variable
was added in MySQL 5.0.1.

• pid_file

The pathname of the process ID (PID) file. This variable can be set with the --pid-file option.

• port

The number of the port on which the server listens for TCP/IP connections. This variable can be set
with the --port option.

• preload_buffer_size

The size of the buffer that is allocated when preloading indexes.

• prepared_stmt_count

The current number of prepared statements. (The maximum number of statements is given by the
max_prepared_stmt_count system variable.) This variable was added in MySQL 5.0.21.

• protocol_version

The version of the client/server protocol used by the MySQL server.

• query_alloc_block_size

The allocation size of memory blocks that are allocated for objects created during statement parsing
and execution. If you have problems with memory fragmentation, it might help to increase this a bit.

Database Administration

261

• query_cache_limit

Don't cache results that are larger than this number of bytes. The default value is 1MB.

• query_cache_min_res_unit

The minimum size (in bytes) for blocks allocated by the query cache. The default value is 4096
(4KB). Tuning information for this variable is given in Section 5.14.3, “Query Cache
Configuration”.

• query_cache_size

The amount of memory allocated for caching query results. The default value is 0, which disables
the query cache. The allowable values are multiples of 1024; other values are rounded down to the
nearest multiple. Note that query_cache_size bytes of memory are allocated even if
query_cache_type is set to 0. See Section 5.14.3, “Query Cache Configuration”, for more in-
formation.

• query_cache_type

Set the query cache type. Setting the GLOBAL value sets the type for all clients that connect there-
after. Individual clients can set the SESSION value to affect their own use of the query cache. Pos-
sible values are shown in the following table:

Option Description

0 or OFF Don't cache results in or retrieve results from the query cache. Note that this does not
deallocate the query cache buffer. To do that, you should set query_cache_size
to 0.

1 or ON Cache all query results except for those that begin with SELECT SQL_NO_CACHE.

2 or DEMAND Cache results only for queries that begin with SELECT SQL_CACHE.

This variable defaults to ON.

• query_cache_wlock_invalidate

Normally, when one client acquires a WRITE lock on a MyISAM table, other clients are not blocked
from issuing statements that read from the table if the query results are present in the query cache.
Setting this variable to 1 causes acquisition of a WRITE lock for a table to invalidate any queries in
the query cache that refer to the table. This forces other clients that attempt to access the table to wait
while the lock is in effect.

• query_prealloc_size

The size of the persistent buffer used for statement parsing and execution. This buffer is not freed
between statements. If you are running complex queries, a larger query_prealloc_size value
might be helpful in improving performance, because it can reduce the need for the server to perform
memory allocation during query execution operations.

• range_alloc_block_size

The size of blocks that are allocated when doing range optimization.

• read_buffer_size

Each thread that does a sequential scan allocates a buffer of this size (in bytes) for each table it
scans. If you do many sequential scans, you might want to increase this value, which defaults to

Database Administration

262

131072.

• read_only

When the variable is set to ON for a replication slave server, it causes the slave to allow no updates
except from slave threads or from users that have the SUPER privilege. This can be useful to ensure
that a slave server accepts updates only from its master server and not from clients. As of MySQL
5.0.16, this variable does not apply to TEMPORARY tables.

• read_rnd_buffer_size

When reading rows in sorted order following a key-sorting operation, the rows are read through this
buffer to avoid disk seeks. Setting the variable to a large value can improve ORDER BY perform-
ance by a lot. However, this is a buffer allocated for each client, so you should not set the global
variable to a large value. Instead, change the session variable only from within those clients that
need to run large queries.

• relay_log_purge

Disables or enables automatic purging of relay log files as soon as they are not needed any more.
The default value is 1 (ON).

• rpl_recovery_rank

This variable is unused.

• secure_auth

If the MySQL server has been started with the --secure-auth option, it blocks connections from
all accounts that have passwords stored in the old (pre-4.1) format. In that case, the value of this
variable is ON, otherwise it is OFF.

You should enable this option if you want to prevent all use of passwords employing the old format
(and hence insecure communication over the network).

Server startup fails with an error if this option is enabled and the privilege tables are in pre-4.1
format. See Section A.2.3, “Client does not support authentication protocol”.

• server_id

The server ID. This value is set by the --server-id option. It is used for replication to enable
master and slave servers to identify themselves uniquely.

• shared_memory

(Windows only.) Whether the server allows shared-memory connections.

• shared_memory_base_name

(Windows only.) The name of shared memory to use for shared-memory connections. This is useful
when running multiple MySQL instances on a single physical machine. The default name is MYSQL.
The name is case sensitive.

• skip_external_locking

This is OFF if mysqld uses external locking, ON if external locking is disabled.

• skip_networking

Database Administration

263

This is ON if the server allows only local (non-TCP/IP) connections. On Unix, local connections use
a Unix socket file. On Windows, local connections use a named pipe or shared memory. On Net-
Ware, only TCP/IP connections are supported, so do not set this variable to ON. This variable can be
set to ON with the --skip-networking option.

• skip_show_database

This prevents people from using the SHOW DATABASES statement if they do not have the SHOW
DATABASES privilege. This can improve security if you have concerns about users being able to see
databases belonging to other users. Its effect depends on the SHOW DATABASES privilege: If the
variable value is ON, the SHOW DATABASES statement is allowed only to users who have the SHOW
DATABASES privilege, and the statement displays all database names. If the value is OFF, SHOW
DATABASES is allowed to all users, but displays the names of only those databases for which the
user has the SHOW DATABASES or other privilege.

• slave_compressed_protocol

Whether to use compression of the slave/master protocol if both the slave and the master support it.

• slave_load_tmpdir

The name of the directory where the slave creates temporary files for replicating LOAD DATA IN-
FILE statements.

• slave_net_timeout

The number of seconds to wait for more data from a master/slave connection before aborting the
read. This timeout applies only to TCP/IP connections, not to connections made via Unix socket
files, named pipes, or shared memory.

• slave_skip_errors

The replication errors that the slave should skip (ignore).

• slave_transaction_retries

If a replication slave SQL thread fails to execute a transaction because of an InnoDB deadlock or
exceeded InnoDB's innodb_lock_wait_timeout or NDBCluster's TransactionDead-
lockDetectionTimeout or TransactionInactiveTimeout, it automatically retries
slave_transaction_retries times before stopping with an error. The default priot to
MySQL 4.0.3 is 0. You must explicitly set the value greater than 0 to enable the “retry” behavior,
which is probably a good idea. In MySQL 5.0.3 or newer, the default is 10.

• slow_launch_time

If creating a thread takes longer than this many seconds, the server increments the
Slow_launch_threads status variable.

• socket

On Unix platforms, this variable is the name of the socket file that is used for local client connec-
tions. The default is /tmp/mysql.sock. (For some distribution formats, the directory might be
different, such as /var/lib/mysql for RPMs.)

On Windows, this variable is the name of the named pipe that is used for local client connections.
The default value is MySQL (not case sensitive).

• sort_buffer_size

Database Administration

264

Each thread that needs to do a sort allocates a buffer of this size. Increase this value for faster OR-
DER BY or GROUP BY operations. See Section A.4.4, “Where MySQL Stores Temporary Files”.

• sql_mode

The current server SQL mode, which can be set dynamically. See Section 5.2.6, “SQL Modes”.

• sql_slave_skip_counter

The number of events from the master that a slave server should skip. See Section 13.6.2.6, “SET
GLOBAL SQL_SLAVE_SKIP_COUNTER Syntax”.

• ssl_ca

The path to a file with a list of trusted SSL CAs. This variable was added in MySQL 5.0.23.

• ssl_capath

The path to a directory that contains trusted SSL CA certificates in PEM format. This variable was
added in MySQL 5.0.23.

• ssl_cert

The name of the SSL certificate file to use for establishing a secure connection. This variable was
added in MySQL 5.0.23.

• ssl_cipher

A list of allowable ciphers to use for SSL encryption. The cipher list has the same format as the
openssl ciphers command. This variable was added in MySQL 5.0.23.

• ssl_key

The name of the SSL key file to use for establishing a secure connection. This variable was added in
MySQL 5.0.23.

• storage_engine

The default storage engine (table type). To set the storage engine at server startup, use the -
-default-storage-engine option. See Section 5.2.2, “Command Options”.

• sync_binlog

If the value of this variable is positive, the MySQL server synchronizes its binary log to disk (using
fdatasync()) after every sync_binlog writes to the binary log. Note that there is one write to
the binary log per statement if autocommit is enabled, and one write per transaction otherwise. The
default value is 0, which does no synchronizing to disk. A value of 1 is the safest choice, because in
the event of a crash you lose at most one statement or transaction from the binary log. However, it is
also the slowest choice (unless the disk has a battery-backed cache, which makes synchronization
very fast).

If the value of sync_binlog is 0 (the default), no extra flushing is done. The server relies on the
operating system to flush the file contents occasionaly as for any other file.

• sync_frm

If this variable is set to 1, when any non-temporary table is created its .frm file is synchronized to
disk (using fdatasync()). This is slower but safer in case of a crash. The default is 1.

Database Administration

265

• system_time_zone

The server system time zone. When the server begins executing, it inherits a time zone setting from
the machine defaults, possibly modified by the environment of the account used for running the serv-
er or the startup script. The value is used to set system_time_zone. Typically the time zone is
specified by the TZ environment variable. It also can be specified using the --timezone option of
the mysqld_safe script.

The system_time_zone variable differs from time_zone. Although they might have the same
value, the latter variable is used to initialize the time zone for each client that connects. See Sec-
tion 5.11.8, “MySQL Server Time Zone Support”.

• table_cache

The number of open tables for all threads. Increasing this value increases the number of file
descriptors that mysqld requires. You can check whether you need to increase the table cache by
checking the Opened_tables status variable. See Section 5.2.5, “Status Variables”. If the value
of Opened_tables is large and you don't do FLUSH TABLES often (which just forces all tables
to be closed and reopened), then you should increase the value of the table_cache variable. For
more information about the table cache, see Section 7.4.8, “How MySQL Opens and Closes Tables”.

• table_lock_wait_timeout

Specifies a wait timeout for table-level locks, in seconds. The default timeout is 50 seconds. The
timeout is active only if the connection has open cursors. This variable can also be set globally at
runtime (you need the SUPER privilege to do this). It's available as of MySQL 5.0.10.

• table_type

This variable is a synonym for storage_engine. In MySQL 5.0, storage_engine is the pre-
ferred name.

• thread_cache_size

How many threads the server should cache for reuse. When a client disconnects, the client's threads
are put in the cache if there are fewer than thread_cache_size threads there. Requests for
threads are satisfied by reusing threads taken from the cache if possible, and only when the cache is
empty is a new thread created. This variable can be increased to improve performance if you have a
lot of new connections. (Normally, this doesn't provide a notable performance improvement if you
have a good thread implementation.) By examining the difference between the Connections and
Threads_created status variables, you can see how efficient the thread cache is. For details, see
Section 5.2.5, “Status Variables”.

• thread_concurrency

On Solaris, mysqld calls thr_setconcurrency() with this value. This function enables ap-
plications to give the threads system a hint about the desired number of threads that should be run at
the same time.

• thread_stack

The stack size for each thread. Many of the limits detected by the crash-me test are dependent on
this value. The default is large enough for normal operation. See Section 7.1.4, “The MySQL Bench-
mark Suite”. The default is 192KB.

• time_format

This variable is not implemented.

Database Administration

266

• time_zone

The current time zone. This variable is used to initialize the time zone for each client that connects.
By default, the initial value of this is 'SYSTEM' (which means, “use the value of sys-
tem_time_zone”). The value can be specified explicitly at server startup with the -
-default-time-zone option. See Section 5.11.8, “MySQL Server Time Zone Support”.

• timed_mutexes

This variable controls whether InnoDB mutexes are timed. If this variable is set to 0 or OFF (the de-
fault), mutex timing is disabled. If the variable is set to 1 or ON, mutex timing is enabled. With tim-
ing enabled, the os_wait_times value in the output from SHOW ENGINE INNODB MUTEX in-
dicates the amount of time (in ms) spent in operating system waits. Otherwise, the value is 0. This
variable was added in MySQL 5.0.3.

• tmp_table_size

The maximum size of in-memory temporary tables. (The actual limit is determined as the smaller of
max_heap_table_size and tmp_table_size.) If an in-memory temporary table exceeds
the limit, MySQL automatically converts it to an on-disk MyISAM table. Increase the value of
tmp_table_size (and max_heap_table_size if necessary) if you do many advanced
GROUP BY queries and you have lots of memory.

• tmpdir

The directory used for temporary files and temporary tables. This variable can be set to a list of sev-
eral paths that are used in round-robin fashion. Paths should be separated by colon characters (‘:’)
on Unix and semicolon characters (‘;’) on Windows, NetWare, and OS/2.

The multiple-directory feature can be used to spread the load between several physical disks. If the
MySQL server is acting as a replication slave, you should not set tmpdir to point to a directory on
a memory-based filesystem or to a directory that is cleared when the server host restarts. A replica-
tion slave needs some of its temporary files to survive a machine restart so that it can replicate tem-
porary tables or LOAD DATA INFILE operations. If files in the temporary file directory are lost
when the server restarts, replication fails. However, if you are using MySQL 4.0.0 or later, you can
set the slave's temporary directory using the slave_load_tmpdir variable. In that case, the
slave won't use the general tmpdir value and you can set tmpdir to a non-permanent location.

• transaction_alloc_block_size

The amount in bytes by which to increase a per-transaction memory pool which needs memory. See
the description of transaction_prealloc_size.

• transaction_prealloc_size

There is a per-transaction memory pool from which various transaction-related allocations take
memory. The initial size of the pool in bytes is transaction_prealloc_size. For every al-
location that cannot be satisfied from the pool because it has insufficient memory available, the pool
is increased by transaction_alloc_block_size bytes. When the transaction ends, the pool
is truncated to transaction_prealloc_size bytes.

By making transaction_prealloc_size sufficiently large to contain all statements within a
single transaction, you can avoid many malloc() calls.

• tx_isolation

The default transaction isolation level. Defaults to REPEATABLE-READ.

This variable is set by the SET TRANSACTION ISOLATION LEVEL statement. See Sec-

Database Administration

267

tion 13.4.6, “SET TRANSACTION Syntax”. If you set tx_isolation directly to an isolation
level name that contains a space, the name should be enclosed within quotes, with the space replaced
by a dash. For example:

SET tx_isolation = 'READ-COMMITTED';

• updatable_views_with_limit

This variable controls whether updates to a view can be made when the view does not contain all
columns of the primary key defined in the underlying table, if the update statement contains a LIM-
IT clause. (Such updates often are generated by GUI tools.) An update is an UPDATE or DELETE
statement. Primary key here means a PRIMARY KEY, or a UNIQUE index in which no column can
contain NULL.

The variable can have two values:

• 1 or YES: Issue a warning only (not an error message). This is the default value.

• 0 or NO: Prohibit the update.

This variable was added in MySQL 5.0.2.

• version

The version number for the server.

• version_bdb

The BDB storage engine version.

• version_comment

The configure script has a --with-comment option that allows a comment to be specified
when building MySQL. This variable contains the value of that comment.

• version_compile_machine

The type of machine or architecture on which MySQL was built.

• version_compile_os

The type of operating system on which MySQL was built.

• wait_timeout

The number of seconds the server waits for activity on a non-interactive connection before closing it.
This timeout applies only to TCP/IP connections, not to connections made via Unix socket files,
named pipes, or shared memory.

On thread startup, the session wait_timeout value is initialized from the global
wait_timeout value or from the global interactive_timeout value, depending on the
type of client (as defined by the CLIENT_INTERACTIVE connect option to
mysql_real_connect()). See also interactive_timeout.

5.2.4. Using System Variables
The mysql server maintains many system variables that indicate how it is configured. Section 5.2.3,

Database Administration

268

“System Variables”, describes the meaning of these variables. Each system variable has a default value.
System variables can be set at server startup using options on the command line or in an option file.
Most of them can be changed dynamically while the server is running by means of the SET statement,
which enables you to modify operation of the server without having to stop and restart it. You can refer
to system variable values in expressions.

The server maintains two kinds of system variables. Global variables affect the overall operation of the
server. Session variables affect its operation for individual client connections. A given system variable
can have both a global and a session value. Global and session system variables are related as follows:

• When the server starts, it initializes all global variables to their default values. These defaults can be
changed by options specified on the command line or in an option file. (See Section 4.3, “Specifying
Program Options”.)

• The server also maintains a set of session variables for each client that connects. The client's session
variables are initialized at connect time using the current values of the corresponding global vari-
ables. For example, the client's SQL mode is controlled by the session sql_mode value, which is
initialized when the client connects to the value of the global sql_mode value.

System variable values can be set globally at server startup by using options on the command line or in
an option file. When you use a startup option to set a variable that takes a numeric value, the value can
be given with a suffix of K, M, or G (either uppercase or lowercase) to indicate a multiplier of 1024,
10242 or 10243; that is, units of kilobytes, megabytes, or gigabytes, respectively. Thus, the following
command starts the server with a query cache size of 16 megabytes and a maximum packet size of one
gigabyte:

mysqld --query_cache_size=16M --max_allowed_packet=1G

Within an option file, those variables are set like this:

[mysqld]
query_cache_size=16M
max_allowed_packet=1G

The lettercase of suffix letters does not matter; 16M and 16m are equivalent, as are 1G and 1g.

If you want to restrict the maximum value to which a system variable can be set at runtime with the SET
statement, you can specify this maximum by using an option of the form
--maximum-var_name=value at server startup. For example, to prevent the value of
query_cache_size from being increased to more than 32MB at runtime, use the option -
-maximum-query_cache_size=32M.

Many system variables are dynamic and can be changed while the server runs by using the SET state-
ment. For a list, see Section 5.2.4.2, “Dynamic System Variables”. To change a system variable with
SET, refer to it as var_name, optionally preceded by a modifier:

• To indicate explicitly that a variable is a global variable, precede its name by GLOBAL or
@@global.. The SUPER privilege is required to set global variables.

• To indicate explicitly that a variable is a session variable, precede its name by SESSION,
@@session., or @@. Setting a session variable requires no special privilege, but a client can
change only its own session variables, not those of any other client.

• LOCAL and @@local. are synonyms for SESSION and @@session..

• If no modifier is present, SET changes the session variable.

Database Administration

269

A SET statement can contain multiple variable assignments, separated by commas. If you set several
system variables, the most recent GLOBAL or SESSION modifier in the statement is used for following
variables that have no modifier specified.

Examples:

SET sort_buffer_size=10000;
SET @@local.sort_buffer_size=10000;
SET GLOBAL sort_buffer_size=1000000, SESSION sort_buffer_size=1000000;
SET @@sort_buffer_size=1000000;
SET @@global.sort_buffer_size=1000000, @@local.sort_buffer_size=1000000;

When you assign a value to a system variable with SET, you cannot use suffix letters in the value (as
can be done with startup options). However, the value can take the form of an expression:

SET sort_buffer_size = 10 * 1024 * 1024;

The @@var_name syntax for system variables is supported for compatibility with some other database
systems.

If you change a session system variable, the value remains in effect until your session ends or until you
change the variable to a different value. The change is not visible to other clients.

If you change a global system variable, the value is remembered and used for new connections until the
server restarts. (To make a global system variable setting permanent, you should set it in an option file.)
The change is visible to any client that accesses that global variable. However, the change affects the
corresponding session variable only for clients that connect after the change. The global variable change
does not affect the session variable for any client that is currently connected (not even that of the client
that issues the SET GLOBAL statement).

To prevent incorrect usage, MySQL produces an error if you use SET GLOBAL with a variable that can
only be used with SET SESSION or if you do not specify GLOBAL (or @@global.) when setting a
global variable.

To set a SESSION variable to the GLOBAL value or a GLOBAL value to the compiled-in MySQL de-
fault value, use the DEFAULT keyword. For example, the following two statements are identical in set-
ting the session value of max_join_size to the global value:

SET max_join_size=DEFAULT;
SET @@session.max_join_size=@@global.max_join_size;

Not all system variables can be set to DEFAULT. In such cases, use of DEFAULT results in an error.

You can refer to the values of specific global or sesson system variables in expressions by using one of
the @@-modifiers. For example, you can retrieve values in a SELECT statement like this:

SELECT @@global.sql_mode, @@session.sql_mode, @@sql_mode;

When you refer to a system variable in an expression as @@var_name (that is, when you do not specify
@@global. or @@session.), MySQL returns the session value if it exists and the global value oth-
erwise. (This differs from SET @@var_name = value, which always refers to the session value.)

Note: Some system variables can be enabled with the SET statement by setting them to ON or 1, or dis-
abled by setting them to OFF or 0. However, to set such a variable on the command line or in an option
file, you must set it to 1 or 0; setting it to ON or OFF will not work. For example, on the command line,
--delay_key_write=1 works but --delay_key_write=ON does not.

To display system variable names and values, use the SHOW VARIABLES statement:

Database Administration

270

mysql> SHOW VARIABLES;
+--------+--+
| Variable_name | Value |
+--------+--+
auto_increment_increment	1
auto_increment_offset	1
automatic_sp_privileges	ON
back_log	50
basedir	/
bdb_cache_size	8388600
bdb_home	/var/lib/mysql/
bdb_log_buffer_size	32768
bdb_logdir	
bdb_max_lock	10000
bdb_shared_data	OFF
bdb_tmpdir	/tmp/
binlog_cache_size	32768
bulk_insert_buffer_size	8388608
character_set_client	latin1
character_set_connection	latin1
character_set_database	latin1
character_set_results	latin1
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/share/mysql/charsets/
collation_connection	latin1_swedish_ci
collation_database	latin1_swedish_ci
collation_server	latin1_swedish_ci
...	
innodb_additional_mem_pool_size	1048576
innodb_autoextend_increment	8
innodb_buffer_pool_awe_mem_mb	0
innodb_buffer_pool_size	8388608
innodb_checksums	ON
innodb_commit_concurrency	0
innodb_concurrency_tickets	500
innodb_data_file_path	ibdata1:10M:autoextend
innodb_data_home_dir	
...	
version	5.0.19-Max
version_comment	MySQL Community Edition - Max (GPL)
version_compile_machine	i686
version_compile_os	pc-linux-gnu
wait_timeout	28800
+--------+--+

With a LIKE clause, the statement displays only those variables that match the pattern. To obtain a spe-
cific variable name, use a LIKE clause as shown:

SHOW VARIABLES LIKE 'max_join_size';
SHOW SESSION VARIABLES LIKE 'max_join_size';

To get a list of variables whose name match a pattern, use the ‘%’ wildcard character in a LIKE clause:

SHOW VARIABLES LIKE '%size%';
SHOW GLOBAL VARIABLES LIKE '%size%';

Wildcard characters can be used in any position within the pattern to be matched. Strictly speaking, be-
cause ‘_’ is a wildcard that matches any single character, you should escape it as ‘_’ to match it liter-
ally. In practice, this is rarely necessary.

For SHOW VARIABLES, if you specify neither GLOBAL nor SESSION, MySQL returns SESSION
values.

The reason for requiring the GLOBAL keyword when setting GLOBAL-only variables but not when re-
trieving them is to prevent problems in the future. If we were to remove a SESSION variable that has
the same name as a GLOBAL variable, a client with the SUPER privilege might accidentally change the
GLOBAL variable rather than just the SESSION variable for its own connection. If we add a SESSION
variable with the same name as a GLOBAL variable, a client that intends to change the GLOBAL variable
might find only its own SESSION variable changed.

Database Administration

271

5.2.4.1. Structured System Variables

A structured variable differs from a regular system variable in two respects:

• Its value is a structure with components that specify server parameters considered to be closely re-
lated.

• There might be several instances of a given type of structured variable. Each one has a different
name and refers to a different resource maintained by the server.

MySQL 5.0 supports one structured variable type, which specifies parameters governing the operation
of key caches. A key cache structured variable has these components:

• key_buffer_size

• key_cache_block_size

• key_cache_division_limit

• key_cache_age_threshold

This section describes the syntax for referring to structured variables. Key cache variables are used for
syntax examples, but specific details about how key caches operate are found elsewhere, in Sec-
tion 7.4.6, “The MyISAM Key Cache”.

To refer to a component of a structured variable instance, you can use a compound name in in-
stance_name.component_name format. Examples:

hot_cache.key_buffer_size
hot_cache.key_cache_block_size
cold_cache.key_cache_block_size

For each structured system variable, an instance with the name of default is always predefined. If
you refer to a component of a structured variable without any instance name, the default instance is
used. Thus, default.key_buffer_size and key_buffer_size both refer to the same system
variable.

Structured variable instances and components follow these naming rules:

• For a given type of structured variable, each instance must have a name that is unique within vari-
ables of that type. However, instance names need not be unique across structured variable types. For
example, each structured variable has an instance named default, so default is not unique
across variable types.

• The names of the components of each structured variable type must be unique across all system vari-
able names. If this were not true (that is, if two different types of structured variables could share
component member names), it would not be clear which default structured variable to use for refer-
ences to member names that are not qualified by an instance name.

• If a structured variable instance name is not legal as an unquoted identifier, refer to it as a quoted
identifier using backticks. For example, hot-cache is not legal, but `hot-cache` is.

• global, session, and local are not legal instance names. This avoids a conflict with notation
such as @@global.var_name for referring to non-structured system variables.

Database Administration

272

Currently, the first two rules have no possibility of being violated because the only structured variable
type is the one for key caches. These rules will assume greater significance if some other type of struc-
tured variable is created in the future.

With one exception, you can refer to structured variable components using compound names in any con-
text where simple variable names can occur. For example, you can assign a value to a structured variable
using a command-line option:

shell> mysqld --hot_cache.key_buffer_size=64K

In an option file, use this syntax:

[mysqld]
hot_cache.key_buffer_size=64K

If you start the server with this option, it creates a key cache named hot_cache with a size of 64KB in
addition to the default key cache that has a default size of 8MB.

Suppose that you start the server as follows:

shell> mysqld --key_buffer_size=256K \
--extra_cache.key_buffer_size=128K \
--extra_cache.key_cache_block_size=2048

In this case, the server sets the size of the default key cache to 256KB. (You could also have written -
-default.key_buffer_size=256K.) In addition, the server creates a second key cache named
extra_cache that has a size of 128KB, with the size of block buffers for caching table index blocks
set to 2048 bytes.

The following example starts the server with three different key caches having sizes in a 3:1:1 ratio:

shell> mysqld --key_buffer_size=6M \
--hot_cache.key_buffer_size=2M \
--cold_cache.key_buffer_size=2M

Structured variable values may be set and retrieved at runtime as well. For example, to set a key cache
named hot_cache to a size of 10MB, use either of these statements:

mysql> SET GLOBAL hot_cache.key_buffer_size = 10*1024*1024;
mysql> SET @@global.hot_cache.key_buffer_size = 10*1024*1024;

To retrieve the cache size, do this:

mysql> SELECT @@global.hot_cache.key_buffer_size;

However, the following statement does not work. The variable is not interpreted as a compound name,
but as a simple string for a LIKE pattern-matching operation:

mysql> SHOW GLOBAL VARIABLES LIKE 'hot_cache.key_buffer_size';

This is the exception to being able to use structured variable names anywhere a simple variable name
may occur.

5.2.4.2. Dynamic System Variables

Many server system variables are dynamic and can be set at runtime using SET GLOBAL or SET
SESSION. You can also obtain their values using SELECT. See Section 5.2.4, “Using System Vari-

Database Administration

273

ables”.

The following table shows the full list of all dynamic system variables. The last column indicates for
each variable whether GLOBAL or SESSION (or both) apply. The table also lists session options that
can be set with the SET statement. Section 13.5.3, “SET Syntax”, discusses these options.

Variables that have a type of “string” take a string value. Variables that have a type of “numeric” take a
numeric value. Variables that have a type of “boolean” can be set to 0, 1, ON or OFF. (If you set them on
the command line or in an option file, use the numeric values.) Variables that are marked as
“enumeration” normally should be set to one of the available values for the variable, but can also be set
to the number that corresponds to the desired enumeration value. For enumerated system variables, the
first enumeration value corresponds to 0. This differs from ENUM columns, for which the first enumera-
tion value corresponds to 1.

Variable Name Value Type Type

autocommit boolean SESSION

big_tables boolean SESSION

binlog_cache_size numeric GLOBAL

bulk_insert_buffer_size numeric GLOBAL | SESSION

character_set_client string GLOBAL | SESSION

character_set_connection string GLOBAL | SESSION

character_set_filesystem string GLOBAL | SESSION

character_set_results string GLOBAL | SESSION

character_set_server string GLOBAL | SESSION

collation_connection string GLOBAL | SESSION

collation_server string GLOBAL | SESSION

completion_type numeric GLOBAL | SESSION

concurrent_insert numeric GLOBAL

connect_timeout numeric GLOBAL

default_week_format numeric GLOBAL | SESSION

delay_key_write OFF | ON | ALL GLOBAL

delayed_insert_limit numeric GLOBAL

delayed_insert_timeout numeric GLOBAL

delayed_queue_size numeric GLOBAL

div_precision_increment numeric GLOBAL | SESSION

engine_condition_pushdown boolean GLOBAL | SESSION

error_count numeric SESSION

expire_logs_days numeric GLOBAL

flush boolean GLOBAL

flush_time numeric GLOBAL

foreign_key_checks boolean SESSION

ft_boolean_syntax numeric GLOBAL

group_concat_max_len numeric GLOBAL | SESSION

identity numeric SESSION

innodb_autoextend_increment numeric GLOBAL

innodb_commit_concurrency numeric GLOBAL

Database Administration

274

innodb_concurrency_tickets numeric GLOBAL

innodb_max_dirty_pages_pct numeric GLOBAL

innodb_max_purge_lag numeric GLOBAL

innodb_support_xa boolean GLOBAL | SESSION

innodb_sync_spin_loops numeric GLOBAL

innodb_table_locks boolean GLOBAL | SESSION

innodb_thread_concurrency numeric GLOBAL

innodb_thread_sleep_delay numeric GLOBAL

insert_id numeric SESSION

interactive_timeout numeric GLOBAL | SESSION

join_buffer_size numeric GLOBAL | SESSION

key_buffer_size numeric GLOBAL

last_insert_id numeric SESSION

local_infile boolean GLOBAL

log_queries_not_using_indexes boolean GLOBAL

log_warnings numeric GLOBAL

long_query_time numeric GLOBAL | SESSION

low_priority_updates boolean GLOBAL | SESSION

max_allowed_packet numeric GLOBAL | SESSION

max_binlog_cache_size numeric GLOBAL

max_binlog_size numeric GLOBAL

max_connect_errors numeric GLOBAL

max_connections numeric GLOBAL

max_delayed_threads numeric GLOBAL

max_error_count numeric GLOBAL | SESSION

max_heap_table_size numeric GLOBAL | SESSION

max_insert_delayed_threads numeric GLOBAL

max_join_size numeric GLOBAL | SESSION

max_prepared_stmt_count numeric GLOBAL

max_relay_log_size numeric GLOBAL

max_seeks_for_key numeric GLOBAL | SESSION

max_sort_length numeric GLOBAL | SESSION

max_tmp_tables numeric GLOBAL | SESSION

max_user_connections numeric GLOBAL

max_write_lock_count numeric GLOBAL

multi_read_range numeric GLOBAL | SESSION

myisam_data_pointer_size numeric GLOBAL

log_bin_trust_function_creators boolean GLOBAL

myisam_max_sort_file_size numeric GLOBAL | SESSION

myisam_repair_threads numeric GLOBAL | SESSION

myisam_sort_buffer_size numeric GLOBAL | SESSION

myisam_stats_method enum GLOBAL | SESSION

Database Administration

275

net_buffer_length numeric GLOBAL | SESSION

net_read_timeout numeric GLOBAL | SESSION

net_retry_count numeric GLOBAL | SESSION

net_write_timeout numeric GLOBAL | SESSION

old_passwords numeric GLOBAL | SESSION

optimizer_prune_level numeric GLOBAL | SESSION

optimizer_search_depth numeric GLOBAL | SESSION

preload_buffer_size numeric GLOBAL | SESSION

query_alloc_block_size numeric GLOBAL | SESSION

query_cache_limit numeric GLOBAL

query_cache_size numeric GLOBAL

query_cache_type enumeration GLOBAL | SESSION

query_cache_wlock_invalidate boolean GLOBAL | SESSION

query_prealloc_size numeric GLOBAL | SESSION

range_alloc_block_size numeric GLOBAL | SESSION

read_buffer_size numeric GLOBAL | SESSION

read_only numeric GLOBAL

read_rnd_buffer_size numeric GLOBAL | SESSION

rpl_recovery_rank numeric GLOBAL

safe_show_database boolean GLOBAL

secure_auth boolean GLOBAL

server_id numeric GLOBAL

slave_compressed_protocol boolean GLOBAL

slave_net_timeout numeric GLOBAL

slave_transaction_retries numeric GLOBAL

slow_launch_time numeric GLOBAL

sort_buffer_size numeric GLOBAL | SESSION

sql_auto_is_null boolean SESSION

sql_big_selects boolean SESSION

sql_big_tables boolean SESSION

sql_buffer_result boolean SESSION

sql_log_bin boolean SESSION

sql_log_off boolean SESSION

sql_log_update boolean SESSION

sql_low_priority_updates boolean GLOBAL | SESSION

sql_max_join_size numeric GLOBAL | SESSION

sql_mode enumeration GLOBAL | SESSION

sql_notes boolean SESSION

sql_quote_show_create boolean SESSION

sql_safe_updates boolean SESSION

sql_select_limit numeric SESSION

sql_slave_skip_counter numeric GLOBAL

Database Administration

276

updatable_views_with_limit enumeration GLOBAL | SESSION

sql_warnings boolean SESSION

sync_binlog numeric GLOBAL

sync_frm boolean GLOBAL

storage_engine enumeration GLOBAL | SESSION

table_cache numeric GLOBAL

table_type enumeration GLOBAL | SESSION

thread_cache_size numeric GLOBAL

time_zone string GLOBAL | SESSION

timestamp boolean SESSION

tmp_table_size enumeration GLOBAL | SESSION

transaction_alloc_block_size numeric GLOBAL | SESSION

transaction_prealloc_size numeric GLOBAL | SESSION

tx_isolation enumeration GLOBAL | SESSION

unique_checks boolean SESSION

wait_timeout numeric GLOBAL | SESSION

warning_count numeric SESSION

5.2.5. Status Variables
The server maintains many status variables that provide information about its operation. You can view
these variables and their values by using the SHOW STATUS statement:

mysql> SHOW STATUS;
+-----------------------------------+------------+
| Variable_name | Value |
+-----------------------------------+------------+
Aborted_clients	0
Aborted_connects	0
Bytes_received	155372598
Bytes_sent	1176560426
...	
Connections	30023
Created_tmp_disk_tables	0
Created_tmp_files	3
Created_tmp_tables	2
...	
Threads_created	217
Threads_running	88
Uptime	1389872
+-----------------------------------+------------+

Many status variables are reset to 0 by the FLUSH STATUS statement.

The status variables have the following meanings. Variables with no version indicated were already
present prior to MySQL 5.0. For information regarding their implementation history, see MySQL 3.23,
4.0, 4.1 Reference Manual.

• Aborted_clients

The number of connections that were aborted because the client died without closing the connection
properly. See Section A.2.10, “Communication Errors and Aborted Connections”.

Database Administration

277

• Aborted_connects

The number of failed attempts to connect to the MySQL server. See Section A.2.10,
“Communication Errors and Aborted Connections”.

• Binlog_cache_disk_use

The number of transactions that used the temporary binary log cache but that exceeded the value of
binlog_cache_size and used a temporary file to store statements from the transaction.

• Binlog_cache_use

The number of transactions that used the temporary binary log cache.

• Bytes_received

The number of bytes received from all clients.

• Bytes_sent

The number of bytes sent to all clients.

• Com_xxx

The Com_xxx statement counter variables indicate the number of times each xxx statement has
been executed. There is one status variable for each type of statement. For example, Com_delete
and Com_insert count DELETE and INSERT statements, respectively. However, if a query result
is returned from query cache, the server increments the Qcache_hits status variable, not
Com_select. See Section 5.14.4, “Query Cache Status and Maintenance”.

All of the Com_stmt_xxx variables are increased even if a prepared statement argument is un-
known or an error occurred during execution. In other words, their values correspond to the number
of requests issued, not to the number of requests successfully completed.

The Com_stmt_xxx status variables were added in 5.0.8:

• Com_stmt_prepare

• Com_stmt_execute

• Com_stmt_fetch

• Com_stmt_send_long_data

• Com_stmt_reset

• Com_stmt_close

Those variables stand for prepared statement commands. Their names refer to the COM_xxx com-
mand set used in the network layer. In other words, their values increase whenever prepared state-
ment API calls such as mysql_stmt_prepare(), mysql_stmt_execute(), and so forth
are executed. However, Com_stmt_prepare, Com_stmt_execute and Com_stmt_close
also increase for PREPARE, EXECUTE, or DEALLOCATE PREPARE, respectively. Additionally,
the values of the older (available since MySQL 4.1.3) statement counter variables
Com_prepare_sql, Com_execute_sql, and Com_dealloc_sql increase for the PRE-
PARE, EXECUTE, and DEALLOCATE PREPARE statements. Com_stmt_fetch stands for the
total number of network round-trips issued when fetching from cursors.

• Compression

Database Administration

278

Whether the client connection uses compression in the client/server protocol. Added in MySQL
5.0.16.

• Connections

The number of connection attempts (successful or not) to the MySQL server.

• Created_tmp_disk_tables

The number of temporary tables on disk created automatically by the server while executing state-
ments.

• Created_tmp_files

How many temporary files mysqld has created.

• Created_tmp_tables

The number of in-memory temporary tables created automatically by the server while executing
statements. If Created_tmp_disk_tables is large, you may want to increase the
tmp_table_size value to cause temporary tables to be memory-based instead of disk-based.

• Delayed_errors

The number of rows written with INSERT DELAYED for which some error occurred (probably du-
plicate key).

• Delayed_insert_threads

The number of INSERT DELAYED handler threads in use.

• Delayed_writes

The number of INSERT DELAYED rows written.

• Flush_commands

The number of executed FLUSH statements.

• Handler_commit

The number of internal COMMIT statements.

• Handler_delete

The number of times that rows have been deleted from tables.

• Handler_discover

The MySQL server can ask the NDB Cluster storage engine if it knows about a table with a given
name. This is called discovery. Handler_discover indicates the number of times that tables
have been discovered via this mechanism.

• Handler_prepare

A counter for the prepare phase of two-phase commit operations. Added in MySQL 5.0.3.

• Handler_read_first

Database Administration

279

The number of times the first entry was read from an index. If this value is high, it suggests that the
server is doing a lot of full index scans; for example, SELECT col1 FROM foo, assuming that
col1 is indexed.

• Handler_read_key

The number of requests to read a row based on a key. If this value is high, it is a good indication that
your tables are properly indexed for your queries.

• Handler_read_next

The number of requests to read the next row in key order. This value is incremented if you are
querying an index column with a range constraint or if you are doing an index scan.

• Handler_read_prev

The number of requests to read the previous row in key order. This read method is mainly used to
optimize ORDER BY ... DESC.

• Handler_read_rnd

The number of requests to read a row based on a fixed position. This value is high if you are doing a
lot of queries that require sorting of the result. You probably have a lot of queries that require
MySQL to scan entire tables or you have joins that don't use keys properly.

• Handler_read_rnd_next

The number of requests to read the next row in the data file. This value is high if you are doing a lot
of table scans. Generally this suggests that your tables are not properly indexed or that your queries
are not written to take advantage of the indexes you have.

• Handler_rollback

The number of requests for a storage engine to perform a rollback operation.

• Handler_savepoint

The number of requests for a storage engine to place a savepoint. Added in MySQL 5.0.3.

• Handler_savepoint_rollback

The number of requests for a storage engine to roll back to a savepoint. Added in MySQL 5.0.3.

• Handler_update

The number of requests to update a row in a table.

• Handler_write

The number of requests to insert a row in a table.

• Innodb_buffer_pool_pages_data

The number of pages containing data (dirty or clean). Added in MySQL 5.0.2.

• Innodb_buffer_pool_pages_dirty

The number of pages currently dirty. Added in MySQL 5.0.2.

Database Administration

280

• Innodb_buffer_pool_pages_flushed

The number of buffer pool page-flush requests. Added in MySQL 5.0.2.

• Innodb_buffer_pool_pages_free

The number of free pages. Added in MySQL 5.0.2.

• Innodb_buffer_pool_pages_latched

The number of latched pages in InnoDB buffer pool. These are pages currently being read or writ-
ten or that cannot be flushed or removed for some other reason. Added in MySQL 5.0.2.

• Innodb_buffer_pool_pages_misc

The number of pages that are busy because they have been allocated for administrative overhead
such as row locks or the adaptive hash index. This value can also be calculated as In-
nodb_buffer_pool_pages_total – Innodb_buffer_pool_pages_free – In-
nodb_buffer_pool_pages_data. Added in MySQL 5.0.2.

• Innodb_buffer_pool_pages_total

The total size of buffer pool, in pages. Added in MySQL 5.0.2.

• Innodb_buffer_pool_read_ahead_rnd

The number of “random” read-aheads initiated by InnoDB. This happens when a query scans a
large portion of a table but in random order. Added in MySQL 5.0.2.

• Innodb_buffer_pool_read_ahead_seq

The number of sequential read-aheads initiated by InnoDB. This happens when InnoDB does a se-
quential full table scan. Added in MySQL 5.0.2.

• Innodb_buffer_pool_read_requests

The number of logical read requests InnoDB has done. Added in MySQL 5.0.2.

• Innodb_buffer_pool_reads

The number of logical reads that InnoDB could not satisfy from the buffer pool and had to do a
single-page read. Added in MySQL 5.0.2.

• Innodb_buffer_pool_wait_free

Normally, writes to the InnoDB buffer pool happen in the background. However, if it is necessary
to read or create a page and no clean pages are available, it is also necessary to wait for pages to be
flushed first. This counter counts instances of these waits. If the buffer pool size has been set prop-
erly, this value should be small. Added in MySQL 5.0.2.

• Innodb_buffer_pool_write_requests

The number writes done to the InnoDB buffer pool. Added in MySQL 5.0.2.

• Innodb_data_fsyncs

The number of fsync() operations so far. Added in MySQL 5.0.2.

• Innodb_data_pending_fsyncs

Database Administration

281

The current number of pending fsync() operations. Added in MySQL 5.0.2.

• Innodb_data_pending_reads

The current number of pending reads. Added in MySQL 5.0.2.

• Innodb_data_pending_writes

The current number of pending writes. Added in MySQL 5.0.2.

• Innodb_data_read

The amount of data read so far, in bytes. Added in MySQL 5.0.2.

• Innodb_data_reads

The total number of data reads. Added in MySQL 5.0.2.

• Innodb_data_writes

The total number of data writes. Added in MySQL 5.0.2.

• Innodb_data_written

The amount of data written so far, in bytes. Added in MySQL 5.0.2.

• Innodb_dblwr_writes, Innodb_dblwr_pages_written

The number of doublewrite operations that have been performed and the number of pages that have
been written for this purpose. Added in MySQL 5.0.2. See Section 14.2.14.1, “InnoDB Disk I/O”.

• Innodb_log_waits

The number of times that the log buffer was too small and a wait was required for it to be flushed be-
fore continuing. Added in MySQL 5.0.2.

• Innodb_log_write_requests

The number of log write requests. Added in MySQL 5.0.2.

• Innodb_log_writes

The number of physical writes to the log file. Added in MySQL 5.0.2.

• Innodb_os_log_fsyncs

The number of fsync() writes done to the log file. Added in MySQL 5.0.2.

• Innodb_os_log_pending_fsyncs

The number of pending log file fsync() operations. Added in MySQL 5.0.2.

• Innodb_os_log_pending_writes

The number of pending log file writes. Added in MySQL 5.0.2.

• Innodb_os_log_written

The number of bytes written to the log file. Added in MySQL 5.0.2.

Database Administration

282

• Innodb_page_size

The compiled-in InnoDB page size (default 16KB). Many values are counted in pages; the page
size allows them to be easily converted to bytes. Added in MySQL 5.0.2.

• Innodb_pages_created

The number of pages created. Added in MySQL 5.0.2.

• Innodb_pages_read

The number of pages read. Added in MySQL 5.0.2.

• Innodb_pages_written

The number of pages written. Added in MySQL 5.0.2.

• Innodb_row_lock_current_waits

The number of row locks currently being waited for. Added in MySQL 5.0.3.

• Innodb_row_lock_time

The total time spent in acquiring row locks, in milliseconds. Added in MySQL 5.0.3.

• Innodb_row_lock_time_avg

The average time to acquire a row lock, in milliseconds. Added in MySQL 5.0.3.

• Innodb_row_lock_time_max

The maximum time to acquire a row lock, in milliseconds. Added in MySQL 5.0.3.

• Innodb_row_lock_waits

The number of times a row lock had to be waited for. Added in MySQL 5.0.3.

• Innodb_rows_deleted

The number of rows deleted from InnoDB tables. Added in MySQL 5.0.2.

• Innodb_rows_inserted

The number of rows inserted into InnoDB tables. Added in MySQL 5.0.2.

• Innodb_rows_read

The number of rows read from InnoDB tables. Added in MySQL 5.0.2.

• Innodb_rows_updated

The number of rows updated in InnoDB tables. Added in MySQL 5.0.2.

• Key_blocks_not_flushed

The number of key blocks in the key cache that have changed but have not yet been flushed to disk.

• Key_blocks_unused

The number of unused blocks in the key cache. You can use this value to determine how much of the

Database Administration

283

key cache is in use; see the discussion of key_buffer_size in Section 5.2.3, “System
Variables”.

• Key_blocks_used

The number of used blocks in the key cache. This value is a high-water mark that indicates the max-
imum number of blocks that have ever been in use at one time.

• Key_read_requests

The number of requests to read a key block from the cache.

• Key_reads

The number of physical reads of a key block from disk. If Key_reads is large, then your
key_buffer_size value is probably too small. The cache miss rate can be calculated as
Key_reads/Key_read_requests.

• Key_write_requests

The number of requests to write a key block to the cache.

• Key_writes

The number of physical writes of a key block to disk.

• Last_query_cost

The total cost of the last compiled query as computed by the query optimizer. This is useful for com-
paring the cost of different query plans for the same query. The default value of 0 means that no
query has been compiled yet. This variable was added in MySQL 5.0.1, with a default value of -1. In
MySQL 5.0.7, the default was changed to 0; also in version 5.0.7, the scope of
Last_query_cost was changed to session rather than global.

Prior to MySQL 5.0.16, this variable was not updated for queries served from the query cache.

• Max_used_connections

The maximum number of connections that have been in use simultaneously since the server started.

• Ndb_cluster_node_id

If the server is acting as a MySQL Cluster node, then the value of this variable its node ID in the
cluster.

If the server is not part of of a MySQL Cluster, then the value of this variable is 0.

• Ndb_config_from_host

If the server is part of a MySQL Cluster, the value of this variable is the hostname or IP address of
the Cluster management server from which it gets its configuration data.

If the server is not part of of a MySQL Cluster, then the value of this variable is an empty string.

Prior to MySQL 5.0.23, this variable was named Ndb_connected_host.

• Ndb_config_from_port

If the server is part of a MySQL Cluster, the value of this variable is the number of the port through

Database Administration

284

which it is connected to the CLuster management server from which it gets its configuration data.

If the server is not part of of a MySQL Cluster, then the value of this variable is 0.

Prior to MySQL 5.0.23, this variable was named Ndb_connected_port.

• Ndb_number_of_storage_nodes

If the server is part of a MySQL Cluster, the value of this variable is the number of data nodes in the
cluster.

If the server is not part of of a MySQL Cluster, then the value of this variable is 0.

• Not_flushed_delayed_rows

The number of rows waiting to be written in INSERT DELAY queues.

• Open_files

The number of files that are open.

• Open_streams

The number of streams that are open (used mainly for logging).

• Open_tables

The number of tables that are open.

• Opened_tables

The number of tables that have been opened. If Opened_tables is big, your table_cache
value is probably too small.

• Qcache_free_blocks

The number of free memory blocks in the query cache.

• Qcache_free_memory

The amount of free memory for the query cache.

• Qcache_hits

The number of query cache hits.

• Qcache_inserts

The number of queries added to the query cache.

• Qcache_lowmem_prunes

The number of queries that were deleted from the query cache because of low memory.

• Qcache_not_cached

The number of non-cached queries (not cacheable, or not cached due to the query_cache_type
setting).

Database Administration

285

• Qcache_queries_in_cache

The number of queries registered in the query cache.

• Qcache_total_blocks

The total number of blocks in the query cache.

• Questions

The number of statements that clients have sent to the server.

• Rpl_status

The status of fail-safe replication (not yet implemented).

• Select_full_join

The number of joins that perform table scans because they do not use indexes. If this value is not 0,
you should carefully check the indexes of your tables.

• Select_full_range_join

The number of joins that used a range search on a reference table.

• Select_range

The number of joins that used ranges on the first table. This is normally not a critical issue even if
the value is quite large.

• Select_range_check

The number of joins without keys that check for key usage after each row. If this is not 0, you should
carefully check the indexes of your tables.

• Select_scan

The number of joins that did a full scan of the first table.

• Slave_open_temp_tables

The number of temporary tables that the slave SQL thread currently has open.

• Slave_running

This is ON if this server is a slave that is connected to a master.

• Slave_retried_transactions

The total number of times since startup that the replication slave SQL thread has retried transactions.
This variable was added in version 5.0.4.

• Slow_launch_threads

The number of threads that have taken more than slow_launch_time seconds to create.

• Slow_queries

The number of queries that have taken more than long_query_time seconds. See Sec-
tion 5.12.4, “The Slow Query Log”.

Database Administration

286

• Sort_merge_passes

The number of merge passes that the sort algorithm has had to do. If this value is large, you should
consider increasing the value of the sort_buffer_size system variable.

• Sort_range

The number of sorts that were done using ranges.

• Sort_rows

The number of sorted rows.

• Sort_scan

The number of sorts that were done by scanning the table.

• Ssl_xxx

Variables used for SSL connections.

• Table_locks_immediate

The number of times that a table lock was acquired immediately.

• Table_locks_waited

The number of times that a table lock could not be acquired immediately and a wait was needed. If
this is high and you have performance problems, you should first optimize your queries, and then
either split your table or tables or use replication.

• Tc_log_max_pages_used

For the memory-mapped implementation of the log that is used by mysqld when it acts as the
transaction coordinator for recovery of internal XA transactions, this variable indicates the largest
number of pages used for the log since the server started. If the product of
Tc_log_max_pages_used and Tc_log_page_size is always significantly less than the log
size, the size is larger than necessary and can be reduced. (The size is set by the --log-tc-size
option. Currently, this variable is unused: It is unneeded for binary log-based recovery, and the
memory-mapped recovery log method is not used unless the number of storage engines capable of
two-phase commit is greater than one. (InnoDB is the only applicable engine.) Added in MySQL
5.0.3.

• Tc_log_page_size

The page size used for the memory-mapped implementation of the XA recovery log. The default
value is determined using getpagesize(). Currently, this variable is unused for the same reasons
as described for Tc_log_max_pages_used. Added in MySQL 5.0.3.

• Tc_log_page_waits

For the memory-mapped implementation of the recovery log, this variable increments each time the
server was not able to commit a transaction and had to wait for a free page in the log. If this value is
large, you might want to increase the log size (with the --log-tc-size option). For binary log-
based recovery, this variable increments each time the binary log cannot be closed because there are
two-phase commits in progress. (The close operation waits until all such transactions are finished.)
Added in MySQL 5.0.3.

• Threads_cached

Database Administration

287

The number of threads in the thread cache.

• Threads_connected

The number of currently open connections.

• Threads_created

The number of threads created to handle connections. If Threads_created is big, you may want
to increase the thread_cache_size value. The cache miss rate can be calculated as
Threads_created/Connections.

• Threads_running

The number of threads that are not sleeping.

• Uptime

The number of seconds that the server has been up.

5.2.6. SQL Modes
The MySQL server can operate in different SQL modes, and can apply these modes differently for dif-
ferent clients. This capability enables each application to tailor the server's operating mode to its own re-
quirements.

Modes define what SQL syntax MySQL should support and what kind of data validation checks it
should perform. This makes it easier to use MySQL in different environments and to use MySQL to-
gether with other database servers.

You can set the default SQL mode by starting mysqld with the --sql-mode="modes" option.
modes is a list of different modes separated by comma (‘,’) characters. The default value is empty (no
modes set). The modes value also can be empty (--sql-mode="") if you want to clear it explicitly.

You can change the SQL mode at runtime by using a SET [GLOBAL|SESSION]
sql_mode='modes' statement to set the sql_mode system value. Setting the GLOBAL variable re-
quires the SUPER privilege and affects the operation of all clients that connect from that time on. Setting
the SESSION variable affects only the current client. Any client can change its own session sql_mode
value at any time.

You can retrieve the current global or session sql_mode value with the following statements:

SELECT @@global.sql_mode;
SELECT @@session.sql_mode;

The most important sql_mode values are probably these:

• ANSI

Change syntax and behavior to be more conformant to standard SQL.

• STRICT_TRANS_TABLES

If a value could not be inserted as given into a transactional table, abort the statement. For a non-
transactional table, abort the statement if the value occurs in a single-row statement or the first row
of a multiple-row statement. More detail is given later in this section. (Implemented in MySQL

Database Administration

288

5.0.2)

• TRADITIONAL

Make MySQL behave like a “traditional” SQL database system. A simple description of this mode is
“give an error instead of a warning” when inserting an incorrect value into a column. Note: The IN-
SERT/UPDATE aborts as soon as the error is noticed. This may not be what you want if you are us-
ing a non-transactional storage engine, because data changes made prior to the error are not be rolled
back, resulting in a “partially done” update. (Added in MySQL 5.0.2)

When this manual refers to “strict mode,” it means a mode where at least one of
STRICT_TRANS_TABLES or STRICT_ALL_TABLES is enabled.

The following list describes all supported modes:

• ALLOW_INVALID_DATES

Don't do full checking of dates. Check only that the month is in the range from 1 to 12 and the day is
in the range from 1 to 31. This is very convenient for Web applications where you obtain year,
month, and day in three different fields and you want to store exactly what the user inserted (without
date validation). This mode applies to DATE and DATETIME columns. It does not apply
TIMESTAMP columns, which always require a valid date.

This mode is implemented in MySQL 5.0.2. Before 5.0.2, this was the default MySQL date-handling
mode. As of 5.0.2, the server requires that month and day values be legal, and not merely in the
range 1 to 12 and 1 to 31, respectively. With strict mode disabled, invalid dates such as
'2004-04-31' are converted to '0000-00-00' and a warning is generated. With strict mode
enabled, invalid dates generate an error. To allow such dates, enable ALLOW_INVALID_DATES.

• ANSI_QUOTES

Treat ‘"’ as an identifier quote character (like the ‘`’ quote character) and not as a string quote char-
acter. You can still use ‘`’ to quote identifiers with this mode enabled. With ANSI_QUOTES en-
abled, you cannot use double quotes to quote literal strings, because it is interpreted as an identifier.

• ERROR_FOR_DIVISION_BY_ZERO

Produce an error in strict mode (otherwise a warning) when a division by zero (or MOD(X,0)) oc-
curs during an INSERT or UPDATE. If this mode is not enabled, MySQL instead returns NULL for
divisions by zero. For INSERT IGNORE or UPDATE IGNORE, MySQL generates a warning for
divisions by zero, but the result of the operation is NULL. (Implemented in MySQL 5.0.2)

• HIGH_NOT_PRECEDENCE

From MySQL 5.0.2 on, the precedence of the NOT operator is such that expressions such as NOT a
BETWEEN b AND c are parsed as NOT (a BETWEEN b AND c). Before MySQL 5.0.2, the
expression is parsed as (NOT a) BETWEEN b AND c. The old higher-precedence behavior can
be obtained by enabling the HIGH_NOT_PRECEDENCE SQL mode. (Added in MySQL 5.0.2)

mysql> SET sql_mode = '';
mysql> SELECT NOT 1 BETWEEN -5 AND 5;

-> 0
mysql> SET sql_mode = 'HIGH_NOT_PRECEDENCE';
mysql> SELECT NOT 1 BETWEEN -5 AND 5;

-> 1

• IGNORE_SPACE

Database Administration

289

Allow spaces between a function name and the ‘(’ character. This forces all function names to be
treated as reserved words. As a result, if you want to access any database, table, or column name that
is a reserved word, you must quote it. For example, because there is a USER() function, the name of
the user table in the mysql database and the User column in that table become reserved, so you
must quote them:

SELECT "User" FROM mysql."user";

The IGNORE_SPACE SQL mode applies to built-in functions, not to stored routines. it is always al-
lowable to have spaces after a routine name, regardless of whether IGNORE_SPACE is enabled.

• NO_AUTO_CREATE_USER

Prevent GRANT from automatically creating new users if it would otherwise do so, unless a non-
empty password also is specified. (Added in MySQL 5.0.2)

• NO_AUTO_VALUE_ON_ZERO

NO_AUTO_VALUE_ON_ZERO affects handling of AUTO_INCREMENT columns. Normally, you
generate the next sequence number for the column by inserting either NULL or 0 into it.
NO_AUTO_VALUE_ON_ZERO suppresses this behavior for 0 so that only NULL generates the next
sequence number.

This mode can be useful if 0 has been stored in a table's AUTO_INCREMENT column. (Storing 0 is
not a recommended practice, by the way.) For example, if you dump the table with mysqldump and
then reload it, MySQL normally generates new sequence numbers when it encounters the 0 values,
resulting in a table with contents different from the one that was dumped. Enabling
NO_AUTO_VALUE_ON_ZERO before reloading the dump file solves this problem. mysqldump
now automatically includes in its output a statement that enables NO_AUTO_VALUE_ON_ZERO, to
avoid this problem.

• NO_BACKSLASH_ESCAPES

Disable the use of the backslash character (‘\’) as an escape character within strings. With this mode
enabled, backslash becomes an ordinary character like any other. (Implemented in MySQL 5.0.1)

• NO_DIR_IN_CREATE

When creating a table, ignore all INDEX DIRECTORY and DATA DIRECTORY directives. This
option is useful on slave replication servers.

• NO_ENGINE_SUBSTITUTION

Prevents automatic substitution of the default storage engine when a statement such as CREATE
TABLE specifies a storage engine that is disabled or not compiled in. (Implemented in MySQL
5.0.8)

• NO_FIELD_OPTIONS

Do not print MySQL-specific column options in the output of SHOW CREATE TABLE. This mode
is used by mysqldump in portability mode.

• NO_KEY_OPTIONS

Do not print MySQL-specific index options in the output of SHOW CREATE TABLE. This mode is
used by mysqldump in portability mode.

• NO_TABLE_OPTIONS

Database Administration

290

Do not print MySQL-specific table options (such as ENGINE) in the output of SHOW CREATE
TABLE. This mode is used by mysqldump in portability mode.

• NO_UNSIGNED_SUBTRACTION

In integer subtraction operations, do not mark the result as UNSIGNED if one of the operands is un-
signed. In other words, the result of a subtraction is always signed whenever this mode is in effect,
even if one of the operands is unsigned. For example, compare the type of column c2 in table t1
with that of column c2 in table t2:

mysql> SET SQL_MODE='';
mysql> CREATE TABLE test (c1 BIGINT UNSIGNED NOT NULL);
mysql> CREATE TABLE t1 SELECT c1 - 1 AS c2 FROM test;
mysql> DESCRIBE t1;
+-------+---------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------------+------+-----+---------+-------+
| c2 | bigint(21) unsigned | | | 0 | |
+-------+---------------------+------+-----+---------+-------+

mysql> SET SQL_MODE='NO_UNSIGNED_SUBTRACTION';
mysql> CREATE TABLE t2 SELECT c1 - 1 AS c2 FROM test;
mysql> DESCRIBE t2;
+-------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+------------+------+-----+---------+-------+
| c2 | bigint(21) | | | 0 | |
+-------+------------+------+-----+---------+-------+

Note that this means that BIGINT UNSIGNED is not 100% usable in all contexts. See Section 12.8,
“Cast Functions and Operators”.

mysql> SET SQL_MODE = '';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| 18446744073709551615 |
+-------------------------+

mysql> SET SQL_MODE = 'NO_UNSIGNED_SUBTRACTION';
mysql> SELECT CAST(0 AS UNSIGNED) - 1;
+-------------------------+
| CAST(0 AS UNSIGNED) - 1 |
+-------------------------+
| -1 |
+-------------------------+

• NO_ZERO_DATE

In strict mode, don't allow '0000-00-00' as a valid date. You can still insert zero dates with the
IGNORE option. When not in strict mode, the date is accepted but a warning is generated. (Added in
MySQL 5.0.2)

• NO_ZERO_IN_DATE

In strict mode, don't accept dates where the month or day part is 0. If used with the IGNORE option,
MySQL inserts a '0000-00-00' date for any such date. When not in strict mode, the date is ac-
cepted but a warning is generated. (Added in MySQL 5.0.2)

• ONLY_FULL_GROUP_BY

Do not allow queries for which the SELECT list refers to non-aggregated columns that are not
named in the GROUP BY clause. The following query is invalid with this mode enabled because
address is not named in the GROUP BY clause:

Database Administration

291

SELECT name, address, MAX(age) FROM t GROUP BY name;

As of MySQL 5.0.23, this mode also restricts references to non-aggregated columns in the HAVING
clause that are not named in the GROUP BY clause.

• PIPES_AS_CONCAT

Treat || as a string concatenation operator (same as CONCAT()) rather than as a synonym for OR.

• REAL_AS_FLOAT

Treat REAL as a synonym for FLOAT. By default, MySQL treats REAL as a synonym for DOUBLE.

• STRICT_ALL_TABLES

Enable strict mode for all storage engines. Invalid data values are rejected. Additional detail follows.
(Added in MySQL 5.0.2)

• STRICT_TRANS_TABLES

Enable strict mode for transactional storage engines, and when possible for non-transactional storage
engines. Additional details follow. (Implemented in MySQL 5.0.2)

Strict mode controls how MySQL handles input values that are invalid or missing. A value can be inval-
id for several reasons. For example, it might have the wrong data type for the column, or it might be out
of range. A value is missing when a new row to be inserted does not contain a value for a column that
has no explicit DEFAULT clause in its definition.

For transactional tables, an error occurs for invalid or missing values in a statement when either of the
STRICT_ALL_TABLES or STRICT_TRANS_TABLES modes are enabled. The statement is aborted
and rolled back.

For non-transactional tables, the behavior is the same for either mode, if the bad value occurs in the first
row to be inserted or updated. The statement is aborted and the table remains unchanged. If the state-
ment inserts or modifies multiple rows and the bad value occurs in the second or later row, the result de-
pends on which strict option is enabled:

• For STRICT_ALL_TABLES, MySQL returns an error and ignores the rest of the rows. However, in
this case, the earlier rows still have been inserted or updated. This means that you might get a partial
update, which might not be what you want. To avoid this, it's best to use single-row statements be-
cause these can be aborted without changing the table.

• For STRICT_TRANS_TABLES, MySQL converts an invalid value to the closest valid value for the
column and insert the adjusted value. If a value is missing, MySQL inserts the implicit default value
for the column data type. In either case, MySQL generates a warning rather than an error and contin-
ues processing the statement. Implicit defaults are described in Section 11.1.4, “Data Type Default
Values”.

Strict mode disallows invalid date values such as '2004-04-31'. It does not disallow dates with zero
parts such as '2004-04-00' or “zero” dates. To disallow these as well, enable the
NO_ZERO_IN_DATE and NO_ZERO_DATE SQL modes in addition to strict mode.

If you are not using strict mode (that is, neither STRICT_TRANS_TABLES nor
STRICT_ALL_TABLES is enabled), MySQL inserts adjusted values for invalid or missing values and
produces warnings. In strict mode, you can produce this behavior by using INSERT IGNORE or UP-

Database Administration

292

DATE IGNORE. See Section 13.5.4.26, “SHOW WARNINGS Syntax”.

The following special modes are provided as shorthand for combinations of mode values from the pre-
ceding list. All are available in MySQL 5.0 beginning with version 5.0.0, except for TRADITIONAL,
which was implemented in MySQL 5.0.2.

The descriptions include all mode values that are available in the most recent version of MySQL. For
older versions, a combination mode does not include individual mode values that are not available ex-
cept in newer versions.

• ANSI

Equivalent to REAL_AS_FLOAT, PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE. Be-
fore MySQL 5.0.3, ANSI also includes ONLY_FULL_GROUP_BY. See Section 1.9.3, “Running
MySQL in ANSI Mode”.

• DB2

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

• MAXDB

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER.

• MSSQL

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

• MYSQL323

Equivalent to NO_FIELD_OPTIONS, HIGH_NOT_PRECEDENCE.

• MYSQL40

Equivalent to NO_FIELD_OPTIONS, HIGH_NOT_PRECEDENCE.

• ORACLE

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS, NO_AUTO_CREATE_USER.

• POSTGRESQL

Equivalent to PIPES_AS_CONCAT, ANSI_QUOTES, IGNORE_SPACE, NO_KEY_OPTIONS,
NO_TABLE_OPTIONS, NO_FIELD_OPTIONS.

• TRADITIONAL

Equivalent to STRICT_TRANS_TABLES, STRICT_ALL_TABLES, NO_ZERO_IN_DATE,
NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_ZERO, NO_AUTO_CREATE_USER.

5.2.7. The Shutdown Process
The server shutdown process takes place as follows:

Database Administration

293

1. The shutdown process is initiated.

Server shutdown can be initiated several ways. For example, a user with the SHUTDOWN privilege
can execute a mysqladmin shutdown command. mysqladmin can be used on any platform
supported by MySQL. Other operating system-specific shutdown initiation methods are possible as
well: The server shuts down on Unix when it receives a SIGTERM signal. A server running as a
service on Windows shuts down when the services manager tells it to.

2. The server creates a shutdown thread if necessary.

Depending on how shutdown was initiated, the server might create a thread to handle the shutdown
process. If shutdown was requested by a client, a shutdown thread is created. If shutdown is the res-
ult of receiving a SIGTERM signal, the signal thread might handle shutdown itself, or it might cre-
ate a separate thread to do so. If the server tries to create a shutdown thread and cannot (for ex-
ample, if memory is exhausted), it issues a diagnostic message that appears in the error log:

Error: Can't create thread to kill server

3. The server stops accepting new connections.

To prevent new activity from being initiated during shutdown, the server stops accepting new client
connections. It does this by closing the network connections to which it normally listens for con-
nections: the TCP/IP port, the Unix socket file, the Windows named pipe, and shared memory on
Windows.

4. The server terminates current activity.

For each thread that is associated with a client connection, the connection to the client is broken
and the thread is marked as killed. Threads die when they notice that they are so marked. Threads
for idle connections die quickly. Threads that currently are processing statements check their state
periodically and take longer to die. For additional information about thread termination, see Sec-
tion 13.5.5.3, “KILL Syntax”, in particular for the instructions about killed REPAIR TABLE or
OPTIMIZE TABLE operations on MyISAM tables.

For threads that have an open transaction, the transaction is rolled back. Note that if a thread is up-
dating a non-transactional table, an operation such as a multiple-row UPDATE or INSERT may
leave the table partially updated, because the operation can terminate before completion.

If the server is a master replication server, threads associated with currently connected slaves are
treated like other client threads. That is, each one is marked as killed and exits when it next checks
its state.

If the server is a slave replication server, the I/O and SQL threads, if active, are stopped before cli-
ent threads are marked as killed. The SQL thread is allowed to finish its current statement (to avoid
causing replication problems), and then stops. If the SQL thread was in the middle of a transaction
at this point, the transaction is rolled back.

5. Storage engines are shut down or closed.

At this stage, the table cache is flushed and all open tables are closed.

Each storage engine performs any actions necessary for tables that it manages. For example, My-
ISAM flushes any pending index writes for a table. InnoDB flushes its buffer pool to disk (starting
from 5.0.5: unless innodb_fast_shutdown is 2), writes the current LSN to the tablespace, and
terminates its own internal threads.

6. The server exits.

Database Administration

294

5.2.8. Server-Side Help
MySQL Server supports a HELP statement that returns online information from the MySQL Reference
manual (see Section 13.3.2, “HELP Syntax”). The proper operation of this statement requires that the
help tables in the mysql database be initialized with help topic information, which is done by pro-
cessing the contents of the fill_help_tables.sql script.

For a MySQL binary distribution on Unix, help table setup occurs when you run
mysql_install_db. For an RPM distribution on Linux or binary distribution on Windows, help ta-
ble setup occurs as part of the MySQL installation process.

For a MySQL source distribution, you can find the fill_help_tables_sql file in the scripts
directory. To load the file manually, make sure that you have initialized the mysql database by running
mysql_install_db, and then process the file with the mysql client as follows:

shell> mysql -u root mysql < fill_help_tables.sql

If you are working with BitKeeper and a MySQL development source tree, the tree doesn't contain
fill_help_tables.sql. You can download the proper file for your version of MySQL from ht-
tp://dev.mysql.com/doc/. After downloading and uncompressing the file, process it with mysql as just
described.

5.3. The mysqld-max Extended MySQL Server
A MySQL-Max server is a version of the mysqld MySQL server that has been built to include addi-
tional features. The MySQL-Max distribution to use depends on your platform:

• For Windows, MySQL binary distributions include both the standard server (mysqld.exe) and the
MySQL-Max server (mysqld-max.exe), so no special distribution is needed. Just use a regular
Windows distribution. See Section 2.3, “Installing MySQL on Windows”.

• For Linux, if you install MySQL using RPM distributions, the MySQL-Max RPM presupposes that
you have already installed the regular server RPM. Use the regular MySQL-server RPM first to
install a standard server named mysqld, and then use the MySQL-Max RPM to install a server
named mysqld-max. See Section 2.4, “Installing MySQL on Linux”, for more information on the
Linux RPM packages.

• All other MySQL-Max distributions contain a single server that is named mysqld but that has the
additional features included.

You can find the MySQL-Max binaries on the MySQL AB Web site at ht-
tp://dev.mysql.com/downloads/.

MySQL AB builds the MySQL-Max servers by using the following configure options:

• --with-server-suffix=-max

This option adds a -max suffix to the mysqld version string.

• --with-innodb

This option enables support for the InnoDB storage engine. MySQL-Max servers always include
InnoDB support. From MySQL 4.0 onward, InnoDB is included by default in all binary distribu-
tions, so a MySQL-Max server is not needed to obtain InnoDB support.

Database Administration

295

http://dev.mysql.com/doc/
http://dev.mysql.com/doc/
http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/

• --with-bdb

This option enables support for the Berkeley DB (BDB) storage engine on those platforms for which
BDB is available. (See notes in the following discussion.)

• --with-blackhole-storage-engine

This option enables support for the BLACKHOLE storage engine.

• --with-csv-storage-engine

This option enables support for the CSV storage engine.

• --with-example-storage-engine

This option enables support for the EXAMPLE storage engine.

• --with-federated-storage-engine

This option enables support for the FEDERATED storage engine.

• --with-ndbcluster

This option enables support for the NDB Cluster storage engine on those platforms for which
Cluster is available. (See notes in the following discussion.)

• USE_SYMDIR

This define is enabled to turn on database symbolic link support for Windows. From MySQL 4.0 on-
ward, symbolic link support is enabled for all Windows servers, so a MySQL-Max server is not
needed to take advantage of this feature.

MySQL-Max binary distributions are a convenience for those who wish to install precompiled pro-
grams. If you build MySQL using a source distribution, you can build your own Max-like server by en-
abling the same features at configuration time that the MySQL-Max binary distributions are built with.

MySQL-Max servers include the BerkeleyDB (BDB) storage engine whenever possible, but not all
platforms support BDB.

Currently, MySQL Cluster is supported on Linux (on most platforms), Solaris, Mac OS X, and HP-UX
only. Some users have reported success in using MySQL Cluster built from source on BSD operating
systems, but these are not officially supported at this time. Note that, even for servers compiled with
Cluster support, the NDB Cluster storage engine is not enabled by default. You must start the server
with the --ndbcluster option to use it as part of a MySQL Cluster. (For details, see Section 15.4,
“MySQL Cluster Configuration”.)

The following table shows the platforms for which MySQL-Max binaries include support for BDB and
NDB Cluster.

System BDB Support NDB Support

AIX 5.2 N N

HP-UX Y Y

Linux-IA-64 N Y

Linux-Intel Y Y

Mac OS X N Y

NetWare N N

Database Administration

296

SCO 6 N N

Solaris-SPARC Y Y

Solaris-Intel N Y

Solaris-AMD 64 Y Y

Windows NT/2000/XP Y N

To find out which storage engines your server supports, use the SHOW ENGINES statement. (See Sec-
tion 13.5.4.10, “SHOW ENGINES Syntax”.) For example:

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
Engine: MyISAM

Support: DEFAULT
Comment: Default engine as of MySQL 3.23 with great performance
*************************** 2. row ***************************
Engine: MEMORY

Support: YES
Comment: Hash based, stored in memory, useful for temporary tables
*************************** 3. row ***************************
Engine: InnoDB

Support: YES
Comment: Supports transactions, row-level locking, and foreign keys
*************************** 4. row ***************************
Engine: BerkeleyDB

Support: NO
Comment: Supports transactions and page-level locking
*************************** 5. row ***************************
Engine: BLACKHOLE

Support: YES
Comment: /dev/null storage engine (anything you write to it disappears)
...

The precise output from SHOW ENGINES may vary according to the MySQL version used (and the fea-
tures that are enabled). The Support values in the output indicate the server's level of support for each
feature, as shown here:

Value Meaning

YES The feature is supported and is active.

NO The feature is not supported.

DISABLED The feature is supported but has been disabled.

A value of NO means that the server was compiled without support for the feature, so it cannot be activ-
ated at runtime.

A value of DISABLED occurs either because the server was started with an option that disables the fea-
ture, or because not all options required to enable it were given. In the latter case, the error log file
should contain a reason indicating why the option is disabled. See Section 5.12.1, “The Error Log”.

You might also see DISABLED for a storage engine if the server was compiled to support it, but was
started with a --skip-engine option. For example, --skip-innodb disables the InnoDB en-
gine. For the NDB Cluster storage engine, DISABLED means the server was compiled with support
for MySQL Cluster, but was not started with the --ndb-cluster option.

All MySQL servers support MyISAM tables, because MyISAM is the default storage engine.

5.4. MySQL Server Startup Programs
This section describes several programs that are used to start mysqld, the MySQL server.

Database Administration

297

5.4.1. mysqld_safe — MySQL Server Startup Script
mysqld_safe is the recommended way to start a mysqld server on Unix and NetWare.
mysqld_safe adds some safety features such as restarting the server when an error occurs and log-
ging runtime information to an error log file. NetWare-specific behaviors are listed later in this section.

Note: To preserve backward compatibility with older versions of MySQL, MySQL binary distributions
still include safe_mysqld as a symbolic link to mysqld_safe. However, you should not rely on
this because it is removed as of MySQL 5.1.

By default, mysqld_safe tries to start an executable named mysqld-max if it exists, and mysqld
otherwise. Be aware of the implications of this behavior:

• On Linux, the MySQL-Max RPM relies on this mysqld_safe behavior. The RPM installs an ex-
ecutable named mysqld-max, which causes mysqld_safe to automatically use that executable
rather than mysqld from that point on.

• If you install a MySQL-Max distribution that includes a server named mysqld-max, and then up-
grade later to a non-Max version of MySQL, mysqld_safe will still attempt to run the old
mysqld-max server. If you perform such an upgrade, you should manually remove the old
mysqld-max server to ensure that mysqld_safe runs the new mysqld server.

To override the default behavior and specify explicitly the name of the server you want to run, specify a
--mysqld or --mysqld-version option to mysqld_safe. You can also use --ledir to indic-
ate the directory where mysqld_safe should look for the server.

Many of the options to mysqld_safe are the same as the options to mysqld. See Section 5.2.2,
“Command Options”.

All options specified to mysqld_safe on the command line are passed to mysqld. If you want to use
any options that are specific to mysqld_safe and that mysqld doesn't support, do not specify them
on the command line. Instead, list them in the [mysqld_safe] group of an option file. See Sec-
tion 4.3.2, “Using Option Files”.

mysqld_safe reads all options from the [mysqld], [server], and [mysqld_safe] sections in
option files. For backward compatibility, it also reads [safe_mysqld] sections, although you should
rename such sections to [mysqld_safe] in MySQL 5.0 installations.

mysqld_safe supports the following options:

• --help

Display a help message and exit. (Added in MySQL 5.0.3)

• --autoclose

(NetWare only) On NetWare, mysqld_safe provides a screen presence. When you unload (shut
down) the mysqld_safe NLM, the screen does not by default go away. Instead, it prompts for
user input:

<NLM has terminated; Press any key to close the screen>

If you want NetWare to close the screen automatically instead, use the --autoclose option to
mysqld_safe.

• --basedir=path

Database Administration

298

The path to the MySQL installation directory.

• --core-file-size=size

The size of the core file that mysqld should be able to create. The option value is passed to ulim-
it -c.

• --datadir=path

The path to the data directory.

• --defaults-extra-file=path

The name of an option file to be read in addition to the usual option files. This must be the first op-
tion on the command line if it is used. As of MySQL 5.0.6, if the file does not exist or is otherwise
inaccessible, the server will exit with an error.

• --defaults-file=file_name

The name of an option file to be read instead of the usual option files. This must be the first option
on the command line if it is used.

• --ledir=path

If mysqld_safe cannot find the server, use this option to indicate the pathname to the directory
where the server is located.

• --log-error=file_name

Write the error log to the given file. See Section 5.12.1, “The Error Log”.

• --mysqld=prog_name

The name of the server program (in the ledir directory) that you want to start. This option is
needed if you use the MySQL binary distribution but have the data directory outside of the binary
distribution. If mysqld_safe cannot find the server, use the --ledir option to indicate the path-
name to the directory where the server is located.

• --mysqld-version=suffix

This option is similar to the --mysqld option, but you specify only the suffix for the server pro-
gram name. The basename is assumed to be mysqld. For example, if you use -
-mysqld-version=max, mysqld_safe starts the mysqld-max program in the ledir dir-
ectory. If the argument to --mysqld-version is empty, mysqld_safe uses mysqld in the
ledir directory.

• --nice=priority

Use the nice program to set the server's scheduling priority to the given value.

• --no-defaults

Do not read any option files. This must be the first option on the command line if it is used.

• --open-files-limit=count

The number of files that mysqld should be able to open. The option value is passed to ulimit -
n. Note that you need to start mysqld_safe as root for this to work properly!

Database Administration

299

• --pid-file=file_name

The pathname of the process ID file.

• --port=port_num

The port number that the server should use when listening for TCP/IP connections. The port number
must be 1024 or higher unless the server is started by the root system user.

• --socket=path

The Unix socket file that the server should use when listening for local connections.

• --timezone=timezone

Set the TZ time zone environment variable to the given option value. Consult your operating system
documentation for legal time zone specification formats.

• --user={user_name|user_id}

Run the mysqld server as the user having the name user_name or the numeric user ID
user_id. (“User” in this context refers to a system login account, not a MySQL user listed in the
grant tables.)

If you execute mysqld_safe with the --defaults-file or --defaults-extra-option
option to name an option file, the option must be the first one given on the command line or the option
file will not be used. For example, this command will not use the named option file:

mysql> mysqld_safe --port=port_num --defaults-file=file_name

Instead, use the following command:

mysql> mysqld_safe --defaults-file=file_name --port=port_num

The mysqld_safe script is written so that it normally can start a server that was installed from either
a source or a binary distribution of MySQL, even though these types of distributions typically install the
server in slightly different locations. (See Section 2.1.5, “Installation Layouts”.) mysqld_safe ex-
pects one of the following conditions to be true:

• The server and databases can be found relative to the working directory (the directory from which
mysqld_safe is invoked). For binary distributions, mysqld_safe looks under its working dir-
ectory for bin and data directories. For source distributions, it looks for libexec and var dir-
ectories. This condition should be met if you execute mysqld_safe from your MySQL installa-
tion directory (for example, /usr/local/mysql for a binary distribution).

• If the server and databases cannot be found relative to the working directory, mysqld_safe at-
tempts to locate them by absolute pathnames. Typical locations are /usr/local/libexec and /
usr/local/var. The actual locations are determined from the values configured into the distri-
bution at the time it was built. They should be correct if MySQL is installed in the location specified
at configuration time.

Because mysqld_safe tries to find the server and databases relative to its own working directory, you
can install a binary distribution of MySQL anywhere, as long as you run mysqld_safe from the
MySQL installation directory:

shell> cd mysql_installation_directory

Database Administration

300

shell> bin/mysqld_safe &

If mysqld_safe fails, even when invoked from the MySQL installation directory, you can specify the
--ledir and --datadir options to indicate the directories in which the server and databases are
located on your system.

Normally, you should not edit the mysqld_safe script. Instead, configure mysqld_safe by using
command-line options or options in the [mysqld_safe] section of a my.cnf option file. In rare
cases, it might be necessary to edit mysqld_safe to get it to start the server properly. However, if you
do this, your modified version of mysqld_safe might be overwritten if you upgrade MySQL in the
future, so you should make a copy of your edited version that you can reinstall.

On NetWare, mysqld_safe is a NetWare Loadable Module (NLM) that is ported from the original
Unix shell script. It starts the server as follows:

1. Runs a number of system and option checks.

2. Runs a check on MyISAM tables.

3. Provides a screen presence for the MySQL server.

4. Starts mysqld, monitors it, and restarts it if it terminates in error.

5. Sends error messages from mysqld to the host_name.err file in the data directory.

6. Sends mysqld_safe screen output to the host_name.safe file in the data directory.

5.4.2. mysql.server — MySQL Server Startup Script
MySQL distributions on Unix include a script named mysql.server. It can be used on systems such
as Linux and Solaris that use System V-style run directories to start and stop system services. It is also
used by the Mac OS X Startup Item for MySQL.

mysql.server can be found in the support-files directory under your MySQL installation dir-
ectory or in a MySQL source distribution.

If you use the Linux server RPM package (MySQL-server-VERSION.rpm), the mysql.server
script will be installed in the /etc/init.d directory with the name mysql. You need not install it
manually. See Section 2.4, “Installing MySQL on Linux”, for more information on the Linux RPM
packages.

Some vendors provide RPM packages that install a startup script under a different name such as
mysqld.

If you install MySQL from a source distribution or using a binary distribution format that does not in-
stall mysql.server automatically, you can install it manually. Instructions are provided in Sec-
tion 2.10.2.2, “Starting and Stopping MySQL Automatically”.

mysql.server reads options from the [mysql.server] and [mysqld] sections of option files.
For backward compatibility, it also reads [mysql_server] sections, although you should rename
such sections to [mysql.server] when using MySQL 5.0.

5.4.3. mysqld_multi — Manage Multiple MySQL Servers
mysqld_multi is designed to manage several mysqld processes that listen for connections on differ-
ent Unix socket files and TCP/IP ports. It can start or stop servers, or report their current status. The

Database Administration

301

MySQL Instance Manager is an alternative means of managing multiple servers (see Section 5.5,
“mysqlmanager — The MySQL Instance Manager”).

mysqld_multi searches for groups named [mysqldN] in my.cnf (or in the file named by the -
-config-file option). N can be any positive integer. This number is referred to in the following dis-
cussion as the option group number, or GNR. Group numbers distinguish option groups from one another
and are used as arguments to mysqld_multi to specify which servers you want to start, stop, or ob-
tain a status report for. Options listed in these groups are the same that you would use in the [mysqld]
group used for starting mysqld. (See, for example, Section 2.10.2.2, “Starting and Stopping MySQL
Automatically”.) However, when using multiple servers, it is necessary that each one use its own value
for options such as the Unix socket file and TCP/IP port number. For more information on which op-
tions must be unique per server in a multiple-server environment, see Section 5.13, “Running Multiple
MySQL Servers on the Same Machine”.

To invoke mysqld_multi, use the following syntax:

shell> mysqld_multi [options] {start|stop|report} [GNR[,GNR] ...]

start, stop, and report indicate which operation to perform. You can perform the designated op-
eration for a single server or multiple servers, depending on the GNR list that follows the option name. If
there is no list, mysqld_multi performs the operation for all servers in the option file.

Each GNR value represents an option group number or range of group numbers. The value should be the
number at the end of the group name in the option file. For example, the GNR for a group named
[mysqld17] is 17. To specify a range of numbers, separate the first and last numbers by a dash. The
GNR value 10-13 represents groups [mysqld10] through [mysqld13]. Multiple groups or group
ranges can be specified on the command line, separated by commas. There must be no whitespace char-
acters (spaces or tabs) in the GNR list; anything after a whitespace character is ignored.

This command starts a single server using option group [mysqld17]:

shell> mysqld_multi start 17

This command stops several servers, using option groups [mysqld8] and [mysqld10] through
[mysqld13]:

shell> mysqld_multi stop 8,10-13

For an example of how you might set up an option file, use this command:

shell> mysqld_multi --example

mysqld_multi supports the following options:

• --help

Display a help message and exit.

• --config-file=file_name

Specify the name of an alternative option file. This affects where mysqld_multi looks for
[mysqldN] option groups. Without this option, all options are read from the usual my.cnf file.
The option does not affect where mysqld_multi reads its own options, which are always taken
from the [mysqld_multi] group in the usual my.cnf file.

• --example

Database Administration

302

Display a sample option file.

• --log=file_name

Specify the name of the log file. If the file exists, log output is appended to it.

• --mysqladmin=prog_name

The mysqladmin binary to be used to stop servers.

• --mysqld=prog_name

The mysqld binary to be used. Note that you can specify mysqld_safe as the value for this op-
tion also. If you use mysqld_safe to start the server, you can include the mysqld or ledir op-
tions in the corresponding [mysqldN] option group. These options indicate the name of the server
that mysqld_safe should start and the pathname of the directory where the server is located. (See
the descriptions for these options in Section 5.4.1, “mysqld_safe — MySQL Server Startup
Script”.) Example:

[mysqld38]
mysqld = mysqld-max
ledir = /opt/local/mysql/libexec

• --no-log

Print log information to stdout rather than to the log file. By default, output goes to the log file.

• --password=password

The password of the MySQL account to use when invoking mysqladmin. Note that the password
value is not optional for this option, unlike for other MySQL programs.

• --silent

Silent mode; disable warnings.

• --tcp-ip

Connect to each MySQL server via the TCP/IP port instead of the Unix socket file. (If a socket file is
missing, the server might still be running, but accessible only via the TCP/IP port.) By default, con-
nections are made using the Unix socket file. This option affects stop and report operations.

• --user=user_name

The username of the MySQL account to use when invoking mysqladmin.

• --verbose

Be more verbose.

• --version

Display version information and exit.

Some notes about mysqld_multi:

• Most important: Before using mysqld_multi be sure that you understand the meanings of the

Database Administration

303

options that are passed to the mysqld servers and why you would want to have separate mysqld
processes. Beware of the dangers of using multiple mysqld servers with the same data directory.
Use separate data directories, unless you know what you are doing. Starting multiple servers with the
same data directory does not give you extra performance in a threaded system. See Section 5.13,
“Running Multiple MySQL Servers on the Same Machine”.

• Important: Make sure that the data directory for each server is fully accessible to the Unix account
that the specific mysqld process is started as. Do not use the Unix root account for this, unless
you know what you are doing. See Section 5.7.5, “How to Run MySQL as a Normal User”.

• Make sure that the MySQL account used for stopping the mysqld servers (with the mysqladmin
program) has the same username and password for each server. Also, make sure that the account has
the SHUTDOWN privilege. If the servers that you want to manage have different usernames or pass-
words for the administrative accounts, you might want to create an account on each server that has
the same username and password. For example, you might set up a common multi_admin ac-
count by executing the following commands for each server:

shell> mysql -u root -S /tmp/mysql.sock -p
Enter password:
mysql> GRANT SHUTDOWN ON *.*

-> TO 'multi_admin'@'localhost' IDENTIFIED BY 'multipass';

See Section 5.8.2, “How the Privilege System Works”. You have to do this for each mysqld server.
Change the connection parameters appropriately when connecting to each one. Note that the host-
name part of the account name must allow you to connect as multi_admin from the host where
you want to run mysqld_multi.

• The Unix socket file and the TCP/IP port number must be different for every mysqld.

• The --pid-file option is very important if you are using mysqld_safe to start mysqld (for
example, --mysqld=mysqld_safe) Every mysqld should have its own process ID file. The
advantage of using mysqld_safe instead of mysqld is that mysqld_safe monitors its
mysqld process and restarts it if the process terminates due to a signal sent using kill -9 or for
other reasons, such as a segmentation fault. Please note that the mysqld_safe script might require
that you start it from a certain place. This means that you might have to change location to a certain
directory before running mysqld_multi. If you have problems starting, please see the
mysqld_safe script. Check especially the lines:

--
MY_PWD=`pwd`
Check if we are starting this relative (for the binary release)
if test -d $MY_PWD/data/mysql -a -f ./share/mysql/english/errmsg.sys -a \
-x ./bin/mysqld

--

The test performed by these lines should be successful, or you might encounter problems. See Sec-
tion 5.4.1, “mysqld_safe — MySQL Server Startup Script”.

• You might want to use the --user option for mysqld, but to do this you need to run the
mysqld_multi script as the Unix root user. Having the option in the option file doesn't matter;
you just get a warning if you are not the superuser and the mysqld processes are started under your
own Unix account.

The following example shows how you might set up an option file for use with mysqld_multi. The
order in which the mysqld programs are started or stopped depends on the order in which they appear
in the option file. Group numbers need not form an unbroken sequence. The first and fifth [mysqldN]
groups were intentionally omitted from the example to illustrate that you can have “gaps” in the option
file. This gives you more flexibility.

Database Administration

304

This file should probably be in your home dir (~/.my.cnf)
or /etc/my.cnf
Version 2.1 by Jani Tolonen

[mysqld_multi]
mysqld = /usr/local/bin/mysqld_safe
mysqladmin = /usr/local/bin/mysqladmin
user = multi_admin
password = multipass

[mysqld2]
socket = /tmp/mysql.sock2
port = 3307
pid-file = /usr/local/mysql/var2/hostname.pid2
datadir = /usr/local/mysql/var2
language = /usr/local/share/mysql/english
user = john

[mysqld3]
socket = /tmp/mysql.sock3
port = 3308
pid-file = /usr/local/mysql/var3/hostname.pid3
datadir = /usr/local/mysql/var3
language = /usr/local/share/mysql/swedish
user = monty

[mysqld4]
socket = /tmp/mysql.sock4
port = 3309
pid-file = /usr/local/mysql/var4/hostname.pid4
datadir = /usr/local/mysql/var4
language = /usr/local/share/mysql/estonia
user = tonu

[mysqld6]
socket = /tmp/mysql.sock6
port = 3311
pid-file = /usr/local/mysql/var6/hostname.pid6
datadir = /usr/local/mysql/var6
language = /usr/local/share/mysql/japanese
user = jani

See Section 4.3.2, “Using Option Files”.

5.5. mysqlmanager — The MySQL Instance Manager
mysqlmanager is the MySQL Instance Manager (IM). This program monitors and manages MySQL
Database Server instances. MySQL Instance Manager is available for Unix-like operating systems, and
also on Windows as of MySQL 5.0.13. It runs as a daemon that listens on a TCP/IP port. On Unix, it
also listens on a Unix socket file.

MySQL Instance Manager is included in MySQL distributions from version 5.0.3, and can be used in
place of the mysqld_safe script to start and stop one or more instances of MySQL Server. Because
Instance Manager can manage multiple server instances, it can also be used in place of the
mysqld_multi script. Instance Manager offers these capabilities:

• Instance Manager can start and stop instances, and report on the status of instances.

• Server instances can be treated as guarded or unguarded:

• When Instance Manager starts, it starts each guarded instance. If the instance crashes, Instance
Manager detects this and restarts it. When Instance Manager stops, it stops the instance.

• A nonguarded instance is not started when Instance Manager starts or monitored by it. If the in-
stance crashes after being started, Instance Manager does not restart it. When Instance Manager
exits, it does not stop the instance if it is running.

Database Administration

305

Instances are guarded by default. An instance can be designated as nonguarded by including the
nonguarded option in the configuration file.

• Instance Manager provides an interactive interface for configuring instances, so that the need to edit
the configuration file manually is reduced or eliminated.

• Instance Manager provides remote instance management. That is, it runs on the host where you want
to control MySQL Server instances, but you can connect to it from a remote host to perform in-
stance-management operations.

The following sections describe MySQL Instance Manager operation in more detail.

5.5.1. MySQL Instance Manager Command Options
The MySQL Instance Manager supports a number of command options. For a brief listing, invoke
mysqlmanager with the --help option. Options may be given on the command line or in the In-
stance Manager configuration file. On Windows, the standard configuration file is my.ini in the dir-
ectory where Instance Manager is installed. On Unix, the standard file is /etc/my.cnf. To specify a
different configuration file, start Instance Manager with the --defaults-file option.

mysqlmanager supports the following options:

• --help, -?

Display a help message and exit.

• --angel-pid-file=file_name

The file in which the angel process records its process ID when mysqlmanager runs in daemon
mode (that is, when the --run-as-service option is given). The default filename is mysql-
manager.angel.pid.

If the --angel-pid-file option is not given, the default angel PID file has the same name as
the PID file except that any PID file extension is replaced with an extension of .angel.pid. (For
example, mysqlmanager.pid becomes mysqlmanager.angel.pid.)

This option was added in MySQL 5.0.23.

• --bind-address=IP

The IP address to bind to.

• --default-mysqld-path=path

The pathname of the MySQL Server binary. This pathname is used for all server instance sections in
the configuration file for which no mysqld-path option is present. The default value of this op-
tion is the compiled-in pathname, which depends on how the MySQL distribution was configured.
Example: --default-mysqld-path=/usr/sbin/mysqld

• --defaults-file=file_name

Read Instance Manager and MySQL Server settings from the given file. All configuration changes
made by the Instance Manager will be written to this file. This must be the first option on the com-
mand line if it is used, and the file must exist.

If this option is not given, Instance Manager uses its standard configuration file. On Windows, the

Database Administration

306

standard file is my.ini in the directory where Instance Manager is installed. On Unix, the standard
file is /etc/my.cnf.

• --install

On Windows, install Instance Manager as a Windows service. The service name is MySQL Man-
ager. This option was added in MySQL 5.0.11.

• --log=file_name

The path to the Instance Manager log file. This option has no effect unless the -
-run-as-service option is also given. If the filename specified for the option is a relative
name, the log file is created under the directory from which Instance Manager is started. To ensure
that the file is created in a specific directory, specify it as a full pathname.

If --run-as-service is given without --log, the log file is mysqlmanager.log in the data
directory.

If --run-as-service is not given, log messages go to the standard output. To capture log out-
put, you can redirect Instance Manager output to a file:

mysqlmanager > im.log

• --monitoring-interval=seconds

The interval in seconds for monitoring server instances. The default value is 20 seconds. Instance
Manager tries to connect to each monitored (guarded) instance using the non-existing
MySQL_Instance_Manager user account to check whether it is alive/not hanging. If the result
of the connection attempt indicates that the instance is unavailable, Instance Manager performs sev-
eral attempts to restart the instance.

Normally, the MySQL_Instance_Manager account does not exist, so the connection attempts
by Instance Manager cause the monitored instance to produce messages in its general query log sim-
ilar to the following:

Access denied for user 'MySQL_Instance_M'@'localhost' (using password: YES)

The nonguarded option in the appropriate server instance section disables monitoring for a partic-
ular instance. If the instance dies after being started, Instance Manager will not restart it. Instance
Manager tries to connect to a nonguarded instance only when you request the instance's status (for
example, with the SHOW INSTANCES status.

See Section 5.5.5, “MySQL Server Instance Status Monitoring”, for more information.

• --passwd, -P

Prepare an entry for the password file, print it to the standard output, and exit. You can redirect the
output from Instance Manager to a file to save the entry in the file.

• --password-file=file_name

The name of the file where the Instance Manager looks for users and passwords. On Windows, the
default is mysqlmanager.passwd in the directory where Instance Manager is installed. On
Unix, the default file is /etc/mysqlmanager.passwd.

• --pid-file=file_name

Database Administration

307

The process ID file to use. On Windows, the default file is mysqlmanager.pid in the directory
where Instance Manager is installed. On Unix, the default is mysqlmanager.pid in the data dir-
ectory.

• --port=port_num

The port number to use when listening for TCP/IP connections from clients. The default port number
(assigned by IANA) is 2273.

• --print-defaults

Print the current defaults and exit. This must be the first option on the command line if it is used.

• --remove

On Windows, removes Instance Manager as a Windows service. This assumes that Instance Man-
ager has been run with --install previously. This option was added in MySQL 5.0.11.

• --run-as-service

On Unix, daemonize and start an angel process. The angel process monitors Instance Manager and
restarts it if it crashes. (The angel process itself is simple and unlikely to crash.)

• --socket=path

On Unix, the socket file to use for incoming connections. The default file is named /
tmp/mysqlmanager.sock. This option has no meaning on Windows.

• --standalone

This option is used on Windows to run Instance Manager in standalone mode. You should specify it
when you start Instance Manager from the command line. This option was added in MySQL 5.0.13.

• --user=user_name

On Unix, the username of the system account to use for starting and running mysqlmanager. This
option generates a warning and has no effect unless you start mysqlmanager as root (so that it
can change its effective user ID), or as the named user. It is recommended that you configure
mysqlmanager to run using the same account used to run the mysqld server. (“User” in this con-
text refers to a system login account, not a MySQL user listed in the grant tables.)

• --version, -V

Display version information and exit.

• --wait-timeout=N

The number of seconds to wait for activity on an incoming connection before closing it. The default
is 28800 seconds (8 hours).

This option was added in MySQL 5.0.19. Before that, the timeout is 30 seconds and cannot be
changed.

5.5.2. MySQL Instance Manager Configuration Files
Instance Manager uses its standard configuration file unless it is started with a --defaults-file
option that specifies a different file. On Windows, the standard file is my.ini in the directory where

Database Administration

308

Instance Manager is installed. On Unix, the standard file is /etc/my.cnf. (Prior to MySQL 5.0.10,
the MySQL Instance Manager read the same configuration files as the MySQL Server, including /
etc/my.cnf, ~/.my.cnf, and so forth.)

Instance Manager reads options for itself from the [manager] section of the configuration file, and
options for server instances from [mysqld] or [mysqldN] sections. The [manager] section con-
tains any of the options listed in Section 5.5.1, “MySQL Instance Manager Command Options”, except
for those specified as having to be given as the first option on the command line. Here is a sample
[manager] section:

MySQL Instance Manager options section
[manager]
default-mysqld-path = /usr/local/mysql/libexec/mysqld
socket=/tmp/manager.sock
pid-file=/tmp/manager.pid
password-file = /home/cps/.mysqlmanager.passwd
monitoring-interval = 2
port = 1999
bind-address = 192.168.1.5

Each [mysqld] or [mysqldN] instance section specifies options given by Instance Manager to a
server instance at startup. These are mainly common MySQL Server options (see Section 5.2.2,
“Command Options”). In addition, a [mysqldN] section can contain the options in the following list,
which are specific to Instance Manager. These options are interpreted by Instance Manager itself; it does
not pass them to the server when it attempts to start that server.

Warning

The Instance Manager-specific options must not be used in a [mysqld] section. If a server
is started without using Instance Manager, it will not recognize these options and will fail to
start properly.

• mysqld-path = path

The pathname of the mysqld server binary to use for the server instance.

• nonguarded

This option disables Instance Manager monitoring functionality for the server instance. By default,
an instance is guarded: At Instance Manager start time, it starts the instance. It also monitors the in-
stance status and attempts to restart it if it fails. At Instance Manager exit time, it stops the instance.
None of these things happen for nonguarded instances.

• shutdown-delay = seconds

The number of seconds Instance Manager should wait for the server instance to shut down. The de-
fault value is 35 seconds. After the delay expires, Instance Manager assumes that the instance is
hanging and attempts to terminate it. If you use InnoDB with large tables, you should increase this
value.

Here are some sample instance sections:

[mysqld1]
mysqld-path=/usr/local/mysql/libexec/mysqld
socket=/tmp/mysql.sock
port=3307
server_id=1
skip-stack-trace
core-file
skip-bdb
log-bin
log-error
log=mylog

Database Administration

309

log-slow-queries

[mysqld2]
nonguarded
port=3308
server_id=2
mysqld-path= /home/cps/mysql/trees/mysql-5.0/sql/mysqld
socket = /tmp/mysql.sock5
pid-file = /tmp/hostname.pid5
datadir= /home/cps/mysql_data/data_dir1
language=/home/cps/mysql/trees/mysql-5.0/sql/share/english
log-bin
log=/tmp/fordel.log

5.5.3. Starting the MySQL Server with MySQL Instance Man-
ager

This section discusses how Instance Manager starts server instances when it starts. However, before you
start Instance Manager, you should set up a password file for it. Otherwise, you will not be able to con-
nect to Instance Manager to control it after it starts. For details about creating Instance Manager ac-
counts, see Section 5.5.4, “Instance Manager User and Password Management”.

On Unix, the mysqld MySQL database server normally is started with the mysql.server script,
which usually resides in the /etc/init.d/ directory. In MySQL 5.0.3, this script invokes mysql-
manager (the MySQL Instance Manager binary) to start MySQL. (In prior versions of MySQL the
mysqld_safe script is used for this purpose.) Starting from MySQL 5.0.4, the behavior of the startup
script was changed again to incorporate both setup schemes. In version 5.0.4, the startup script uses the
old scheme (invoking mysqld_safe) by default, but one can set the use_mysqld_safe variable in
the script to 0 (zero) to use the MySQL Instance Manager to start a server.

Starting with MySQL 5.0.19, you can use Instance Manager if you modify the my.cnf configuration
file by adding use-manager to the [mysql.server] section:

[mysql.server]
use-manager

When Instance Manager starts, it reads its configuration file if it exists to find server instance sections
and prepare a list of instances. Instance sections have names of the form [mysqld] or [mysqldN],
where N is an unsigned integer (for example, [mysqld1], [mysqld2], and so forth).

After preparing the list of instances, Instance Manager starts the guarded instances in the list. If there are
no instances, Instance Manager creates an instance named mysqld and attempts to start it with default
(compiled-in) configuration values. This means that the Instance Manager cannot find the mysqld pro-
gram if it is not installed in the default location. (Section 2.1.5, “Installation Layouts”, describes default
locations for components of MySQL distributions.) If you have installed the MySQL server in a non-
standard location, you should create the Instance Manager configuration file.

Instance Manager also stops all guarded server instances when it shuts down.

The allowable options for [mysqldN] server instance sections are described in Section 5.5.2, “MySQL
Instance Manager Configuration Files”. In these sections, you can use a special
mysqld-path=path-to-mysqld-binary option that is recognized only by Instance Manager.
Use this option to let Instance Manager know where the mysqld binary resides. If there are multiple in-
stances, it may also be necessary to set other options such as datadir and port, to ensure that each
instance has a different data directory and TCP/IP port number. Section 5.13, “Running Multiple
MySQL Servers on the Same Machine”, discusses the configuration values that must differ for each in-
stance when you run multiple instance on the same machine.

Warning

Database Administration

310

The [mysqld] instance section, if it exists, must not contain any Instance Manager-specif-
ic options.

The typical Unix startup/shutdown cycle for a MySQL server with the MySQL Instance Manager en-
abled is as follows:

1. The /etc/init.d/mysql script starts MySQL Instance Manager.

2. Instance Manager starts the guarded server instances and monitors them.

3. If a server instance fails, Instance Manager restarts it.

4. If Instance Manager is shut down (for example, with the /etc/init.d/mysql stop com-
mand), it shuts down all server instances.

5.5.4. Instance Manager User and Password Management
The Instance Manager stores its user information in a password file. On Windows, the default is
mysqlmanager.passwd in the directory where Instance Manager is installed. On Unix, the default
file is /etc/mysqlmanager.passwd. To specify a different location for the password file, use the
--password-file option.

If the password file does not exist or contains no password entries, you cannot connect to the Instance
Manager.

Note

Any Instance Manager process that is running to monitor server instances does not notice
changes to the password file. You must stop it and restart it after making password entry
changes.

Entries in the password file have the following format, where the two fields are the account username
and encrypted password, separated by a colon:

petr:*35110DC9B4D8140F5DE667E28C72DD2597B5C848

Instance Manager password encryption is the same as that used by MySQL Server. It is a one-way oper-
ation; no means are provided for decrypting encrypted passwords.

Instance Manager accounts differ somewhat from MySQL Server accounts:

• MySQL Server accounts are associated with a hostname, username, and password (see Section 5.9.1,
“MySQL Usernames and Passwords”).

• Instance Manager accounts are associated with a username and password only.

This means that a client can connect to Instance Manager with a given username from any host. To limit
connections so that clients can connect only from the local host, start Instance Manager with the -
-bind-address=127.0.0.1 option so that it listens only to the local network interface. Remote
clients will not be able to connect. Local clients can connect like this:

shell> mysql -h 127.0.0.1 -P 2273

To generate a new entry, invoke Instance Manager with the --passwd option and append the output to

Database Administration

311

the /etc/mysqlmanager.passwd file. Here is an example:

shell> mysqlmanager --passwd >> /etc/mysqlmanager.passwd
Creating record for new user.
Enter user name: mike
Enter password: mikepass
Re-type password: mikepass

At the prompts, enter the username and password for the new Instance Manager user. You must enter
the password twice. It does not echo to the screen, so double entry guards against entering a different
password than you intend (if the two passwords do not match, no entry is generated).

The preceding command causes the following line to be added to /etc/mysqlmanager.passwd:

mike:*BBF1F551DD9DD96A01E66EC7DDC073911BAD17BA

5.5.5. MySQL Server Instance Status Monitoring
To monitor the status of each guarded server instance, the MySQL Instance Manager attempts to con-
nect to the instance at regular intervals using the MySQL_Instance_Manager@localhost user
account with a password of check_connection.

You are not required to create this account for MySQL Server; in fact, it is expected that it will not exist.
Instance Manager can tell that a server is operational if the server accepts the connection attempt but re-
fuses access for the account by returning a login error. However, these failed connection attempts are
logged by the server to its general query log (see Section 5.12.2, “The General Query Log”).

Instance Manager also attempts a connection to nonguarded server instances when you use the SHOW
INSTANCES or SHOW INSTANCE STATUS command. This is the only status monitoring done for
nonguarded instances.

Instance Manager knows if a server instance fails at startup because it receives a status from the attempt.
For an instance that starts but later crashes, Instance Manager receives a signal because it is the parent
process of the instance.

5.5.6. Connecting to MySQL Instance Manager
After you set up a password file for the MySQL Instance Manager and Instance Manager is running, you
can connect to it. The MySQL client-server protocol is used to communicate with the Instance Manager.
For example, you can connect to it using the standard mysql client program:

shell> mysql --port=2273 --host=im.example.org --user=mysql --password

Instance Manager supports the version of the MySQL client-server protocol used by the client tools and
libraries distributed with MySQL 4.1 or later, so other programs that use the MySQL C API also can
connect to it.

5.5.7. MySQL Instance Manager Commands
After you connect to MySQL Instance Manager, you can issue commands. The following general prin-
ciples apply to Instance Manager command execution:

• Commands that take an instance name fail if the name is not a valid instance name.

• Commands other than CREATE INSTANCE that take an instance name fail if the instance does not
exist.

Database Administration

312

• Instance Manager maintains information about instance configuration in an internal (in-memory)
cache. Initially, this information comes from the configuration file if it exists, but some commands
change the configuration of an instance. Commands that modify the configuration file fail if the file
does not exist or is not accessible to Instance Manager.

• On Windows, the standard file is my.ini in the directory where Instance Manager is installed. On
Unix, the standard configuration file is /etc/my.cnf. To specify a different configuration file,
start Instance Manager with the --defaults-file option.

• If a [mysqld] instance section exists in the configuration file, it must not contain any Instance
Manager-specific options (see Section 5.5.2, “MySQL Instance Manager Configuration Files”).
Therefore, you must not add any of these options if you change the configuration for an instance
named mysqld.

The following list describes the commands that Instance Manager accepts, with examples.

• START INSTANCE instance_name

This command attempts to start an offline instance. The command is asynchronous; it does not wait
for the instance to start.

mysql> START INSTANCE mysqld4;
Query OK, 0 rows affected (0,00 sec)

• STOP INSTANCE instance_name

This command attempts to stop an instance. The command is synchronous; it waits for the instance
to stop.

mysql> STOP INSTANCE mysqld4;
Query OK, 0 rows affected (0,00 sec)

• SHOW INSTANCES

Shows the names and status of all loaded instances.

mysql> SHOW INSTANCES;
+---------------+---------+
| instance_name | status |
+---------------+---------+
mysqld3	offline
mysqld4	online
mysqld2	offline
+---------------+---------+

• SHOW INSTANCE STATUS instance_name

Shows status and version information for an instance.

mysql> SHOW INSTANCE STATUS mysqld3;
+---------------+--------+---------+
| instance_name | status | version |
+---------------+--------+---------+
| mysqld3 | online | unknown |
+---------------+--------+---------+

• SHOW INSTANCE OPTIONS instance_name

Shows the options used by an instance.

Database Administration

313

mysql> SHOW INSTANCE OPTIONS mysqld3;
+---------------+---+
| option_name | value |
+---------------+---+
instance_name	mysqld3
mysqld-path	/home/cps/mysql/trees/mysql-4.1/sql/mysqld
port	3309
socket	/tmp/mysql.sock3
pid-file	hostname.pid3
datadir	/home/cps/mysql_data/data_dir1/
language	/home/cps/mysql/trees/mysql-4.1/sql/share/english
+---------------+---+

• SHOW instance_name LOG FILES

The command lists all log files used by the instance. The result set contains the path to the log file
and the log file size. If no log file path is specified in the instance section of the configuration file
(for example, log=/var/mysql.log), the Instance Manager tries to guess its placement. If In-
stance Manager is unable to guess the log file placement you should specify the log file location ex-
plicitly by using a log option in the appropriate instance section of the configuration file.

mysql> SHOW mysqld LOG FILES;
+-------------+------------------------------------+----------+
| Logfile | Path | Filesize |
+-------------+------------------------------------+----------+
ERROR LOG	/home/cps/var/mysql/owlet.err	9186
GENERAL LOG	/home/cps/var/mysql/owlet.log	471503
SLOW LOG	/home/cps/var/mysql/owlet-slow.log	4463
+-------------+------------------------------------+----------+

Log options are described in Section 5.2.2, “Command Options”.

• SHOW instance_name LOG {ERROR | SLOW | GENERAL} size[,off-
set_from_end]

This command retrieves a portion of the specified log file. Because most users are interested in the
latest log messages, the size parameter defines the number of bytes to retrieve from the end of the
log. To retrieve data from the middle of the log file, specify the optional offset_from_end para-
meter. The following example retrieves 21 bytes of data, starting 23 bytes before the end of the log
file and ending 2 bytes before the end:

mysql> SHOW mysqld LOG GENERAL 21, 2;
+---------------------+
| Log |
+---------------------+
| using password: YES |
+---------------------+

• SET instance_name.option_name[=option_value]

This command edits the specified instance's configuration section to change or add instance options.
The option is added to the section is it is not already present. Otherwise, the new setting replaces the
existing one.

mysql> SET mysqld2.port=3322;
Query OK, 0 rows affected (0.00 sec)

Changes made to the configuration file do not take effect until the MySQL server is restarted. In ad-
dition, these changes are not stored in the instance manager's local cache of instance settings until a
FLUSH INSTANCES command is executed.

• UNSET instance_name.option_name

Database Administration

314

This command removes an option from an instance's configuration section.

mysql> UNSET mysqld2.port;
Query OK, 0 rows affected (0.00 sec)

Changes made to the configuration file do not take effect until the MySQL server is restarted. In ad-
dition, these changes are not stored in the instance manager's local cache of instance settings until a
FLUSH INSTANCES command is executed.

• FLUSH INSTANCES

This command forces Instance Manager reread the configuration file and to refresh internal struc-
tures. This command should be performed after editing the configuration file. The command does
not restart instances.

mysql> FLUSH INSTANCES;
Query OK, 0 rows affected (0.04 sec)

5.6. Installation-Related Programs

5.6.1. mysql_fix_privilege_tables — Upgrade MySQL
System Tables

Some releases of MySQL introduce changes to the structure of the system tables in the mysql database
to add new privileges or support new features. When you update to a new version of MySQL, you
should update your system tables as well to make sure that their structure is up to date. Otherwise, there
might be capabilities that you cannot take advantage of. First, make a backup of your mysql database,
and then use the following procedure.

Note: As of MySQL 5.0.19, mysql_fix_privilege_tables is superseded by
mysql_upgrade, which should be used instead. See Section 5.6.2, “mysql_upgrade — Check
Tables for MySQL Upgrade”.

On Unix or Unix-like systems, update the system tables by running the
mysql_fix_privilege_tables script:

shell> mysql_fix_privilege_tables

You must run this script while the server is running. It attempts to connect to the server running on the
local host as root. If your root account requires a password, indicate the password on the command
line like this:

shell> mysql_fix_privilege_tables --password=root_password

The mysql_fix_privilege_tables script performs any actions necessary to convert your sys-
tem tables to the current format. You might see some Duplicate column name warnings as it
runs; you can ignore them.

After running the script, stop the server and restart it.

On Windows systems, MySQL distributions include a mysql_fix_privilege_tables.sql
SQL script that you can run using the mysql client. For example, if your MySQL installation is located
at C:\Program Files\MySQL\MySQL Server 5.0, the commands look like this:

Database Administration

315

C:\> cd "C:\Program Files\MySQL\MySQL Server 5.0"
C:\> bin\mysql -u root -p mysql
mysql> SOURCE scripts/mysql_fix_privilege_tables.sql

The mysql command will prompt you for the root password; enter it when prompted.

If your installation is located in some other directory, adjust the pathnames appropriately.

As with the Unix procedure, you might see some Duplicate column name warnings as mysql
processes the statements in the mysql_fix_privilege_tables.sql script; you can ignore them.

After running the script, stop the server and restart it.

5.6.2. mysql_upgrade — Check Tables for MySQL Upgrade
mysql_upgrade should be executed each time you upgrade MySQL. It checks all tables in all data-
bases for incompatibilities with the current version of MySQL Server. If a table is found to have a pos-
sible incompatibility, it is checked. If any problems are found, the table is repaired. mysql_upgrade
also upgrades the system tables so that you can take advantage of new privileges or capabilities that
might have been added.

All checked and repaired tables are marked with the current MySQL version number. This ensures that
next time you run mysql_upgrade with the same version of the server, it can tell whether there is any
need to check or repair the table again.

mysql_upgrade also saves the MySQL version number in a file named mysql_upgrade.info in
the data directory. This is used to quickly check if all tables have been checked for this release so that ta-
ble-checking can be skipped. To ignore this file, use the --force option.

To check and repair tables and to upgrade the system tables, mysql_upgrade executes the following
commands:

mysqlcheck --check-upgrade --all-databases --auto-repair
mysql_fix_privilege_tables

mysql_upgrade supersedes the older mysql_fix_privilege_tables script. In MySQL
5.0.19, mysql_upgrade was added as a shell script and worked only for Unix systems. As of
MySQL 5.0.25, mysql_upgrade is an executable binary and is available on all systems. On systems
older than those supporting mysql_upgrade, you can execute the mysqlcheck command manu-
ally, and then upgrade your system tables as described in Section 5.6.1,
“mysql_fix_privilege_tables — Upgrade MySQL System Tables”.

For details about what is checked, see the description of the FOR UPGRADE option of the CHECK TA-
BLE statement (see Section 13.5.2.3, “CHECK TABLE Syntax”).

To use mysql_upgrade, make sure that the server is running, and then invoke it like this:

shell> mysql_upgrade [options]

mysql_upgrade reads options from the command line and from the [mysql_upgrade] group in
option files. It supports the following options:

• --help

Display a short help message and exit.

• --basedir=path

Database Administration

316

The path to the MySQL installation directory.

• --datadir=path

The path to the data directory.

• --force

Force execution of mysqlcheck even if mysql_upgrade has already been executed for the cur-
rent version of MySQL. (In other words, this option causes the mysql_upgrade.info file to be
ignored.)

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server. The default username is root.

• --verbose

Verbose mode. Print more information about what the program does.

Other options are passed to mysqlcheck and to mysql_fix_privilege_tables. For example,
it might be necessary to specify the --password[=password] option.

5.7. General Security Issues
This section describes some general security issues to be aware of and what you can do to make your
MySQL installation more secure against attack or misuse. For information specifically about the access
control system that MySQL uses for setting up user accounts and checking database access, see Sec-
tion 5.8, “The MySQL Access Privilege System”.

5.7.1. General Security Guidelines
Anyone using MySQL on a computer connected to the Internet should read this section to avoid the
most common security mistakes.

In discussing security, we emphasize the necessity of fully protecting the entire server host (not just the
MySQL server) against all types of applicable attacks: eavesdropping, altering, playback, and denial of
service. We do not cover all aspects of availability and fault tolerance here.

MySQL uses security based on Access Control Lists (ACLs) for all connections, queries, and other op-
erations that users can attempt to perform. There is also support for SSL-encrypted connections between
MySQL clients and servers. Many of the concepts discussed here are not specific to MySQL at all; the
same general ideas apply to almost all applications.

When running MySQL, follow these guidelines whenever possible:

• Do not ever give anyone (except MySQL root accounts) access to the user table in the
mysql database! This is critical.

• Learn the MySQL access privilege system. The GRANT and REVOKE statements are used for con-
trolling access to MySQL. Do not grant more privileges than necessary. Never grant privileges to all
hosts.

Checklist:

Database Administration

317

• Try mysql -u root. If you are able to connect successfully to the server without being asked
for a password, anyone can connect to your MySQL server as the MySQL root user with full
privileges! Review the MySQL installation instructions, paying particular attention to the in-
formation about setting a root password. See Section 2.10.3, “Securing the Initial MySQL Ac-
counts”.

• Use the SHOW GRANTS statement to check which accounts have access to what. Then use the
REVOKE statement to remove those privileges that are not necessary.

• Do not store any plain-text passwords in your database. If your computer becomes compromised, the
intruder can take the full list of passwords and use them. Instead, use MD5(), SHA1(), or some oth-
er one-way hashing function and store the hash value.

• Do not choose passwords from dictionaries. Special programs exist to break passwords. Even pass-
words like “xfish98” are very bad. Much better is “duag98” which contains the same word “fish” but
typed one key to the left on a standard QWERTY keyboard. Another method is to use a password
that is taken from the first characters of each word in a sentence (for example, “Mary had a little
lamb” results in a password of “Mhall”). The password is easy to remember and type, but difficult to
guess for someone who does not know the sentence.

• Invest in a firewall. This protects you from at least 50% of all types of exploits in any software. Put
MySQL behind the firewall or in a demilitarized zone (DMZ).

Checklist:

• Try to scan your ports from the Internet using a tool such as nmap. MySQL uses port 3306 by
default. This port should not be accessible from untrusted hosts. Another simple way to check
whether or not your MySQL port is open is to try the following command from some remote ma-
chine, where server_host is the hostname or IP number of the host on which your MySQL
server runs:

shell> telnet server_host 3306

If you get a connection and some garbage characters, the port is open, and should be closed on
your firewall or router, unless you really have a good reason to keep it open. If telnet hangs or
the connection is refused, the port is blocked, which is how you want it to be.

• Do not trust any data entered by users of your applications. They can try to trick your code by enter-
ing special or escaped character sequences in Web forms, URLs, or whatever application you have
built. Be sure that your application remains secure if a user enters something like “; DROP DATA-
BASE mysql;”. This is an extreme example, but large security leaks and data loss might occur as
a result of hackers using similar techniques, if you do not prepare for them.

A common mistake is to protect only string data values. Remember to check numeric data as well. If
an application generates a query such as SELECT * FROM table WHERE ID=234 when a
user enters the value 234, the user can enter the value 234 OR 1=1 to cause the application to
generate the query SELECT * FROM table WHERE ID=234 OR 1=1. As a result, the server
retrieves every row in the table. This exposes every row and causes excessive server load. The
simplest way to protect from this type of attack is to use single quotes around the numeric constants:
SELECT * FROM table WHERE ID='234'. If the user enters extra information, it all be-
comes part of the string. In a numeric context, MySQL automatically converts this string to a num-
ber and strips any trailing non-numeric characters from it.

Sometimes people think that if a database contains only publicly available data, it need not be pro-
tected. This is incorrect. Even if it is allowable to display any row in the database, you should still
protect against denial of service attacks (for example, those that are based on the technique in the
preceding paragraph that causes the server to waste resources). Otherwise, your server becomes un-

Database Administration

318

responsive to legitimate users.

Checklist:

• Try to enter single and double quote marks (‘'’ and ‘"’) in all of your Web forms. If you get any
kind of MySQL error, investigate the problem right away.

• Try to modify dynamic URLs by adding %22 (‘"’), %23 (‘#’), and %27 (‘'’) to them.

• Try to modify data types in dynamic URLs from numeric to character types using the characters
shown in the previous examples. Your application should be safe against these and similar at-
tacks.

• Try to enter characters, spaces, and special symbols rather than numbers in numeric fields. Your
application should remove them before passing them to MySQL or else generate an error.
Passing unchecked values to MySQL is very dangerous!

• Check the size of data before passing it to MySQL.

• Have your application connect to the database using a username different from the one you use
for administrative purposes. Do not give your applications any access privileges they do not
need.

• Many application programming interfaces provide a means of escaping special characters in data
values. Properly used, this prevents application users from entering values that cause the application
to generate statements that have a different effect than you intend:

• MySQL C API: Use the mysql_real_escape_string() API call.

• MySQL++: Use the escape and quote modifiers for query streams.

• PHP: Use the mysql_real_escape_string() function (available as of PHP 4.3.0, prior to
that PHP version use mysql_escape_string(), and prior to PHP 4.0.3, use add-
slashes()). Note that only mysql_real_escape_string() is character set-aware; the
other functions can be “bypassed” when using (invalid) multi-byte character sets. In PHP 5, you
can use the mysqli extension, which supports the improved MySQL authentication protocol
and passwords, as well as prepared statements with placeholders.

• Perl DBI: Use placeholders or the quote() method.

• Ruby DBI: Use placeholders or the quote() method.

• Java JDBC: Use a PreparedStatement object and placeholders.

Other programming interfaces might have similar capabilities.

• Do not transmit plain (unencrypted) data over the Internet. This information is accessible to every-
one who has the time and ability to intercept it and use it for their own purposes. Instead, use an en-
crypted protocol such as SSL or SSH. MySQL supports internal SSL connections as of version 4.0.
Another technique is to use SSH port-forwarding to create an encrypted (and compressed) tunnel for
the communication.

• Learn to use the tcpdump and strings utilities. In most cases, you can check whether MySQL
data streams are unencrypted by issuing a command like the following:

shell> tcpdump -l -i eth0 -w - src or dst port 3306 | strings

(This works under Linux and should work with small modifications under other systems.) Warning:

Database Administration

319

If you do not see plaintext data, this doesn't always mean that the information actually is encrypted.
If you need high security, you should consult with a security expert.

5.7.2. Making MySQL Secure Against Attackers
When you connect to a MySQL server, you should use a password. The password is not transmitted in
clear text over the connection. Password handling during the client connection sequence was upgraded
in MySQL 4.1.1 to be very secure. If you are still using pre-4.1.1-style passwords, the encryption al-
gorithm is not as strong as the newer algorithm. With some effort, a clever attacker who can sniff the
traffic between the client and the server can crack the password. (See Section 5.8.9, “Password Hashing
as of MySQL 4.1”, for a discussion of the different password handling methods.)

All other information is transferred as text, and can be read by anyone who is able to watch the connec-
tion. If the connection between the client and the server goes through an untrusted network, and you are
concerned about this, you can use the compressed protocol to make traffic much more difficult to de-
cipher. You can also use MySQL's internal SSL support to make the connection even more secure. See
Section 5.9.7, “Using Secure Connections”. Alternatively, use SSH to get an encrypted TCP/IP connec-
tion between a MySQL server and a MySQL client. You can find an Open Source SSH client at ht-
tp://www.openssh.org/, and a commercial SSH client at http://www.ssh.com/.

To make a MySQL system secure, you should strongly consider the following suggestions:

• Require all MySQL accounts to have a password. A client program does not necessarily know the
identity of the person running it. It is common for client/server applications that the user can specify
any username to the client program. For example, anyone can use the mysql program to connect as
any other person simply by invoking it as mysql -u other_user db_name if other_user
has no password. If all accounts have a password, connecting using another user's account becomes
much more difficult.

For a discussion of methods for setting passwords, see Section 5.9.5, “Assigning Account Pass-
words”.

• Never run the MySQL server as the Unix root user. This is extremely dangerous, because any user
with the FILE privilege is able to cause the server to create files as root (for example,
~root/.bashrc). To prevent this, mysqld refuses to run as root unless that is specified expli-
citly using the --user=root option.

mysqld can (and should) be run as an ordinary, unprivileged user instead. You can create a separate
Unix account named mysql to make everything even more secure. Use this account only for admin-
istering MySQL. To start mysqld as a different Unix user, add a user option that specifies the
username in the [mysqld] group of the my.cnf option file where you specify server options. For
example:

[mysqld]
user=mysql

This causes the server to start as the designated user whether you start it manually or by using
mysqld_safe or mysql.server. For more details, see Section 5.7.5, “How to Run MySQL as
a Normal User”.

Running mysqld as a Unix user other than root does not mean that you need to change the root
username in the user table. Usernames for MySQL accounts have nothing to do with usernames for
Unix accounts.

• Do not allow the use of symlinks to tables. (This capability can be disabled with the -

Database Administration

320

http://www.openssh.org/
http://www.openssh.org/
http://www.ssh.com/

-skip-symbolic-links option.) This is especially important if you run mysqld as root, be-
cause anyone that has write access to the server's data directory then could delete any file in the sys-
tem! See Section 7.6.1.2, “Using Symbolic Links for Tables on Unix”.

• Make sure that the only Unix user with read or write privileges in the database directories is the user
that mysqld runs as.

• Do not grant the PROCESS or SUPER privilege to non-administrative users. The output of mysql-
admin processlist and SHOW PROCESSLIST shows the text of any statements currently be-
ing executed, so any user who is allowed to see the server process list might be able to see state-
ments issued by other users such as UPDATE user SET pass-
word=PASSWORD('not_secure').

mysqld reserves an extra connection for users who have the SUPER privilege, so that a MySQL
root user can log in and check server activity even if all normal connections are in use.

The SUPER privilege can be used to terminate client connections, change server operation by chan-
ging the value of system variables, and control replication servers.

• Do not grant the FILE privilege to non-administrative users. Any user that has this privilege can
write a file anywhere in the filesystem with the privileges of the mysqld daemon. To make this a
bit safer, files generated with SELECT ... INTO OUTFILE do not overwrite existing files and
are writable by everyone.

The FILE privilege may also be used to read any file that is world-readable or accessible to the
Unix user that the server runs as. With this privilege, you can read any file into a database table. This
could be abused, for example, by using LOAD DATA to load /etc/passwd into a table, which
then can be displayed with SELECT.

• If you do not trust your DNS, you should use IP numbers rather than hostnames in the grant tables.
In any case, you should be very careful about creating grant table entries using hostname values that
contain wildcards.

• If you want to restrict the number of connections allowed to a single account, you can do so by set-
ting the max_user_connections variable in mysqld. The GRANT statement also supports re-
source control options for limiting the extent of server use allowed to an account. See Sec-
tion 13.5.1.3, “GRANT Syntax”.

• --ssl*

Options that begin with --ssl specify whether to allow clients to connect via SSL and indicate
where to find SSL keys and certificates. See Section 5.9.7.3, “SSL Command Options”.

5.7.3. Security-Related mysqld Options
The following mysqld options affect security:

• --allow-suspicious-udfs

This option controls whether user-defined functions that have only an xxx symbol for the main
function can be loaded. By default, the option is off and only UDFs that have at least one auxiliary
symbol can be loaded; this prevents attempts at loading functions from shared object files other than
those containing legitimate UDFs. For MySQL 5.0, this option was added in MySQL 5.0.3. See Sec-
tion 24.2.4.6, “User-Defined Function Security Precautions”.

• --local-infile[={0|1}]

Database Administration

321

If you start the server with --local-infile=0, clients cannot use LOCAL in LOAD DATA state-
ments. See Section 5.7.4, “Security Issues with LOAD DATA LOCAL”.

• --old-passwords

Force the server to generate short (pre-4.1) password hashes for new passwords. This is useful for
compatibility when the server must support older client programs. See Section 5.8.9, “Password
Hashing as of MySQL 4.1”.

• --safe-show-database (OBSOLETE)

In previous versions of MySQL, this option caused the SHOW DATABASES statement to display the
names of only those databases for which the user had some kind of privilege. In MySQL 5.0, this op-
tion is no longer available as this is now the default behavior, and there is a SHOW DATABASES
privilege that can be used to control access to database names on a per-account basis. See Sec-
tion 13.5.1.3, “GRANT Syntax”.

• --safe-user-create

If this option is enabled, a user cannot create new MySQL users by using the GRANT statement un-
less the user has the INSERT privilege for the mysql.user table. If you want a user to have the
ability to create new users that have those privileges that the user has right to grant, you should grant
the user the following privilege:

GRANT INSERT(user) ON mysql.user TO 'user_name'@'host_name';

This ensures that the user cannot change any privilege columns directly, but has to use the GRANT
statement to give privileges to other users.

• --secure-auth

Disallow authentication for accounts that have old (pre-4.1) passwords.

The mysql client also has a --secure-auth option, which prevents connections to a server if
the server requires a password in old format for the client account.

• --skip-grant-tables

This option causes the server not to use the privilege system at all. This gives anyone with access to
the server unrestricted access to all databases. You can cause a running server to start using the
grant tables again by executing mysqladmin flush-privileges or mysqladmin reload
command from a system shell, or by issuing a MySQL FLUSH PRIVILEGES statement. This op-
tion also suppresses loading of user-defined functions (UDFs).

• --skip-name-resolve

Hostnames are not resolved. All Host column values in the grant tables must be IP numbers or
localhost.

• --skip-networking

Do not allow TCP/IP connections over the network. All connections to mysqld must be made via
Unix socket files.

• --skip-show-database

With this option, the SHOW DATABASES statement is allowed only to users who have the SHOW
DATABASES privilege, and the statement displays all database names. Without this option, SHOW

Database Administration

322

DATABASES is allowed to all users, but displays each database name only if the user has the SHOW
DATABASES privilege or some privilege for the database. Note that any global privilege is a priv-
ilege for the database.

5.7.4. Security Issues with LOAD DATA LOCAL

The LOAD DATA statement can load a file that is located on the server host, or it can load a file that is
located on the client host when the LOCAL keyword is specified.

There are two potential security issues with supporting the LOCAL version of LOAD DATA statements:

• The transfer of the file from the client host to the server host is initiated by the MySQL server. In
theory, a patched server could be built that would tell the client program to transfer a file of the serv-
er's choosing rather than the file named by the client in the LOAD DATA statement. Such a server
could access any file on the client host to which the client user has read access.

• In a Web environment where the clients are connecting from a Web server, a user could use LOAD
DATA LOCAL to read any files that the Web server process has read access to (assuming that a user
could run any command against the SQL server). In this environment, the client with respect to the
MySQL server actually is the Web server, not the remote program being run by the user who con-
nects to the Web server.

To deal with these problems, we changed how LOAD DATA LOCAL is handled as of MySQL 3.23.49
and MySQL 4.0.2 (4.0.13 on Windows):

• By default, all MySQL clients and libraries in binary distributions are compiled with the -
-enable-local-infile option, to be compatible with MySQL 3.23.48 and before.

• If you build MySQL from source but do not invoke configure with the -
-enable-local-infile option, LOAD DATA LOCAL cannot be used by any client unless it is
written explicitly to invoke mysql_options(... MYSQL_OPT_LOCAL_INFILE, 0). See
Section 22.2.3.48, “mysql_options()”.

• You can disable all LOAD DATA LOCAL commands from the server side by starting mysqld with
the --local-infile=0 option.

• For the mysql command-line client, LOAD DATA LOCAL can be enabled by specifying the -
-local-infile[=1] option, or disabled with the --local-infile=0 option. Similarly, for
mysqlimport, the --local or -L option enables local data file loading. In any case, successful
use of a local loading operation requires that the server is enabled to allow it.

• If you use LOAD DATA LOCAL in Perl scripts or other programs that read the [client] group
from option files, you can add the local-infile=1 option to that group. However, to keep this
from causing problems for programs that do not understand local-infile, specify it using the
loose- prefix:

[client]
loose-local-infile=1

• If LOAD DATA LOCAL INFILE is disabled, either in the server or the client, a client that attempts
to issue such a statement receives the following error message:

ERROR 1148: The used command is not allowed with this MySQL version

Database Administration

323

5.7.5. How to Run MySQL as a Normal User
On Windows, you can run the server as a Windows service using a normal user account.

On Unix, the MySQL server mysqld can be started and run by any user. However, you should avoid
running the server as the Unix root user for security reasons. To change mysqld to run as a normal
unprivileged Unix user user_name, you must do the following:

1. Stop the server if it's running (use mysqladmin shutdown).

2. Change the database directories and files so that user_name has privileges to read and write files
in them (you might need to do this as the Unix root user):

shell> chown -R user_name /path/to/mysql/datadir

If you do not do this, the server will not be able to access databases or tables when it runs as
user_name.

If directories or files within the MySQL data directory are symbolic links, you'll also need to follow
those links and change the directories and files they point to. chown -R might not follow symbol-
ic links for you.

3. Start the server as user user_name. If you are using MySQL 3.22 or later, another alternative is
to start mysqld as the Unix root user and use the --user=user_name option. mysqld starts
up, then switches to run as the Unix user user_name before accepting any connections.

4. To start the server as the given user automatically at system startup time, specify the username by
adding a user option to the [mysqld] group of the /etc/my.cnf option file or the my.cnf
option file in the server's data directory. For example:

[mysqld]
user=user_name

If your Unix machine itself isn't secured, you should assign passwords to the MySQL root accounts in
the grant tables. Otherwise, any user with a login account on that machine can run the mysql client
with a --user=root option and perform any operation. (It is a good idea to assign passwords to
MySQL accounts in any case, but especially so when other login accounts exist on the server host.) See
Section 2.10, “Post-Installation Setup and Testing”.

5.8. The MySQL Access Privilege System
MySQL has an advanced but non-standard security and privilege system. The following discussion de-
scribes how it works.

5.8.1. What the Privilege System Does
The primary function of the MySQL privilege system is to authenticate a user who connects from a giv-
en host and to associate that user with privileges on a database such as SELECT, INSERT, UPDATE,
and DELETE.

Additional functionality includes the ability to have anonymous users and to grant privileges for
MySQL-specific functions such as LOAD DATA INFILE and administrative operations.

5.8.2. How the Privilege System Works

Database Administration

324

The MySQL privilege system ensures that all users may perform only the operations allowed to them.
As a user, when you connect to a MySQL server, your identity is determined by the host from which you
connect and the username you specify. When you issue requests after connecting, the system grants priv-
ileges according to your identity and what you want to do.

MySQL considers both your hostname and username in identifying you because there is little reason to
assume that a given username belongs to the same person everywhere on the Internet. For example, the
user joe who connects from office.example.com need not be the same person as the user joe
who connects from home.example.com. MySQL handles this by allowing you to distinguish users
on different hosts that happen to have the same name: You can grant one set of privileges for connec-
tions by joe from office.example.com, and a different set of privileges for connections by joe
from home.example.com.

MySQL access control involves two stages when you run a client program that connects to the server:

• Stage 1: The server checks whether it should allow you to connect.

• Stage 2: Assuming that you can connect, the server checks each statement you issue to determine
whether you have sufficient privileges to perform it. For example, if you try to select rows from a ta-
ble in a database or drop a table from the database, the server verifies that you have the SELECT
privilege for the table or the DROP privilege for the database.

If your privileges are changed (either by yourself or someone else) while you are connected, those
changes do not necessarily take effect immediately for the next statement that you issue. See Sec-
tion 5.8.7, “When Privilege Changes Take Effect”, for details.

The server stores privilege information in the grant tables of the mysql database (that is, in the database
named mysql). The MySQL server reads the contents of these tables into memory when it starts and re-
reads them under the circumstances indicated in Section 5.8.7, “When Privilege Changes Take Effect”.
Access-control decisions are based on the in-memory copies of the grant tables.

Normally, you manipulate the contents of the grant tables indirectly by using statements such as GRANT
and REVOKE to set up accounts and control the privileges available to each one. See Section 13.5.1,
“Account Management Statements”. The discussion here describes the underlying structure of the grant
tables and how the server uses their contents when interacting with clients.

The server uses the user, db, and host tables in the mysql database at both stages of access control.
The columns in the user and db tables are shown here. The host table is similar to the db table but
has a specialized use as described in Section 5.8.6, “Access Control, Stage 2: Request Verification”.

Table Name user db

Scope columns Host Host

User Db

Password User

Privilege columns Select_priv Select_priv

Insert_priv Insert_priv

Update_priv Update_priv

Delete_priv Delete_priv

Index_priv Index_priv

Alter_priv Alter_priv

Create_priv Create_priv

Drop_priv Drop_priv

Database Administration

325

Grant_priv Grant_priv

Create_view_priv Create_view_priv

Show_view_priv Show_view_priv

Create_routine_priv Create_routine_priv

Alter_routine_priv Alter_routine_priv

Execute_priv Execute_priv

Cre-
ate_tmp_table_priv

Cre-
ate_tmp_table_priv

Lock_tables_priv Lock_tables_priv

References_priv References_priv

Reload_priv

Shutdown_priv

Process_priv

File_priv

Show_db_priv

Super_priv

Repl_slave_priv

Repl_client_priv

Security columns ssl_type

ssl_cipher

x509_issuer

x509_subject

Resource control columns max_questions

max_updates

max_connections

max_user_connections

Execute_priv was present in MySQL 5.0.0, but did not become operational until MySQL 5.0.3.

The Create_view_priv and Show_view_priv columns were added in MySQL 5.0.1.

The Create_routine_priv, Alter_routine_priv, and max_user_connections
columns were added in MySQL 5.0.3.

During the second stage of access control, the server performs request verification to make sure that
each client has sufficient privileges for each request that it issues. In addition to the user, db, and
host grant tables, the server may also consult the tables_priv and columns_priv tables for re-
quests that involve tables. The tables_priv and columns_priv tables provide finer privilege con-
trol at the table and column levels. They have the following columns:

Table Name tables_priv columns_priv

Scope columns Host Host

Db Db

User User

Table_name Table_name

Database Administration

326

Column_name

Privilege columns Table_priv Column_priv

Column_priv

Other columns Timestamp Timestamp

Grantor

The Timestamp and Grantor columns currently are unused and are discussed no further here.

For verification of requests that involve stored routines, the server may consult the procs_priv table.
This table has the following columns:

Table Name procs_priv

Scope columns Host

Db

User

Routine_name

Routine_type

Privilege columns Proc_priv

Other columns Timestamp

Grantor

The procs_priv table exists as of MySQL 5.0.3. The Routine_type column was added in
MySQL 5.0.6. It is an ENUM column with values of 'FUNCTION' or 'PROCEDURE' to indicate the
type of routine the row refers to. This column allows privileges to be granted separately for a function
and a procedure with the same name.

The Timestamp and Grantor columns currently are unused and are discussed no further here.

Each grant table contains scope columns and privilege columns:

• Scope columns determine the scope of each row (entry) in the tables; that is, the context in which the
row applies. For example, a user table row with Host and User values of
'thomas.loc.gov' and 'bob' would be used for authenticating connections made to the serv-
er from the host thomas.loc.gov by a client that specifies a username of bob. Similarly, a db
table row with Host, User, and Db column values of 'thomas.loc.gov', 'bob' and 're-
ports' would be used when bob connects from the host thomas.loc.gov to access the re-
ports database. The tables_priv and columns_priv tables contain scope columns indicat-
ing tables or table/column combinations to which each row applies. The procs_priv scope
columns indicate the stored routine to which each row applies.

• Privilege columns indicate which privileges are granted by a table row; that is, what operations can
be performed. The server combines the information in the various grant tables to form a complete
description of a user's privileges. Section 5.8.6, “Access Control, Stage 2: Request Verification”, de-
scribes the rules that are used to do this.

Scope columns contain strings. They are declared as shown here; the default value for each is the empty
string:

Column Name Type

Database Administration

327

Host CHAR(60)

User CHAR(16)

Password CHAR(16)

Db CHAR(64)

Table_name CHAR(64)

Column_name CHAR(64)

Routine_name CHAR(64)

For access-checking purposes, comparisons of Host values are case-insensitive. User, Password,
Db, and Table_name values are case sensitive. Column_name and Routine_name values are case
insensitive.

In the user, db, and host tables, each privilege is listed in a separate column that is declared as
ENUM('N','Y') DEFAULT 'N'. In other words, each privilege can be disabled or enabled, with
the default being disabled.

In the tables_priv, columns_priv, and procs_priv tables, the privilege columns are declared
as SET columns. Values in these columns can contain any combination of the privileges controlled by
the table:

Table Name Column Name Possible Set Elements

tables_priv Table_priv 'Select', 'Insert', 'Update', 'Delete',
'Create', 'Drop', 'Grant', 'References',
'Index', 'Alter', 'Create View', 'Show
view'

tables_priv Column_pri
v

'Select', 'Insert', 'Update', 'References'

columns_priv Column_pri
v

'Select', 'Insert', 'Update', 'References'

procs_priv Proc_priv 'Execute', 'Alter Routine', 'Grant'

Briefly, the server uses the grant tables in the following manner:

• The user table scope columns determine whether to reject or allow incoming connections. For al-
lowed connections, any privileges granted in the user table indicate the user's global (superuser)
privileges. Any privilege granted in this table applies to all databases on the server.

Note: Because any global privilege is considered a privilege for all databases, any global privilege
enables a user to see all database names with SHOW DATABASES or by examining the SCHEMATA
table of INFORMATION_SCHEMA.

• The db table scope columns determine which users can access which databases from which hosts.
The privilege columns determine which operations are allowed. A privilege granted at the database
level applies to the database and to all its tables.

• The host table is used in conjunction with the db table when you want a given db table row to ap-
ply to several hosts. For example, if you want a user to be able to use a database from several hosts
in your network, leave the Host value empty in the user's db table row, then populate the host ta-
ble with a row for each of those hosts. This mechanism is described more detail in Section 5.8.6,
“Access Control, Stage 2: Request Verification”.

Database Administration

328

Note: The host table must be modified directly with statements such as INSERT, UPDATE, and
DELETE. It is not affected by statements such as GRANT and REVOKE that modify the grant tables
indirectly. Most MySQL installations need not use this table at all.

• The tables_priv and columns_priv tables are similar to the db table, but are more fine-
grained: They apply at the table and column levels rather than at the database level. A privilege gran-
ted at the table level applies to the table and to all its columns. A privilege granted at the column
level applies only to a specific column.

• The procs_priv table applies to stored routines. A privilege granted at the routine level applies
only to a single routine.

Administrative privileges (such as RELOAD or SHUTDOWN) are specified only in the user table. The
reason for this is that administrative operations are operations on the server itself and are not database-
specific, so there is no reason to list these privileges in the other grant tables. In fact, to determine
whether you can perform an administrative operation, the server need consult only the user table.

The FILE privilege also is specified only in the user table. It is not an administrative privilege as such,
but your ability to read or write files on the server host is independent of the database you are accessing.

The mysqld server reads the contents of the grant tables into memory when it starts. You can tell it to
re-read the tables by issuing a FLUSH PRIVILEGES statement or executing a mysqladmin
flush-privileges or mysqladmin reload command. Changes to the grant tables take effect
as indicated in Section 5.8.7, “When Privilege Changes Take Effect”.

When you modify the contents of the grant tables, it is a good idea to make sure that your changes set up
privileges the way you want. To check the privileges for a given account, use the SHOW GRANTS state-
ment. (See Section 13.5.4.12, “SHOW GRANTS Syntax”.) For example, to determine the privileges that
are granted to an account with Host and User values of pc84.example.com and bob, issue this
statement:

SHOW GRANTS FOR 'bob'@'pc84.example.com';

For additional help in diagnosing privilege-related problems, see Section 5.8.8, “Causes of Access
denied Errors”. For general advice on security issues, see Section 5.7, “General Security Issues”.

5.8.3. Privileges Provided by MySQL
Information about account privileges is stored in the user, db, host, tables_priv,
columns_priv, and procs_priv tables in the mysql database. The MySQL server reads the con-
tents of these tables into memory when it starts and re-reads them under the circumstances indicated in
Section 5.8.7, “When Privilege Changes Take Effect”. Access-control decisions are based on the in-
memory copies of the grant tables.

The names used in the GRANT and REVOKE statements to refer to privileges are shown in the following
table, along with the column name associated with each privilege in the grant tables and the context in
which the privilege applies. Further information about the meaning of each privilege may be found at
Section 13.5.1.3, “GRANT Syntax”.

Privilege Column Context

CREATE Create_priv databases, tables, or indexes

DROP Drop_priv databases or tables

GRANT OPTION Grant_priv databases, tables, or stored routines

REFERENCES References_priv databases or tables

Database Administration

329

ALTER Alter_priv tables

DELETE Delete_priv tables

INDEX Index_priv tables

INSERT Insert_priv tables

SELECT Select_priv tables

UPDATE Update_priv tables

CREATE VIEW Create_view_priv views

SHOW VIEW Show_view_priv views

ALTER ROUTINE Alter_routine_priv stored routines

CREATE ROUTINE Create_routine_priv stored routines

EXECUTE Execute_priv stored routines

FILE File_priv file access on server host

CREATE TEMPORARY
TABLES

Create_tmp_table_priv server administration

LOCK TABLES Lock_tables_priv server administration

CREATE USER Create_user_priv server administration

PROCESS Process_priv server administration

RELOAD Reload_priv server administration

REPLICATION CLIENT Repl_client_priv server administration

REPLICATION SLAVE Repl_slave_priv server administration

SHOW DATABASES Show_db_priv server administration

SHUTDOWN Shutdown_priv server administration

SUPER Super_priv server administration

Some releases of MySQL introduce changes to the structure of the grant tables to add new privileges or
features. Whenever you update to a new version of MySQL, you should update your grant tables to
make sure that they have the current structure so that you can take advantage of any new capabilities.
See Section 5.6.2, “mysql_upgrade — Check Tables for MySQL Upgrade”.

CREATE VIEW and SHOW VIEW were added in MySQL 5.0.1. CREATE USER, CREATE ROUTINE,
and ALTER ROUTINE were added in MySQL 5.0.3. Although EXECUTE was present in MySQL 5.0.0,
it did not become operational until MySQL 5.0.3.

To create or alter stored routines if binary logging is enabled, you may also need the SUPER privilege,
as described in Section 17.5, “Binary Logging of Stored Routines and Triggers”.

The CREATE and DROP privileges allow you to create new databases and tables, or to drop (remove) ex-
isting databases and tables. If you grant the DROP privilege for the mysql database to a user, that user
can drop the database in which the MySQL access privileges are stored.

The SELECT, INSERT, UPDATE, and DELETE privileges allow you to perform operations on rows in
existing tables in a database. INSERT is also required for the ANALYZE TABLE, OPTIMIZE TABLE,
and REPAIR TABLE table-maintenance statements.

SELECT statements require the SELECT privilege only if they actually retrieve rows from a table. Some
SELECT statements do not access tables and can be executed without permission for any database. For
example, you can use the mysql client as a simple calculator to evaluate expressions that make no ref-
erence to tables:

Database Administration

330

SELECT 1+1;
SELECT PI()*2;

The INDEX privilege enables you to create or drop (remove) indexes. INDEX applies to existing tables.
If you have the CREATE privilege for a table, you can include index definitions in the CREATE TABLE
statement.

The ALTER privilege enables you to use ALTER TABLE to change the structure of or rename tables.

The CREATE ROUTINE privilege is needed for creating stored routines (functions and procedures).
ALTER ROUTINE privilege is needed for altering or dropping stored routines, and EXECUTE is needed
for executing stored routines.

The GRANT privilege enables you to give to other users those privileges that you yourself possess. It can
be used for databases, tables, and stored routines.

The FILE privilege gives you permission to read and write files on the server host using the LOAD
DATA INFILE and SELECT ... INTO OUTFILE statements. A user who has the FILE privilege
can read any file on the server host that is either world-readable or readable by the MySQL server. (This
implies the user can read any file in any database directory, because the server can access any of those
files.) The FILE privilege also enables the user to create new files in any directory where the MySQL
server has write access. As a security measure, the server will not overwrite existing files.

The remaining privileges are used for administrative operations. Many of them can be performed by us-
ing the mysqladmin program or by issuing SQL statements. The following table shows which
mysqladmin commands each administrative privilege enables you to execute:

Privilege Commands Permitted to Privilege Holders

RELOAD flush-hosts, flush-logs, flush-privileges, flush-status,
flush-tables, flush-threads, refresh, reload

SHUTDOWN shutdown

PROCESS processlist

SUPER kill

The reload command tells the server to re-read the grant tables into memory. flush-privileges
is a synonym for reload. The refresh command closes and reopens the log files and flushes all
tables. The other flush-xxx commands perform functions similar to refresh, but are more specific
and may be preferable in some instances. For example, if you want to flush just the log files, flush-
logs is a better choice than refresh.

The shutdown command shuts down the server. There is no corresponding SQL statement.

The processlist command displays information about the threads executing within the server (that
is, information about the statements being executed by clients). The kill command terminates server
threads. You can always display or kill your own threads, but you need the PROCESS privilege to dis-
play threads initiated by other users and the SUPER privilege to kill them. See Section 13.5.5.3, “KILL
Syntax”.

The CREATE TEMPORARY TABLES privilege enables the use of the keyword TEMPORARY in CRE-
ATE TABLE statements.

The LOCK TABLES privilege enables the use of explicit LOCK TABLES statements to lock tables for
which you have the SELECT privilege. This includes the use of write locks, which prevents anyone else
from reading the locked table.

The REPLICATION CLIENT privilege enables the use of SHOW MASTER STATUS and SHOW

Database Administration

331

SLAVE STATUS.

The REPLICATION SLAVE privilege should be granted to accounts that are used by slave servers to
connect to the current server as their master. Without this privilege, the slave cannot request updates that
have been made to databases on the master server.

The SHOW DATABASES privilege allows the account to see database names by issuing the SHOW
DATABASE statement. Accounts that do not have this privilege see only databases for which they have
some privileges, and cannot use the statement at all if the server was started with the -
-skip-show-database option. Note that any global privilege is a privilege for the database.

It is a good idea to grant to an account only those privileges that it needs. You should exercise particular
caution in granting the FILE and administrative privileges:

• The FILE privilege can be abused to read into a database table any files that the MySQL server can
read on the server host. This includes all world-readable files and files in the server's data directory.
The table can then be accessed using SELECT to transfer its contents to the client host.

• The GRANT privilege enables users to give their privileges to other users. Two users that have differ-
ent privileges and with the GRANT privilege are able to combine privileges.

• The ALTER privilege may be used to subvert the privilege system by renaming tables.

• The SHUTDOWN privilege can be abused to deny service to other users entirely by terminating the
server.

• The PROCESS privilege can be used to view the plain text of currently executing statements, includ-
ing statements that set or change passwords.

• The SUPER privilege can be used to terminate other clients or change how the server operates.

• Privileges granted for the mysql database itself can be used to change passwords and other access
privilege information. Passwords are stored encrypted, so a malicious user cannot simply read them
to know the plain text password. However, a user with write access to the user table Password
column can change an account's password, and then connect to the MySQL server using that ac-
count.

There are some things that you cannot do with the MySQL privilege system:

• You cannot explicitly specify that a given user should be denied access. That is, you cannot expli-
citly match a user and then refuse the connection.

• You cannot specify that a user has privileges to create or drop tables in a database but not to create
or drop the database itself.

• A password applies globally to an account. You cannot associate a password with a specific object
such as a database, table, or routine.

5.8.4. Connecting to the MySQL Server
MySQL client programs generally expect you to specify certain connection parameters when you want
to access a MySQL server:

• The name of the host where the MySQL server is running

Database Administration

332

• Your username

• Your password

For example, the mysql client can be started as follows from a command-line prompt (indicated here
by shell>):

shell> mysql -h host_name -u user_name -pyour_pass

Alternative forms of the -h, -u, and -p options are --host=host_name, --user=user_name,
and --password=your_pass. Note that there is no space between -p or --password= and the
password following it.

If you use a -p or --password option but do not specify the password value, the client program
prompts you to enter the password. The password is not displayed as you enter it. This is more secure
than giving the password on the command line. Any user on your system may be able to see a password
specified on the command line by executing a command such as ps auxw. See Section 5.9.6, “Keeping
Your Password Secure”.

MySQL client programs use default values for any connection parameter option that you do not specify:

• The default hostname is localhost.

• The default username is ODBC on Windows and your Unix login name on Unix.

• No password is supplied if neither -p nor --passwordis given.

Thus, for a Unix user with a login name of joe, all of the following commands are equivalent:

shell> mysql -h localhost -u joe
shell> mysql -h localhost
shell> mysql -u joe
shell> mysql

Other MySQL clients behave similarly.

You can specify different default values to be used when you make a connection so that you need not
enter them on the command line each time you invoke a client program. This can be done in a couple of
ways:

• You can specify connection parameters in the [client] section of an option file. The relevant sec-
tion of the file might look like this:

[client]
host=host_name
user=user_name
password=your_pass

Section 4.3.2, “Using Option Files”, discusses option files further.

• You can specify some connection parameters using environment variables. The host can be specified
for mysql using MYSQL_HOST. The MySQL username can be specified using USER (this is for
Windows and NetWare only). The password can be specified using MYSQL_PWD, although this is
insecure; see Section 5.9.6, “Keeping Your Password Secure”. For a list of variables, see Ap-
pendix F, Environment Variables.

Database Administration

333

5.8.5. Access Control, Stage 1: Connection Verification
When you attempt to connect to a MySQL server, the server accepts or rejects the connection based on
your identity and whether you can verify your identity by supplying the correct password. If not, the
server denies access to you completely. Otherwise, the server accepts the connection, and then enters
Stage 2 and waits for requests.

Your identity is based on two pieces of information:

• The client host from which you connect

• Your MySQL username

Identity checking is performed using the three user table scope columns (Host, User, and Pass-
word). The server accepts the connection only if the Host and User columns in some user table row
match the client hostname and username and the client supplies the password specified in that row.

Host values in the user table may be specified as follows:

• A Host value may be a hostname or an IP number, or 'localhost' to indicate the local host.

• You can use the wildcard characters ‘%’ and ‘_’ in Host column values. These have the same mean-
ing as for pattern-matching operations performed with the LIKE operator. For example, a Host
value of '%' matches any hostname, whereas a value of '%.mysql.com' matches any host in the
mysql.com domain.

• For Host values specified as IP numbers, you can specify a netmask indicating how many address
bits to use for the network number. For example:

GRANT ALL PRIVILEGES ON db.* TO david@'192.58.197.0/255.255.255.0';

This allows david to connect from any client host having an IP number client_ip for which the
following condition is true:

client_ip & netmask = host_ip

That is, for the GRANT statement just shown:

client_ip & 255.255.255.0 = 192.58.197.0

IP numbers that satisfy this condition and can connect to the MySQL server are those in the range
from 192.58.197.0 to 192.58.197.255.

Note: The netmask can only be used to tell the server to use 8, 16, 24, or 32 bits of the address. Ex-
amples:

• 192.0.0.0/255.0.0.0: anything on the 192 class A network

• 192.168.0.0/255.255.0.0: anything on the 192.168 class B network

• 192.168.1.0/255.255.255.0: anything on the 192.168.1 class C network

• 192.168.1.1: only this specific IP

The following netmask (28 bits) will not work:

Database Administration

334

192.168.0.1/255.255.255.240

• A blank Host value in a db table row means that its privileges should be combined with those in
the row in the host table that matches the client hostname. The privileges are combined using an
AND (intersection) operation, not OR (union). Section 5.8.6, “Access Control, Stage 2: Request
Verification”, discusses use of the host table further.

A blank Host value in the other grant tables is the same as '%'.

Because you can use IP wildcard values in the Host column (for example, '144.155.166.%' to
match every host on a subnet), someone could try to exploit this capability by naming a host
144.155.166.somewhere.com. To foil such attempts, MySQL disallows matching on hostnames
that start with digits and a dot. Thus, if you have a host named something like 1.2.foo.com, its name
never matches the Host column of the grant tables. An IP wildcard value can match only IP numbers,
not hostnames.

In the User column, wildcard characters are not allowed, but you can specify a blank value, which
matches any name. If the user table row that matches an incoming connection has a blank username,
the user is considered to be an anonymous user with no name, not a user with the name that the client ac-
tually specified. This means that a blank username is used for all further access checking for the duration
of the connection (that is, during Stage 2).

The Password column can be blank. This is not a wildcard and does not mean that any password
matches. It means that the user must connect without specifying a password.

Non-blank Password values in the user table represent encrypted passwords. MySQL does not store
passwords in plaintext form for anyone to see. Rather, the password supplied by a user who is attempt-
ing to connect is encrypted (using the PASSWORD() function). The encrypted password then is used
during the connection process when checking whether the password is correct. (This is done without the
encrypted password ever traveling over the connection.) From MySQL's point of view, the encrypted
password is the real password, so you should never give anyone access to it. In particular, do not give
non-administrative users read access to tables in the mysql database.

MySQL 5.0 employs the stronger authentication method (first implemented in MySQL 4.1) that has bet-
ter password protection during the connection process than in earlier versions. It is secure even if TCP/
IP packets are sniffed or the mysql database is captured. Section 5.8.9, “Password Hashing as of
MySQL 4.1”, discusses password encryption further.

The following table shows how various combinations of Host and User values in the user table ap-
ply to incoming connections.

Host Value User Value Allowable Connections

'thomas.loc.gov' 'fred' fred, connecting from thomas.loc.gov

'thomas.loc.gov' '' Any user, connecting from thomas.loc.gov

'%' 'fred' fred, connecting from any host

'%' '' Any user, connecting from any host

'%.loc.gov' 'fred' fred, connecting from any host in the loc.gov
domain

'x.y.%' 'fred' fred, connecting from x.y.net, x.y.com,
x.y.edu, and so on (this is probably not useful)

'144.155.166.177' 'fred' fred, connecting from the host with IP address
144.155.166.177

'144.155.166.%' 'fred' fred, connecting from any host in the

Database Administration

335

144.155.166 class C subnet

'144.155.166.0/255.255.
255.0'

'fred' Same as previous example

It is possible for the client hostname and username of an incoming connection to match more than one
row in the user table. The preceding set of examples demonstrates this: Several of the entries shown
match a connection from thomas.loc.gov by fred.

When multiple matches are possible, the server must determine which of them to use. It resolves this is-
sue as follows:

• Whenever the server reads the user table into memory, it sorts the rows.

• When a client attempts to connect, the server looks through the rows in sorted order.

• The server uses the first row that matches the client hostname and username.

To see how this works, suppose that the user table looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| % | root | ...
| % | jeffrey | ...
| localhost | root | ...
| localhost | | ...
+-----------+----------+-

When the server reads the table into memory, it orders the rows with the most-specific Host values
first. Literal hostnames and IP numbers are the most specific. The pattern '%' means “any host” and is
least specific. Rows with the same Host value are ordered with the most-specific User values first (a
blank User value means “any user” and is least specific). For the user table just shown, the result
after sorting looks like this:

+-----------+----------+-
| Host | User | ...
+-----------+----------+-
| localhost | root | ...
| localhost | | ...
| % | jeffrey | ...
| % | root | ...
+-----------+----------+-

When a client attempts to connect, the server looks through the sorted rows and uses the first match
found. For a connection from localhost by jeffrey, two of the rows from the table match: the one
with Host and User values of 'localhost' and '', and the one with values of '%' and 'jef-
frey'. The 'localhost' row appears first in sorted order, so that is the one the server uses.

Here is another example. Suppose that the user table looks like this:

+----------------+----------+-
| Host | User | ...
+----------------+----------+-
| % | jeffrey | ...
| thomas.loc.gov | | ...
+----------------+----------+-

The sorted table looks like this:

+----------------+----------+-

Database Administration

336

| Host | User | ...
+----------------+----------+-
| thomas.loc.gov | | ...
| % | jeffrey | ...
+----------------+----------+-

A connection by jeffrey from thomas.loc.gov is matched by the first row, whereas a connection
by jeffrey from whitehouse.gov is matched by the second.

It is a common misconception to think that, for a given username, all rows that explicitly name that user
are used first when the server attempts to find a match for the connection. This is simply not true. The
previous example illustrates this, where a connection from thomas.loc.gov by jeffrey is first
matched not by the row containing 'jeffrey' as the User column value, but by the row with no
username. As a result, jeffrey is authenticated as an anonymous user, even though he specified a
username when connecting.

If you are able to connect to the server, but your privileges are not what you expect, you probably are
being authenticated as some other account. To find out what account the server used to authenticate you,
use the CURRENT_USER() function. (See Section 12.9.3, “Information Functions”.) It returns a value
in user_name@host_name format that indicates the User and Host values from the matching
user table row. Suppose that jeffrey connects and issues the following query:

mysql> SELECT CURRENT_USER();
+----------------+
| CURRENT_USER() |
+----------------+
| @localhost |
+----------------+

The result shown here indicates that the matching user table row had a blank User column value. In
other words, the server is treating jeffrey as an anonymous user.

Another thing you can do to diagnose authentication problems is to print out the user table and sort it
by hand to see where the first match is being made.

5.8.6. Access Control, Stage 2: Request Verification
After you establish a connection, the server enters Stage 2 of access control. For each request that you
issue via that connection, the server determines what operation you want to perform, then checks wheth-
er you have sufficient privileges to do so. This is where the privilege columns in the grant tables come
into play. These privileges can come from any of the user, db, host, tables_priv,
columns_priv, or procs_priv tables. (You may find it helpful to refer to Section 5.8.2, “How the
Privilege System Works”, which lists the columns present in each of the grant tables.)

The user table grants privileges that are assigned to you on a global basis and that apply no matter
what the default database is. For example, if the user table grants you the DELETE privilege, you can
delete rows from any table in any database on the server host! In other words, user table privileges are
superuser privileges. It is wise to grant privileges in the user table only to superusers such as database
administrators. For other users, you should leave all privileges in the user table set to 'N' and grant
privileges at more specific levels only. You can grant privileges for particular databases, tables,
columns, or routines.

The db and host tables grant database-specific privileges. Values in the scope columns of these tables
can take the following forms:

• The wildcard characters ‘%’ and ‘_’ can be used in the Host and Db columns of either table. These
have the same meaning as for pattern-matching operations performed with the LIKE operator. If you
want to use either character literally when granting privileges, you must escape it with a backslash.
For example, to include the underscore character (‘_’) as part of a database name, specify it as ‘_’

Database Administration

337

in the GRANT statement.

• A '%' Host value in the db table means “any host.” A blank Host value in the db table means
“consult the host table for further information” (a process that is described later in this section).

• A '%' or blank Host value in the host table means “any host.”

• A '%' or blank Db value in either table means “any database.”

• A blank User value in either table matches the anonymous user.

The server reads the db and host tables into memory and sorts them at the same time that it reads the
user table. The server sorts the db table based on the Host, Db, and User scope columns, and sorts
the host table based on the Host and Db scope columns. As with the user table, sorting puts the
most-specific values first and least-specific values last, and when the server looks for matching entries,
it uses the first match that it finds.

The tables_priv columns_priv, and procs_priv tables grant table-specific, column-specific,
and routine-specific privileges. Values in the scope columns of these tables can take the following
forms:

• The wildcard characters ‘%’ and ‘_’ can be used in the Host column. These have the same meaning
as for pattern-matching operations performed with the LIKE operator.

• A '%' or blank Host value means “any host.”

• The Db, Table_name, and Column_name columns cannot contain wildcards or be blank.

The server sorts the tables_priv, columns_priv, and procs_priv tables based on the Host,
Db, and User columns. This is similar to db table sorting, but simpler because only the Host column
can contain wildcards.

The server uses the sorted tables to verify each request that it receives. For requests that require adminis-
trative privileges such as SHUTDOWN or RELOAD, the server checks only the user table row because
that is the only table that specifies administrative privileges. The server grants access if the row allows
the requested operation and denies access otherwise. For example, if you want to execute mysqladmin
shutdown but your user table row doesn't grant the SHUTDOWN privilege to you, the server denies
access without even checking the db or host tables. (They contain no Shutdown_priv column, so
there is no need to do so.)

For database-related requests (INSERT, UPDATE, and so on), the server first checks the user's global
(superuser) privileges by looking in the user table row. If the row allows the requested operation, ac-
cess is granted. If the global privileges in the user table are insufficient, the server determines the
user's database-specific privileges by checking the db and host tables:

1. The server looks in the db table for a match on the Host, Db, and User columns. The Host and
User columns are matched to the connecting user's hostname and MySQL username. The Db
column is matched to the database that the user wants to access. If there is no row for the Host and
User, access is denied.

2. If there is a matching db table row and its Host column is not blank, that row defines the user's
database-specific privileges.

3. If the matching db table row's Host column is blank, it signifies that the host table enumerates
which hosts should be allowed access to the database. In this case, a further lookup is done in the

Database Administration

338

host table to find a match on the Host and Db columns. If no host table row matches, access is
denied. If there is a match, the user's database-specific privileges are computed as the intersection
(not the union!) of the privileges in the db and host table entries; that is, the privileges that are
'Y' in both entries. (This way you can grant general privileges in the db table row and then select-
ively restrict them on a host-by-host basis using the host table entries.)

After determining the database-specific privileges granted by the db and host table entries, the server
adds them to the global privileges granted by the user table. If the result allows the requested opera-
tion, access is granted. Otherwise, the server successively checks the user's table and column privileges
in the tables_priv and columns_priv tables, adds those to the user's privileges, and allows or
denies access based on the result. For stored routine operations, the server uses the procs_priv table
rather than tables_priv and columns_priv.

Expressed in boolean terms, the preceding description of how a user's privileges are calculated may be
summarized like this:

global privileges
OR (database privileges AND host privileges)
OR table privileges
OR column privileges
OR routine privileges

It may not be apparent why, if the global user row privileges are initially found to be insufficient for
the requested operation, the server adds those privileges to the database, table, and column privileges
later. The reason is that a request might require more than one type of privilege. For example, if you ex-
ecute an INSERT INTO ... SELECT statement, you need both the INSERT and the SELECT priv-
ileges. Your privileges might be such that the user table row grants one privilege and the db table row
grants the other. In this case, you have the necessary privileges to perform the request, but the server
cannot tell that from either table by itself; the privileges granted by the entries in both tables must be
combined.

The host table is not affected by the GRANT or REVOKE statements, so it is unused in most MySQL in-
stallations. If you modify it directly, you can use it for some specialized purposes, such as to maintain a
list of secure servers. For example, at TcX, the host table contains a list of all machines on the local
network. These are granted all privileges.

You can also use the host table to indicate hosts that are not secure. Suppose that you have a machine
public.your.domain that is located in a public area that you do not consider secure. You can al-
low access to all hosts on your network except that machine by using host table entries like this:

+--------------------+----+-
| Host | Db | ...
+--------------------+----+-
| public.your.domain | % | ... (all privileges set to 'N')
| %.your.domain | % | ... (all privileges set to 'Y')
+--------------------+----+-

Naturally, you should always test your changes to the grant tables (for example, by using SHOW
GRANTS) to make sure that your access privileges are actually set up the way you think they are.

5.8.7. When Privilege Changes Take Effect
When mysqld starts, it reads all grant table contents into memory. The in-memory tables become ef-
fective for access control at that point.

When the server reloads the grant tables, privileges for existing client connections are affected as fol-
lows:

Database Administration

339

• Table and column privilege changes take effect with the client's next request.

• Database privilege changes take effect at the next USE db_name statement.

Note: Client applications may cache the database name; thus, this effect may not be visible to them
without actually changing to a different database or executing a FLUSH PRIVILEGES statement.

• Changes to global privileges and passwords take effect the next time the client connects.

If you modify the grant tables indirectly using statements such as GRANT, REVOKE, or SET PASS-
WORD, the server notices these changes and loads the grant tables into memory again immediately.

If you modify the grant tables directly using statements such as INSERT, UPDATE, or DELETE, your
changes have no effect on privilege checking until you either restart the server or tell it to reload the
tables. To reload the grant tables manually, issue a FLUSH PRIVILEGES statement or execute a
mysqladmin flush-privileges or mysqladmin reload command.

If you change the grant tables directly but forget to reload them, your changes have no effect until you
restart the server. This may leave you wondering why your changes do not seem to make any difference!

5.8.8. Causes of Access denied Errors
If you encounter problems when you try to connect to the MySQL server, the following items describe
some courses of action you can take to correct the problem.

• Make sure that the server is running. If it is not running, you cannot connect to it. For example, if
you attempt to connect to the server and see a message such as one of those following, one cause
might be that the server is not running:

shell> mysql
ERROR 2003: Can't connect to MySQL server on 'host_name' (111)
shell> mysql
ERROR 2002: Can't connect to local MySQL server through socket
'/tmp/mysql.sock' (111)

It might also be that the server is running, but you are trying to connect using a TCP/IP port, named
pipe, or Unix socket file different from the one on which the server is listening. To correct this when
you invoke a client program, specify a --port option to indicate the proper port number, or a -
-socket option to indicate the proper named pipe or Unix socket file. To find out where the socket
file is, you can use this command:

shell> netstat -ln | grep mysql

• The grant tables must be properly set up so that the server can use them for access control. For some
distribution types (such as binary distributions on Windows, or RPM distributions on Linux), the in-
stallation process initializes the mysql database containing the grant tables. For distributions that do
not do this, you must initialize the grant tables manually by running the mysql_install_db
script. For details, see Section 2.10.2, “Unix Post-Installation Procedures”.

One way to determine whether you need to initialize the grant tables is to look for a mysql direct-
ory under the data directory. (The data directory normally is named data or var and is located un-
der your MySQL installation directory.) Make sure that you have a file named user.MYD in the
mysql database directory. If you do not, execute the mysql_install_db script. After running
this script and starting the server, test the initial privileges by executing this command:

shell> mysql -u root test

Database Administration

340

The server should let you connect without error.

• After a fresh installation, you should connect to the server and set up your users and their access per-
missions:

shell> mysql -u root mysql

The server should let you connect because the MySQL root user has no password initially. That is
also a security risk, so setting the password for the root accounts is something you should do while
you're setting up your other MySQL accounts. For instructions on setting the initial passwords, see
Section 2.10.3, “Securing the Initial MySQL Accounts”.

• If you have updated an existing MySQL installation to a newer version, did you run the
mysql_upgrade script? If not, do so. The structure of the grant tables changes occasionally when
new capabilities are added, so after an upgrade you should always make sure that your tables have
the current structure. For instructions, see Section 5.6.2, “mysql_upgrade — Check Tables for
MySQL Upgrade”.

• If a client program receives the following error message when it tries to connect, it means that the
server expects passwords in a newer format than the client is capable of generating:

shell> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

For information on how to deal with this, see Section 5.8.9, “Password Hashing as of MySQL 4.1”,
and Section A.2.3, “Client does not support authentication protocol”.

• If you try to connect as root and get the following error, it means that you do not have a row in the
user table with a User column value of 'root' and that mysqld cannot resolve the hostname
for your client:

Access denied for user ''@'unknown' to database mysql

In this case, you must restart the server with the --skip-grant-tables option and edit your /
etc/hosts file or \windows\hosts file to add an entry for your host.

• Remember that client programs use connection parameters specified in option files or environment
variables. If a client program seems to be sending incorrect default connection parameters when you
have not specified them on the command line, check your environment and any applicable option
files. For example, if you get Access denied when you run a client without any options, make
sure that you have not specified an old password in any of your option files!

You can suppress the use of option files by a client program by invoking it with the -
-no-defaults option. For example:

shell> mysqladmin --no-defaults -u root version

The option files that clients use are listed in Section 4.3.2, “Using Option Files”. Environment vari-
ables are listed in Appendix F, Environment Variables.

• If you get the following error, it means that you are using an incorrect root password:

shell> mysqladmin -u root -pxxxx ver
Access denied for user 'root'@'localhost' (using password: YES)

If the preceding error occurs even when you have not specified a password, it means that you have

Database Administration

341

an incorrect password listed in some option file. Try the --no-defaults option as described in
the previous item.

For information on changing passwords, see Section 5.9.5, “Assigning Account Passwords”.

If you have lost or forgotten the root password, you can restart mysqld with -
-skip-grant-tables to change the password. See Section A.4.1, “How to Reset the Root Pass-
word”.

• If you change a password by using SET PASSWORD, INSERT, or UPDATE, you must encrypt the
password using the PASSWORD() function. If you do not use PASSWORD() for these statements,
the password will not work. For example, the following statement sets a password, but fails to en-
crypt it, so the user is not able to connect afterward:

SET PASSWORD FOR 'abe'@'host_name' = 'eagle';

Instead, set the password like this:

SET PASSWORD FOR 'abe'@'host_name' = PASSWORD('eagle');

The PASSWORD() function is unnecessary when you specify a password using the GRANT or
(beginning with MySQL 5.0.2) CREATE USER statements, or the mysqladmin password
command. Each of those automatically uses PASSWORD() to encrypt the password. See Sec-
tion 5.9.5, “Assigning Account Passwords”, and Section 13.5.1.1, “CREATE USER Syntax”.

• localhost is a synonym for your local hostname, and is also the default host to which clients try
to connect if you specify no host explicitly.

To avoid this problem on such systems, you can use a --host=127.0.0.1 option to name the
server host explicitly. This will make a TCP/IP connection to the local mysqld server. You can also
use TCP/IP by specifying a --host option that uses the actual hostname of the local host. In this
case, the hostname must be specified in a user table row on the server host, even though you are
running the client program on the same host as the server.

• If you get an Access denied error when trying to connect to the database with mysql -u
user_name, you may have a problem with the user table. Check this by executing mysql -u
root mysql and issuing this SQL statement:

SELECT * FROM user;

The result should include a row with the Host and User columns matching your computer's host-
name and your MySQL username.

• The Access denied error message tells you who you are trying to log in as, the client host from
which you are trying to connect, and whether you were using a password. Normally, you should
have one row in the user table that exactly matches the hostname and username that were given in
the error message. For example, if you get an error message that contains using password:
NO, it means that you tried to log in without a password.

• If the following error occurs when you try to connect from a host other than the one on which the
MySQL server is running, it means that there is no row in the user table with a Host value that
matches the client host:

Host ... is not allowed to connect to this MySQL server

You can fix this by setting up an account for the combination of client hostname and username that

Database Administration

342

you are using when trying to connect.

If you do not know the IP number or hostname of the machine from which you are connecting, you
should put a row with '%' as the Host column value in the user table. After trying to connect
from the client machine, use a SELECT USER() query to see how you really did connect. (Then
change the '%' in the user table row to the actual hostname that shows up in the log. Otherwise,
your system is left insecure because it allows connections from any host for the given username.)

On Linux, another reason that this error might occur is that you are using a binary MySQL version
that is compiled with a different version of the glibc library than the one you are using. In this
case, you should either upgrade your operating system or glibc, or download a source distribution
of MySQL version and compile it yourself. A source RPM is normally trivial to compile and install,
so this is not a big problem.

• If you specify a hostname when trying to connect, but get an error message where the hostname is
not shown or is an IP number, it means that the MySQL server got an error when trying to resolve
the IP number of the client host to a name:

shell> mysqladmin -u root -pxxxx -h some_hostname ver
Access denied for user 'root'@'' (using password: YES)

This indicates a DNS problem. To fix it, execute mysqladmin flush-hosts to reset the intern-
al DNS hostname cache. See Section 7.5.6, “How MySQL Uses DNS”.

Some permanent solutions are:

• Determine what is wrong with your DNS server and fix it.

• Specify IP numbers rather than hostnames in the MySQL grant tables.

• Put an entry for the client machine name in /etc/hosts or \windows\hosts.

• Start mysqld with the --skip-name-resolve option.

• Start mysqld with the --skip-host-cache option.

• On Unix, if you are running the server and the client on the same machine, connect to local-
host. Unix connections to localhost use a Unix socket file rather than TCP/IP.

• On Windows, if you are running the server and the client on the same machine and the server
supports named pipe connections, connect to the hostname . (period). Connections to . use a
named pipe rather than TCP/IP.

• If mysql -u root test works but mysql -h your_hostname -u root test results
in Access denied (where your_hostname is the actual hostname of the local host), you may
not have the correct name for your host in the user table. A common problem here is that the Host
value in the user table row specifies an unqualified hostname, but your system's name resolution
routines return a fully qualified domain name (or vice versa). For example, if you have an entry with
host 'tcx' in the user table, but your DNS tells MySQL that your hostname is
'tcx.subnet.se', the entry does not work. Try adding an entry to the user table that contains
the IP number of your host as the Host column value. (Alternatively, you could add an entry to the
user table with a Host value that contains a wildcard; for example, 'tcx.%'. However, use of
hostnames ending with ‘%’ is insecure and is not recommended!)

• If mysql -u user_name test works but mysql -u user_name other_db_name does
not, you have not granted database access for other_db_name to the given user.

• If mysql -u user_name works when executed on the server host, but mysql -h

Database Administration

343

host_name -u user_name does not work when executed on a remote client host, you have not
enabled access to the server for the given username from the remote host.

• If you cannot figure out why you get Access denied, remove from the user table all entries
that have Host values containing wildcards (entries that contain ‘%’ or ‘_’). A very common error is
to insert a new entry with Host='%' and User='some_user', thinking that this allows you to
specify localhost to connect from the same machine. The reason that this does not work is that
the default privileges include an entry with Host='localhost' and User=''. Because that
entry has a Host value 'localhost' that is more specific than '%', it is used in preference to
the new entry when connecting from localhost! The correct procedure is to insert a second entry
with Host='localhost' and User='some_user', or to delete the entry with Host='loc-
alhost' and User=''. After deleting the entry, remember to issue a FLUSH PRIVILEGES
statement to reload the grant tables.

• If you get the following error, you may have a problem with the db or host table:

Access to database denied

If the entry selected from the db table has an empty value in the Host column, make sure that there
are one or more corresponding entries in the host table specifying which hosts the db table entry
applies to.

• If you are able to connect to the MySQL server, but get an Access denied message whenever
you issue a SELECT ... INTO OUTFILE or LOAD DATA INFILE statement, your entry in
the user table does not have the FILE privilege enabled.

• If you change the grant tables directly (for example, by using INSERT, UPDATE, or DELETE state-
ments) and your changes seem to be ignored, remember that you must execute a FLUSH PRIV-
ILEGES statement or a mysqladmin flush-privileges command to cause the server to re-
read the privilege tables. Otherwise, your changes have no effect until the next time the server is re-
started. Remember that after you change the root password with an UPDATE command, you won't
need to specify the new password until after you flush the privileges, because the server won't know
you've changed the password yet!

• If your privileges seem to have changed in the middle of a session, it may be that a MySQL adminis-
trator has changed them. Reloading the grant tables affects new client connections, but it also affects
existing connections as indicated in Section 5.8.7, “When Privilege Changes Take Effect”.

• If you have access problems with a Perl, PHP, Python, or ODBC program, try to connect to the serv-
er with mysql -u user_name db_name or mysql -u user_name -pyour_pass
db_name. If you are able to connect using the mysql client, the problem lies with your program,
not with the access privileges. (There is no space between -p and the password; you can also use the
--password=your_pass syntax to specify the password. If you use the -p --passwordop-
tion with no password value, MySQL prompts you for the password.)

• For testing, start the mysqld server with the --skip-grant-tables option. Then you can
change the MySQL grant tables and use the mysqlaccess script to check whether your modifica-
tions have the desired effect. When you are satisfied with your changes, execute mysqladmin
flush-privileges to tell the mysqld server to start using the new grant tables. (Reloading the
grant tables overrides the --skip-grant-tables option. This enables you to tell the server to
begin using the grant tables again without stopping and restarting it.)

• If everything else fails, start the mysqld server with a debugging option (for example, -
-debug=d,general,query). This prints host and user information about attempted connec-
tions, as well as information about each command issued. See Section E.1.2, “Creating Trace Files”.

• If you have any other problems with the MySQL grant tables and feel you must post the problem to
the mailing list, always provide a dump of the MySQL grant tables. You can dump the tables with

Database Administration

344

the mysqldump mysql command. To file a bug report, see the instructions at Section 1.8, “How
to Report Bugs or Problems”. In some cases, you may need to restart mysqld with -
-skip-grant-tables to run mysqldump.

5.8.9. Password Hashing as of MySQL 4.1
MySQL user accounts are listed in the user table of the mysql database. Each MySQL account is as-
signed a password, although what is stored in the Password column of the user table is not the plain-
text version of the password, but a hash value computed from it. Password hash values are computed by
the PASSWORD() function.

MySQL uses passwords in two phases of client/server communication:

• When a client attempts to connect to the server, there is an initial authentication step in which the
client must present a password that has a hash value matching the hash value stored in the user ta-
ble for the account that the client wants to use.

• After the client connects, it can (if it has sufficient privileges) set or change the password hashes for
accounts listed in the user table. The client can do this by using the PASSWORD() function to gen-
erate a password hash, or by using the GRANT or SET PASSWORD statements.

In other words, the server uses hash values during authentication when a client first attempts to connect.
The server generates hash values if a connected client invokes the PASSWORD() function or uses a
GRANT or SET PASSWORD statement to set or change a password.

The password hashing mechanism was updated in MySQL 4.1 to provide better security and to reduce
the risk of passwords being intercepted. However, this new mechanism is understood only by MySQL
4.1 (and newer) servers and clients, which can result in some compatibility problems. A 4.1 or newer
client can connect to a pre-4.1 server, because the client understands both the old and new password
hashing mechanisms. However, a pre-4.1 client that attempts to connect to a 4.1 or newer server may
run into difficulties. For example, a 3.23 mysql client that attempts to connect to a 5.0 server may fail
with the following error message:

shell> mysql -h localhost -u root
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

Another common example of this phenomenon occurs for attempts to use the older PHP mysql exten-
sion after upgrading to MySQL 4.1 or newer. (See Section 22.3.1, “Common Problems with MySQL
and PHP”.)

The following discussion describes the differences between the old and new password mechanisms, and
what you should do if you upgrade your server but need to maintain backward compatibility with pre-
4.1 clients. Additional information can be found in Section A.2.3, “Client does not support
authentication protocol”. This information is of particular importance to PHP programmers
migrating MySQL databases from version 4.0 or lower to version 4.1 or higher.

Note: This discussion contrasts 4.1 behavior with pre-4.1 behavior, but the 4.1 behavior described here
actually begins with 4.1.1. MySQL 4.1.0 is an “odd” release because it has a slightly different mechan-
ism than that implemented in 4.1.1 and up. Differences between 4.1.0 and more recent versions are de-
scribed further in MySQL 3.23, 4.0, 4.1 Reference Manual.

Prior to MySQL 4.1, password hashes computed by the PASSWORD() function are 16 bytes long. Such
hashes look like this:

mysql> SELECT PASSWORD('mypass');

Database Administration

345

+--------------------+
| PASSWORD('mypass') |
+--------------------+
| 6f8c114b58f2ce9e |
+--------------------+

The Password column of the user table (in which these hashes are stored) also is 16 bytes long be-
fore MySQL 4.1.

As of MySQL 4.1, the PASSWORD() function has been modified to produce a longer 41-byte hash
value:

mysql> SELECT PASSWORD('mypass');
+---+
| PASSWORD('mypass') |
+---+
| *6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4 |
+---+

Accordingly, the Password column in the user table also must be 41 bytes long to store these values:

• If you perform a new installation of MySQL 5.0, the Password column is made 41 bytes long
automatically.

• Upgrading from MySQL 4.1 (4.1.1 or later in the 4.1 series) to MySQL 5.0 should not give rise to
any issues in this regard because both versions use the same password hashing mechanism. If you
wish to upgrade an older release of MySQL to version 5.0, you should upgrade to version 4.1 first,
then upgrade the 4.1 installation to 5.0.

A widened Password column can store password hashes in both the old and new formats. The format
of any given password hash value can be determined two ways:

• The obvious difference is the length (16 bytes versus 41 bytes).

• A second difference is that password hashes in the new format always begin with a ‘*’ character,
whereas passwords in the old format never do.

The longer password hash format has better cryptographic properties, and client authentication based on
long hashes is more secure than that based on the older short hashes.

The differences between short and long password hashes are relevant both for how the server uses pass-
words during authentication and for how it generates password hashes for connected clients that perform
password-changing operations.

The way in which the server uses password hashes during authentication is affected by the width of the
Password column:

• If the column is short, only short-hash authentication is used.

• If the column is long, it can hold either short or long hashes, and the server can use either format:

• Pre-4.1 clients can connect, although because they know only about the old hashing mechanism,
they can authenticate only using accounts that have short hashes.

• 4.1 and later clients can authenticate using accounts that have short or long hashes.

Database Administration

346

Even for short-hash accounts, the authentication process is actually a bit more secure for 4.1 and later
clients than for older clients. In terms of security, the gradient from least to most secure is:

• Pre-4.1 client authenticating with short password hash

• 4.1 or later client authenticating with short password hash

• 4.1 or later client authenticating with long password hash

The way in which the server generates password hashes for connected clients is affected by the width of
the Password column and by the --old-passwords option. A 4.1 or later server generates long
hashes only if certain conditions are met: The Password column must be wide enough to hold long
values and the --old-passwords option must not be given. These conditions apply as follows:

• The Password column must be wide enough to hold long hashes (41 bytes). If the column has not
been updated and still has the pre-4.1 width of 16 bytes, the server notices that long hashes cannot fit
into it and generates only short hashes when a client performs password-changing operations using
PASSWORD(), GRANT, or SET PASSWORD. This is the behavior that occurs if you have upgraded
to 4.1 but have not yet run the mysql_fix_privilege_tables script to widen the Pass-
word column.

• If the Password column is wide, it can store either short or long password hashes. In this case,
PASSWORD(), GRANT, and SET PASSWORD generate long hashes unless the server was started
with the --old-passwords option. That option forces the server to generate short password
hashes instead.

The purpose of the --old-passwords option is to enable you to maintain backward compatibility
with pre-4.1 clients under circumstances where the server would otherwise generate long password
hashes. The option doesn't affect authentication (4.1 and later clients can still use accounts that have
long password hashes), but it does prevent creation of a long password hash in the user table as the
result of a password-changing operation. Were that to occur, the account no longer could be used by pre-
4.1 clients. Without the --old-passwords option, the following undesirable scenario is possible:

• An old client connects to an account that has a short password hash.

• The client changes its own password. Without --old-passwords, this results in the account hav-
ing a long password hash.

• The next time the old client attempts to connect to the account, it cannot, because the account has a
long password hash that requires the new hashing mechanism during authentication. (Once an ac-
count has a long password hash in the user table, only 4.1 and later clients can authenticate for it, be-
cause pre-4.1 clients do not understand long hashes.)

This scenario illustrates that, if you must support older pre-4.1 clients, it is dangerous to run a 4.1 or
newer server without using the --old-passwords option. By running the server with -
-old-passwords, password-changing operations do not generate long password hashes and thus do
not cause accounts to become inaccessible to older clients. (Those clients cannot inadvertently lock
themselves out by changing their password and ending up with a long password hash.)

The downside of the --old-passwords option is that any passwords you create or change use short
hashes, even for 4.1 clients. Thus, you lose the additional security provided by long password hashes. If
you want to create an account that has a long hash (for example, for use by 4.1 clients), you must do so
while running the server without --old-passwords.

Database Administration

347

The following scenarios are possible for running a 4.1 or later server:

Scenario 1: Short Password column in user table:

• Only short hashes can be stored in the Password column.

• The server uses only short hashes during client authentication.

• For connected clients, password hash-generating operations involving PASSWORD(), GRANT, or
SET PASSWORD use short hashes exclusively. Any change to an account's password results in that
account having a short password hash.

• The --old-passwords option can be used but is superfluous because with a short Password
column, the server generates only short password hashes anyway.

Scenario 2: Long Password column; server not started with --old-passwords option:

• Short or long hashes can be stored in the Password column.

• 4.1 and later clients can authenticate using accounts that have short or long hashes.

• Pre-4.1 clients can authenticate only using accounts that have short hashes.

• For connected clients, password hash-generating operations involving PASSWORD(), GRANT, or
SET PASSWORD use long hashes exclusively. A change to an account's password results in that ac-
count having a long password hash.

As indicated earlier, a danger in this scenario is that it is possible for accounts that have a short password
hash to become inaccessible to pre-4.1 clients. A change to such an account's password made via
GRANT, PASSWORD(), or SET PASSWORD results in the account being given a long password hash.
From that point on, no pre-4.1 client can authenticate to that account until the client upgrades to 4.1.

To deal with this problem, you can change a password in a special way. For example, normally you use
SET PASSWORD as follows to change an account password:

SET PASSWORD FOR 'some_user'@'some_host' = PASSWORD('mypass');

To change the password but create a short hash, use the OLD_PASSWORD() function instead:

SET PASSWORD FOR 'some_user'@'some_host' = OLD_PASSWORD('mypass');

OLD_PASSWORD() is useful for situations in which you explicitly want to generate a short hash.

Scenario 3: Long Password column; 4.1 or newer server started with --old-passwords option:

• Short or long hashes can be stored in the Password column.

• 4.1 and later clients can authenticate for accounts that have short or long hashes (but note that it is
possible to create long hashes only when the server is started without --old-passwords).

• Pre-4.1 clients can authenticate only for accounts that have short hashes.

• For connected clients, password hash-generating operations involving PASSWORD(), GRANT, or
SET PASSWORD use short hashes exclusively. Any change to an account's password results in that

Database Administration

348

account having a short password hash.

In this scenario, you cannot create accounts that have long password hashes, because the -
-old-passwords option prevents generation of long hashes. Also, if you create an account with a
long hash before using the --old-passwords option, changing the account's password while -
-old-passwords is in effect results in the account being given a short password, causing it to lose
the security benefits of a longer hash.

The disadvantages for these scenarios may be summarized as follows:

In scenario 1, you cannot take advantage of longer hashes that provide more secure authentication.

In scenario 2, accounts with short hashes become inaccessible to pre-4.1 clients if you change their pass-
words without explicitly using OLD_PASSWORD().

In scenario 3, --old-passwords prevents accounts with short hashes from becoming inaccessible,
but password-changing operations cause accounts with long hashes to revert to short hashes, and you
cannot change them back to long hashes while --old-passwords is in effect.

5.8.9.1. Implications of Password Hashing Changes for Application
Programs

An upgrade to MySQL version 4.1 or later can cause compatibility issues for applications that use
PASSWORD() to generate passwords for their own purposes. Applications really should not do this, be-
cause PASSWORD() should be used only to manage passwords for MySQL accounts. But some applica-
tions use PASSWORD() for their own purposes anyway.

If you upgrade to 4.1 or later from a pre-4.1 version of MySQL and run the server under conditions
where it generates long password hashes, an application using PASSWORD() for its own passwords
breaks. The recommended course of action in such cases is to modify the application to use another
function, such as SHA1() or MD5(), to produce hashed values. If that is not possible, you can use the
OLD_PASSWORD() function, which is provided for generate short hashes in the old format. However,
you should note that OLD_PASSWORD() may one day no longer be supported.

If the server is running under circumstances where it generates short hashes, OLD_PASSWORD() is
available but is equivalent to PASSWORD().

PHP programmers migrating their MySQL databases from version 4.0 or lower to version 4.1 or higher
should see Section 22.3, “MySQL PHP API”.

5.9. MySQL User Account Management
This section describes how to set up accounts for clients of your MySQL server. It discusses the follow-
ing topics:

• The meaning of account names and passwords as used in MySQL and how that compares to names
and passwords used by your operating system

• How to set up new accounts and remove existing accounts

• How to change passwords

• Guidelines for using passwords securely

• How to use secure connections with SSL

Database Administration

349

5.9.1. MySQL Usernames and Passwords
A MySQL account is defined in terms of a username and the client host or hosts from which the user can
connect to the server. The account also has a password. There are several distinctions between the way
usernames and passwords are used by MySQL and the way they are used by your operating system:

• Usernames, as used by MySQL for authentication purposes, have nothing to do with usernames
(login names) as used by Windows or Unix. On Unix, most MySQL clients by default try to log in
using the current Unix username as the MySQL username, but that is for convenience only. The de-
fault can be overridden easily, because client programs allow any username to be specified with a -u
or --user option. Because this means that anyone can attempt to connect to the server using any
username, you cannot make a database secure in any way unless all MySQL accounts have pass-
words. Anyone who specifies a username for an account that has no password is able to connect suc-
cessfully to the server.

• MySQL usernames can be up to 16 characters long. This limit is hard-coded in the MySQL servers
and clients, and trying to circumvent it by modifying the definitions of the tables in the mysql data-
base does not work.

Note: You should never alter any of the tables in the mysql database in any manner whatsoever ex-
cept by means of the procedure prescribed by MySQL AB that is described in Section 5.6.2,
“mysql_upgrade — Check Tables for MySQL Upgrade”. Attempting to redefine MySQL's sys-
tem tables in any other fashion results in undefined (and unsupported!) behavior.

Operating system usernames are completely unrelated to MySQL usernames and may even be of a
different maximum length. For example, Unix usernames typically are limited to eight characters.

• MySQL passwords have nothing to do with passwords for logging in to your operating system.
There is no necessary connection between the password you use to log in to a Windows or Unix ma-
chine and the password you use to access the MySQL server on that machine.

• MySQL encrypts passwords using its own algorithm. This encryption is different from that used dur-
ing the Unix login process. MySQL password encryption is the same as that implemented by the
PASSWORD() SQL function. Unix password encryption is the same as that implemented by the
ENCRYPT() SQL function. See the descriptions of the PASSWORD() and ENCRYPT() functions
in Section 12.9.2, “Encryption and Compression Functions”. From version 4.1 on, MySQL employs
a stronger authentication method that has better password protection during the connection process
than in earlier versions. It is secure even if TCP/IP packets are sniffed or the mysql database is cap-
tured. (In earlier versions, even though passwords are stored in encrypted form in the user table,
knowledge of the encrypted password value could be used to connect to the MySQL server.)

When you install MySQL, the grant tables are populated with an initial set of accounts. These accounts
have names and access privileges that are described in Section 2.10.3, “Securing the Initial MySQL Ac-
counts”, which also discusses how to assign passwords to them. Thereafter, you normally set up, modi-
fy, and remove MySQL accounts using statements such as GRANT and REVOKE. See Section 13.5.1,
“Account Management Statements”.

When you connect to a MySQL server with a command-line client, you should specify the username and
password for the account that you want to use:

shell> mysql --user=monty --password=guess db_name

If you prefer short options, the command looks like this:

shell> mysql -u monty -pguess db_name

Database Administration

350

There must be no space between the -p option and the following password value. See Section 5.8.4,
“Connecting to the MySQL Server”.

The preceding commands include the password value on the command line, which can be a security risk.
See Section 5.9.6, “Keeping Your Password Secure”. To avoid this problem, specify the --password
or -p option without any following password value:

shell> mysql --user=monty --password db_name
shell> mysql -u monty -p db_name

When the password option has no password value, the client program prints a prompt and waits for you
to enter the password. (In these examples, db_name is not interpreted as a password because it is separ-
ated from the preceding password option by a space.)

On some systems, the library routine that MySQL uses to prompt for a password automatically limits the
password to eight characters. That is a problem with the system library, not with MySQL. Internally,
MySQL doesn't have any limit for the length of the password. To work around the problem, change your
MySQL password to a value that is eight or fewer characters long, or put your password in an option
file.

5.9.2. Adding New User Accounts to MySQL
You can create MySQL accounts in two ways:

• By using statements intended for creating accounts, such as CREATE USER or GRANT

• By manipulating the MySQL grant tables directly with statements such as INSERT, UPDATE, or
DELETE

The preferred method is to use account-creation statements because they are more concise and less er-
ror-prone. CREATE USER and GRANT are described in Section 13.5.1.1, “CREATE USER Syntax”,
and Section 13.5.1.3, “GRANT Syntax”.

Another option for creating accounts is to use one of several available third-party programs that offer
capabilities for MySQL account administration. phpMyAdmin is one such program.

The following examples show how to use the mysql client program to set up new users. These ex-
amples assume that privileges are set up according to the defaults described in Section 2.10.3, “Securing
the Initial MySQL Accounts”. This means that to make changes, you must connect to the MySQL server
as the MySQL root user, and the root account must have the INSERT privilege for the mysql data-
base and the RELOAD administrative privilege.

First, use the mysql program to connect to the server as the MySQL root user:

shell> mysql --user=root mysql

If you have assigned a password to the root account, you'll also need to supply a --password or -p
option for this mysql command and also for those later in this section.

After connecting to the server as root, you can add new accounts. The following statements use
GRANT to set up four new accounts:

mysql> GRANT ALL PRIVILEGES ON *.* TO 'monty'@'localhost'
-> IDENTIFIED BY 'some_pass' WITH GRANT OPTION;

mysql> GRANT ALL PRIVILEGES ON *.* TO 'monty'@'%'
-> IDENTIFIED BY 'some_pass' WITH GRANT OPTION;

mysql> GRANT RELOAD,PROCESS ON *.* TO 'admin'@'localhost';
mysql> GRANT USAGE ON *.* TO 'dummy'@'localhost';

Database Administration

351

The accounts created by these GRANT statements have the following properties:

• Two of the accounts have a username of monty and a password of some_pass. Both accounts are
superuser accounts with full privileges to do anything. One account ('monty'@'localhost')
can be used only when connecting from the local host. The other ('monty'@'%') can be used to
connect from any other host. Note that it is necessary to have both accounts for monty to be able to
connect from anywhere as monty. Without the localhost account, the anonymous-user account
for localhost that is created by mysql_install_db would take precedence when monty
connects from the local host. As a result, monty would be treated as an anonymous user. The reason
for this is that the anonymous-user account has a more specific Host column value than the
'monty'@'%' account and thus comes earlier in the user table sort order. (user table sorting is
discussed in Section 5.8.5, “Access Control, Stage 1: Connection Verification”.)

• One account has a username of admin and no password. This account can be used only by connect-
ing from the local host. It is granted the RELOAD and PROCESS administrative privileges. These
privileges allow the admin user to execute the mysqladmin reload, mysqladmin re-
fresh, and mysqladmin flush-xxx commands, as well as mysqladmin processlist .
No privileges are granted for accessing any databases. You could add such privileges later by issuing
additional GRANT statements.

• One account has a username of dummy and no password. This account can be used only by connect-
ing from the local host. No privileges are granted. The USAGE privilege in the GRANT statement en-
ables you to create an account without giving it any privileges. It has the effect of setting all the
global privileges to 'N'. It is assumed that you will grant specific privileges to the account later.

As an alternative to GRANT, you can create the same accounts directly by issuing INSERT statements
and then telling the server to reload the grant tables using FLUSH PRIVILEGES:

shell> mysql --user=root mysql
mysql> INSERT INTO user

-> VALUES('localhost','monty',PASSWORD('some_pass'),
-> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y');

mysql> INSERT INTO user
-> VALUES('%','monty',PASSWORD('some_pass'),
-> 'Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y','Y');

mysql> INSERT INTO user SET Host='localhost',User='admin',
-> Reload_priv='Y', Process_priv='Y';

mysql> INSERT INTO user (Host,User,Password)
-> VALUES('localhost','dummy','');

mysql> FLUSH PRIVILEGES;

The reason for using FLUSH PRIVILEGES when you create accounts with INSERT is to tell the serv-
er to re-read the grant tables. Otherwise, the changes go unnoticed until you restart the server. With
GRANT, FLUSH PRIVILEGES is unnecessary.

The reason for using the PASSWORD() function with INSERT is to encrypt the password. The GRANT
statement encrypts the password for you, so PASSWORD() is unnecessary.

The 'Y' values enable privileges for the accounts. Depending on your MySQL version, you may have
to use a different number of 'Y' values in the first two INSERT statements. For the admin account,
you may also employ the more readable extended INSERT syntax using SET.

In the INSERT statement for the dummy account, only the Host, User, and Password columns in
the user table row are assigned values. None of the privilege columns are set explicitly, so MySQL as-
signs them all the default value of 'N'. This is equivalent to what GRANT USAGE does.

Note that to set up a superuser account, it is necessary only to create a user table entry with the priv-
ilege columns set to 'Y'. user table privileges are global, so no entries in any of the other grant tables

Database Administration

352

are needed.

The next examples create three accounts and give them access to specific databases. Each of them has a
username of custom and password of obscure.

To create the accounts with GRANT, use the following statements:

shell> mysql --user=root mysql
mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP

-> ON bankaccount.*
-> TO 'custom'@'localhost'
-> IDENTIFIED BY 'obscure';

mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
-> ON expenses.*
-> TO 'custom'@'whitehouse.gov'
-> IDENTIFIED BY 'obscure';

mysql> GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,DROP
-> ON customer.*
-> TO 'custom'@'server.domain'
-> IDENTIFIED BY 'obscure';

The three accounts can be used as follows:

• The first account can access the bankaccount database, but only from the local host.

• The second account can access the expenses database, but only from the host white-
house.gov.

• The third account can access the customer database, but only from the host server.domain.

To set up the custom accounts without GRANT, use INSERT statements as follows to modify the grant
tables directly:

shell> mysql --user=root mysql
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('localhost','custom',PASSWORD('obscure'));
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('whitehouse.gov','custom',PASSWORD('obscure'));
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('server.domain','custom',PASSWORD('obscure'));
mysql> INSERT INTO db

-> (Host,Db,User,Select_priv,Insert_priv,
-> Update_priv,Delete_priv,Create_priv,Drop_priv)
-> VALUES('localhost','bankaccount','custom',
-> 'Y','Y','Y','Y','Y','Y');

mysql> INSERT INTO db
-> (Host,Db,User,Select_priv,Insert_priv,
-> Update_priv,Delete_priv,Create_priv,Drop_priv)
-> VALUES('whitehouse.gov','expenses','custom',
-> 'Y','Y','Y','Y','Y','Y');

mysql> INSERT INTO db
-> (Host,Db,User,Select_priv,Insert_priv,
-> Update_priv,Delete_priv,Create_priv,Drop_priv)
-> VALUES('server.domain','customer','custom',
-> 'Y','Y','Y','Y','Y','Y');

mysql> FLUSH PRIVILEGES;

The first three INSERT statements add user table entries that allow the user custom to connect from
the various hosts with the given password, but grant no global privileges (all privileges are set to the de-
fault value of 'N'). The next three INSERT statements add db table entries that grant privileges to
custom for the bankaccount, expenses, and customer databases, but only when accessed from
the proper hosts. As usual when you modify the grant tables directly, you must tell the server to reload
them with FLUSH PRIVILEGES so that the privilege changes take effect.

If you want to give a specific user access from all machines in a given domain (for example, mydo-
main.com), you can issue a GRANT statement that uses the ‘%’ wildcard character in the host part of

Database Administration

353

the account name:

mysql> GRANT ...
-> ON *.*
-> TO 'myname'@'%.mydomain.com'
-> IDENTIFIED BY 'mypass';

To do the same thing by modifying the grant tables directly, do this:

mysql> INSERT INTO user (Host,User,Password,...)
-> VALUES('%.mydomain.com','myname',PASSWORD('mypass'),...);

mysql> FLUSH PRIVILEGES;

5.9.3. Removing User Accounts from MySQL
To remove an account, use the DROP USER statement, which is described in Section 13.5.1.2, “DROP
USER Syntax”.

5.9.4. Limiting Account Resources
One means of limiting use of MySQL server resources is to set the max_user_connections system
variable to a non-zero value. However, this method is strictly global, and does not allow for manage-
ment of individual accounts. In addition, it limits only the number of simultaneous connections made us-
ing a single account, and not what a client can do once connected. Both types of control are interest to
many MySQL administrators, particularly those working for Internet Service Providers.

In MySQL 5.0, you can limit the following server resources for individual accounts:

• The number of queries that an account can issue per hour

• The number of updates that an account can issue per hour

• The number of times an account can connect to the server per hour

Any statement that a client can issue counts against the query limit. Only statements that modify data-
bases or tables count against the update limit.

From MySQL 5.0.3 on, it is also possible to limit the number of simultaneous connections to the server
on a per-account basis.

An account in this context is a single row in the user table. Each account is uniquely identified by its
User and Host column values.

As a prerequisite for using this feature, the user table in the mysql database must contain the re-
source-related columns. Resource limits are stored in the max_questions, max_updates,
max_connections, and max_user_connections columns. If your user table doesn't have
these columns, it must be upgraded; see Section 5.6.2, “mysql_upgrade — Check Tables for
MySQL Upgrade”.

To set resource limits with a GRANT statement, use a WITH clause that names each resource to be lim-
ited and a per-hour count indicating the limit value. For example, to create a new account that can access
the customer database, but only in a limited fashion, issue this statement:

mysql> GRANT ALL ON customer.* TO 'francis'@'localhost'
-> IDENTIFIED BY 'frank'
-> WITH MAX_QUERIES_PER_HOUR 20
-> MAX_UPDATES_PER_HOUR 10
-> MAX_CONNECTIONS_PER_HOUR 5
-> MAX_USER_CONNECTIONS 2;

Database Administration

354

The limit types need not all be named in the WITH clause, but those named can be present in any order.
The value for each per-hour limit should be an integer representing a count per hour. If the GRANT state-
ment has no WITH clause, the limits are each set to the default value of zero (that is, no limit). For
MAX_USER_CONNECTIONS, the limit is an integer indicating the maximum number of simultaneous
connections the account can make at any one time. If the limit is set to the default value of zero, the
max_user_connections system variable determines the number of simultaneous connections for
the account.

To set or change limits for an existing account, use a GRANT USAGE statement at the global level (ON
.). The following statement changes the query limit for francis to 100:

mysql> GRANT USAGE ON *.* TO 'francis'@'localhost'
-> WITH MAX_QUERIES_PER_HOUR 100;

This statement leaves the account's existing privileges unchanged and modifies only the limit values
specified.

To remove an existing limit, set its value to zero. For example, to remove the limit on how many times
per hour francis can connect, use this statement:

mysql> GRANT USAGE ON *.* TO 'francis'@'localhost'
-> WITH MAX_CONNECTIONS_PER_HOUR 0;

Resource-use counting takes place when any account has a non-zero limit placed on its use of any of the
resources.

As the server runs, it counts the number of times each account uses resources. If an account reaches its
limit on number of connections within the last hour, further connections for the account are rejected un-
til that hour is up. Similarly, if the account reaches its limit on the number of queries or updates, further
queries or updates are rejected until the hour is up. In all such cases, an appropriate error message is is-
sued.

Resource counting is done per account, not per client. For example, if your account has a query limit of
50, you cannot increase your limit to 100 by making two simultaneous client connections to the server.
Queries issued on both connections are counted together.

The current per-hour resource-use counts can be reset globally for all accounts, or individually for a giv-
en account:

• To reset the current counts to zero for all accounts, issue a FLUSH USER_RESOURCES statement.
The counts also can be reset by reloading the grant tables (for example, with a FLUSH PRIV-
ILEGES statement or a mysqladmin reload command).

• The counts for an individual account can be set to zero by re-granting it any of its limits. To do this,
use GRANT USAGE as described earlier and specify a limit value equal to the value that the account
currently has.

Counter resets do not affect the MAX_USER_CONNECTIONS limit.

All counts begin at zero when the server starts; counts are not carried over through a restart.

5.9.5. Assigning Account Passwords
Passwords may be assigned from the command line by using the mysqladmin command:

shell> mysqladmin -u user_name -h host_name password "newpwd"

Database Administration

355

The account for which this command resets the password is the one with a user table row that matches
user_name in the User column and the client host from which you connect in the Host column.

Another way to assign a password to an account is to issue a SET PASSWORD statement:

mysql> SET PASSWORD FOR 'jeffrey'@'%' = PASSWORD('biscuit');

Only users such as root that have update access to the mysql database can change the password for
other users. If you are not connected as an anonymous user, you can change your own password by
omitting the FOR clause:

mysql> SET PASSWORD = PASSWORD('biscuit');

You can also use a GRANT USAGE statement at the global level (ON *.*) to assign a password to an
account without affecting the account's current privileges:

mysql> GRANT USAGE ON *.* TO 'jeffrey'@'%' IDENTIFIED BY 'biscuit';

Although it is generally preferable to assign passwords using one of the preceding methods, you can also
do so by modifying the user table directly:

• To establish a password when creating a new account, provide a value for the Password column:

shell> mysql -u root mysql
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('%','jeffrey',PASSWORD('biscuit'));
mysql> FLUSH PRIVILEGES;

• To change the password for an existing account, use UPDATE to set the Password column value:

shell> mysql -u root mysql
mysql> UPDATE user SET Password = PASSWORD('bagel')

-> WHERE Host = '%' AND User = 'francis';
mysql> FLUSH PRIVILEGES;

When you assign an account a non-empty password using SET PASSWORD, INSERT, or UPDATE, you
must use the PASSWORD() function to encrypt it. PASSWORD() is necessary because the user table
stores passwords in encrypted form, not as plaintext. If you forget that fact, you are likely to set pass-
words like this:

shell> mysql -u root mysql
mysql> INSERT INTO user (Host,User,Password)

-> VALUES('%','jeffrey','biscuit');
mysql> FLUSH PRIVILEGES;

The result is that the literal value 'biscuit' is stored as the password in the user table, not the en-
crypted value. When jeffrey attempts to connect to the server using this password, the value is en-
crypted and compared to the value stored in the user table. However, the stored value is the literal
string 'biscuit', so the comparison fails and the server rejects the connection:

shell> mysql -u jeffrey -pbiscuit test
Access denied

If you assign passwords using the GRANT ... IDENTIFIED BY statement or the mysqladmin
password command, they both take care of encrypting the password for you. In these cases, using
PASSWORD() function is unnecessary.

Database Administration

356

Note: PASSWORD() encryption is different from Unix password encryption. See Section 5.9.1,
“MySQL Usernames and Passwords”.

5.9.6. Keeping Your Password Secure
On an administrative level, you should never grant access to the user grant table to any non-
administrative accounts.

When you run a client program to connect to the MySQL server, it is inadvisable to specify your pass-
word in a way that exposes it to discovery by other users. The methods you can use to specify your pass-
word when you run client programs are listed here, along with an assessment of the risks of each meth-
od:

• Use a -pyour_pass or --password=your_pass option on the command line. For example:

shell> mysql -u francis -pfrank db_name

This is convenient but insecure, because your password becomes visible to system status programs
such as ps that may be invoked by other users to display command lines. MySQL clients typically
overwrite the command-line password argument with zeros during their initialization sequence.
However, there is still a brief interval during which the value is visible. On some systems this
strategy is ineffective, anyway, and the password remains visible to ps. (SystemV Unix systems and
perhaps others are subject to this problem.)

• Use the -p or --password option with no password value specified. In this case, the client pro-
gram solicits the password from the terminal:

shell> mysql -u francis -p db_name
Enter password: ********

The ‘*’ characters indicate where you enter your password. The password is not displayed as you
enter it.

It is more secure to enter your password this way than to specify it on the command line because it is
not visible to other users. However, this method of entering a password is suitable only for programs
that you run interactively. If you want to invoke a client from a script that runs non-interactively,
there is no opportunity to enter the password from the terminal. On some systems, you may even
find that the first line of your script is read and interpreted (incorrectly) as your password.

• Store your password in an option file. For example, on Unix you can list your password in the
[client] section of the .my.cnf file in your home directory:

[client]
password=your_pass

If you store your password in .my.cnf, the file should not be accessible to anyone but yourself. To
ensure this, set the file access mode to 400 or 600. For example:

shell> chmod 600 .my.cnf

Section 4.3.2, “Using Option Files”, discusses option files in more detail.

• Store your password in the MYSQL_PWD environment variable. This method of specifying your
MySQL password must be considered extremely insecure and should not be used. Some versions of
ps include an option to display the environment of running processes. If you set MYSQL_PWD, your
password is exposed to any other user who runs ps. Even on systems without such a version of ps,

Database Administration

357

it is unwise to assume that there are no other methods by which users can examine process environ-
ments. See Appendix F, Environment Variables.

All in all, the safest methods are to have the client program prompt for the password or to specify the
password in a properly protected option file.

5.9.7. Using Secure Connections
MySQL supports secure (encrypted) connections between MySQL clients and the server using the Se-
cure Sockets Layer (SSL) protocol. This section discusses how to use SSL connections. It also describes
a way to set up SSH on Windows. For information on requiring users to use SSL connections, see Sec-
tion 13.5.1.3, “GRANT Syntax”.

The standard configuration of MySQL is intended to be as fast as possible, so encrypted connections are
not used by default. Doing so would make the client/server protocol much slower. Encrypting data is a
CPU-intensive operation that requires the computer to do additional work and can delay other MySQL
tasks. For applications that require the security provided by encrypted connections, the extra computa-
tion is warranted.

MySQL allows encryption to be enabled on a per-connection basis. You can choose a normal unencryp-
ted connection or a secure encrypted SSL connection according the requirements of individual applica-
tions.

Secure connections are based on the OpenSSL API and are available through the MySQL C API. Rep-
lication uses the C API, so secure connections can be used between master and slave servers.

5.9.7.1. Basic SSL Concepts

To understand how MySQL uses SSL, it is necessary to explain some basic SSL and X509 concepts.
People who are familiar with these can skip this part of the discussion.

By default, MySQL uses unencrypted connections between the client and the server. This means that
someone with access to the network could watch all your traffic and look at the data being sent or re-
ceived. They could even change the data while it is in transit between client and server. To improve se-
curity a little, you can compress client/server traffic by using the --compress option when invoking
client programs. However, this does not foil a determined attacker.

When you need to move information over a network in a secure fashion, an unencrypted connection is
unacceptable. Encryption is the way to make any kind of data unreadable. In fact, today's practice re-
quires many additional security elements from encryption algorithms. They should resist many kind of
known attacks such as changing the order of encrypted messages or replaying data twice.

SSL is a protocol that uses different encryption algorithms to ensure that data received over a public net-
work can be trusted. It has mechanisms to detect any data change, loss, or replay. SSL also incorporates
algorithms that provide identity verification using the X509 standard.

X509 makes it possible to identify someone on the Internet. It is most commonly used in e-commerce
applications. In basic terms, there should be some company called a “Certificate Authority” (or CA) that
assigns electronic certificates to anyone who needs them. Certificates rely on asymmetric encryption al-
gorithms that have two encryption keys (a public key and a secret key). A certificate owner can show the
certificate to another party as proof of identity. A certificate consists of its owner's public key. Any data
encrypted with this public key can be decrypted only using the corresponding secret key, which is held
by the owner of the certificate.

If you need more information about SSL, X509, or encryption, use your favorite Internet search engine
to search for the keywords in which you are interested.

Database Administration

358

5.9.7.2. Using SSL Connections

To use SSL connections between the MySQL server and client programs, your system must support
either OpenSSL or yaSSL and your version of MySQL must be built with SSL support.

To make it easier to use secure connections, MySQL is bundled with yaSSL as of MySQL 5.0.10.
(MySQL and yaSSL employ the same licensing model, whereas OpenSSL uses an Apache-style li-
cense.) yaSSL support initially was available only for a few platforms, but now it is available on all plat-
forms supported by MySQL AB.

To get secure connections to work with MySQL and SSL, you must do the following:

1. If you are not using a binary (precompiled) version of MySQL that has been built with SSL sup-
port, and you are going to use OpenSSL rather than the bundled yaSSL library, install OpenSSL if
it has not already been installed. We have tested MySQL with OpenSSL 0.9.6. To obtain OpenSSL,
visit http://www.openssl.org.

2. If you are not using a binary (precompiled) version of MySQL that has been built with SSL sup-
port, configure a MySQL source distribution to use SSL. When you configure MySQL, invoke the
configure script with the appropriate option to select the SSL library that you want to use.

For yaSSL:

shell> ./configure --with-yassl

For OpenSSL:

shell> ./configure --with-openssl

Before MySQL 5.0, it was also neccessary to use --with-vio, but that option is no longer re-
quired.

Note that yaSSL support on Unix platforms requires that either /dev/urandom or /
dev/random be installed to retrieve true random numbers. For additional information (especially
regarding yaSSL on Solaris versions prior to 2.8 and HP-UX), see Bug#13164
[http://bugs.mysql.com/13164].

3. Make sure that you have upgraded your grant tables to include the SSL-related columns in the
mysql.user table. This is necessary if your grant tables date from a version of MySQL older
than 4.0. The upgrade procedure is described in Section 5.6.2, “mysql_upgrade — Check
Tables for MySQL Upgrade”.

4. To check whether a server binary is compiled with SSL support, invoke it with the --ssl option.
An error will occur if the server does not support SSL:

shell> mysqld --ssl --help
060525 14:18:52 [ERROR] mysqld: unknown option '--ssl'

To check whether a running mysqld server supports SSL, examine the value of the
have_openssl system variable:

mysql> SHOW VARIABLES LIKE 'have_openssl';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| have_openssl | YES |
+---------------+-------+

Database Administration

359

http://www.openssl.org
http://bugs.mysql.com/13164

If the value is YES, the server supports SSL connections. If the value is DISABLED, the server sup-
ports SSL connections but was not started with the appropriate --ssl-xxx options (described
later in this section). If the value is YES, the server supports SSL connections.

To start the MySQL server so that it allows clients to connect via SSL, use the options that identify the
key and certificate files the server needs when establishing a secure connection:

shell> mysqld --ssl-ca=cacert.pem \
--ssl-cert=server-cert.pem \
--ssl-key=server-key.pem

• --ssl-ca identifies the Certificate Authority (CA) certificate.

• --ssl-cert identifies the server public key. This can be sent to the client and authenticated
against the CA certificate that it has.

• --ssl-key identifies the server private key.

To establish a secure connection to a MySQL server with yaSSL support, start a client like this:

shell> mysql --ssl-ca=cacert.pem \
--ssl-cert=client-cert.pem \
--ssl-key=client-key.pem

In other words, the options are similar to those used for the server. Note that the Certificate Authority
certificate has to be the same.

A client can determine whether the current connection with the server uses SSL by checking the value of
the Ssl_cipher status variable. The value of Ssl_cipher is non-empty if SSL is used, and empty
otherwise. For example:

mysql> SHOW STATUS LIKE 'Ssl_cipher';
+---------------+--------------------+
| Variable_name | Value |
+---------------+--------------------+
| Ssl_cipher | DHE-RSA-AES256-SHA |
+---------------+--------------------+

For the mysql client, you can use the STATUS or \s command and check the SSL line:

mysql> \s
...
SSL: Not in use
...

Or:

mysql> \s
...
SSL: Cipher in use is DHE-RSA-AES256-SHA
...

To establish a secure connection from within an application program, use the mysql_ssl_set() C
API function to set the appropriate certificate options before calling mysql_real_connect(). See
Section 22.2.3.66, “mysql_ssl_set()”.

5.9.7.3. SSL Command Options

Database Administration

360

The following list describes options that are used for specifying the use of SSL, certificate files, and key
files. They can be given on the command line or in an option file.

These options are not available unless MySQL has been built with SSL support. See Section 5.9.7.2,
“Using SSL Connections”.

• --ssl

For the server, this option specifies that the server allows SSL connections. For a client program, it
allows the client to connect to the server using SSL. This option is not sufficient in itself to cause an
SSL connection to be used. You must also specify the --ssl-ca, --ssl-cert, and -
-ssl-key options.

This option is more often used in its opposite form to override any other SSL options and indicate
that SSL should not be used. To do this, specify the option as --skip-ssl or --ssl=0.

Note that use of --ssl does not require an SSL connection. For example, if the server or client is
compiled without SSL support, a normal unencrypted connection is used.

The secure way to ensure that an SSL connection is used is to create an account on the server that in-
cludes a REQUIRE SSL clause in the GRANT statement. Then use this account to connect to the
server, with both a server and client that have SSL support enabled.

• --ssl-ca=file_name

The path to a file with a list of trusted SSL CAs.

• --ssl-capath=directory_name

The path to a directory that contains trusted SSL CA certificates in PEM format.

• --ssl-cert=file_name

The name of the SSL certificate file to use for establishing a secure connection.

• --ssl-cipher=cipher_list

A list of allowable ciphers to use for SSL encryption. cipher_list has the same format as the
openssl ciphers command.

Example: --ssl-cipher=ALL:-AES:-EXP

• --ssl-key=file_name

The name of the SSL key file to use for establishing a secure connection.

• --ssl-verify-server-cert

This option is available for client programs. It causes the server's Common Name value in its certi-
ficate to be verified against the hostname used when connecting to the server, and the connection is
rejected if there is a mismatch. This feature can be used to prevent man-in-the-middle attacks. Veri-
fication is disabled by default. This option was added in MySQL 5.0.23.

5.9.7.4. Setting Up SSL Certificates for MySQL

Here is an example of setting up SSL certificates for MySQL using OpenSSL:

DIR=`pwd`/openssl

Database Administration

361

PRIV=$DIR/private

mkdir $DIR $PRIV $DIR/newcerts
cp /usr/share/ssl/openssl.cnf $DIR
replace ./demoCA $DIR -- $DIR/openssl.cnf

Create necessary files: $database, $serial and $new_certs_dir
directory (optional)

touch $DIR/index.txt
echo "01" > $DIR/serial

#
Generation of Certificate Authority(CA)
#

openssl req -new -x509 -keyout $PRIV/cakey.pem -out $DIR/cacert.pem \
-config $DIR/openssl.cnf

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
................++++++
.........++++++
writing new private key to '/home/monty/openssl/private/cakey.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL admin
Email Address []:

#
Create server request and key
#
openssl req -new -keyout $DIR/server-key.pem -out \

$DIR/server-req.pem -days 3600 -config $DIR/openssl.cnf

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
..++++++
..........++++++
writing new private key to '/home/monty/openssl/server-key.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL server
Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

Database Administration

362

#
Remove the passphrase from the key (optional)
#

openssl rsa -in $DIR/server-key.pem -out $DIR/server-key.pem

#
Sign server cert
#
openssl ca -policy policy_anything -out $DIR/server-cert.pem \

-config $DIR/openssl.cnf -infiles $DIR/server-req.pem

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL admin'
Certificate is to be certified until Sep 13 14:22:46 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

#
Create client request and key
#
openssl req -new -keyout $DIR/client-key.pem -out \

$DIR/client-req.pem -days 3600 -config $DIR/openssl.cnf

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf
Generating a 1024 bit RSA private key
.....................................++++++
...++++++
writing new private key to '/home/monty/openssl/client-key.pem'
Enter PEM pass phrase:
Verifying password - Enter PEM pass phrase:

You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name
or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:FI
State or Province Name (full name) [Some-State]:.
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MySQL AB
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:MySQL user
Email Address []:
#
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

#
Remove a passphrase from the key (optional)
#
openssl rsa -in $DIR/client-key.pem -out $DIR/client-key.pem

#
Sign client cert
#

openssl ca -policy policy_anything -out $DIR/client-cert.pem \
-config $DIR/openssl.cnf -infiles $DIR/client-req.pem

Sample output:
Using configuration from /home/monty/openssl/openssl.cnf

Database Administration

363

Enter PEM pass phrase:
Check that the request matches the signature
Signature ok
The Subjects Distinguished Name is as follows
countryName :PRINTABLE:'FI'
organizationName :PRINTABLE:'MySQL AB'
commonName :PRINTABLE:'MySQL user'
Certificate is to be certified until Sep 13 16:45:17 2003 GMT
(365 days)
Sign the certificate? [y/n]:y
#
#
1 out of 1 certificate requests certified, commit? [y/n]y
Write out database with 1 new entries
Data Base Updated

#
Create a my.cnf file that you can use to test the certificates
#

cnf=""
cnf="$cnf [client]"
cnf="$cnf ssl-ca=$DIR/cacert.pem"
cnf="$cnf ssl-cert=$DIR/client-cert.pem"
cnf="$cnf ssl-key=$DIR/client-key.pem"
cnf="$cnf [mysqld]"
cnf="$cnf ssl-ca=$DIR/cacert.pem"
cnf="$cnf ssl-cert=$DIR/server-cert.pem"
cnf="$cnf ssl-key=$DIR/server-key.pem"
echo $cnf | replace " " '
' > $DIR/my.cnf

To test SSL connections, start the server as follows, where $DIR is the pathname to the directory where
the sample my.cnf option file is located:

shell> mysqld --defaults-file=$DIR/my.cnf &

Then invoke a client program using the same option file:

shell> mysql --defaults-file=$DIR/my.cnf

If you have a MySQL source distribution, you can also test your setup by modifying the preceding
my.cnf file to refer to the demonstration certificate and key files in the SSL directory of the distribu-
tion.

5.9.7.5. Connecting to MySQL Remotely from Windows with SSH

Here is a note that describes how to get a secure connection to a remote MySQL server with SSH (by
David Carlson <dcarlson@mplcomm.com>):

1. Install an SSH client on your Windows machine. As a user, the best non-free one I have found is
from SecureCRT from http://www.vandyke.com/. Another option is f-secure from ht-
tp://www.f-secure.com/. You can also find some free ones on Google at ht-
tp://directory.google.com/Top/Computers/Security/Products_and_Tools/Cryptography/SSH/Clients
/Windows/.

2. Start your Windows SSH client. Set Host_Name = yourmysqlserver_URL_or_IP. Set
userid=your_userid to log in to your server. This userid value might not be the same as
the username of your MySQL account.

3. Set up port forwarding. Either do a remote forward (Set local_port: 3306, remote_host:
yourmysqlservername_or_ip, remote_port: 3306) or a local forward (Set port:
3306, host: localhost, remote port: 3306).

Database Administration

364

http://www.vandyke.com/
http://www.f-secure.com/
http://www.f-secure.com/
http://directory.google.com/Top/Computers/Security/Products_and_Tools/Cryptography/SSH/Clients/Windows/
http://directory.google.com/Top/Computers/Security/Products_and_Tools/Cryptography/SSH/Clients/Windows/
http://directory.google.com/Top/Computers/Security/Products_and_Tools/Cryptography/SSH/Clients/Windows/

4. Save everything, otherwise you will have to redo it the next time.

5. Log in to your server with the SSH session you just created.

6. On your Windows machine, start some ODBC application (such as Access).

7. Create a new file in Windows and link to MySQL using the ODBC driver the same way you nor-
mally do, except type in localhost for the MySQL host server, not yourmysqlservername.

At this point, you should have an ODBC connection to MySQL, encrypted using SSH.

5.10. Backup and Recovery
This section discusses how to make database backups (full and incremental) and how to perform table
maintenance. The syntax of the SQL statements described here is given in Chapter 13, SQL Statement
Syntax. Much of the information here pertains primarily to MyISAM tables. Additional information
about InnoDB backup procedures is given in Section 14.2.8, “Backing Up and Recovering an InnoDB
Database”.

5.10.1. Database Backups
Because MySQL tables are stored as files, it is easy to do a backup. To get a consistent backup, do a
LOCK TABLES on the relevant tables, followed by FLUSH TABLES for the tables. See Section 13.4.5,
“LOCK TABLES and UNLOCK TABLES Syntax”, and Section 13.5.5.2, “FLUSH Syntax”. You need
only a read lock; this allows other clients to continue to query the tables while you are making a copy of
the files in the database directory. The FLUSH TABLES statement is needed to ensure that the all active
index pages are written to disk before you start the backup.

To make an SQL-level backup of a table, you can use SELECT INTO ... OUTFILE. For this state-
ment, the output file cannot already exist because allowing files to be overwritten would constitute a se-
curity risk. See Section 13.2.7, “SELECT Syntax”.

Another technique for backing up a database is to use the mysqldump program or the mysqlhot-
copy script. See Section 8.12, “mysqldump — A Database Backup Program”, and Section 8.13,
“mysqlhotcopy — A Database Backup Program”.

1. Create a full backup of your database:

shell> mysqldump --tab=/path/to/some/dir --opt db_name

Or:

shell> mysqlhotcopy db_name /path/to/some/dir

You can also create a binary backup simply by copying all table files (*.frm, *.MYD, and *.MYI
files), as long as the server isn't updating anything. The mysqlhotcopy script uses this method.
(But note that these methods do not work if your database contains InnoDB tables. InnoDB does
not store table contents in database directories, and mysqlhotcopy works only for MyISAM
tables.)

2. Stop mysqld if it is running, then start it with the --log-bin[=file_name] option. See Sec-
tion 5.12.3, “The Binary Log”. The binary log files provide you with the information you need to
replicate changes to the database that are made subsequent to the point at which you executed
mysqldump.

Database Administration

365

For InnoDB tables, it is possible to perform an online backup that takes no locks on tables; see Sec-
tion 8.12, “mysqldump — A Database Backup Program”.

MySQL supports incremental backups: You need to start the server with the --log-bin option to en-
able binary logging; see Section 5.12.3, “The Binary Log”. At the moment you want to make an incre-
mental backup (containing all changes that happened since the last full or incremental backup), you
should rotate the binary log by using FLUSH LOGS. This done, you need to copy to the backup location
all binary logs which range from the one of the moment of the last full or incremental backup to the last
but one. These binary logs are the incremental backup; at restore time, you apply them as explained fur-
ther below. The next time you do a full backup, you should also rotate the binary log using FLUSH
LOGS, mysqldump --flush-logs, or mysqlhotcopy --flushlog. See Section 8.12,
“mysqldump — A Database Backup Program”, and Section 8.13, “mysqlhotcopy — A Database
Backup Program”.

If your MySQL server is a slave replication server, then regardless of the backup method you choose,
you should also back up the master.info and relay-log.info files when you back up your
slave's data. These files are always needed to resume replication after you restore the slave's data. If your
slave is subject to replicating LOAD DATA INFILE commands, you should also back up any
SQL_LOAD-* files that may exist in the directory specified by the --slave-load-tmpdir option.
(This location defaults to the value of the tmpdir variable if not specified.) The slave needs these files
to resume replication of any interrupted LOAD DATA INFILE operations.

If you have to restore MyISAM tables, try to recover them using REPAIR TABLE or myisamchk -r
first. That should work in 99.9% of all cases. If myisamchk fails, try the following procedure. Note
that it works only if you have enabled binary logging by starting MySQL with the --log-bin option.

1. Restore the original mysqldump backup, or binary backup.

2. Execute the following command to re-run the updates in the binary logs:

shell> mysqlbinlog binlog.[0-9]* | mysql

In some cases, you may want to re-run only certain binary logs, from certain positions (usually you
want to re-run all binary logs from the date of the restored backup, excepting possibly some incor-
rect statements). See Section 8.10, “mysqlbinlog — Utility for Processing Binary Log Files”,
for more information on the mysqlbinlog utility and how to use it.

You can also make selective backups of individual files:

• To dump the table, use SELECT * INTO OUTFILE 'file_name' FROM tbl_name.

• To reload the table, use LOAD DATA INFILE 'file_name' REPLACE To avoid du-
plicate rows, the table must have a PRIMARY KEY or a UNIQUE index. The REPLACE keyword
causes old rows to be replaced with new ones when a new row duplicates an old row on a unique key
value.

If you have performance problems with your server while making backups, one strategy that can help is
to set up replication and perform backups on the slave rather than on the master. See Section 6.1,
“Introduction to Replication”.

If you are using a Veritas filesystem, you can make a backup like this:

1. From a client program, execute FLUSH TABLES WITH READ LOCK.

Database Administration

366

2. From another shell, execute mount vxfs snapshot.

3. From the first client, execute UNLOCK TABLES.

4. Copy files from the snapshot.

5. Unmount the snapshot.

5.10.2. Example Backup and Recovery Strategy
This section discusses a procedure for performing backups that allows you to recover data after several
types of crashes:

• Operating system crash

• Power failure

• Filesystem crash

• Hardware problem (hard drive, motherboard, and so forth)

The example commands do not include options such as --user and --password for the mysql-
dump and mysql programs. You should include such options as necessary so that the MySQL server
allows you to connect to it.

We assume that data is stored in the InnoDB storage engine, which has support for transactions and
automatic crash recovery. We also assume that the MySQL server is under load at the time of the crash.
If it were not, no recovery would ever be needed.

For cases of operating system crashes or power failures, we can assume that MySQL's disk data is avail-
able after a restart. The InnoDB data files might not contain consistent data due to the crash, but In-
noDB reads its logs and finds in them the list of pending committed and non-committed transactions that
have not been flushed to the data files. InnoDB automatically rolls back those transactions that were not
committed, and flushes to its data files those that were committed. Information about this recovery pro-
cess is conveyed to the user through the MySQL error log. The following is an example log excerpt:

InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...
InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 13674004
InnoDB: Doing recovery: scanned up to log sequence number 0 13739520
InnoDB: Doing recovery: scanned up to log sequence number 0 13805056
InnoDB: Doing recovery: scanned up to log sequence number 0 13870592
InnoDB: Doing recovery: scanned up to log sequence number 0 13936128
...
InnoDB: Doing recovery: scanned up to log sequence number 0 20555264
InnoDB: Doing recovery: scanned up to log sequence number 0 20620800
InnoDB: Doing recovery: scanned up to log sequence number 0 20664692
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx no 16745
InnoDB: Rolling back of trx no 16745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections

For the cases of filesystem crashes or hardware problems, we can assume that the MySQL disk data is
not available after a restart. This means that MySQL fails to start successfully because some blocks of
disk data are no longer readable. In this case, it is necessary to reformat the disk, install a new one, or

Database Administration

367

otherwise correct the underlying problem. Then it is necessary to recover our MySQL data from
backups, which means that we must already have made backups. To make sure that is the case, we
should design a backup policy.

5.10.2.1. Backup Policy

We all know that backups must be scheduled periodically. A full backups (a snapshot of the data at a
point in time) can be done in MySQL with several tools. For example, InnoDB Hot Backup
provides online non-blocking physical backup of the InnoDB data files, and mysqldump provides on-
line logical backup. This discussion uses mysqldump.

Assume that we make a backup on Sunday at 1 p.m., when load is low. The following command makes
a full backup of all our InnoDB tables in all databases:

shell> mysqldump --single-transaction --all-databases > backup_sunday_1_PM.sql

This is an online, non-blocking backup that does not disturb the reads and writes on the tables. We as-
sumed earlier that our tables are InnoDB tables, so --single-transaction uses a consistent read
and guarantees that data seen by mysqldump does not change. (Changes made by other clients to In-
noDB tables are not seen by the mysqldump process.) If we do also have other types of tables, we must
assume that they are not changed during the backup. For example, for the MyISAM tables in the mysql
database, we must assume that no administrative changes are being made to MySQL accounts during the
backup.

The resulting .sql file produced by mysqldump contains a set of SQL INSERT statements that can
be used to reload the dumped tables at a later time.

Full backups are necessary, but they are not always convenient. They produce large backup files and
take time to generate. They are not optimal in the sense that each successive full backup includes all
data, even that part that has not changed since the previous full backup. After we have made the initial
full backup, it is more efficient to make incremental backups. They are smaller and take less time to pro-
duce. The tradeoff is that, at recovery time, you cannot restore your data just by reloading the full
backup. You must also process the incremental backups to recover the incremental changes.

To make incremental backups, we need to save the incremental changes. The MySQL server should al-
ways be started with the --log-bin option so that it stores these changes in a file while it updates
data. This option enables binary logging, so that the server writes each SQL statement that updates data
into a file called a MySQL binary log. Looking at the data directory of a MySQL server that was started
with the --log-bin option and that has been running for some days, we find these MySQL binary log
files:

-rw-rw---- 1 guilhem guilhem 1277324 Nov 10 23:59 gbichot2-bin.000001
-rw-rw---- 1 guilhem guilhem 4 Nov 10 23:59 gbichot2-bin.000002
-rw-rw---- 1 guilhem guilhem 79 Nov 11 11:06 gbichot2-bin.000003
-rw-rw---- 1 guilhem guilhem 508 Nov 11 11:08 gbichot2-bin.000004
-rw-rw---- 1 guilhem guilhem 220047446 Nov 12 16:47 gbichot2-bin.000005
-rw-rw---- 1 guilhem guilhem 998412 Nov 14 10:08 gbichot2-bin.000006
-rw-rw---- 1 guilhem guilhem 361 Nov 14 10:07 gbichot2-bin.index

Each time it restarts, the MySQL server creates a new binary log file using the next number in the se-
quence. While the server is running, you can also tell it to close the current binary log file and begin a
new one manually by issuing a FLUSH LOGS SQL statement or with a mysqladmin flush-logs
command. mysqldump also has an option to flush the logs. The .index file in the data directory con-
tains the list of all MySQL binary logs in the directory. This file is used for replication.

The MySQL binary logs are important for recovery because they form the set of incremental backups. If
you make sure to flush the logs when you make your full backup, then any binary log files created after-
ward contain all the data changes made since the backup. Let's modify the previous mysqldump com-
mand a bit so that it flushes the MySQL binary logs at the moment of the full backup, and so that the
dump file contains the name of the new current binary log:

Database Administration

368

shell> mysqldump --single-transaction --flush-logs --master-data=2 \
--all-databases > backup_sunday_1_PM.sql

After executing this command, the data directory contains a new binary log file, gbi-
chot2-bin.000007. The resulting .sql file includes these lines:

-- Position to start replication or point-in-time recovery from
-- CHANGE MASTER TO MASTER_LOG_FILE='gbichot2-bin.000007',MASTER_LOG_POS=4;

Because the mysqldump command made a full backup, those lines mean two things:

• The .sql file contains all changes made before any changes written to the gbi-
chot2-bin.000007 binary log file or newer.

• All data changes logged after the backup are not present in the .sql, but are present in the gbi-
chot2-bin.000007 binary log file or newer.

On Monday at 1 p.m., we can create an incremental backup by flushing the logs to begin a new binary
log file. For example, executing a mysqladmin flush-logs command creates gbi-
chot2-bin.000008. All changes between the Sunday 1 p.m. full backup and Monday 1 p.m. will be
in the gbichot2-bin.000007 file. This incremental backup is important, so it is a good idea to
copy it to a safe place. (For example, back it up on tape or DVD, or copy it to another machine.) On
Tuesday at 1 p.m., execute another mysqladmin flush-logs command. All changes between
Monday 1 p.m. and Tuesday 1 p.m. will be in the gbichot2-bin.000008 file (which also should be
copied somewhere safe).

The MySQL binary logs take up disk space. To free up space, purge them from time to time. One way to
do this is by deleting the binary logs that are no longer needed, such as when we make a full backup:

shell> mysqldump --single-transaction --flush-logs --master-data=2 \
--all-databases --delete-master-logs > backup_sunday_1_PM.sql

Note: Deleting the MySQL binary logs with mysqldump --delete-master-logs can be dan-
gerous if your server is a replication master server, because slave servers might not yet fully have pro-
cessed the contents of the binary log. The description for the PURGE MASTER LOGS statement ex-
plains what should be verified before deleting the MySQL binary logs. See Section 13.6.1.1, “PURGE
MASTER LOGS Syntax”.

5.10.2.2. Using Backups for Recovery

Now, suppose that we have a catastrophic crash on Wednesday at 8 a.m. that requires recovery from
backups. To recover, first we restore the last full backup we have (the one from Sunday 1 p.m.). The full
backup file is just a set of SQL statements, so restoring it is very easy:

shell> mysql < backup_sunday_1_PM.sql

At this point, the data is restored to its state as of Sunday 1 p.m.. To restore the changes made since then,
we must use the incremental backups; that is, the gbichot2-bin.000007 and gbi-
chot2-bin.000008 binary log files. Fetch the files if necessary from where they were backed up,
and then process their contents like this:

shell> mysqlbinlog gbichot2-bin.000007 gbichot2-bin.000008 | mysql

We now have recovered the data to its state as of Tuesday 1 p.m., but still are missing the changes from
that date to the date of the crash. To not lose them, we would have needed to have the MySQL server

Database Administration

369

store its MySQL binary logs into a safe location (RAID disks, SAN, ...) different from the place where it
stores its data files, so that these logs were not on the destroyed disk. (That is, we can start the server
with a --log-bin option that specifies a location on a different physical device from the one on which
the data directory resides. That way, the logs are safe even if the device containing the directory is lost.)
If we had done this, we would have the gbichot2-bin.000009 file at hand, and we could apply it
using mysqlbinlog and mysql to restore the most recent data changes with no loss up to the mo-
ment of the crash.

5.10.2.3. Backup Strategy Summary

In case of an operating system crash or power failure, InnoDB itself does all the job of recovering data.
But to make sure that you can sleep well, observe the following guidelines:

• Always run the MySQL server with the --log-bin option, or even --log-bin=log_name,
where the log file name is located on some safe media different from the drive on which the data dir-
ectory is located. If you have such safe media, this technique can also be good for disk load balan-
cing (which results in a performance improvement).

• Make periodic full backups, using the mysqldump command shown earlier in Section 5.10.2.1,
“Backup Policy”, that makes an online, non-blocking backup.

• Make periodic incremental backups by flushing the logs with FLUSH LOGS or mysqladmin
flush-logs.

5.10.3. Point-in-Time Recovery
If a MySQL server was started with the --log-bin option to enable binary logging, you can use the
mysqlbinlog utility to recover data from the binary log files, starting from a specified point in time
(for example, since your last backup) until the present or another specified point in time. For information
on enabling the binary log and using mysqlbinlog, see Section 5.12.3, “The Binary Log”, and Sec-
tion 8.10, “mysqlbinlog — Utility for Processing Binary Log Files”.

To restore data from a binary log, you must know the location and name of the current binary log file.
By default, the server creates binary log files in the data directory, but a pathname can be specified with
the --log-bin option to place the files in a different location. Typically the option is given in an op-
tion file (that is, my.cnf or my.ini, depending on your system). It can also be given on the command
line when the server is started. To determine the name of the current binary log file, issue the following
statement:

mysql> SHOW BINLOG EVENTS\G

If you prefer, you can execute the following command from the command line instead:

shell> mysql -u root -p -E -e "SHOW BINLOG EVENTS"

Enter the root password for your server when mysql prompts you for it.

5.10.3.1. Specifying Times for Recovery

To indicate the start and end times for recovery, specify the --start-date and --stop-date op-
tions for mysqlbinlog, in DATETIME format. As an example, suppose that exactly at 10:00 a.m. on
April 20, 2005 an SQL statement was executed that deleted a large table. To restore the table and data,
you could restore the previous night's backup, and then execute the following command:

shell> mysqlbinlog --stop-date="2005-04-20 9:59:59" \

Database Administration

370

/var/log/mysql/bin.123456 | mysql -u root -p

This command recovers all of the data up until the date and time given by the --stop-date option. If
you did not detect the erroneous SQL statement that was entered until hours later, you will probably also
want to recover the activity that occurred afterward. Based on this, you could run mysqlbinlog again
with a start date and time, like so:

shell> mysqlbinlog --start-date="2005-04-20 10:01:00" \
/var/log/mysql/bin.123456 | mysql -u root -p

In this command, the SQL statements logged from 10:01 a.m. on will be re-executed. The combination
of restoring of the previous night's dump file and the two mysqlbinlog commands restores
everything up until one second before 10:00 a.m. and everything from 10:01 a.m. on. You should exam-
ine the log to be sure of the exact times to specify for the commands. To display the log file contents
without executing them, use this command:

shell> mysqlbinlog /var/log/mysql/bin.123456 > /tmp/mysql_restore.sql

Then open the file with a text editor to examine it.

5.10.3.2. Specifying Positions for Recovery

Instead of specifying dates and times, the --start-position and --stop-position options for
mysqlbinlog can be used for specifying log positions. They work the same as the start and stop date
options, except that you specify log position numbers rather than dates. Using positions may enable you
to be more precise about which part of the log to recover, especially if many transactions occurred
around the same time as a damaging SQL statement. To determine the position numbers, run mysql-
binlog for a range of times near the time when the unwanted transaction was executed, but redirect the
results to a text file for examination. This can be done like so:

shell> mysqlbinlog --start-date="2005-04-20 9:55:00" \
--stop-date="2005-04-20 10:05:00" \
/var/log/mysql/bin.123456 > /tmp/mysql_restore.sql

This command creates a small text file in the /tmp directory that contains the SQL statements around
the time that the deleterious SQL statement was executed. Open this file with a text editor and look for
the statement that you don't want to repeat. Determine the positions in the binary log for stopping and re-
suming the recovery and make note of them. Positions are labeled as log_pos followed by a number.
After restoring the previous backup file, use the position numbers to process the binary log file. For ex-
ample, you would use commands something like these:

shell> mysqlbinlog --stop-position="368312" /var/log/mysql/bin.123456 \
| mysql -u root -p

shell> mysqlbinlog --start-position="368315" /var/log/mysql/bin.123456 \
| mysql -u root -p

The first command recovers all the transactions up until the stop position given. The second command
recovers all transactions from the starting position given until the end of the binary log. Because the out-
put of mysqlbinlog includes SET TIMESTAMP statements before each SQL statement recorded, the
recovered data and related MySQL logs will reflect the original times at which the transactions were ex-
ecuted.

5.10.4. Table Maintenance and Crash Recovery
This section discusses how to use myisamchk to check or repair MyISAM tables (tables that have
.MYD and .MYI files for storing data and indexes). For general myisamchk background, see Sec-
tion 8.3, “myisamchk — MyISAM Table-Maintenance Utility”.

Database Administration

371

You can use myisamchk to get information about your database tables or to check, repair, or optimize
them. The following sections describe how to perform these operations and how to set up a table main-
tenance schedule.

Even though table repair with myisamchk is quite secure, it is always a good idea to make a backup
before doing a repair or any maintenance operation that could make a lot of changes to a table.

myisamchk operations that affect indexes can cause FULLTEXT indexes to be rebuilt with full-text
parameters that are incompatible with the values used by the MySQL server. To avoid this problem, fol-
low the guidelines in Section 8.3.1, “myisamchk General Options”.

In many cases, you may find it simpler to do MyISAM table maintenance using the SQL statements that
perform operations that myisamchk can do:

• To check or repair MyISAM tables, use CHECK TABLE or REPAIR TABLE.

• To optimize MyISAM tables, use OPTIMIZE TABLE.

• To analyze MyISAM tables, use ANALYZE TABLE.

These statements can be used directly or by means of the mysqlcheck client program. One advantage
of these statements over myisamchk is that the server does all the work. With myisamchk, you must
make sure that the server does not use the tables at the same time so that there is no unwanted interaction
between myisamchk and the server. See Section 13.5.2.1, “ANALYZE TABLE Syntax”, Sec-
tion 13.5.2.3, “CHECK TABLE Syntax”, Section 13.5.2.5, “OPTIMIZE TABLE Syntax”, and Sec-
tion 13.5.2.6, “REPAIR TABLE Syntax”.

5.10.4.1. Using myisamchk for Crash Recovery

This section describes how to check for and deal with data corruption in MySQL databases. If your
tables become corrupted frequently, you should try to find the reason why. See Section A.4.2, “What to
Do If MySQL Keeps Crashing”.

For an explanation of how MyISAM tables can become corrupted, see Section 14.1.4, “MyISAM Table
Problems”.

If you run mysqld with external locking disabled (which is the default as of MySQL 4.0), you cannot
reliably use myisamchk to check a table when mysqld is using the same table. If you can be certain
that no one will access the tables through mysqld while you run myisamchk, you only have to ex-
ecute mysqladmin flush-tables before you start checking the tables. If you cannot guarantee
this, you must stop mysqld while you check the tables. If you run myisamchk to check tables that
mysqld is updating at the same time, you may get a warning that a table is corrupt even when it is not.

If the server is run with external locking enabled, you can use myisamchk to check tables at any time.
In this case, if the server tries to update a table that myisamchk is using, the server will wait for my-
isamchk to finish before it continues.

If you use myisamchk to repair or optimize tables, you must always ensure that the mysqld server is
not using the table (this also applies if external locking is disabled). If you don't stop mysqld, you
should at least do a mysqladmin flush-tables before you run myisamchk. Your tables may
become corrupted if the server and myisamchk access the tables simultaneously.

When performing crash recovery, it is important to understand that each MyISAM table tbl_name in a
database corresponds to three files in the database directory:

File Purpose

Database Administration

372

tbl_name.frm Definition (format) file

tbl_name.MYD Data file

tbl_name.MYI Index file

Each of these three file types is subject to corruption in various ways, but problems occur most often in
data files and index files.

myisamchk works by creating a copy of the .MYD data file row by row. It ends the repair stage by re-
moving the old .MYD file and renaming the new file to the original file name. If you use --quick,
myisamchk does not create a temporary .MYD file, but instead assumes that the .MYD file is correct
and generates only a new index file without touching the .MYD file. This is safe, because myisamchk
automatically detects whether the .MYD file is corrupt and aborts the repair if it is. You can also specify
the --quick option twice to myisamchk. In this case, myisamchk does not abort on some errors
(such as duplicate-key errors) but instead tries to resolve them by modifying the .MYD file. Normally
the use of two --quick options is useful only if you have too little free disk space to perform a normal
repair. In this case, you should at least make a backup of the table before running myisamchk.

5.10.4.2. How to Check MyISAM Tables for Errors

To check a MyISAM table, use the following commands:

• myisamchk tbl_name

This finds 99.99% of all errors. What it cannot find is corruption that involves only the data file
(which is very unusual). If you want to check a table, you should normally run myisamchk without
options or with the -s (silent) option.

• myisamchk -m tbl_name

This finds 99.999% of all errors. It first checks all index entries for errors and then reads through all
rows. It calculates a checksum for all key values in the rows and verifies that the checksum matches
the checksum for the keys in the index tree.

• myisamchk -e tbl_name

This does a complete and thorough check of all data (-e means “extended check”). It does a check-
read of every key for each row to verify that they indeed point to the correct row. This may take a
long time for a large table that has many indexes. Normally, myisamchk stops after the first error it
finds. If you want to obtain more information, you can add the -v (verbose) option. This causes my-
isamchk to keep going, up through a maximum of 20 errors.

• myisamchk -e -i tbl_name

This is like the previous command, but the -i option tells myisamchk to print additional statistical
information.

In most cases, a simple myisamchk command with no arguments other than the table name is suffi-
cient to check a table.

5.10.4.3. How to Repair Tables

The discussion in this section describes how to use myisamchk on MyISAM tables (extensions .MYI
and .MYD).

Database Administration

373

You can also (and should, if possible) use the CHECK TABLE and REPAIR TABLE statements to
check and repair MyISAM tables. See Section 13.5.2.3, “CHECK TABLE Syntax”, and Section 13.5.2.6,
“REPAIR TABLE Syntax”.

Symptoms of corrupted tables include queries that abort unexpectedly and observable errors such as
these:

• tbl_name.frm is locked against change

• Can't find file tbl_name.MYI (Errcode: nnn)

• Unexpected end of file

• Record file is crashed

• Got error nnn from table handler

To get more information about the error, run perror nnn, where nnn is the error number. The follow-
ing example shows how to use perror to find the meanings for the most common error numbers that
indicate a problem with a table:

shell> perror 126 127 132 134 135 136 141 144 145
126 = Index file is crashed / Wrong file format
127 = Record-file is crashed
132 = Old database file
134 = Record was already deleted (or record file crashed)
135 = No more room in record file
136 = No more room in index file
141 = Duplicate unique key or constraint on write or update
144 = Table is crashed and last repair failed
145 = Table was marked as crashed and should be repaired

Note that error 135 (no more room in record file) and error 136 (no more room in index file) are not er-
rors that can be fixed by a simple repair. In this case, you must use ALTER TABLE to increase the
MAX_ROWS and AVG_ROW_LENGTH table option values:

ALTER TABLE tbl_name MAX_ROWS=xxx AVG_ROW_LENGTH=yyy;

If you do not know the current table option values, use SHOW CREATE TABLE.

For the other errors, you must repair your tables. myisamchk can usually detect and fix most problems
that occur.

The repair process involves up to four stages, described here. Before you begin, you should change loca-
tion to the database directory and check the permissions of the table files. On Unix, make sure that they
are readable by the user that mysqld runs as (and to you, because you need to access the files you are
checking). If it turns out you need to modify files, they must also be writable by you.

This section is for the cases where a table check fails (such as those described in Section 5.10.4.2, “How
to Check MyISAM Tables for Errors”), or you want to use the extended features that myisamchk
provides.

The options that you can use for table maintenance with myisamchk are described in Section 8.3,
“myisamchk — MyISAM Table-Maintenance Utility”.

If you are going to repair a table from the command line, you must first stop the mysqld server. Note
that when you do mysqladmin shutdown on a remote server, the mysqld server is still alive for a
while after mysqladmin returns, until all statement-processing has stopped and all index changes have
been flushed to disk.

Database Administration

374

Stage 1: Checking your tables

Run myisamchk *.MYI or myisamchk -e *.MYI if you have more time. Use the -s (silent) op-
tion to suppress unnecessary information.

If the mysqld server is stopped, you should use the --update-state option to tell myisamchk to
mark the table as “checked.”

You have to repair only those tables for which myisamchk announces an error. For such tables, pro-
ceed to Stage 2.

If you get unexpected errors when checking (such as out of memory errors), or if myisamchk
crashes, go to Stage 3.

Stage 2: Easy safe repair

First, try myisamchk -r -q tbl_name (-r -q means “quick recovery mode”). This attempts to
repair the index file without touching the data file. If the data file contains everything that it should and
the delete links point at the correct locations within the data file, this should work, and the table is fixed.
Start repairing the next table. Otherwise, use the following procedure:

1. Make a backup of the data file before continuing.

2. Use myisamchk -r tbl_name (-r means “recovery mode”). This removes incorrect rows
and deleted rows from the data file and reconstructs the index file.

3. If the preceding step fails, use myisamchk --safe-recover tbl_name. Safe recovery
mode uses an old recovery method that handles a few cases that regular recovery mode does not
(but is slower).

Note: If you want a repair operation to go much faster, you should set the values of the
sort_buffer_size and key_buffer_size variables each to about 25% of your available
memory when running myisamchk.

If you get unexpected errors when repairing (such as out of memory errors), or if myisamchk
crashes, go to Stage 3.

Stage 3: Difficult repair

You should reach this stage only if the first 16KB block in the index file is destroyed or contains incor-
rect information, or if the index file is missing. In this case, it is necessary to create a new index file. Do
so as follows:

1. Move the data file to a safe place.

2. Use the table description file to create new (empty) data and index files:

shell> mysql db_name
mysql> SET AUTOCOMMIT=1;
mysql> TRUNCATE TABLE tbl_name;
mysql> quit

3. Copy the old data file back onto the newly created data file. (Do not just move the old file back
onto the new file. You want to retain a copy in case something goes wrong.)

Go back to Stage 2. myisamchk -r -q should work. (This should not be an endless loop.)

Database Administration

375

You can also use the REPAIR TABLE tbl_name USE_FRM SQL statement, which performs the
whole procedure automatically. There is also no possibility of unwanted interaction between a utility
and the server, because the server does all the work when you use REPAIR TABLE. See Sec-
tion 13.5.2.6, “REPAIR TABLE Syntax”.

Stage 4: Very difficult repair

You should reach this stage only if the .frm description file has also crashed. That should never hap-
pen, because the description file is not changed after the table is created:

1. Restore the description file from a backup and go back to Stage 3. You can also restore the index
file and go back to Stage 2. In the latter case, you should start with myisamchk -r.

2. If you do not have a backup but know exactly how the table was created, create a copy of the table
in another database. Remove the new data file, and then move the .frm description and .MYI in-
dex files from the other database to your crashed database. This gives you new description and in-
dex files, but leaves the .MYD data file alone. Go back to Stage 2 and attempt to reconstruct the in-
dex file.

5.10.4.4. Table Optimization

To coalesce fragmented rows and eliminate wasted space that results from deleting or updating rows,
run myisamchk in recovery mode:

shell> myisamchk -r tbl_name

You can optimize a table in the same way by using the OPTIMIZE TABLE SQL statement. OPTIM-
IZE TABLE does a table repair and a key analysis, and also sorts the index tree so that key lookups are
faster. There is also no possibility of unwanted interaction between a utility and the server, because the
server does all the work when you use OPTIMIZE TABLE. See Section 13.5.2.5, “OPTIMIZE TABLE
Syntax”.

myisamchk has a number of other options that you can use to improve the performance of a table:

• --analyze, -a

• --sort-index, -S

• --sort-records=index_num, -R index_num

For a full description of all available options, see Section 8.3, “myisamchk — MyISAM Table-
Maintenance Utility”.

5.10.4.5. Getting Information About a Table

To obtain a description of a table or statistics about it, use the commands shown here. We explain some
of the information in more detail later.

• myisamchk -d tbl_name

Runs myisamchk in “describe mode” to produce a description of your table. If you start the
MySQL server with external locking disabled, myisamchk may report an error for a table that is
updated while it runs. However, because myisamchk does not change the table in describe mode,

Database Administration

376

there is no risk of destroying data.

• myisamchk -d -v tbl_name

Adding -v runs myisamchk in verbose mode so that it produces more information about what it is
doing.

• myisamchk -eis tbl_name

Shows only the most important information from a table. This operation is slow because it must read
the entire table.

• myisamchk -eiv tbl_name

This is like -eis, but tells you what is being done.

Sample output for some of these commands follows. They are based on a table with these data and index
file sizes:

-rw-rw-r-- 1 monty tcx 317235748 Jan 12 17:30 company.MYD
-rw-rw-r-- 1 davida tcx 96482304 Jan 12 18:35 company.MYI

Example of myisamchk -d output:

MyISAM file: company.MYI
Record format: Fixed length
Data records: 1403698 Deleted blocks: 0
Recordlength: 226

table description:
Key Start Len Index Type
1 2 8 unique double
2 15 10 multip. text packed stripped
3 219 8 multip. double
4 63 10 multip. text packed stripped
5 167 2 multip. unsigned short
6 177 4 multip. unsigned long
7 155 4 multip. text
8 138 4 multip. unsigned long
9 177 4 multip. unsigned long

193 1 text

Example of myisamchk -d -v output:

MyISAM file: company
Record format: Fixed length
File-version: 1
Creation time: 1999-10-30 12:12:51
Recover time: 1999-10-31 19:13:01
Status: checked
Data records: 1403698 Deleted blocks: 0
Datafile parts: 1403698 Deleted data: 0
Datafile pointer (bytes): 3 Keyfile pointer (bytes): 3
Max datafile length: 3791650815 Max keyfile length: 4294967294
Recordlength: 226

table description:
Key Start Len Index Type Rec/key Root Blocksize
1 2 8 unique double 1 15845376 1024
2 15 10 multip. text packed stripped 2 25062400 1024
3 219 8 multip. double 73 40907776 1024
4 63 10 multip. text packed stripped 5 48097280 1024
5 167 2 multip. unsigned short 4840 55200768 1024
6 177 4 multip. unsigned long 1346 65145856 1024
7 155 4 multip. text 4995 75090944 1024
8 138 4 multip. unsigned long 87 85036032 1024
9 177 4 multip. unsigned long 178 96481280 1024

193 1 text

Database Administration

377

Example of myisamchk -eis output:

Checking MyISAM file: company
Key: 1: Keyblocks used: 97% Packed: 0% Max levels: 4
Key: 2: Keyblocks used: 98% Packed: 50% Max levels: 4
Key: 3: Keyblocks used: 97% Packed: 0% Max levels: 4
Key: 4: Keyblocks used: 99% Packed: 60% Max levels: 3
Key: 5: Keyblocks used: 99% Packed: 0% Max levels: 3
Key: 6: Keyblocks used: 99% Packed: 0% Max levels: 3
Key: 7: Keyblocks used: 99% Packed: 0% Max levels: 3
Key: 8: Keyblocks used: 99% Packed: 0% Max levels: 3
Key: 9: Keyblocks used: 98% Packed: 0% Max levels: 4
Total: Keyblocks used: 98% Packed: 17%

Records: 1403698 M.recordlength: 226
Packed: 0%
Recordspace used: 100% Empty space: 0%
Blocks/Record: 1.00
Record blocks: 1403698 Delete blocks: 0
Recorddata: 317235748 Deleted data: 0
Lost space: 0 Linkdata: 0

User time 1626.51, System time 232.36
Maximum resident set size 0, Integral resident set size 0
Non physical pagefaults 0, Physical pagefaults 627, Swaps 0
Blocks in 0 out 0, Messages in 0 out 0, Signals 0
Voluntary context switches 639, Involuntary context switches 28966

Example of myisamchk -eiv output:

Checking MyISAM file: company
Data records: 1403698 Deleted blocks: 0
- check file-size
- check delete-chain
block_size 1024:
index 1:
index 2:
index 3:
index 4:
index 5:
index 6:
index 7:
index 8:
index 9:
No recordlinks
- check index reference
- check data record references index: 1
Key: 1: Keyblocks used: 97% Packed: 0% Max levels: 4
- check data record references index: 2
Key: 2: Keyblocks used: 98% Packed: 50% Max levels: 4
- check data record references index: 3
Key: 3: Keyblocks used: 97% Packed: 0% Max levels: 4
- check data record references index: 4
Key: 4: Keyblocks used: 99% Packed: 60% Max levels: 3
- check data record references index: 5
Key: 5: Keyblocks used: 99% Packed: 0% Max levels: 3
- check data record references index: 6
Key: 6: Keyblocks used: 99% Packed: 0% Max levels: 3
- check data record references index: 7
Key: 7: Keyblocks used: 99% Packed: 0% Max levels: 3
- check data record references index: 8
Key: 8: Keyblocks used: 99% Packed: 0% Max levels: 3
- check data record references index: 9
Key: 9: Keyblocks used: 98% Packed: 0% Max levels: 4
Total: Keyblocks used: 9% Packed: 17%

- check records and index references
*** LOTS OF ROW NUMBERS DELETED ***

Records: 1403698 M.recordlength: 226 Packed: 0%
Recordspace used: 100% Empty space: 0% Blocks/Record: 1.00
Record blocks: 1403698 Delete blocks: 0
Recorddata: 317235748 Deleted data: 0
Lost space: 0 Linkdata: 0

User time 1639.63, System time 251.61
Maximum resident set size 0, Integral resident set size 0
Non physical pagefaults 0, Physical pagefaults 10580, Swaps 0

Database Administration

378

Blocks in 4 out 0, Messages in 0 out 0, Signals 0
Voluntary context switches 10604, Involuntary context switches 122798

Explanations for the types of information myisamchk produces are given here. “Keyfile” refers to the
index file. “Record” and “row” are synonymous.

• MyISAM file

Name of the MyISAM (index) file.

• File-version

Version of MyISAM format. Currently always 2.

• Creation time

When the data file was created.

• Recover time

When the index/data file was last reconstructed.

• Data records

How many rows are in the table.

• Deleted blocks

How many deleted blocks still have reserved space. You can optimize your table to minimize this
space. See Section 5.10.4.4, “Table Optimization”.

• Datafile parts

For dynamic-row format, this indicates how many data blocks there are. For an optimized table
without fragmented rows, this is the same as Data records.

• Deleted data

How many bytes of unreclaimed deleted data there are. You can optimize your table to minimize this
space. See Section 5.10.4.4, “Table Optimization”.

• Datafile pointer

The size of the data file pointer, in bytes. It is usually 2, 3, 4, or 5 bytes. Most tables manage with 2
bytes, but this cannot be controlled from MySQL yet. For fixed tables, this is a row address. For dy-
namic tables, this is a byte address.

• Keyfile pointer

The size of the index file pointer, in bytes. It is usually 1, 2, or 3 bytes. Most tables manage with 2
bytes, but this is calculated automatically by MySQL. It is always a block address.

• Max datafile length

How long the table data file can become, in bytes.

• Max keyfile length

How long the table index file can become, in bytes.

Database Administration

379

• Recordlength

How much space each row takes, in bytes.

• Record format

The format used to store table rows. The preceding examples use Fixed length. Other possible
values are Compressed and Packed.

• table description

A list of all keys in the table. For each key, myisamchk displays some low-level information:

• Key

This key's number.

• Start

Where in the row this portion of the index starts.

• Len

How long this portion of the index is. For packed numbers, this should always be the full length
of the column. For strings, it may be shorter than the full length of the indexed column, because
you can index a prefix of a string column.

• Index

Whether a key value can exist multiple times in the index. Possible values are unique or mul-
tip. (multiple).

• Type

What data type this portion of the index has. This is a MyISAM data type with the possible values
packed, stripped, or empty.

• Root

Address of the root index block.

• Blocksize

The size of each index block. By default this is 1024, but the value may be changed at compile
time when MySQL is built from source.

• Rec/key

This is a statistical value used by the optimizer. It tells how many rows there are per value for
this index. A unique index always has a value of 1. This may be updated after a table is loaded
(or greatly changed) with myisamchk -a. If this is not updated at all, a default value of 30 is
given.

For the table shown in the examples, there are two table description lines for the ninth in-
dex. This indicates that it is a multiple-part index with two parts.

• Keyblocks used

What percentage of the keyblocks are used. When a table has just been reorganized with myis-
amchk, as for the table in the examples, the values are very high (very near the theoretical maxim-

Database Administration

380

um).

• Packed

MySQL tries to pack key values that have a common suffix. This can only be used for indexes on
CHAR and VARCHAR columns. For long indexed strings that have similar leftmost parts, this can sig-
nificantly reduce the space used. In the third of the preceding examples, the fourth key is 10 charac-
ters long and a 60% reduction in space is achieved.

• Max levels

How deep the B-tree for this key is. Large tables with long key values get high values.

• Records

How many rows are in the table.

• M.recordlength

The average row length. This is the exact row length for tables with fixed-length rows, because all
rows have the same length.

• Packed

MySQL strips spaces from the end of strings. The Packed value indicates the percentage of savings
achieved by doing this.

• Recordspace used

What percentage of the data file is used.

• Empty space

What percentage of the data file is unused.

• Blocks/Record

Average number of blocks per row (that is, how many links a fragmented row is composed of). This
is always 1.0 for fixed-format tables. This value should stay as close to 1.0 as possible. If it gets too
large, you can reorganize the table. See Section 5.10.4.4, “Table Optimization”.

• Recordblocks

How many blocks (links) are used. For fixed-format tables, this is the same as the number of rows.

• Deleteblocks

How many blocks (links) are deleted.

• Recorddata

How many bytes in the data file are used.

• Deleted data

How many bytes in the data file are deleted (unused).

• Lost space

If a row is updated to a shorter length, some space is lost. This is the sum of all such losses, in bytes.

Database Administration

381

• Linkdata

When the dynamic table format is used, row fragments are linked with pointers (4 to 7 bytes each).
Linkdata is the sum of the amount of storage used by all such pointers.

If a table has been compressed with myisampack, myisamchk -d prints additional information
about each table column. See Section 8.5, “myisampack — Generate Compressed, Read-Only MyIS-
AM Tables”, for an example of this information and a description of what it means.

5.10.4.6. Setting Up a Table Maintenance Schedule

It is a good idea to perform table checks on a regular basis rather than waiting for problems to occur.
One way to check and repair MyISAM tables is with the CHECK TABLE and REPAIR TABLE state-
ments. See Section 13.5.2.3, “CHECK TABLE Syntax”, and Section 13.5.2.6, “REPAIR TABLE Syn-
tax”.

Another way to check tables is to use myisamchk. For maintenance purposes, you can use myis-
amchk -s. The -s option (short for --silent) causes myisamchk to run in silent mode, printing
messages only when errors occur.

It is also a good idea to enable automatic MyISAM table checking. For example, whenever the machine
has done a restart in the middle of an update, you usually need to check each table that could have been
affected before it is used further. (These are “expected crashed tables.”) To check MyISAM tables auto-
matically, start the server with the --myisam-recover option. See Section 5.2.2, “Command Op-
tions”.

You should also check your tables regularly during normal system operation. At MySQL AB, we run a
cron job to check all our important tables once a week, using a line like this in a crontab file:

35 0 * * 0 /path/to/myisamchk --fast --silent /path/to/datadir/*/*.MYI

This prints out information about crashed tables so that we can examine and repair them when needed.

Because we have not had any unexpectedly crashed tables (tables that become corrupted for reasons oth-
er than hardware trouble) for several years, once a week is more than sufficient for us.

We recommend that to start with, you execute myisamchk -s each night on all tables that have been
updated during the last 24 hours, until you come to trust MySQL as much as we do.

Normally, MySQL tables need little maintenance. If you are performing many updates to MyISAM
tables with dynamic-sized rows (tables with VARCHAR, BLOB, or TEXT columns) or have tables with
many deleted rows you may want to defragment/reclaim space from the tables from time to time. You
can do this by using OPTIMIZE TABLE on the tables in question. Alternatively, if you can stop the
mysqld server for a while, change location into the data directory and use this command while the
server is stopped:

shell> myisamchk -r -s --sort-index --sort_buffer_size=16M */*.MYI

5.11. MySQL Localization and International Usage
This section describes how to configure the server to use different character sets. It also discusses how to
set the server's time zone and enable per-connection time zone support.

5.11.1. The Character Set Used for Data and Sorting

Database Administration

382

By default, MySQL uses the latin1 (cp1252 West European) character set and the lat-
in1_swedish_ci collation that sorts according to Swedish/Finnish rules. These defaults are suitable
for the United States and most of Western Europe.

All MySQL binary distributions are compiled with --with-extra-charsets=complex. This
adds code to all standard programs that enables them to handle latin1 and all multi-byte character sets
within the binary. Other character sets are loaded from a character-set definition file when needed.

The character set determines what characters are allowed in identifiers. The collation determines how
strings are sorted by the ORDER BY and GROUP BY clauses of the SELECT statement.

You can change the default server character set and collation with the --character-set-server
and --collation-server options when you start the server. The collation must be a legal collation
for the default character set. (Use the SHOW COLLATION statement to determine which collations are
available for each character set.) See Section 5.2.2, “Command Options”.

The character sets available depend on the --with-charset=charset_name and -
-with-extra-charsets=list-of-charsets | complex | all | none options to
configure, and the character set configuration files listed in SHAREDIR/charsets/Index. See
Section 2.9.2, “Typical configure Options”.

If you change the character set when running MySQL, that may also change the sort order. Con-
sequently, you must run myisamchk -r -q --set-collation=collation_name on all
MyISAM tables, or your indexes may not be ordered correctly.

When a client connects to a MySQL server, the server indicates to the client what the server's default
character set is. The client switches to this character set for this connection.

You should use mysql_real_escape_string() when escaping strings for an SQL query.
mysql_real_escape_string() is identical to the old mysql_escape_string() function,
except that it takes the MYSQL connection handle as the first parameter so that the appropriate character
set can be taken into account when escaping characters.

If the client is compiled with paths that differ from where the server is installed and the user who con-
figured MySQL didn't include all character sets in the MySQL binary, you must tell the client where it
can find the additional character sets it needs if the server runs with a different character set from the cli-
ent. You can do this by specifying a --character-sets-dir option to indicate the path to the dir-
ectory in which the dynamic MySQL character sets are stored. For example, you can put the following
in an option file:

[client]
character-sets-dir=/usr/local/mysql/share/mysql/charsets

You can force the client to use specific character set as follows:

[client]
default-character-set=charset_name

This is normally unnecessary, however.

5.11.1.1. Using the German Character Set

In MySQL 5.0, character set and collation are specified separately. This means that if you want German
sort order, you should select the latin1 character set and either the latin1_german1_ci or lat-
in1_german2_ci collation. For example, to start the server with the latin1_german1_ci colla-
tion, use the --character-set-server=latin1 and -
-collation-server=latin1_german1_ci options.

Database Administration

383

For information on the differences between these two collations, see Section 10.9.2, “West European
Character Sets”.

5.11.2. Setting the Error Message Language
By default, mysqld produces error messages in English, but they can also be displayed in any of these
other languages: Czech, Danish, Dutch, Estonian, French, German, Greek, Hungarian, Italian, Japanese,
Korean, Norwegian, Norwegian-ny, Polish, Portuguese, Romanian, Russian, Slovak, Spanish, or
Swedish.

To start mysqld with a particular language for error messages, use the --language or -L option.
The option value can be a language name or the full path to the error message file. For example:

shell> mysqld --language=swedish

Or:

shell> mysqld --language=/usr/local/share/swedish

The language name should be specified in lowercase.

By default, the language files are located in the share/LANGUAGE directory under the MySQL base
directory.

You can also change the content of the error messages produced by the server. Details can be found in
the MySQL Internals manual, available at http://dev.mysql.com/doc/. If you upgrade to a newer version
of MySQL after changing the error messages, remember to repeat your changes after the upgrade.

5.11.3. Adding a New Character Set
This section discusses the procedure for adding a new character set to MySQL. You must have a
MySQL source distribution to use these instructions. To choose the proper procedure, determine wheth-
er the character set is simple or complex:

• If the character set does not need to use special string collating routines for sorting and does not need
multi-byte character support, it is simple.

• If it needs either of those features, it is complex.

For example, latin1 and danish are simple character sets, whereas big5 and czech are complex
character sets.

In the following instructions, the name of the character set is represented by MYSET.

For a simple character set, do the following:

1. Add MYSET to the end of the sql/share/charsets/Index file. Assign a unique number to
it.

2. Create the file sql/share/charsets/MYSET.conf. (You can use a copy of sql/
share/charsets/latin1.conf as the basis for this file.)

The syntax for the file is very simple:

Database Administration

384

http://dev.mysql.com/doc/

• Comments start with a ‘#’ character and continue to the end of the line.

• Words are separated by arbitrary amounts of whitespace.

• When defining the character set, every word must be a number in hexadecimal format.

• The ctype array takes up the first 257 words. The to_lower[], to_upper[] and
sort_order[] arrays take up 256 words each after that.

See Section 5.11.4, “The Character Definition Arrays”.

3. Add the character set name to the CHARSETS_AVAILABLE and COMPILED_CHARSETS lists in
configure.in.

4. Reconfigure, recompile, and test.

For a complex character set, do the following:

1. Create the file strings/ctype-MYSET.c in the MySQL source distribution.

2. Add MYSET to the end of the sql/share/charsets/Index file. Assign a unique number to
it.

3. Look at one of the existing ctype-*.c files (such as strings/ctype-big5.c) to see what
needs to be defined. Note that the arrays in your file must have names like ctype_MYSET,
to_lower_MYSET, and so on. These correspond to the arrays for a simple character set. See Sec-
tion 5.11.4, “The Character Definition Arrays”.

4. Near the top of the file, place a special comment like this:

/*
* This comment is parsed by configure to create ctype.c,
* so don't change it unless you know what you are doing.
*
* .configure. number_MYSET=MYNUMBER
* .configure. strxfrm_multiply_MYSET=N
* .configure. mbmaxlen_MYSET=N
*/

The configure program uses this comment to include the character set into the MySQL library
automatically.

The strxfrm_multiply and mbmaxlen lines are explained in the following sections. You
need include them only if you need the string collating functions or the multi-byte character set
functions, respectively.

5. You should then create some of the following functions:

• my_strncoll_MYSET()

• my_strcoll_MYSET()

• my_strxfrm_MYSET()

• my_like_range_MYSET()

See Section 5.11.5, “String Collating Support”.

Database Administration

385

6. Add the character set name to the CHARSETS_AVAILABLE and COMPILED_CHARSETS lists in
configure.in.

7. Reconfigure, recompile, and test.

The sql/share/charsets/README file includes additional instructions.

If you want to have the character set included in the MySQL distribution, mail a patch to the MySQL
internals mailing list. See Section 1.7.1, “MySQL Mailing Lists”.

5.11.4. The Character Definition Arrays
to_lower[] and to_upper[] are simple arrays that hold the lowercase and uppercase characters
corresponding to each member of the character set. For example:

to_lower['A'] should contain 'a'
to_upper['a'] should contain 'A'

sort_order[] is a map indicating how characters should be ordered for comparison and sorting pur-
poses. Quite often (but not for all character sets) this is the same as to_upper[], which means that
sorting is case-insensitive. MySQL sorts characters based on the values of sort_order[] elements.
For more complicated sorting rules, see the discussion of string collating in Section 5.11.5, “String Col-
lating Support”.

ctype[] is an array of bit values, with one element for one character. (Note that to_lower[],
to_upper[], and sort_order[] are indexed by character value, but ctype[] is indexed by char-
acter value + 1. This is an old legacy convention for handling EOF.)

You can find the following bitmask definitions in m_ctype.h:

#define _U 01 /* Uppercase */
#define _L 02 /* Lowercase */
#define _N 04 /* Numeral (digit) */
#define _S 010 /* Spacing character */
#define _P 020 /* Punctuation */
#define _C 040 /* Control character */
#define _B 0100 /* Blank */
#define _X 0200 /* heXadecimal digit */

The ctype[] entry for each character should be the union of the applicable bitmask values that de-
scribe the character. For example, 'A' is an uppercase character (_U) as well as a hexadecimal digit
(_X), so ctype['A'+1] should contain the value:

_U + _X = 01 + 0200 = 0201

5.11.5. String Collating Support
If the sorting rules for your language are too complex to be handled with the simple sort_order[]
table, you need to use the string collating functions.

The best documentation for this is the existing character sets. Look at the big5, czech, gbk, sjis,
and tis160 character sets for examples.

You must specify the strxfrm_multiply_MYSET=N value in the special comment at the top of the
file. N should be set to the maximum ratio the strings may grow during my_strxfrm_MYSET (it must
be a positive integer).

Database Administration

386

5.11.6. Multi-Byte Character Support
If you want to add support for a new character set that includes multi-byte characters, you need to use
the multi-byte character functions.

The best documentation for this is the existing character sets. Look at the euc_kr, gb2312, gbk,
sjis, and ujis character sets for examples. These are implemented in the
ctype-charset_name.c files in the strings directory.

You must specify the mbmaxlen_MYSET=N value in the special comment at the top of the source file.
N should be set to the size in bytes of the largest character in the set.

5.11.7. Problems With Character Sets
If you try to use a character set that is not compiled into your binary, you might run into the following
problems:

• Your program uses an incorrect path to determine where the character sets are stored. (Default /
usr/local/mysql/share/mysql/charsets). This can be fixed by using the -
-character-sets-dir option when you run the program in question.

• The character set is a multi-byte character set that cannot be loaded dynamically. In this case, you
must recompile the program with support for the character set.

• The character set is a dynamic character set, but you do not have a configure file for it. In this case,
you should install the configure file for the character set from a new MySQL distribution.

• If your Index file does not contain the name for the character set, your program displays the fol-
lowing error message:

ERROR 1105: File '/usr/local/share/mysql/charsets/?.conf'
not found (Errcode: 2)

In this case, you should either get a new Index file or manually add the name of any missing char-
acter sets to the current file.

For MyISAM tables, you can check the character set name and number for a table with myisamchk -
dvv tbl_name.

5.11.8. MySQL Server Time Zone Support
The MySQL server maintains several time zone settings:

• The system time zone. When the server starts, it attempts to determine the time zone of the host ma-
chine and uses it to set the system_time_zone system variable. The value does not change
thereafter.

• The server's current time zone. The global time_zone system variable indicates the time zone the
server currently is operating in. The initial value for time_zone is 'SYSTEM', which indicates
that the server time zone is the same as the system time zone. The initial value can be specified ex-
plicitly with the --default-time-zone=timezone option. If you have the SUPER privilege,
you can set the global value at runtime with this statement:

mysql> SET GLOBAL time_zone = timezone;

Database Administration

387

• Per-connection time zones. Each client that connects has its own time zone setting, given by the ses-
sion time_zone variable. Initially, the session variable takes its value from the global
time_zone variable, but the client can change its own time zone with this statement:

mysql> SET time_zone = timezone;

The current values of the global and client-specific time zones can be retrieved like this:

mysql> SELECT @@global.time_zone, @@session.time_zone;

timezone values can be given as strings indicating an offset from UTC, such as '+10:00' or '-
6:00'. If the time zone information tables in the mysql database have been created and populated,
you can also use named time zones, such as 'Europe/Helsinki', 'US/Eastern', or 'MET'.
The value 'SYSTEM' can be used to indicate that the time zone should be the same as the system time
zone. Time zone names are not case sensitive.

The MySQL installation procedure creates the time zone tables in the mysql database, but does not
load them. You must do so manually. (If you are upgrading to MySQL 4.1.3 or later from an earlier ver-
sion, you should create the tables by upgrading your mysql database. Use the instructions in Sec-
tion 5.6.2, “mysql_upgrade — Check Tables for MySQL Upgrade”.)

If your system has its own zoneinfo database (the set of files describing time zones), you should use the
mysql_tzinfo_to_sql program for filling the time zone tables. Examples of such systems are
Linux, FreeBSD, Sun Solaris, and Mac OS X. One likely location for these files is the /
usr/share/zoneinfo directory. If your system does not have a zoneinfo database, you can use the
downloadable package described later in this section.

The mysql_tzinfo_to_sql program is used to load the time zone tables. On the command line,
pass the zoneinfo directory pathname to mysql_tzinfo_to_sql and send the output into the
mysql program. For example:

shell> mysql_tzinfo_to_sql /usr/share/zoneinfo | mysql -u root mysql

mysql_tzinfo_to_sql reads your system's time zone files and generates SQL statements from
them. mysql processes those statements to load the time zone tables.

mysql_tzinfo_to_sql also can be used to load a single time zone file, and to generate leap second
information:

• To load a single time zone file tz_file that corresponds to a time zone name tz_name, invoke
mysql_tzinfo_to_sql like this:

shell> mysql_tzinfo_to_sql tz_file tz_name | mysql -u root mysql

• If your time zone needs to account for leap seconds, initialize the leap second information like this,
where tz_file is the name of your time zone file:

shell> mysql_tzinfo_to_sql --leap tz_file | mysql -u root mysql

If your system doesn't have a zoneinfo database (for example, Windows or HP-UX), you can use the
package of pre-built time zone tables that is available for download at ht-
tp://dev.mysql.com/downloads/timezones.html. This package contains .frm, .MYD, and .MYI files for
the MyISAM time zone tables. These tables should be part of the mysql database, so you should place
the files in the mysql subdirectory of your MySQL server's data directory. The server should be

Database Administration

388

http://dev.mysql.com/downloads/timezones.html
http://dev.mysql.com/downloads/timezones.html

stopped while you do this.

Warning: Please don't use the downloadable package if your system has a zoneinfo database. Use the
mysql_tzinfo_to_sql utility instead. Otherwise, you may cause a difference in datetime handling
between MySQL and other applications on your system.

For information about time zone settings in replication setup, please see Section 6.7, “Replication Fea-
tures and Known Problems”.

5.12. MySQL Server Logs
MySQL has several different log files that can help you find out what is going on inside mysqld:

Log Type Information Written to Log

The error log Problems encountered starting, running, or stopping mysqld

The general query log Established client connections and statements received from clients

The binary log All statements that change data (also used for replication)

The slow log All queries that took more than long_query_time seconds to ex-
ecute or didn't use indexes

By default, all log files are created in the mysqld data directory. You can force mysqld to close and
reopen the log files (or in some cases switch to a new log) by flushing the logs. Log flushing occurs
when you issue a FLUSH LOGS statement or execute mysqladmin flush-logs or mysqladmin
refresh. See Section 13.5.5.2, “FLUSH Syntax”.

If you are using MySQL replication capabilities, slave replication servers maintain additional log files
called relay logs. These are discussed in Chapter 6, Replication.

5.12.1. The Error Log
The error log file contains information indicating when mysqld was started and stopped and also any
critical errors that occur while the server is running. If mysqld notices a table that needs to be automat-
ically checked or repaired, it writes a message to the error log.

On some operating systems, the error log contains a stack trace if mysqld dies. The trace can be used
to determine where mysqld died. See Section E.1.4, “Using a Stack Trace”.

If mysqld dies unexpectedly and mysqld_safe needs to restart it, mysqld_safe writes a re-
started mysqld message to the error log.

You can specify where mysqld stores the error log file with the --log-error[=file_name] op-
tion. If no file_name value is given, mysqld uses the name host_name.err and writes the file in
the data directory. If you execute FLUSH LOGS, the error log is renamed with the suffix -old and
mysqld creates a new empty log file. (No renaming occurs if the --log-error option was not giv-
en.)

If you do not specify --log-error, or (on Windows) if you use the --console option, errors are
written to stderr, the standard error output. Usually this is your terminal.

On Windows, error output is always written to the .err file if --console is not given.

5.12.2. The General Query Log
The general query log is a general record of what mysqld is doing. The server writes information to
this log when clients connect or disconnect, and it logs each SQL statement received from clients. The

Database Administration

389

general query log can be very useful when you suspect an error in a client and want to know exactly
what the client sent to mysqld.

mysqld writes statements to the query log in the order that it receives them. This may be different from
the order in which they are executed. This is in contrast to the the binary log, for which statements are
written after they are executed, but before any locks are released. (Also, the query log contains all state-
ments, whereas the binary log does not contain statements that only select data.)

To enable the general query log, start mysqld with the --log[=file_name] or -l
[file_name] option. If no file_name value is given, the default name is host_name.log in the
data directory.

Server restarts and log flushing do not cause a new general query log file to be generated (although
flushing closes and reopens it). On Unix, you can rename the file and create a new one by using the fol-
lowing commands:

shell> mv host_name.log host_name-old.log
shell> mysqladmin flush-logs
shell> cp host_name-old.log backup-directory
shell> rm host_name-old.log

On Windows, you cannot rename the log file while the server has it open. You must stop the server and
rename the file, and then restart the server to create a new log file.

5.12.3. The Binary Log
The binary log contains all statements that update data or potentially could have updated it (for example,
a DELETE which matched no rows). Statements are stored in the form of “events” that describe the
modifications. The binary log also contains information about how long each statement took that up-
dated data.

Note: The binary log has replaced the old update log, which is no longer available as of MySQL 5.0.
The binary log contains all information that is available in the update log in a more efficient format and
in a manner that is transaction-safe. If you are using transactions, you must use the MySQL binary log
for backups instead of the old update log.

The binary log does not contain statements that do not modify any data. If you want to log all statements
(for example, to identify a problem query), use the general query log. See Section 5.12.2, “The General
Query Log”.

The primary purpose of the binary log is to be able to update databases during a restore operation as
fully as possible, because the binary log contains all updates done after a backup was made. The binary
log is also used on master replication servers as a record of the statements to be sent to slave servers. See
Chapter 6, Replication.

Running the server with the binary log enabled makes performance about 1% slower. However, the be-
nefits of the binary log for restore operations and in allowing you to set up replication generally out-
weigh this minor performance decrement.

When started with the --log-bin[=base_name] option, mysqld writes a log file containing all
SQL commands that update data. If no base_name value is given, the default name is the name of the
host machine followed by -bin. If the basename is given, but not as an absolute pathname, the server
writes the file in the data directory. It is recommended that you specify a basename; see Section A.8.1,
“Open Issues in MySQL”, for the reason.

If you supply an extension in the log name (for example, --log-bin=base_name.extension),
the extension is silently removed and ignored.

mysqld appends a numeric extension to the binary log basename. The number increases each time the

Database Administration

390

server creates a new log file, thus creating an ordered series of files. The server creates a new binary log
file each time it starts or flushes the logs. The server also creates a new binary log file automatically
when the current log's size reaches max_binlog_size. A binary log file may become larger than
max_binlog_size if you are using large transactions because a transaction is written to the file in
one piece, never split between files.

To keep track of which binary log files have been used, mysqld also creates a binary log index file that
contains the names of all used binary log files. By default this has the same basename as the binary log
file, with the extension '.index'. You can change the name of the binary log index file with the -
-log-bin-index[=file_name] option. You should not manually edit this file while mysqld is
running; doing so would confuse mysqld.

Writes to the binary log file and binary log index file are handled in the same way as writes to MyISAM
tables. See Section A.4.3, “How MySQL Handles a Full Disk”.

You can delete all binary log files with the RESET MASTER statement, or a subset of them with PURGE
MASTER LOGS. See Section 13.5.5.5, “RESET Syntax”, and Section 13.6.1, “SQL Statements for Con-
trolling Master Servers”.

The binary log format has some known limitations that can affect recovery from backups. See Sec-
tion 6.7, “Replication Features and Known Problems”.

Binary logging for stored routines and triggers is done as described in Section 17.5, “Binary Logging of
Stored Routines and Triggers”.

You can use the following options to mysqld to affect what is logged to the binary log. See also the
discussion that follows this option list.

If you are using replication, the options described here affect which statements are sent by a master serv-
er to its slaves. There are also options for slave servers that control which statements received from the
master to execute or ignore. For details, see Section 6.8, “Replication Startup Options”.

• --binlog-do-db=db_name

Tell the server to restrict binary logging to updates for which the default database is db_name (that
is, the database selected by USE). All other databases that are not explicitly mentioned are ignored.
If you use this option, you should ensure that you do updates only in the default database.

There is an exception to this for CREATE DATABASE, ALTER DATABASE, and DROP DATA-
BASE statements. The server uses the database named in the statement (not the default database) to
decide whether it should log the statement.

An example of what does not work as you might expect: If the server is started with binlog-
do-db=sales, and you run USE prices; UPDATE sales.january SET
amount=amount+1000;, this statement is not written into the binary log.

To log multiple databases, use multiple options, specifying the option once for each database.

• --binlog-ignore-db=db_name

Tell the server to suppress binary logging of updates for which the default database is db_name
(that is, the database selected by USE). If you use this option, you should ensure that you do updates
only in the default database.

As with the --binlog-do-db option, there is an exception for the CREATE DATABASE, ALTER
DATABASE, and DROP DATABASE statements. The server uses the database named in the state-
ment (not the default database) to decide whether it should log the statement.

An example of what does not work as you might expect: If the server is started with binlog-ig-

Database Administration

391

nore-db=sales, and you run USE prices; UPDATE sales.january SET
amount=amount+1000;, this statement is written into the binary log.

To ignore multiple databases, use multiple options, specifying the option once for each database.

The server evaluates the options for logging or ignoring updates to the binary log according to the fol-
lowing rules. As described previously, there is an exception for the CREATE DATABASE, ALTER
DATABASE, and DROP DATABASE statements. In those cases, the database being created, altered, or
dropped replaces the default database in the following rules:

1. Are there --binlog-do-db or --binlog-ignore-db rules?

• No: Write the statement to the binary log and exit.

• Yes: Go to the next step.

2. There are some rules (--binlog-do-db, --binlog-ignore-db, or both). Is there a default
database (has any database been selected by USE?)?

• No: Do not write the statement, and exit.

• Yes: Go to the next step.

3. There is a default database. Are there some --binlog-do-db rules?

• Yes: Does the default database match any of the --binlog-do-db rules?

• Yes: Write the statement and exit.

• No: Do not write the statement, and exit.

• No: Go to the next step.

4. There are some --binlog-ignore-db rules. Does the default database match any of the -
-binlog-ignore-db rules?

• Yes: Do not write the statement, and exit.

• No: Write the query and exit.

For example, a slave running with only --binlog-do-db=sales does not write to the binary log
any statement for which the default database is different from sales (in other words, -
-binlog-do-db can sometimes mean “ignore other databases”).

If you are using replication, you should not delete old binary log files until you are sure that no slave
still needs to use them. For example, if your slaves never run more than three days behind, once a day
you can execute mysqladmin flush-logs on the master and then remove any logs that are more
than three days old. You can remove the files manually, but it is preferable to use PURGE MASTER
LOGS, which also safely updates the binary log index file for you (and which can take a date argument).
See Section 13.6.1, “SQL Statements for Controlling Master Servers”.

A client that has the SUPER privilege can disable binary logging of its own statements by using a SET
SQL_LOG_BIN=0 statement. See Section 13.5.3, “SET Syntax”.

You can display the contents of binary log files with the mysqlbinlog utility. This can be useful
when you want to reprocess statements in the log. For example, you can update a MySQL server from
the binary log as follows:

Database Administration

392

shell> mysqlbinlog log_file | mysql -h server_name

See Section 8.10, “mysqlbinlog — Utility for Processing Binary Log Files”, for more information
on the mysqlbinlog utility and how to use it. mysqlbinlog also can be used with relay log files
because they are written using the same format as binary log files.

Binary logging is done immediately after a statement completes but before any locks are released or any
commit is done. This ensures that the log is logged in execution order.

Updates to non-transactional tables are stored in the binary log immediately after execution. Within an
uncommitted transaction, all updates (UPDATE, DELETE, or INSERT) that change transactional tables
such as BDB or InnoDB tables are cached until a COMMIT statement is received by the server. At that
point, mysqld writes the entire transaction to the binary log before the COMMIT is executed. When the
thread that handles the transaction starts, it allocates a buffer of binlog_cache_size to buffer state-
ments. If a statement is bigger than this, the thread opens a temporary file to store the transaction. The
temporary file is deleted when the thread ends.

Modifications to non-transactional tables cannot be rolled back. If a transaction that is rolled back in-
cludes modifications to non-transactional tables, the entire transaction is logged with a ROLLBACK
statement at the end to ensure that the modifications to those tables are replicated.

The Binlog_cache_use status variable shows the number of transactions that used this buffer (and
possibly a temporary file) for storing statements. The Binlog_cache_disk_use status variable
shows how many of those transactions actually had to use a temporary file. These two variables can be
used for tuning binlog_cache_size to a large enough value that avoids the use of temporary files.

The max_binlog_cache_size system variable (default 4GB) can be used to restrict the total size
used to cache a multiple-statement transaction. If a transaction is larger than this, it fails and rolls back.

If you are using the binary log, concurrent inserts are converted to normal inserts for CREATE ...
SELECT or INSERT ... SELECT statement. This is done to ensure that you can re-create an exact
copy of your tables by applying the log during a backup operation.

Note that the binary log format is different in MySQL 5.0 from previous versions of MySQL, due to en-
hancements in replication. See Section 6.5, “Replication Compatibility Between MySQL Versions”.

By default, the binary log is not synchronized to disk at each write. So if the operating system or ma-
chine (not only the MySQL server) crashes, there is a chance that the last statements of the binary log
are lost. To prevent this, you can make the binary log be synchronized to disk after every N writes to the
binary log, with the sync_binlog system variable. See Section 5.2.3, “System Variables”. 1 is the
safest value for sync_binlog, but also the slowest. Even with sync_binlog set to 1, there is still
the chance of an inconsistency between the table content and binary log content in case of a crash. For
example, if you are using InnoDB tables and the MySQL server processes a COMMIT statement, it
writes the whole transaction to the binary log and then commits this transaction into InnoDB. If the
server crashes between those two operations, the transaction is rolled back by InnoDB at restart but still
exists in the binary log. This problem can be solved with the --innodb-safe-binlog option,
which adds consistency between the content of InnoDB tables and the binary log. (Note: -
-innodb-safe-binlog is unneeded as of MySQL 5.0; it was made obsolete by the introduction of
XA transaction support.)

For this option to provide a greater degree of safety, the MySQL server should also be configured to
synchronize the binary log and the InnoDB logs to disk at every transaction. The InnoDB logs are syn-
chronized by default, and sync_binlog=1 can be used to synchronize the binary log. The effect of
this option is that at restart after a crash, after doing a rollback of transactions, the MySQL server cuts
rolled back InnoDB transactions from the binary log. This ensures that the binary log reflects the exact
data of InnoDB tables, and so, that the slave remains in synchrony with the master (not receiving a
statement which has been rolled back).

Database Administration

393

Note that --innodb-safe-binlog can be used even if the MySQL server updates other storage en-
gines than InnoDB. Only statements and transactions that affect InnoDB tables are subject to removal
from the binary log at InnoDB's crash recovery. If the MySQL server discovers at crash recovery that
the binary log is shorter than it should have been, it lacks at least one successfully committed InnoDB
transaction. This should not happen if sync_binlog=1 and the disk/filesystem do an actual sync
when they are requested to (some don't), so the server prints an error message The binary log
<name> is shorter than its expected size. In this case, this binary log is not correct
and replication should be restarted from a fresh snapshot of the master's data.

5.12.4. The Slow Query Log
The slow query log consists of all SQL statements that took more than long_query_time seconds to
execute. The time to acquire the initial table locks is not counted as execution time. The minimum and
default values of long_query_time are 1 and 10, respectively.

mysqld writes a statement to the slow query log after it has been executed and after all locks have been
released. Log order may be different from execution order.

To enable the slow query log, start mysqld with the --log-slow-queries[=file_name] op-
tion.

If no file_name value is given, the default is the name of the host machine with a suffix of -
slow.log. If a filename is given, but not as an absolute pathname, the server writes the file in the data
directory.

The slow query log can be used to find queries that take a long time to execute and are therefore candid-
ates for optimization. However, examining a long slow query log can become a difficult task. To make
this easier, you can process the slow query log using the mysqldumpslow command to summarize the
queries that appear in the log. Use mysqldumpslow --help to see the options that this command
supports.

In MySQL 5.0, queries that do not use indexes are logged in the slow query log if the -
-log-queries-not-using-indexes option is specified. See Section 5.2.2, “Command
Options”.

In MySQL 5.0, the --log-slow-admin-statements server option enables you to request log-
ging of slow administrative statements such as OPTIMIZE TABLE, ANALYZE TABLE, and ALTER
TABLE to the slow query log.

Queries handled by the query cache are not added to the slow query log, nor are queries that would not
benefit from the presence of an index because the table has zero rows or one row.

5.12.5. Server Log Maintenance
MySQL Server can create a number of different log files that make it easy to see what is going on. See
Section 5.12, “MySQL Server Logs”. However, you must clean up these files regularly to ensure that the
logs do not take up too much disk space.

When using MySQL with logging enabled, you may want to back up and remove old log files from time
to time and tell MySQL to start logging to new files. See Section 5.10.1, “Database Backups”.

On a Linux (Red Hat) installation, you can use the mysql-log-rotate script for this. If you in-
stalled MySQL from an RPM distribution, this script should have been installed automatically. You
should be careful with this script if you are using the binary log for replication. You should not remove
binary logs until you are certain that their contents have been processed by all slaves.

On other systems, you must install a short script yourself that you start from cron (or its equivalent) for

Database Administration

394

handling log files.

You can force MySQL to start using new log files by using mysqladmin flush-logs or by using
the SQL statement FLUSH LOGS.

A log flushing operation does the following:

• If general query logging (--log) or slow query logging (--log-slow-queries) is used, the
server closes and reopens the general query log file or slow query log file.

• If binary logging (--log-bin) is used, the server closes the current log file and opens a new log
file with the next sequence number.

The server creates a new binary log file when you flush the logs. However, it just closes and reopens the
general and slow query log files. To cause new files to be created on Unix, rename the current logs be-
fore flushing them. At flush time, the server will open new logs with the original names. For example, if
the general and slow query logs are named mysql.log and mysql-slow.log, you can use a series
of commands like this:

shell> cd mysql-data-directory
shell> mv mysql.log mysql.old
shell> mv mysql-slow.log mysql-slow.old
shell> mysqladmin flush-logs

At this point, you can make a backup of mysql.old and mysql-slow.log and then remove them
from disk.

On Windows, you cannot rename log files while the server has them open. You must stop the server and
rename them, and then restart the server to create new logs.

5.13. Running Multiple MySQL Servers on the Same
Machine

In some cases, you might want to run multiple mysqld servers on the same machine. You might want
to test a new MySQL release while leaving your existing production setup undisturbed. Or you might
want to give different users access to different mysqld servers that they manage themselves. (For ex-
ample, you might be an Internet Service Provider that wants to provide independent MySQL installa-
tions for different customers.)

To run multiple servers on a single machine, each server must have unique values for several operating
parameters. These can be set on the command line or in option files. See Section 4.3, “Specifying Pro-
gram Options”.

At least the following options must be different for each server:

• --port=port_num

--port controls the port number for TCP/IP connections.

• --socket=path

--socket controls the Unix socket file path on Unix and the name of the named pipe on Windows.
On Windows, it is necessary to specify distinct pipe names only for those servers that support
named-pipe connections.

• --shared-memory-base-name=name

Database Administration

395

This option currently is used only on Windows. It designates the shared-memory name used by a
Windows server to allow clients to connect via shared memory. It is necessary to specify distinct
shared-memory names only for those servers that support shared-memory connections.

• --pid-file=file_name

This option is used only on Unix. It indicates the pathname of the file in which the server writes its
process ID.

If you use the following log file options, they must be different for each server:

• --log=file_name

• --log-bin=file_name

• --log-update=file_name

• --log-error=file_name

• --bdb-logdir=file_name

Section 5.12.5, “Server Log Maintenance”, discusses the log file options further.

For better performance, you can specify the following options differently for each server, to spread the
load between several physical disks:

• --tmpdir=path

• --bdb-tmpdir=path

Having different temporary directories is also recommended to make it easier to determine which
MySQL server created any given temporary file.

With very limited exceptions, each server should use a different data directory, which is specified using
the --datadir=path option.

Warning: Normally, you should never have two servers that update data in the same databases. This
may lead to unpleasant surprises if your operating system does not support fault-free system locking. If
(despite this warning) you run multiple servers using the same data directory and they have logging en-
abled, you must use the appropriate options to specify log filenames that are unique to each server. Oth-
erwise, the servers try to log to the same files. Please note that this kind of setup only works with My-
ISAM and MERGE tables, and not with any of the other storage engines.

The warning against sharing a data directory among servers also applies in an NFS environment. Allow-
ing multiple MySQL servers to access a common data directory over NFS is a very bad idea.

• The primary problem is that NFS is the speed bottleneck. It is not meant for such use.

• Another risk with NFS is that you must devise a way to ensure that two or more servers do not inter-
fere with each other. Usually NFS file locking is handled by the lockd daemon, but at the moment
there is no platform that performs locking 100% reliably in every situation.

Database Administration

396

Make it easy for yourself: Forget about sharing a data directory among servers over NFS. A better solu-
tion is to have one computer that contains several CPUs and use an operating system that handles
threads efficiently.

If you have multiple MySQL installations in different locations, you can specify the base installation dir-
ectory for each server with the --basedir=path option to cause each server to use a different data
directory, log files, and PID file. (The defaults for all these values are determined relative to the base
directory). In that case, the only other options you need to specify are the --socket and --port op-
tions. For example, suppose that you install different versions of MySQL using tar file binary distribu-
tions. These install in different locations, so you can start the server for each installation using the com-
mand bin/mysqld_safe under its corresponding base directory. mysqld_safe determines the
proper --basedir option to pass to mysqld, and you need specify only the --socket and -
-port options to mysqld_safe.

As discussed in the following sections, it is possible to start additional servers by setting environment
variables or by specifying appropriate command-line options. However, if you need to run multiple serv-
ers on a more permanent basis, it is more convenient to use option files to specify for each server those
option values that must be unique to it. The --defaults-file option is useful for this purpose.

5.13.1. Running Multiple Servers on Windows
You can run multiple servers on Windows by starting them manually from the command line, each with
appropriate operating parameters. On Windows NT-based systems, you also have the option of installing
several servers as Windows services and running them that way. General instructions for running
MySQL servers from the command line or as services are given in Section 2.3, “Installing MySQL on
Windows”. This section describes how to make sure that you start each server with different values for
those startup options that must be unique per server, such as the data directory. These options are de-
scribed in Section 5.13, “Running Multiple MySQL Servers on the Same Machine”.

5.13.1.1. Starting Multiple Windows Servers at the Command Line

To start multiple servers manually from the command line, you can specify the appropriate options on
the command line or in an option file. It is more convenient to place the options in an option file, but it is
necessary to make sure that each server gets its own set of options. To do this, create an option file for
each server and tell the server the filename with a --defaults-file option when you run it.

Suppose that you want to run mysqld on port 3307 with a data directory of C:\mydata1, and
mysqld-max on port 3308 with a data directory of C:\mydata2. (To do this, make sure that before
you start the servers, each data directory exists and has its own copy of the mysql database that con-
tains the grant tables.) Then create two option files. For example, create one file named
C:\my-opts1.cnf that looks like this:

[mysqld]
datadir = C:/mydata1
port = 3307

Create a second file named C:\my-opts2.cnf that looks like this:

[mysqld]
datadir = C:/mydata2
port = 3308

Then start each server with its own option file:

C:\> C:\mysql\bin\mysqld --defaults-file=C:\my-opts1.cnf
C:\> C:\mysql\bin\mysqld-max --defaults-file=C:\my-opts2.cnf

On NT, each server starts in the foreground (no new prompt appears until the server exits later), so you

Database Administration

397

will need to issue those two commands in separate console windows.

To shut down the servers, you must connect to each using the appropriate port number:

C:\> C:\mysql\bin\mysqladmin --port=3307 shutdown
C:\> C:\mysql\bin\mysqladmin --port=3308 shutdown

Servers configured as just described allow clients to connect over TCP/IP. If your version of Windows
supports named pipes and you also want to allow named-pipe connections, use the mysqld-nt or
mysqld-max-nt servers and specify options that enable the named pipe and specify its name. Each
server that supports named-pipe connections must use a unique pipe name. For example, the
C:\my-opts1.cnf file might be written like this:

[mysqld]
datadir = C:/mydata1
port = 3307
enable-named-pipe
socket = mypipe1

Then start the server this way:

C:\> C:\mysql\bin\mysqld-nt --defaults-file=C:\my-opts1.cnf

Modify C:\my-opts2.cnf similarly for use by the second server.

A similar procedure applies for servers that you want to support shared-memory connections. Enable
such connections with the --shared-memory option and specify a unique shared-memory name for
each server with the --shared-memory-base-name option.

5.13.1.2. Starting Multiple Windows Servers as Services

On NT-based systems, a MySQL server can run as a Windows service. The procedures for installing,
controlling, and removing a single MySQL service are described in Section 2.3.11, “Starting MySQL as
a Windows Service”.

You can also install multiple MySQL servers as services. In this case, you must make sure that each
server uses a different service name in addition to all the other parameters that must be unique for each
server.

For the following instructions, assume that you want to run the mysqld-nt server from two different
versions of MySQL that are installed at C:\mysql-4.1.8 and C:\mysql-5.0.25, respectively.
(This might be the case if you're running 4.1.8 as your production server, but also want to conduct tests
using 5.0.25.)

The following principles apply when installing a MySQL service with the --install or -
-install-manual option:

• If you specify no service name, the server uses the default service name of MySQL and the server
reads options from the [mysqld] group in the standard option files.

• If you specify a service name after the --install option, the server ignores the [mysqld] op-
tion group and instead reads options from the group that has the same name as the service. The serv-
er reads options from the standard option files.

• If you specify a --defaults-file option after the service name, the server ignores the standard
option files and reads options only from the [mysqld] group of the named file.

Database Administration

398

Note: Before MySQL 4.0.17, only a server installed using the default service name (MySQL) or one in-
stalled explicitly with a service name of mysqld will read the [mysqld] group in the standard option
files. As of 4.0.17, all servers read the [mysqld] group if they read the standard option files, even if
they are installed using another service name. This allows you to use the [mysqld] group for options
that should be used by all MySQL services, and an option group named after each service for use by the
server installed with that service name.

Based on the preceding information, you have several ways to set up multiple services. The following
instructions describe some examples. Before trying any of them, be sure that you shut down and remove
any existing MySQL services first.

• Approach 1: Specify the options for all services in one of the standard option files. To do this, use a
different service name for each server. Suppose that you want to run the 4.1.8 mysqld-nt using
the service name of mysqld1 and the 5.0.25 mysqld-nt using the service name mysqld2. In
this case, you can use the [mysqld1] group for 4.1.8 and the [mysqld2] group for 5.0.25. For
example, you can set up C:\my.cnf like this:

options for mysqld1 service
[mysqld1]
basedir = C:/mysql-4.1.8
port = 3307
enable-named-pipe
socket = mypipe1

options for mysqld2 service
[mysqld2]
basedir = C:/mysql-5.0.25
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows, using the full server pathnames to ensure that Windows registers the
correct executable program for each service:

C:\> C:\mysql-4.1.8\bin\mysqld-nt --install mysqld1
C:\> C:\mysql-5.0.25\bin\mysqld-nt --install mysqld2

To start the services, use the services manager, or use NET START with the appropriate service
names:

C:\> NET START mysqld1
C:\> NET START mysqld2

To stop the services, use the services manager, or use NET STOP with the appropriate service
names:

C:\> NET STOP mysqld1
C:\> NET STOP mysqld2

• Approach 2: Specify options for each server in separate files and use --defaults-file when
you install the services to tell each server what file to use. In this case, each file should list options
using a [mysqld] group.

With this approach, to specify options for the 4.1.8 mysqld-nt, create a file C:\my-opts1.cnf
that looks like this:

[mysqld]
basedir = C:/mysql-4.1.8
port = 3307
enable-named-pipe
socket = mypipe1

Database Administration

399

For the 5.0.25 mysqld-nt, create a file C:\my-opts2.cnf that looks like this:

[mysqld]
basedir = C:/mysql-5.0.25
port = 3308
enable-named-pipe
socket = mypipe2

Install the services as follows (enter each command on a single line):

C:\> C:\mysql-4.1.8\bin\mysqld-nt --install mysqld1
--defaults-file=C:\my-opts1.cnf

C:\> C:\mysql-5.0.25\bin\mysqld-nt --install mysqld2
--defaults-file=C:\my-opts2.cnf

To use a --defaults-file option when you install a MySQL server as a service, you must pre-
cede the option with the service name.

After installing the services, start and stop them the same way as in the preceding example.

To remove multiple services, use mysqld --remove for each one, specifying a service name follow-
ing the --remove option. If the service name is the default (MySQL), you can omit it.

5.13.2. Running Multiple Servers on Unix
The easiest way is to run multiple servers on Unix is to compile them with different TCP/IP ports and
Unix socket files so that each one is listening on different network interfaces. Compiling in different
base directories for each installation also results automatically in a separate, compiled-in data directory,
log file, and PID file location for each server.

Assume that an existing 4.1.8 server is configured for the default TCP/IP port number (3306) and Unix
socket file (/tmp/mysql.sock). To configure a new 5.0.25 server to have different operating para-
meters, use a configure command something like this:

shell> ./configure --with-tcp-port=port_number \
--with-unix-socket-path=file_name \
--prefix=/usr/local/mysql-5.0.25

Here, port_number and file_name must be different from the default TCP/IP port number and
Unix socket file pathname, and the --prefix value should specify an installation directory different
from the one under which the existing MySQL installation is located.

If you have a MySQL server listening on a given port number, you can use the following command to
find out what operating parameters it is using for several important configurable variables, including the
base directory and Unix socket filename:

shell> mysqladmin --host=host_name --port=port_number variables

With the information displayed by that command, you can tell what option values not to use when con-
figuring an additional server.

Note that if you specify localhost as a hostname, mysqladmin defaults to using a Unix socket file
connection rather than TCP/IP. From MySQL 4.1 onward, you can explicitly specify the connection pro-
tocol to use by using the --protocol={TCP|SOCKET|PIPE|MEMORY} option.

You don't have to compile a new MySQL server just to start with a different Unix socket file and TCP/
IP port number. It is also possible to use the same server binary and start each invocation of it with dif-

Database Administration

400

ferent parameter values at runtime. One way to do so is by using command-line options:

shell> mysqld_safe --socket=file_name --port=port_number

To start a second server, provide different --socket and --port option values, and pass a -
-datadir=path option to mysqld_safe so that the server uses a different data directory.

Another way to achieve a similar effect is to use environment variables to set the Unix socket filename
and TCP/IP port number:

shell> MYSQL_UNIX_PORT=/tmp/mysqld-new.sock
shell> MYSQL_TCP_PORT=3307
shell> export MYSQL_UNIX_PORT MYSQL_TCP_PORT
shell> mysql_install_db --user=mysql
shell> mysqld_safe --datadir=/path/to/datadir &

This is a quick way of starting a second server to use for testing. The nice thing about this method is that
the environment variable settings apply to any client programs that you invoke from the same shell.
Thus, connections for those clients are automatically directed to the second server.

Appendix F, Environment Variables, includes a list of other environment variables you can use to affect
mysqld.

For automatic server execution, the startup script that is executed at boot time should execute the follow-
ing command once for each server with an appropriate option file path for each command:

shell> mysqld_safe --defaults-file=file_name

Each option file should contain option values specific to a given server.

On Unix, the mysqld_multi script is another way to start multiple servers. See Section 5.4.3,
“mysqld_multi — Manage Multiple MySQL Servers”.

5.13.3. Using Client Programs in a Multiple-Server Environ-
ment

To connect with a client program to a MySQL server that is listening to different network interfaces
from those compiled into your client, you can use one of the following methods:

• Start the client with --host=host_name --port=port_number to connect via TCP/IP to a
remote server, with --host=127.0.0.1 --port=port_number to connect via TCP/IP to a
local server, or with --host=localhost --socket=file_name to connect to a local server
via a Unix socket file or a Windows named pipe.

• As of MySQL 4.1, start the client with --protocol=tcp to connect via TCP/IP, -
-protocol=socket to connect via a Unix socket file, --protocol=pipe to connect via a
named pipe, or --protocol=memory to connect via shared memory. For TCP/IP connections,
you may also need to specify --host and --port options. For the other types of connections, you
may need to specify a --socket option to specify a Unix socket file or Windows named-pipe
name, or a --shared-memory-base-name option to specify the shared-memory name. Shared-
memory connections are supported only on Windows.

• On Unix, set the MYSQL_UNIX_PORT and MYSQL_TCP_PORT environment variables to point to
the Unix socket file and TCP/IP port number before you start your clients. If you normally use a spe-
cific socket file or port number, you can place commands to set these environment variables in your
.login file so that they apply each time you log in. See Appendix F, Environment Variables.

Database Administration

401

• Specify the default Unix socket file and TCP/IP port number in the [client] group of an option
file. For example, you can use C:\my.cnf on Windows, or the .my.cnf file in your home direct-
ory on Unix. See Section 4.3.2, “Using Option Files”.

• In a C program, you can specify the socket file or port number arguments in the
mysql_real_connect() call. You can also have the program read option files by calling
mysql_options(). See Section 22.2.3, “C API Function Descriptions”.

• If you are using the Perl DBD::mysql module, you can read options from MySQL option files. For
example:

$dsn = "DBI:mysql:test;mysql_read_default_group=client;"
. "mysql_read_default_file=/usr/local/mysql/data/my.cnf";

$dbh = DBI->connect($dsn, $user, $password);

See Section 22.4, “MySQL Perl API”.

Other programming interfaces may provide similar capabilities for reading option files.

5.14. The MySQL Query Cache
The query cache stores the text of a SELECT statement together with the corresponding result that was
sent to the client. If an identical statement is received later, the server retrieves the results from the query
cache rather than parsing and executing the statement again.

The query cache is extremely useful in an environment where you have tables that do not change very
often and for which the server receives many identical queries. This is a typical situation for many Web
servers that generate many dynamic pages based on database content.

Note: The query cache does not return stale data. When tables are modified, any relevant entries in the
query cache are flushed.

Note: The query cache does not work in an environment where you have multiple mysqld servers up-
dating the same MyISAM tables.

Note: The query cache is not used for server-side prepared statements. If you're using server-side pre-
pared statements consider that these statement won't be satisfied by the query cache. See Section 22.2.4,
“C API Prepared Statements”.

Some performance data for the query cache follows. These results were generated by running the
MySQL benchmark suite on a Linux Alpha 2×500MHz system with 2GB RAM and a 64MB query
cache.

• If all the queries you are performing are simple (such as selecting a row from a table with one row),
but still differ so that the queries cannot be cached, the overhead for having the query cache active is
13%. This could be regarded as the worst case scenario. In real life, queries tend to be much more
complicated, so the overhead normally is significantly lower.

• Searches for a single row in a single-row table are 238% faster with the query cache than without it.
This can be regarded as close to the minimum speedup to be expected for a query that is cached.

To disable the query cache at server startup, set the query_cache_size system variable to 0. By dis-
abling the query cache code, there is no noticeable overhead. If you build MySQL from source, query
cache capabilities can be excluded from the server entirely by invoking configure with the -
-without-query-cache option.

Database Administration

402

5.14.1. How the Query Cache Operates
This section describes how the query cache works when it is operational. Section 5.14.3, “Query Cache
Configuration”, describes how to control whether it is operational.

Incoming queries are compared to those in the query cache before parsing, so the following two queries
are regarded as different by the query cache:

SELECT * FROM tbl_name
Select * from tbl_name

Queries must be exactly the same (byte for byte) to be seen as identical. In addition, query strings that
are identical may be treated as different for other reasons. Queries that use different databases, different
protocol versions, or different default character sets are considered different queries and are cached sep-
arately.

Before a query result is fetched from the query cache, MySQL checks that the user has SELECT priv-
ilege for all databases and tables involved. If this is not the case, the cached result is not used.

If a query result is returned from query cache, the server increments the Qcache_hits status variable,
not Com_select. See Section 5.14.4, “Query Cache Status and Maintenance”.

If a table changes, all cached queries that use the table become invalid and are removed from the cache.
This includes queries that use MERGE tables that map to the changed table. A table can be changed by
many types of statements, such as INSERT, UPDATE, DELETE, TRUNCATE, ALTER TABLE, DROP
TABLE, or DROP DATABASE.

Cache entries for transactional InnoDB tables that have been changed are invalidated when a COMMIT
is performed.

The query cache also works within transactions when using InnoDB tables, making use of the table ver-
sion number to detect whether its contents are still current.

In MySQL 5.0, queries generated by views are cached.

Before MySQL 5.0, a query that began with a leading comment could be cached, but could not be
fetched from the cache. This problem is fixed in MySQL 5.0.

The query cache works for SELECT SQL_CALC_FOUND_ROWS ... and SELECT
FOUND_ROWS() type queries. FOUND_ROWS() returns the correct value even if the preceding query
was fetched from the cache because the number of found rows is also stored in the cache.

A query cannot be cached if it contains any of the functions shown in the following table:

BENCHMARK() CONNECTION_ID() CURDATE()

CURRENT_DATE() CURRENT_TIME() CURRENT_TIMESTAMP()

CURTIME() DATABASE() ENCRYPT() with one parameter

FOUND_ROWS() GET_LOCK() LAST_INSERT_ID()

LOAD_FILE() MASTER_POS_WAIT() NOW()

RAND() RELEASE_LOCK() SYSDATE()

UNIX_TIMESTAMP() with no
parameters

USER()

A query also is not cached under these conditions:

Database Administration

403

• It refers to user-defined functions (UDFs).

• It refers to user variables.

• It refers to tables in the mysql system database.

• It is of any of the following forms:

SELECT ... IN SHARE MODE
SELECT ... FOR UPDATE
SELECT ... INTO OUTFILE ...
SELECT ... INTO DUMPFILE ...
SELECT * FROM ... WHERE autoincrement_col IS NULL

The last form is not cached because it is used as the ODBC workaround for obtaining the last insert
ID value. See the MyODBC section of Chapter 23, Connectors.

• It was issued as a prepared statement, even if no placeholders were employed. For example, the
query used here is not cached:

char *my_sql_stmt = "SELECT a, b FROM table_c";
/* ... */
mysql_stmt_prepare(stmt, my_sql_stmt, strlen(my_sql_stmt));

See Section 22.2.4, “C API Prepared Statements”.

• It uses TEMPORARY tables.

• It does not use any tables.

• The user has a column-level privilege for any of the involved tables.

5.14.2. Query Cache SELECT Options
Two query cache-related options may be specified in SELECT statements:

• SQL_CACHE

The query result is cached if the value of the query_cache_type system variable is ON or DE-
MAND.

• SQL_NO_CACHE

The query result is not cached.

Examples:

SELECT SQL_CACHE id, name FROM customer;
SELECT SQL_NO_CACHE id, name FROM customer;

5.14.3. Query Cache Configuration
The have_query_cache server system variable indicates whether the query cache is available:

mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name | Value |

Database Administration

404

+------------------+-------+
| have_query_cache | YES |
+------------------+-------+

When using a standard MySQL binary, this value is always YES, even if query caching is disabled.

Several other system variables control query cache operation. These can be set in an option file or on the
command line when starting mysqld. The query cache system variables all have names that begin with
query_cache_. They are described briefly in Section 5.2.3, “System Variables”, with additional con-
figuration information given here.

To set the size of the query cache, set the query_cache_size system variable. Setting it to 0 dis-
ables the query cache. The default size is 0, so the query cache is disabled by default.

When you set query_cache_size to a non-zero value, keep in mind that the query cache needs a
minimum size of about 40KB to allocate its structures. (The exact size depends on system architecture.)
If you set the value too small, you'll get a warning, as in this example:

mysql> SET GLOBAL query_cache_size = 40000;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************

Level: Warning
Code: 1282

Message: Query cache failed to set size 39936; new query cache size is 0

mysql> SET GLOBAL query_cache_size = 41984;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW VARIABLES LIKE 'query_cache_size';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| query_cache_size | 41984 |
+------------------+-------+

If the query cache size is greater than 0, the query_cache_type variable influences how it works.
This variable can be set to the following values:

• A value of 0 or OFF prevents caching or retrieval of cached results.

• A value of 1 or ON allows caching except of those statements that begin with SELECT
SQL_NO_CACHE.

• A value of 2 or DEMAND causes caching of only those statements that begin with SELECT
SQL_CACHE.

Setting the GLOBAL query_cache_type value determines query cache behavior for all clients that
connect after the change is made. Individual clients can control cache behavior for their own connection
by setting the SESSION query_cache_type value. For example, a client can disable use of the
query cache for its own queries like this:

mysql> SET SESSION query_cache_type = OFF;

To control the maximum size of individual query results that can be cached, set the
query_cache_limit system variable. The default value is 1MB.

When a query is to be cached, its result (the data sent to the client) is stored in the query cache during
result retrieval. Therefore the data usually is not handled in one big chunk. The query cache allocates
blocks for storing this data on demand, so when one block is filled, a new block is allocated. Because
memory allocation operation is costly (timewise), the query cache allocates blocks with a minimum size

Database Administration

405

given by the query_cache_min_res_unit system variable. When a query is executed, the last
result block is trimmed to the actual data size so that unused memory is freed. Depending on the types of
queries your server executes, you might find it helpful to tune the value of
query_cache_min_res_unit:

• The default value of query_cache_min_res_unit is 4KB. This should be adequate for most
cases.

• If you have a lot of queries with small results, the default block size may lead to memory fragmenta-
tion, as indicated by a large number of free blocks. Fragmentation can force the query cache to prune
(delete) queries from the cache due to lack of memory. In this case, you should decrease the value of
query_cache_min_res_unit. The number of free blocks and queries removed due to pruning
are given by the values of the Qcache_free_blocks and Qcache_lowmem_prunes status
variables.

• If most of your queries have large results (check the Qcache_total_blocks and
Qcache_queries_in_cache status variables), you can increase performance by increasing
query_cache_min_res_unit. However, be careful to not make it too large (see the previous
item).

5.14.4. Query Cache Status and Maintenance
You can check whether the query cache is present in your MySQL server using the following statement:

mysql> SHOW VARIABLES LIKE 'have_query_cache';
+------------------+-------+
| Variable_name | Value |
+------------------+-------+
| have_query_cache | YES |
+------------------+-------+

You can defragment the query cache to better utilize its memory with the FLUSH QUERY CACHE
statement. The statement does not remove any queries from the cache.

The RESET QUERY CACHE statement removes all query results from the query cache. The FLUSH
TABLES statement also does this.

To monitor query cache performance, use SHOW STATUS to view the cache status variables:

mysql> SHOW STATUS LIKE 'Qcache%';
+-------------------------+--------+
| Variable_name | Value |
+-------------------------+--------+
Qcache_free_blocks	36
Qcache_free_memory	138488
Qcache_hits	79570
Qcache_inserts	27087
Qcache_lowmem_prunes	3114
Qcache_not_cached	22989
Qcache_queries_in_cache	415
Qcache_total_blocks	912
+-------------------------+--------+

Descriptions of each of these variables are given in Section 5.2.5, “Status Variables”. Some uses for
them are described here.

The total number of SELECT queries is given by this formula:

Com_select
+ Qcache_hits
+ queries with errors found by parser

Database Administration

406

The Com_select value is given by this formula:

Qcache_inserts
+ Qcache_not_cached
+ queries with errors found during the column-privileges check

The query cache uses variable-length blocks, so Qcache_total_blocks and
Qcache_free_blocks may indicate query cache memory fragmentation. After FLUSH QUERY
CACHE, only a single free block remains.

Every cached query requires a minimum of two blocks (one for the query text and one or more for the
query results). Also, every table that is used by a query requires one block. However, if two or more
queries use the same table, only one table block needs to be allocated.

The information provided by the Qcache_lowmem_prunes status variable can help you tune the
query cache size. It counts the number of queries that have been removed from the cache to free up
memory for caching new queries. The query cache uses a least recently used (LRU) strategy to decide
which queries to remove from the cache. Tuning information is given in Section 5.14.3, “Query Cache
Configuration”.

Database Administration

407

Chapter 6. Replication
This chapter describes the various replication features provided by MySQL. It introduces replication
concepts, shows how to set up replication servers, and serves as a reference to the available replication
options. It also provides a list of frequently asked questions (with answers), and troubleshooting advice
for solving replication problems.

For a description of the syntax of replication-related SQL statements, see Section 13.6, “Replication
Statements”.

6.1. Introduction to Replication
MySQL features support for one-way, asynchronous replication, in which one server acts as the master,
while one or more other servers act as slaves. This is in contrast to the synchronous replication which is
a characteristic of MySQL Cluster (see Chapter 15, MySQL Cluster).

In single-master replication, the master server writes updates to its binary log files and maintains an in-
dex of those files to keep track of log rotation. The binary log files serve as a record of updates to be
sent to any slave servers. When a slave connects to its master, it informs the master of the position up to
which the slave read the logs at its last successful update. The slave receives any updates that have taken
place since that time, and then blocks and waits for the master to notify it of new updates.

A slave server can itself serve as a master if you want to set up chained replication servers.

Multiple-master replication is possible, but raises issues not present in single-master replication. See
Section 6.13, “Auto-Increment in Multiple-Master Replication”.

When you are using replication, all updates to the tables that are replicated should be performed on the
master server. Otherwise, you must always be careful to avoid conflicts between updates that users make
to tables on the master and updates that they make to tables on the slave.

Replication offers benefits for robustness, speed, and system administration:

• Robustness is increased with a master/slave setup. In the event of problems with the master, you can
switch to the slave as a backup.

• Better response time for clients can be achieved by splitting the load for processing client queries
between the master and slave servers. SELECT queries may be sent to the slave to reduce the query
processing load of the master. Statements that modify data should still be sent to the master so that
the master and slave do not get out of synchrony. This load-balancing strategy is effective if non-
updating queries dominate, but that is the normal case.

• Another benefit of using replication is that you can perform database backups using a slave server
without disturbing the master. The master continues to process updates while the backup is being
made. See Section 5.10.1, “Database Backups”.

6.2. Replication Implementation Overview
MySQL replication is based on the master server keeping track of all changes to your databases
(updates, deletes, and so on) in its binary logs. Therefore, to use replication, you must enable binary log-
ging on the master server. See Section 5.12.3, “The Binary Log”.

Each slave server receives from the master the saved updates that the master has recorded in its binary
log, so that the slave can execute the same updates on its copy of the data.

408

It is extremely important to realize that the binary log is simply a record starting from the fixed point in
time at which you enable binary logging. Any slaves that you set up need copies of the databases on
your master as they existed at the moment you enabled binary logging on the master. If you start your
slaves with databases that are not in the same state as those on the master when the binary log was star-
ted, your slaves are quite likely to fail.

After the slave has been set up with a copy of the master's data, it connects to the master and waits for
updates to process. If the master fails, or the slave loses connectivity with your master, the slave keeps
trying to connect periodically until it is able to resume listening for updates. The -
-master-connect-retry option controls the retry interval. The default is 60 seconds.

Each slave keeps track of where it left off when it last read from its master server. The master has no
knowledge of how many slaves it has or which ones are up to date at any given time.

6.3. Replication Implementation Details
MySQL replication capabilities are implemented using three threads (one on the master server and two
on the slave). When a START SLAVE statement is issued on a slave server, the slave creates an I/O
thread, which connects to the master and asks it to send the updates recorded in its binary logs. The mas-
ter creates a thread to send the binary log contents to the slave. This thread can be identified as the Bin-
log Dump thread in the output of SHOW PROCESSLIST on the master. The slave I/O thread reads the
updates that the master Binlog Dump thread sends and copies them to local files, known as relay logs,
in the slave's data directory. The third thread is the SQL thread, which the slave creates to read the relay
logs and to execute the updates they contain.

In the preceding description, there are three threads per master/slave connection. A master that has mul-
tiple slaves creates one thread for each currently-connected slave, and each slave has its own I/O and
SQL threads.

The slave uses two threads so that reading updates from the master and executing them can be separated
into two independent tasks. Thus, the task of reading statements is not slowed down if statement execu-
tion is slow. For example, if the slave server has not been running for a while, its I/O thread can quickly
fetch all the binary log contents from the master when the slave starts, even if the SQL thread lags far
behind. If the slave stops before the SQL thread has executed all the fetched statements, the I/O thread
has at least fetched everything so that a safe copy of the statements is stored locally in the slave's relay
logs, ready for execution the next time that the slave starts. This enables the master server to purge its
binary logs sooner because it no longer needs to wait for the slave to fetch their contents.

The SHOW PROCESSLIST statement provides information that tells you what is happening on the
master and on the slave regarding replication. The following example illustrates how the three threads
show up in the output from SHOW PROCESSLIST.

On the master server, the output from SHOW PROCESSLIST looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************

Id: 2
User: root
Host: localhost:32931

db: NULL
Command: Binlog Dump

Time: 94
State: Has sent all binlog to slave; waiting for binlog to

be updated
Info: NULL

Here, thread 2 is a Binlog Dump replication thread for a connected slave. The State information in-
dicates that all outstanding updates have been sent to the slave and that the master is waiting for more
updates to occur. If you see no Binlog Dump threads on a master server, this means that replication is
not running — that is, that no slaves are currently connected.

Replication

409

On the slave server, the output from SHOW PROCESSLIST looks like this:

mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************

Id: 10
User: system user
Host:

db: NULL
Command: Connect

Time: 11
State: Waiting for master to send event
Info: NULL

*************************** 2. row ***************************
Id: 11

User: system user
Host:

db: NULL
Command: Connect

Time: 11
State: Has read all relay log; waiting for the slave I/O

thread to update it
Info: NULL

This information indicates that thread 10 is the I/O thread that is communicating with the master server,
and thread 11 is the SQL thread that is processing the updates stored in the relay logs. At the time that
the SHOW PROCESSLIST was run, both threads were idle, waiting for further updates.

The value in the Time column can show how late the slave is compared to the master. See Section 6.10,
“Replication FAQ”.

6.3.1. Replication Master Thread States
The following list shows the most common states you may see in the State column for the master's
Binlog Dump thread. If you see no Binlog Dump threads on a master server, this means that replic-
ation is not running — that is, that no slaves are currently connected.

• Sending binlog event to slave

Binary logs consist of events, where an event is usually an update plus some other information. The
thread has read an event from the binary log and is now sending it to the slave.

• Finished reading one binlog; switching to next binlog

The thread has finished reading a binary log file and is opening the next one to send to the slave.

• Has sent all binlog to slave; waiting for binlog to be updated

The thread has read all outstanding updates from the binary logs and sent them to the slave. The
thread is now idle, waiting for new events to appear in the binary log resulting from new updates oc-
curring on the master.

• Waiting to finalize termination

A very brief state that occurs as the thread is stopping.

6.3.2. Replication Slave I/O Thread States
The following list shows the most common states you see in the State column for a slave server I/O
thread. This state also appears in the Slave_IO_State column displayed by SHOW SLAVE
STATUS, so you can get a good view of what is happening by using that statement.

Replication

410

• Connecting to master

The thread is attempting to connect to the master.

• Checking master version

A state that occurs very briefly, after the connection to the master is established.

• Registering slave on master

A state that occurs very briefly after the connection to the master is established.

• Requesting binlog dump

A state that occurs very briefly, after the connection to the master is established. The thread sends to
the master a request for the contents of its binary logs, starting from the requested binary log file-
name and position.

• Waiting to reconnect after a failed binlog dump request

If the binary log dump request failed (due to disconnection), the thread goes into this state while it
sleeps, then tries to reconnect periodically. The interval between retries can be specified using the -
-master-connect-retry option.

• Reconnecting after a failed binlog dump request

The thread is trying to reconnect to the master.

• Waiting for master to send event

The thread has connected to the master and is waiting for binary log events to arrive. This can last
for a long time if the master is idle. If the wait lasts for slave_read_timeout seconds, a
timeout occurs. At that point, the thread considers the connection to be broken and makes an attempt
to reconnect.

• Queueing master event to the relay log

The thread has read an event and is copying it to the relay log so that the SQL thread can process it.

• Waiting to reconnect after a failed master event read

An error occurred while reading (due to disconnection). The thread is sleeping for master-con-
nect-retry seconds before attempting to reconnect.

• Reconnecting after a failed master event read

The thread is trying to reconnect to the master. When connection is established again, the state be-
comes Waiting for master to send event.

• Waiting for the slave SQL thread to free enough relay log space

You are using a non-zero relay_log_space_limit value, and the relay logs have grown large
enough that their combined size exceeds this value. The I/O thread is waiting until the SQL thread
frees enough space by processing relay log contents so that it can delete some relay log files.

• Waiting for slave mutex on exit

A state that occurs briefly as the thread is stopping.

Replication

411

6.3.3. Replication Slave SQL Thread States
The following list shows the most common states you may see in the State column for a slave server
SQL thread:

• Reading event from the relay log

The thread has read an event from the relay log so that the event can be processed.

• Has read all relay log; waiting for the slave I/O thread to update
it

The thread has processed all events in the relay log files, and is now waiting for the I/O thread to
write new events to the relay log.

• Waiting for slave mutex on exit

A very brief state that occurs as the thread is stopping.

The State column for the I/O thread may also show the text of a statement. This indicates that the
thread has read an event from the relay log, extracted the statement from it, and is executing it.

6.3.4. Replication Relay and Status Files
By default, relay logs filenames have the form host_name-relay-bin.nnnnnn, where
host_name is the name of the slave server host and nnnnnn is a sequence number. Successive relay
log files are created using successive sequence numbers, beginning with 000001. The slave uses an in-
dex file to track the relay log files currently in use. The default relay log index filename is
host_name-relay-bin.index. By default, the slave server creates relay log files in its data dir-
ectory. The default filenames can be overridden with the --relay-log and --relay-log-index
server options. See Section 6.8, “Replication Startup Options”.

Relay logs have the same format as binary logs and can be read using mysqlbinlog. The SQL thread
automatically deletes each relay log file as soon as it has executed all events in the file and no longer
needs it. There is no explicit mechanism for deleting relay logs because the SQL thread takes care of do-
ing so. However, FLUSH LOGS rotates relay logs, which influences when the SQL thread deletes them.

A slave server creates a new relay log file under the following conditions:

• Each time the I/O thread starts.

• When the logs are flushed; for example, with FLUSH LOGS or mysqladmin flush-logs.

• When the size of the current relay log file becomes too large. The meaning of “too large” is determ-
ined as follows:

• If the value of max_relay_log_size is greater than 0, that is the maximum relay log file
size.

• If the value of max_relay_log_size is 0, max_binlog_size determines the maximum
relay log file size.

A slave replication server creates two additional small files in the data directory. These status files are
named master.info and relay-log.info by default. Their names can be changed by using the
--master-info-file and --relay-log-info-file options. See Section 6.8, “Replication

Replication

412

Startup Options”.

The two status files contain information like that shown in the output of the SHOW SLAVE STATUS
statement, which is discussed in Section 13.6.2, “SQL Statements for Controlling Slave Servers”. Be-
cause the status files are stored on disk, they survive a slave server's shutdown. The next time the slave
starts up, it reads the two files to determine how far it has proceeded in reading binary logs from the
master and in processing its own relay logs.

The I/O thread updates the master.info file. The following table shows the correspondence between
the lines in the file and the columns displayed by SHOW SLAVE STATUS.

Line Description

1 Number of lines in the file

2 Master_Log_File

3 Read_Master_Log_Pos

4 Master_Host

5 Master_User

6 Password (not shown by SHOW SLAVE STATUS)

7 Master_Port

8 Connect_Retry

9 Master_SSL_Allowed

10 Master_SSL_CA_File

11 Master_SSL_CA_Path

12 Master_SSL_Cert

13 Master_SSL_Cipher

14 Master_SSL_Key

The SQL thread updates the relay-log.info file. The following table shows the correspondence
between the lines in the file and the columns displayed by SHOW SLAVE STATUS.

Line Description

1 Relay_Log_File

2 Relay_Log_Pos

3 Relay_Master_Log_File

4 Exec_Master_Log_Pos

The contents of the relay-log.info file and the states shown by the SHOW SLAVE STATES com-
mand may not match if the relay-log.info file has not been flushed to disk. Ideally, you should
only view relay-log.info on a slave that is offline (i.e. mysqld is not running). For a running
system, SHOW SLAVE STATUS should be used.

When you back up the slave's data, you should back up these two status files as well, along with the re-
lay log files. They are needed to resume replication after you restore the slave's data. If you lose the re-
lay logs but still have the relay-log.info file, you can check it to determine how far the SQL
thread has executed in the master binary logs. Then you can use CHANGE MASTER TO with the MAS-
TER_LOG_FILE and MASTER_LOG_POS options to tell the slave to re-read the binary logs from that
point. Of course, this requires that the binary logs still exist on the master server.

If your slave is subject to replicating LOAD DATA INFILE statements, you should also back up any

Replication

413

SQL_LOAD-* files that exist in the directory that the slave uses for this purpose. The slave needs these
files to resume replication of any interrupted LOAD DATA INFILE operations. The directory location
is specified using the --slave-load-tmpdir option. If this option is not specified, the directory
location is the value of the tmpdir system variable.

6.4. How to Set Up Replication
This section briefly describes how to set up complete replication of a MySQL server. It assumes that you
want to replicate all databases on the master and have not previously configured replication. You must
shut down your master server briefly to complete the steps outlined here.

This procedure is written in terms of setting up a single slave, but you can repeat it to set up multiple
slaves.

Although this method is the most straightforward way to set up a slave, it is not the only one. For ex-
ample, if you have a snapshot of the master's data, and the master already has its server ID set and bin-
ary logging enabled, you can set up a slave without shutting down the master or even blocking updates
to it. For more details, please see Section 6.10, “Replication FAQ”.

If you want to administer a MySQL replication setup, we suggest that you read this entire chapter
through and try all statements mentioned in Section 13.6.1, “SQL Statements for Controlling Master
Servers”, and Section 13.6.2, “SQL Statements for Controlling Slave Servers”. You should also famili-
arize yourself with the replication startup options described in Section 6.8, “Replication Startup Op-
tions”.

Note: This procedure and some of the replication SQL statements shown in later sections require the
SUPER privilege.

1. Make sure that the versions of MySQL installed on the master and slave are compatible according
to the table shown in Section 6.5, “Replication Compatibility Between MySQL Versions”. Ideally,
you should use the most recent version of MySQL on both master and slave.

If you encounter a problem, please do not report it as a bug until you have verified that the problem
is present in the latest MySQL release.

2. Set up an account on the master server that the slave server can use to connect. This account must
be given the REPLICATION SLAVE privilege. If the account is used only for replication (which
is recommended), you don't need to grant any additional privileges.

Suppose that your domain is mydomain.com and that you want to create an account with a user-
name of repl such that slave servers can use the account to access the master server from any host
in your domain using a password of slavepass. To create the account, use this GRANT state-
ment:

mysql> GRANT REPLICATION SLAVE ON *.*
-> TO 'repl'@'%.mydomain.com' IDENTIFIED BY 'slavepass';

For additional information about setting up user accounts and privileges, see Section 5.9, “MySQL
User Account Management”.

3. Flush all the tables and block write statements by executing a FLUSH TABLES WITH READ
LOCK statement:

mysql> FLUSH TABLES WITH READ LOCK;

For InnoDB tables, note that FLUSH TABLES WITH READ LOCK also blocks COMMIT opera-
tions. When you have acquired a global read lock, you can start a filesystem snapshot of your In-

Replication

414

noDB tables. Internally (inside the InnoDB storage engine) the snapshot won't be consistent
(because the InnoDB caches are not flushed), but this is not a cause for concern, because InnoDB
resolves this at startup and delivers a consistent result. This means that InnoDB can perform crash
recovery when started on this snapshot, without corruption. However, there is no way to stop the
MySQL server while insuring a consistent snapshot of your InnoDB tables.

Leave running the client from which you issue the FLUSH TABLES statement so that the read lock
remains in effect. (If you exit the client, the lock is released.) Then take a snapshot of the data on
your master server.

The easiest way to create a snapshot is to use an archiving program to make a binary backup of the
databases in your master's data directory. For example, use tar on Unix, or PowerArchiver,
WinRAR, WinZip, or any similar software on Windows. To use tar to create an archive that in-
cludes all databases, change location into the master server's data directory, then execute this com-
mand:

shell> tar -cvf /tmp/mysql-snapshot.tar .

If you want the archive to include only a database called this_db, use this command instead:

shell> tar -cvf /tmp/mysql-snapshot.tar ./this_db

Then copy the archive file to the /tmp directory on the slave server host. On that machine, change
location into the slave's data directory, and unpack the archive file using this command:

shell> tar -xvf /tmp/mysql-snapshot.tar

You may not want to replicate the mysql database if the slave server has a different set of user ac-
counts from those that exist on the master. In this case, you should exclude it from the archive. You
also need not include any log files in the archive, or the master.info or relay-log.info
files.

While the read lock placed by FLUSH TABLES WITH READ LOCK is in effect, read the value
of the current binary log name and offset on the master:

mysql > SHOW MASTER STATUS;
+---------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+---------------+----------+--------------+------------------+
| mysql-bin.003 | 73 | test | manual,mysql |
+---------------+----------+--------------+------------------+

The File column shows the name of the log and Position shows the offset within the file. In
this example, the binary log file is mysql-bin.003 and the offset is 73. Record these values.
You need them later when you are setting up the slave. They represent the replication coordinates
at which the slave should begin processing new updates from the master.

If the master has been running previously without binary logging enabled, the log name and posi-
tion values displayed by SHOW MASTER STATUS or mysqldump --master-data will be
empty. In that case, the values that you need to use later when specifying the slave's log file and po-
sition are the empty string ('') and 4.

After you have taken the snapshot and recorded the log name and offset, you can re-enable write
activity on the master:

mysql> UNLOCK TABLES;

If you are using InnoDB tables, ideally you should use the InnoDB Hot Backup tool, which

Replication

415

takes a consistent snapshot without acquiring any locks on the master server, and records the log
name and offset corresponding to the snapshot to be later used on the slave. Hot Backup is an
additional non-free (commercial) tool that is not included in the standard MySQL distribution. See
the InnoDB Hot Backup home page at http://www.innodb.com/manual.php for detailed in-
formation.

Without the Hot Backup tool, the quickest way to take a binary snapshot of InnoDB tables is to
shut down the master server and copy the InnoDB data files, log files, and table format files
(.frm files). To record the current log file name and offset, you should issue the following state-
ments before you shut down the server:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SHOW MASTER STATUS;

Then record the log name and the offset from the output of SHOW MASTER STATUS as was
shown earlier. After recording the log name and the offset, shut down the server without unlocking
the tables to make sure that the server goes down with the snapshot corresponding to the current log
file and offset:

shell> mysqladmin -u root shutdown

An alternative that works for both MyISAM and InnoDB tables is to take an SQL dump of the
master instead of a binary copy as described in the preceding discussion. For this, you can use
mysqldump --master-data on your master and later load the SQL dump file into your slave.
However, this is slower than doing a binary copy.

4. Make sure that the [mysqld] section of the my.cnf file on the master host includes a log-bin
option. The section should also have a server-id=master_id option, where master_id
must be a positive integer value from 1 to 232 – 1. For example:

[mysqld]
log-bin=mysql-bin
server-id=1

If those options are not present, add them and restart the server. The server cannot act as a replica-
tion master unless binary logging is enabled.

Note: For the greatest possible durability and consistency in a replication setup using InnoDB with
transactions, you should use innodb_flush_log_at_trx_commit=1, sync_binlog=1,
and, before MySQL 5.0.3, innodb_safe_binlog, in the master my.cnf file. (in-
nodb_safe_binlog is not needed from 5.0.3 on.)

5. Stop the server that is to be used as a slave and add the following lines to its my.cnf file:

[mysqld]
server-id=slave_id

The slave_id value, like the master_id value, must be a positive integer value from 1 to 232 –
1. In addition, it is necessary that the ID of the slave be different from the ID of the master. For ex-
ample:

[mysqld]
server-id=2

If you are setting up multiple slaves, each one must have a unique server-id value that differs
from that of the master and from each of the other slaves. Think of server-id values as
something similar to IP addresses: These IDs uniquely identify each server instance in the com-
munity of replication partners.

Replication

416

http://www.innodb.com/manual.php

If you do not specify a server-id value, it is set to 1 if you have not defined master-host;
otherwise it is set to 2. Note that in the case of server-id omission, a master refuses connections
from all slaves, and a slave refuses to connect to a master. Thus, omitting server-id is good
only for backup with a binary log.

6. If you made a binary backup of the master server's data, copy it to the slave server's data directory
before starting the slave. Make sure that the privileges on the files and directories are correct. The
system account that you use to run the slave server must be able to read and write the files, just as
on the master.

If you made a backup using mysqldump, start the slave first. The dump file is loaded in a later
step.

7. Start the slave server. If it has been replicating previously, start the slave server with the -
-skip-slave-start option so that it doesn't immediately try to connect to its master. You also
may want to start the slave server with the --log-warnings option to get more messages in the
error log about problems (for example, network or connection problems). The option is enabled by
default, but aborted connections are not logged to the error log unless the option value is greater
than 1.

8. If you made a backup of the master server's data using mysqldump, load the dump file into the
slave server:

shell> mysql -u root -p < dump_file.sql

9. Execute the following statement on the slave, replacing the option values with the actual values rel-
evant to your system:

mysql> CHANGE MASTER TO
-> MASTER_HOST='master_host_name',
-> MASTER_USER='replication_user_name',
-> MASTER_PASSWORD='replication_password',
-> MASTER_LOG_FILE='recorded_log_file_name',
-> MASTER_LOG_POS=recorded_log_position;

The following table shows the maximum allowable length for the string-valued options:

MASTER_HOST 60

MASTER_USER 16

MASTER_PASSWORD 32

MASTER_LOG_FILE 255

10. Start the slave threads:

mysql> START SLAVE;

After you have performed this procedure, the slave should connect to the master and catch up on any up-
dates that have occurred since the snapshot was taken.

If you have forgotten to set the server-id option for the master, slaves cannot connect to it.

If you have forgotten to set the server-id option for the slave, you get the following error in the
slave's error log:

Warning: You should set server-id to a non-0 value if master_host

Replication

417

is set; we will force server id to 2, but this MySQL server will
not act as a slave.

You also find error messages in the slave's error log if it is not able to replicate for any other reason.

Once a slave is replicating, you can find in its data directory one file named master.info and anoth-
er named relay-log.info. The slave uses these two files to keep track of how much of the master's
binary log it has processed. Do not remove or edit these files unless you know exactly what you are do-
ing and fully understand the implications. Even in that case, it is preferred that you use the CHANGE
MASTER TO statement to change replication parameters. The slave will use the values specified in the
statement to update the status files automatically.

Note: The content of master.info overrides some of the server options specified on the command
line or in my.cnf. See Section 6.8, “Replication Startup Options”, for more details.

Once you have a snapshot of the master, you can use it to set up other slaves by following the slave por-
tion of the procedure just described. You do not need to take another snapshot of the master; you can use
the same one for each slave.

6.5. Replication Compatibility Between MySQL Ver-
sions

The binary log format as implemented in MySQL 5.0 is considerably different from that used in previ-
ous versions. Major changes were made in MySQL 5.0.3 (for improvements to handling of character
sets and LOAD DATA INFILE) and 5.0.4 (for improvements to handling of time zones).

We recommend using the most recent MySQL version available because replication capabilities are con-
tinually being improved. We also recommend using the same version for both the master and the slave.
We recommend upgrading masters and slaves running alpha or beta versions to new (production) ver-
sions. Replication from a 5.0.3 master to a 5.0.2 slave will fail; from a 5.0.4 master to a 5.0.3 slave will
also fail. In general, slaves running MySQL 5.0.x may be used with older masters (even those running
MySQL 3.23, 4.0, or 4.1), but not the reverse. For more information on potential issues, see Section 6.7,
“Replication Features and Known Problems”.

Note: You cannot replicate from a master that uses a newer binary log format to a slave that uses an
older format (for example, from MySQL 5.0 to MySQL 4.1.) This has significant implications for up-
grading replication servers, as described in Section 6.6, “Upgrading a Replication Setup”.

The preceding information pertains to replication compatibility at the protocol level. However, there can
be other constraints, such as SQL-level compatibility issues. For example, a 5.0 master cannot replicate
to a 4.1 slave if the replicated statements use SQL features available in 5.0 but not in 4.1. These and oth-
er issues are discussed in Section 6.7, “Replication Features and Known Problems”.

6.6. Upgrading a Replication Setup
When you upgrade servers that participate in a replication setup, the procedure for upgrading depends on
the current server versions and the version to which you are upgrading.

6.6.1. Upgrading Replication to 5.0
This section applies to upgrading replication from MySQL 3.23, 4.0, or 4.1 to MySQL 5.0. A 4.0 server
should be 4.0.3 or newer.

When you upgrade a master to 5.0 from an earlier MySQL release series, you should first ensure that all
the slaves of this master are using the same 5.0.x release. If this is not the case, you should first upgrade

Replication

418

the slaves. To upgrade each slave, shut it down, upgrade it to the appropriate 5.0.x version, restart it, and
restart replication. The 5.0 slave is able to read the old relay logs written prior to the upgrade and to ex-
ecute the statements they contain. Relay logs created by the slave after the upgrade are in 5.0 format.

After the slaves have been upgraded, shut down the master, upgrade it to the same 5.0.x release as the
slaves, and restart it. The 5.0 master is able to read the old binary logs written prior to the upgrade and to
send them to the 5.0 slaves. The slaves recognize the old format and handle it properly. Binary logs cre-
ated by the master following the upgrade are in 5.0 format. These too are recognized by the 5.0 slaves.

In other words, there are no measures to take when upgrading to MySQL 5.0, except that the slaves must
be MySQL 5.0 before you can upgrade the master to 5.0. Note that downgrading from 5.0 to older ver-
sions does not work so simply: You must ensure that any 5.0 binary logs or relay logs have been fully
processed, so that you can remove them before proceeding with the downgrade.

6.7. Replication Features and Known Problems
In general, replication compatibility at the SQL level requires that any features used be supported by
both the master and the slave servers. If you use a feature on a master server that is available only as of a
given version of MySQL, you cannot replicate to a slave that is older than that version. Such incompat-
ibilities are likely to occur between series, so that, for example, you cannot replicate from MySQL 5.0 to
4.1. However, these incompatibilities also can occur for within-series replication. For example, the
SLEEP() function is available in MySQL 5.0.12 and up. If you use this function on the master server,
you cannot replicate to a slave server that is older than MySQL 5.0.12.

If you are planning to use replication between 5.0 and a previous version of MySQL you should consult
the edition of the MySQL Reference Manual corresponding to the earlier release series for information
regarding the replication characteristics of that series.

The following list provides details about what is supported and what is not. Additional InnoDB-specific
information about replication is given in Section 14.2.6.5, “InnoDB and MySQL Replication”.

Replication issues with regard to stored routines and triggers is described in Section 17.5, “Binary Log-
ging of Stored Routines and Triggers”.

• Known issue: In MySQL 5.0.17, the syntax for CREATE TRIGGER changed to include a
DEFINER clause for specifying which access privileges to check at trigger invocation time. (See
Section 18.1, “CREATE TRIGGER Syntax”, for more information.) However, if you attempt to rep-
licate from a master server older than MySQL 5.0.17 to a slave running MySQL 5.0.17 through
5.0.19, replication of CREATE TRIGGER statements fails on the slave with a Definer not
fully qualified error. A workaround is to create triggers on the master using a version-spe-
cific comment embedded in each CREATE TRIGGER statement:

CREATE /*!50017 DEFINER = 'root'@'localhost' */ TRIGGER ... ;

CREATE TRIGGER statements written this way will replicate to newer slaves, which pick up the
DEFINER clause from the comment and execute successfully.

This slave problem is fixed as of MySQL 5.0.20.

• Replication of AUTO_INCREMENT, LAST_INSERT_ID(), and TIMESTAMP values is done cor-
rectly, subject to the following exceptions.

A stored procedure that uses LAST_INSERT_ID() does not replicate properly.

When a statement uses a stored function that inserts into an AUTO_INCREMENT column, the gener-
ated AUTO_INCREMENT value is not written into the binary log, so a different value can in some

Replication

419

cases be inserted on the slave.

Adding an AUTO_INCREMENT column to a table with ALTER TABLE might not produce the same
ordering of the rows on the slave and the master. This occurs because the order in which the rows are
numbered depends on the specific storage engine used for the table and the order in which the rows
were inserted. If it is important to have the same order on the master and slave, the rows must be
ordered before assigning an AUTO_INCREMENT number. Assuming that you want to add an
AUTO_INCREMENT column to the table t1, the following statements produce a new table t2
identical to t1 but with an AUTO_INCREMENT column:

CREATE TABLE t2 LIKE t1;
ALTER TABLE t2 ADD id INT AUTO_INCREMENT PRIMARY KEY;
INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;

This assumes that the table t1 has columns col1 and col2.

Important: To guarantee the same ordering on both master and slave, all columns of t1 must be
referenced in the ORDER BY clause.

The instructions just given are subject to the limitations of CREATE TABLE ... LIKE: Foreign
key definitions are ignored, as are the DATA DIRECTORY and INDEX DIRECTORY table options.
If a table definition includes any of those characteristics, create t2 using a CREATE TABLE state-
ment that is identical to the one used to create t1, but with the addition of the AUTO_INCREMENT
column.

Regardless of the method used to create and populate the copy having the AUTO_INCREMENT
column, the final step is to drop the original table and then rename the copy:

DROP t1;
ALTER TABLE t2 RENAME t1;

See also Section A.7.1, “Problems with ALTER TABLE”.

• The USER(), UUID(), and LOAD_FILE() functions are replicated without change and thus do
not work reliably on the slave.

• As of MySQL 5.0.13, the SYSDATE() function is no longer equivalent to NOW(). Implications are
that SYSDATE() is not replication-safe because it is not affected by SET TIMESTAMP statements
in the binary log and is non-deterministic. To avoid this, you can start the server with the -
-sysdate-is-now option to cause SYSDATE() to be an alias for NOW().

• User privileges are replicated only if the mysql database is replicated. That is, the GRANT,
REVOKE, SET PASSWORD, CREATE USER, and DROP USER statements take effect on the slave
only if the replication setup includes the mysql database.

If you're replicating all databases, but don't want statements that affect user privileges to be replic-
ated, set up the slave to not replicate the mysql database, using the -
-replicate-wild-ignore-table=mysql.% option. The slave will recognize that issuing
privilege-related SQL statements won't have an effect, and thus not execute those statements.

• The GET_LOCK(), RELEASE_LOCK(), IS_FREE_LOCK(), and IS_USED_LOCK() functions
that handle user-level locks are replicated without the slave knowing the concurrency context on
master. Therefore, these functions should not be used to insert into a master's table because the con-
tent on the slave would differ. (For example, do not issue a statement such as INSERT INTO
mytable VALUES(GET_LOCK(...)).)

• The FOREIGN_KEY_CHECKS, SQL_MODE, UNIQUE_CHECKS, and SQL_AUTO_IS_NULL vari-
ables are all replicated in MySQL 5.0. The storage_engine system variable (also known as
table_type) is not yet replicated, which is a good thing for replication between different storage

Replication

420

engines.

• Starting from MySQL 5.0.3 (master and slave), replication works even if the master and slave have
different global character set variables. Starting from MySQL 5.0.4 (master and slave), replication
works even if the master and slave have different global time zone variables.

• The following applies to replication between MySQL servers that use different character sets:

1. If the master uses MySQL 4.1, you must always use the same global character set and collation
on the master and the slave, regardless of the MySQL version running on the slave. (These are
controlled by the --character-set-server and --collation-server options.)
Otherwise, you may get duplicate-key errors on the slave, because a key that is unique in the
master character set might not be unique in the slave character set. Note that this is not a cause
for concern when master and slave are both MySQL 5.0 or later.

2. If the master is older than MySQL 4.1.3, the character set of any client should never be made
different from its global value because this character set change is not known to the slave. In
other words, clients should not use SET NAMES, SET CHARACTER SET, and so forth. If
both the master and the slave are 4.1.3 or newer, clients can freely set session values for charac-
ter set variables because these settings are written to the binary log and so are known to the
slave. That is, clients can use SET NAMES or SET CHARACTER SET or can set variables
such as collation_client or collation_server. However, clients are prevented
from changing the global value of these variables; as stated previously, the master and slave
must always have identical global character set values.

3. If you have databases on the master with character sets that differ from the global charac-
ter_set_server value, you should design your CREATE TABLE statements so that tables
in those databases do not implicitly rely on the database default character set (see Bug#2326
[http://bugs.mysql.com/2326]). A good workaround is to state the character set and collation
explicitly in CREATE TABLE statements.

• If the master uses MySQL 4.1, the same system time zone should be set for both master and slave.
Otherwise some statements will not be replicated properly, such as statements that use the NOW() or
FROM_UNIXTIME() functions. You can set the time zone in which MySQL server runs by using
the --timezone=timezone_name option of the mysqld_safe script or by setting the TZ en-
vironment variable. Both master and slave should also have the same default connection time zone
setting; that is, the --default-time-zone parameter should have the same value for both mas-
ter and slave. Note that this is not necessary when the master is MySQL 5.0 or later.

• CONVERT_TZ(...,...,@@global.time_zone) is not properly replicated. CON-
VERT_TZ(...,...,@@session.time_zone) is properly replicated only if the master and
slave are from MySQL 5.0.4 or newer.

• Session variables are not replicated properly when used in statements that update tables. For ex-
ample, SET MAX_JOIN_SIZE=1000 followed by INSERT INTO mytable VAL-
UES(@@MAX_JOIN_SIZE) will not insert the same data on the master and the slave. This does not
apply to the common sequence of SET TIME_ZONE=... followed by INSERT INTO myt-
able VALUES(CONVERT_TZ(...,...,@@time_zone)), which replicates correctly as of
MySQL 5.0.4.

• It is possible to replicate transactional tables on the master using non-transactional tables on the
slave. For example, you can replicate an InnoDB master table as a MyISAM slave table. However, if
you do this, there are problems if the slave is stopped in the middle of a BEGIN/COMMIT block be-
cause the slave restarts at the beginning of the BEGIN block.

• Update statements that refer to user-defined variables (that is, variables of the form @var_name)
are replicated correctly in MySQL 5.0. However, this is not true for versions prior to 4.1. Note that
user variable names are case insensitive starting in MySQL 5.0. You should take this into account

Replication

421

http://bugs.mysql.com/2326

when setting up replication between MySQL 5.0 and older versions.

• Slaves can connect to masters using SSL.

• Views are always replicated to slaves. Views are filtered by their own name, not by the tables they
refer to. This means that a view can be replicated to the slave even if the view contains a table that
would normally be filtered out by replication-ignore-table rules. Care should therefore
be taken to ensure that views do not replicate table data that would normally be filtered for security
reasons.

• In MySQL 5.0 (starting from 5.0.3), there is a global system variable
slave_transaction_retries: If the replication slave SQL thread fails to execute a transac-
tion because of an InnoDB deadlock or because it exceeded the InnoDB in-
nodb_lock_wait_timeout or the NDBCluster TransactionDeadlockDetection-
Timeout or TransactionInactiveTimeout value, the transaction automatically retries
slave_transaction_retries times before stopping with an error. The default value is 10.
Starting from MySQL 5.0.4, the total retry count can be seen in the output of SHOW STATUS; see
Section 5.2.5, “Status Variables”.

• If a DATA DIRECTORY or INDEX DIRECTORY table option is used in a CREATE TABLE state-
ment on the master server, the table option is also used on the slave. This can cause problems if no
corresponding directory exists in the slave host filesystem or if it exists but is not accessible to the
slave server. MySQL supports an sql_mode option called NO_DIR_IN_CREATE. If the slave
server is run with this SQL mode enabled, it ignores the DATA DIRECTORY and INDEX DIR-
ECTORY table options when replicating CREATE TABLE statements. The result is that MyISAM
data and index files are created in the table's database directory.

• It is possible for the data on the master and slave to become different if a statement is designed in
such a way that the data modification is non-deterministic; that is, left to the will of the query optim-
izer. (This is in general not a good practice, even outside of replication.) For a detailed explanation
of this issue, see Section A.8.1, “Open Issues in MySQL”.

• Using LOAD TABLE FROM MASTER where the master is running MySQL 4.1 and the slave is
running MySQL 5.0 may corrupt the table data, and is not supported. (Bug#16261
[http://bugs.mysql.com/16261])

• The following applies only if either the master or the slave is running MySQL version 5.0.3 or older:
If on the master a LOAD DATA INFILE is interrupted (integrity constraint violation, killed con-
nection, and so on), the slave skips the LOAD DATA INFILE entirely. This means that if this com-
mand permanently inserted or updated table records before being interrupted, these modifications are
not replicated to the slave.

• Some forms of the FLUSH statement are not logged because they could cause problems if replicated
to a slave: FLUSH LOGS, FLUSH MASTER, FLUSH SLAVE, and FLUSH TABLES WITH READ
LOCK. For a syntax example, see Section 13.5.5.2, “FLUSH Syntax”. The FLUSH TABLES, ANA-
LYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE statements are written to the binary log
and thus replicated to slaves. This is not normally a problem because these statements do not modify
table data. However, this can cause difficulties under certain circumstances. If you replicate the priv-
ilege tables in the mysql database and update those tables directly without using GRANT, you must
issue a FLUSH PRIVILEGES on the slaves to put the new privileges into effect. In addition, if you
use FLUSH TABLES when renaming a MyISAM table that is part of a MERGE table, you must issue
FLUSH TABLES manually on the slaves. These statements are written to the binary log unless you
specify NO_WRITE_TO_BINLOG or its alias LOCAL.

• MySQL supports only one master and many slaves. In the future we plan to add a voting algorithm
for changing the master automatically in the event of problems with the current master. We also plan
to introduce agent processes to help perform load balancing by sending SELECT queries to different
slaves.

Replication

422

http://bugs.mysql.com/16261

• When a server shuts down and restarts, its MEMORY (HEAP tables become empty. The master replic-
ates this effect to slaves as follows: The first time that the master uses each MEMORY table after star-
tup, it logs an event that notifies the slaves that the table needs to be emptied by writing a DELETE
statement for that table to the binary log. See Section 14.4, “The MEMORY (HEAP) Storage Engine”,
for more information.

• Temporary tables are replicated except in the case where you shut down the slave server (not just the
slave threads) and you have replicated temporary tables that are used in updates that have not yet
been executed on the slave. If you shut down the slave server, the temporary tables needed by those
updates are no longer available when the slave is restarted. To avoid this problem, do not shut down
the slave while it has temporary tables open. Instead, use the following procedure:

1. Issue a STOP SLAVE statement.

2. Use SHOW STATUS to check the value of the Slave_open_temp_tables variable.

3. If the value is 0, issue a mysqladmin shutdown command to stop the slave.

4. If the value is not 0, restart the slave threads with START SLAVE.

5. Repeat the procedure later until the Slave_open_temp_tables variable is 0 and you can
stop the slave.

• The syntax for multiple-table DELETE statements that use table aliases changed between MySQL
4.0 and 4.1. In MySQL 4.0, you should use the true table name to refer to any table from which rows
should be deleted:

DELETE test FROM test AS t1, test2 WHERE ...

In MySQL 4.1, you must use the alias:

DELETE t1 FROM test AS t1, test2 WHERE ...

If you use such DELETE statements, the change in syntax means that a 4.0 master cannot replicate to
4.1 (or higher) slaves.

• It is safe to connect servers in a circular master/slave relationship if you use the -
-log-slave-updates option. That means that you can create a setup such as this:

A -> B -> C -> A

However, many statements do not work correctly in this kind of setup unless your client code is writ-
ten to take care of the potential problems that can occur from updates that occur in different se-
quence on different servers.

Server IDs are encoded in binary log events, so server A knows when an event that it reads was ori-
ginally created by itself and does not execute the event (unless server A was started with the -
-replicate-same-server-id option, which is meaningful only in rare cases). Thus, there are
no infinite loops. This type of circular setup works only if you perform no conflicting updates
between the tables. In other words, if you insert data in both A and C, you should never insert a row
in A that may have a key that conflicts with a row inserted in C. You should also not update the
same rows on two servers if the order in which the updates are applied is significant.

• If a statement on a slave produces an error, the slave SQL thread terminates, and the slave writes a
message to its error log. You should then connect to the slave manually and determine the cause of
the problem. (SHOW SLAVE STATUS is useful for this.) Then fix the problem (for example, you
might need to create a non-existent table) and run START SLAVE.

Replication

423

• It is safe to shut down a master server and restart it later. When a slave loses its connection to the
master, the slave tries to reconnect immediately and retries periodically if that fails. The default is to
retry every 60 seconds. This may be changed with the --master-connect-retry option. A
slave also is able to deal with network connectivity outages. However, the slave notices the network
outage only after receiving no data from the master for slave_net_timeout seconds. If your
outages are short, you may want to decrease slave_net_timeout. See Section 5.2.3, “System
Variables”.

• Shutting down the slave (cleanly) is also safe because it keeps track of where it left off. Unclean
shutdowns might produce problems, especially if the disk cache was not flushed to disk before the
system went down. Your system fault tolerance is greatly increased if you have a good uninterrupt-
ible power supply. Unclean shutdowns of the master may cause inconsistencies between the content
of tables and the binary log in master; this can be avoided by using InnoDB tables and the -
-innodb-safe-binlog option on the master. See Section 5.12.3, “The Binary Log”.

Note: --innodb-safe-binlog is unneeded as of MySQL 5.0.3, having been made obsolete by
the introduction of XA transaction support.

• A crash on the master side can result in the master's binary log having a final position less than the
most recent position read by the slave, due to the master's binary log file not being flushed. This can
cause the slave not to be able to replicate when the master comes back up. Setting
sync_binlog=1 in the master my.cnf file helps to minimize this problem because it causes the
master to flush its binary log more frequently.

• Due to the non-transactional nature of MyISAM tables, it is possible to have a statement that only
partially updates a table and returns an error code. This can happen, for example, on a multiple-row
insert that has one row violating a key constraint, or if a long update statement is killed after updat-
ing some of the rows. If that happens on the master, the slave thread exits and waits for the database
administrator to decide what to do about it unless the error code is legitimate and execution of the
statement results in the same error code on the slave. If this error code validation behavior is not de-
sirable, some or all errors can be masked out (ignored) with the --slave-skip-errors option.

• If you update transactional tables from non-transactional tables inside a BEGIN/COMMIT sequence,
updates to the binary log may be out of synchrony with table states if the non-transactional table is
updated before the transaction commits. This occurs because the transaction is written to the binary
log only when it is committed.

• In situations where transactions mix updates to transactional and non-transactional tables, the order
of statements in the binary log is correct, and all needed statements are written to the binary log even
in case of a ROLLBACK. However, when a second connection updates the non-transactional table be-
fore the first connection's transaction is complete, statements can be logged out of order, because the
second connection's update is written immediately after it is performed, regardless of the state of the
transaction being performed by the first connection.

• Floating-point values are approximate, so comparisons involving them are inexact. This is true for
operations that use floating-point values explicitly, or values that are converted to floating-point im-
plicitly. Comparisons of floating-point values might yield different results on master and slave serv-
ers due to differences in computer architecture, the compiler used to build MySQL, and so forth. See
Section 12.1.2, “Type Conversion in Expression Evaluation”, and Section A.5.8, “Problems with
Floating-Point Comparisons”.

6.8. Replication Startup Options
This section describes the options that you can use on slave replication servers. You can specify these
options either on the command line or in an option file.

On the master and each slave, you must use the server-id option to establish a unique replication ID.

Replication

424

For each server, you should pick a unique positive integer in the range from 1 to 232 – 1, and each ID
must be different from every other ID. Example: server-id=3

Options that you can use on the master server for controlling binary logging are described in Sec-
tion 5.12.3, “The Binary Log”.

Some slave server replication options are handled in a special way, in the sense that each is ignored if a
master.info file exists when the slave starts and contains a value for the option. The following op-
tions are handled this way:

• --master-host

• --master-user

• --master-password

• --master-port

• --master-connect-retry

• --master-ssl

• --master-ssl-ca

• --master-ssl-capath

• --master-ssl-cert

• --master-ssl-cipher

• --master-ssl-key

The master.info file format in MySQL 5.0 includes values corresponding to the SSL options. In ad-
dition, the file format includes as its first line the number of lines in the file. (See Section 6.3.4,
“Replication Relay and Status Files”.) If you upgrade an older server (before MySQL 4.1.1) to a newer
version, the new server upgrades the master.info file to the new format automatically when it starts.
However, if you downgrade a newer server to an older version, you should remove the first line manu-
ally before starting the older server for the first time.

If no master.info file exists when the slave server starts, it uses the values for those options that are
specified in option files or on the command line. This occurs when you start the server as a replication
slave for the very first time, or when you have run RESET SLAVE and then have shut down and restar-
ted the slave.

If the master.info file exists when the slave server starts, the server uses its contents and ignores
any options that correspond to the values listed in the file. Thus, if you start the slave server with differ-
ent values of the startup options that correspond to values in the master.info file, the different val-
ues have no effect, because the server continues to use the master.info file. To use different values,
you must either restart after removing the master.info file or (preferably) use the CHANGE MAS-
TER TO statement to reset the values while the slave is running.

Suppose that you specify this option in your my.cnf file:

[mysqld]
master-host=some_host

The first time you start the server as a replication slave, it reads and uses that option from the my.cnf
file. The server then records the value in the master.info file. The next time you start the server, it

Replication

425

reads the master host value from the master.info file only and ignores the value in the option file. If
you modify the my.cnf file to specify a different master host of some_other_host, the change still
has no effect. You should use CHANGE MASTER TO instead.

Because the server gives an existing master.info file precedence over the startup options just de-
scribed, you might prefer not to use startup options for these values at all, and instead specify them by
using the CHANGE MASTER TO statement. See Section 13.6.2.1, “CHANGE MASTER TO Syntax”.

This example shows a more extensive use of startup options to configure a slave server:

[mysqld]
server-id=2
master-host=db-master.mycompany.com
master-port=3306
master-user=pertinax
master-password=freitag
master-connect-retry=60
report-host=db-slave.mycompany.com

The following list describes startup options for controlling replication. Many of these options can be re-
set while the server is running by using the CHANGE MASTER TO statement. Others, such as the -
-replicate-* options, can be set only when the slave server starts.

• --log-slave-updates

Normally, a slave does not log to its own binary log any updates that are received from a master
server. This option tells the slave to log the updates performed by its SQL thread to its own binary
log. For this option to have any effect, the slave must also be started with the --log-bin option to
enable binary logging. --log-slave-updates is used when you want to chain replication serv-
ers. For example, you might want to set up replication servers using this arrangement:

A -> B -> C

Here, A serves as the master for the slave B, and B serves as the master for the slave C. For this to
work, B must be both a master and a slave. You must start both A and B with --log-bin to en-
able binary logging, and B with the --log-slave-updates option so that updates received
from A are logged by B to its binary log.

• --log-warnings[=level]

This option causes a server to print more messages to the error log about what it is doing. With re-
spect to replication, the server generates warnings that it succeeded in reconnecting after a network/
connection failure, and informs you as to how each slave thread started. This option is enabled by
default; to disable it, use --skip-log-warnings. Aborted connections are not logged to the er-
ror log unless the value is greater than 1.

• --master-connect-retry=seconds

The number of seconds that the slave thread sleeps before trying to reconnect to the master in case
the master goes down or the connection is lost. The value in the master.info file takes preced-
ence if it can be read. If not set, the default is 60. Connection retries are not invoked until the slave
times out reading data from the master according to the value of --slave-net-timeout. The
number of reconnection attempts is limited by the --master-retry-count option.

• --master-host=host_name

The hostname or IP number of the master replication server. The value in master.info takes pre-
cedence if it can be read. If no master host is specified, the slave thread does not start.

• --master-info-file=file_name

Replication

426

The name to use for the file in which the slave records information about the master. The default
name is master.info in the data directory.

• --master-password=password

The password of the account that the slave thread uses for authentication when it connects to the
master. The value in the master.info file takes precedence if it can be read. If not set, an empty
password is assumed.

• --master-port=port_number

The TCP/IP port number that the master is listening on. The value in the master.info file takes
precedence if it can be read. If not set, the compiled-in setting is assumed (normally 3306).

• --master-retry-count=count

The number of times that the slave tries to connect to the master before giving up. Reconnects are at-
tempted at intervals set by --master-connect-retry and reconnects are triggered when data
reads by the slave time out according to the --slave-net-timeout option. The default value is
86400.

• --master-ssl, --master-ssl-ca=file_name, --master-ssl-capath=direct-
ory_name, --master-ssl-cert=file_name,
--master-ssl-cipher=cipher_list, --master-ssl-key=file_name

These options are used for setting up a secure replication connection to the master server using SSL.
Their meanings are the same as the corresponding --ssl, --ssl-ca, --ssl-capath, -
-ssl-cert, --ssl-cipher, --ssl-key options that are described in Section 5.9.7.3, “SSL
Command Options”. The values in the master.info file take precedence if they can be read.

• --master-user=user_name

The username of the account that the slave thread uses for authentication when it connects to the
master. This account must have the REPLICATION SLAVE privilege. The value in the mas-
ter.info file takes precedence if it can be read. If the master username is not set, the name test
is assumed.

• --max-relay-log-size=size

The size at which the server rotates relay log files automatically. For more information, see Sec-
tion 6.3.4, “Replication Relay and Status Files”. The default size is 1GB.

• --read-only

Cause the slave to allow no updates except from slave threads or from users having the SUPER priv-
ilege. This enables you to ensure that a slave server accepts no updates from clients. As of MySQL
5.0.16, this option does not apply to TEMPORARY tables.

• --relay-log=file_name

The name for the relay log. The default name is host_name-relay-bin.nnnnnn, where
host_name is the name of the slave server host and nnnnnn indicates that relay logs are created
in numbered sequence. You can specify the option to create hostname-independent relay log names,
or if your relay logs tend to be big (and you don't want to decrease max_relay_log_size) and
you need to put them in some area different from the data directory, or if you want to increase speed
by balancing load between disks.

• --relay-log-index=file_name

Replication

427

The name to use for the relay log index file. The default name is host_name-re-
lay-bin.index in the data directory, where host_name is the name of the slave server.

• --relay-log-info-file=file_name

The name to use for the file in which the slave records information about the relay logs. The default
name is relay-log.info in the data directory.

• --relay-log-purge={0|1}

Disable or enable automatic purging of relay logs as soon as they are not needed any more. The de-
fault value is 1 (enabled). This is a global variable that can be changed dynamically with SET
GLOBAL relay_log_purge = N.

• --relay-log-space-limit=size

This option places an upper limit on the total size in bytes of all relay logs on the slave. A value of 0
means “no limit.” This is useful for a slave server host that has limited disk space. When the limit is
reached, the I/O thread stops reading binary log events from the master server until the SQL thread
has caught up and deleted some unused relay logs. Note that this limit is not absolute: There are
cases where the SQL thread needs more events before it can delete relay logs. In that case, the I/O
thread exceeds the limit until it becomes possible for the SQL thread to delete some relay logs, be-
cause not doing so would cause a deadlock. You should not set --relay-log-space-limit to
less than twice the value of --max-relay-log-size (or --max-binlog-size if -
-max-relay-log-size is 0). In that case, there is a chance that the I/O thread waits for free
space because --relay-log-space-limit is exceeded, but the SQL thread has no relay log to
purge and is unable to satisfy the I/O thread. This forces the I/O thread to temporarily ignore -
-relay-log-space-limit.

• --replicate-do-db=db_name

Tell the slave to restrict replication to statements where the default database (that is, the one selected
by USE) is db_name. To specify more than one database, use this option multiple times, once for
each database. Note that this does not replicate cross-database statements such as UPDATE
some_db.some_table SET foo='bar' while having selected a different database or no
database.

An example of what does not work as you might expect: If the slave is started with -
-replicate-do-db=sales and you issue the following statements on the master, the UPDATE
statement is not replicated:

USE prices;
UPDATE sales.january SET amount=amount+1000;

The main reason for this “just check the default database” behavior is that it is difficult from the
statement alone to know whether it should be replicated (for example, if you are using multiple-table
DELETE statements or multiple-table UPDATE statements that act across multiple databases). It is
also faster to check only the default database rather than all databases if there is no need.

If you need cross-database updates to work, use --replicate-wild-do-table=db_name.%
instead. See Section 6.9, “How Servers Evaluate Replication Rules”.

• --replicate-do-table=db_name.tbl_name

Tell the slave thread to restrict replication to the specified table. To specify more than one table, use
this option multiple times, once for each table. This works for cross-database updates, in contrast to
--replicate-do-db. See Section 6.9, “How Servers Evaluate Replication Rules”.

Replication

428

• --replicate-ignore-db=db_name

Tells the slave to not replicate any statement where the default database (that is, the one selected by
USE) is db_name. To specify more than one database to ignore, use this option multiple times, once
for each database. You should not use this option if you are using cross-database updates and you do
not want these updates to be replicated. See Section 6.9, “How Servers Evaluate Replication Rules”.

An example of what does not work as you might expect: If the slave is started with -
-replicate-ignore-db=sales and you issue the following statements on the master, the
UPDATE statement is not replicated:

USE prices;
UPDATE sales.january SET amount=amount+1000;

If you need cross-database updates to work, use
--replicate-wild-ignore-table=db_name.% instead. See Section 6.9, “How Servers
Evaluate Replication Rules”.

• --replicate-ignore-table=db_name.tbl_name

Tells the slave thread to not replicate any statement that updates the specified table, even if any other
tables might be updated by the same statement. To specify more than one table to ignore, use this op-
tion multiple times, once for each table. This works for cross-database updates, in contrast to -
-replicate-ignore-db. See Section 6.9, “How Servers Evaluate Replication Rules”.

• --replicate-rewrite-db=from_name->to_name

Tells the slave to translate the default database (that is, the one selected by USE) to to_name if it
was from_name on the master. Only statements involving tables are affected (not statements such
as CREATE DATABASE, DROP DATABASE, and ALTER DATABASE), and only if from_name
is the default database on the master. This does not work for cross-database updates. The database
name translation is done before the --replicate-* rules are tested.

If you use this option on the command line and the ‘>’ character is special to your command inter-
preter, quote the option value. For example:

shell> mysqld --replicate-rewrite-db="olddb->newdb"

• --replicate-same-server-id

To be used on slave servers. Usually you should use the default setting of 0, to prevent infinite loops
caused by circular replication. If set to 1, the slave does not skip events having its own server ID.
Normally, this is useful only in rare configurations. Cannot be set to 1 if -
-log-slave-updates is used. Note that by default the slave I/O thread does not even write bin-
ary log events to the relay log if they have the slave's server id (this optimization helps save disk us-
age). So if you want to use --replicate-same-server-id, be sure to start the slave with this
option before you make the slave read its own events that you want the slave SQL thread to execute.

• --replicate-wild-do-table=db_name.tbl_name

Tells the slave thread to restrict replication to statements where any of the updated tables match the
specified database and table name patterns. Patterns can contain the ‘%’ and ‘_’ wildcard characters,
which have the same meaning as for the LIKE pattern-matching operator. To specify more than one
table, use this option multiple times, once for each table. This works for cross-database updates. See
Section 6.9, “How Servers Evaluate Replication Rules”.

Example: --replicate-wild-do-table=foo%.bar% replicates only updates that use a ta-
ble where the database name starts with foo and the table name starts with bar.

Replication

429

If the table name pattern is %, it matches any table name and the option also applies to database-level
statements (CREATE DATABASE, DROP DATABASE, and ALTER DATABASE). For example, if
you use --replicate-wild-do-table=foo%.%, database-level statements are replicated if
the database name matches the pattern foo%.

To include literal wildcard characters in the database or table name patterns, escape them with a
backslash. For example, to replicate all tables of a database that is named my_own%db, but not rep-
licate tables from the my1ownAABCdb database, you should escape the ‘_’ and ‘%’ characters like
this: --replicate-wild-do-table=my_own\%db. If you're using the option on the com-
mand line, you might need to double the backslashes or quote the option value, depending on your
command interpreter. For example, with the bash shell, you would need to type -
-replicate-wild-do-table=my_own\\%db.

• --replicate-wild-ignore-table=db_name.tbl_name

Tells the slave thread not to replicate a statement where any table matches the given wildcard pat-
tern. To specify more than one table to ignore, use this option multiple times, once for each table.
This works for cross-database updates. See Section 6.9, “How Servers Evaluate Replication Rules”.

Example: --replicate-wild-ignore-table=foo%.bar% does not replicate updates that
use a table where the database name starts with foo and the table name starts with bar.

For information about how matching works, see the description of the -
-replicate-wild-do-table option. The rules for including literal wildcard characters in the
option value are the same as for --replicate-wild-ignore-table as well.

• --report-host=slave_name

The hostname or IP number of the slave to be reported to the master during slave registration. This
value appears in the output of SHOW SLAVE HOSTS on the master server. Leave the value unset if
you do not want the slave to register itself with the master. Note that it is not sufficient for the master
to simply read the IP number of the slave from the TCP/IP socket after the slave connects. Due to
NAT and other routing issues, that IP may not be valid for connecting to the slave from the master or
other hosts.

• --report-port=slave_port_num

The TCP/IP port number for connecting to the slave, to be reported to the master during slave regis-
tration. Set this only if the slave is listening on a non-default port or if you have a special tunnel
from the master or other clients to the slave. If you are not sure, do not use this option.

• --skip-slave-start

Tells the slave server not to start the slave threads when the server starts. To start the threads later,
use a START SLAVE statement.

• --slave_compressed_protocol={0|1}

If this option is set to 1, use compression for the slave/master protocol if both the slave and the mas-
ter support it. The default is 0 (no compression).

• --slave-load-tmpdir=file_name

The name of the directory where the slave creates temporary files. This option is by default equal to
the value of the tmpdir system variable. When the slave SQL thread replicates a LOAD DATA
INFILE statement, it extracts the file to be loaded from the relay log into temporary files, and then
loads these into the table. If the file loaded on the master is huge, the temporary files on the slave are
huge, too. Therefore, it might be advisable to use this option to tell the slave to put temporary files in

Replication

430

a directory located in some filesystem that has a lot of available space. In that case, the relay logs are
huge as well, so you might also want to use the --relay-log option to place the relay logs in that
filesystem.

The directory specified by this option should be located in a disk-based filesystem (not a memory-
based filesystem) because the temporary files used to replicate LOAD DATA INFILE must survive
machine restarts. The directory also should not be one that is cleared by the operating system during
the system startup process.

• --slave-net-timeout=seconds

The number of seconds to wait for more data from the master before the slave considers the connec-
tion broken, aborts the read, and tries to reconnect. The first retry occurs immediately after the
timeout. The interval between retries is controlled by the --master-connect-retry option
and the number of reconnection attempts is limited by the --master-retry-count option. The
default is 3600 seconds (one hour).

• --slave-skip-errors=[err_code1,err_code2,...|all]

Normally, replication stops when an error occurs on the slave. This gives you the opportunity to re-
solve the inconsistency in the data manually. This option tells the slave SQL thread to continue rep-
lication when a statement returns any of the errors listed in the option value.

Do not use this option unless you fully understand why you are getting errors. If there are no bugs in
your replication setup and client programs, and no bugs in MySQL itself, an error that stops replica-
tion should never occur. Indiscriminate use of this option results in slaves becoming hopelessly out
of synchrony with the master, with you having no idea why this has occurred.

For error codes, you should use the numbers provided by the error message in your slave error log
and in the output of SHOW SLAVE STATUS. Appendix B, Error Codes and Messages, lists server
error codes.

You can also (but should not) use the very non-recommended value of all to cause the slave to ig-
nore all error messages and keeps going regardless of what happens. Needless to say, if you use
all, there are no guarantees regarding the integrity of your data. Please do not complain (or file bug
reports) in this case if the slave's data is not anywhere close to what it is on the master. You have
been warned.

Examples:

--slave-skip-errors=1062,1053
--slave-skip-errors=all

6.9. How Servers Evaluate Replication Rules
If a master server does not write a statement to its binary log, the statement is not replicated. If the server
does log the statement, the statement is sent to all slaves and each slave determines whether to execute it
or ignore it.

On the master side, decisions about which statements to log are based on the --binlog-do-db and -
-binlog-ignore-db options that control binary logging. For a description of the rules that servers
use in evaluating these options, see Section 5.12.3, “The Binary Log”.

On the slave side, decisions about whether to execute or ignore statements received from the master are
made according to the --replicate-* options that the slave was started with. (See Section 6.8,
“Replication Startup Options”.) The slave evaluates these options using the following procedure, which
first checks the database-level options and then the table-level options.

Replication

431

In the simplest case, when there are no --replicate-* options, the procedure yields the result that
the slave executes all statements that it receives from the master. Otherwise, the result depends on the
particular options given. In general, to make it easier to determine what effect an option set will have, it
is recommended that you avoid mixing “do” and “ignore” options, or wildcard and non-wildcard op-
tions.

Stage 1. Check the database options.

At this stage, the slave checks whether there are any --replicate-do-db or -
-replicate-ignore-db options that specify database-specific conditions:

• No: Permit the statement and proceed to the table-checking stage.

• Yes: Test the options using the same rules as for the --binlog-do-db and -
-binlog-ignore-db options to determine whether to permit or ignore the statement. What is
the result of the test?

• Permit: Do not execute the statement immediately. Defer the decision and proceed to the table-
checking stage.

• Ignore: Ignore the statement and exit.

This stage can permit a statement for further option-checking, or cause it to be ignored. However, state-
ments that are permitted at this stage are not actually executed yet. Instead, they pass to the following
stage that checks the table options.

Stage 2. Check the table options.

First, as a preliminary condition, the slave checks whether the statement occurs within a stored function
or (prior to MySQL 5.0.12) a stored procedure. If so, execute the statement and exit. (Stored procedures
are exempt from this test as of MySQL 5.0.12 because procedure logging occurs at the level of state-
ments that are executed within the routine rather than at the CALL level.)

Next, the slave checks for table options and evaluates them. If the server reaches this point, it executes
all statements if there are no table options. If there are “do” table options, the statement must match one
of them if it is to be executed; otherwise, it is ignored. If there are any “ignore” options, all statements
are executed except those that match any ignore option. The following steps describe how this evalu-
ation occurs in more detail.

1. Are there any --replicate-*-table options?

• No: There are no table restrictions, so all statements match. Execute the statement and exit.

• Yes: There are table restrictions. Evaluate the tables to be updated against them. There might be
multiple tables to update, so loop through the following steps for each table looking for a
matching option (first the non-wild options, and then the wild options). Only tables that are to
be updated are compared to the options. For example, if the statement is INSERT INTO
sales SELECT * FROM prices, only sales is compared to the options). If several
tables are to be updated (multiple-table statement), the first table that matches “do” or “ignore”
wins. That is, the server checks the first table against the options. If no decision could be made,
it checks the second table against the options, and so on.

2. Are there any --replicate-do-table options?

• No: Proceed to the next step.

Replication

432

• Yes: Does the table match any of them?

• No: Proceed to the next step.

• Yes: Execute the statement and exit.

3. Are there any --replicate-ignore-table options?

• No: Proceed to the next step.

• Yes: Does the table match any of them?

• No: Proceed to the next step.

• Yes: Ignore the statement and exit.

4. Are there any --replicate-wild-do-table options?

• No: Proceed to the next step.

• Yes: Does the table match any of them?

• No: Proceed to the next step.

• Yes: Execute the statement and exit.

5. Are there any --replicate-wild-ignore-table options?

• No: Proceed to the next step.

• Yes: Does the table match any of them?

• No: Proceed to the next step.

• Yes: Ignore the statement and exit.

6. No --replicate-*-table option was matched. Is there another table to test against these op-
tions?

• No: We have now tested all tables to be updated and could not match any option. Are there -
-replicate-do-table or --replicate-wild-do-table options?

• No: There were no “do” table options, so no explicit “do” match is required. Execute the
statement and exit.

• Yes: There were “do” table options, so the statement is executed only with an explicit match
to one of them. Ignore the statement and exit.

• Yes: Loop.

Examples:

• No --replicate-* options at all

The slave executes all statements that it receives from the master.

• --replicate-*-db options, but no table options

Replication

433

The slave permits or ignores statements using the database options. Then it executes all statements
permitted by those options because there are no table restrictions.

• --replicate-*-table options, but no database options

All statements are permitted at the database-checking stage because there are no database conditions.
The slave executes or ignores statements based on the table options.

• A mix of database and table options

The slave permits or ignores statements using the database options. Then it evaluates all statements
permitted by those options according to the table options. In some cases, this process can yield what
might seem a counterintuitive result. Consider the following set of options:

[mysqld]
replicate-do-db = db1
replicate-do-table = db2.mytbl2

Suppose that db1 is the default database and the slave receives this statement:

INSERT INTO mytbl1 VALUES(1,2,3);

The database is db1, which matches the --replicate-do-db option at the database-checking
stage. The algorithm then proceeds to the table-checking stage. If there were no table options, the
statement would be executed. However, because the options include a “do” table option, the state-
ment must match if it is to be executed. The statement does not match, so it is ignored. (The same
would happen for any table in db1.)

6.10. Replication FAQ
Q: How do I configure a slave if the master is running and I do not want to stop it?

A: There are several possibilities. If you have taken a snapshot backup of the master at some point and
recorded the binary log filename and offset (from the output of SHOW MASTER STATUS) correspond-
ing to the snapshot, use the following procedure:

1. Make sure that the slave is assigned a unique server ID.

2. Execute the following statement on the slave, filling in appropriate values for each option:

mysql> CHANGE MASTER TO
-> MASTER_HOST='master_host_name',
-> MASTER_USER='master_user_name',
-> MASTER_PASSWORD='master_pass',
-> MASTER_LOG_FILE='recorded_log_file_name',
-> MASTER_LOG_POS=recorded_log_position;

3. Execute START SLAVE on the slave.

If you do not have a backup of the master server, here is a quick procedure for creating one. All steps
should be performed on the master host.

1. Issue this statement to acquire a global read lock:

mysql> FLUSH TABLES WITH READ LOCK;

Replication

434

2. With the lock still in place, execute this command (or a variation of it):

shell> tar zcf /tmp/backup.tar.gz /var/lib/mysql

3. Issue this statement and record the output, which you will need later:

mysql> SHOW MASTER STATUS;

4. Release the lock:

mysql> UNLOCK TABLES;

An alternative to using the preceding procedure to make a binary copy is to make an SQL dump of the
master. To do this, you can use mysqldump --master-data on your master and later load the
SQL dump into your slave. However, this is slower than making a binary copy.

Regardless of which of the two methods you use, afterward follow the instructions for the case when
you have a snapshot and have recorded the log filename and offset. You can use the same snapshot to set
up several slaves. Once you have the snapshot of the master, you can wait to set up a slave as long as the
binary logs of the master are left intact. The two practical limitations on the length of time you can wait
are the amount of disk space available to retain binary logs on the master and the length of time it takes
the slave to catch up.

Q: Does the slave need to be connected to the master all the time?

A: No, it does not. The slave can go down or stay disconnected for hours or even days, and then recon-
nect and catch up on updates. For example, you can set up a master/slave relationship over a dial-up link
where the link is up only sporadically and for short periods of time. The implication of this is that, at any
given time, the slave is not guaranteed to be in synchrony with the master unless you take some special
measures.

Q: How do I know how late a slave is compared to the master? In other words, how do I know the date
of the last statement replicated by the slave?

A: You can read the Seconds_Behind_Master column in SHOW SLAVE STATUS. See Sec-
tion 6.3, “Replication Implementation Details”.

When the slave SQL thread executes an event read from the master, it modifies its own time to the event
timestamp. (This is why TIMESTAMP is well replicated.) In the Time column in the output of SHOW
PROCESSLIST, the number of seconds displayed for the slave SQL thread is the number of seconds
between the timestamp of the last replicated event and the real time of the slave machine. You can use
this to determine the date of the last replicated event. Note that if your slave has been disconnected from
the master for one hour, and then reconnects, you may immediately see Time values like 3600 for the
slave SQL thread in SHOW PROCESSLIST. This is because the slave is executing statements that are
one hour old.

Q: How do I force the master to block updates until the slave catches up?

A: Use the following procedure:

1. On the master, execute these statements:

mysql> FLUSH TABLES WITH READ LOCK;
mysql> SHOW MASTER STATUS;

Replication

435

Record the replication cooredinates (the log filename and offset) from the output of the SHOW state-
ment.

2. On the slave, issue the following statement, where the arguments to the MASTER_POS_WAIT()
function are the replication coordinate values obtained in the previous step:

mysql> SELECT MASTER_POS_WAIT('log_name', log_offset);

The SELECT statement blocks until the slave reaches the specified log file and offset. At that point,
the slave is in synchrony with the master and the statement returns.

3. On the master, issue the following statement to allow the master to begin processing updates again:

mysql> UNLOCK TABLES;

Q: What issues should I be aware of when setting up two-way replication?

A: MySQL replication currently does not support any locking protocol between master and slave to
guarantee the atomicity of a distributed (cross-server) update. In other words, it is possible for client A
to make an update to co-master 1, and in the meantime, before it propagates to co-master 2, client B
could make an update to co-master 2 that makes the update of client A work differently than it did on
co-master 1. Thus, when the update of client A makes it to co-master 2, it produces tables that are differ-
ent from what you have on co-master 1, even after all the updates from co-master 2 have also propag-
ated. This means that you should not chain two servers together in a two-way replication relationship
unless you are sure that your updates can safely happen in any order, or unless you take care of mis-
ordered updates somehow in the client code.

You should also realize that two-way replication actually does not improve performance very much (if
at all) as far as updates are concerned. Each server must do the same number of updates, just as you
would have a single server do. The only difference is that there is a little less lock contention, because
the updates originating on another server are serialized in one slave thread. Even this benefit might be
offset by network delays.

Q: How can I use replication to improve performance of my system?

A: You should set up one server as the master and direct all writes to it. Then configure as many slaves
as you have the budget and rackspace for, and distribute the reads among the master and the slaves. You
can also start the slaves with the --skip-innodb, --skip-bdb, --low-priority-updates,
and --delay-key-write=ALL options to get speed improvements on the slave end. In this case, the
slave uses non-transactional MyISAM tables instead of InnoDB and BDB tables to get more speed by
eliminating transactional overhead.

Q: What should I do to prepare client code in my own applications to use performance-enhancing replic-
ation?

A: If the part of your code that is responsible for database access has been properly abstracted/modu-
larized, converting it to run with a replicated setup should be very smooth and easy. Change the imple-
mentation of your database access to send all writes to the master, and to send reads to either the master
or a slave. If your code does not have this level of abstraction, setting up a replicated system gives you
the opportunity and motivation to it clean up. Start by creating a wrapper library or module that imple-
ments the following functions:

• safe_writer_connect()

• safe_reader_connect()

Replication

436

• safe_reader_statement()

• safe_writer_statement()

safe_ in each function name means that the function takes care of handling all error conditions. You
can use different names for the functions. The important thing is to have a unified interface for connect-
ing for reads, connecting for writes, doing a read, and doing a write.

Then convert your client code to use the wrapper library. This may be a painful and scary process at
first, but it pays off in the long run. All applications that use the approach just described are able to take
advantage of a master/slave configuration, even one involving multiple slaves. The code is much easier
to maintain, and adding troubleshooting options is trivial. You need modify only one or two functions;
for example, to log how long each statement took, or which statement among those issued gave you an
error.

If you have written a lot of code, you may want to automate the conversion task by using the replace
utility that comes with standard MySQL distributions, or write your own conversion script. Ideally, your
code uses consistent programming style conventions. If not, then you are probably better off rewriting it
anyway, or at least going through and manually regularizing it to use a consistent style.

Q: When and how much can MySQL replication improve the performance of my system?

A: MySQL replication is most beneficial for a system that processes frequent reads and infrequent
writes. In theory, by using a single-master/multiple-slave setup, you can scale the system by adding
more slaves until you either run out of network bandwidth, or your update load grows to the point that
the master cannot handle it.

To determine how many slaves you can use before the added benefits begin to level out, and how much
you can improve performance of your site, you need to know your query patterns, and to determine em-
pirically by benchmarking the relationship between the throughput for reads (reads per second, or
reads) and for writes (writes) on a typical master and a typical slave. The example here shows a
rather simplified calculation of what you can get with replication for a hypothetical system.

Let's say that system load consists of 10% writes and 90% reads, and we have determined by bench-
marking that reads is 1200 – 2 × writes. In other words, the system can do 1,200 reads per second
with no writes, the average write is twice as slow as the average read, and the relationship is linear. Let
us suppose that the master and each slave have the same capacity, and that we have one master and N
slaves. Then we have for each server (master or slave):

reads = 1200 – 2 × writes

reads = 9 × writes / (N + 1) (reads are split, but writes go to all servers)

9 × writes / (N + 1) + 2 × writes = 1200

writes = 1200 / (2 + 9/(N+1))

The last equation indicates the maximum number of writes for N slaves, given a maximum possible read
rate of 1,200 per minute and a ratio of nine reads per write.

This analysis yields the following conclusions:

• If N = 0 (which means we have no replication), our system can handle about 1200/11 = 109 writes
per second.

• If N = 1, we get up to 184 writes per second.

Replication

437

• If N = 8, we get up to 400 writes per second.

• If N = 17, we get up to 480 writes per second.

• Eventually, as N approaches infinity (and our budget negative infinity), we can get very close to 600
writes per second, increasing system throughput about 5.5 times. However, with only eight servers,
we increase it nearly four times.

Note that these computations assume infinite network bandwidth and neglect several other factors that
could be significant on your system. In many cases, you may not be able to perform a computation sim-
ilar to the one just shown that accurately predicts what will happen on your system if you add N replica-
tion slaves. However, answering the following questions should help you decide whether and by how
much replication will improve the performance of your system:

• What is the read/write ratio on your system?

• How much more write load can one server handle if you reduce the reads?

• For how many slaves do you have bandwidth available on your network?

Q: How can I use replication to provide redundancy or high availability?

A: With the currently available features, you would have to set up a master and a slave (or several
slaves), and to write a script that monitors the master to check whether it is up. Then instruct your ap-
plications and the slaves to change master in case of failure. Some suggestions:

• To tell a slave to change its master, use the CHANGE MASTER TO statement.

• A good way to keep your applications informed as to the location of the master is by having a dy-
namic DNS entry for the master. With bind you can use nsupdate to dynamically update your
DNS.

• Run your slaves with the --log-bin option and without --log-slave-updates. In this way,
the slave is ready to become a master as soon as you issue STOP SLAVE; RESET MASTER, and
CHANGE MASTER TO statement on the other slaves. For example, assume that you have the fol-
lowing setup:

WC
\
v

WC----> M
/ | \

/ | \
v v v

S1 S2 S3

In this diagram, M means the master, S the slaves, WC the clients issuing database writes and reads;
clients that issue only database reads are not represented, because they need not switch. S1, S2, and
S3 are slaves running with --log-bin and without --log-slave-updates. Because updates
received by a slave from the master are not logged in the binary log unless -
-log-slave-updates is specified, the binary log on each slave is empty initially. If for some
reason M becomes unavailable, you can pick one of the slaves to become the new master. For ex-
ample, if you pick S1, all WC should be redirected to S1, which will log updates to its binary log. S2
and S3 should then replicate from S1.

The reason for running the slave without --log-slave-updates is to prevent slaves from re-
ceiving updates twice in case you cause one of the slaves to become the new master. Suppose that

Replication

438

S1 has --log-slave-updates enabled. Then it will write updates that it receives from M to its
own binary log. When S2 changes from M to S1 as its master, it may receive updates from S1 that it
has already received from M

Make sure that all slaves have processed any statements in their relay log. On each slave, issue
STOP SLAVE IO_THREAD, then check the output of SHOW PROCESSLIST until you see Has
read all relay log. When this is true for all slaves, they can be reconfigured to the new
setup. On the slave S1 being promoted to become the master, issue STOP SLAVE and RESET
MASTER.

On the other slaves S2 and S3, use STOP SLAVE and CHANGE MASTER TO MAS-
TER_HOST='S1' (where 'S1' represents the real hostname of S1). To CHANGE MASTER, add
all information about how to connect to S1 from S2 or S3 (user, password, port). In CHANGE
MASTER, there is no need to specify the name of S1's binary log or binary log position to read from:
We know it is the first binary log and position 4, which are the defaults for CHANGE MASTER. Fi-
nally, use START SLAVE on S2 and S3.

Then instruct all WC to direct their statements to S1. From that point on, all updates statements sent
by WC to S1 are written to the binary log of S1, which then contains every update statement sent to
S1 since M died.

The result is this configuration:

WC
/
|

WC | M(unavailable)
\ |
\ |
v v
S1<--S2 S3
^ |
+-------+

When M is up again, you must issue on it the same CHANGE MASTER as that issued on S2 and S3,
so that M becomes a slave of S1 and picks up all the WC writes that it missed while it was down. To
make M a master again (because it is the most powerful machine, for example), use the preceding
procedure as if S1 was unavailable and M was to be the new master. During this procedure, do not
forget to run RESET MASTER on M before making S1, S2, and S3 slaves of M. Otherwise, they
may pick up old WC writes from before the point at which M became unavailable.

Note that there is no synchronization between the different slaves to a master. Some slaves might be
ahead of others. This means that the concept outlined in the previous example might not work. In
practice, however, the relay logs of different slaves will most likely not be far behind the master, so
it would work, anyway (but there is no guarantee).

Q: How do I prevent GRANT and REVOKE statements from replicating to slave machines?

A: Start the server with the --replicate-wild-ignore-table=mysql.% option.

Q: Does replication work on mixed operating systems (for example, the master runs on Linux while
slaves run on Mac OS X and Windows)?

A: Yes.

Q: Does replication work on mixed hardware architectures (for example, the master runs on a 64-bit ma-
chine while slaves run on 32-bit machines)?

A: Yes.

Replication

439

6.11. Troubleshooting Replication
If you have followed the instructions, and your replication setup is not working, the first thing to do is
check the error log for messages. Many users have lost time by not doing this soon enough after encoun-
tering problems.

If you cannot tell from the error log what the problem was, try the following techniques:

• Verify that the master has binary logging enabled by issuing a SHOW MASTER STATUS statement.
If logging is enabled, Position is non-zero. If binary logging is not enabled, verify that you are
running the master with the --log-bin and --server-id options.

• Verify that the slave is running. Use SHOW SLAVE STATUS to check whether the
Slave_IO_Running and Slave_SQL_Running values are both Yes. If not, verify the options
that were used when starting the slave server. For example, --skip-slave-start prevents the
slave threads from starting until you issue a START SLAVE statement.

• If the slave is running, check whether it established a connection to the master. Use SHOW PRO-
CESSLIST, find the I/O and SQL threads and check their State column to see what they display.
See Section 6.3, “Replication Implementation Details”. If the I/O thread state says Connecting
to master, verify the privileges for the replication user on the master, the master hostname, your
DNS setup, whether the master is actually running, and whether it is reachable from the slave.

• If the slave was running previously but has stopped, the reason usually is that some statement that
succeeded on the master failed on the slave. This should never happen if you have taken a proper
snapshot of the master, and never modified the data on the slave outside of the slave thread. If the
slave stops unexpectedly, it is a bug or you have encountered one of the known replication limita-
tions described in Section 6.7, “Replication Features and Known Problems”. If it is a bug, see Sec-
tion 6.12, “How to Report Replication Bugs or Problems”, for instructions on how to report it.

• If a statement that succeeded on the master refuses to run on the slave, try the following procedure if
it is not feasible to do a full database resynchronization by deleting the slave's databases and copying
a new snapshot from the master:

1. Determine whether the affected table on the slave is different from the master table. Try to un-
derstand how this happened. Then make the slave's table identical to the master's and run
START SLAVE.

2. If the preceding step does not work or does not apply, try to understand whether it would be
safe to make the update manually (if needed) and then ignore the next statement from the mas-
ter.

3. If you decide that you can skip the next statement from the master, issue the following state-
ments:

mysql> SET GLOBAL SQL_SLAVE_SKIP_COUNTER = N;
mysql> START SLAVE;

The value of N should be 1 if the next statement from the master does not use
AUTO_INCREMENT or LAST_INSERT_ID(). Otherwise, the value should be 2. The reason
for using a value of 2 for statements that use AUTO_INCREMENT or LAST_INSERT_ID() is
that they take two events in the binary log of the master.

4. If you are sure that the slave started out perfectly synchronized with the master, and that no one
has updated the tables involved outside of the slave thread, then presumably the discrepancy is
the result of a bug. If you are running the most recent version of MySQL, please report the
problem. If you are running an older version, try upgrading to the latest production release to
determine whether the problem persists.

Replication

440

6.12. How to Report Replication Bugs or Problems
When you have determined that there is no user error involved, and replication still either does not work
at all or is unstable, it is time to send us a bug report. We need to obtain as much information as possible
from you to be able to track down the bug. Please spend some time and effort in preparing a good bug
report.

If you have a repeatable test case that demonstrates the bug, please enter it into our bugs database using
the instructions given in Section 1.8, “How to Report Bugs or Problems”. If you have a “phantom” prob-
lem (one that you cannot duplicate at will), use the following procedure:

1. Verify that no user error is involved. For example, if you update the slave outside of the slave
thread, the data goes out of synchrony, and you can have unique key violations on updates. In this
case, the slave thread stops and waits for you to clean up the tables manually to bring them into
synchrony. This is not a replication problem. It is a problem of outside interference causing replic-
ation to fail.

2. Run the slave with the --log-slave-updates and --log-bin options. These options cause
the slave to log the updates that it receives from the master into its own binary logs.

3. Save all evidence before resetting the replication state. If we have no information or only sketchy
information, it becomes difficult or impossible for us to track down the problem. The evidence you
should collect is:

• All binary logs from the master

• All binary logs from the slave

• The output of SHOW MASTER STATUS from the master at the time you discovered the prob-
lem

• The output of SHOW SLAVE STATUS from the slave at the time you discovered the problem

• Error logs from the master and the slave

4. Use mysqlbinlog to examine the binary logs. The following should be helpful to find the prob-
lem statement. log_pos and log_file are the Master_Log_File and
Read_Master_Log_Pos values from SHOW SLAVE STATUS.

shell> mysqlbinlog -j log_pos log_file | head

After you have collected the evidence for the problem, try to isolate it as a separate test case first. Then
enter the problem with as much information as possible into our bugs database using the instructions at
Section 1.8, “How to Report Bugs or Problems”.

6.13. Auto-Increment in Multiple-Master Replication
When multiple servers are configured as replication masters, special steps must be taken to prevent key
collisions when using AUTO_INCREMENT columns, otherwise multiple masters may attempt to use the
same AUTO_INCREMENT value when inserting rows.

The auto_increment_increment and auto_increment_offset system variables help to
accommodate multiple-master replication with AUTO_INCREMENT columns. Each of these variables
has a default and minimum value of 1, and a maximum value of 65,535. They were introduced in
MySQL 5.0.2.

Replication

441

These two variables affect AUTO_INCREMENT column behavior as follows:

• auto_increment_increment controls the increment between successive AUTO_INCREMENT
values.

• auto_increment_offset determines the starting point for AUTO_INCREMENT column val-
ues.

By choosing non-conflicting values for these variables on different masters, servers in a multiple-master
configuration will not use conflicting AUTO_INCREMENT values when inserting new rows into the
same table. To set up N master servers, set the variables like this:

• Set auto_increment_increment to N on each master.

• Set each of the N masters to have a different auto_increment_offset, using the values 1, 2,
, N.

For additional information about auto_increment_increment and
auto_increment_offset, see Section 5.2.3, “System Variables”.

Replication

442

Chapter 7. Optimization
Optimization is a complex task because ultimately it requires understanding of the entire system to be
optimized. Although it may be possible to perform some local optimizations with little knowledge of
your system or application, the more optimal you want your system to become, the more you must know
about it.

This chapter tries to explain and give some examples of different ways to optimize MySQL. Remember,
however, that there are always additional ways to make the system even faster, although they may re-
quire increasing effort to achieve.

7.1. Optimization Overview
The most important factor in making a system fast is its basic design. You must also know what kinds of
processing your system is doing, and what its bottlenecks are. In most cases, system bottlenecks arise
from these sources:

• Disk seeks. It takes time for the disk to find a piece of data. With modern disks, the mean time for
this is usually lower than 10ms, so we can in theory do about 100 seeks a second. This time im-
proves slowly with new disks and is very hard to optimize for a single table. The way to optimize
seek time is to distribute the data onto more than one disk.

• Disk reading and writing. When the disk is at the correct position, we need to read the data. With
modern disks, one disk delivers at least 10–20MB/s throughput. This is easier to optimize than seeks
because you can read in parallel from multiple disks.

• CPU cycles. When we have the data in main memory, we need to process it to get our result. Having
small tables compared to the amount of memory is the most common limiting factor. But with small
tables, speed is usually not the problem.

• Memory bandwidth. When the CPU needs more data than can fit in the CPU cache, main memory
bandwidth becomes a bottleneck. This is an uncommon bottleneck for most systems, but one to be
aware of.

7.1.1. MySQL Design Limitations and Tradeoffs
When using the MyISAM storage engine, MySQL uses extremely fast table locking that allows multiple
readers or a single writer. The biggest problem with this storage engine occurs when you have a steady
stream of mixed updates and slow selects on a single table. If this is a problem for certain tables, you can
use another storage engine for them. See Chapter 14, Storage Engines and Table Types.

MySQL can work with both transactional and non-transactional tables. To make it easier to work
smoothly with non-transactional tables (which cannot roll back if something goes wrong), MySQL has
the following rules. Note that these rules apply only when not running in strict SQL mode or if you use
the IGNORE specifier for INSERT or UPDATE.

• All columns have default values.

• If you insert an inappropriate or out-of-range value into a column, MySQL sets the column to the
“best possible value” instead of reporting an error. For numerical values, this is 0, the smallest pos-
sible value or the largest possible value. For strings, this is either the empty string or as much of the
string as can be stored in the column.

443

• All calculated expressions return a value that can be used instead of signaling an error condition. For
example, 1/0 returns NULL.

To change the preceding behaviors, you can enable stricter data handling by setting the server SQL
mode appropriately. For more information about data handling, see Section 1.9.6, “How MySQL Deals
with Constraints”, Section 5.2.6, “SQL Modes”, and Section 13.2.4, “INSERT Syntax”.

7.1.2. Designing Applications for Portability
Because all SQL servers implement different parts of standard SQL, it takes work to write portable data-
base applications. It is very easy to achieve portability for very simple selects and inserts, but becomes
more difficult the more capabilities you require. If you want an application that is fast with many data-
base systems, it becomes even more difficult.

All database systems have some weak points. That is, they have different design compromises that lead
to different behavior.

To make a complex application portable, you need to determine which SQL servers it must work with,
and then determine what features those servers support. You can use the MySQL crash-me program
to find functions, types, and limits that you can use with a selection of database servers. crash-me
does not check for every possible feature, but it is still reasonably comprehensive, performing about 450
tests. An example of the type of information crash-me can provide is that you should not use column
names that are longer than 18 characters if you want to be able to use Informix or DB2.

The crash-me program and the MySQL benchmarks are all very database independent. By taking a
look at how they are written, you can get a feeling for what you must do to make your own applications
database independent. The programs can be found in the sql-bench directory of MySQL source dis-
tributions. They are written in Perl and use the DBI database interface. Use of DBI in itself solves part
of the portability problem because it provides database-independent access methods. See Section 7.1.4,
“The MySQL Benchmark Suite”.

If you strive for database independence, you need to get a good feeling for each SQL server's bottle-
necks. For example, MySQL is very fast in retrieving and updating rows for MyISAM tables, but has a
problem in mixing slow readers and writers on the same table. Oracle, on the other hand, has a big prob-
lem when you try to access rows that you have recently updated (until they are flushed to disk). Transac-
tional database systems in general are not very good at generating summary tables from log tables, be-
cause in this case row locking is almost useless.

To make your application really database independent, you should define an easily extendable interface
through which you manipulate your data. For example, C++ is available on most systems, so it makes
sense to use a C++ class-based interface to the databases.

If you use some feature that is specific to a given database system (such as the REPLACE statement,
which is specific to MySQL), you should implement the same feature for other SQL servers by coding
an alternative method. Although the alternative might be slower, it enables the other servers to perform
the same tasks.

With MySQL, you can use the /*! */ syntax to add MySQL-specific keywords to a statement. The
code inside /* */ is treated as a comment (and ignored) by most other SQL servers. For information
about writing comments, see Section 9.4, “Comment Syntax”.

If high performance is more important than exactness, as for some Web applications, it is possible to
create an application layer that caches all results to give you even higher performance. By letting old
results expire after a while, you can keep the cache reasonably fresh. This provides a method to handle
high load spikes, in which case you can dynamically increase the cache size and set the expiration
timeout higher until things get back to normal.

Optimization

444

In this case, the table creation information should contain information about the initial cache size and
how often the table should normally be refreshed.

An attractive alternative to implementing an application cache is to use the MySQL query cache. By en-
abling the query cache, the server handles the details of determining whether a query result can be re-
used. This simplifies your application. See Section 5.14, “The MySQL Query Cache”.

7.1.3. What We Have Used MySQL For
This section describes an early application for MySQL.

During MySQL initial development, the features of MySQL were made to fit our largest customer,
which handled data warehousing for a couple of the largest retailers in Sweden.

From all stores, we got weekly summaries of all bonus card transactions, and were expected to provide
useful information for the store owners to help them find how their advertising campaigns were affect-
ing their own customers.

The volume of data was quite huge (about seven million summary transactions per month), and we had
data for 4–10 years that we needed to present to the users. We got weekly requests from our customers,
who wanted instant access to new reports from this data.

We solved this problem by storing all information per month in compressed “transaction tables.” We
had a set of simple macros that generated summary tables grouped by different criteria (product group,
customer id, store, and so on) from the tables in which the transactions were stored. The reports were
Web pages that were dynamically generated by a small Perl script. This script parsed a Web page, ex-
ecuted the SQL statements in it, and inserted the results. We would have used PHP or mod_perl in-
stead, but they were not available at the time.

For graphical data, we wrote a simple tool in C that could process SQL query results and produce GIF
images based on those results. This tool also was dynamically executed from the Perl script that parses
the Web pages.

In most cases, a new report could be created simply by copying an existing script and modifying the
SQL query that it used. In some cases, we needed to add more columns to an existing summary table or
generate a new one. This also was quite simple because we kept all transaction-storage tables on disk.
(This amounted to about 50GB of transaction tables and 200GB of other customer data.)

We also let our customers access the summary tables directly with ODBC so that the advanced users
could experiment with the data themselves.

This system worked well and we had no problems handling the data with quite modest Sun Ultra
SPARCstation hardware (2×200MHz). Eventually the system was migrated to Linux.

7.1.4. The MySQL Benchmark Suite
This benchmark suite is meant to tell any user what operations a given SQL implementation performs
well or poorly. You can get a good idea for how the benchmarks work by looking at the code and results
in the sql-bench directory in any MySQL source distribution.

Note that this benchmark is single-threaded, so it measures the minimum time for the operations per-
formed. We plan to add multi-threaded tests to the benchmark suite in the future.

To use the benchmark suite, the following requirements must be satisfied:

• The benchmark suite is provided with MySQL source distributions. You can either download a re-
leased distribution from http://dev.mysql.com/downloads/, or use the current development source

Optimization

445

http://dev.mysql.com/downloads/

tree. (See Section 2.9.3, “Installing from the Development Source Tree”.)

• The benchmark scripts are written in Perl and use the Perl DBI module to access database servers, so
DBI must be installed. You also need the server-specific DBD drivers for each of the servers you
want to test. For example, to test MySQL, PostgreSQL, and DB2, you must have the DBD::mysql,
DBD::Pg, and DBD::DB2 modules installed. See Section 2.14, “Perl Installation Notes”.

After you obtain a MySQL source distribution, you can find the benchmark suite located in its sql-
bench directory. To run the benchmark tests, build MySQL, and then change location into the sql-
bench directory and execute the run-all-tests script:

shell> cd sql-bench
shell> perl run-all-tests --server=server_name

server_name should be the name of one of the supported servers. To get a list of all options and sup-
ported servers, invoke this command:

shell> perl run-all-tests --help

The crash-me script also is located in the sql-bench directory. crash-me tries to determine what
features a database system supports and what its capabilities and limitations are by actually running
queries. For example, it determines:

• What data types are supported

• How many indexes are supported

• What functions are supported

• How big a query can be

• How big a VARCHAR column can be

You can find the results from crash-me for many different database servers at ht-
tp://dev.mysql.com/tech-resources/crash-me.php. For more information about benchmark results, visit
http://dev.mysql.com/tech-resources/benchmarks/.

7.1.5. Using Your Own Benchmarks
You should definitely benchmark your application and database to find out where the bottlenecks are.
After fixing one bottleneck (or by replacing it with a “dummy” module), you can proceed to identify the
next bottleneck. Even if the overall performance for your application currently is acceptable, you should
at least make a plan for each bottleneck and decide how to solve it if someday you really need the extra
performance.

For examples of portable benchmark programs, look at those in the MySQL benchmark suite. See Sec-
tion 7.1.4, “The MySQL Benchmark Suite”. You can take any program from this suite and modify it for
your own needs. By doing this, you can try different solutions to your problem and test which really is
fastest for you.

Another free benchmark suite is the Open Source Database Benchmark, available at ht-
tp://osdb.sourceforge.net/.

It is very common for a problem to occur only when the system is very heavily loaded. We have had
many customers who contact us when they have a (tested) system in production and have encountered

Optimization

446

http://dev.mysql.com/tech-resources/crash-me.php
http://dev.mysql.com/tech-resources/crash-me.php
http://dev.mysql.com/tech-resources/benchmarks/
http://osdb.sourceforge.net/
http://osdb.sourceforge.net/

load problems. In most cases, performance problems turn out to be due to issues of basic database
design (for example, table scans are not good under high load) or problems with the operating system or
libraries. Most of the time, these problems would be much easier to fix if the systems were not already
in production.

To avoid problems like this, you should put some effort into benchmarking your whole application un-
der the worst possible load. You can use Super Smack, available at ht-
tp://jeremy.zawodny.com/mysql/super-smack/. As suggested by its name, it can bring a system to its
knees, so make sure to use it only on your development systems.

7.2. Optimizing SELECT and Other Statements
First, one factor affects all statements: The more complex your permissions setup, the more overhead
you have. Using simpler permissions when you issue GRANT statements enables MySQL to reduce per-
mission-checking overhead when clients execute statements. For example, if you do not grant any table-
level or column-level privileges, the server need not ever check the contents of the tables_priv and
columns_priv tables. Similarly, if you place no resource limits on any accounts, the server does not
have to perform resource counting. If you have a very high statement-processing load, it may be worth
the time to use a simplified grant structure to reduce permission-checking overhead.

If your problem is with a specific MySQL expression or function, you can perform a timing test by in-
voking the BENCHMARK() function using the mysql client program. Its syntax is
BENCHMARK(loop_count,expression). The return value is always zero, but mysql prints a
line displaying approximately how long the statement took to execute. For example:

mysql> SELECT BENCHMARK(1000000,1+1);
+------------------------+
| BENCHMARK(1000000,1+1) |
+------------------------+
| 0 |
+------------------------+
1 row in set (0.32 sec)

This result was obtained on a Pentium II 400MHz system. It shows that MySQL can execute 1,000,000
simple addition expressions in 0.32 seconds on that system.

All MySQL functions should be highly optimized, but there may be some exceptions. BENCHMARK()
is an excellent tool for finding out if some function is a problem for your queries.

7.2.1. Optimizing Queries with EXPLAIN
EXPLAIN tbl_name

Or:

EXPLAIN [EXTENDED] SELECT select_options

The EXPLAIN statement can be used either as a synonym for DESCRIBE or as a way to obtain informa-
tion about how MySQL executes a SELECT statement:

• EXPLAIN tbl_name is synonymous with DESCRIBE tbl_name or SHOW COLUMNS FROM
tbl_name.

• When you precede a SELECT statement with the keyword EXPLAIN, MySQL displays information
from the optimizer about the query execution plan. That is, MySQL explains how it would process
the SELECT, including information about how tables are joined and in which order.

Optimization

447

http://jeremy.zawodny.com/mysql/super-smack/
http://jeremy.zawodny.com/mysql/super-smack/

This section describes the second use of EXPLAIN for obtaining query execution plan information. For
a description of the DESCRIBE and SHOW COLUMNS statements, see Section 13.3.1, “DESCRIBE
Syntax”, and Section 13.5.4.3, “SHOW COLUMNS Syntax”.

With the help of EXPLAIN, you can see where you should add indexes to tables to get a faster SELECT
that uses indexes to find rows. You can also use EXPLAIN to check whether the optimizer joins the
tables in an optimal order. To force the optimizer to use a join order corresponding to the order in which
the tables are named in the SELECT statement, begin the statement with SELECT STRAIGHT_JOIN
rather than just SELECT.

If you have a problem with indexes not being used when you believe that they should be, you should run
ANALYZE TABLE to update table statistics such as cardinality of keys, that can affect the choices the
optimizer makes. See Section 13.5.2.1, “ANALYZE TABLE Syntax”.

EXPLAIN returns a row of information for each table used in the SELECT statement. The tables are lis-
ted in the output in the order that MySQL would read them while processing the query. MySQL resolves
all joins using a single-sweep multi-join method. This means that MySQL reads a row from the first ta-
ble, and then finds a matching row in the second table, the third table, and so on. When all tables are
processed, MySQL outputs the selected columns and backtracks through the table list until a table is
found for which there are more matching rows. The next row is read from this table and the process con-
tinues with the next table.

When the EXTENDED keyword is used, EXPLAIN produces extra information that can be viewed by is-
suing a SHOW WARNINGS statement following the EXPLAIN statement. This information displays how
the optimizer qualifies table and column names in the SELECT statement, what the SELECT looks like
after the application of rewriting and optimization rules, and possibly other notes about the optimization
process.

Each output row from EXPLAIN provides information about one table, and each row contains the fol-
lowing columns:

• id

The SELECT identifier. This is the sequential number of the SELECT within the query.

• select_type

The type of SELECT, which can be any of those shown in the following table:

SIMPLE Simple SELECT (not using UNION or subqueries)

PRIMARY Outermost SELECT

UNION Second or later SELECT statement in a UNION

DEPENDENT UNION Second or later SELECT statement in a UNION, dependent on outer query

UNION RESULT Result of a UNION.

SUBQUERY First SELECT in subquery

DEPENDENT SUB-
QUERY

First SELECT in subquery, dependent on outer query

DERIVED Derived table SELECT (subquery in FROM clause)

UNCACHEABLE SUB-
QUERY

A subquery for which the result cannot be cached and must be re-evaluated
for each row of the outer query

DEPENDENT typically signifies the use of a correlated subquery. See Section 13.2.8.7, “Correlated
Subqueries”.

Optimization

448

“DEPENDENT SUBQUERY” evaluation differs from UNCACHEABLE SUBQUERY evaluation. For
“DEPENDENT SUBQUERY”, the subquery is re-evaluated only once for each set of different val-
ues of the variables from its outer context. For UNCACHEABLE SUBQUERY, the subquery is re-
evaluated for each row of the outer context. Cacheability of subqueries is subject to the restrictions
detailed in Section 5.14.1, “How the Query Cache Operates”. For example, referring to user vari-
ables makes a subquery uncacheable.

• table

The table to which the row of output refers.

• type

The join type. The different join types are listed here, ordered from the best type to the worst:

• system

The table has only one row (= system table). This is a special case of the const join type.

• const

The table has at most one matching row, which is read at the start of the query. Because there is
only one row, values from the column in this row can be regarded as constants by the rest of the
optimizer. const tables are very fast because they are read only once.

const is used when you compare all parts of a PRIMARY KEY or UNIQUE index to constant
values. In the following queries, tbl_name can be used as a const table:

SELECT * FROM tbl_name WHERE primary_key=1;

SELECT * FROM tbl_name
WHERE primary_key_part1=1 AND primary_key_part2=2;

• eq_ref

One row is read from this table for each combination of rows from the previous tables. Other
than the system and const types, this is the best possible join type. It is used when all parts of
an index are used by the join and the index is a PRIMARY KEY or UNIQUE index.

eq_ref can be used for indexed columns that are compared using the = operator. The compar-
ison value can be a constant or an expression that uses columns from tables that are read before
this table. In the following examples, MySQL can use an eq_ref join to process ref_table:

SELECT * FROM ref_table,other_table
WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table
WHERE ref_table.key_column_part1=other_table.column
AND ref_table.key_column_part2=1;

• ref

All rows with matching index values are read from this table for each combination of rows from
the previous tables. ref is used if the join uses only a leftmost prefix of the key or if the key is
not a PRIMARY KEY or UNIQUE index (in other words, if the join cannot select a single row
based on the key value). If the key that is used matches only a few rows, this is a good join type.

ref can be used for indexed columns that are compared using the = or <=> operator. In the fol-
lowing examples, MySQL can use a ref join to process ref_table:

Optimization

449

SELECT * FROM ref_table WHERE key_column=expr;

SELECT * FROM ref_table,other_table
WHERE ref_table.key_column=other_table.column;

SELECT * FROM ref_table,other_table
WHERE ref_table.key_column_part1=other_table.column
AND ref_table.key_column_part2=1;

• ref_or_null

This join type is like ref, but with the addition that MySQL does an extra search for rows that
contain NULL values. This join type optimization is used most often in resolving subqueries. In
the following examples, MySQL can use a ref_or_null join to process ref_table:

SELECT * FROM ref_table
WHERE key_column=expr OR key_column IS NULL;

See Section 7.2.7, “IS NULL Optimization”.

• index_merge

This join type indicates that the Index Merge optimization is used. In this case, the key column
in the output row contains a list of indexes used, and key_len contains a list of the longest key
parts for the indexes used. For more information, see Section 7.2.6, “Index Merge Optimization”.

• unique_subquery

This type replaces ref for some IN subqueries of the following form:

value IN (SELECT primary_key FROM single_table WHERE some_expr)

unique_subquery is just an index lookup function that replaces the subquery completely for
better efficiency.

• index_subquery

This join type is similar to unique_subquery. It replaces IN subqueries, but it works for
non-unique indexes in subqueries of the following form:

value IN (SELECT key_column FROM single_table WHERE some_expr)

• range

Only rows that are in a given range are retrieved, using an index to select the rows. The key
column in the output row indicates which index is used. The key_len contains the longest key
part that was used. The ref column is NULL for this type.

range can be used when a key column is compared to a constant using any of the =, <>, >, >=,
<, <=, IS NULL, <=>, BETWEEN, or IN operators:

SELECT * FROM tbl_name
WHERE key_column = 10;

SELECT * FROM tbl_name
WHERE key_column BETWEEN 10 and 20;

SELECT * FROM tbl_name
WHERE key_column IN (10,20,30);

SELECT * FROM tbl_name

Optimization

450

WHERE key_part1= 10 AND key_part2 IN (10,20,30);

• index

This join type is the same as ALL, except that only the index tree is scanned. This usually is
faster than ALL because the index file usually is smaller than the data file.

MySQL can use this join type when the query uses only columns that are part of a single index.

• ALL

A full table scan is done for each combination of rows from the previous tables. This is normally
not good if the table is the first table not marked const, and usually very bad in all other cases.
Normally, you can avoid ALL by adding indexes that allow row retrieval from the table based on
constant values or column values from earlier tables.

• possible_keys

The possible_keys column indicates which indexes MySQL can choose from use to find the
rows in this table. Note that this column is totally independent of the order of the tables as displayed
in the output from EXPLAIN. That means that some of the keys in possible_keys might not be
usable in practice with the generated table order.

If this column is NULL, there are no relevant indexes. In this case, you may be able to improve the
performance of your query by examining the WHERE clause to check whether it refers to some
column or columns that would be suitable for indexing. If so, create an appropriate index and check
the query with EXPLAIN again. See Section 13.1.2, “ALTER TABLE Syntax”.

To see what indexes a table has, use SHOW INDEX FROM tbl_name.

• key

The key column indicates the key (index) that MySQL actually decided to use. The key is NULL if
no index was chosen. To force MySQL to use or ignore an index listed in the possible_keys
column, use FORCE INDEX, USE INDEX, or IGNORE INDEX in your query. See Section 13.2.7,
“SELECT Syntax”.

For MyISAM and BDB tables, running ANALYZE TABLE helps the optimizer choose better indexes.
For MyISAM tables, myisamchk --analyze does the same. See Section 13.5.2.1, “ANALYZE
TABLE Syntax”, and Section 5.10.4, “Table Maintenance and Crash Recovery”.

• key_len

The key_len column indicates the length of the key that MySQL decided to use. The length is
NULL if the key column says NULL. Note that the value of key_len enables you to determine
how many parts of a multiple-part key MySQL actually uses.

• ref

The ref column shows which columns or constants are compared to the index named in the key
column to select rows from the table.

• rows

The rows column indicates the number of rows MySQL believes it must examine to execute the
query.

• Extra

Optimization

451

This column contains additional information about how MySQL resolves the query. Here is an ex-
planation of the values that can appear in this column:

• Distinct

MySQL is looking for distinct values, so it stops searching for more rows for the current row
combination after it has found the first matching row.

• Not exists

MySQL was able to do a LEFT JOIN optimization on the query and does not examine more
rows in this table for the previous row combination after it finds one row that matches the LEFT
JOIN criteria. Here is an example of the type of query that can be optimized this way:

SELECT * FROM t1 LEFT JOIN t2 ON t1.id=t2.id
WHERE t2.id IS NULL;

Assume that t2.id is defined as NOT NULL. In this case, MySQL scans t1 and looks up the
rows in t2 using the values of t1.id. If MySQL finds a matching row in t2, it knows that
t2.id can never be NULL, and does not scan through the rest of the rows in t2 that have the
same id value. In other words, for each row in t1, MySQL needs to do only a single lookup in
t2, regardless of how many rows actually match in t2.

• range checked for each record (index map: N)

MySQL found no good index to use, but found that some of indexes might be used after column
values from preceding tables are known. For each row combination in the preceding tables,
MySQL checks whether it is possible to use a range or index_merge access method to re-
trieve rows. This is not very fast, but is faster than performing a join with no index at all. The ap-
plicability criteria are as described in Section 7.2.5, “Range Optimization”, and Section 7.2.6,
“Index Merge Optimization”, with the exception that all column values for the preceding table
are known and considered to be constants.

• Using filesort

MySQL must do an extra pass to find out how to retrieve the rows in sorted order. The sort is
done by going through all rows according to the join type and storing the sort key and pointer to
the row for all rows that match the WHERE clause. The keys then are sorted and the rows are re-
trieved in sorted order. See Section 7.2.12, “ORDER BY Optimization”.

• Using index

The column information is retrieved from the table using only information in the index tree
without having to do an additional seek to read the actual row. This strategy can be used when
the query uses only columns that are part of a single index.

• Using temporary

To resolve the query, MySQL needs to create a temporary table to hold the result. This typically
happens if the query contains GROUP BY and ORDER BY clauses that list columns differently.

• Using where

A WHERE clause is used to restrict which rows to match against the next table or send to the cli-
ent. Unless you specifically intend to fetch or examine all rows from the table, you may have
something wrong in your query if the Extra value is not Using where and the table join
type is ALL or index.

Optimization

452

If you want to make your queries as fast as possible, you should look out for Extra values of
Using filesort and Using temporary.

• Using sort_union(...), Using union(...), Using intersect(...)

These indicate how index scans are merged for the index_merge join type. See Section 7.2.6,
“Index Merge Optimization”, for more information.

• Using index for group-by

Similar to the Using index way of accessing a table, Using index for group-by in-
dicates that MySQL found an index that can be used to retrieve all columns of a GROUP BY or
DISTINCT query without any extra disk access to the actual table. Additionally, the index is
used in the most efficient way so that for each group, only a few index entries are read. For de-
tails, see Section 7.2.13, “GROUP BY Optimization”.

• Using where with pushed condition

This item applies to NDB Cluster tables only. It means that MySQL Cluster is using condi-
tion pushdown to improve the efficiency of a direct comparison (=) between a non-indexed
column and a constant. In such cases, the condition is “pushed down” to the cluster's data nodes
where it is evaluated in all partitions simultaneously. This eliminates the need to send non-
matching rows over the network, and can speed up such queries by a factor of 5 to 10 times over
cases where condition pushdown could be but is not used.

Suppose that you have a Cluster table defined as follows:

CREATE TABLE t1 (
a INT,
b INT,
KEY(a)

) ENGINE=NDBCLUSTER;

In this case, condition pushdown can be used with a query such as this one:

SELECT a,b FROM t1 WHERE b = 10;

This can be seen in the output of EXPLAIN SELECT, as shown here:

mysql> EXPLAIN SELECT a,b FROM t1 WHERE b = 10\G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

table: t1
type: ALL

possible_keys: NULL
key: NULL

key_len: NULL
ref: NULL

rows: 10
Extra: Using where with pushed condition

Condition pushdown cannot be used with either of these two queries:

SELECT a,b FROM t1 WHERE a = 10;
SELECT a,b FROM t1 WHERE b + 1 = 10;

With regard to the first of these two queries, condition pushdown is not applicable because an in-
dex exists on column a. In the case of the second query, a condition pushdown cannot be em-
ployed because the comparison involving the non-indexed column b is an indirect one.

Optimization

453

(However, it would apply if you were to reduce b + 1 = 10 to b = 9 in the WHERE clause.)

However, a condition pushdown may also be employed when an indexed column column is com-
pared with a constant using a > or < operator:

mysql> EXPLAIN SELECT a,b FROM t1 WHERE a<2\G
*************************** 1. row ***************************

id: 1
select_type: SIMPLE

table: t1
type: range

possible_keys: a
key: a

key_len: 5
ref: NULL

rows: 2
Extra: Using where with pushed condition

With regard to condition pushdown, keep in mind that:

• Condition pushdown is relevant to MySQL Cluster only, and does not occur when executing
queries against tables using any other storage engine.

• Condition pushdown capability is not used by default. To enable it, you can start mysqld
with the --engine-condition-pushdown option, or execute the following statement:

SET engine_condition_pushdown=On;

Note: Condition pushdown is not supported for columns of any of the BLOB or TEXT types.

Condition pushdown, Using where with pushed condition, and en-
gine_condition_pushdown were all introduced in MySQL 5.0 Cluster.

You can get a good indication of how good a join is by taking the product of the values in the rows
column of the EXPLAIN output. This should tell you roughly how many rows MySQL must examine to
execute the query. If you restrict queries with the max_join_size system variable, this row product
also is used to determine which multiple-table SELECT statements to execute and which to abort. See
Section 7.5.2, “Tuning Server Parameters”.

The following example shows how a multiple-table join can be optimized progressively based on the in-
formation provided by EXPLAIN.

Suppose that you have the SELECT statement shown here and that you plan to examine it using EX-
PLAIN:

EXPLAIN SELECT tt.TicketNumber, tt.TimeIn,
tt.ProjectReference, tt.EstimatedShipDate,
tt.ActualShipDate, tt.ClientID,
tt.ServiceCodes, tt.RepetitiveID,
tt.CurrentProcess, tt.CurrentDPPerson,
tt.RecordVolume, tt.DPPrinted, et.COUNTRY,
et_1.COUNTRY, do.CUSTNAME

FROM tt, et, et AS et_1, do
WHERE tt.SubmitTime IS NULL

AND tt.ActualPC = et.EMPLOYID
AND tt.AssignedPC = et_1.EMPLOYID
AND tt.ClientID = do.CUSTNMBR;

For this example, make the following assumptions:

• The columns being compared have been declared as follows:

Optimization

454

Table Column Data Type

tt ActualPC CHAR(10)

tt AssignedPC CHAR(10)

tt ClientID CHAR(10)

et EMPLOYID CHAR(15)

do CUSTNMBR CHAR(15)

• The tables have the following indexes:

Table Index

tt ActualPC

tt AssignedPC

tt ClientID

et EMPLOYID (primary key)

do CUSTNMBR (primary key)

• The tt.ActualPC values are not evenly distributed.

Initially, before any optimizations have been performed, the EXPLAIN statement produces the follow-
ing information:

table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
do ALL PRIMARY NULL NULL NULL 2135
et_1 ALL PRIMARY NULL NULL NULL 74
tt ALL AssignedPC, NULL NULL NULL 3872

ClientID,
ActualPC

range checked for each record (key map: 35)

Because type is ALL for each table, this output indicates that MySQL is generating a Cartesian product
of all the tables; that is, every combination of rows. This takes quite a long time, because the product of
the number of rows in each table must be examined. For the case at hand, this product is 74 × 2135 × 74
× 3872 = 45,268,558,720 rows. If the tables were bigger, you can only imagine how long it would take.

One problem here is that MySQL can use indexes on columns more efficiently if they are declared as the
same type and size. In this context, VARCHAR and CHAR are considered the same if they are declared as
the same size. tt.ActualPC is declared as CHAR(10) and et.EMPLOYID is CHAR(15), so there
is a length mismatch.

To fix this disparity between column lengths, use ALTER TABLE to lengthen ActualPC from 10
characters to 15 characters:

mysql> ALTER TABLE tt MODIFY ActualPC VARCHAR(15);

Now tt.ActualPC and et.EMPLOYID are both VARCHAR(15). Executing the EXPLAIN state-
ment again produces this result:

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC, NULL NULL NULL 3872 Using

ClientID, where
ActualPC

do ALL PRIMARY NULL NULL NULL 2135

Optimization

455

range checked for each record (key map: 1)
et_1 ALL PRIMARY NULL NULL NULL 74

range checked for each record (key map: 1)
et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1

This is not perfect, but is much better: The product of the rows values is less by a factor of 74. This
version executes in a couple of seconds.

A second alteration can be made to eliminate the column length mismatches for the tt.AssignedPC
= et_1.EMPLOYID and tt.ClientID = do.CUSTNMBR comparisons:

mysql> ALTER TABLE tt MODIFY AssignedPC VARCHAR(15),
-> MODIFY ClientID VARCHAR(15);

After that modification, EXPLAIN produces the output shown here:

table type possible_keys key key_len ref rows Extra
et ALL PRIMARY NULL NULL NULL 74
tt ref AssignedPC, ActualPC 15 et.EMPLOYID 52 Using

ClientID, where
ActualPC

et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

At this point, the query is optimized almost as well as possible. The remaining problem is that, by de-
fault, MySQL assumes that values in the tt.ActualPC column are evenly distributed, and that is not
the case for the tt table. Fortunately, it is easy to tell MySQL to analyze the key distribution:

mysql> ANALYZE TABLE tt;

With the additional index information, the join is perfect and EXPLAIN produces this result:

table type possible_keys key key_len ref rows Extra
tt ALL AssignedPC NULL NULL NULL 3872 Using

ClientID, where
ActualPC

et eq_ref PRIMARY PRIMARY 15 tt.ActualPC 1
et_1 eq_ref PRIMARY PRIMARY 15 tt.AssignedPC 1
do eq_ref PRIMARY PRIMARY 15 tt.ClientID 1

Note that the rows column in the output from EXPLAIN is an educated guess from the MySQL join op-
timizer. You should check whether the numbers are even close to the truth by comparing the rows
product with the actual number of rows that the query returns. If the numbers are quite different, you
might get better performance by using STRAIGHT_JOIN in your SELECT statement and trying to list
the tables in a different order in the FROM clause.

7.2.2. Estimating Query Performance
In most cases, you can estimate query performance by counting disk seeks. For small tables, you can
usually find a row in one disk seek (because the index is probably cached). For bigger tables, you can
estimate that, using B-tree indexes, you need this many seeks to find a row: log(row_count) /
log(index_block_length / 3 × 2 / (index_length + data_pointer_length))
+ 1.

In MySQL, an index block is usually 1,024 bytes and the data pointer is usually four bytes. For a
500,000-row table with an index length of three bytes (the size of MEDIUMINT), the formula indicates
log(500,000)/log(1024/3×2/(3+4)) + 1 = 4 seeks.

This index would require storage of about 500,000 × 7 × 3/2 = 5.2MB (assuming a typical index buffer
fill ratio of 2/3), so you probably have much of the index in memory and so need only one or two calls

Optimization

456

to read data to find the row.

For writes, however, you need four seek requests to find where to place a new index value and normally
two seeks to update the index and write the row.

Note that the preceding discussion does not mean that your application performance slowly degenerates
by log N. As long as everything is cached by the OS or the MySQL server, things become only margin-
ally slower as the table gets bigger. After the data gets too big to be cached, things start to go much
slower until your applications are bound only by disk seeks (which increase by log N). To avoid this, in-
crease the key cache size as the data grows. For MyISAM tables, the key cache size is controlled by the
key_buffer_size system variable. See Section 7.5.2, “Tuning Server Parameters”.

7.2.3. Speed of SELECT Queries
In general, when you want to make a slow SELECT ... WHERE query faster, the first thing to check
is whether you can add an index. All references between different tables should usually be done with in-
dexes. You can use the EXPLAIN statement to determine which indexes are used for a SELECT. See
Section 7.2.1, “Optimizing Queries with EXPLAIN”, and Section 7.4.5, “How MySQL Uses Indexes”.

Some general tips for speeding up queries on MyISAM tables:

• To help MySQL better optimize queries, use ANALYZE TABLE or run myisamchk --analyze
on a table after it has been loaded with data. This updates a value for each index part that indicates
the average number of rows that have the same value. (For unique indexes, this is always 1.) MySQL
uses this to decide which index to choose when you join two tables based on a non-constant expres-
sion. You can check the result from the table analysis by using SHOW INDEX FROM tbl_name
and examining the Cardinality value. myisamchk --description --verbose shows
index distribution information.

• To sort an index and data according to an index, use myisamchk --sort-index -
-sort-records=1 (assuming that you want to sort on index 1). This is a good way to make quer-
ies faster if you have a unique index from which you want to read all rows in order according to the
index. The first time you sort a large table this way, it may take a long time.

7.2.4. WHERE Clause Optimization
This section discusses optimizations that can be made for processing WHERE clauses. The examples use
SELECT statements, but the same optimizations apply for WHERE clauses in DELETE and UPDATE
statements.

Work on the MySQL optimizer is ongoing, so this section is incomplete. MySQL performs a great many
optimizations, not all of which are documented here.

Some of the optimizations performed by MySQL follow:

• Removal of unnecessary parentheses:

((a AND b) AND c OR (((a AND b) AND (c AND d))))
-> (a AND b AND c) OR (a AND b AND c AND d)

• Constant folding:

(a<b AND b=c) AND a=5
-> b>5 AND b=c AND a=5

Optimization

457

• Constant condition removal (needed because of constant folding):

(B>=5 AND B=5) OR (B=6 AND 5=5) OR (B=7 AND 5=6)
-> B=5 OR B=6

• Constant expressions used by indexes are evaluated only once.

• COUNT(*) on a single table without a WHERE is retrieved directly from the table information for
MyISAM and MEMORY tables. This is also done for any NOT NULL expression when used with only
one table.

• Early detection of invalid constant expressions. MySQL quickly detects that some SELECT state-
ments are impossible and returns no rows.

• HAVING is merged with WHERE if you do not use GROUP BY or aggregate functions (COUNT(),
MIN(), and so on).

• For each table in a join, a simpler WHERE is constructed to get a fast WHERE evaluation for the table
and also to skip rows as soon as possible.

• All constant tables are read first before any other tables in the query. A constant table is any of the
following:

• An empty table or a table with one row.

• A table that is used with a WHERE clause on a PRIMARY KEY or a UNIQUE index, where all in-
dex parts are compared to constant expressions and are defined as NOT NULL.

All of the following tables are used as constant tables:

SELECT * FROM t WHERE primary_key=1;
SELECT * FROM t1,t2

WHERE t1.primary_key=1 AND t2.primary_key=t1.id;

• The best join combination for joining the tables is found by trying all possibilities. If all columns in
ORDER BY and GROUP BY clauses come from the same table, that table is preferred first when
joining.

• If there is an ORDER BY clause and a different GROUP BY clause, or if the ORDER BY or GROUP
BY contains columns from tables other than the first table in the join queue, a temporary table is cre-
ated.

• If you use the SQL_SMALL_RESULT option, MySQL uses an in-memory temporary table.

• Each table index is queried, and the best index is used unless the optimizer believes that it is more
efficient to use a table scan. At one time, a scan was used based on whether the best index spanned
more than 30% of the table, but a fixed percentage no longer determines the choice between using an
index or a scan. The optimizer now is more complex and bases its estimate on additional factors such
as table size, number of rows, and I/O block size.

• In some cases, MySQL can read rows from the index without even consulting the data file. If all
columns used from the index are numeric, only the index tree is used to resolve the query.

• Before each row is output, those that do not match the HAVING clause are skipped.

Some examples of queries that are very fast:

SELECT COUNT(*) FROM tbl_name;

Optimization

458

SELECT MIN(key_part1),MAX(key_part1) FROM tbl_name;

SELECT MAX(key_part2) FROM tbl_name
WHERE key_part1=constant;

SELECT ... FROM tbl_name
ORDER BY key_part1,key_part2,... LIMIT 10;

SELECT ... FROM tbl_name
ORDER BY key_part1 DESC, key_part2 DESC, ... LIMIT 10;

MySQL resolves the following queries using only the index tree, assuming that the indexed columns are
numeric:

SELECT key_part1,key_part2 FROM tbl_name WHERE key_part1=val;

SELECT COUNT(*) FROM tbl_name
WHERE key_part1=val1 AND key_part2=val2;

SELECT key_part2 FROM tbl_name GROUP BY key_part1;

The following queries use indexing to retrieve the rows in sorted order without a separate sorting pass:

SELECT ... FROM tbl_name
ORDER BY key_part1,key_part2,... ;

SELECT ... FROM tbl_name
ORDER BY key_part1 DESC, key_part2 DESC, ... ;

7.2.5. Range Optimization
The range access method uses a single index to retrieve a subset of table rows that are contained with-
in one or several index value intervals. It can be used for a single-part or multiple-part index. The fol-
lowing sections give a detailed description of how intervals are extracted from the WHERE clause.

7.2.5.1. The Range Access Method for Single-Part Indexes

For a single-part index, index value intervals can be conveniently represented by corresponding condi-
tions in the WHERE clause, so we speak of range conditions rather than “intervals.”

The definition of a range condition for a single-part index is as follows:

• For both BTREE and HASH indexes, comparison of a key part with a constant value is a range condi-
tion when using the =, <=>, IN, IS NULL, or IS NOT NULL operators.

• For BTREE indexes, comparison of a key part with a constant value is a range condition when using
the >, <, >=, <=, BETWEEN, !=, or <> operators, or LIKE 'pattern' (where 'pattern' does
not start with a wildcard).

• For all types of indexes, multiple range conditions combined with OR or AND form a range condi-
tion.

“Constant value” in the preceding descriptions means one of the following:

• A constant from the query string

• A column of a const or system table from the same join

• The result of an uncorrelated subquery

Optimization

459

• Any expression composed entirely from subexpressions of the preceding types

Here are some examples of queries with range conditions in the WHERE clause:

SELECT * FROM t1
WHERE key_col > 1
AND key_col < 10;

SELECT * FROM t1
WHERE key_col = 1
OR key_col IN (15,18,20);

SELECT * FROM t1
WHERE key_col LIKE 'ab%'
OR key_col BETWEEN 'bar' AND 'foo';

Note that some non-constant values may be converted to constants during the constant propagation
phase.

MySQL tries to extract range conditions from the WHERE clause for each of the possible indexes. Dur-
ing the extraction process, conditions that cannot be used for constructing the range condition are
dropped, conditions that produce overlapping ranges are combined, and conditions that produce empty
ranges are removed.

Consider the following statement, where key1 is an indexed column and nonkey is not indexed:

SELECT * FROM t1 WHERE
(key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR
(key1 < 'bar' AND nonkey = 4) OR
(key1 < 'uux' AND key1 > 'z');

The extraction process for key key1 is as follows:

1. Start with original WHERE clause:

(key1 < 'abc' AND (key1 LIKE 'abcde%' OR key1 LIKE '%b')) OR
(key1 < 'bar' AND nonkey = 4) OR
(key1 < 'uux' AND key1 > 'z')

2. Remove nonkey = 4 and key1 LIKE '%b' because they cannot be used for a range scan.
The correct way to remove them is to replace them with TRUE, so that we do not miss any match-
ing rows when doing the range scan. Having replaced them with TRUE, we get:

(key1 < 'abc' AND (key1 LIKE 'abcde%' OR TRUE)) OR
(key1 < 'bar' AND TRUE) OR
(key1 < 'uux' AND key1 > 'z')

3. Collapse conditions that are always true or false:

• (key1 LIKE 'abcde%' OR TRUE) is always true

• (key1 < 'uux' AND key1 > 'z') is always false

Replacing these conditions with constants, we get:

(key1 < 'abc' AND TRUE) OR (key1 < 'bar' AND TRUE) OR (FALSE)

Removing unnecessary TRUE and FALSE constants, we obtain:

(key1 < 'abc') OR (key1 < 'bar')

Optimization

460

4. Combining overlapping intervals into one yields the final condition to be used for the range scan:

(key1 < 'bar')

In general (and as demonstrated by the preceding example), the condition used for a range scan is less
restrictive than the WHERE clause. MySQL performs an additional check to filter out rows that satisfy
the range condition but not the full WHERE clause.

The range condition extraction algorithm can handle nested AND/OR constructs of arbitrary depth, and
its output does not depend on the order in which conditions appear in WHERE clause.

7.2.5.2. The Range Access Method for Multiple-Part Indexes

Range conditions on a multiple-part index are an extension of range conditions for a single-part index. A
range condition on a multiple-part index restricts index rows to lie within one or several key tuple inter-
vals. Key tuple intervals are defined over a set of key tuples, using ordering from the index.

For example, consider a multiple-part index defined as key1(key_part1, key_part2,
key_part3), and the following set of key tuples listed in key order:

key_part1 key_part2 key_part3
NULL 1 'abc'
NULL 1 'xyz'
NULL 2 'foo'
1 1 'abc'
1 1 'xyz'
1 2 'abc'
2 1 'aaa'

The condition key_part1 = 1 defines this interval:

(1,-inf,-inf) <= (key_part1,key_part2,key_part3) < (1,+inf,+inf)

The interval covers the 4th, 5th, and 6th tuples in the preceding data set and can be used by the range ac-
cess method.

By contrast, the condition key_part3 = 'abc' does not define a single interval and cannot be used
by the range access method.

The following descriptions indicate how range conditions work for multiple-part indexes in greater de-
tail.

• For HASH indexes, each interval containing identical values can be used. This means that the interval
can be produced only for conditions in the following form:

key_part1 cmp const1
AND key_part2 cmp const2
AND ...
AND key_partN cmp constN;

Here, const1, const2, are constants, cmp is one of the =, <=>, or IS NULL comparison op-
erators, and the conditions cover all index parts. (That is, there are N conditions, one for each part of
an N-part index.) For example, the following is a range condition for a three-part HASH index:

key_part1 = 1 AND key_part2 IS NULL AND key_part3 = 'foo'

Optimization

461

For the definition of what is considered to be a constant, see Section 7.2.5.1, “The Range Access
Method for Single-Part Indexes”.

• For a BTREE index, an interval might be usable for conditions combined with AND, where each con-
dition compares a key part with a constant value using =, <=>, IS NULL, >, <, >=, <=, !=, <>,
BETWEEN, or LIKE 'pattern' (where 'pattern' does not start with a wildcard). An interval
can be used as long as it is possible to determine a single key tuple containing all rows that match the
condition (or two intervals if <> or != is used). For example, for this condition:

key_part1 = 'foo' AND key_part2 >= 10 AND key_part3 > 10

The single interval is:

('foo',10,10) < (key_part1,key_part2,key_part3) < ('foo',+inf,+inf)

It is possible that the created interval contains more rows than the initial condition. For example, the
preceding interval includes the value ('foo', 11, 0), which does not satisfy the original condi-
tion.

• If conditions that cover sets of rows contained within intervals are combined with OR, they form a
condition that covers a set of rows contained within the union of their intervals. If the conditions are
combined with AND, they form a condition that covers a set of rows contained within the intersection
of their intervals. For example, for this condition on a two-part index:

(key_part1 = 1 AND key_part2 < 2) OR (key_part1 > 5)

The intervals are:

(1,-inf) < (key_part1,key_part2) < (1,2)
(5,-inf) < (key_part1,key_part2)

In this example, the interval on the first line uses one key part for the left bound and two key parts
for the right bound. The interval on the second line uses only one key part. The key_len column in
the EXPLAIN output indicates the maximum length of the key prefix used.

In some cases, key_len may indicate that a key part was used, but that might be not what you
would expect. Suppose that key_part1 and key_part2 can be NULL. Then the key_len
column displays two key part lengths for the following condition:

key_part1 >= 1 AND key_part2 < 2

But, in fact, the condition is converted to this:

key_part1 >= 1 AND key_part2 IS NOT NULL

Section 7.2.5.1, “The Range Access Method for Single-Part Indexes”, describes how optimizations are
performed to combine or eliminate intervals for range conditions on a single-part index. Analogous steps
are performed for range conditions on multiple-part indexes.

7.2.6. Index Merge Optimization
The Index Merge method is used to retrieve rows with several range scans and to merge their results
into one. The merge can produce unions, intersections, or unions-of-intersections of its underlying scans.

Optimization

462

Note: If you have upgraded from a previous version of MySQL, you should be aware that this type of
join optimization is first introduced in MySQL 5.0, and represents a significant change in behavior with
regard to indexes. (Formerly, MySQL was able to use at most only one index for each referenced table.)

In EXPLAIN output, the Index Merge method appears as index_merge in the type column. In this
case, the key column contains a list of indexes used, and key_len contains a list of the longest key
parts for those indexes.

Examples:

SELECT * FROM tbl_name WHERE key_part1 = 10 OR key_part2 = 20;

SELECT * FROM tbl_name
WHERE (key_part1 = 10 OR key_part2 = 20) AND non_key_part=30;

SELECT * FROM t1, t2
WHERE (t1.key1 IN (1,2) OR t1.key2 LIKE 'value%')
AND t2.key1=t1.some_col;

SELECT * FROM t1, t2
WHERE t1.key1=1
AND (t2.key1=t1.some_col OR t2.key2=t1.some_col2);

The Index Merge method has several access algorithms (seen in the Extra field of EXPLAIN output):

• Using intersect(...)

• Using union(...)

• Using sort_union(...)

The following sections describe these methods in greater detail.

Note: The Index Merge optimization algorithm has the following known deficiencies:

• If a range scan is possible on some key, an Index Merge is not considered. For example, consider
this query:

SELECT * FROM t1 WHERE (goodkey1 < 10 OR goodkey2 < 20) AND badkey < 30;

For this query, two plans are possible:

• An Index Merge scan using the (goodkey1 < 10 OR goodkey2 < 20) condition.

• A range scan using the badkey < 30 condition.

However, the optimizer considers only the second plan. If that is not what you want, you can make
the optimizer consider Index Merge by using IGNORE INDEX or FORCE INDEX. The following
queries are executed using Index Merge:

SELECT * FROM t1 FORCE INDEX(index_for_goodkey1,index_for_goodkey2)
WHERE (goodkey1 < 10 OR goodkey2 < 20) AND badkey < 30;

SELECT * FROM t1 IGNORE INDEX(index_for_badkey)
WHERE (goodkey1 < 10 OR goodkey2 < 20) AND badkey < 30;

• If your query has a complex WHERE clause with deep AND/OR nesting and MySQL doesn't choose
the optimal plan, try distributing terms using the following identity laws:

(x AND y) OR z = (x OR z) AND (y OR z)

Optimization

463

(x OR y) AND z = (x AND z) OR (y AND z)

• Index Merge is not applicable to fulltext indexes. We plan to extend it to cover these in a future
MySQL release.

The choice between different possible variants of the Index Merge access method and other access
methods is based on cost estimates of various available options.

7.2.6.1. The Index Merge Intersection Access Algorithm

This access algorithm can be employed when a WHERE clause was converted to several range conditions
on different keys combined with AND, and each condition is one of the following:

• In this form, where the index has exactly N parts (that is, all index parts are covered):

key_part1=const1 AND key_part2=const2 ... AND key_partN=constN

• Any range condition over a primary key of an InnoDB or BDB table.

Examples:

SELECT * FROM innodb_table WHERE primary_key < 10 AND key_col1=20;

SELECT * FROM tbl_name
WHERE (key1_part1=1 AND key1_part2=2) AND key2=2;

The Index Merge intersection algorithm performs simultaneous scans on all used indexes and produces
the intersection of row sequences that it receives from the merged index scans.

If all columns used in the query are covered by the used indexes, full table rows are not retrieved (EX-
PLAIN output contains Using index in Extra field in this case). Here is an example of such a
query:

SELECT COUNT(*) FROM t1 WHERE key1=1 AND key2=1;

If the used indexes don't cover all columns used in the query, full rows are retrieved only when the range
conditions for all used keys are satisfied.

If one of the merged conditions is a condition over a primary key of an InnoDB or BDB table, it is not
used for row retrieval, but is used to filter out rows retrieved using other conditions.

7.2.6.2. The Index Merge Union Access Algorithm

The applicability criteria for this algorithm are similar to those for the Index Merge method intersection
algorithm. The algorithm can be employed when the table's WHERE clause was converted to several
range conditions on different keys combined with OR, and each condition is one of the following:

• In this form, where the index has exactly N parts (that is, all index parts are covered):

key_part1=const1 AND key_part2=const2 ... AND key_partN=constN

• Any range condition over a primary key of an InnoDB or BDB table.

Optimization

464

• A condition for which the Index Merge method intersection algorithm is applicable.

Examples:

SELECT * FROM t1 WHERE key1=1 OR key2=2 OR key3=3;

SELECT * FROM innodb_table WHERE (key1=1 AND key2=2) OR
(key3='foo' AND key4='bar') AND key5=5;

7.2.6.3. The Index Merge Sort-Union Access Algorithm

This access algorithm is employed when the WHERE clause was converted to several range conditions
combined by OR, but for which the Index Merge method union algorithm is not applicable.

Examples:

SELECT * FROM tbl_name WHERE key_col1 < 10 OR key_col2 < 20;

SELECT * FROM tbl_name
WHERE (key_col1 > 10 OR key_col2 = 20) AND nonkey_col=30;

The difference between the sort-union algorithm and the union algorithm is that the sort-union algorithm
must first fetch row IDs for all rows and sort them before returning any rows.

7.2.7. IS NULL Optimization
MySQL can perform the same optimization on col_name IS NULL that it can use for col_name =
constant_value. For example, MySQL can use indexes and ranges to search for NULL with IS
NULL.

Examples:

SELECT * FROM tbl_name WHERE key_col IS NULL;

SELECT * FROM tbl_name WHERE key_col <=> NULL;

SELECT * FROM tbl_name
WHERE key_col=const1 OR key_col=const2 OR key_col IS NULL;

If a WHERE clause includes a col_name IS NULL condition for a column that is declared as NOT
NULL, that expression is optimized away. This optimization does not occur in cases when the column
might produce NULL anyway; for example, if it comes from a table on the right side of a LEFT JOIN.

MySQL can also optimize the combination col_name = expr AND col_name IS NULL, a
form that is common in resolved subqueries. EXPLAIN shows ref_or_null when this optimization
is used.

This optimization can handle one IS NULL for any key part.

Some examples of queries that are optimized, assuming that there is an index on columns a and b of ta-
ble t2:

SELECT * FROM t1 WHERE t1.a=expr OR t1.a IS NULL;

SELECT * FROM t1, t2 WHERE t1.a=t2.a OR t2.a IS NULL;

SELECT * FROM t1, t2
WHERE (t1.a=t2.a OR t2.a IS NULL) AND t2.b=t1.b;

SELECT * FROM t1, t2
WHERE t1.a=t2.a AND (t2.b=t1.b OR t2.b IS NULL);

Optimization

465

SELECT * FROM t1, t2
WHERE (t1.a=t2.a AND t2.a IS NULL AND ...)
OR (t1.a=t2.a AND t2.a IS NULL AND ...);

ref_or_null works by first doing a read on the reference key, and then a separate search for rows
with a NULL key value.

Note that the optimization can handle only one IS NULL level. In the following query, MySQL uses
key lookups only on the expression (t1.a=t2.a AND t2.a IS NULL) and is not able to use the
key part on b:

SELECT * FROM t1, t2
WHERE (t1.a=t2.a AND t2.a IS NULL)
OR (t1.b=t2.b AND t2.b IS NULL);

7.2.8. DISTINCT Optimization
DISTINCT combined with ORDER BY needs a temporary table in many cases.

Because DISTINCT may use GROUP BY, you should be aware of how MySQL works with columns in
ORDER BY or HAVING clauses that are not part of the selected columns. See Section 12.10.3, “GROUP
BY and HAVING with Hidden Fields”.

In most cases, a DISTINCT clause can be considered as a special case of GROUP BY. For example, the
following two queries are equivalent:

SELECT DISTINCT c1, c2, c3 FROM t1 WHERE c1 > const;

SELECT c1, c2, c3 FROM t1 WHERE c1 > const GROUP BY c1, c2, c3;

Due to this equivalence, the optimizations applicable to GROUP BY queries can be also applied to quer-
ies with a DISTINCT clause. Thus, for more details on the optimization possibilities for DISTINCT
queries, see Section 7.2.13, “GROUP BY Optimization”.

When combining LIMIT row_count with DISTINCT, MySQL stops as soon as it finds
row_count unique rows.

If you do not use columns from all tables named in a query, MySQL stops scanning any unused tables as
soon as it finds the first match. In the following case, assuming that t1 is used before t2 (which you
can check with EXPLAIN), MySQL stops reading from t2 (for any particular row in t1) when it finds
the first row in t2:

SELECT DISTINCT t1.a FROM t1, t2 where t1.a=t2.a;

7.2.9. LEFT JOIN and RIGHT JOIN Optimization
MySQL implements an A LEFT JOIN B join_condition as follows:

• Table B is set to depend on table A and all tables on which A depends.

• Table A is set to depend on all tables (except B) that are used in the LEFT JOIN condition.

• The LEFT JOIN condition is used to decide how to retrieve rows from table B. (In other words, any
condition in the WHERE clause is not used.)

• All standard join optimizations are performed, with the exception that a table is always read after all
tables on which it depends. If there is a circular dependence, MySQL issues an error.

Optimization

466

• All standard WHERE optimizations are performed.

• If there is a row in A that matches the WHERE clause, but there is no row in B that matches the ON
condition, an extra B row is generated with all columns set to NULL.

• If you use LEFT JOIN to find rows that do not exist in some table and you have the following test:
col_name IS NULL in the WHERE part, where col_name is a column that is declared as NOT
NULL, MySQL stops searching for more rows (for a particular key combination) after it has found
one row that matches the LEFT JOIN condition.

The implementation of RIGHT JOIN is analogous to that of LEFT JOIN with the roles of the tables
reversed.

The join optimizer calculates the order in which tables should be joined. The table read order forced by
LEFT JOIN or STRAIGHT_JOIN helps the join optimizer do its work much more quickly, because
there are fewer table permutations to check. Note that this means that if you do a query of the following
type, MySQL does a full scan on b because the LEFT JOIN forces it to be read before d:

SELECT *
FROM a JOIN b LEFT JOIN c ON (c.key=a.key) LEFT JOIN d ON (d.key=a.key)
WHERE b.key=d.key;

The fix in this case is reverse the order in which a and b are listed in the FROM clause:

SELECT *
FROM b JOIN a LEFT JOIN c ON (c.key=a.key) LEFT JOIN d ON (d.key=a.key)
WHERE b.key=d.key;

For a LEFT JOIN, if the WHERE condition is always false for the generated NULL row, the LEFT
JOIN is changed to a normal join. For example, the WHERE clause would be false in the following
query if t2.column1 were NULL:

SELECT * FROM t1 LEFT JOIN t2 ON (column1) WHERE t2.column2=5;

Therefore, it is safe to convert the query to a normal join:

SELECT * FROM t1, t2 WHERE t2.column2=5 AND t1.column1=t2.column1;

This can be made faster because MySQL can use table t2 before table t1 if doing so would result in a
better query plan. To force a specific table order, use STRAIGHT_JOIN.

7.2.10. Nested Join Optimization
As of MySQL 5.0.1, the syntax for expressing joins allows nested joins. The following discussion refers
to the join syntax described in Section 13.2.7.1, “JOIN Syntax”.

The syntax of table_factor is extended in comparison with the SQL Standard. The latter accepts
only table_reference, not a list of them inside a pair of parentheses. This is a conservative exten-
sion if we consider each comma in a list of table_reference items as equivalent to an inner join.
For example:

SELECT * FROM t1 LEFT JOIN (t2, t3, t4)
ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

is equivalent to:

SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4)

Optimization

467

ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

In MySQL, CROSS JOIN is a syntactic equivalent to INNER JOIN (they can replace each other). In
standard SQL, they are not equivalent. INNER JOIN is used with an ON clause; CROSS JOIN is used
otherwise.

In versions of MySQL prior to 5.0.1, parentheses in table_references were just omitted and all
join operations were grouped to the left. In general, parentheses can be ignored in join expressions con-
taining only inner join operations.

After removing parentheses and grouping operations to the left, the join expression:

t1 LEFT JOIN (t2 LEFT JOIN t3 ON t2.b=t3.b OR t2.b IS NULL)
ON t1.a=t2.a

transforms into the expression:

(t1 LEFT JOIN t2 ON t1.a=t2.a) LEFT JOIN t3
ON t2.b=t3.b OR t2.b IS NULL

Yet, the two expressions are not equivalent. To see this, suppose that the tables t1, t2, and t3 have the
following state:

• Table t1 contains rows (1), (2)

• Table t2 contains row (1,101)

• Table t3 contains row (101)

In this case, the first expression returns a result set including the rows (1,1,101,101),
(2,NULL,NULL,NULL), whereas the second expression returns the rows (1,1,101,101),
(2,NULL,NULL,101):

mysql> SELECT *
-> FROM t1
-> LEFT JOIN
-> (t2 LEFT JOIN t3 ON t2.b=t3.b OR t2.b IS NULL)
-> ON t1.a=t2.a;

+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | NULL |
+------+------+------+------+

mysql> SELECT *
-> FROM (t1 LEFT JOIN t2 ON t1.a=t2.a)
-> LEFT JOIN t3
-> ON t2.b=t3.b OR t2.b IS NULL;

+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | 101 |
+------+------+------+------+

In the following example, an outer join operation is used together with an inner join operation:

t1 LEFT JOIN (t2, t3) ON t1.a=t2.a

That expression cannot be transformed into the following expression:

Optimization

468

t1 LEFT JOIN t2 ON t1.a=t2.a, t3.

For the given table states, the two expressions return different sets of rows:

mysql> SELECT *
-> FROM t1 LEFT JOIN (t2, t3) ON t1.a=t2.a;

+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | NULL |
+------+------+------+------+

mysql> SELECT *
-> FROM t1 LEFT JOIN t2 ON t1.a=t2.a, t3;

+------+------+------+------+
| a | a | b | b |
+------+------+------+------+
| 1 | 1 | 101 | 101 |
| 2 | NULL | NULL | 101 |
+------+------+------+------+

Therefore, if we omit parentheses in a join expression with outer join operators, we might change the
result set for the original expression.

More exactly, we cannot ignore parentheses in the right operand of the left outer join operation and in
the left operand of a right join operation. In other words, we cannot ignore parentheses for the inner ta-
ble expressions of outer join operations. Parentheses for the other operand (operand for the outer table)
can be ignored.

The following expression:

(t1,t2) LEFT JOIN t3 ON P(t2.b,t3.b)

is equivalent to this expression:

t1, t2 LEFT JOIN t3 ON P(t2.b,t3.b)

for any tables t1,t2,t3 and any condition P over attributes t2.b and t3.b.

Whenever the order of execution of the join operations in a join expression (join_table) is not from
left to right, we talk about nested joins. Consider the following queries:

SELECT * FROM t1 LEFT JOIN (t2 LEFT JOIN t3 ON t2.b=t3.b) ON t1.a=t2.a
WHERE t1.a > 1

SELECT * FROM t1 LEFT JOIN (t2, t3) ON t1.a=t2.a
WHERE (t2.b=t3.b OR t2.b IS NULL) AND t1.a > 1

Those queries are considered to contain these nested joins:

t2 LEFT JOIN t3 ON t2.b=t3.b
t2, t3

The nested join is formed in the first query with a left join operation, whereas in the second query it is
formed with an inner join operation.

In the first query, the parentheses can be omitted: The grammatical structure of the join expression will
dictate the same order of execution for join operations. For the second query, the parentheses cannot be
omitted, although the join expression here can be interpreted unambiguously without them. (In our ex-
tended syntax the parentheses in (t2, t3) of the second query are required, although theoretically the
query could be parsed without them: We still would have unambiguous syntactical structure for the

Optimization

469

query because LEFT JOIN and ON would play the role of the left and right delimiters for the expres-
sion (t2,t3).)

The preceding examples demonstrate these points:

• For join expressions involving only inner joins (and not outer joins), parentheses can be removed.
You can remove parentheses and evaluate left to right (or, in fact, you can evaluate the tables in any
order).

• The same is not true, in general, for outer joins or for outer joins mixed with inner joins. Removal of
parentheses may change the result.

Queries with nested outer joins are executed in the same pipeline manner as queries with inner joins.
More exactly, a variation of the nested-loop join algorithm is exploited. Recall by what algorithmic
schema the nested-loop join executes a query. Suppose that we have a join query over 3 tables
T1,T2,T3 of the form:

SELECT * FROM T1 INNER JOIN T2 ON P1(T1,T2)
INNER JOIN T3 ON P2(T2,T3)

WHERE P(T1,T2,T3).

Here, P1(T1,T2) and P2(T3,T3) are some join conditions (on expressions), whereas
P(t1,t2,t3) is a condition over columns of tables T1,T2,T3.

The nested-loop join algorithm would execute this query in the following manner:

FOR each row t1 in T1 {
FOR each row t2 in T2 such that P1(t1,t2) {
FOR each row t3 in T3 such that P2(t2,t3) {

IF P(t1,t2,t3) {
t:=t1||t2||t3; OUTPUT t;

}
}

}
}

The notation t1||t2||t3 means “a row constructed by concatenating the columns of rows t1, t2,
and t3.” In some of the following examples, NULL where a row name appears means that NULL is used
for each column of that row. For example, t1||t2||NULL means “a row constructed by concatenat-
ing the columns of rows t1 and t2, and NULL for each column of t3.”

Now let's consider a query with nested outer joins:

SELECT * FROM T1 LEFT JOIN
(T2 LEFT JOIN T3 ON P2(T2,T3))
ON P1(T1,T2)

WHERE P(T1,T2,T3).

For this query, we modify the nested-loop pattern to get:

FOR each row t1 in T1 {
BOOL f1:=FALSE;
FOR each row t2 in T2 such that P1(t1,t2) {
BOOL f2:=FALSE;
FOR each row t3 in T3 such that P2(t2,t3) {

IF P(t1,t2,t3) {
t:=t1||t2||t3; OUTPUT t;

}
f2=TRUE;
f1=TRUE;

}
IF (!f2) {

IF P(t1,t2,NULL) {
t:=t1||t2||NULL; OUTPUT t;

Optimization

470

}
f1=TRUE;

}
}
IF (!f1) {
IF P(t1,NULL,NULL) {

t:=t1||NULL||NULL; OUTPUT t;
}

}
}

In general, for any nested loop for the first inner table in an outer join operation, a flag is introduced that
is turned off before the loop and is checked after the loop. The flag is turned on when for the current row
from the outer table a match from the table representing the inner operand is found. If at the end of the
loop cycle the flag is still off, no match has been found for the current row of the outer table. In this
case, the row is complemented by NULL values for the columns of the inner tables. The result row is
passed to the final check for the output or into the next nested loop, but only if the row satisfies the join
condition of all embedded outer joins.

In our example, the outer join table expressed by the following expression is embedded:

(T2 LEFT JOIN T3 ON P2(T2,T3))

Note that for the query with inner joins, the optimizer could choose a different order of nested loops,
such as this one:

FOR each row t3 in T3 {
FOR each row t2 in T2 such that P2(t2,t3) {
FOR each row t1 in T1 such that P1(t1,t2) {

IF P(t1,t2,t3) {
t:=t1||t2||t3; OUTPUT t;

}
}

}
}

For the queries with outer joins, the optimizer can choose only such an order where loops for outer
tables precede loops for inner tables. Thus, for our query with outer joins, only one nesting order is pos-
sible. For the following query, the optimizer will evaluate two different nestings:

SELECT * T1 LEFT JOIN (T2,T3) ON P1(T1,T2) AND P2(T1,T3)
WHERE P(T1,T2,T3)

The nestings are these:

FOR each row t1 in T1 {
BOOL f1:=FALSE;
FOR each row t2 in T2 such that P1(t1,t2) {
FOR each row t3 in T3 such that P2(t1,t3) {

IF P(t1,t2,t3) {
t:=t1||t2||t3; OUTPUT t;

}
f1:=TRUE

}
}
IF (!f1) {
IF P(t1,NULL,NULL) {

t:=t1||NULL||NULL; OUTPUT t;
}

}
}

and:

FOR each row t1 in T1 {
BOOL f1:=FALSE;

Optimization

471

FOR each row t3 in T3 such that P2(t1,t3) {
FOR each row t2 in T2 such that P1(t1,t2) {

IF P(t1,t2,t3) {
t:=t1||t2||t3; OUTPUT t;

}
f1:=TRUE

}
}
IF (!f1) {
IF P(t1,NULL,NULL) {

t:=t1||NULL||NULL; OUTPUT t;
}

}
}

In both nestings, T1 must be processed in the outer loop because it is used in an outer join. T2 and T3
are used in an inner join, so that join must be processed in the inner loop. However, because the join is
an inner join, T2 and T3 can be processed in either order.

When discussing the nested-loop algorithm for inner joins, we omitted some details whose impact on the
performance of query execution may be huge. We did not mention so-called “pushed-down” conditions.
Suppose that our WHERE condition P(T1,T2,T3) can be represented by a conjunctive formula:

P(T1,T2,T2) = C1(T1) AND C2(T2) AND C3(T3).

In this case, MySQL actually uses the following nested-loop schema for the execution of the query with
inner joins:

FOR each row t1 in T1 such that C1(t1) {
FOR each row t2 in T2 such that P1(t1,t2) AND C2(t2) {
FOR each row t3 in T3 such that P2(t2,t3) AND C3(t3) {

IF P(t1,t2,t3) {
t:=t1||t2||t3; OUTPUT t;

}
}

}
}

You see that each of the conjuncts C1(T1), C2(T2), C3(T3) are pushed out of the most inner loop to
the most outer loop where it can be evaluated. If C1(T1) is a very restrictive condition, this condition
pushdown may greatly reduce the number of rows from table T1 passed to the inner loops. As a result,
the execution time for the query may improve immensely.

For a query with outer joins, the WHERE condition is to be checked only after it has been found that the
current row from the outer table has a match in the inner tables. Thus, the optimization of pushing condi-
tions out of the inner nested loops cannot be applied directly to queries with outer joins. Here we have to
introduce conditional pushed-down predicates guarded by the flags that are turned on when a match has
been encountered.

For our example with outer joins with:

P(T1,T2,T3)=C1(T1) AND C(T2) AND C3(T3)

the nested-loop schema using guarded pushed-down conditions looks like this:

FOR each row t1 in T1 such that C1(t1) {
BOOL f1:=FALSE;
FOR each row t2 in T2

such that P1(t1,t2) AND (f1?C2(t2):TRUE) {
BOOL f2:=FALSE;
FOR each row t3 in T3

such that P2(t2,t3) AND (f1&&f2?C3(t3):TRUE) {
IF (f1&&f2?TRUE:(C2(t2) AND C3(t3))) {
t:=t1||t2||t3; OUTPUT t;

}
f2=TRUE;

Optimization

472

f1=TRUE;
}
IF (!f2) {

IF (f1?TRUE:C2(t2) && P(t1,t2,NULL)) {
t:=t1||t2||NULL; OUTPUT t;

}
f1=TRUE;

}
}
IF (!f1 && P(t1,NULL,NULL)) {

t:=t1||NULL||NULL; OUTPUT t;
}

}

In general, pushed-down predicates can be extracted from join conditions such as P1(T1,T2) and
P(T2,T3). In this case, a pushed-down predicate is guarded also by a flag that prevents checking the
predicate for the NULL-complemented row generated by the corresponding outer join operation.

Note that access by key from one inner table to another in the same nested join is prohibited if it is in-
duced by a predicate from the WHERE condition. (We could use conditional key access in this case, but
this technique is not employed yet in MySQL 5.0.)

7.2.11. Outer Join Simplification
Table expressions in the FROM clause of a query are simplified in many cases.

At the parser stage, queries with right outer joins operations are converted to equivalent queries contain-
ing only left join operations. In the general case, the conversion is performed according to the following
rule:

(T1, ...) RIGHT JOIN (T2,...) ON P(T1,...,T2,...) =
(T2, ...) LEFT JOIN (T1,...) ON P(T1,...,T2,...)

All inner join expressions of the form T1 INNER JOIN T2 ON P(T1,T2) are replaced by the list
T1,T2, P(T1,T2) being joined as a conjunct to the WHERE condition (or to the join condition of the
embedding join, if there is any).

When the optimizer evaluates plans for join queries with outer join operation, it takes into consideration
only the plans where, for each such operation, the outer tables are accessed before the inner tables. The
optimizer options are limited because only such plans enables us to execute queries with outer joins op-
erations by the nested loop schema.

Suppose that we have a query of the form:

SELECT * T1 LEFT JOIN T2 ON P1(T1,T2)
WHERE P(T1,T2) AND R(T2)

with R(T2) narrowing greatly the number of matching rows from table T2. If we executed the query as
it is, the optimizer would have no other choice besides to access table T1 before table T2 that may lead
to a very inefficient execution plan.

Fortunately, MySQL converts such a query into a query without an outer join operation if the WHERE
condition is null-rejected. A condition is called null-rejected for an outer join operation if it evaluates to
FALSE or to UNKNOWN for any NULL-complemented row built for the operation.

Thus, for this outer join:

T1 LEFT JOIN T2 ON T1.A=T2.A

Conditions such as these are null-rejected:

Optimization

473

T2.B IS NOT NULL,
T2.B > 3,
T2.C <= T1.C,
T2.B < 2 OR T2.C > 1

Conditions such as these are not null-rejected:

T2.B IS NULL,
T1.B < 3 OR T2.B IS NOT NULL,
T1.B < 3 OR T2.B > 3

The general rules for checking whether a condition is null-rejected for an outer join operation are
simple. A condition is null-rejected in the following cases:

• If it is of the form A IS NOT NULL, where A is an attribute of any of the inner tables

• If it is a predicate containing a reference to an inner table that evaluates to UNKNOWN when one of its
arguments is NULL

• If it is a conjunction containing a null-rejected condition as a conjunct

• If it is a disjunction of null-rejected conditions

A condition can be null-rejected for one outer join operation in a query and not null-rejected for another.
In the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
LEFT JOIN T3 ON T3.B=T1.B

WHERE T3.C > 0

the WHERE condition is null-rejected for the second outer join operation but is not null-rejected for the
first one.

If the WHERE condition is null-rejected for an outer join operation in a query, the outer join operation is
replaced by an inner join operation.

For example, the preceding query is replaced with the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
INNER JOIN T3 ON T3.B=T1.B

WHERE T3.C > 0

For the original query, the optimizer would evaluate plans compatible with only one access order
T1,T2,T3. For the replacing query, it additionally considers the access sequence T3,T1,T2.

A conversion of one outer join operation may trigger a conversion of another. Thus, the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
LEFT JOIN T3 ON T3.B=T2.B

WHERE T3.C > 0

will be first converted to the query:

SELECT * FROM T1 LEFT JOIN T2 ON T2.A=T1.A
INNER JOIN T3 ON T3.B=T2.B

WHERE T3.C > 0

which is equivalent to the query:

Optimization

474

SELECT * FROM (T1 LEFT JOIN T2 ON T2.A=T1.A), T3
WHERE T3.C > 0 AND T3.B=T2.B

Now the remaining outer join operation can be replaced by an inner join, too, because the condition
T3.B=T2.B is null-rejected and we get a query without outer joins at all:

SELECT * FROM (T1 INNER JOIN T2 ON T2.A=T1.A), T3
WHERE T3.C > 0 AND T3.B=T2.B

Sometimes we succeed in replacing an embedded outer join operation, but cannot convert the embed-
ding outer join. The following query:

SELECT * FROM T1 LEFT JOIN
(T2 LEFT JOIN T3 ON T3.B=T2.B)
ON T2.A=T1.A

WHERE T3.C > 0

is converted to:

SELECT * FROM T1 LEFT JOIN
(T2 INNER JOIN T3 ON T3.B=T2.B)
ON T2.A=T1.A

WHERE T3.C > 0,

That can be rewritten only to the form still containing the embedding outer join operation:

SELECT * FROM T1 LEFT JOIN
(T2,T3)
ON (T2.A=T1.A AND T3.B=T2.B)

WHERE T3.C > 0.

When trying to convert an embedded outer join operation in a query, we must take into account the join
condition for the embedding outer join together with the WHERE condition. In the query:

SELECT * FROM T1 LEFT JOIN
(T2 LEFT JOIN T3 ON T3.B=T2.B)
ON T2.A=T1.A AND T3.C=T1.C

WHERE T3.D > 0 OR T1.D > 0

the WHERE condition is not null-rejected for the embedded outer join, but the join condition of the em-
bedding outer join T2.A=T1.A AND T3.C=T1.C is null-rejected. So the query can be converted to:

SELECT * FROM T1 LEFT JOIN
(T2, T3)
ON T2.A=T1.A AND T3.C=T1.C AND T3.B=T2.B

WHERE T3.D > 0 OR T1.D > 0

The algorithm that converts outer join operations into inner joins was implemented in full measure, as it
has been described here, in MySQL 5.0.1. MySQL 4.1 performs only some simple conversions.

7.2.12. ORDER BY Optimization
In some cases, MySQL can use an index to satisfy an ORDER BY clause without doing any extra sort-
ing.

The index can also be used even if the ORDER BY does not match the index exactly, as long as all of the
unused portions of the index and all the extra ORDER BY columns are constants in the WHERE clause.
The following queries use the index to resolve the ORDER BY part:

SELECT * FROM t1
ORDER BY key_part1,key_part2,... ;

Optimization

475

SELECT * FROM t1
WHERE key_part1=constant
ORDER BY key_part2;

SELECT * FROM t1
ORDER BY key_part1 DESC, key_part2 DESC;

SELECT * FROM t1
WHERE key_part1=1
ORDER BY key_part1 DESC, key_part2 DESC;

In some cases, MySQL cannot use indexes to resolve the ORDER BY, although it still uses indexes to
find the rows that match the WHERE clause. These cases include the following:

• You use ORDER BY on different keys:

SELECT * FROM t1 ORDER BY key1, key2;

• You use ORDER BY on non-consecutive parts of a key:

SELECT * FROM t1 WHERE key2=constant ORDER BY key_part2;

• You mix ASC and DESC:

SELECT * FROM t1 ORDER BY key_part1 DESC, key_part2 ASC;

• The key used to fetch the rows is not the same as the one used in the ORDER BY:

SELECT * FROM t1 WHERE key2=constant ORDER BY key1;

• You are joining many tables, and the columns in the ORDER BY are not all from the first non-
constant table that is used to retrieve rows. (This is the first table in the EXPLAIN output that does
not have a const join type.)

• You have different ORDER BY and GROUP BY expressions.

• The type of table index used does not store rows in order. For example, this is true for a HASH index
in a MEMORY table.

With EXPLAIN SELECT ... ORDER BY, you can check whether MySQL can use indexes to re-
solve the query. It cannot if you see Using filesort in the Extra column. See Section 7.2.1,
“Optimizing Queries with EXPLAIN”.

A filesort optimization is used that records not only the sort key value and row position, but the
columns required for the query as well. This avoids reading the rows twice. The filesort algorithm
works like this:

1. Read the rows that match the WHERE clause.

2. For each row, record a tuple of values consisting of the sort key value and row position, and also
the columns required for the query.

3. Sort the tuples by sort key value

4. Retrieve the rows in sorted order, but read the required columns directly from the sorted tuples
rather than by accessing the table a second time.

Optimization

476

This algorithm represents a significant improvement over that used in some older versions of MySQL.

To avoid a slowdown, this optimization is used only if the total size of the extra columns in the sort
tuple does not exceed the value of the max_length_for_sort_data system variable. (A symptom
of setting the value of this variable too high is that you should see high disk activity and low CPU activ-
ity.)

If you want to increase ORDER BY speed, check whether you can get MySQL to use indexes rather than
an extra sorting phase. If this is not possible, you can try the following strategies:

• Increase the size of the sort_buffer_size variable.

• Increase the size of the read_rnd_buffer_size variable.

• Change tmpdir to point to a dedicated filesystem with large amounts of empty space. This option
accepts several paths that are used in round-robin fashion. Paths should be separated by colon char-
acters (‘:’) on Unix and semicolon characters (‘;’) on Windows, NetWare, and OS/2. You can use
this feature to spread the load across several directories. Note: The paths should be for directories in
filesystems that are located on different physical disks, not different partitions on the same disk.

By default, MySQL sorts all GROUP BY col1, col2, ... queries as if you specified ORDER BY
col1, col2, ... in the query as well. If you include an ORDER BY clause explicitly that contains
the same column list, MySQL optimizes it away without any speed penalty, although the sorting still oc-
curs. If a query includes GROUP BY but you want to avoid the overhead of sorting the result, you can
suppress sorting by specifying ORDER BY NULL. For example:

INSERT INTO foo
SELECT a, COUNT(*) FROM bar GROUP BY a ORDER BY NULL;

7.2.13. GROUP BY Optimization
The most general way to satisfy a GROUP BY clause is to scan the whole table and create a new tempor-
ary table where all rows from each group are consecutive, and then use this temporary table to discover
groups and apply aggregate functions (if any). In some cases, MySQL is able to do much better than that
and to avoid creation of temporary tables by using index access.

The most important preconditions for using indexes for GROUP BY are that all GROUP BY columns
reference attributes from the same index, and that the index stores its keys in order (for example, this is a
BTREE index and not a HASH index). Whether use of temporary tables can be replaced by index access
also depends on which parts of an index are used in a query, the conditions specified for these parts, and
the selected aggregate functions.

There are two ways to execute a GROUP BY query via index access, as detailed in the following sec-
tions. In the first method, the grouping operation is applied together with all range predicates (if any).
The second method first performs a range scan, and then groups the resulting tuples.

7.2.13.1. Loose index scan

The most efficient way to process GROUP BY is when the index is used to directly retrieve the group
fields. With this access method, MySQL uses the property of some index types that the keys are ordered
(for example, BTREE). This property enables use of lookup groups in an index without having to con-
sider all keys in the index that satisfy all WHERE conditions. This access method considers only a frac-
tion of the keys in an index, so it is called a loose index scan. When there is no WHERE clause, a loose
index scan reads as many keys as the number of groups, which may be a much smaller number than that
of all keys. If the WHERE clause contains range predicates (see the discussion of the range join type in
Section 7.2.1, “Optimizing Queries with EXPLAIN”), a loose index scan looks up the first key of each

Optimization

477

group that satisfies the range conditions, and again reads the least possible number of keys. This is pos-
sible under the following conditions:

• The query is over a single table.

• The GROUP BY includes the first consecutive parts of the index. (If, instead of GROUP BY, the
query has a DISTINCT clause, all distinct attributes refer to the beginning of the index.)

• The only aggregate functions used (if any) are MIN() and MAX(), and all of them refer to the same
column.

• Any other parts of the index than those from the GROUP BY referenced in the query must be con-
stants (that is, they must be referenced in equalities with constants), except for the argument of
MIN() or MAX() functions.

The EXPLAIN output for such queries shows Using index for group-by in the Extra
column.

The following queries fall into this category, assuming that there is an index idx(c1,c2,c3) on table
t1(c1,c2,c3,c4):

SELECT c1, c2 FROM t1 GROUP BY c1, c2;
SELECT DISTINCT c1, c2 FROM t1;
SELECT c1, MIN(c2) FROM t1 GROUP BY c1;
SELECT c1, c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT MAX(c3), MIN(c3), c1, c2 FROM t1 WHERE c2 > const GROUP BY c1, c2;
SELECT c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT c1, c2 FROM t1 WHERE c3 = const GROUP BY c1, c2;

The following queries cannot be executed with this quick select method, for the reasons given:

• There are aggregate functions other than MIN() or MAX(), for example:

SELECT c1, SUM(c2) FROM t1 GROUP BY c1;

• The fields in the GROUP BY clause do not refer to the beginning of the index, as shown here:

SELECT c1,c2 FROM t1 GROUP BY c2, c3;

• The query refers to a part of a key that comes after the GROUP BY part, and for which there is no
equality with a constant, an example being:

SELECT c1,c3 FROM t1 GROUP BY c1, c2;

7.2.13.2. Tight index scan

A tight index scan may be either a full index scan or a range index scan, depending on the query condi-
tions.

When the conditions for a loose index scan are not met, it is still possible to avoid creation of temporary
tables for GROUP BY queries. If there are range conditions in the WHERE clause, this method reads only
the keys that satisfy these conditions. Otherwise, it performs an index scan. Because this method reads
all keys in each range defined by the WHERE clause, or scans the whole index if there are no range con-
ditions, we term it a tight index scan. Notice that with a tight index scan, the grouping operation is per-
formed only after all keys that satisfy the range conditions have been found.

Optimization

478

For this method to work, it is sufficient that there is a constant equality condition for all columns in a
query referring to parts of the key coming before or in between parts of the GROUP BY key. The con-
stants from the equality conditions fill in any “gaps” in the search keys so that it is possible to form com-
plete prefixes of the index. These index prefixes then can be used for index lookups. If we require sort-
ing of the GROUP BY result, and it is possible to form search keys that are prefixes of the index,
MySQL also avoids extra sorting operations because searching with prefixes in an ordered index already
retrieves all the keys in order.

The following queries do not work with the loose index scan access method described earlier, but still
work with the tight index scan access method (assuming that there is an index idx(c1,c2,c3) on ta-
ble t1(c1,c2,c3,c4)).

• There is a gap in the GROUP BY, but it is covered by the condition c2 = 'a':

SELECT c1, c2, c3 FROM t1 WHERE c2 = 'a' GROUP BY c1, c3;

• The GROUP BY does not begin with the first part of the key, but there is a condition that provides a
constant for that part:

SELECT c1, c2, c3 FROM t1 WHERE c1 = 'a' GROUP BY c2, c3;

7.2.14. LIMIT Optimization
In some cases, MySQL handles a query differently when you are using LIMIT row_count and not
using HAVING:

• If you are selecting only a few rows with LIMIT, MySQL uses indexes in some cases when nor-
mally it would prefer to do a full table scan.

• If you use LIMIT row_count with ORDER BY, MySQL ends the sorting as soon as it has found
the first row_count rows of the sorted result, rather than sorting the entire result. If ordering is
done by using an index, this is very fast. If a filesort must be done, all rows that match the query
without the LIMIT clause must be selected, and most or all of them must be sorted, before it can be
ascertained that the first row_count rows have been found. In either case, after the initial rows
have been found, there is no need to sort any remainder of the result set, and MySQL does not do so.

• When combining LIMIT row_count with DISTINCT, MySQL stops as soon as it finds
row_count unique rows.

• In some cases, a GROUP BY can be resolved by reading the key in order (or doing a sort on the key)
and then calculating summaries until the key value changes. In this case, LIMIT row_count does
not calculate any unnecessary GROUP BY values.

• As soon as MySQL has sent the required number of rows to the client, it aborts the query unless you
are using SQL_CALC_FOUND_ROWS.

• LIMIT 0 quickly returns an empty set. This can be useful for checking the validity of a query.
When using one of the MySQL APIs, it can also be employed for obtaining the types of the result
columns. (This trick does not work in the MySQL Monitor (the mysql program), which merely dis-
plays Empty set in such cases; you should instead use SHOW COLUMNS or DESCRIBE for this
purpose.)

• When the server uses temporary tables to resolve the query, it uses the LIMIT row_count clause
to calculate how much space is required.

Optimization

479

7.2.15. How to Avoid Table Scans
The output from EXPLAIN shows ALL in the type column when MySQL uses a table scan to resolve a
query. This usually happens under the following conditions:

• The table is so small that it is faster to perform a table scan than to bother with a key lookup. This is
common for tables with fewer than 10 rows and a short row length.

• There are no usable restrictions in the ON or WHERE clause for indexed columns.

• You are comparing indexed columns with constant values and MySQL has calculated (based on the
index tree) that the constants cover too large a part of the table and that a table scan would be faster.
See Section 7.2.4, “WHERE Clause Optimization”.

• You are using a key with low cardinality (many rows match the key value) through another column.
In this case, MySQL assumes that by using the key it probably will do many key lookups and that a
table scan would be faster.

For small tables, a table scan often is appropriate and the performance impact is negligible. For large
tables, try the following techniques to avoid having the optimizer incorrectly choose a table scan:

• Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See Sec-
tion 13.5.2.1, “ANALYZE TABLE Syntax”.

• Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive com-
pared to using the given index:

SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
WHERE t1.col_name=t2.col_name;

See Section 13.2.7, “SELECT Syntax”.

• Start mysqld with the --max-seeks-for-key=1000 option or use SET
max_seeks_for_key=1000 to tell the optimizer to assume that no key scan causes more than
1,000 key seeks. See Section 5.2.3, “System Variables”.

7.2.16. Speed of INSERT Statements
The time required for inserting a row is determined by the following factors, where the numbers indicate
approximate proportions:

• Connecting: (3)

• Sending query to server: (2)

• Parsing query: (2)

• Inserting row: (1 × size of row)

• Inserting indexes: (1 × number of indexes)

• Closing: (1)

Optimization

480

This does not take into consideration the initial overhead to open tables, which is done once for each
concurrently running query.

The size of the table slows down the insertion of indexes by log N, assuming B-tree indexes.

You can use the following methods to speed up inserts:

• If you are inserting many rows from the same client at the same time, use INSERT statements with
multiple VALUES lists to insert several rows at a time. This is considerably faster (many times faster
in some cases) than using separate single-row INSERT statements. If you are adding data to a non-
empty table, you can tune the bulk_insert_buffer_size variable to make data insertion
even faster. See Section 5.2.3, “System Variables”.

• If you are inserting a lot of rows from different clients, you can get higher speed by using the IN-
SERT DELAYED statement. See Section 13.2.4.2, “INSERT DELAYED Syntax”.

• For a MyISAM table, you can use concurrent inserts to add rows at the same time that SELECT state-
ments are running if there are no deleted rows in middle of the table. See Section 7.3.3, “Concurrent
Inserts”.

• When loading a table from a text file, use LOAD DATA INFILE. This is usually 20 times faster
than using INSERT statements. See Section 13.2.5, “LOAD DATA INFILE Syntax”.

• With some extra work, it is possible to make LOAD DATA INFILE run even faster for a MyISAM
table when the table has many indexes. Use the following procedure:

1. Optionally create the table with CREATE TABLE.

2. Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.

3. Use myisamchk --keys-used=0 -rq /path/to/db/tbl_name. This removes all
use of indexes for the table.

4. Insert data into the table with LOAD DATA INFILE. This does not update any indexes and
therefore is very fast.

5. If you intend only to read from the table in the future, use myisampack to compress it. See
Section 14.1.3.3, “Compressed Table Characteristics”.

6. Re-create the indexes with myisamchk -rq /path/to/db/tbl_name. This creates the
index tree in memory before writing it to disk, which is much faster that updating the index dur-
ing LOAD DATA INFILE because it avoids lots of disk seeks. The resulting index tree is also
perfectly balanced.

7. Execute a FLUSH TABLES statement or a mysqladmin flush-tables command.

Note that LOAD DATA INFILE performs the preceding optimization automatically if the MyISAM
table into which you insert data is empty. The main difference is that you can let myisamchk alloc-
ate much more temporary memory for the index creation than you might want the server to allocate
for index re-creation when it executes the LOAD DATA INFILE statement.

You can also disable or enable the indexes for a MyISAM table by using the following statements
rather than myisamchk. If you use these statements, you can skip the FLUSH TABLE operations:

ALTER TABLE tbl_name DISABLE KEYS;
ALTER TABLE tbl_name ENABLE KEYS;

• To speed up INSERT operations that are performed with multiple statements for non-transactional

Optimization

481

tables, lock your tables:

LOCK TABLES a WRITE;
INSERT INTO a VALUES (1,23),(2,34),(4,33);
INSERT INTO a VALUES (8,26),(6,29);
...
UNLOCK TABLES;

This benefits performance because the index buffer is flushed to disk only once, after all INSERT
statements have completed. Normally, there would be as many index buffer flushes as there are IN-
SERT statements. Explicit locking statements are not needed if you can insert all rows with a single
INSERT.

To obtain faster insertions, for transactional tables, you should use START TRANSACTION and
COMMIT instead of LOCK TABLES.

Locking also lowers the total time for multiple-connection tests, although the maximum wait time
for individual connections might go up because they wait for locks. For example:

1. Connection 1 does 1000 inserts

2. Connections 2, 3, and 4 do 1 insert

3. Connection 5 does 1000 inserts

If you do not use locking, connections 2, 3, and 4 finish before 1 and 5. If you use locking, connec-
tions 2, 3, and 4 probably do not finish before 1 or 5, but the total time should be about 40% faster.

INSERT, UPDATE, and DELETE operations are very fast in MySQL, but you can obtain better over-
all performance by adding locks around everything that does more than about five inserts or updates
in a row. If you do very many inserts in a row, you could do a LOCK TABLES followed by an UN-
LOCK TABLES once in a while (each 1,000 rows or so) to allow other threads access to the table.
This would still result in a nice performance gain.

INSERT is still much slower for loading data than LOAD DATA INFILE, even when using the
strategies just outlined.

• To increase performance for MyISAM tables, for both LOAD DATA INFILE and INSERT, enlarge
the key cache by increasing the key_buffer_size system variable. See Section 7.5.2, “Tuning
Server Parameters”.

7.2.17. Speed of UPDATE Statements
An update statement is optimized like a SELECT query with the additional overhead of a write. The
speed of the write depends on the amount of data being updated and the number of indexes that are up-
dated. Indexes that are not changed do not get updated.

Another way to get fast updates is to delay updates and then do many updates in a row later. Performing
multiple updates together is much quicker than doing one at a time if you lock the table.

For a MyISAM table that uses dynamic row format, updating a row to a longer total length may split the
row. If you do this often, it is very important to use OPTIMIZE TABLE occasionally. See Sec-
tion 13.5.2.5, “OPTIMIZE TABLE Syntax”.

7.2.18. Speed of DELETE Statements
The time required to delete individual rows is exactly proportional to the number of indexes. To delete

Optimization

482

rows more quickly, you can increase the size of the key cache by increasing the key_buffer_size
system variable. See Section 7.5.2, “Tuning Server Parameters”.

To delete all rows from a table, TRUNCATE TABLE tbl_name if faster than than DELETE FROM
tbl_name. See Section 13.2.9, “TRUNCATE Syntax”.

7.2.19. Other Optimization Tips
This section lists a number of miscellaneous tips for improving query processing speed:

• Use persistent connections to the database to avoid connection overhead. If you cannot use persistent
connections and you are initiating many new connections to the database, you may want to change
the value of the thread_cache_size variable. See Section 7.5.2, “Tuning Server Parameters”.

• Always check whether all your queries really use the indexes that you have created in the tables. In
MySQL, you can do this with the EXPLAIN statement. See Section 7.2.1, “Optimizing Queries with
EXPLAIN”.

• Try to avoid complex SELECT queries on MyISAM tables that are updated frequently, to avoid prob-
lems with table locking that occur due to contention between readers and writers.

• With MyISAM tables that have no deleted rows in the middle, you can insert rows at the end at the
same time that another query is reading from the table. If it is important to be able to do this, you
should consider using the table in ways that avoid deleting rows. Another possibility is to run OP-
TIMIZE TABLE to defragment the table after you have deleted a lot of rows from it. See Sec-
tion 14.1, “The MyISAM Storage Engine”.

This behavior is altered through the setting of the concurrent_inserts variable. You can force
new rows to be appended (and therefore allow concurrent inserts), even in tables that have deleted
rows. See Section 7.3.3, “Concurrent Inserts”.

• To fix any compression issues that may have occurred with ARCHIVE tables, you can use OPTIM-
IZE TABLE. See Section 14.8, “The ARCHIVE Storage Engine”.

• Use ALTER TABLE ... ORDER BY expr1, expr2, ... if you usually retrieve rows in
expr1, expr2, ... order. By using this option after extensive changes to the table, you may
be able to get higher performance.

• In some cases, it may make sense to introduce a column that is “hashed” based on information from
other columns. If this column is short and reasonably unique, it may be much faster than a “wide” in-
dex on many columns. In MySQL, it is very easy to use this extra column:

SELECT * FROM tbl_name
WHERE hash_col=MD5(CONCAT(col1,col2))
AND col1='constant' AND col2='constant';

• For MyISAM tables that change frequently, you should try to avoid all variable-length columns
(VARCHAR, BLOB, and TEXT). The table uses dynamic row format if it includes even a single vari-
able-length column. See Chapter 14, Storage Engines and Table Types.

• It is normally not useful to split a table into different tables just because the rows become large. In
accessing a row, the biggest performance hit is the disk seek needed to find the first byte of the row.
After finding the data, most modern disks can read the entire row fast enough for most applications.
The only cases where splitting up a table makes an appreciable difference is if it is a MyISAM table
using dynamic row format that you can change to a fixed row size, or if you very often need to scan
the table but do not need most of the columns. See Chapter 14, Storage Engines and Table Types.

Optimization

483

• If you often need to calculate results such as counts based on information from a lot of rows, it may
be preferable to introduce a new table and update the counter in real time. An update of the follow-
ing form is very fast:

UPDATE tbl_name SET count_col=count_col+1 WHERE key_col=constant;

This is very important when you use MySQL storage engines such as MyISAM that has only table-
level locking (multiple readers with single writers). This also gives better performance with most
database systems, because the row locking manager in this case has less to do.

• If you need to collect statistics from large log tables, use summary tables instead of scanning the en-
tire log table. Maintaining the summaries should be much faster than trying to calculate statistics
“live.” Regenerating new summary tables from the logs when things change (depending on business
decisions) is faster than changing the running application.

• If possible, you should classify reports as “live” or as “statistical,” where data needed for statistical
reports is created only from summary tables that are generated periodically from the live data.

• Take advantage of the fact that columns have default values. Insert values explicitly only when the
value to be inserted differs from the default. This reduces the parsing that MySQL must do and im-
proves the insert speed.

• In some cases, it is convenient to pack and store data into a BLOB column. In this case, you must
provide code in your application to pack and unpack information, but this may save a lot of accesses
at some stage. This is practical when you have data that does not conform well to a rows-
and-columns table structure.

• Normally, you should try to keep all data non-redundant (observing what is referred to in database
theory as third normal form). However, there may be situations in which it can be advantageous to
duplicate information or create summary tables to gain more speed.

• Stored routines or UDFs (user-defined functions) may be a good way to gain performance for some
tasks. See Chapter 17, Stored Procedures and Functions, and Section 24.2, “Adding New Functions
to MySQL”, for more information.

• You can always gain something by caching queries or answers in your application and then perform-
ing many inserts or updates together. If your database system supports table locks (as do MySQL
and Oracle), this should help to ensure that the index cache is only flushed once after all updates.
You can also take advantage of MySQL's query cache to achieve similar results; see Section 5.14,
“The MySQL Query Cache”.

• Use INSERT DELAYED when you do not need to know when your data is written. This reduces the
overall insertion impact because many rows can be written with a single disk write.

• Use INSERT LOW_PRIORITY when you want to give SELECT statements higher priority than
your inserts.

• Use SELECT HIGH_PRIORITY to get retrievals that jump the queue. That is, the SELECT is ex-
ecuted even if there is another client waiting to do a write.

• Use multiple-row INSERT statements to store many rows with one SQL statement. Many SQL serv-
ers support this, including MySQL.

• Use LOAD DATA INFILE to load large amounts of data. This is faster than using INSERT state-
ments.

• Use AUTO_INCREMENT columns to generate unique values.

Optimization

484

• Use OPTIMIZE TABLE once in a while to avoid fragmentation with dynamic-format MyISAM
tables. See Section 14.1.3, “MyISAM Table Storage Formats”.

• Use MEMORY (HEAP) tables when possible to get more speed. See Section 14.4, “The MEMORY
(HEAP) Storage Engine”. MEMORY tables are useful for non-critical data that is accessed often, such
as information about the last displayed banner for users who don't have cookies enabled in their Web
browser. User sessions are another alternative available in many Web application environments for
handling volatile state data.

• With Web servers, images and other binary assets should normally be stored as files. That is, store
only a reference to the file rather than the file itself in the database. Most Web servers are better at
caching files than database contents, so using files is generally faster.

• Columns with identical information in different tables should be declared to have identical data types
so that joins based on the corresponding columns will be faster.

• Try to keep column names simple. For example, in a table named customer, use a column name
of name instead of customer_name. To make your names portable to other SQL servers, you
should keep them shorter than 18 characters.

• If you need really high speed, you should take a look at the low-level interfaces for data storage that
the different SQL servers support. For example, by accessing the MySQL MyISAM storage engine
directly, you could get a speed increase of two to five times compared to using the SQL interface. To
be able to do this, the data must be on the same server as the application, and usually it should only
be accessed by one process (because external file locking is really slow). One could eliminate these
problems by introducing low-level MyISAM commands in the MySQL server (this could be one easy
way to get more performance if needed). By carefully designing the database interface, it should be
quite easy to support this type of optimization.

• If you are using numerical data, it is faster in many cases to access information from a database
(using a live connection) than to access a text file. Information in the database is likely to be stored
in a more compact format than in the text file, so accessing it involves fewer disk accesses. You also
save code in your application because you need not parse your text files to find line and column
boundaries.

• Replication can provide a performance benefit for some operations. You can distribute client retriev-
als among replication servers to split up the load. To avoid slowing down the master while making
backups, you can make backups using a slave server. See Chapter 6, Replication.

• Declaring a MyISAM table with the DELAY_KEY_WRITE=1 table option makes index updates
faster because they are not flushed to disk until the table is closed. The downside is that if something
kills the server while such a table is open, you should ensure that the table is okay by running the
server with the --myisam-recover option, or by running myisamchk before restarting the
server. (However, even in this case, you should not lose anything by using DELAY_KEY_WRITE,
because the key information can always be generated from the data rows.)

7.3. Locking Issues

7.3.1. Locking Methods
MySQL uses table-level locking for MyISAM and MEMORY tables, page-level locking for BDB tables,
and row-level locking for InnoDB tables.

In many cases, you can make an educated guess about which locking type is best for an application, but
generally it is difficult to say that a given lock type is better than another. Everything depends on the ap-
plication and different parts of an application may require different lock types.

Optimization

485

To decide whether you want to use a storage engine with row-level locking, you should look at what
your application does and what mix of select and update statements it uses. For example, most Web ap-
plications perform many selects, relatively few deletes, updates based mainly on key values, and inserts
into a few specific tables. The base MySQL MyISAM setup is very well tuned for this.

Table locking in MySQL is deadlock-free for storage engines that use table-level locking. Deadlock
avoidance is managed by always requesting all needed locks at once at the beginning of a query and al-
ways locking the tables in the same order.

The table-locking method MySQL uses for WRITE locks works as follows:

• If there are no locks on the table, put a write lock on it.

• Otherwise, put the lock request in the write lock queue.

The table-locking method MySQL uses for READ locks works as follows:

• If there are no write locks on the table, put a read lock on it.

• Otherwise, put the lock request in the read lock queue.

When a lock is released, the lock is made available to the threads in the write lock queue and then to the
threads in the read lock queue. This means that if you have many updates for a table, SELECT state-
ments wait until there are no more updates.

You can analyze the table lock contention on your system by checking the Table_locks_waited
and Table_locks_immediate status variables:

mysql> SHOW STATUS LIKE 'Table%';
+-----------------------+---------+
| Variable_name | Value |
+-----------------------+---------+
| Table_locks_immediate | 1151552 |
| Table_locks_waited | 15324 |
+-----------------------+---------+

If a MyISAM table contains no free blocks in the middle, rows always are inserted at the end of the data
file. In this case, you can freely mix concurrent INSERT and SELECT statements for a MyISAM table
without locks. That is, you can insert rows into a MyISAM table at the same time other clients are read-
ing from it. Holes can result from rows having been deleted from or updated in the middle of the table. If
there are holes, concurrent inserts are disabled but are re-enabled automatically when all holes have been
filled with new data.

This behavior is altered by the concurrent_inserts system variable. See Section 7.3.3,
“Concurrent Inserts”.

If you want to perform many INSERT and SELECT operations on a table when concurrent inserts are
not possible, you can insert rows in a temporary table and update the real table with the rows from the
temporary table once in a while. This can be done with the following code:

mysql> LOCK TABLES real_table WRITE, insert_table WRITE;
mysql> INSERT INTO real_table SELECT * FROM insert_table;
mysql> TRUNCATE TABLE insert_table;
mysql> UNLOCK TABLES;

InnoDB uses row locks and BDB uses page locks. For these two storage engines, deadlocks are possible
because they automatically acquire locks during the processing of SQL statements, not at the start of the

Optimization

486

transaction.

Advantages of row-level locking:

• Fewer lock conflicts when accessing different rows in many threads.

• Fewer changes for rollbacks.

• Possible to lock a single row for a long time.

Disadvantages of row-level locking:

• Requires more memory than page-level or table-level locks.

• Slower than page-level or table-level locks when used on a large part of the table because you must
acquire many more locks.

• Definitely much slower than other locks if you often do GROUP BY operations on a large part of the
data or if you must scan the entire table frequently.

Table locks are superior to page-level or row-level locks in the following cases:

• Most statements for the table are reads.

• A mix of reads and writes, where writes are updates or deletes for a single row that can be fetched
with one key read:

UPDATE tbl_name SET column=value WHERE unique_key_col=key_value;
DELETE FROM tbl_name WHERE unique_key_col=key_value;

• SELECT combined with concurrent INSERT statements, and very few UPDATE or DELETE state-
ments.

• Many scans or GROUP BY operations on the entire table without any writers.

With higher-level locks, you can more easily tune applications by supporting locks of different types,
because the lock overhead is less than for row-level locks.

Options other than row-level or page-level locking:

• Versioning (such as that used in MySQL for concurrent inserts) where it is possible to have one
writer at the same time as many readers. This means that the database or table supports different
views for the data depending on when access begins. Other common terms for this are “time travel,”
“copy on write,” or “copy on demand.”

• Copy on demand is in many cases superior to page-level or row-level locking. However, in the worst
case, it can use much more memory than using normal locks.

• Instead of using row-level locks, you can employ application-level locks, such as GET_LOCK() and
RELEASE_LOCK() in MySQL. These are advisory locks, so they work only in well-behaved ap-
plications. (See Section 12.9.4, “Miscellaneous Functions”.)

Optimization

487

7.3.2. Table Locking Issues
To achieve a very high lock speed, MySQL uses table locking (instead of page, row, or column locking)
for all storage engines except InnoDB and BDB.

For InnoDB and BDB tables, MySQL uses only table locking if you explicitly lock the table with LOCK
TABLES. For these storage engines, we recommend that you not use LOCK TABLES at all, because
InnoDB uses automatic row-level locking and BDB uses page-level locking to ensure transaction isola-
tion.

For large tables, table locking is much better than row locking for most applications, but there are some
pitfalls:

• Table locking enables many threads to read from a table at the same time, but if a thread wants to
write to a table, it must first get exclusive access. During the update, all other threads that want to ac-
cess this particular table must wait until the update is done.

• Table updates normally are considered to be more important than table retrievals, so they are given
higher priority. This should ensure that updates to a table are not “starved” even if there is heavy
SELECT activity for the table.

• Table locking causes problems in cases such as when a thread is waiting because the disk is full and
free space needs to become available before the thread can proceed. In this case, all threads that want
to access the problem table are also put in a waiting state until more disk space is made available.

Table locking is also disadvantageous under the following scenario:

• A client issues a SELECT that takes a long time to run.

• Another client then issues an UPDATE on the same table. This client waits until the SELECT is fin-
ished.

• Another client issues another SELECT statement on the same table. Because UPDATE has higher
priority than SELECT, this SELECT waits for the UPDATE to finish, and for the first SELECT to
finish.

The following items describe some ways to avoid or reduce contention caused by table locking:

• Try to get the SELECT statements to run faster so that they lock tables for a shorter time. You might
have to create some summary tables to do this.

• Start mysqld with --low-priority-updates. This gives all statements that update (modify)
a table lower priority than SELECT statements. In this case, the second SELECT statement in the
preceding scenario would execute before the UPDATE statement, and would not need to wait for the
first SELECT to finish.

• You can specify that all updates issued in a specific connection should be done with low priority by
using the SET LOW_PRIORITY_UPDATES=1 statement. See Section 13.5.3, “SET Syntax”.

• You can give a specific INSERT, UPDATE, or DELETE statement lower priority with the
LOW_PRIORITY attribute.

• You can give a specific SELECT statement higher priority with the HIGH_PRIORITY attribute. See
Section 13.2.7, “SELECT Syntax”.

Optimization

488

• You can start mysqld with a low value for the max_write_lock_count system variable to
force MySQL to temporarily elevate the priority of all SELECT statements that are waiting for a ta-
ble after a specific number of inserts to the table occur. This allows READ locks after a certain num-
ber of WRITE locks.

• If you have problems with INSERT combined with SELECT, you might want to consider switching
to MyISAM tables, which support concurrent SELECT and INSERT statements. (See Section 7.3.3,
“Concurrent Inserts”.)

• If you mix inserts and deletes on the same table, INSERT DELAYED may be of great help. See Sec-
tion 13.2.4.2, “INSERT DELAYED Syntax”.

• If you have problems with mixed SELECT and DELETE statements, the LIMIT option to DELETE
may help. See Section 13.2.1, “DELETE Syntax”.

• Using SQL_BUFFER_RESULT with SELECT statements can help to make the duration of table
locks shorter. See Section 13.2.7, “SELECT Syntax”.

• You could change the locking code in mysys/thr_lock.c to use a single queue. In this case,
write locks and read locks would have the same priority, which might help some applications.

Here are some tips concerning table locks in MySQL:

• Concurrent users are not a problem if you do not mix updates with selects that need to examine
many rows in the same table.

• You can use LOCK TABLES to increase speed, because many updates within a single lock is much
faster than updating without locks. Splitting table contents into separate tables may also help.

• If you encounter speed problems with table locks in MySQL, you may be able to improve perform-
ance by converting some of your tables to InnoDB or BDB tables. See Section 14.2, “The InnoDB
Storage Engine”, and Section 14.5, “The BDB (BerkeleyDB) Storage Engine”.

7.3.3. Concurrent Inserts
For a MyISAM table, you can use concurrent inserts to add rows at the same time that SELECT state-
ments are running if there are no deleted rows in middle of the table.

The above is the default behavior, which can be controlled through the concurrent_inserts sys-
tem variable. If set to 1 then concurrent inserts can occur on MyISAM tables with deleted rows. If set to
2 then concurrent inserts are enforced, with all new rows being appended to the end of the table, even if
there are deleted rows. See also ??? [247].

Under circumstances where concurrent inserts can be used, there is seldom any need to use the
DELAYED modifier for INSERT statements. See Section 13.2.4.2, “INSERT DELAYED Syntax”.

If you are using the binary log, concurrent inserts are converted to normal inserts for CREATE ...
SELECT or INSERT ... SELECT statements. This is done to ensure that you can re-create an exact
copy of your tables by applying the log during a backup operation.

With LOAD DATA INFILE, if you specify CONCURRENT with a MyISAM table that satisfies the con-
dition for concurrent inserts (that is, it contains no free blocks in the middle), other threads can retrieve
data from the table while LOAD DATA is executing. Using this option affects the performance of LOAD
DATA a bit, even if no other thread is using the table at the same time.

Optimization

489

7.4. Optimizing Database Structure

7.4.1. Design Choices
MySQL keeps row data and index data in separate files. Many (almost all) other database systems mix
row and index data in the same file. We believe that the MySQL choice is better for a very wide range of
modern systems.

Another way to store the row data is to keep the information for each column in a separate area
(examples are SDBM and Focus). This causes a performance hit for every query that accesses more than
one column. Because this degenerates so quickly when more than one column is accessed, we believe
that this model is not good for general-purpose databases.

The more common case is that the index and data are stored together (as in Oracle/Sybase, et al). In this
case, you find the row information at the leaf page of the index. The good thing with this layout is that it,
in many cases, depending on how well the index is cached, saves a disk read. The bad things with this
layout are:

• Table scanning is much slower because you have to read through the indexes to get at the data.

• You cannot use only the index table to retrieve data for a query.

• You use more space because you must duplicate indexes from the nodes (you cannot store the row in
the nodes).

• Deletes degenerate the table over time (because indexes in nodes are usually not updated on delete).

• It is more difficult to cache only the index data.

7.4.2. Make Your Data as Small as Possible
One of the most basic optimizations is to design your tables to take as little space on the disk as possible.
This can result in huge improvements because disk reads are faster, and smaller tables normally require
less main memory while their contents are being actively processed during query execution. Indexing
also is a lesser resource burden if done on smaller columns.

MySQL supports many different storage engines (table types) and row formats. For each table, you can
decide which storage and indexing method to use. Choosing the proper table format for your application
may give you a big performance gain. See Chapter 14, Storage Engines and Table Types.

You can get better performance for a table and minimize storage space by using the techniques listed
here:

• Use the most efficient (smallest) data types possible. MySQL has many specialized types that save
disk space and memory. For example, use the smaller integer types if possible to get smaller tables.
MEDIUMINT is often a better choice than INT because a MEDIUMINT column uses 25% less space.

• Declare columns to be NOT NULL if possible. It makes everything faster and you save one bit per
column. If you really need NULL in your application, you should definitely use it. Just avoid having
it on all columns by default.

• For MyISAM tables, if you do not have any variable-length columns (VARCHAR, TEXT, or BLOB
columns), a fixed-size row format is used. This is faster but unfortunately may waste some space.
See Section 14.1.3, “MyISAM Table Storage Formats”. You can hint that you want to have fixed
length rows even if you have VARCHAR columns with the CREATE TABLE option

Optimization

490

ROW_FORMAT=FIXED.

• Starting with MySQL 5.0.3, InnoDB tables use a more compact storage format. In earlier versions
of MySQL, InnoDB rows contain some redundant information, such as the number of columns and
the length of each column, even for fixed-size columns. By default, tables are created in the compact
format (ROW_FORMAT=COMPACT). If you wish to downgrade to older versions of MySQL, you can
request the old format with ROW_FORMAT=REDUNDANT.

The compact InnoDB format also changes how CHAR columns containing UTF-8 data are stored.
With ROW_FORMAT=REDUNDANT, a UTF-8 CHAR(N) occupies 3 × N bytes, given that the maxim-
um length of a UTF-8 encoded character is three bytes. Many languages can be written primarily us-
ing single-byte UTF-8 characters, so a fixed storage length often wastes space. With
ROW_FORMAT=COMPACT format, InnoDB allocates a variable amount of storage in the range from
N to 3 × N bytes for these columns by stripping trailing spaces if necessary. The minimum storage
length is kept as N bytes to facilitate in-place updates in typical cases.

• The primary index of a table should be as short as possible. This makes identification of each row
easy and efficient.

• Create only the indexes that you really need. Indexes are good for retrieval but bad when you need to
store data quickly. If you access a table mostly by searching on a combination of columns, create an
index on them. The first part of the index should be the column most used. If you always use many
columns when selecting from the table, you should use the column with more duplicates first to ob-
tain better compression of the index.

• If it is very likely that a string column has a unique prefix on the first number of characters, it's better
to index only this prefix, using MySQL's support for creating an index on the leftmost part of the
column (see Section 13.1.4, “CREATE INDEX Syntax”). Shorter indexes are faster, not only be-
cause they require less disk space, but because they give also you more hits in the index cache, and
thus fewer disk seeks. See Section 7.5.2, “Tuning Server Parameters”.

• In some circumstances, it can be beneficial to split into two a table that is scanned very often. This is
especially true if it is a dynamic-format table and it is possible to use a smaller static format table
that can be used to find the relevant rows when scanning the table.

7.4.3. Column Indexes
All MySQL data types can be indexed. Use of indexes on the relevant columns is the best way to im-
prove the performance of SELECT operations.

The maximum number of indexes per table and the maximum index length is defined per storage engine.
See Chapter 14, Storage Engines and Table Types. All storage engines support at least 16 indexes per ta-
ble and a total index length of at least 256 bytes. Most storage engines have higher limits.

With col_name(N) syntax in an index specification, you can create an index that uses only the first N
characters of a string column. Indexing only a prefix of column values in this way can make the index
file much smaller. When you index a BLOB or TEXT column, you must specify a prefix length for the
index. For example:

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

Prefixes can be up to 1000 bytes long (767 bytes for InnoDB tables). Note that prefix limits are meas-
ured in bytes, whereas the prefix length in CREATE TABLE statements is interpreted as number of
characters. Be sure to take this into account when specifying a prefix length for a column that uses a
multi-byte character set.

You can also create FULLTEXT indexes. These are used for full-text searches. Only the MyISAM stor-

Optimization

491

age engine supports FULLTEXT indexes and only for CHAR, VARCHAR, and TEXT columns. Indexing
always takes place over the entire column and partial (column prefix) indexing is not supported. For de-
tails, see Section 12.7, “Full-Text Search Functions”.

You can also create indexes on spatial data types. Currently, only MyISAM supports R-tree indexes on
spatial types. As of MySQL 5.0.16, other storage engines use B-trees for indexing spatial types (except
for ARCHIVE and NDBCLUSTER, which do not support spatial type indexing).

The MEMORY storage engine uses HASH indexes by default, but also supports BTREE indexes.

7.4.4. Multiple-Column Indexes
MySQL can create composite indexes (that is, indexes on multiple columns). An index may consist of
up to 15 columns. For certain data types, you can index a prefix of the column (see Section 7.4.3,
“Column Indexes”).

A multiple-column index can be considered a sorted array containing values that are created by concat-
enating the values of the indexed columns.

MySQL uses multiple-column indexes in such a way that queries are fast when you specify a known
quantity for the first column of the index in a WHERE clause, even if you do not specify values for the
other columns.

Suppose that a table has the following specification:

CREATE TABLE test (
id INT NOT NULL,
last_name CHAR(30) NOT NULL,
first_name CHAR(30) NOT NULL,
PRIMARY KEY (id),
INDEX name (last_name,first_name)

);

The name index is an index over the last_name and first_name columns. The index can be used
for queries that specify values in a known range for last_name, or for both last_name and
first_name. Therefore, the name index is used in the following queries:

SELECT * FROM test WHERE last_name='Widenius';

SELECT * FROM test
WHERE last_name='Widenius' AND first_name='Michael';

SELECT * FROM test
WHERE last_name='Widenius'
AND (first_name='Michael' OR first_name='Monty');

SELECT * FROM test
WHERE last_name='Widenius'
AND first_name >='M' AND first_name < 'N';

However, the name index is not used in the following queries:

SELECT * FROM test WHERE first_name='Michael';

SELECT * FROM test
WHERE last_name='Widenius' OR first_name='Michael';

The manner in which MySQL uses indexes to improve query performance is discussed further in Sec-
tion 7.4.5, “How MySQL Uses Indexes”.

7.4.5. How MySQL Uses Indexes
Indexes are used to find rows with specific column values quickly. Without an index, MySQL must be-

Optimization

492

gin with the first row and then read through the entire table to find the relevant rows. The larger the ta-
ble, the more this costs. If the table has an index for the columns in question, MySQL can quickly de-
termine the position to seek to in the middle of the data file without having to look at all the data. If a ta-
ble has 1,000 rows, this is at least 100 times faster than reading sequentially. If you need to access most
of the rows, it is faster to read sequentially, because this minimizes disk seeks.

Most MySQL indexes (PRIMARY KEY, UNIQUE, INDEX, and FULLTEXT) are stored in B-trees. Ex-
ceptions are that indexes on spatial data types use R-trees, and that MEMORY tables also support hash in-
dexes.

Strings are automatically prefix- and end-space compressed. See Section 13.1.4, “CREATE INDEX
Syntax”.

In general, indexes are used as described in the following discussion. Characteristics specific to hash in-
dexes (as used in MEMORY tables) are described at the end of this section.

MySQL uses indexes for these operations:

• To find the rows matching a WHERE clause quickly.

• To eliminate rows from consideration. If there is a choice between multiple indexes, MySQL nor-
mally uses the index that finds the smallest number of rows.

• To retrieve rows from other tables when performing joins.

• To find the MIN() or MAX() value for a specific indexed column key_col. This is optimized by a
preprocessor that checks whether you are using WHERE key_part_N = constant on all key
parts that occur before key_col in the index. In this case, MySQL does a single key lookup for
each MIN() or MAX() expression and replaces it with a constant. If all expressions are replaced
with constants, the query returns at once. For example:

SELECT MIN(key_part2),MAX(key_part2)
FROM tbl_name WHERE key_part1=10;

• To sort or group a table if the sorting or grouping is done on a leftmost prefix of a usable key (for ex-
ample, ORDER BY key_part1, key_part2). If all key parts are followed by DESC, the key is
read in reverse order. See Section 7.2.12, “ORDER BY Optimization”.

• In some cases, a query can be optimized to retrieve values without consulting the data rows. If a
query uses only columns from a table that are numeric and that form a leftmost prefix for some key,
the selected values may be retrieved from the index tree for greater speed:

SELECT key_part3 FROM tbl_name
WHERE key_part1=1

Suppose that you issue the following SELECT statement:

mysql> SELECT * FROM tbl_name WHERE col1=val1 AND col2=val2;

If a multiple-column index exists on col1 and col2, the appropriate rows can be fetched directly. If
separate single-column indexes exist on col1 and col2, the optimizer tries to find the most restrictive
index by deciding which index finds fewer rows and using that index to fetch the rows.

If the table has a multiple-column index, any leftmost prefix of the index can be used by the optimizer to
find rows. For example, if you have a three-column index on (col1, col2, col3), you have in-
dexed search capabilities on (col1), (col1, col2), and (col1, col2, col3).

Optimization

493

MySQL cannot use a partial index if the columns do not form a leftmost prefix of the index. Suppose
that you have the SELECT statements shown here:

SELECT * FROM tbl_name WHERE col1=val1;
SELECT * FROM tbl_name WHERE col1=val1 AND col2=val2;

SELECT * FROM tbl_name WHERE col2=val2;
SELECT * FROM tbl_name WHERE col2=val2 AND col3=val3;

If an index exists on (col1, col2, col3), only the first two queries use the index. The third and
fourth queries do involve indexed columns, but (col2) and (col2, col3) are not leftmost prefixes
of (col1, col2, col3).

A B-tree index can be used for column comparisons in expressions that use the =, >, >=, <, <=, or
BETWEEN operators. The index also can be used for LIKE comparisons if the argument to LIKE is a
constant string that does not start with a wildcard character. For example, the following SELECT state-
ments use indexes:

SELECT * FROM tbl_name WHERE key_col LIKE 'Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE 'Pat%_ck%';

In the first statement, only rows with 'Patrick' <= key_col < 'Patricl' are considered. In
the second statement, only rows with 'Pat' <= key_col < 'Pau' are considered.

The following SELECT statements do not use indexes:

SELECT * FROM tbl_name WHERE key_col LIKE '%Patrick%';
SELECT * FROM tbl_name WHERE key_col LIKE other_col;

In the first statement, the LIKE value begins with a wildcard character. In the second statement, the
LIKE value is not a constant.

If you use ... LIKE '%string%' and string is longer than three characters, MySQL uses the
Turbo Boyer-Moore algorithm to initialize the pattern for the string and then uses this pattern to perform
the search more quickly.

A search using col_name IS NULL employs indexes if col_name is indexed.

Any index that does not span all AND levels in the WHERE clause is not used to optimize the query. In
other words, to be able to use an index, a prefix of the index must be used in every AND group.

The following WHERE clauses use indexes:

... WHERE index_part1=1 AND index_part2=2 AND other_column=3
/* index = 1 OR index = 2 */

... WHERE index=1 OR A=10 AND index=2
/* optimized like "index_part1='hello'" */

... WHERE index_part1='hello' AND index_part3=5
/* Can use index on index1 but not on index2 or index3 */

... WHERE index1=1 AND index2=2 OR index1=3 AND index3=3;

These WHERE clauses do not use indexes:

/* index_part1 is not used */
... WHERE index_part2=1 AND index_part3=2

/* Index is not used in both parts of the WHERE clause */
... WHERE index=1 OR A=10

/* No index spans all rows */
... WHERE index_part1=1 OR index_part2=10

Optimization

494

Sometimes MySQL does not use an index, even if one is available. One circumstance under which this
occurs is when the optimizer estimates that using the index would require MySQL to access a very large
percentage of the rows in the table. (In this case, a table scan is likely to be much faster because it re-
quires fewer seeks.) However, if such a query uses LIMIT to retrieve only some of the rows, MySQL
uses an index anyway, because it can much more quickly find the few rows to return in the result.

Hash indexes have somewhat different characteristics from those just discussed:

• They are used only for equality comparisons that use the = or <=> operators (but are very fast). They
are not used for comparison operators such as < that find a range of values.

• The optimizer cannot use a hash index to speed up ORDER BY operations. (This type of index can-
not be used to search for the next entry in order.)

• MySQL cannot determine approximately how many rows there are between two values (this is used
by the range optimizer to decide which index to use). This may affect some queries if you change a
MyISAM table to a hash-indexed MEMORY table.

• Only whole keys can be used to search for a row. (With a B-tree index, any leftmost prefix of the
key can be used to find rows.)

7.4.6. The MyISAM Key Cache
To minimize disk I/O, the MyISAM storage engine exploits a strategy that is used by many database
management systems. It employs a cache mechanism to keep the most frequently accessed table blocks
in memory:

• For index blocks, a special structure called the key cache (or key buffer) is maintained. The structure
contains a number of block buffers where the most-used index blocks are placed.

• For data blocks, MySQL uses no special cache. Instead it relies on the native operating system
filesystem cache.

This section first describes the basic operation of the MyISAM key cache. Then it discusses features that
improve key cache performance and that enable you to better control cache operation:

• Access to the key cache no longer is serialized among threads. Multiple threads can access the cache
concurrently.

• You can set up multiple key caches and assign table indexes to specific caches.

To control the size of the key cache, use the key_buffer_size system variable. If this variable is set
equal to zero, no key cache is used. The key cache also is not used if the key_buffer_size value is
too small to allocate the minimal number of block buffers (8).

When the key cache is not operational, index files are accessed using only the native filesystem buffer-
ing provided by the operating system. (In other words, table index blocks are accessed using the same
strategy as that employed for table data blocks.)

An index block is a contiguous unit of access to the MyISAM index files. Usually the size of an index
block is equal to the size of nodes of the index B-tree. (Indexes are represented on disk using a B-tree
data structure. Nodes at the bottom of the tree are leaf nodes. Nodes above the leaf nodes are non-leaf
nodes.)

Optimization

495

All block buffers in a key cache structure are the same size. This size can be equal to, greater than, or
less than the size of a table index block. Usually one these two values is a multiple of the other.

When data from any table index block must be accessed, the server first checks whether it is available in
some block buffer of the key cache. If it is, the server accesses data in the key cache rather than on disk.
That is, it reads from the cache or writes into it rather than reading from or writing to disk. Otherwise,
the server chooses a cache block buffer containing a different table index block (or blocks) and replaces
the data there by a copy of required table index block. As soon as the new index block is in the cache,
the index data can be accessed.

If it happens that a block selected for replacement has been modified, the block is considered “dirty.” In
this case, prior to being replaced, its contents are flushed to the table index from which it came.

Usually the server follows an LRU (Least Recently Used) strategy: When choosing a block for replace-
ment, it selects the least recently used index block. To make this choice easier, the key cache module
maintains a special queue (LRU chain) of all used blocks. When a block is accessed, it is placed at the
end of the queue. When blocks need to be replaced, blocks at the beginning of the queue are the least re-
cently used and become the first candidates for eviction.

7.4.6.1. Shared Key Cache Access

Threads can access key cache buffers simultaneously, subject to the following conditions:

• A buffer that is not being updated can be accessed by multiple threads.

• A buffer that is being updated causes threads that need to use it to wait until the update is complete.

• Multiple threads can initiate requests that result in cache block replacements, as long as they do not
interfere with each other (that is, as long as they need different index blocks, and thus cause different
cache blocks to be replaced).

Shared access to the key cache enables the server to improve throughput significantly.

7.4.6.2. Multiple Key Caches

Shared access to the key cache improves performance but does not eliminate contention among threads
entirely. They still compete for control structures that manage access to the key cache buffers. To reduce
key cache access contention further, MySQL also provides multiple key caches. This feature enables
you to assign different table indexes to different key caches.

Where there are multiple key caches, the server must know which cache to use when processing queries
for a given MyISAM table. By default, all MyISAM table indexes are cached in the default key cache. To
assign table indexes to a specific key cache, use the CACHE INDEX statement (see Section 13.5.5.1,
“CACHE INDEX Syntax”). For example, the following statement assigns indexes from the tables t1,
t2, and t3 to the key cache named hot_cache:

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
test.t1	assign_to_keycache	status	OK
test.t2	assign_to_keycache	status	OK
test.t3	assign_to_keycache	status	OK
+---------+--------------------+----------+----------+

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a SET
GLOBAL parameter setting statement or by using server startup options. For example:

Optimization

496

mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;

To destroy a key cache, set its size to zero:

mysql> SET GLOBAL keycache1.key_buffer_size=0;

Note that you cannot destroy the default key cache. Any attempt to do this will be ignored:

mysql> SET GLOBAL key_buffer_size = 0;

mysql> SHOW VARIABLES LIKE 'key_buffer_size';
+-----------------+---------+
| Variable_name | Value |
+-----------------+---------+
| key_buffer_size | 8384512 |
+-----------------+---------+

Key cache variables are structured system variables that have a name and components. For
keycache1.key_buffer_size, keycache1 is the cache variable name and
key_buffer_size is the cache component. See Section 5.2.4.1, “Structured System Variables”, for a
description of the syntax used for referring to structured key cache system variables.

By default, table indexes are assigned to the main (default) key cache created at the server startup. When
a key cache is destroyed, all indexes assigned to it are reassigned to the default key cache.

For a busy server, we recommend a strategy that uses three key caches:

• A “hot” key cache that takes up 20% of the space allocated for all key caches. Use this for tables that
are heavily used for searches but that are not updated.

• A “cold” key cache that takes up 20% of the space allocated for all key caches. Use this cache for
medium-sized, intensively modified tables, such as temporary tables.

• A “warm” key cache that takes up 60% of the key cache space. Employ this as the default key cache,
to be used by default for all other tables.

One reason the use of three key caches is beneficial is that access to one key cache structure does not
block access to the others. Statements that access tables assigned to one cache do not compete with
statements that access tables assigned to another cache. Performance gains occur for other reasons as
well:

• The hot cache is used only for retrieval queries, so its contents are never modified. Consequently,
whenever an index block needs to be pulled in from disk, the contents of the cache block chosen for
replacement need not be flushed first.

• For an index assigned to the hot cache, if there are no queries requiring an index scan, there is a high
probability that the index blocks corresponding to non-leaf nodes of the index B-tree remain in the
cache.

• An update operation most frequently executed for temporary tables is performed much faster when
the updated node is in the cache and need not be read in from disk first. If the size of the indexes of
the temporary tables are comparable with the size of cold key cache, the probability is very high that
the updated node is in the cache.

CACHE INDEX sets up an association between a table and a key cache, but the association is lost each
time the server restarts. If you want the association to take effect each time the server starts, one way to

Optimization

497

accomplish this is to use an option file: Include variable settings that configure your key caches, and an
init-file option that names a file containing CACHE INDEX statements to be executed. For ex-
ample:

key_buffer_size = 4G
hot_cache.key_buffer_size = 2G
cold_cache.key_buffer_size = 2G
init_file=/path/to/data-directory/mysqld_init.sql

The statements in mysqld_init.sql are executed each time the server starts. The file should contain
one SQL statement per line. The following example assigns several tables each to hot_cache and
cold_cache:

CACHE INDEX db1.t1, db1.t2, db2.t3 IN hot_cache
CACHE INDEX db1.t4, db2.t5, db2.t6 IN cold_cache

7.4.6.3. Midpoint Insertion Strategy

By default, the key cache management system uses the LRU strategy for choosing key cache blocks to
be evicted, but it also supports a more sophisticated method called the midpoint insertion strategy.

When using the midpoint insertion strategy, the LRU chain is divided into two parts: a hot sub-chain and
a warm sub-chain. The division point between two parts is not fixed, but the key cache management sys-
tem takes care that the warm part is not “too short,” always containing at least
key_cache_division_limit percent of the key cache blocks.
key_cache_division_limit is a component of structured key cache variables, so its value is a
parameter that can be set per cache.

When an index block is read from a table into the key cache, it is placed at the end of the warm sub-
chain. After a certain number of hits (accesses of the block), it is promoted to the hot sub-chain. At
present, the number of hits required to promote a block (3) is the same for all index blocks.

A block promoted into the hot sub-chain is placed at the end of the chain. The block then circulates
within this sub-chain. If the block stays at the beginning of the sub-chain for a long enough time, it is de-
moted to the warm chain. This time is determined by the value of the key_cache_age_threshold
component of the key cache.

The threshold value prescribes that, for a key cache containing N blocks, the block at the beginning of
the hot sub-chain not accessed within the last N × key_cache_age_threshold / 100 hits is to
be moved to the beginning of the warm sub-chain. It then becomes the first candidate for eviction, be-
cause blocks for replacement always are taken from the beginning of the warm sub-chain.

The midpoint insertion strategy allows you to keep more-valued blocks always in the cache. If you
prefer to use the plain LRU strategy, leave the key_cache_division_limit value set to its de-
fault of 100.

The midpoint insertion strategy helps to improve performance when execution of a query that requires
an index scan effectively pushes out of the cache all the index blocks corresponding to valuable high-
level B-tree nodes. To avoid this, you must use a midpoint insertion strategy with the
key_cache_division_limit set to much less than 100. Then valuable frequently hit nodes are
preserved in the hot sub-chain during an index scan operation as well.

7.4.6.4. Index Preloading

If there are enough blocks in a key cache to hold blocks of an entire index, or at least the blocks corres-
ponding to its non-leaf nodes, it makes sense to preload the key cache with index blocks before starting
to use it. Preloading allows you to put the table index blocks into a key cache buffer in the most efficient
way: by reading the index blocks from disk sequentially.

Optimization

498

Without preloading, the blocks are still placed into the key cache as needed by queries. Although the
blocks will stay in the cache, because there are enough buffers for all of them, they are fetched from disk
in random order, and not sequentially.

To preload an index into a cache, use the LOAD INDEX INTO CACHE statement. For example, the
following statement preloads nodes (index blocks) of indexes of the tables t1 and t2:

mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status | OK |
| test.t2 | preload_keys | status | OK |
+---------+--------------+----------+----------+

The IGNORE LEAVES modifier causes only blocks for the non-leaf nodes of the index to be preloaded.
Thus, the statement shown preloads all index blocks from t1, but only blocks for the non-leaf nodes
from t2.

If an index has been assigned to a key cache using a CACHE INDEX statement, preloading places index
blocks into that cache. Otherwise, the index is loaded into the default key cache.

7.4.6.5. Key Cache Block Size

It is possible to specify the size of the block buffers for an individual key cache using the
key_cache_block_size variable. This permits tuning of the performance of I/O operations for in-
dex files.

The best performance for I/O operations is achieved when the size of read buffers is equal to the size of
the native operating system I/O buffers. But setting the size of key nodes equal to the size of the I/O buf-
fer does not always ensure the best overall performance. When reading the big leaf nodes, the server
pulls in a lot of unnecessary data, effectively preventing reading other leaf nodes.

Currently, you cannot control the size of the index blocks in a table. This size is set by the server when
the .MYI index file is created, depending on the size of the keys in the indexes present in the table
definition. In most cases, it is set equal to the I/O buffer size.

7.4.6.6. Restructuring a Key Cache

A key cache can be restructured at any time by updating its parameter values. For example:

mysql> SET GLOBAL cold_cache.key_buffer_size=4*1024*1024;

If you assign to either the key_buffer_size or key_cache_block_size key cache component
a value that differs from the component's current value, the server destroys the cache's old structure and
creates a new one based on the new values. If the cache contains any dirty blocks, the server saves them
to disk before destroying and re-creating the cache. Restructuring does not occur if you change other key
cache parameters.

When restructuring a key cache, the server first flushes the contents of any dirty buffers to disk. After
that, the cache contents become unavailable. However, restructuring does not block queries that need to
use indexes assigned to the cache. Instead, the server directly accesses the table indexes using native
filesystem caching. Filesystem caching is not as efficient as using a key cache, so although queries ex-
ecute, a slowdown can be anticipated. After the cache has been restructured, it becomes available again
for caching indexes assigned to it, and the use of filesystem caching for the indexes ceases.

7.4.7. MyISAM Index Statistics Collection

Optimization

499

Storage engines collect statistics about tables for use by the optimizer. Table statistics are based on value
groups, where a value group is a set of rows with the same key prefix value. For optimizer purposes, an
important statistic is the average value group size.

MySQL uses the average value group size in the following ways:

• To estimate how may rows must be read for each ref access

• To estimate how many row a partial join will produce; that is, the number of rows that an operation
of this form will produce:

(...) JOIN tbl_name ON tbl_name.key = expr

As the average value group size for an index increases, the index is less useful for those two purposes
because the average number of rows per lookup increases: For the index to be good for optimization
purposes, it is best that each index value target a small number of rows in the table. When a given index
value yields a large number of rows, the index is less useful and MySQL is less likely to use it.

The average value group size is related to table cardinality, which is the number of value groups. The
SHOW INDEX statement displays a cardinality value based on N/S, where N is the number of rows in
the table and S is the average value group size. That ratio yields an approximate number of value groups
in the table.

For a join based on the <=> comparison operator, NULL is not treated differently from any other value:
NULL <=> NULL, just as N <=> N for any other N.

However, for a join based on the = operator, NULL is different from non-NULL values: expr1 = ex-
pr2 is not true when expr1 or expr2 (or both) are NULL. This affects ref accesses for comparisons
of the form tbl_name.key = expr: MySQL will not access the table if the current value of expr
is NULL, because the comparison cannot be true.

For = comparisons, it does not matter how many NULL values are in the table. For optimization pur-
poses, the relevant value is the average size of the non-NULL value groups. However, MySQL does not
currently allow that average size to be collected or used.

For MyISAM tables, you have some control over collection of table statistics by means of the myis-
am_stats_method system variable. This variable has two possible values, which differ as follows:

• When myisam_stats_method is nulls_equal, all NULL values are treated as identical (that
is, they all form a single value group).

If the NULL value group size is much higher than the average non-NULL value group size, this meth-
od skews the average value group size upward. This makes index appear to the optimizer to be less
useful than it really is for joins that look for non-NULL values. Consequently, the nulls_equal
method may cause the optimizer not to use the index for ref accesses when it should.

• When myisam_stats_method is nulls_unequal, NULL values are not considered the same.
Instead, each NULL value forms a separate value group of size 1.

If you have many NULL values, this method skews the average value group size downward. If the
average non-NULL value group size is large, counting NULL values each as a group of size 1 causes
the optimizer to overestimate the value of the index for joins that look for non-NULL values. Con-
sequently, the nulls_unequal method may cause the optimizer to use this index for ref look-
ups when other methods may be better.

Optimization

500

If you tend to use many joins that use <=> rather than =, NULL values are not special in comparisons
and one NULL is equal to another. In this case, nulls_equal is the appropriate statistics method.

The myisam_stats_method system variable has global and session values. Setting the global value
affects MyISAM statistics collection for all MyISAM tables. Setting the session value affects statistics
collection only for the current client connection. This means that you can force a table's statistics to be
regenerated with a given method without affecting other clients by setting the session value of myis-
am_stats_method.

To regenerate table statistics, you can use any of the following methods:

• Set myisam_stats_method, and then issue a CHECK TABLE statement

• Execute myisamchk --stats_method=method_name --analyze

• Change the table to cause its statistics to go out of date (for example, insert a row and then delete it),
and then set myisam_stats_method and issue an ANALYZE TABLE statement

Some caveats regarding the use of myisam_stats_method:

• You can force table statistics to be collected explicitly, as just described. However, MySQL may
also collect statistics automatically. For example, if during the course of executing statements for a
table, some of those statements modify the table, MySQL may collect statistics. (This may occur for
bulk inserts or deletes, or some ALTER TABLE statements, for example.) If this happens, the statist-
ics are collected using whatever value myisam_stats_method has at the time. Thus, if you col-
lect statistics using one method, but myisam_stats_method is set to the other method when a
table's statistics are collected automatically later, the other method will be used.

• There is no way to tell which method was used to generate statistics for a given MyISAM table.

• myisam_stats_method applies only to MyISAM tables. Other storage engines have only one
method for collecting table statistics. Usually it is closer to the nulls_equal method.

7.4.8. How MySQL Opens and Closes Tables
When you execute a mysqladmin status command, you should see something like this:

Uptime: 426 Running threads: 1 Questions: 11082
Reloads: 1 Open tables: 12

The Open tables value of 12 can be somewhat puzzling if you have only six tables.

MySQL is multi-threaded, so there may be many clients issuing queries for a given table simultan-
eously. To minimize the problem with multiple client threads having different states on the same table,
the table is opened independently by each concurrent thread. This uses additional memory but normally
increases performance. With MyISAM tables, one extra file descriptor is required for the data file for
each client that has the table open. (By contrast, the index file descriptor is shared between all threads.)

The table_cache, max_connections, and max_tmp_tables system variables affect the max-
imum number of files the server keeps open. If you increase one or more of these values, you may run
up against a limit imposed by your operating system on the per-process number of open file descriptors.
Many operating systems allow you to increase the open-files limit, although the method varies widely
from system to system. Consult your operating system documentation to determine whether it is possible
to increase the limit and how to do so.

Optimization

501

table_cache is related to max_connections. For example, for 200 concurrent running connec-
tions, you should have a table cache size of at least 200 × N, where N is the maximum number of
tables per join in any of the queries which you execute. You must also reserve some extra file
descriptors for temporary tables and files.

Make sure that your operating system can handle the number of open file descriptors implied by the ta-
ble_cache setting. If table_cache is set too high, MySQL may run out of file descriptors and re-
fuse connections, fail to perform queries, and be very unreliable. You also have to take into account that
the MyISAM storage engine needs two file descriptors for each unique open table. You can increase the
number of file descriptors available to MySQL using the --open-files-limit startup option to
mysqld. See Section A.2.17, “File Not Found”.

The cache of open tables is kept at a level of table_cache entries. The default value is 64; this can
be changed with the --table_cache option to mysqld. Note that MySQL may temporarily open
more tables than this to execute queries.

MySQL closes an unused table and removes it from the table cache under the following circumstances:

• When the cache is full and a thread tries to open a table that is not in the cache.

• When the cache contains more than table_cache entries and a table in the cache is no longer be-
ing used by any threads.

• When a table flushing operation occurs. This happens when someone issues a FLUSH TABLES
statement or executes a mysqladmin flush-tables or mysqladmin refresh command.

When the table cache fills up, the server uses the following procedure to locate a cache entry to use:

• Tables that are not currently in use are released, beginning with the table least recently used.

• If a new table needs to be opened, but the cache is full and no tables can be released, the cache is
temporarily extended as necessary.

When the cache is in a temporarily extended state and a table goes from a used to unused state, the table
is closed and released from the cache.

A table is opened for each concurrent access. This means the table needs to be opened twice if two
threads access the same table or if a thread accesses the table twice in the same query (for example, by
joining the table to itself). Each concurrent open requires an entry in the table cache. The first open of
any MyISAM table takes two file descriptors: one for the data file and one for the index file. Each addi-
tional use of the table takes only one file descriptor for the data file. The index file descriptor is shared
among all threads.

If you are opening a table with the HANDLER tbl_name OPEN statement, a dedicated table object is
allocated for the thread. This table object is not shared by other threads and is not closed until the thread
calls HANDLER tbl_name CLOSE or the thread terminates. When this happens, the table is put back
in the table cache (if the cache is not full). See Section 13.2.3, “HANDLER Syntax”.

You can determine whether your table cache is too small by checking the mysqld status variable
Opened_tables:

mysql> SHOW STATUS LIKE 'Opened_tables';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| Opened_tables | 2741 |
+---------------+-------+

Optimization

502

If the value is very large, even when you have not issued many FLUSH TABLES statements, you
should increase the table cache size. See Section 5.2.3, “System Variables”, and Section 5.2.5, “Status
Variables”.

7.4.9. Drawbacks to Creating Many Tables in the Same Data-
base

If you have many MyISAM tables in the same database directory, open, close, and create operations are
slow. If you execute SELECT statements on many different tables, there is a little overhead when the ta-
ble cache is full, because for every table that has to be opened, another must be closed. You can reduce
this overhead by making the table cache larger.

7.5. Optimizing the MySQL Server

7.5.1. System Factors and Startup Parameter Tuning
We start with system-level factors, because some of these decisions must be made very early to achieve
large performance gains. In other cases, a quick look at this section may suffice. However, it is always
nice to have a sense of how much can be gained by changing factors that apply at this level.

The operating system to use is very important. To get the best use of multiple-CPU machines, you
should use Solaris (because its threads implementation works well) or Linux (because the 2.4 and later
kernels have good SMP support). Note that older Linux kernels have a 2GB filesize limit by default. If
you have such a kernel and a need for files larger than 2GB, you should get the Large File Support
(LFS) patch for the ext2 filesystem. Other filesystems such as ReiserFS and XFS do not have this 2GB
limitation.

Before using MySQL in production, we advise you to test it on your intended platform.

Other tips:

• If you have enough RAM, you could remove all swap devices. Some operating systems use a swap
device in some contexts even if you have free memory.

• Avoid external locking. Since MySQL 4.0, the default has been for external locking to be disabled
on all systems. The --external-locking and --skip-external-locking options expli-
citly enable and disable external locking.

Note that disabling external locking does not affect MySQL's functionality as long as you run only
one server. Just remember to take down the server (or lock and flush the relevant tables) before you
run myisamchk. On some systems it is mandatory to disable external locking because it does not
work, anyway.

The only case in which you cannot disable external locking is when you run multiple MySQL serv-
ers (not clients) on the same data, or if you run myisamchk to check (not repair) a table without
telling the server to flush and lock the tables first. Note that using multiple MySQL servers to access
the same data concurrently is generally not recommended, except when using MySQL Cluster.

The LOCK TABLES and UNLOCK TABLES statements use internal locking, so you can use them
even if external locking is disabled.

7.5.2. Tuning Server Parameters

Optimization

503

You can determine the default buffer sizes used by the mysqld server using this command:

shell> mysqld --verbose --help

This command produces a list of all mysqld options and configurable system variables. The output in-
cludes the default variable values and looks something like this:

back_log 50
binlog_cache_size 32768
bulk_insert_buffer_size 8388608
connect_timeout 5
date_format (No default value)
datetime_format (No default value)
default_week_format 0
delayed_insert_limit 100
delayed_insert_timeout 300
delayed_queue_size 1000
expire_logs_days 0
flush_time 1800
ft_max_word_len 84
ft_min_word_len 4
ft_query_expansion_limit 20
ft_stopword_file (No default value)
group_concat_max_len 1024
innodb_additional_mem_pool_size 1048576
innodb_autoextend_increment 8
innodb_buffer_pool_awe_mem_mb 0
innodb_buffer_pool_size 8388608
innodb_concurrency_tickets 500
innodb_file_io_threads 4
innodb_force_recovery 0
innodb_lock_wait_timeout 50
innodb_log_buffer_size 1048576
innodb_log_file_size 5242880
innodb_log_files_in_group 2
innodb_mirrored_log_groups 1
innodb_open_files 300
innodb_sync_spin_loops 20
innodb_thread_concurrency 8
innodb_thread_sleep_delay 10000
interactive_timeout 28800
join_buffer_size 131072
key_buffer_size 8388600
key_cache_age_threshold 300
key_cache_block_size 1024
key_cache_division_limit 100
long_query_time 10
lower_case_table_names 1
max_allowed_packet 1048576
max_binlog_cache_size 4294967295
max_binlog_size 1073741824
max_connect_errors 10
max_connections 100
max_delayed_threads 20
max_error_count 64
max_heap_table_size 16777216
max_join_size 4294967295
max_length_for_sort_data 1024
max_relay_log_size 0
max_seeks_for_key 4294967295
max_sort_length 1024
max_tmp_tables 32
max_user_connections 0
max_write_lock_count 4294967295
multi_range_count 256
myisam_block_size 1024
myisam_data_pointer_size 6
myisam_max_extra_sort_file_size 2147483648
myisam_max_sort_file_size 2147483647
myisam_repair_threads 1
myisam_sort_buffer_size 8388608
net_buffer_length 16384
net_read_timeout 30
net_retry_count 10
net_write_timeout 60
open_files_limit 0
optimizer_prune_level 1

Optimization

504

optimizer_search_depth 62
preload_buffer_size 32768
query_alloc_block_size 8192
query_cache_limit 1048576
query_cache_min_res_unit 4096
query_cache_size 0
query_cache_type 1
query_cache_wlock_invalidate FALSE
query_prealloc_size 8192
range_alloc_block_size 2048
read_buffer_size 131072
read_only FALSE
read_rnd_buffer_size 262144
div_precision_increment 4
record_buffer 131072
relay_log_purge TRUE
relay_log_space_limit 0
slave_compressed_protocol FALSE
slave_net_timeout 3600
slave_transaction_retries 10
slow_launch_time 2
sort_buffer_size 2097144
sync-binlog 0
sync-frm TRUE
sync-replication 0
sync-replication-slave-id 0
sync-replication-timeout 10
table_cache 64
thread_cache_size 0
thread_concurrency 10
thread_stack 196608
time_format (No default value)
tmp_table_size 33554432
transaction_alloc_block_size 8192
transaction_prealloc_size 4096
updatable_views_with_limit 1
wait_timeout 28800

For a mysqld server that is currently running, you can see the current values of its system variables by
connecting to it and issuing this statement:

mysql> SHOW VARIABLES;

You can also see some statistical and status indicators for a running server by issuing this statement:

mysql> SHOW STATUS;

System variable and status information also can be obtained using mysqladmin:

shell> mysqladmin variables
shell> mysqladmin extended-status

For a full description of all system and status variables, see Section 5.2.3, “System Variables”, and Sec-
tion 5.2.5, “Status Variables”.

MySQL uses algorithms that are very scalable, so you can usually run with very little memory.
However, normally you get better performance by giving MySQL more memory.

When tuning a MySQL server, the two most important variables to configure are key_buffer_size
and table_cache. You should first feel confident that you have these set appropriately before trying
to change any other variables.

The following examples indicate some typical variable values for different runtime configurations.

• If you have at least 256MB of memory and many tables and want maximum performance with a
moderate number of clients, you should use something like this:

Optimization

505

shell> mysqld_safe --key_buffer_size=64M --table_cache=256 \
--sort_buffer_size=4M --read_buffer_size=1M &

• If you have only 128MB of memory and only a few tables, but you still do a lot of sorting, you can
use something like this:

shell> mysqld_safe --key_buffer_size=16M --sort_buffer_size=1M

If there are very many simultaneous connections, swapping problems may occur unless mysqld has
been configured to use very little memory for each connection. mysqld performs better if you have
enough memory for all connections.

• With little memory and lots of connections, use something like this:

shell> mysqld_safe --key_buffer_size=512K --sort_buffer_size=100K \
--read_buffer_size=100K &

Or even this:

shell> mysqld_safe --key_buffer_size=512K --sort_buffer_size=16K \
--table_cache=32 --read_buffer_size=8K \
--net_buffer_length=1K &

If you are performing GROUP BY or ORDER BY operations on tables that are much larger than your
available memory, you should increase the value of read_rnd_buffer_size to speed up the read-
ing of rows following sorting operations.

You can make use of the example option files included with your MySQL distribution; see Sec-
tion 4.3.2.1, “Preconfigured Option Files”.

If you specify an option on the command line for mysqld or mysqld_safe, it remains in effect only
for that invocation of the server. To use the option every time the server runs, put it in an option file.

To see the effects of a parameter change, do something like this:

shell> mysqld --key_buffer_size=32M --verbose --help

The variable values are listed near the end of the output. Make sure that the --verbose and --help
options are last. Otherwise, the effect of any options listed after them on the command line are not re-
flected in the output.

For information on tuning the InnoDB storage engine, see Section 14.2.11, “InnoDB Performance
Tuning Tips”.

7.5.3. Controlling Query Optimizer Performance
The task of the query optimizer is to find an optimal plan for executing an SQL query. Because the dif-
ference in performance between “good” and “bad” plans can be orders of magnitude (that is, seconds
versus hours or even days), most query optimizers, including that of MySQL, perform a more or less ex-
haustive search for an optimal plan among all possible query evaluation plans. For join queries, the num-
ber of possible plans investigated by the MySQL optimizer grows exponentially with the number of
tables referenced in a query. For small numbers of tables (typically less than 7–10) this is not a problem.
However, when larger queries are submitted, the time spent in query optimization may easily become
the major bottleneck in the server's performance.

Optimization

506

MySQL 5.0.1 introduces a more flexible method for query optimization that allows the user to control
how exhaustive the optimizer is in its search for an optimal query evaluation plan. The general idea is
that the fewer plans that are investigated by the optimizer, the less time it spends in compiling a query.
On the other hand, because the optimizer skips some plans, it may miss finding an optimal plan.

The behavior of the optimizer with respect to the number of plans it evaluates can be controlled via two
system variables:

• The optimizer_prune_level variable tells the optimizer to skip certain plans based on estim-
ates of the number of rows accessed for each table. Our experience shows that this kind of “educated
guess” rarely misses optimal plans, and may dramatically reduce query compilation times. That is
why this option is on (optimizer_prune_level=1) by default. However, if you believe that
the optimizer missed a better query plan, this option can be switched off (optim-
izer_prune_level=0) with the risk that query compilation may take much longer. Note that,
even with the use of this heuristic, the optimizer still explores a roughly exponential number of
plans.

• The optimizer_search_depth variable tells how far into the “future” of each incomplete plan
the optimizer should look to evaluate whether it should be expanded further. Smaller values of op-
timizer_search_depth may result in orders of magnitude smaller query compilation times.
For example, queries with 12, 13, or more tables may easily require hours and even days to compile
if optimizer_search_depth is close to the number of tables in the query. At the same time, if
compiled with optimizer_search_depth equal to 3 or 4, the optimizer may compile in less
than a minute for the same query. If you are unsure of what a reasonable value is for optim-
izer_search_depth, this variable can be set to 0 to tell the optimizer to determine the value
automatically.

7.5.4. How Compiling and Linking Affects the Speed of
MySQL

Most of the following tests were performed on Linux with the MySQL benchmarks, but they should
give some indication for other operating systems and workloads.

You obtain the fastest executables when you link with -static.

On Linux, it is best to compile the server with pgcc and -O3. You need about 200MB memory to com-
pile sql_yacc.cc with these options, because gcc or pgcc needs a great deal of memory to make
all functions inline. You should also set CXX=gcc when configuring MySQL to avoid inclusion of the
libstdc++ library, which is not needed. Note that with some versions of pgcc, the resulting binary
runs only on true Pentium processors, even if you use the compiler option indicating that you want the
resulting code to work on all x586-type processors (such as AMD).

By using a better compiler and compilation options, you can obtain a 10–30% speed increase in applica-
tions. This is particularly important if you compile the MySQL server yourself.

When we tested both the Cygnus CodeFusion and Fujitsu compilers, neither was sufficiently bug-free to
allow MySQL to be compiled with optimizations enabled.

The standard MySQL binary distributions are compiled with support for all character sets. When you
compile MySQL yourself, you should include support only for the character sets that you are going to
use. This is controlled by the --with-charset option to configure.

Here is a list of some measurements that we have made:

• If you use pgcc and compile everything with -O6, the mysqld server is 1% faster than with gcc

Optimization

507

2.95.2.

• If you link dynamically (without -static), the result is 13% slower on Linux. Note that you still
can use a dynamically linked MySQL library for your client applications. It is the server that is most
critical for performance.

• For a connection from a client to a server running on the same host, if you connect using TCP/IP
rather than a Unix socket file, performance is 7.5% slower. (On Unix, if you connect to the hostname
localhost, MySQL uses a socket file by default.)

• For TCP/IP connections from a client to a server, connecting to a remote server on another host is
8–11% slower than connecting to a server on the same host, even for connections over 100Mb/s Eth-
ernet.

• When running our benchmark tests using secure connections (all data encrypted with internal SSL
support) performance was 55% slower than with unencrypted connections.

• If you compile with --with-debug=full, most queries are 20% slower. Some queries may take
substantially longer; for example, the MySQL benchmarks run 35% slower. If you use -
-with-debug (without =full), the speed decrease is only 15%. For a version of mysqld that
has been compiled with --with-debug=full, you can disable memory checking at runtime by
starting it with the --skip-safemalloc option. The execution speed should then be close to that
obtained when configuring with --with-debug.

• On a Sun UltraSPARC-IIe, a server compiled with Forte 5.0 is 4% faster than one compiled with
gcc 3.2.

• On a Sun UltraSPARC-IIe, a server compiled with Forte 5.0 is 4% faster in 32-bit mode than in
64-bit mode.

• Compiling with gcc 2.95.2 for UltraSPARC with the -mcpu=v8 -Wa,-xarch=v8plusa op-
tions gives 4% more performance.

• On Solaris 2.5.1, MIT-pthreads is 8–12% slower than Solaris native threads on a single processor.
With greater loads or more CPUs, the difference should be larger.

• Compiling on Linux-x86 using gcc without frame pointers (-fomit-frame-pointer or -
fomit-frame-pointer -ffixed-ebp) makes mysqld 1–4% faster.

Binary MySQL distributions for Linux that are provided by MySQL AB used to be compiled with
pgcc. We had to go back to regular gcc due to a bug in pgcc that would generate binaries that do not
run on AMD. We will continue using gcc until that bug is resolved. In the meantime, if you have a non-
AMD machine, you can build a faster binary by compiling with pgcc. The standard MySQL Linux bin-
ary is linked statically to make it faster and more portable.

7.5.5. How MySQL Uses Memory
The following list indicates some of the ways that the mysqld server uses memory. Where applicable,
the name of the system variable relevant to the memory use is given:

• The key buffer is shared by all threads; its size is determined by the key_buffer_size variable.
Other buffers used by the server are allocated as needed. See Section 7.5.2, “Tuning Server Paramet-
ers”.

• Each connection uses some thread-specific space. The following list indicates these and which vari-
ables control their size:

Optimization

508

• A stack (default 192KB, variable thread_stack)

• A connection buffer (variable net_buffer_length)

• A result buffer (variable net_buffer_length)

The connection buffer and result buffer both begin with a size given by net_buffer_length but
are dynamically enlarged up to max_allowed_packet bytes as needed. The result buffer shrinks
to net_buffer_length after each SQL statement. While a statement is running, a copy of the
current statement string is also allocated.

• All threads share the same base memory.

• When a thread is no longer needed, the memory allocated to it is released and returned to the system
unless the thread goes back into the thread cache. In that case, the memory remains allocated.

• Only compressed MyISAM tables are memory mapped. This is because the 32-bit memory space of
4GB is not large enough for most big tables. When systems with a 64-bit address space become
more common, we may add general support for memory mapping.

• Each request that performs a sequential scan of a table allocates a read buffer (variable
read_buffer_size).

• When reading rows in an arbitrary sequence (for example, following a sort), a random-read buffer
(variable read_rnd_buffer_size) may be allocated in order to avoid disk seeks.

• All joins are executed in a single pass, and most joins can be done without even using a temporary
table. Most temporary tables are memory-based hash tables. Temporary tables with a large row
length (calculated as the sum of all column lengths) or that contain BLOB columns are stored on
disk.

If an internal heap table exceeds the size of tmp_table_size, MySQL handles this automatically
by changing the in-memory heap table to a disk-based MyISAM table as necessary. You can also in-
crease the temporary table size by setting the tmp_table_size option to mysqld, or by setting
the SQL option SQL_BIG_TABLES in the client program. See Section 13.5.3, “SET Syntax”.

• Most requests that perform a sort allocate a sort buffer and zero to two temporary files depending on
the result set size. See Section A.4.4, “Where MySQL Stores Temporary Files”.

• Almost all parsing and calculating is done in a local memory store. No memory overhead is needed
for small items, so the normal slow memory allocation and freeing is avoided. Memory is allocated
only for unexpectedly large strings. This is done with malloc() and free().

• For each MyISAM table that is opened, the index file is opened once; the data file is opened once for
each concurrently running thread. For each concurrent thread, a table structure, column structures for
each column, and a buffer of size 3 × N are allocated (where N is the maximum row length, not
counting BLOB columns). A BLOB column requires five to eight bytes plus the length of the BLOB
data. The MyISAM storage engine maintains one extra row buffer for internal use.

• For each table having BLOB columns, a buffer is enlarged dynamically to read in larger BLOB val-
ues. If you scan a table, a buffer as large as the largest BLOB value is allocated.

• Handler structures for all in-use tables are saved in a cache and managed as a FIFO. By default, the
cache has 64 entries. If a table has been used by two running threads at the same time, the cache con-
tains two entries for the table. See Section 7.4.8, “How MySQL Opens and Closes Tables”.

• A FLUSH TABLES statement or mysqladmin flush-tables command closes all tables that
are not in use at once and marks all in-use tables to be closed when the currently executing thread

Optimization

509

finishes. This effectively frees most in-use memory. FLUSH TABLES does not return until all tables
have been closed.

ps and other system status programs may report that mysqld uses a lot of memory. This may be
caused by thread stacks on different memory addresses. For example, the Solaris version of ps counts
the unused memory between stacks as used memory. You can verify this by checking available swap
with swap -s. We test mysqld with several memory-leakage detectors (both commercial and Open
Source), so there should be no memory leaks.

7.5.6. How MySQL Uses DNS
When a new client connects to mysqld, mysqld spawns a new thread to handle the request. This
thread first checks whether the hostname is in the hostname cache. If not, the thread attempts to resolve
the hostname:

• If the operating system supports the thread-safe gethostbyaddr_r() and gethostby-
name_r() calls, the thread uses them to perform hostname resolution.

• If the operating system does not support the thread-safe calls, the thread locks a mutex and calls
gethostbyaddr() and gethostbyname() instead. In this case, no other thread can resolve
hostnames that are not in the hostname cache until the first thread unlocks the mutex.

You can disable DNS hostname lookups by starting mysqld with the --skip-name-resolve op-
tion. However, in this case, you can use only IP numbers in the MySQL grant tables.

If you have a very slow DNS and many hosts, you can get more performance by either disabling DNS
lookups with --skip-name-resolve or by increasing the HOST_CACHE_SIZE define (default
value: 128) and recompiling mysqld.

You can disable the hostname cache by starting the server with the --skip-host-cache option. To
clear the hostname cache, issue a FLUSH HOSTS statement or execute the mysqladmin flush-
hosts command.

To disallow TCP/IP connections entirely, start mysqld with the --skip-networking option.

7.6. Disk Issues

• Disk seeks are a huge performance bottleneck. This problem becomes more apparent when the
amount of data starts to grow so large that effective caching becomes impossible. For large databases
where you access data more or less randomly, you can be sure that you need at least one disk seek to
read and a couple of disk seeks to write things. To minimize this problem, use disks with low seek
times.

• Increase the number of available disk spindles (and thereby reduce the seek overhead) by either sym-
linking files to different disks or striping the disks:

• Using symbolic links

This means that, for MyISAM tables, you symlink the index file and data files from their usual
location in the data directory to another disk (that may also be striped). This makes both the seek
and read times better, assuming that the disk is not used for other purposes as well. See Sec-
tion 7.6.1, “Using Symbolic Links”.

• Striping

Optimization

510

Striping means that you have many disks and put the first block on the first disk, the second
block on the second disk, and the N-th block on the (N MOD number_of_disks) disk, and so
on. This means if your normal data size is less than the stripe size (or perfectly aligned), you get
much better performance. Striping is very dependent on the operating system and the stripe size,
so benchmark your application with different stripe sizes. See Section 7.1.5, “Using Your Own
Benchmarks”.

The speed difference for striping is very dependent on the parameters. Depending on how you set
the striping parameters and number of disks, you may get differences measured in orders of mag-
nitude. You have to choose to optimize for random or sequential access.

• For reliability, you may want to use RAID 0+1 (striping plus mirroring), but in this case, you need 2
× N drives to hold N drives of data. This is probably the best option if you have the money for it.
However, you may also have to invest in some volume-management software to handle it efficiently.

• A good option is to vary the RAID level according to how critical a type of data is. For example,
store semi-important data that can be regenerated on a RAID 0 disk, but store really important data
such as host information and logs on a RAID 0+1 or RAID N disk. RAID N can be a problem if you
have many writes, due to the time required to update the parity bits.

• On Linux, you can get much more performance by using hdparm to configure your disk's interface.
(Up to 100% under load is not uncommon.) The following hdparm options should be quite good for
MySQL, and probably for many other applications:

hdparm -m 16 -d 1

Note that performance and reliability when using this command depend on your hardware, so we
strongly suggest that you test your system thoroughly after using hdparm. Please consult the hd-
parm manual page for more information. If hdparm is not used wisely, filesystem corruption may
result, so back up everything before experimenting!

• You can also set the parameters for the filesystem that the database uses:

If you do not need to know when files were last accessed (which is not really useful on a database
server), you can mount your filesystems with the -o noatime option. That skips updates to the
last access time in inodes on the filesystem, which avoids some disk seeks.

On many operating systems, you can set a filesystem to be updated asynchronously by mounting it
with the -o async option. If your computer is reasonably stable, this should give you more per-
formance without sacrificing too much reliability. (This flag is on by default on Linux.)

7.6.1. Using Symbolic Links
You can move tables and databases from the database directory to other locations and replace them with
symbolic links to the new locations. You might want to do this, for example, to move a database to a file
system with more free space or increase the speed of your system by spreading your tables to different
disk.

The recommended way to do this is simply to symlink databases to a different disk. Symlink tables only
as a last resort.

7.6.1.1. Using Symbolic Links for Databases on Unix

On Unix, the way to symlink a database is first to create a directory on some disk where you have free

Optimization

511

space and then to create a symlink to it from the MySQL data directory.

shell> mkdir /dr1/databases/test
shell> ln -s /dr1/databases/test /path/to/datadir

MySQL does not support linking one directory to multiple databases. Replacing a database directory
with a symbolic link works as long as you do not make a symbolic link between databases. Suppose that
you have a database db1 under the MySQL data directory, and then make a symlink db2 that points to
db1:

shell> cd /path/to/datadir
shell> ln -s db1 db2

The result is that, or any table tbl_a in db1, there also appears to be a table tbl_a in db2. If one cli-
ent updates db1.tbl_a and another client updates db2.tbl_a, problems are likely to occur.

However, if you really need to do this, it is possible by altering the source file mysys/
my_symlink.c, in which you should look for the following statement:

if (!(MyFlags & MY_RESOLVE_LINK) ||
(!lstat(filename,&stat_buff) && S_ISLNK(stat_buff.st_mode)))

Change the statement to this:

if (1)

7.6.1.2. Using Symbolic Links for Tables on Unix

You should not symlink tables on systems that do not have a fully operational realpath() call.
(Linux and Solaris support realpath()). You can check whether your system supports symbolic
links by issuing a SHOW VARIABLES LIKE 'have_symlink' statement.

Symlinks are fully supported only for MyISAM tables. For files used by tables for other storage engines,
you may get strange problems if you try to use symbolic links.

The handling of symbolic links for MyISAM tables works as follows:

• In the data directory, you always have the table format (.frm) file, the data (.MYD) file, and the in-
dex (.MYI) file. The data file and index file can be moved elsewhere and replaced in the data direct-
ory by symlinks. The format file cannot.

• You can symlink the data file and the index file independently to different directories.

• You can instruct a running MySQL server to perform the symlinking by using the DATA DIRECT-
ORY and INDEX DIRECTORY options to CREATE TABLE. See Section 13.1.5, “CREATE TA-
BLE Syntax”. Alternatively, symlinking can be accomplished manually from the command line us-
ing ln -s if mysqld is not running.

• myisamchk does not replace a symlink with the data file or index file. It works directly on the file
to which the symlink points. Any temporary files are created in the directory where the data file or
index file is located.

• Note: When you drop a table that is using symlinks, both the symlink and the file to which the sym-
link points are dropped. This is an extremely good reason why you should not run mysqld as the
system root or allow system users to have write access to MySQL database directories.

• If you rename a table with ALTER TABLE ... RENAME and you do not move the table to anoth-

Optimization

512

er database, the symlinks in the database directory are renamed to the new names and the data file
and index file are renamed accordingly.

• If you use ALTER TABLE ... RENAME to move a table to another database, the table is moved
to the other database directory. The old symlinks and the files to which they pointed are deleted. In
other words, the new table is not symlinked.

• If you are not using symlinks, you should use the --skip-symbolic-links option to mysqld
to ensure that no one can use mysqld to drop or rename a file outside of the data directory.

Table symlink operations that are not yet supported:

• ALTER TABLE ignores the DATA DIRECTORY and INDEX DIRECTORY table options.

• BACKUP TABLE and RESTORE TABLE do not respect symbolic links.

• The .frm file must never be a symbolic link (as indicated previously, only the data and index files
can be symbolic links). Attempting to do this (for example, to make synonyms) produces incorrect
results. Suppose that you have a database db1 under the MySQL data directory, a table tbl1 in this
database, and in the db1 directory you make a symlink tbl2 that points to tbl1:

shell> cd /path/to/datadir/db1
shell> ln -s tbl1.frm tbl2.frm
shell> ln -s tbl1.MYD tbl2.MYD
shell> ln -s tbl1.MYI tbl2.MYI

Problems result if one thread reads db1.tbl1 and another thread updates db1.tbl2:

• The query cache is “fooled” (it has no way of knowing that tbl1 has not been updated, so it re-
turns outdated results).

• ALTER statements on tbl2 fail.

7.6.1.3. Using Symbolic Links for Databases on Windows

Symbolic links are enabled by default for all Windows servers. This enables you to put a database dir-
ectory on a different disk by setting up a symbolic link to it. This is similar to the way that database
symbolic links work on Unix, although the procedure for setting up the link is different. If you do not
need symbolic links, you can disable them using the --skip-symbolic-links option.

On Windows, create a symbolic link to a MySQL database by creating a file in the data directory that
contains the path to the destination directory. The file should be named db_name.sym, where
db_name is the database name.

Suppose that the MySQL data directory is C:\mysql\data and you want to have database foo loc-
ated at D:\data\foo. Set up a symlink using this procedure

1. Make sure that the D:\data\foo directory exists by creating it if necessary. If you already have
a database directory named foo in the data directory, you should move it to D:\data. Otherwise,
the symbolic link will be ineffective. To avoid problems, make sure that the server is not running
when you move the database directory.

2. Create a text file C:\mysql\data\foo.sym that contains the pathname D:\data\foo\.

Optimization

513

After this, all tables created in the database foo are created in D:\data\foo. Note that the symbolic
link is not used if a directory with the same name as the database exists in the MySQL data directory.

Optimization

514

Chapter 8. Client and Utility Programs
There are many different MySQL client programs that connect to the server to access databases or per-
form administrative tasks. Other utilities are available as well. These do not establish a client connection
with the server but perform MySQL-related operations.

This chapter provides a brief overview of these programs and then a more detailed description of each
one. Each program's description indicates its invocation syntax and the options that it understands. See
Chapter 4, Using MySQL Programs, for general information on invoking programs and specifying pro-
gram options.

8.1. Overview of Client and Utility Programs
The following list briefly describes the MySQL client programs and utilities:

• myisam_ftdump

A utility that displays information about full-text indexes in MyISAM tables. See Section 8.2, “my-
isam_ftdump — Display Full-Text Index information”.

• myisamchk

A utility to describe, check, optimize, and repair MyISAM tables. See Section 8.3, “myisamchk —
MyISAM Table-Maintenance Utility”.

• myisamlog

A utility that processes the contents of a MyISAM log file. See Section 8.4, “myisamlog — Dis-
play MyISAM Log File Contents”.

• myisampack

A utility that compresses MyISAM tables to produce smaller read-only tables. See Section 8.5, “my-
isampack — Generate Compressed, Read-Only MyISAM Tables”.

• mysql

The command-line tool for interactively entering SQL statements or executing them from a file in
batch mode. See Section 8.6, “mysql — The MySQL Command-Line Tool”.

• mysql_explain_log

A utility that analyzes queries in the MySQL query log using EXPLAIN See Section 8.7,
“mysql_explain_log — Use EXPLAIN on Statements in Query Log”.

• mysqlaccess

A script that checks the access privileges for a hostname, username, and database combination. See
Section 8.8, “mysqlaccess — Client for Checking Access Privileges”.

• mysqladmin

A client that performs administrative operations, such as creating or dropping databases, reloading
the grant tables, flushing tables to disk, and reopening log files. mysqladmin can also be used to
retrieve version, process, and status information from the server. See Section 8.9, “mysqladmin —
Client for Administering a MySQL Server”.

515

• mysqlbinlog

A utility for reading statements from a binary log. The log of executed statements contained in the
binary log files can be used to help recover from a crash. See Section 8.10, “mysqlbinlog —
Utility for Processing Binary Log Files”.

• mysqlcheck

A table-maintenance client that checks, repairs, analyzes, and optimizes tables. See Section 8.11,
“mysqlcheck — A Table Maintenance and Repair Program”.

• mysqldump

A client that dumps a MySQL database into a file as SQL statements or as tab-separated text files.
See Section 8.12, “mysqldump — A Database Backup Program”.

• mysqlhotcopy

A utility that quickly makes backups of MyISAM tables while the server is running. See Sec-
tion 8.13, “mysqlhotcopy — A Database Backup Program”.

• mysqlimport

A client that imports text files into their respective tables using LOAD DATA INFILE. See Sec-
tion 8.14, “mysqlimport — A Data Import Program”.

• mysqlshow

A client that displays information about databases, tables, columns, and indexes. See Section 8.15,
“mysqlshow — Display Database, Table, and Column Information”.

• mysql_zap

A utility that kills processes that match a pattern. Section 8.16, “mysql_zap — Kill Processes That
Match a Pattern”.

• perror

A utility that displays the meaning of system or MySQL error codes. See Section 8.17, “perror —
Explain Error Codes”.

• replace

A utility program that performs string replacement in the input text. See Section 8.18, “replace —
A String-Replacement Utility”.

MySQL AB also provides a number of GUI tools for administering and otherwise working with MySQL
servers. For basic information about these, see Chapter 4, Using MySQL Programs.

Each MySQL program takes many different options. Most programs provide a --help option that you
can use to get a full description of the program's different options. For example, try mysql --help.

MySQL client programs that communicate with the server using the MySQL client/server library use the
following environment variables:

MYSQL_UNIX_PORT The default Unix socket file; used for connections to localhost

MYSQL_TCP_PORT The default port number; used for TCP/IP connections

MYSQL_PWD The default password

Client and Utility Programs

516

MYSQL_DEBUG Debug trace options when debugging

TMPDIR The directory where temporary tables and files are created

Use of MYSQL_PWD is insecure. See Section 5.9.6, “Keeping Your Password Secure”.

You can override the default option values or values specified in environment variables for all standard
programs by specifying options in an option file or on the command line. See Section 4.3, “Specifying
Program Options”.

8.2. myisam_ftdump — Display Full-Text Index inform-
ation

myisam_ftdump displays information about FULLTEXT indexes in MyISAM tables. It reads the My-
ISAM index file directly, so it must be run on the server host where the table is located

Invoke myisam_ftdump like this:

shell> myisam_ftdump [options] tbl_name index_num

The tbl_name argument should be the name of a MyISAM table. You can also specify a table by nam-
ing its index file (the file with the .MYI suffix). If you do not invoke myisam_ftdump in the direct-
ory where the table files are located, the table or index file name name must be preceded by the path-
name to the table's database directory. Index numbers begin with 0.

Example: Suppose that the test database contains a table named mytexttablel that has the follow-
ing definition:

CREATE TABLE mytexttable
(

id INT NOT NULL,
txt TEXT NOT NULL,
PRIMARY KEY (id),
FULLTEXT (txt)

);

The index on id is index 0 and the FULLTEXT index on txt is index 1. If your working directory is
the test database directory, invoke myisam_ftdump as follows:

shell> myisam_ftdump mytexttable 1

If the pathname to the test database directory is /usr/local/mysql/data/test, you can also
specify the table name argument using that pathname. This is useful if you do not invoke myis-
am_ftdump in the database directory:

shell> myisam_ftdump /usr/local/mysql/data/test/mytexttable 1

myisam_ftdump understands the following options:

• --help, -h -?

Display a help message and exit.

• --count, -c

Calculate per-word statistics (counts and global weights).

Client and Utility Programs

517

• --dump, -d

Dump the index, including data offsets and word weights.

• --length, -l

Report the length distribution.

• --stats, -s

Report global index statistics. This is the default operation if no other operation is specified.

• --verbose, -v

Verbose mode. Print more output about what the program does.

8.3. myisamchk — MyISAM Table-Maintenance Utility
The myisamchk utility gets information about your database tables or checks, repairs, or optimizes
them. myisamchk works with MyISAM tables (tables that have .MYD and .MYI files for storing data
and indexes).

Invoke myisamchk like this:

shell> myisamchk [options] tbl_name ...

The options specify what you want myisamchk to do. They are described in the following sections.
You can also get a list of options by invoking myisamchk --help.

With no options, myisamchk simply checks your table as the default operation. To get more informa-
tion or to tell myisamchk to take corrective action, specify options as described in the following dis-
cussion.

tbl_name is the database table you want to check or repair. If you run myisamchk somewhere other
than in the database directory, you must specify the path to the database directory, because myisamchk
has no idea where the database is located. In fact, myisamchk doesn't actually care whether the files
you are working on are located in a database directory. You can copy the files that correspond to a data-
base table into some other location and perform recovery operations on them there.

You can name several tables on the myisamchk command line if you wish. You can also specify a ta-
ble by naming its index file (the file with the .MYI suffix). This allows you to specify all tables in a dir-
ectory by using the pattern *.MYI. For example, if you are in a database directory, you can check all the
MyISAM tables in that directory like this:

shell> myisamchk *.MYI

If you are not in the database directory, you can check all the tables there by specifying the path to the
directory:

shell> myisamchk /path/to/database_dir/*.MYI

You can even check all tables in all databases by specifying a wildcard with the path to the MySQL data
directory:

shell> myisamchk /path/to/datadir/*/*.MYI

Client and Utility Programs

518

The recommended way to quickly check all MyISAM tables is:

shell> myisamchk --silent --fast /path/to/datadir/*/*.MYI

If you want to check all MyISAM tables and repair any that are corrupted, you can use the following
command:

shell> myisamchk --silent --force --fast --update-state \
--key_buffer_size=64M --sort_buffer_size=64M \
--read_buffer_size=1M --write_buffer_size=1M \
/path/to/datadir/*/*.MYI

This command assumes that you have more than 64MB free. For more information about memory alloc-
ation with myisamchk, see Section 8.3.5, “myisamchk Memory Usage”.

You must ensure that no other program is using the tables while you are running myisamchk. Other-
wise, when you run myisamchk, it may display the following error message:

warning: clients are using or haven't closed the table properly

This means that you are trying to check a table that has been updated by another program (such as the
mysqld server) that hasn't yet closed the file or that has died without closing the file properly.

If mysqld is running, you must force it to flush any table modifications that are still buffered in
memory by using FLUSH TABLES. You should then ensure that no one is using the tables while you
are running myisamchk. The easiest way to avoid this problem is to use CHECK TABLE instead of
myisamchk to check tables.

8.3.1. myisamchk General Options
The options described in this section can be used for any type of table maintenance operation performed
by myisamchk. The sections following this one describe options that pertain only to specific opera-
tions, such as table checking or repairing.

• --help, -?

Display a help message and exit.

• --debug=debug_options, -# debug_options

Write a debugging log. The debug_options string often is 'd:t:o,file_name'.

• --silent, -s

Silent mode. Write output only when errors occur. You can use -s twice (-ss) to make myis-
amchk very silent.

• --verbose, -v

Verbose mode. Print more information about what the program does. This can be used with -d and
-e. Use -v multiple times (-vv, -vvv) for even more output.

• --version, -V

Display version information and exit.

• --wait, -w

Client and Utility Programs

519

Instead of terminating with an error if the table is locked, wait until the table is unlocked before con-
tinuing. Note that if you are running mysqld with external locking disabled, the table can be locked
only by another myisamchk command.

You can also set the following variables by using --var_name=value syntax:

Variable Default Value

decode_bits 9

ft_max_word_len version-dependent

ft_min_word_len 4

ft_stopword_file built-in list

key_buffer_size 523264

myisam_block_size 1024

read_buffer_size 262136

sort_buffer_size 2097144

sort_key_blocks 16

stats_method nulls_unequal

write_buffer_size 262136

The possible myisamchk variables and their default values can be examined with myisamchk -
-help:

sort_buffer_size is used when the keys are repaired by sorting keys, which is the normal case
when you use --recover.

key_buffer_size is used when you are checking the table with --extend-check or when the
keys are repaired by inserting keys row by row into the table (like when doing normal inserts). Repairing
through the key buffer is used in the following cases:

• You use --safe-recover.

• The temporary files needed to sort the keys would be more than twice as big as when creating the
key file directly. This is often the case when you have large key values for CHAR, VARCHAR, or
TEXT columns, because the sort operation needs to store the complete key values as it proceeds. If
you have lots of temporary space and you can force myisamchk to repair by sorting, you can use
the --sort-recover option.

Repairing through the key buffer takes much less disk space than using sorting, but is also much slower.

If you want a faster repair, set the key_buffer_size and sort_buffer_size variables to about
25% of your available memory. You can set both variables to large values, because only one of them is
used at a time.

myisam_block_size is the size used for index blocks.

stats_method influences how NULL values are treated for index statistics collection when the -
-analyze option is given. It acts like the myisam_stats_method system variable. For more in-
formation, see the description of myisam_stats_method in Section 5.2.3, “System Variables”, and
Section 7.4.7, “MyISAM Index Statistics Collection”. For MySQL 5.0, stats_method was added in

Client and Utility Programs

520

MySQL 5.0.14. For older versions, the statistics collection method is equivalent to nulls_equal.

ft_min_word_len and ft_max_word_len indicate the minimum and maximum word length for
FULLTEXT indexes. ft_stopword_file names the stopword file. These need to be set under the
following circumstances.

If you use myisamchk to perform an operation that modifies table indexes (such as repair or analyze),
the FULLTEXT indexes are rebuilt using the default full-text parameter values for minimum and maxim-
um word length and the stopword file unless you specify otherwise. This can result in queries failing.

The problem occurs because these parameters are known only by the server. They are not stored in My-
ISAM index files. To avoid the problem if you have modified the minimum or maximum word length or
the stopword file in the server, specify the same ft_min_word_len, ft_max_word_len, and
ft_stopword_file values to myisamchk that you use for mysqld. For example, if you have set
the minimum word length to 3, you can repair a table with myisamchk like this:

shell> myisamchk --recover --ft_min_word_len=3 tbl_name.MYI

To ensure that myisamchk and the server use the same values for full-text parameters, you can place
each one in both the [mysqld] and [myisamchk] sections of an option file:

[mysqld]
ft_min_word_len=3

[myisamchk]
ft_min_word_len=3

An alternative to using myisamchk is to use the REPAIR TABLE, ANALYZE TABLE, OPTIMIZE
TABLE, or ALTER TABLE. These statements are performed by the server, which knows the proper full-
text parameter values to use.

8.3.2. myisamchk Check Options
myisamchk supports the following options for table checking operations:

• --check, -c

Check the table for errors. This is the default operation if you specify no option that selects an opera-
tion type explicitly.

• --check-only-changed, -C

Check only tables that have changed since the last check.

• --extend-check, -e

Check the table very thoroughly. This is quite slow if the table has many indexes. This option should
only be used in extreme cases. Normally, myisamchk or myisamchk --medium-check
should be able to determine whether there are any errors in the table.

If you are using --extend-check and have plenty of memory, setting the key_buffer_size
variable to a large value helps the repair operation run faster.

• --fast, -F

Check only tables that haven't been closed properly.

• --force, -f

Client and Utility Programs

521

Do a repair operation automatically if myisamchk finds any errors in the table. The repair type is
the same as that specified with the --recover or -r option.

• --information, -i

Print informational statistics about the table that is checked.

• --medium-check, -m

Do a check that is faster than an --extend-check operation. This finds only 99.99% of all er-
rors, which should be good enough in most cases.

• --read-only, -T

Don't mark the table as checked. This is useful if you use myisamchk to check a table that is in use
by some other application that doesn't use locking, such as mysqld when run with external locking
disabled.

• --update-state, -U

Store information in the .MYI file to indicate when the table was checked and whether the table
crashed. This should be used to get full benefit of the --check-only-changed option, but you
shouldn't use this option if the mysqld server is using the table and you are running it with external
locking disabled.

8.3.3. myisamchk Repair Options
myisamchk supports the following options for table repair operations:

• --backup, -B

Make a backup of the .MYD file as file_name-time.BAK

• --character-sets-dir=path

The directory where character sets are installed. See Section 5.11.1, “The Character Set Used for
Data and Sorting”.

• --correct-checksum

Correct the checksum information for the table.

• --data-file-length=len, -D len

Maximum length of the data file (when re-creating data file when it is “full”).

• --extend-check, -e

Do a repair that tries to recover every possible row from the data file. Normally, this also finds a lot
of garbage rows. Don't use this option unless you are desperate.

• --force, -f

Overwrite old intermediate files (files with names like tbl_name.TMD) instead of aborting.

• --keys-used=val, -k val

Client and Utility Programs

522

For myisamchk, the option value is a bit-value that indicates which indexes to update. Each binary
bit of the option value corresponds to a table index, where the first index is bit 0. An option value of
0 disables updates to all indexes, which can be used to get faster inserts. Deactivated indexes can be
reactivated by using myisamchk -r.

• --max-record-length=len

Skip rows larger than the given length if myisamchk cannot allocate memory to hold them.

• --parallel-recover, -p

Uses the same technique as -r and -n, but creates all the keys in parallel, using different threads.
This is beta-quality code. Use at your own risk!

• --quick, -q

Achieve a faster repair by not modifying the data file. You can specify this option twice to force
myisamchk to modify the original data file in case of duplicate keys.

• --recover, -r

Do a repair that can fix almost any problem except unique keys that aren't unique (which is an ex-
tremely unlikely error with MyISAM tables). If you want to recover a table, this is the option to try
first. You should try --safe-recover only if myisamchk reports that the table can't be re-
covered using --recover. (In the unlikely case that --recover fails, the data file remains in-
tact.)

If you have lots of memory, you should increase the value of sort_buffer_size.

• --safe-recover, -o

Do a repair using an old recovery method that reads through all rows in order and updates all index
trees based on the rows found. This is an order of magnitude slower than --recover, but can
handle a couple of very unlikely cases that --recover cannot. This recovery method also uses
much less disk space than --recover. Normally, you should repair first with --recover, and
then with --safe-recover only if --recover fails.

If you have lots of memory, you should increase the value of key_buffer_size.

• --set-character-set=name

Change the character set used by the table indexes. This option was replaced by -
-set-collation in MySQL 5.0.3.

• --set-collation=name

Specify the collation to use for sorting table indexes. The character set name is implied by the first
part of the collation name. This option was added in MySQL 5.0.3.

• --sort-recover, -n

Force myisamchk to use sorting to resolve the keys even if the temporary files would be very
large.

• --tmpdir=path, -t path

Path of the directory to be used for storing temporary files. If this is not set, myisamchk uses the
value of the TMPDIR environment variable. tmpdir can be set to a list of directory paths that are

Client and Utility Programs

523

used successively in round-robin fashion for creating temporary files. The separator character
between directory names is the colon (‘:’) on Unix and the semicolon (‘;’) on Windows, NetWare,
and OS/2.

• --unpack, -u

Unpack a table that was packed with myisampack.

8.3.4. Other myisamchk Options
myisamchk supports the following options for actions other than table checks and repairs:

• --analyze, -a

Analyze the distribution of key values. This improves join performance by enabling the join optim-
izer to better choose the order in which to join the tables and which indexes it should use. To obtain
information about the key distribution, use a myisamchk --description --verbose
tbl_name command or the SHOW INDEX FROM tbl_name statement.

• --block-search=offset, -b offset

Find the record that a block at the given offset belongs to.

• --description, -d

Print some descriptive information about the table.

• --set-auto-increment[=value], -A[value]

Force AUTO_INCREMENT numbering for new records to start at the given value (or higher, if there
are existing records with AUTO_INCREMENT values this large). If value is not specified,
AUTO_INCREMENT numbers for new records begin with the largest value currently in the table,
plus one.

• --sort-index, -S

Sort the index tree blocks in high-low order. This optimizes seeks and makes table scans that use in-
dexes faster.

• --sort-records=N, -R N

Sort records according to a particular index. This makes your data much more localized and may
speed up range-based SELECT and ORDER BY operations that use this index. (The first time you
use this option to sort a table, it may be very slow.) To determine a table's index numbers, use SHOW
INDEX, which displays a table's indexes in the same order that myisamchk sees them. Indexes are
numbered beginning with 1.

If keys are not packed (PACK_KEYS=0)), they have the same length, so when myisamchk sorts
and moves records, it just overwrites record offsets in the index. If keys are packed
(PACK_KEYS=1), myisamchk must unpack key blocks first, then re-create indexes and pack the
key blocks again. (In this case, re-creating indexes is faster than updating offsets for each index.)

8.3.5. myisamchk Memory Usage
Memory allocation is important when you run myisamchk. myisamchk uses no more memory than

Client and Utility Programs

524

its memory-related variables are set to. If you are going to use myisamchk on very large tables, you
should first decide how much memory you want it to use. The default is to use only about 3MB to per-
form repairs. By using larger values, you can get myisamchk to operate faster. For example, if you
have more than 32MB RAM, you could use options such as these (in addition to any other options you
might specify):

shell> myisamchk --sort_buffer_size=16M --key_buffer_size=16M \
--read_buffer_size=1M --write_buffer_size=1M ...

Using --sort_buffer_size=16M should probably be enough for most cases.

Be aware that myisamchk uses temporary files in TMPDIR. If TMPDIR points to a memory filesystem,
you may easily get out of memory errors. If this happens, run myisamchk with the --tmpdir=path
option to specify some directory located on a filesystem that has more space.

When repairing, myisamchk also needs a lot of disk space:

• Double the size of the data file (the original file and a copy). This space is not needed if you do a re-
pair with --quick; in this case, only the index file is re-created. This space is needed on the same
filesystem as the original data file! (The copy is created in the same directory as the original.)

• Space for the new index file that replaces the old one. The old index file is truncated at the start of
the repair operation, so you usually ignore this space. This space is needed on the same filesystem as
the original index file!

• When using --recover or --sort-recover (but not when using --safe-recover), you
need space for a sort buffer. The following formula yields the amount of space required:

(largest_key + row_pointer_length) × number_of_rows × 2

You can check the length of the keys and the row_pointer_length with myisamchk -dv
tbl_name. This space is allocated in the temporary directory (specified by TMPDIR or -
-tmpdir=path).

If you have a problem with disk space during repair, you can try --safe-recover instead of -
-recover.

8.4. myisamlog — Display MyISAM Log File Contents
myisamlog processes the contents of a MyISAM log file.

Invoke myisamlog like this:

shell> myisamlog [options] [log_file [tbl_name] ...]

The default operation is update (-u). If a recovery is done (-r), all writes and possibly updates and de-
letes are done and errors are only counted. The default log file name is myisam.log if no log_file
argument is given, If tables are named on the command line, only those tables are updated.

myisamlog understands the following options:

• -?, -I

Display a help message and exit.

Client and Utility Programs

525

• -c N

Execute only N commands.

• -f N

Specify the maximum number of open files.

• -i

Display extra information before exiting.

• -o offset

Specify the starting offset.

• -p N

Remove N components from path.

• -r

Perform a recovery operation.

• -R record_pos_file record_pos

Specify record position file and record position.

• -u

Perform an update operation.

• -v

Verbose mode. Print more output about what the program does. This option can be given multiple
times to produce more and more output.

• -w write_file

Specify the write file.

• -V

Display version information.

8.5. myisampack — Generate Compressed, Read-Only
MyISAM Tables

The myisampack utility compresses MyISAM tables. myisampack works by compressing each
column in the table separately. Usually, myisampack packs the data file 40%-70%.

When the table is used later, the server reads into memory the information needed to decompress
columns. This results in much better performance when accessing individual rows, because you only
have to uncompress exactly one row.

MySQL uses mmap() when possible to perform memory mapping on compressed tables. If mmap()
does not work, MySQL falls back to normal read/write file operations.

Client and Utility Programs

526

Please note the following:

• If the mysqld server was invoked with external locking disabled, it is not a good idea to invoke
myisampack if the table might be updated by the server during the packing process. It is safest to
compress tables with the server stopped.

• After packing a table, it becomes read-only. This is generally intended (such as when accessing
packed tables on a CD). Allowing writes to a packed table is on our TODO list, but with low prior-
ity.

• myisampack can pack BLOB or TEXT columns. (The older pack_isam program for ISAM tables
did not have this capability.)

Invoke myisampack like this:

shell> myisampack [options] file_name ...

Each filename argument should be the name of an index (.MYI) file. If you are not in the database dir-
ectory, you should specify the pathname to the file. It is permissible to omit the .MYI extension.

After you compress a table with myisampack, you should use myisamchk -rq to rebuild its in-
dexes. Section 8.3, “myisamchk — MyISAM Table-Maintenance Utility”.

myisampack supports the following options:

• --help, -?

Display a help message and exit.

• --backup, -b

Make a backup of each table's data file using the name tbl_name.OLD.

• --character-sets-dir=path

The directory where character sets are installed. See Section 5.11.1, “The Character Set Used for
Data and Sorting”.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. The debug_options string often is 'd:t:o,file_name'.

• --force, -f

Produce a packed table even if it becomes larger than the original or if the intermediate file from an
earlier invocation of myisampack exists. (myisampack creates an intermediate file named
tbl_name.TMD in the database directory while it compresses the table. If you kill myisampack,
the .TMD file might not be deleted.) Normally, myisampack exits with an error if it finds that
tbl_name.TMD exists. With --force, myisampack packs the table anyway.

• --join=big_tbl_name, -j big_tbl_name

Join all tables named on the command line into a single table big_tbl_name. All tables that are to
be combined must have identical structure (same column names and types, same indexes, and so
forth).

Client and Utility Programs

527

• --packlength=len, -p len

Specify the row length storage size, in bytes. The value should be 1, 2, or 3. myisampack stores all
rows with length pointers of 1, 2, or 3 bytes. In most normal cases, myisampack can determine the
correct length value before it begins packing the file, but it may notice during the packing process
that it could have used a shorter length. In this case, myisampack prints a note that you could use a
shorter row length the next time you pack the same file.

• --silent, -s

Silent mode. Write output only when errors occur.

• --test, -t

Do not actually pack the table, just test packing it.

• --tmpdir=path, -T path

Use the named directory as the location where myisampack creates temporary files.

• --verbose, -v

Verbose mode. Write information about the progress of the packing operation and its result.

• --version, -V

Display version information and exit.

• --wait, -w

Wait and retry if the table is in use. If the mysqld server was invoked with external locking dis-
abled, it is not a good idea to invoke myisampack if the table might be updated by the server dur-
ing the packing process.

The following sequence of commands illustrates a typical table compression session:

shell> ls -l station.*
-rw-rw-r-- 1 monty my 994128 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 monty my 53248 Apr 17 19:00 station.MYI
-rw-rw-r-- 1 monty my 5767 Apr 17 19:00 station.frm

shell> myisamchk -dvv station

MyISAM file: station
Isam-version: 2
Creation time: 1996-03-13 10:08:58
Recover time: 1997-02-02 3:06:43
Data records: 1192 Deleted blocks: 0
Datafile parts: 1192 Deleted data: 0
Datafile pointer (bytes): 2 Keyfile pointer (bytes): 2
Max datafile length: 54657023 Max keyfile length: 33554431
Recordlength: 834
Record format: Fixed length

table description:
Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 1024 1024 1
2 32 30 multip. text 10240 1024 1

Field Start Length Type
1 1 1
2 2 4
3 6 4
4 10 1
5 11 20
6 31 1
7 32 30

Client and Utility Programs

528

8 62 35
9 97 35
10 132 35
11 167 4
12 171 16
13 187 35
14 222 4
15 226 16
16 242 20
17 262 20
18 282 20
19 302 30
20 332 4
21 336 4
22 340 1
23 341 8
24 349 8
25 357 8
26 365 2
27 367 2
28 369 4
29 373 4
30 377 1
31 378 2
32 380 8
33 388 4
34 392 4
35 396 4
36 400 4
37 404 1
38 405 4
39 409 4
40 413 4
41 417 4
42 421 4
43 425 4
44 429 20
45 449 30
46 479 1
47 480 1
48 481 79
49 560 79
50 639 79
51 718 79
52 797 8
53 805 1
54 806 1
55 807 20
56 827 4
57 831 4

shell> myisampack station.MYI
Compressing station.MYI: (1192 records)
- Calculating statistics

normal: 20 empty-space: 16 empty-zero: 12 empty-fill: 11
pre-space: 0 end-space: 12 table-lookups: 5 zero: 7
Original trees: 57 After join: 17
- Compressing file
87.14%
Remember to run myisamchk -rq on compressed tables

shell> ls -l station.*
-rw-rw-r-- 1 monty my 127874 Apr 17 19:00 station.MYD
-rw-rw-r-- 1 monty my 55296 Apr 17 19:04 station.MYI
-rw-rw-r-- 1 monty my 5767 Apr 17 19:00 station.frm

shell> myisamchk -dvv station

MyISAM file: station
Isam-version: 2
Creation time: 1996-03-13 10:08:58
Recover time: 1997-04-17 19:04:26
Data records: 1192 Deleted blocks: 0
Datafile parts: 1192 Deleted data: 0
Datafile pointer (bytes): 3 Keyfile pointer (bytes): 1
Max datafile length: 16777215 Max keyfile length: 131071
Recordlength: 834
Record format: Compressed

table description:

Client and Utility Programs

529

Key Start Len Index Type Root Blocksize Rec/key
1 2 4 unique unsigned long 10240 1024 1
2 32 30 multip. text 54272 1024 1

Field Start Length Type Huff tree Bits
1 1 1 constant 1 0
2 2 4 zerofill(1) 2 9
3 6 4 no zeros, zerofill(1) 2 9
4 10 1 3 9
5 11 20 table-lookup 4 0
6 31 1 3 9
7 32 30 no endspace, not_always 5 9
8 62 35 no endspace, not_always, no empty 6 9
9 97 35 no empty 7 9
10 132 35 no endspace, not_always, no empty 6 9
11 167 4 zerofill(1) 2 9
12 171 16 no endspace, not_always, no empty 5 9
13 187 35 no endspace, not_always, no empty 6 9
14 222 4 zerofill(1) 2 9
15 226 16 no endspace, not_always, no empty 5 9
16 242 20 no endspace, not_always 8 9
17 262 20 no endspace, no empty 8 9
18 282 20 no endspace, no empty 5 9
19 302 30 no endspace, no empty 6 9
20 332 4 always zero 2 9
21 336 4 always zero 2 9
22 340 1 3 9
23 341 8 table-lookup 9 0
24 349 8 table-lookup 10 0
25 357 8 always zero 2 9
26 365 2 2 9
27 367 2 no zeros, zerofill(1) 2 9
28 369 4 no zeros, zerofill(1) 2 9
29 373 4 table-lookup 11 0
30 377 1 3 9
31 378 2 no zeros, zerofill(1) 2 9
32 380 8 no zeros 2 9
33 388 4 always zero 2 9
34 392 4 table-lookup 12 0
35 396 4 no zeros, zerofill(1) 13 9
36 400 4 no zeros, zerofill(1) 2 9
37 404 1 2 9
38 405 4 no zeros 2 9
39 409 4 always zero 2 9
40 413 4 no zeros 2 9
41 417 4 always zero 2 9
42 421 4 no zeros 2 9
43 425 4 always zero 2 9
44 429 20 no empty 3 9
45 449 30 no empty 3 9
46 479 1 14 4
47 480 1 14 4
48 481 79 no endspace, no empty 15 9
49 560 79 no empty 2 9
50 639 79 no empty 2 9
51 718 79 no endspace 16 9
52 797 8 no empty 2 9
53 805 1 17 1
54 806 1 3 9
55 807 20 no empty 3 9
56 827 4 no zeros, zerofill(2) 2 9
57 831 4 no zeros, zerofill(1) 2 9

myisampack displays the following kinds of information:

• normal

The number of columns for which no extra packing is used.

• empty-space

The number of columns containing values that are only spaces. These occupy one bit.

• empty-zero

Client and Utility Programs

530

The number of columns containing values that are only binary zeros. These occupy one bit.

• empty-fill

The number of integer columns that do not occupy the full byte range of their type. These are
changed to a smaller type. For example, a BIGINT column (eight bytes) can be stored as a TINY-
INT column (one byte) if all its values are in the range from -128 to 127.

• pre-space

The number of decimal columns that are stored with leading spaces. In this case, each value contains
a count for the number of leading spaces.

• end-space

The number of columns that have a lot of trailing spaces. In this case, each value contains a count for
the number of trailing spaces.

• table-lookup

The column had only a small number of different values, which were converted to an ENUM before
Huffman compression.

• zero

The number of columns for which all values are zero.

• Original trees

The initial number of Huffman trees.

• After join

The number of distinct Huffman trees left after joining trees to save some header space.

After a table has been compressed, myisamchk -dvv prints additional information about each
column:

• Type

The data type. The value may contain any of the following descriptors:

• constant

All rows have the same value.

• no endspace

Do not store endspace.

• no endspace, not_always

Do not store endspace and do not do endspace compression for all values.

• no endspace, no empty

Do not store endspace. Do not store empty values.

Client and Utility Programs

531

• table-lookup

The column was converted to an ENUM.

• zerofill(N)

The most significant N bytes in the value are always 0 and are not stored.

• no zeros

Do not store zeros.

• always zero

Zero values are stored using one bit.

• Huff tree

The number of the Huffman tree associated with the column.

• Bits

The number of bits used in the Huffman tree.

After you run myisampack, you must run myisamchk to re-create any indexes. At this time, you can
also sort the index blocks and create statistics needed for the MySQL optimizer to work more effi-
ciently:

shell> myisamchk -rq --sort-index --analyze tbl_name.MYI

After you have installed the packed table into the MySQL database directory, you should execute
mysqladmin flush-tables to force mysqld to start using the new table.

To unpack a packed table, use the --unpack option to myisamchk.

8.6. mysql — The MySQL Command-Line Tool
mysql is a simple SQL shell (with GNU readline capabilities). It supports interactive and non-
interactive use. When used interactively, query results are presented in an ASCII-table format. When
used non-interactively (for example, as a filter), the result is presented in tab-separated format. The out-
put format can be changed using command options.

If you have problems due to insufficient memory for large result sets, use the --quick option. This
forces mysql to retrieve results from the server a row at a time rather than retrieving the entire result set
and buffering it in memory before displaying it. This is done by returning the result set using the
mysql_use_result() C API function in the client/server library rather than
mysql_store_result().

Using mysql is very easy. Invoke it from the prompt of your command interpreter as follows:

shell> mysql db_name

Or:

shell> mysql --user=user_name --password=your_password db_name

Client and Utility Programs

532

Then type an SQL statement, end it with ‘;’, \g, or \G and press Enter.

You can execute SQL statements in a script file (batch file) like this:

shell> mysql db_name < script.sql > output.tab

8.6.1. mysql Options
mysql supports the following options:

• --help, -?

Display a help message and exit.

• --auto-rehash

Enable automatic rehashing. This option is on by default, which enables table and column name
completion. Use --skip-auto-rehash to disable rehashing. That causes mysql to start faster,
but you must issue the rehash command if you want to use table and column name completion.

• --batch, -B

Print results using tab as the column separator, with each row on a new line. With this option,
mysql does not use the history file.

• --character-sets-dir=path

The directory where character sets are installed. See Section 5.11.1, “The Character Set Used for
Data and Sorting”.

• --column-names

Write column names in results.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --database=db_name, -D db_name

The database to use. This is useful primarily in an option file.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. The debug_options string often is 'd:t:o,file_name'. The default
is 'd:t:o,/tmp/mysql.trace'.

• --debug-info, -T

Print some debugging information when the program exits.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 5.11.1, “The Character Set Used for
Data and Sorting”.

• --delimiter=str

Client and Utility Programs

533

Set the statement delimiter. The default is the semicolon character (‘;’).

• --execute=statement, -e statement

Execute the statement and quit. The default output format is like that produced with --batch. See
Section 4.3.1, “Using Options on the Command Line”, for some examples.

• --force, -f

Continue even if an SQL error occurs.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --html, -H

Produce HTML output.

• --ignore-spaces, -i

Ignore spaces after function names. The effect of this is described in the discussion for the IG-
NORE_SPACE SQL mode (see Section 5.2.6, “SQL Modes”).

• --line-numbers

Write line numbers for errors. Disable this with --skip-line-numbers.

• --local-infile[={0|1}]

Enable or disable LOCAL capability for LOAD DATA INFILE. With no value, the option enables
LOCAL. The option may be given as --local-infile=0 or --local-infile=1 to explicitly
disable or enable LOCAL. Enabling LOCAL has no effect if the server does not also support it.

• --named-commands, -G

Enable named mysql commands. Long-format commands are allowed, not just short-format com-
mands. For example, quit and \q both are recognized. Use --skip-named-commands to dis-
able named commands. See Section 8.6.2, “mysql Commands”.

• --no-auto-rehash, -A

Deprecated form of -skip-auto-rehash. See the description for --auto-rehash.

• --no-beep, -b

Do not beep when errors occur.

• --no-named-commands, -g

Disable named commands. Use the * form only, or use named commands only at the beginning of
a line ending with a semicolon (‘;’). mysql starts with this option enabled by default. However,
even with this option, long-format commands still work from the first line. See Section 8.6.2,
“mysql Commands”.

• --no-pager

Deprecated form of --skip-pager. See the --pager option.

Client and Utility Programs

534

• --no-tee

Do not copy output to a file. Section 8.6.2, “mysql Commands”, discusses tee files further.

• --one-database, -o

Ignore statements except those for the default database named on the command line. This is useful
for skipping updates to other databases in the binary log.

• --pager[=command]

Use the given command for paging query output. If the command is omitted, the default pager is the
value of your PAGER environment variable. Valid pagers are less, more, cat [> filename],
and so forth. This option works only on Unix. It does not work in batch mode. To disable paging,
use --skip-pager. Section 8.6.2, “mysql Commands”, discusses output paging further.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you can-
not have a space between the option and the password. If you omit the password value following
the --password or -p option on the command line, you are prompted for one.

Specifying a password on the command line should be considered insecure. See Section 5.9.6,
“Keeping Your Password Secure”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --prompt=format_str

Set the prompt to the specified format. The default is mysql>. The special sequences that the
prompt can contain are described in Section 8.6.2, “mysql Commands”.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use.

• --quick, -q

Do not cache each query result, print each row as it is received. This may slow down the server if the
output is suspended. With this option, mysql does not use the history file.

• --raw, -r

Write column values without escape conversion. Often used with the --batch option.

• --reconnect

If the connection to the server is lost, automatically try to reconnect. A single reconnect attempt is
made each time the connection is lost. To suppress reconnection behavior, use -
-skip-reconnect.

• --safe-updates, --i-am-a-dummy, -U

Allow only those UPDATE and DELETE statements that specify which rows to modify by using key
values. If you have set this option in an option file, you can override it by using --safe-updates
on the command line. See Section 8.6.5, “mysql Tips”, for more information about this option.

• --secure-auth

Client and Utility Programs

535

Do not send passwords to the server in old (pre-4.1.1) format. This prevents connections except for
servers that use the newer password format.

• --show-warnings

Cause warnings to be shown after each statement if there are any. This option applies to interactive
and batch mode. This option was added in MySQL 5.0.6.

• --sigint-ignore

Ignore SIGINT signals (typically the result of typing Control-C).

• --silent, -s

Silent mode. Produce less output. This option can be given multiple times to produce less and less
output.

• --skip-column-names, -N

Do not write column names in results.

• --skip-line-numbers, -L

Do not write line numbers for errors. Useful when you want to compare result files that include error
messages.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the
named pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server via SSL and indicate where
to find SSL keys and certificates. See Section 5.9.7.3, “SSL Command Options”.

• --table, -t

Display output in table format. This is the default for interactive use, but can be used to produce ta-
ble output in batch mode.

• --tee=file_name

Append a copy of output to the given file. This option does not work in batch mode. in Section 8.6.2,
“mysql Commands”, discusses tee files further.

• --unbuffered, -n

Flush the buffer after each query.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

• --verbose, -v

Verbose mode. Produce more output about what the program does. This option can be given mul-
tiple times to produce more and more output. (For example, -v -v -v produces table output
format even in batch mode.)

Client and Utility Programs

536

• --version, -V

Display version information and exit.

• --vertical, -E

Print query output rows vertically (one line per column value). Without this option, you can specify
vertical output for individual statements by terminating them with \G.

• --wait, -w

If the connection cannot be established, wait and retry instead of aborting.

• --xml, -X

Produce XML output.

You can also set the following variables by using --var_name=value syntax:

• connect_timeout

The number of seconds before connection timeout. (Default value is 0.)

• max_allowed_packet

The maximum packet length to send to or receive from the server. (Default value is 16MB.)

• max_join_size

The automatic limit for rows in a join when using --safe-updates. (Default value is
1,000,000.)

• net_buffer_length

The buffer size for TCP/IP and socket communication. (Default value is 16KB.)

• select_limit

The automatic limit for SELECT statements when using --safe-updates. (Default value is
1,000.)

It is also possible to set variables by using --set-variable=var_name=value or -O
var_name=value syntax. This syntax is deprecated.

On Unix, the mysql client writes a record of executed statements to a history file. By default, the his-
tory file is named .mysql_history and is created in your home directory. To specify a different file,
set the value of the MYSQL_HISTFILE environment variable.

If you do not want to maintain a history file, first remove .mysql_history if it exists, and then use
either of the following techniques:

• Set the MYSQL_HISTFILE variable to /dev/null. To cause this setting to take effect each time
you log in, put the setting in one of your shell's startup files.

• Create .mysql_history as a symbolic link to /dev/null:

Client and Utility Programs

537

shell> ln -s /dev/null $HOME/.mysql_history

You need do this only once.

8.6.2. mysql Commands
mysql sends each SQL statement that you issue to the server to be executed. There is also a set of com-
mands that mysql itself interprets. For a list of these commands, type help or \h at the mysql>
prompt:

mysql> help

List of all MySQL commands:
Note that all text commands must be first on line and end with ';'
? (\?) Synonym for `help'.
charset (\C) Switch to another charset. Might be needed for processing

binlog with multi-byte charsets.
clear (\c) Clear command.
connect (\r) Reconnect to the server. Optional arguments are db and host.
delimiter (\d) Set statement delimiter. NOTE: Takes the rest of the line as

new delimiter.
edit (\e) Edit command with $EDITOR.
ego (\G) Send command to mysql server, display result vertically.
exit (\q) Exit mysql. Same as quit.
go (\g) Send command to mysql server.
help (\h) Display this help.
nopager (\n) Disable pager, print to stdout.
notee (\t) Don't write into outfile.
pager (\P) Set PAGER [to_pager]. Print the query results via PAGER.
print (\p) Print current command.
prompt (\R) Change your mysql prompt.
quit (\q) Quit mysql.
rehash (\#) Rebuild completion hash.
source (\.) Execute an SQL script file. Takes a file name as an argument.
status (\s) Get status information from the server.
system (\!) Execute a system shell command.
tee (\T) Set outfile [to_outfile]. Append everything into given

outfile.
use (\u) Use another database. Takes database name as argument.
warnings (\W) Show warnings after every statement.
nowarning (\w) Don't show warnings after every statement.

For server side help, type 'help contents'

Each command has both a long and short form. The long form is not case sensitive; the short form is.
The long form can be followed by an optional semicolon terminator, but the short form should not.

If you provide an argument to the help command, mysql uses it as a search string to access server-
side help from the contents of the MySQL Reference Manual. For more information, see Section 8.6.3,
“mysql Server-Side Help”.

The charset command changes the default character set and issues a SET NAMES statement. This
enables the character set to remain synchronized on the client and server if mysql is run with auto-
reconnect enabled (which is not recommended), because the changed character set is used for recon-
nects. This command was added in MySQL 5.0.25.

In the delimiter command, you should avoid the use of the backslash (‘\’) character because that is
the escape character for MySQL.

The edit, nopager, pager, and system commands work only in Unix.

The status command provides some information about the connection and the server you are using. If
you are running in --safe-updates mode, status also prints the values for the mysql variables
that affect your queries.

Client and Utility Programs

538

To log queries and their output, use the tee command. All the data displayed on the screen is appended
into a given file. This can be very useful for debugging purposes also. You can enable this feature on the
command line with the --tee option, or interactively with the tee command. The tee file can be dis-
abled interactively with the notee command. Executing tee again re-enables logging. Without a para-
meter, the previous file is used. Note that tee flushes query results to the file after each statement, just
before mysql prints its next prompt.

By using the --pager option, it is possible to browse or search query results in interactive mode with
Unix programs such as less, more, or any other similar program. If you specify no value for the op-
tion, mysql checks the value of the PAGER environment variable and sets the pager to that. Output pa-
ging can be enabled interactively with the pager command and disabled with nopager. The com-
mand takes an optional argument; if given, the paging program is set to that. With no argument, the
pager is set to the pager that was set on the command line, or stdout if no pager was specified.

Output paging works only in Unix because it uses the popen() function, which does not exist on Win-
dows. For Windows, the tee option can be used instead to save query output, although this is not as
convenient as pager for browsing output in some situations.

Here are a few tips about the pager command:

• You can use it to write to a file and the results go only to the file:

mysql> pager cat > /tmp/log.txt

You can also pass any options for the program that you want to use as your pager:

mysql> pager less -n -i -S

• In the preceding example, note the -S option. You may find it very useful for browsing wide query
results. Sometimes a very wide result set is difficult to read on the screen. The -S option to less
can make the result set much more readable because you can scroll it horizontally using the left-
arrow and right-arrow keys. You can also use -S interactively within less to switch the horizontal-
browse mode on and off. For more information, read the less manual page:

shell> man less

• You can specify very complex pager commands for handling query output:

mysql> pager cat | tee /dr1/tmp/res.txt \
| tee /dr2/tmp/res2.txt | less -n -i -S

In this example, the command would send query results to two files in two different directories on
two different filesystems mounted on /dr1 and /dr2, yet still display the results onscreen via
less.

You can also combine the tee and pager functions. Have a tee file enabled and pager set to less,
and you are able to browse the results using the less program and still have everything appended into a
file the same time. The difference between the Unix tee used with the pager command and the
mysql built-in tee command is that the built-in tee works even if you do not have the Unix tee
available. The built-in tee also logs everything that is printed on the screen, whereas the Unix tee
used with pager does not log quite that much. Additionally, tee file logging can be turned on and off
interactively from within mysql. This is useful when you want to log some queries to a file, but not
others.

The default mysql> prompt can be reconfigured. The string for defining the prompt can contain the fol-

Client and Utility Programs

539

lowing special sequences:

Option Description

\v The server version

\d The default database

\h The server host

\p The current TCP/IP port or socket file

\u Your username

\U Your full user_name@host_name account name

\\ A literal ‘\’ backslash character

\n A newline character

\t A tab character

\ A space (a space follows the backslash)

_ A space

\R The current time, in 24-hour military time (0-23)

\r The current time, standard 12-hour time (1-12)

\m Minutes of the current time

\y The current year, two digits

\Y The current year, four digits

\D The full current date

\s Seconds of the current time

\w The current day of the week in three-letter format (Mon, Tue,)

\P am/pm

\o The current month in numeric format

\O The current month in three-letter format (Jan, Feb,)

\c A counter that increments for each statement you issue

\l The current delimiter. (New in 5.0.25)

\S Semicolon

\' Single quote

\" Double quote

‘\’ followed by any other letter just becomes that letter.

If you specify the prompt command with no argument, mysql resets the prompt to the default of
mysql>.

You can set the prompt in several ways:

• Use an environment variable. You can set the MYSQL_PS1 environment variable to a prompt string.
For example:

shell> export MYSQL_PS1="(\u@\h) [\d]> "

• Use a command-line option. You can set the --prompt option on the command line to mysql. For
example:

Client and Utility Programs

540

shell> mysql --prompt="(\u@\h) [\d]> "
(user@host) [database]>

• Use an option file. You can set the prompt option in the [mysql] group of any MySQL option
file, such as /etc/my.cnf or the .my.cnf file in your home directory. For example:

[mysql]
prompt=(\\u@\\h) [\\d]>_

In this example, note that the backslashes are doubled. If you set the prompt using the prompt op-
tion in an option file, it is advisable to double the backslashes when using the special prompt op-
tions. There is some overlap in the set of allowable prompt options and the set of special escape se-
quences that are recognized in option files. (These sequences are listed in Section 4.3.2, “Using Op-
tion Files”.) The overlap may cause you problems if you use single backslashes. For example, \s is
interpreted as a space rather than as the current seconds value. The following example shows how to
define a prompt within an option file to include the current time in HH:MM:SS> format:

[mysql]
prompt="\\r:\\m:\\s> "

• Set the prompt interactively. You can change your prompt interactively by using the prompt (or
\R) command. For example:

mysql> prompt (\u@\h) [\d]>_
PROMPT set to '(\u@\h) [\d]>_'
(user@host) [database]>
(user@host) [database]> prompt
Returning to default PROMPT of mysql>
mysql>

8.6.3. mysql Server-Side Help
mysql> help search_string

If you provide an argument to the help command, mysql uses it as a search string to access server-
side help from the contents of the MySQL Reference Manual. The proper operation of this command re-
quires that the help tables in the mysql database be initialized with help topic information (see Sec-
tion 5.2.8, “Server-Side Help”).

If there is no match for the search string, the search fails:

mysql> help me

Nothing found
Please try to run 'help contents' for a list of all accessible topics

Use help contents to see a list of the help categories:

mysql> help contents
You asked for help about help category: "Contents"
For more information, type 'help <item>', where <item> is one of the
following categories:

Account Management
Administration
Data Definition
Data Manipulation
Data Types
Functions
Functions and Modifiers for Use with GROUP BY
Geographic Features

Client and Utility Programs

541

Language Structure
Storage Engines
Stored Routines
Table Maintenance
Transactions
Triggers

If the search string matches multiple items, mysql shows a list of matching topics:

mysql> help logs
Many help items for your request exist.
To make a more specific request, please type 'help <item>',
where <item> is one of the following topics:

SHOW
SHOW BINARY LOGS
SHOW ENGINE
SHOW LOGS

Use a topic as the search string to see the help entry for that topic:

mysql> help show binary logs
Name: 'SHOW BINARY LOGS'
Description:
Syntax:
SHOW BINARY LOGS
SHOW MASTER LOGS

Lists the binary log files on the server. This statement is used as
part of the procedure described in [purge-master-logs], that shows how
to determine which logs can be purged.

mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
| binlog.000015 | 724935 |
| binlog.000016 | 733481 |
+---------------+-----------+

8.6.4. Executing SQL Statements from a Text File
The mysql client typically is used interactively, like this:

shell> mysql db_name

However, it is also possible to put your SQL statements in a file and then tell mysql to read its input
from that file. To do so, create a text file text_file that contains the statements you wish to execute.
Then invoke mysql as shown here:

shell> mysql db_name < text_file

If you place a USE db_name statement as the first statement in the file, it is unnecessary to specify the
database name on the command line:

shell> mysql < text_file

If you are already running mysql, you can execute an SQL script file using the source or \. com-
mand:

mysql> source file_name
mysql> \. file_name

Sometimes you may want your script to display progress information to the user. For this you can insert
statements like this:

Client and Utility Programs

542

SELECT '<info_to_display>' AS ' ';

The statement shown outputs <info_to_display>.

For more information about batch mode, see Section 3.5, “Using mysql in Batch Mode”.

8.6.5. mysql Tips
This section describes some techniques that can help you use mysql more effectively.

8.6.5.1. Displaying Query Results Vertically

Some query results are much more readable when displayed vertically, instead of in the usual horizontal
table format. Queries can be displayed vertically by terminating the query with \G instead of a semi-
colon. For example, longer text values that include newlines often are much easier to read with vertical
output:

mysql> SELECT * FROM mails WHERE LENGTH(txt) < 300 LIMIT 300,1\G
*************************** 1. row ***************************

msg_nro: 3068
date: 2000-03-01 23:29:50

time_zone: +0200
mail_from: Monty

reply: monty@no.spam.com
mail_to: "Thimble Smith" <tim@no.spam.com>

sbj: UTF-8
txt: >>>>> "Thimble" == Thimble Smith writes:

Thimble> Hi. I think this is a good idea. Is anyone familiar
Thimble> with UTF-8 or Unicode? Otherwise, I'll put this on my
Thimble> TODO list and see what happens.

Yes, please do that.

Regards,
Monty

file: inbox-jani-1
hash: 190402944

1 row in set (0.09 sec)

8.6.5.2. Using the --safe-updates Option

For beginners, a useful startup option is --safe-updates (or --i-am-a-dummy, which has the
same effect). It is helpful for cases when you might have issued a DELETE FROM tbl_name state-
ment but forgotten the WHERE clause. Normally, such a statement deletes all rows from the table. With
--safe-updates, you can delete rows only by specifying the key values that identify them. This
helps prevent accidents.

When you use the --safe-updates option, mysql issues the following statement when it connects
to the MySQL server:

SET SQL_SAFE_UPDATES=1,SQL_SELECT_LIMIT=1000, SQL_MAX_JOIN_SIZE=1000000;

See Section 13.5.3, “SET Syntax”.

The SET statement has the following effects:

• You are not allowed to execute an UPDATE or DELETE statement unless you specify a key con-
straint in the WHERE clause or provide a LIMIT clause (or both). For example:

UPDATE tbl_name SET not_key_column=val WHERE key_column=val;

Client and Utility Programs

543

UPDATE tbl_name SET not_key_column=val LIMIT 1;

• The server limits all large SELECT results to 1,000 rows unless the statement includes a LIMIT
clause.

• The server aborts multiple-table SELECT statements that probably need to examine more than
1,000,000 row combinations.

To specify limits different from 1,000 and 1,000,000, you can override the defaults by using the -
-select_limit and --max_join_size options:

shell> mysql --safe-updates --select_limit=500 --max_join_size=10000

8.6.5.3. Disabling mysql Auto-Reconnect

If the mysql client loses its connection to the server while sending a query, it immediately and automat-
ically tries to reconnect once to the server and send the query again. However, even if mysql succeeds
in reconnecting, your first connection has ended and all your previous session objects and settings are
lost: temporary tables, the autocommit mode, and user-defined and session variables. Also, any current
transaction rolls back. This behavior may be dangerous for you, as in the following example where the
server was shut down and restarted without you knowing it:

mysql> SET @a=1;
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO t VALUES(@a);
ERROR 2006: MySQL server has gone away
No connection. Trying to reconnect...
Connection id: 1
Current database: test

Query OK, 1 row affected (1.30 sec)

mysql> SELECT * FROM t;
+------+
| a |
+------+
| NULL |
+------+
1 row in set (0.05 sec)

The @a user variable has been lost with the connection, and after the reconnection it is undefined. If it is
important to have mysql terminate with an error if the connection has been lost, you can start the
mysql client with the --skip-reconnect option.

8.7. mysql_explain_log — Use EXPLAIN on State-
ments in Query Log

mysql_explain_log reads its standard input for query log contents. It uses EXPLAIN to analyze
SELECT statements found in the input. UPDATE statements are rewritten to SELECT statements and
also analyzed with EXPLAIN. mysql_explain_log then displays a summary of its results.

The results may assist you in determining which queries result in table scans and where it would be be-
neficial to add indexes to your tables.

Invoke mysql_explain_log like this, where log_file contains all or part of a MySQL query
log:

shell> mysql_explain_log [options] < log_file

Client and Utility Programs

544

mysql_explain_log understands the following options:

• --date=YYMMDD, -d YYMMDD

Select entries from the log only for the given date.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --password=password, -ppassword

The password to use when connecting to the server.

Specifying a password on the command line should be considered insecure. See Section 5.9.6,
“Keeping Your Password Secure”.

• --printerror=1, -e 1

Enable error output.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the
named pipe to use.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

8.8. mysqlaccess — Client for Checking Access Priv-
ileges

mysqlaccess is a diagnostic tool that Yves Carlier has provided for the MySQL distribution. It
checks the access privileges for a hostname, username, and database combination. Note that mysqlac-
cess checks access using only the user, db, and host tables. It does not check table, column, or
routine privileges specified in the tables_priv, columns_priv, or procs_priv tables.

Invoke mysqlaccess like this:

shell> mysqlaccess [host_name [user_name [db_name]]] [options]

mysqlaccess understands the following options:

• --help, -?

Display a help message and exit.

• --brief, -b

Generate reports in single-line tabular format.

• --commit

Copy the new access privileges from the temporary tables to the original grant tables. The grant

Client and Utility Programs

545

tables must be flushed for the new privileges to take effect. (For example, execute a mysqladmin
reload command.)

• --copy

Reload the temporary grant tables from original ones.

• --db=db_name, -d db_name

Specify the database name.

• --debug=N

Specify the debug level. N can be an integer from 0 to 3.

• --host=host_name, -h host_name

The hostname to use in the access privileges.

• --howto

Display some examples that show how to use mysqlaccess.

• --old_server

Assume that the server is an old MySQL server (before MySQL 3.21) that does not yet know how to
handle full WHERE clauses.

• --password[=password], -p[password]

The password to use when connecting to the server. If you omit the password value following the
--password or -p option on the command line, you are prompted for one.

Specifying a password on the command line should be considered insecure. See Section 5.9.6,
“Keeping Your Password Secure”.

• --plan

Display suggestions and ideas for future releases.

• --preview

Show the privilege differences after making changes to the temporary grant tables.

• --relnotes

Display the release notes.

• --rhost=host_name, -H host_name

Connect to the MySQL server on the given host.

• --rollback

Undo the most recent changes to the temporary grant tables.

• --spassword[=password], -P[password]

The password to use when connecting to the server as the superuser. If you omit the password

Client and Utility Programs

546

value following the --password or -p option on the command line, you are prompted for one.

Specifying a password on the command line should be considered insecure. See Section 5.9.6,
“Keeping Your Password Secure”.

• --superuser=user_name, -U user_name

Specify the username for connecting as the superuser.

• --table, -t

Generate reports in table format.

• --user=user_name, -u user_name

The username to use in the access privileges.

• --version, -v

Display version information and exit.

If your MySQL distribution is installed in some non-standard location, you must change the location
where mysqlaccess expects to find the mysql client. Edit the mysqlaccess script at approxim-
ately line 18. Search for a line that looks like this:

$MYSQL = '/usr/local/bin/mysql'; # path to mysql executable

Change the path to reflect the location where mysql actually is stored on your system. If you do not do
this, a Broken pipe error will occur when you run mysqlaccess.

8.9. mysqladmin — Client for Administering a MySQL
Server

mysqladmin is a client for performing administrative operations. You can use it to check the server's
configuration and current status, to create and drop databases, and more.

Invoke mysqladmin like this:

shell> mysqladmin [options] command [command-arg] [command [command-arg]] ...

mysqladmin supports the commands described in the following list. Some of the commands take an
argument following the command name.

• create db_name

Create a new database named db_name.

• debug

Tell the server to write debug information to the error log.

• drop db_name

Delete the database named db_name and all its tables.

Client and Utility Programs

547

• extended-status

Display the server status variables and their values.

• flush-hosts

Flush all information in the host cache.

• flush-logs

Flush all logs.

• flush-privileges

Reload the grant tables (same as reload).

• flush-status

Clear status variables.

• flush-tables

Flush all tables.

• flush-threads

Flush the thread cache.

• kill id,id,...

Kill server threads. If multiple thread ID values are given, there must be no spaces in the list.

• old-password new-password

This is like the password command but stores the password using the old (pre-4.1) password-hash-
ing format. (See Section 5.8.9, “Password Hashing as of MySQL 4.1”.)

• password new-password

Set a new password. This changes the password to new-password for the account that you use
with mysqladmin for connecting to the server. Thus, the next time you invoke mysqladmin (or
any other client program) using the same account, you will need to specify the new password.

If the new-password value contains spaces or other characters that are special to your command
interpreter, you need to enclose it within quotes. On Windows, be sure to use double quotes rather
than single quotes; single quotes are not stripped from the password, but rather are interpreted as part
of the password. For example:

shell> mysqladmin password "my new password"

• ping

Check whether the server is alive. The return status from mysqladmin is 0 if the server is running,
1 if it is not. This is 0 even in case of an error such as Access denied, because this means that
the server is running but refused the connection, which is different from the server not running.

• processlist

Show a list of active server threads. This is like the output of the SHOW PROCESSLIST statement.

Client and Utility Programs

548

If the --verbose option is given, the output is like that of SHOW FULL PROCESSLIST. (See
Section 13.5.4.20, “SHOW PROCESSLIST Syntax”.)

• reload

Reload the grant tables.

• refresh

Flush all tables and close and open log files.

• shutdown

Stop the server.

• start-slave

Start replication on a slave server.

• status

Display a short server status message.

• stop-slave

Stop replication on a slave server.

• variables

Display the server system variables and their values.

• version

Display version information from the server.

All commands can be shortened to any unique prefix. For example:

shell> mysqladmin proc stat
+----+-------+-----------+----+---------+------+-------+------------------+
| Id | User | Host | db | Command | Time | State | Info |
+----+-------+-----------+----+---------+------+-------+------------------+
| 51 | monty | localhost | | Query | 0 | | show processlist |
+----+-------+-----------+----+---------+------+-------+------------------+
Uptime: 1473624 Threads: 1 Questions: 39487
Slow queries: 0 Opens: 541 Flush tables: 1
Open tables: 19 Queries per second avg: 0.0268

The mysqladmin status command result displays the following values:

• Uptime

The number of seconds the MySQL server has been running.

• Threads

The number of active threads (clients).

• Questions

The number of questions (queries) from clients since the server was started.

Client and Utility Programs

549

• Slow queries

The number of queries that have taken more than long_query_time seconds. See Sec-
tion 5.12.4, “The Slow Query Log”.

• Opens

The number of tables the server has opened.

• Flush tables

The number of flush-*, refresh, and reload commands the server has executed.

• Open tables

The number of tables that currently are open.

• Memory in use

The amount of memory allocated directly by mysqld. This value is displayed only when MySQL
has been compiled with --with-debug=full.

• Maximum memory used

The maximum amount of memory allocated directly by mysqld. This value is displayed only when
MySQL has been compiled with --with-debug=full.

If you execute mysqladmin shutdown when connecting to a local server using a Unix socket file,
mysqladmin waits until the server's process ID file has been removed, to ensure that the server has
stopped properly.

mysqladmin supports the following options:

• --help, -?

Display a help message and exit.

• --character-sets-dir=path

The directory where character sets are installed. See Section 5.11.1, “The Character Set Used for
Data and Sorting”.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --count=N, -c N

The number of iterations to make for repeated command execution. This works only with the -
-sleep option.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. The debug_options string often is 'd:t:o,file_name'. The default
is 'd:t:o,/tmp/mysqladmin.trace'.

• --default-character-set=charset_name

Client and Utility Programs

550

Use charset_name as the default character set. See Section 5.11.1, “The Character Set Used for
Data and Sorting”.

• --force, -f

Do not ask for confirmation for the drop db_name command. With multiple commands, continue
even if an error occurs.

• --host=host_name, -h host_name

Connect to the MySQL server on the given host.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you can-
not have a space between the option and the password. If you omit the password value following
the --password or -p option on the command line, you are prompted for one.

Specifying a password on the command line should be considered insecure. See Section 5.9.6,
“Keeping Your Password Secure”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use.

• --relative, -r

Show the difference between the current and previous values when used with the --sleep option.
Currently, this option works only with the extended-status command.

• --silent, -s

Exit silently if a connection to the server cannot be established.

• --sleep=delay, -i delay

Execute commands repeatedly, sleeping for delay seconds in between. The --count option de-
termines the number of iterations.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the
named pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server via SSL and indicate where
to find SSL keys and certificates. See Section 5.9.7.3, “SSL Command Options”.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

• --verbose, -v

Client and Utility Programs

551

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

• --vertical, -E

Print output vertically. This is similar to --relative, but prints output vertically.

• --wait[=count], -w[count]

If the connection cannot be established, wait and retry instead of aborting. If a count value is giv-
en, it indicates the number of times to retry. The default is one time.

You can also set the following variables by using --var_name=value syntax:

• connect_timeout

The maximum number of seconds before connection timeout. The default value is 43200 (12 hours).

• shutdown_timeout

The maximum number of seconds to wait for server shutdown. The default value is 3600 (1 hour).

It is also possible to set variables by using --set-variable=var_name=value or -O
var_name=value syntax. This syntax is deprecated.

8.10. mysqlbinlog — Utility for Processing Binary
Log Files

The binary log files that the server generates are written in binary format. To examine these files in text
format, use the mysqlbinlog utility. You can also use mysqlbinlog to read relay log files written
by a slave server in a replication setup. Relay logs have the same format as binary log files.

Invoke mysqlbinlog like this:

shell> mysqlbinlog [options] log_file ...

For example, to display the contents of the binary log file named binlog.000003, use this command:

shell> mysqlbinlog binlog.0000003

The output includes all events contained in binlog.000003. Event information includes the state-
ment executed, the time the statement took, the thread ID of the client that issued it, the timestamp when
it was executed, and so forth.

The output from mysqlbinlog can be re-executed (for example, by using it as input to mysql) to re-
apply the statements in the log. This is useful for recovery operations after a server crash. For other us-
age examples, see the discussion later in this section.

Normally, you use mysqlbinlog to read binary log files directly and apply them to the local MySQL
server. It is also possible to read binary logs from a remote server by using the -

Client and Utility Programs

552

-read-from-remote-server option. When you read remote binary logs, the connection paramet-
er options can be given to indicate how to connect to the server. These options are --host, -
-password, --port, --protocol, --socket, and --user; they are ignored except when you
also use the --read-from-remote-server option.

Binary logs and relay logs are discussed further in Section 5.12.3, “The Binary Log”, and Section 6.3.4,
“Replication Relay and Status Files”.

mysqlbinlog supports the following options:

• --help, -?

Display a help message and exit.

• --character-sets-dir=path

The directory where character sets are installed. See Section 5.11.1, “The Character Set Used for
Data and Sorting”.

• --database=db_name, -d db_name

List entries for just this database (local log only). You can only specify one database with this option
- if you specify multiple --database options, only the last one is used. This option forces
mysqlbinlog to output entries from the binary log where the default database (that is, the one se-
lected by USE) is db_name. Note that this does not replicate cross-database statements such as UP-
DATE some_db.some_table SET foo='bar' while having selected a different database or
no database.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is often 'd:t:o,file_name'.

• --disable-log-bin, -D

Disable binary logging. This is useful for avoiding an endless loop if you use the --to-last-log
option and are sending the output to the same MySQL server. This option also is useful when restor-
ing after a crash to avoid duplication of the statements you have logged.

This option requires that you have the SUPER privilege. It causes mysqlbinlog to include a SET
SQL_LOG_BIN=0 statement in its output to disable binary logging of the remaining output. The
SET statement is ineffective unless you have the SUPER privilege.

• --force-read, -f

With this option, if mysqlbinlog reads a binary log event that it does not recognize, it prints a
warning, ignores the event, and continues. Without this option, mysqlbinlog stops if it reads such
an event.

• --hexdump, -H

Display a hex dump of the log in comments. This output can be helpful for replication debugging.
Hex dump format is discussed later in this section. This option was added in MySQL 5.0.16.

• --host=host_name, -h host_name

Get the binary log from the MySQL server on the given host.

• --local-load=path, -l path

Client and Utility Programs

553

Prepare local temporary files for LOAD DATA INFILE in the specified directory.

• --offset=N, -o N

Skip the first N entries in the log.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you can-
not have a space between the option and the password. If you omit the password value following
the --password or -p option on the command line, you are prompted for one.

Specifying a password on the command line should be considered insecure. See Section 5.9.6,
“Keeping Your Password Secure”.

• --port=port_num, -P port_num

The TCP/IP port number to use for connecting to a remote server.

• --position=N, -j N

Deprecated. Use --start-position instead.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use.

• --read-from-remote-server, -R

Read the binary log from a MySQL server rather than reading a local log file. Any connection para-
meter options are ignored unless this option is given as well. These options are --host, -
-password, --port, --protocol, --socket, and --user.

• --result-file=name, -r name

Direct output to the given file.

• --set-charset=charset_name

Add a SET NAMES charset_name statement to the output to specify the character set to be used
for processing log files. This option was added in MySQL 5.0.23.

• --short-form, -s

Display only the statements contained in the log, without any extra information.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the
named pipe to use.

• --start-datetime=datetime

Start reading the binary log at the first event having a timestamp equal to or later than the date-
time argument. The datetime value is relative to the local time zone on the machine where you
run mysqlbinlog. The value should be in a format accepted for the DATETIME or TIMESTAMP
data types. For example:

shell> mysqlbinlog --start-datetime="2005-12-25 11:25:56" binlog.000003

Client and Utility Programs

554

This option is useful for point-in-time recovery. See Section 5.10.2, “Example Backup and Recovery
Strategy”.

• --stop-datetime=datetime

Stop reading the binary log at the first event having a timestamp equal or posterior to the date-
time argument. This option is useful for point-in-time recovery. See the description of the -
-start-datetime option for information about the datetime value.

• --start-position=N

Start reading the binary log at the first event having a position equal to the N argument. This option
applies to the first log file named on the command line.

• --stop-position=N

Stop reading the binary log at the first event having a position equal or greater than the N argument.
This option applies to the last log file named on the command line.

• --to-last-log, -t

Do not stop at the end of the requested binary log from a MySQL server, but rather continue printing
until the end of the last binary log. If you send the output to the same MySQL server, this may lead
to an endless loop. This option requires --read-from-remote-server.

• --user=user_name, -u user_name

The MySQL username to use when connecting to a remote server.

• --version, -V

Display version information and exit.

You can also set the following variable by using --var_name=value syntax:

• open_files_limit

Specify the number of open file descriptors to reserve.

It is also possible to set variables by using --set-variable=var_name=value or -O
var_name=value syntax. This syntax is deprecated.

You can pipe the output of mysqlbinlog into the mysql client to execute the statements contained in
the binary log. This is used to recover from a crash when you have an old backup (see Section 5.10.1,
“Database Backups”). For example:

shell> mysqlbinlog binlog.000001 | mysql

Or:

shell> mysqlbinlog binlog.[0-9]* | mysql

You can also redirect the output of mysqlbinlog to a text file instead, if you need to modify the state-
ment log first (for example, to remove statements that you do not want to execute for some reason).

Client and Utility Programs

555

After editing the file, execute the statements that it contains by using it as input to the mysql program.

mysqlbinlog has the --start-position option, which prints only those statements with an off-
set in the binary log greater than or equal to a given position (the given position must match the start of
one event). It also has options to stop and start when it sees an event with a given date and time. This en-
ables you to perform point-in-time recovery using the --stop-datetime option (to be able to say,
for example, “roll forward my databases to how they were today at 10:30 a.m.”).

If you have more than one binary log to execute on the MySQL server, the safe method is to process
them all using a single connection to the server. Here is an example that demonstrates what may be un-
safe:

shell> mysqlbinlog binlog.000001 | mysql # DANGER!!
shell> mysqlbinlog binlog.000002 | mysql # DANGER!!

Processing binary logs this way using different connections to the server causes problems if the first log
file contains a CREATE TEMPORARY TABLE statement and the second log contains a statement that
uses the temporary table. When the first mysql process terminates, the server drops the temporary ta-
ble. When the second mysql process attempts to use the table, the server reports “unknown table.”

To avoid problems like this, use a single connection to execute the contents of all binary logs that you
want to process. Here is one way to do so:

shell> mysqlbinlog binlog.000001 binlog.000002 | mysql

Another approach is to write all the logs to a single file and then process the file:

shell> mysqlbinlog binlog.000001 > /tmp/statements.sql
shell> mysqlbinlog binlog.000002 >> /tmp/statements.sql
shell> mysql -e "source /tmp/statements.sql"

mysqlbinlog can produce output that reproduces a LOAD DATA INFILE operation without the ori-
ginal data file. mysqlbinlog copies the data to a temporary file and writes a LOAD DATA LOCAL
INFILE statement that refers to the file. The default location of the directory where these files are writ-
ten is system-specific. To specify a directory explicitly, use the --local-load option.

Because mysqlbinlog converts LOAD DATA INFILE statements to LOAD DATA LOCAL IN-
FILE statements (that is, it adds LOCAL), both the client and the server that you use to process the state-
ments must be configured to allow LOCAL capability. See Section 5.7.4, “Security Issues with LOAD
DATA LOCAL”.

Warning: The temporary files created for LOAD DATA LOCAL statements are not automatically de-
leted because they are needed until you actually execute those statements. You should delete the tempor-
ary files yourself after you no longer need the statement log. The files can be found in the temporary file
directory and have names like original_file_name-#-#.

The --hexdump option produces a hex dump of the log contents in comments:

shell> mysqlbinlog --hexdump master-bin.000001

With the preceding command, the output might look like this:

/*!40019 SET @@session.max_insert_delayed_threads=0*/;
/*!50003 SET @OLD_COMPLETION_TYPE=@@COMPLETION_TYPE,COMPLETION_TYPE=0*/;
at 4
#051024 17:24:13 server id 1 end_log_pos 98
Position Timestamp Type Master ID Size Master Pos Flags
00000004 9d fc 5c 43 0f 01 00 00 00 5e 00 00 00 62 00 00 00 00 00
00000017 04 00 35 2e 30 2e 31 35 2d 64 65 62 75 67 2d 6c |..5.0.15.debug.l|
00000027 6f 67 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |og..............|
00000037 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000047 00 00 00 00 9d fc 5c 43 13 38 0d 00 08 00 12 00 |.......C.8......|

Client and Utility Programs

556

00000057 04 04 04 04 12 00 00 4b 00 04 1a |.......K...|
Start: binlog v 4, server v 5.0.15-debug-log created 051024 17:24:13
at startup
ROLLBACK;

Hex dump output currently contains the following elements. This format might change in the future.

• Position: The byte position within the log file.

• Timestamp: The event timestamp. In the example shown, '9d fc 5c 43' is the representation
of '051024 17:24:13' in hexadecimal.

• Type: The type of the log event. In the example shown, '0f' means that the example event is a
FORMAT_DESCRIPTION_EVENT. The following table lists the possible types.

Typ
e

Name Meaning

00 UNKNOWN_EVENT This event should never be present in the log.

01 START_EVENT_V
3

This indicates the start of a log file written by MySQL 4 or earlier.

02 QUERY_EVENT The most common type of events. These contain statements executed on the
master.

03 STOP_EVENT Indicates that master has stopped.

04 ROTATE_EVENT Written when the master switches to a new log file.

05 INTVAR_EVENT Used mainly for AUTO_INCREMENT values and when the
LAST_INSERT_ID() function is used in the statement.

06 LOAD_EVENT Used for LOAD DATA INFILE in MySQL 3.23.

07 SLAVE_EVENT Reserved for future use.

08 CRE-
ATE_FILE_EVEN
T

Used for LOAD DATA INFILE statements. This indicates the start of exe-
cution of such a statement. A temporary file is created on the slave. Used in
MySQL 4 only.

09 AP-
PEND_BLOCK_EV
ENT

Contains data for use in a LOAD DATA INFILE statement. The data is
stored in the temporary file on the slave.

0a EX-
EC_LOAD_EVENT

Used for LOAD DATA INFILE statements. The contents of the temporary
file is stored in the table on the slave. Used in MySQL 4 only.

0b DE-
LETE_FILE_EVE
NT

Rollback of a LOAD DATA INFILE statement. The temporary file should
be deleted on slave.

0c NEW_LOAD_EVEN
T

Used for LOAD DATA INFILE in MySQL 4 and earlier.

0d RAND_EVENT Used to send information about random values if the RAND() function is
used in the statement.

0e USER_VAR_EVEN
T

Used to replicate user variables.

0f FORMAT_DESCRI
PTION_EVENT

This indicates the start of a log file written by MySQL 5 or later.

10 XID_EVENT Event indicating commit of an XA transaction.

11 BE-
GIN_LOAD_QUER

Used for LOAD DATA INFILE statements in MySQL 5 and later.

Client and Utility Programs

557

Y_EVENT

12 EX-
ECUTE_LOAD_QU
ERY_EVENT

Used for LOAD DATA INFILE statements in MySQL 5 and later.

13 TA-
BLE_MAP_EVENT

Reserved for future use.

14 WRITE_ROWS_EV
ENT

Reserved for future use.

15 UP-
DATE_ROWS_EVE
NT

Reserved for future use.

16 DE-
LETE_ROWS_EVE
NT

Reserved for future use.

• Master ID: The server id of the master that created the event.

• Size: The size in bytes of the event.

• Master Pos: The position of the event in the original master log file.

• Flags: 16 flags. Currently, the following flags are used. The others are reserved for the future.

Fla
g

Name Meaning

01 LOG_EVENT_BIN
LOG_IN_USE_F

Log file correctly closed. (Used only in FORMAT_DESCRIPTION_EVENT.)
If this flag is set (if the flags are, for example, '01 00') in a
FORMAT_DESCRIPTION_EVENT, the log file has not been properly
closed. Most probably this is because of a master crash (for example, due to
power failure).

02 Reserved for future use.

04 LOG_EVENT_THR
EAD_SPECIFIC_
F

Set if the event is dependent on the connection it was executed in (for ex-
ample, '04 00'), for example, if the event uses temporary tables.

08 LOG_EVENT_SUP
PRESS_USE_F

Set in some circumstances when the event is not dependent on the default
database.

The other flags are reserved for future use.

8.11. mysqlcheck — A Table Maintenance and Repair
Program

The mysqlcheck client checks, repairs, optimizes, and analyzes tables.

mysqlcheck is similar in function to myisamchk, but works differently. The main operational dif-
ference is that mysqlcheck must be used when the mysqld server is running, whereas myisamchk
should be used when it is not. The benefit of using mysqlcheck is that you do not have to stop the
server to check or repair your tables.

Client and Utility Programs

558

mysqlcheck uses the SQL statements CHECK TABLE, REPAIR TABLE, ANALYZE TABLE, and
OPTIMIZE TABLE in a convenient way for the user. It determines which statements to use for the op-
eration you want to perform, and then sends the statements to the server to be executed. For details about
which storage engines each statement works with, see the descriptions for those statements in
Chapter 13, SQL Statement Syntax.

The MyISAM storage engine supports all four statements, so mysqlcheck can be used to perform all
four operations on MyISAM tables. Other storage engines do not necessarily support all operations. In
such cases, an error message is displayed. For example, if test.t is a MEMORY table, an attempt to
check it produces this result:

shell> mysqlcheck test t
test.t
note : The storage engine for the table doesn't support check

There are three general ways to invoke mysqlcheck:

shell> mysqlcheck [options] db_name [tables]
shell> mysqlcheck [options] --databases db_name1 [db_name2 db_name3...]
shell> mysqlcheck [options] --all-databases

If you do not name any tables following db_name or if you use the --databases or -
-all-databases option, entire databases are checked.

mysqlcheck has a special feature compared to other client programs. The default behavior of check-
ing tables (--check) can be changed by renaming the binary. If you want to have a tool that repairs
tables by default, you should just make a copy of mysqlcheck named mysqlrepair, or make a
symbolic link to mysqlcheck named mysqlrepair. If you invoke mysqlrepair, it repairs
tables.

The following names can be used to change mysqlcheck default behavior:

mysqlrepair The default option is --repair

mysqlanalyze The default option is --analyze

mysqloptimize The default option is --optimize

mysqlcheck supports the following options:

• --help, -?

Display a help message and exit.

• --all-databases, -A

Check all tables in all databases. This is the same as using the --databases option and naming
all the databases on the command line.

• --all-in-1, -1

Instead of issuing a statement for each table, execute a single statement for each database that names
all the tables from that database to be processed.

• --analyze, -a

Analyze the tables.

Client and Utility Programs

559

• --auto-repair

If a checked table is corrupted, automatically fix it. Any necessary repairs are done after all tables
have been checked.

• --character-sets-dir=path

The directory where character sets are installed. See Section 5.11.1, “The Character Set Used for
Data and Sorting”.

• --check, -c

Check the tables for errors. This is the default operation.

• --check-only-changed, -C

Check only tables that have changed since the last check or that have not been closed properly.

• --check-upgrade, -g

Invoke CHECK TABLE with the FOR UPGRADE option to check tables for incompatibilities with
the current version of the server. This option was added in MySQL 5.0.19.

• --compress

Compress all information sent between the client and the server if both support compression.

• --databases, -B

Process all tables in the named databases. Normally, mysqlcheck treats the first name argument
on the command line as a database name and following names as table names. With this option, it
treats all name arguments as database names.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. A typical debug_options string is often 'd:t:o,file_name'.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 5.11.1, “The Character Set Used for
Data and Sorting”.

• --extended, -e

If you are using this option to check tables, it ensures that they are 100% consistent but takes a long
time.

If you are using this option to repair tables, it runs an extended repair that may not only take a long
time to execute, but may produce a lot of garbage rows also!

• --fast, -F

Check only tables that have not been closed properly.

• --force, -f

Continue even if an SQL error occurs.

• --host=host_name, -h host_name

Client and Utility Programs

560

Connect to the MySQL server on the given host.

• --medium-check, -m

Do a check that is faster than an --extended operation. This finds only 99.99% of all errors,
which should be good enough in most cases.

• --optimize, -o

Optimize the tables.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you can-
not have a space between the option and the password. If you omit the password value following
the --password or -p option on the command line, you are prompted for one.

Specifying a password on the command line should be considered insecure. See Section 5.9.6,
“Keeping Your Password Secure”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use.

• --quick, -q

If you are using this option to check tables, it prevents the check from scanning the rows to check for
incorrect links. This is the fastest check method.

If you are using this option to repair tables, it tries to repair only the index tree. This is the fastest re-
pair method.

• --repair, -r

Perform a repair that can fix almost anything except unique keys that are not unique.

• --silent, -s

Silent mode. Print only error messages.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the
named pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server via SSL and indicate where
to find SSL keys and certificates. See Section 5.9.7.3, “SSL Command Options”.

• --tables

Overrides the --databases or -B option. All name arguments following the option are regarded
as table names.

Client and Utility Programs

561

• --use-frm

For repair operations on MyISAM tables, get the table structure from the .frm file so that the table
can be repaired even if the .MYI header is corrupted.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

• --verbose, -v

Verbose mode. Print information about the various stages of program operation.

• --version, -V

Display version information and exit.

8.12. mysqldump — A Database Backup Program
The mysqldump client is a backup program originally written by Igor Romanenko. It can be used to
dump a database or a collection of databases for backup or for transferring the data to another SQL serv-
er (not necessarily a MySQL server). The dump contains SQL statements to create the table or populate
it, or both.

If you are doing a backup on the server, and your tables all are MyISAM tables, consider using the
mysqlhotcopy instead because it can accomplish faster backups and faster restores. See Section 8.13,
“mysqlhotcopy — A Database Backup Program”.

There are three general ways to invoke mysqldump:

shell> mysqldump [options] db_name [tables]
shell> mysqldump [options] --databases db_name1 [db_name2 db_name3...]
shell> mysqldump [options] --all-databases

If you do not name any tables following db_name or if you use the --databases or -
-all-databases option, entire databases are dumped.

To get a list of the options your version of mysqldump supports, execute mysqldump --help.

If you run mysqldump without the --quick or --opt option, mysqldump loads the whole result
set into memory before dumping the result. This can be a problem if you are dumping a big database.
The --opt option is enabled by default, but can be disabled with --skip-opt.

If you are using a recent copy of the mysqldump program to generate a dump to be reloaded into a
very old MySQL server, you should not use the --opt or --extended-insert option. Use -
-skip-opt instead.

mysqldump supports the following options:

• --help, -?

Display a help message and exit.

• --add-drop-database

Add a DROP DATABASE statement before each CREATE DATABASE statement.

Client and Utility Programs

562

• --add-drop-table

Add a DROP TABLE statement before each CREATE TABLE statement.

• --add-locks

Surround each table dump with LOCK TABLES and UNLOCK TABLES statements. This results in
faster inserts when the dump file is reloaded. See Section 7.2.16, “Speed of INSERT Statements”.

• --all-databases, -A

Dump all tables in all databases. This is the same as using the --databases option and naming all
the databases on the command line.

• --allow-keywords

Allow creation of column names that are keywords. This works by prefixing each column name with
the table name.

• --character-sets-dir=path

The directory where character sets are installed. See Section 5.11.1, “The Character Set Used for
Data and Sorting”.

• --comments, -i

Write additional information in the dump file such as program version, server version, and host. .
This option is enabled by default. To suppress additional, use --skip-comments.

• --compact

Produce less verbose output. This option suppresses comments and enables the -
-skip-add-drop-table, --no-set-names, --skip-disable-keys, and -
-skip-add-locks options.

• --compatible=name

Produce output that is more compatible with other database systems or with older MySQL servers.
The value of name can be ansi, mysql323, mysql40, postgresql, oracle, mssql, db2,
maxdb, no_key_options, no_table_options, or no_field_options. To use several
values, separate them by commas. These values have the same meaning as the corresponding options
for setting the server SQL mode. See Section 5.2.6, “SQL Modes”.

This option does not guarantee compatibility with other servers. It only enables those SQL mode val-
ues that are currently available for making dump output more compatible. For example, -
-compatible=oracle does not map data types to Oracle types or use Oracle comment syntax.

• --complete-insert, -c

Use complete INSERT statements that include column names.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --create-options

Include all MySQL-specific table options in the CREATE TABLE statements.

• --databases, -B

Client and Utility Programs

563

Dump several databases. Normally, mysqldump treats the first name argument on the command
line as a database name and following names as table names. With this option, it treats all name ar-
guments as database names. CREATE DATABASE and USE statements are included in the output
before each new database.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. The debug_options string is often 'd:t:o,file_name'. The default
is 'd:t:o,/tmp/mysqldump.trace'.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 5.11.1, “The Character Set Used for
Data and Sorting”. If not specified, mysqldump uses utf8.

• --delayed-insert

Write INSERT DELAYED statements rather than INSERT statements.

• --delete-master-logs

On a master replication server, delete the binary logs after performing the dump operation. This op-
tion automatically enables --master-data.

• --disable-keys, -K

For each table, surround the INSERT statements with /*!40000 ALTER TABLE tbl_name
DISABLE KEYS */; and /*!40000 ALTER TABLE tbl_name ENABLE KEYS */;
statements. This makes loading the dump file faster because the indexes are created after all rows are
inserted. This option is effective for MyISAM tables only.

• --extended-insert, -e

Use multiple-row INSERT syntax that include several VALUES lists. This results in a smaller dump
file and speeds up inserts when the file is reloaded.

• --fields-terminated-by=..., --fields-enclosed-by=..., -
-fields-optionally-enclosed-by=..., --fields-escaped-by=..., -
-lines-terminated-by=...

These options are used with the -T option and have the same meaning as the corresponding clauses
for LOAD DATA INFILE. See Section 13.2.5, “LOAD DATA INFILE Syntax”.

• --first-slave, -x

Deprecated. Now renamed to --lock-all-tables.

• --flush-logs, -F

Flush the MySQL server log files before starting the dump. This option requires the RELOAD priv-
ilege. Note that if you use this option in combination with the --all-databases (or -A) option,
the logs are flushed for each database dumped. The exception is when using -
-lock-all-tables or --master-data: In this case, the logs are flushed only once, corres-
ponding to the moment that all tables are locked. If you want your dump and the log flush to happen
at exactly the same moment, you should use --flush-logs together with either -
-lock-all-tables or --master-data.

• --flush-privileges

Client and Utility Programs

564

Emit a FLUSH PRIVILEGES statement after dumping the mysql database. This option should be
used any time the dump contains the mysql database and any other database that depends on the
data in the mysql database for proper restoration. This option was added in MySQL 5.0.26.

• --force, -f

Continue even if an SQL error occurs during a table dump.

One use for this option is to cause mysqldump to continue executing even when it encounters a
view that has become invalid because the defintion refers to a table that has been dropped. Without -
-force, mysqldump exits with an error message. With --force, mysqldump prints the error
message, but it also writes a SQL comment containing the view definition to the dump output and
continues executing.

• --host=host_name, -h host_name

Dump data from the MySQL server on the given host. The default host is localhost.

• --hex-blob

Dump binary columns using hexadecimal notation (for example, 'abc' becomes 0x616263). The
affected data types are BINARY, VARBINARY, and BLOB. As of MySQL 5.0.13, BIT columns are
affected as well.

• --ignore-table=db_name.tbl_name

Do not dump the given table, which must be specified using both the database and table names. To
ignore multiple tables, use this option multiple times.

• --insert-ignore

Write INSERT statements with the IGNORE option.

• --lock-all-tables, -x

Lock all tables across all databases. This is achieved by acquiring a global read lock for the duration
of the whole dump. This option automatically turns off --single-transaction and -
-lock-tables.

• --lock-tables, -l

Lock all tables before starting the dump. The tables are locked with READ LOCAL to allow concur-
rent inserts in the case of MyISAM tables. For transactional tables such as InnoDB and BDB, -
-single-transaction is a much better option, because it does not need to lock the tables at
all.

Please note that when dumping multiple databases, --lock-tables locks tables for each data-
base separately. So, this option does not guarantee that the tables in the dump file are logically con-
sistent between databases. Tables in different databases may be dumped in completely different
states.

• --master-data[=value]

Write the binary log filename and position to the output. This option requires the RELOAD privilege
and the binary log must be enabled. If the option value is equal to 1, the position and filename are
written to the dump output in the form of a CHANGE MASTER statement that makes a slave server
start from the correct position in the master's binary logs if you use this SQL dump of the master to
set up a slave. If the option value is equal to 2, the CHANGE MASTER statement is written as an

Client and Utility Programs

565

SQL comment. This is the default action if value is omitted.

The --master-data option turns on --lock-all-tables, unless -
-single-transaction also is specified (in which case, a global read lock is only acquired a
short time at the beginning of the dump. See also the description for --single-transaction.
In all cases, any action on logs happens at the exact moment of the dump. This option automatically
turns off --lock-tables.

• --no-autocommit

Enclose the INSERT statements for each dumped table within SET AUTOCOMMIT=0 and COMMIT
statements.

• --no-create-db, -n

This option suppresses the CREATE DATABASE statements that are otherwise included in the out-
put if the --databases or --all-databases option is given.

• --no-create-info, -t

Do not write CREATE TABLE statements that re-create each dumped table.

• --no-data, -d

Do not write any row information for the table. This is very useful if you want to dump only the
CREATE TABLE statement for the table.

• --opt

This option is shorthand; it is the same as specifying --add-drop-table --add-locks -
-create-options --disable-keys --extended-insert --lock-tables -
-quick --set-charset. It should give you a fast dump operation and produce a dump file that
can be reloaded into a MySQL server quickly.

The --opt option is enabled by default. To disable the options that it enables, use --skip-opt.
To disable only certain of the options enabled by --opt, use their --skip forms; for example, -
-skip-add-drop-table or --skip-quick. Alternatively, use --skip-opt to disable the
options enabled by --opt, followed by options to enable the features that you want. Options are
processed in order, so the options to enable features must follow --skip-opt. For example, -
-skip-opt --extended-insert enables extended inserts, but --extended-insert -
-skip-opt does not.

• --order-by-primary

Sorts each table's rows by its primary key, or its first unique index, if such an index exists. This is
useful when dumping a MyISAM table to be loaded into an InnoDB table, but will make the dump
itself take considerably longer.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you can-
not have a space between the option and the password. If you omit the password value following
the --password or -p option on the command line, you are prompted for one.

Specifying a password on the command line should be considered insecure. See Section 5.9.6,
“Keeping Your Password Secure”.

• --port=port_num, -P port_num

Client and Utility Programs

566

The TCP/IP port number to use for the connection.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use.

• --quick, -q

This option is useful for dumping large tables. It forces mysqldump to retrieve rows for a table
from the server a row at a time rather than retrieving the entire row set and buffering it in memory
before writing it out.

• --quote-names, -Q

Quote database, table, and column names within ‘`’ characters. If the ANSI_QUOTES SQL mode is
enabled, names are quoted within ‘"’ characters. This option is enabled by default. It can be disabled
with --skip-quote-names, but this option should be given after any option such as -
-compatible that may enable --quote-names.

• --result-file=file, -r file

Direct output to a given file. This option should be used on Windows to prevent newline ‘\n’ char-
acters from being converted to ‘\r\n’ carriage return/newline sequences. The result file is created
and its contents overwritten, even if an error occurs while generating the dump. The previous con-
tents are lost.

• --routines, -R

Dump stored routines (functions and procedures) from the dumped databases. Use of this option re-
quires the SELECT privilege for the mysql.proc table. The output generated by using -
-routines contains CREATE PROCEDURE and CREATE FUNCTION statements to re-create the
routines. However, these statements do not include attributes such as the routine creation and modi-
fication timestamps. This means that when the routines are reloaded, they will be created with the
timestamps equal to the reload time.

If you require routines to be re-created with their original timestamp attributes, do not use -
-routines. Instead, dump and reload the contents of the mysql.proc table directly, using a
MySQL account that has appropriate privileges for the mysql database.

This option was added in MySQL 5.0.13. Before that, stored routines are not dumped. Routine
DEFINER values are not dumped until MySQL 5.0.20. This means that before 5.0.20, when routines
are reloaded, they will be created with the definer set to the reloading user. If you require routines to
be re-created with their original definer, dump and load the contents of the mysql.proc table dir-
ectly as described earlier.

• --set-charset

Add SET NAMES default_character_set to the output. This option is enabled by default.
To suppress the SET NAMES statement, use --skip-set-charset.

• --single-transaction

This option issues a BEGIN SQL statement before dumping data from the server. It is useful only
with transactional tables such as InnoDB and BDB, because then it dumps the consistent state of the
database at the time when BEGIN was issued without blocking any applications.

When using this option, you should keep in mind that only InnoDB tables are dumped in a consist-
ent state. For example, any MyISAM or MEMORY tables dumped while using this option may still

Client and Utility Programs

567

change state.

The --single-transaction option and the --lock-tables option are mutually exclusive,
because LOCK TABLES causes any pending transactions to be committed implicitly.

This option is not supported for MySQL Cluster tables; the results cannot be guaranteed to be con-
sistent due to the fact that the NDBCluster storage engine supports only the READ_COMMITTED
transaction isolation level. You should always use NDB backup and restore instead.

To dump big tables, you should combine this option with --quick.

• --skip-opt

See the description for the --opt option.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the
named pipe to use.

• --skip-comments

See the description for the --comments option.

• --ssl*

Options that begin with --ssl specify whether to connect to the server via SSL and indicate where
to find SSL keys and certificates. See Section 5.9.7.3, “SSL Command Options”.

• --tab=path, -T path

Produce tab-separated data files. For each dumped table, mysqldump creates a tbl_name.sql
file that contains the CREATE TABLE statement that creates the table, and a tbl_name.txt file
that contains its data. The option value is the directory in which to write the files.

By default, the .txt data files are formatted using tab characters between column values and a
newline at the end of each line. The format can be specified explicitly using the --fields-xxx
and --lines--xxx options.

Note: This option should be used only when mysqldump is run on the same machine as the
mysqld server. You must have the FILE privilege, and the server must have permission to write
files in the directory that you specify.

• --tables

Override the --databases or -B option. All name arguments following the option are regarded
as table names.

• --triggers

Dump triggers for each dumped table. This option is enabled by default; disable it with -
-skip-triggers. This option was added in MySQL 5.0.11. Before that, triggers are not dumped.

• --tz-utc

Add SET TIME_ZONE='+00:00' to the dump file so that TIMESTAMP columns can be dumped
and reloaded between servers in different time zones. Without this option, TIMESTAMP columns are
dumped and reloaded in the time zones local to the source and destination servers, which can cause
the values to change. --tz-utc also protects against changes due to daylight saving time. -

Client and Utility Programs

568

-tz-utc is enabled by default. To disable it, use --skip-tz-utc. This option was added in
MySQL 5.0.15.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

• --where='where_condition', -w 'where_condition'

Dump only rows selected by the given WHERE condition. Note that quotes around the condition are
mandatory if it contains spaces or other characters that are special to your command interpreter.

Examples:

--where="user='jimf'"
-w"userid>1"
-w"userid<1"

• --xml, -X

Write dump output as well-formed XML.

You can also set the following variables by using --var_name=value syntax:

• max_allowed_packet

The maximum size of the buffer for client/server communication. The maximum is 1GB.

• net_buffer_length

The initial size of the buffer for client/server communication. When creating multiple-row-insert
statements (as with option --extended-insert or --opt), mysqldump creates rows up to
net_buffer_length length. If you increase this variable, you should also ensure that the
net_buffer_length variable in the MySQL server is at least this large.

It is also possible to set variables by using --set-variable=var_name=value or -O
var_name=value syntax. This syntax is deprecated.

The most common use of mysqldump is probably for making a backup of an entire database:

shell> mysqldump --opt db_name > backup-file.sql

You can read the dump file back into the server like this:

shell> mysql db_name < backup-file.sql

Or like this:

Client and Utility Programs

569

shell> mysql -e "source /path-to-backup/backup-file.sql" db_name

mysqldump is also very useful for populating databases by copying data from one MySQL server to
another:

shell> mysqldump --opt db_name | mysql --host=remote_host -C db_name

It is possible to dump several databases with one command:

shell> mysqldump --databases db_name1 [db_name2 ...] > my_databases.sql

To dump all databases, use the --all-databases option:

shell> mysqldump --all-databases > all_databases.sql

For InnoDB tables, mysqldump provides a way of making an online backup:

shell> mysqldump --all-databases --single-transaction > all_databases.sql

This backup just needs to acquire a global read lock on all tables (using FLUSH TABLES WITH
READ LOCK) at the beginning of the dump. As soon as this lock has been acquired, the binary log co-
ordinates are read and the lock is released. If and only if one long updating statement is running when
the FLUSH statement is issued, the MySQL server may get stalled until that long statement finishes, and
then the dump becomes lock-free. If the update statements that the MySQL server receives are short (in
terms of execution time), the initial lock period should not be noticeable, even with many updates.

For point-in-time recovery (also known as “roll-forward,” when you need to restore an old backup and
replay the changes that happened since that backup), it is often useful to rotate the binary log (see Sec-
tion 5.12.3, “The Binary Log”) or at least know the binary log coordinates to which the dump corres-
ponds:

shell> mysqldump --all-databases --master-data=2 > all_databases.sql

Or:

shell> mysqldump --all-databases --flush-logs --master-data=2
> all_databases.sql

The simultaneous use of --master-data and --single-transaction provides a convenient
way to make an online backup suitable for point-in-time recovery if tables are stored in the InnoDB
storage engine.

For more information on making backups, see Section 5.10.1, “Database Backups”, and Section 5.10.2,
“Example Backup and Recovery Strategy”.

If you encounter problems backing up views, please read the section that covers restrictions on views
which describes a workaround for backing up views when this fails due to insufficient privileges. See
Section I.4, “Restrictions on Views”.

8.13. mysqlhotcopy — A Database Backup Program
mysqlhotcopy is a Perl script that was originally written and contributed by Tim Bunce. It uses
LOCK TABLES, FLUSH TABLES, and cp or scp to make a database backup quickly. It is the fastest
way to make a backup of the database or single tables, but it can be run only on the same machine where
the database directories are located. mysqlhotcopy works only for backing up MyISAM and

Client and Utility Programs

570

ARCHIVE tables. It runs on Unix and NetWare.

shell> mysqlhotcopy db_name [/path/to/new_directory]

shell> mysqlhotcopy db_name_1 ... db_name_n /path/to/new_directory

Back up tables in the given database that match a regular expression:

shell> mysqlhotcopy db_name./regex/

The regular expression for the table name can be negated by prefixing it with a tilde (‘~’):

shell> mysqlhotcopy db_name./~regex/

mysqlhotcopy supports the following options:

• --help, -?

Display a help message and exit.

• --addtodest

Do not rename target directory (if it exists); merely add files to it.

• --allowold

Do not abort if a target exists; rename it by adding an _old suffix.

• --checkpoint=db_name.tbl_name

Insert checkpoint entries into the specified database db_name and table tbl_name.

• --chroot=path

Base directory of the chroot jail in which mysqld operates. The path value should match that of
the --chroot option given to mysqld.

• --debug

Enable debug output.

• --dryrun, -n

Report actions without performing them.

• --flushlog

Flush logs after all tables are locked.

• --host=host_name, -h host_name

The hostname of the local host to use for making a TCP/IP connection to the local server. By default,
the connection is made to localhost using a Unix socket file.

• --keepold

Do not delete previous (renamed) target when done.

Client and Utility Programs

571

• --method=command

The method for copying files (cp or scp).

• --noindices

Do not include full index files in the backup. This makes the backup smaller and faster. The indexes
for reloaded tables can be reconstructed later with myisamchk -rq.

• --password=password, -ppassword

The password to use when connecting to the server. Note that the password value is not optional for
this option, unlike for other MySQL programs. You can use an option file to avoid giving the pass-
word on the command line.

Specifying a password on the command line should be considered insecure. See Section 5.9.6,
“Keeping Your Password Secure”.

• --port=port_num, -P port_num

The TCP/IP port number to use when connecting to the local server.

• --quiet, -q

Be silent except for errors.

• --record_log_pos=db_name.tbl_name

Record master and slave status in the specified database db_name and table tbl_name.

• --regexp=expr

Copy all databases with names that match the given regular expression.

• --resetmaster

Reset the binary log after locking all the tables.

• --resetslave

Reset the master.info file after locking all the tables.

• --socket=path, -S path

The Unix socket file to use for the connection.

• --suffix=str

The suffix for names of copied databases.

• --tmpdir=path

The temporary directory. The default is /tmp.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

mysqlhotcopy reads the [client] and [mysqlhotcopy] option groups from option files.

Client and Utility Programs

572

To execute mysqlhotcopy, you must have access to the files for the tables that you are backing up,
the SELECT privilege for those tables, the RELOAD privilege (to be able to execute FLUSH TABLES),
and the LOCK TABLES privilege (to be able to lock the tables).

Use perldoc for additional mysqlhotcopy documentation, including information about the struc-
ture of the tables needed for the --checkpoint and --record_log_pos options:

shell> perldoc mysqlhotcopy

8.14. mysqlimport — A Data Import Program
The mysqlimport client provides a command-line interface to the LOAD DATA INFILE SQL state-
ment. Most options to mysqlimport correspond directly to clauses of LOAD DATA INFILE syntax.
See Section 13.2.5, “LOAD DATA INFILE Syntax”.

Invoke mysqlimport like this:

shell> mysqlimport [options] db_name textfile1 [textfile2 ...]

For each text file named on the command line, mysqlimport strips any extension from the filename
and uses the result to determine the name of the table into which to import the file's contents. For ex-
ample, files named patient.txt, patient.text, and patient all would be imported into a ta-
ble named patient.

mysqlimport supports the following options:

• --help, -?

Display a help message and exit.

• --character-sets-dir=path

The directory where character sets are installed. See Section 5.11.1, “The Character Set Used for
Data and Sorting”.

• --columns=column_list, -c column_list

This option takes a comma-separated list of column names as its value. The order of the column
names indicates how to match data file columns with table columns.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. The debug_options string often is 'd:t:o,file_name'.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 5.11.1, “The Character Set Used for
Data and Sorting”.

• --delete, -D

Empty the table before importing the text file.

Client and Utility Programs

573

• --fields-terminated-by=..., --fields-enclosed-by=..., -
-fields-optionally-enclosed-by=..., --fields-escaped-by=..., -
-lines-terminated-by=...

These options have the same meaning as the corresponding clauses for LOAD DATA INFILE. For
example, to import Windows files that have lines terminated with carriage return/linefeed pairs, use
--lines-terminated-by="\r\n". (You might have to double the backslashes, depending on
the escaping conventions of your command interpreter.) See Section 13.2.5, “LOAD DATA IN-
FILE Syntax”.

• --force, -f

Ignore errors. For example, if a table for a text file does not exist, continue processing any remaining
files. Without --force, mysqlimport exits if a table does not exist.

• --host=host_name, -h host_name

Import data to the MySQL server on the given host. The default host is localhost.

• --ignore, -i

See the description for the --replace option.

• --ignore-lines=N

Ignore the first N lines of the data file.

• --local, -L

Read input files locally from the client host.

• --lock-tables, -l

Lock all tables for writing before processing any text files. This ensures that all tables are synchron-
ized on the server.

• --low-priority

Use LOW_PRIORITY when loading the table.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you can-
not have a space between the option and the password. If you omit the password value following
the --password or -p option on the command line, you are prompted for one.

Specifying a password on the command line should be considered insecure. See Section 5.9.6,
“Keeping Your Password Secure”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use.

• --replace, -r

The --replace and --ignore options control handling of input rows that duplicate existing

Client and Utility Programs

574

rows on unique key values. If you specify --replace, new rows replace existing rows that have
the same unique key value. If you specify --ignore, input rows that duplicate an existing row on a
unique key value are skipped. If you do not specify either option, an error occurs when a duplicate
key value is found, and the rest of the text file is ignored.

• --silent, -s

Silent mode. Produce output only when errors occur.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the
named pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server via SSL and indicate where
to find SSL keys and certificates. See Section 5.9.7.3, “SSL Command Options”.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

• --verbose, -v

Verbose mode. Print more information about what the program does.

• --version, -V

Display version information and exit.

Here is a sample session that demonstrates use of mysqlimport:

shell> mysql -e 'CREATE TABLE imptest(id INT, n VARCHAR(30))' test
shell> ed
a
100 Max Sydow
101 Count Dracula
.
w imptest.txt
32
q
shell> od -c imptest.txt
0000000 1 0 0 \t M a x S y d o w \n 1 0
0000020 1 \t C o u n t D r a c u l a \n
0000040
shell> mysqlimport --local test imptest.txt
test.imptest: Records: 2 Deleted: 0 Skipped: 0 Warnings: 0
shell> mysql -e 'SELECT * FROM imptest' test
+------+---------------+
| id | n |
+------+---------------+
| 100 | Max Sydow |
| 101 | Count Dracula |
+------+---------------+

8.15. mysqlshow — Display Database, Table, and
Column Information

The mysqlshow client can be used to quickly see which databases exist, their tables, or a table's
columns or indexes.

Client and Utility Programs

575

mysqlshow provides a command-line interface to several SQL SHOW statements. See Section 13.5.4,
“SHOW Syntax”. The same information can be obtained by using those statements directly. For example,
you can issue them from the mysql client program.

Invoke mysqlshow like this:

shell> mysqlshow [options] [db_name [tbl_name [col_name]]]

• If no database is given, a list of database names is shown.

• If no table is given, all matching tables in the database are shown.

• If no column is given, all matching columns and column types in the table are shown.

The output displays only the names of those databases, tables, or columns for which you have some
privileges.

If the last argument contains shell or SQL wildcard characters (‘*’, ‘?’, ‘%’, or ‘_’), only those names
that are matched by the wildcard are shown. If a database name contains any underscores, those should
be escaped with a backslash (some Unix shells require two) to get a list of the proper tables or columns.
‘*’ and ‘?’ characters are converted into SQL ‘%’ and ‘_’ wildcard characters. This might cause some
confusion when you try to display the columns for a table with a ‘_’ in the name, because in this case,
mysqlshow shows you only the table names that match the pattern. This is easily fixed by adding an
extra ‘%’ last on the command line as a separate argument.

mysqlshow supports the following options:

• --help, -?

Display a help message and exit.

• --character-sets-dir=path

The directory where character sets are installed. See Section 5.11.1, “The Character Set Used for
Data and Sorting”.

• --compress, -C

Compress all information sent between the client and the server if both support compression.

• --count

Show the number of rows per table. This can be slow for non-MyISAM tables. This option was ad-
ded in MySQL 5.0.6.

• --debug[=debug_options], -# [debug_options]

Write a debugging log. The debug_options string often is 'd:t:o,file_name'.

• --default-character-set=charset_name

Use charset_name as the default character set. See Section 5.11.1, “The Character Set Used for
Data and Sorting”.

• --host=host_name, -h host_name

Client and Utility Programs

576

Connect to the MySQL server on the given host.

• --keys, -k

Show table indexes.

• --password[=password], -p[password]

The password to use when connecting to the server. If you use the short option form (-p), you can-
not have a space between the option and the password. If you omit the password value following
the --password or -p option on the command line, you are prompted for one.

Specifying a password on the command line should be considered insecure. See Section 5.9.6,
“Keeping Your Password Secure”.

• --port=port_num, -P port_num

The TCP/IP port number to use for the connection.

• --protocol={TCP|SOCKET|PIPE|MEMORY}

The connection protocol to use.

• --show-table-type, -t

Show a column indicating the table type, as in SHOW FULL TABLES. The type is BASE TABLE
or VIEW. This option was added in MySQL 5.0.4.

• --socket=path, -S path

For connections to localhost, the Unix socket file to use, or, on Windows, the name of the
named pipe to use.

• --ssl*

Options that begin with --ssl specify whether to connect to the server via SSL and indicate where
to find SSL keys and certificates. See Section 5.9.7.3, “SSL Command Options”.

• --status, -i

Display extra information about each table.

• --user=user_name, -u user_name

The MySQL username to use when connecting to the server.

• --verbose, -v

Verbose mode. Print more information about what the program does. This option can be used mul-
tiple times to increase the amount of information.

• --version, -V

Display version information and exit.

8.16. mysql_zap — Kill Processes That Match a Pat-

Client and Utility Programs

577

tern
mysql_zap kills processes that match a pattern. It uses the ps command and Unix signals, so it runs
on Unix and Unix-like systems.

Invoke mysql_zap like this:

shell> mysql_zap [-signal] [-?Ift] pattern

A process matches if its output line from the ps command contains the pattern. By default,
mysql_zap asks for confirmation for each process. Respond y to kill the process, or q to exit
mysql_zap. For any other response, mysql_zap does not attempt to kill the process.

If the -signal option is given, it specifies the name or number of the signal to send to each process.
Otherwise, mysql_zap tries first with TERM (signal 15) and then with KILL (signal 9).

mysql_zap understands the following additional options:

• --help, -?, -I

Display a help message and exit.

• -f

Force mode. mysql_zap attempts to kill each process without confirmation.

• -t

Test mode. Display information about each process but do not kill it.

8.17. perror — Explain Error Codes
For most system errors, MySQL displays, in addition to an internal text message, the system error code
in one of the following styles:

message ... (errno: #)
message ... (Errcode: #)

You can find out what the error code means by examining the documentation for your system or by us-
ing the perror utility.

perror prints a description for a system error code or for a storage engine (table handler) error code.

Invoke perror like this:

shell> perror [options] errorcode ...

Example:

shell> perror 13 64
Error code 13: Permission denied
Error code 64: Machine is not on the network

To obtain the error message for a MySQL Cluster error code, invoke perror with the --ndb option:

shell> perror --ndb errorcode

Client and Utility Programs

578

Note that the meaning of system error messages may be dependent on your operating system. A given
error code may mean different things on different operating systems.

perror supports the following options:

• --help, --info, -I, -?

Display a help message and exit.

• --ndb

Print the error message for a MySQL Cluster error code.

• --silent, -s

Silent mode. Print only the error message.

• --verbose, -v

Verbose mode. Print error code and message. This is the default behavior.

• --version, -V

Display version information and exit.

8.18. replace — A String-Replacement Utility
The replace utility program changes strings in place in files or on the standard input.

Invoke replace in one of the following ways:

shell> replace from to [from to] ... -- file [file] ...
shell> replace from to [from to] ... < file

from represents a string to look for and to represents its replacement. There can be one or more pairs
of strings.

Use the -- option to indicate where the string-replacement list ends and the filenames begin. In this
case, any file named on the command line is modified in place, so you may want to make a copy of the
original before converting it. replace prints a message indicating which of the input files it actually
modifies.

If the -- option is not given, replace reads the standard input and writes to the standard output.

replace uses a finite state machine to match longer strings first. It can be used to swap strings. For ex-
ample, the following command swaps a and b in the given files, file1 and file2:

shell> replace a b b a -- file1 file2 ...

The replace program is used by msql2mysql. See Section 22.9.1, “msql2mysql — Convert
mSQL Programs for Use with MySQL”.

replace supports the following options:

• -?, -I

Client and Utility Programs

579

Display a help message and exit.

• -# debug_options

Write a debugging log. The debug_options string often is 'd:t:o,file_name'.

• -s

Silent mode. Print less information what the program does.

• -v

Verbose mode. Print more information about what the program does.

• -V

Display version information and exit.

Client and Utility Programs

580

Chapter 9. Language Structure
This chapter discusses the rules for writing the following elements of SQL statements when using
MySQL:

• Literal values such as strings and numbers

• Identifiers such as database, table, and column names

• User-defined and system variables

• Comments

• Reserved words

9.1. Literal Values
This section describes how to write literal values in MySQL. These include strings, numbers, hexa-
decimal values, boolean values, and NULL. The section also covers the various nuances and “gotchas”
that you may run into when dealing with these basic types in MySQL.

9.1.1. Strings
A string is a sequence of bytes or characters, enclosed within either single quote (‘'’) or double quote
(‘"’) characters. Examples:

'a string'
"another string"

If the ANSI_QUOTES SQL mode is enabled, string literals can be quoted only within single quotes be-
cause a string quoted within double quotes is interpreted as an identifier.

A binary string is a string of bytes that has no character set or collation. A non-binary string is a string
of characters that has a character set and collation. For both types of strings, comparisons are based on
the numeric values of the string unit. For binary strings, the unit is the byte. For non-binary strings the
unit is the character and some character sets allow multi-byte characters. Character value ordering is a
function of the string collation.

String literals may have an optional character set introducer and COLLATE clause:

[_charset_name]'string' [COLLATE collation_name]

Examples:

SELECT _latin1'string';
SELECT _latin1'string' COLLATE latin1_danish_ci;

For more information about these forms of string syntax, see Section 10.3.5, “Character String Literal
Character Set and Collation”.

Within a string, certain sequences have special meaning. Each of these sequences begins with a back-
slash (‘\’), known as the escape character. MySQL recognizes the following escape sequences:

\0 An ASCII 0 (NUL) character.

581

\' A single quote (‘'’) character.

\" A double quote (‘"’) character.

\b A backspace character.

\n A newline (linefeed) character.

\r A carriage return character.

\t A tab character.

\Z ASCII 26 (Control-Z). See note following the table.

\\ A backslash (‘\’) character.

\% A ‘%’ character. See note following the table.

_ A ‘_’ character. See note following the table.

For all other escape sequences, backslash is ignored. That is, the escaped character is interpreted as if it
was not escaped. For example, ‘\x’ is just ‘x’.

These sequences are case sensitive. For example, ‘\b’ is interpreted as a backspace, but ‘\B’ is inter-
preted as ‘B’.

The ASCII 26 character can be encoded as ‘\Z’ to enable you to work around the problem that ASCII
26 stands for END-OF-FILE on Windows. ASCII 26 within a file causes problems if you try to use
mysql db_name < file_name.

The ‘\%’ and ‘_’ sequences are used to search for literal instances of ‘%’ and ‘_’ in pattern-matching
contexts where they would otherwise be interpreted as wildcard characters. See the description of the
LIKE operator in Section 12.3.1, “String Comparison Functions”. If you use ‘\%’ or ‘_’ in non-pat-
tern-matching contexts, they evaluate to the strings ‘\%’ and ‘_’, not to ‘%’ and ‘_’.

There are several ways to include quote characters within a string:

• A ‘'’ inside a string quoted with ‘'’ may be written as ‘''’.

• A ‘"’ inside a string quoted with ‘"’ may be written as ‘""’.

• Precede the quote character by an escape character (‘\’).

• A ‘'’ inside a string quoted with ‘"’ needs no special treatment and need not be doubled or escaped.
In the same way, ‘"’ inside a string quoted with ‘'’ needs no special treatment.

The following SELECT statements demonstrate how quoting and escaping work:

mysql> SELECT 'hello', '"hello"', '""hello""', 'hel''lo', '\'hello';
+-------+---------+-----------+--------+--------+
| hello | "hello" | ""hello"" | hel'lo | 'hello |
+-------+---------+-----------+--------+--------+

mysql> SELECT "hello", "'hello'", "''hello''", "hel""lo", "\"hello";
+-------+---------+-----------+--------+--------+
| hello | 'hello' | ''hello'' | hel"lo | "hello |
+-------+---------+-----------+--------+--------+

mysql> SELECT 'This\nIs\nFour\nLines';
+--------------------+
| This
Is
Four
Lines |
+--------------------+

Language Structure

582

mysql> SELECT 'disappearing\ backslash';
+------------------------+
| disappearing backslash |
+------------------------+

If you want to insert binary data into a string column (such as a BLOB column), the following characters
must be represented by escape sequences:

NUL NUL byte (ASCII 0). Represent this character by ‘\0’ (a backslash followed by an ASCII ‘0’
character).

\ Backslash (ASCII 92). Represent this character by ‘\\’.

' Single quote (ASCII 39). Represent this character by ‘\'’.

" Double quote (ASCII 34). Represent this character by ‘\"’.

When writing application programs, any string that might contain any of these special characters must
be properly escaped before the string is used as a data value in an SQL statement that is sent to the
MySQL server. You can do this in two ways:

• Process the string with a function that escapes the special characters. In a C program, you can use the
mysql_real_escape_string() C API function to escape characters. See Section 22.2.3.52,
“mysql_real_escape_string()”. The Perl DBI interface provides a quote method to con-
vert special characters to the proper escape sequences. See Section 22.4, “MySQL Perl API”. Other
language interfaces may provide a similar capability.

• As an alternative to explicitly escaping special characters, many MySQL APIs provide a placeholder
capability that enables you to insert special markers into a statement string, and then bind data values
to them when you issue the statement. In this case, the API takes care of escaping special characters
in the values for you.

9.1.2. Numbers
Integers are represented as a sequence of digits. Floats use ‘.’ as a decimal separator. Either type of
number may be preceded by ‘-’ or ‘+’ to indicate a negative or positive value, respectively

Examples of valid integers:

1221
0
-32

Examples of valid floating-point numbers:

294.42
-32032.6809e+10
148.00

An integer may be used in a floating-point context; it is interpreted as the equivalent floating-point num-
ber.

9.1.3. Hexadecimal Values
MySQL supports hexadecimal values. In numeric contexts, these act like integers (64-bit precision). In
string contexts, these act like binary strings, where each pair of hex digits is converted to a character:

mysql> SELECT x'4D7953514C';

Language Structure

583

-> 'MySQL'
mysql> SELECT 0xa+0;

-> 10
mysql> SELECT 0x5061756c;

-> 'Paul'

The default type of a hexadecimal value is a string. If you want to ensure that the value is treated as a
number, you can use CAST(... AS UNSIGNED):

mysql> SELECT 0x41, CAST(0x41 AS UNSIGNED);
-> 'A', 65

The x'hexstring' syntax is based on standard SQL. The 0x syntax is based on ODBC. Hexadecim-
al strings are often used by ODBC to supply values for BLOB columns.

You can convert a string or a number to a string in hexadecimal format with the HEX() function:

mysql> SELECT HEX('cat');
-> '636174'

mysql> SELECT 0x636174;
-> 'cat'

9.1.4. Boolean Values
The constants TRUE and FALSE evaluate to 1 and 0, respectively. The constant names can be written in
any lettercase.

mysql> SELECT TRUE, true, FALSE, false;
-> 1, 1, 0, 0

9.1.5. Bit-Field Values
Beginning with MySQL 5.0.3, bit-field values can be written using b'value' notation. value is a
binary value written using zeros and ones.

Bit-field notation is convenient for specifying values to be assigned to BIT columns:

mysql> CREATE TABLE t (b BIT(8));
mysql> INSERT INTO t SET b = b'11111111';
mysql> INSERT INTO t SET b = b'1010';
+------+----------+----------+----------+
| b+0 | BIN(b+0) | OCT(b+0) | HEX(b+0) |
+------+----------+----------+----------+
| 255 | 11111111 | 377 | FF |
| 10 | 1010 | 12 | A |
+------+----------+----------+----------+

9.1.6. NULL Values
The NULL value means “no data.” NULL can be written in any lettercase.

Be aware that the NULL value is different from values such as 0 for numeric types or the empty string
for string types. See Section A.5.3, “Problems with NULL Values”.

For text file import or export operations performed with LOAD DATA INFILE or SELECT ... IN-
TO OUTFILE, NULL is represented by the \N sequence. See Section 13.2.5, “LOAD DATA INFILE
Syntax”.

9.2. Database, Table, Index, Column, and Alias Names

Language Structure

584

Database, table, index, column, and alias names are identifiers. This section describes the allowable syn-
tax for identifiers in MySQL.

The following table describes the maximum length for each type of identifier.

Identifier Maximum Length

Database 64

Table 64

Column 64

Index 64

Alias 255

There are some restrictions on the characters that may appear in identifiers:

• No identifier can contain ASCII 0 (0x00) or a byte with a value of 255.

• The use of identifier quote characters in identifiers is permitted, although it is best to avoid doing so
if possible.

• Database, table, and column names should not end with space characters.

• Database names cannot contain ‘/’, ‘\’, ‘.’, or characters that are not allowed in a directory name.

• Table names cannot contain ‘/’, ‘\’, ‘.’, or characters that are not allowed in a filename.

Identifiers are stored using Unicode (UTF-8). This applies to identifiers in table definitions that are
stored in .frm files and to identifiers stored in the grant tables in the mysql database. The sizes of the
string columns in the grant tables (and in any other tables) in MySQL 5.0 are given as number of charac-
ters. This means that (unlike some earlier versions of MySQL) you can use multi-byte characters
without reducing the number of characters allowed for values stored in these columns.

An identifier may be quoted or unquoted. If an identifier is a reserved word or contains special charac-
ters, you must quote it whenever you refer to it. (Exception: A word that follows a period in a qualified
name must be an identifier, so it is not necessary to quote it, even if it is a reserved word.) For a list of
reserved words, see Section 9.5, “Treatment of Reserved Words in MySQL”. Special characters are
those outside the set of alphanumeric characters from the current character set, ‘_’, and ‘$’.

The identifier quote character is the backtick (‘`’):

mysql> SELECT * FROM `select` WHERE `select`.id > 100;

If the ANSI_QUOTES SQL mode is enabled, it is also allowable to quote identifiers within double
quotes:

mysql> CREATE TABLE "test" (col INT);
ERROR 1064: You have an error in your SQL syntax. (...)
mysql> SET sql_mode='ANSI_QUOTES';
mysql> CREATE TABLE "test" (col INT);
Query OK, 0 rows affected (0.00 sec)

Note: Because the ANSI_QUOTES mode causes the server to interpret double-quoted strings as identifi-
ers, string literals must be enclosed within single quotes when this mode is enabled. They cannot be en-
closed within double quotes.

Language Structure

585

The server SQL mode is controlled as described in Section 5.2.6, “SQL Modes”.

Identifier quote characters can be included within an identifier if you quote the identifier. If the character
to be included within the identifier is the same as that used to quote the identifier itself, then you need to
double the character. The following statement creates a table named a`b that contains a column named
c"d:

mysql> CREATE TABLE `a``b` (`c"d` INT);

It is recommended that you do not use names of the form Me or MeN, where M and N are integers. For
example, avoid using 1e or 2e2 as identifiers, because an expression such as 1e+3 is ambiguous. De-
pending on context, it might be interpreted as the expression 1e + 3 or as the number 1e+3.

Be careful when using MD5() to produce table names because it can produce names in illegal or am-
biguous formats such as those just described.

9.2.1. Identifier Qualifiers
MySQL allows names that consist of a single identifier or multiple identifiers. The components of a
multiple-part name should be separated by period (‘.’) characters. The initial parts of a multiple-part
name act as qualifiers that affect the context within which the final identifier is interpreted.

In MySQL you can refer to a column using any of the following forms:

Column Reference Meaning

col_name The column col_name from whichever table used in the statement
contains a column of that name.

tbl_name.col_name The column col_name from table tbl_name of the default database.

db_name.tbl_name.col
_name

The column col_name from table tbl_name of the database
db_name.

If any components of a multiple-part name require quoting, quote them individually rather than quoting
the name as a whole. For example, write `my-table`.`my-column`, not
`my-table.my-column`.

You need not specify a tbl_name or db_name.tbl_name prefix for a column reference in a state-
ment unless the reference would be ambiguous. Suppose that tables t1 and t2 each contain a column c,
and you retrieve c in a SELECT statement that uses both t1 and t2. In this case, c is ambiguous be-
cause it is not unique among the tables used in the statement. You must qualify it with a table name as
t1.c or t2.c to indicate which table you mean. Similarly, to retrieve from a table t in database db1
and from a table t in database db2 in the same statement, you must refer to columns in those tables as
db1.t.col_name and db2.t.col_name.

A word that follows a period in a qualified name must be an identifier, so it is not necessary to quote it,
even if it is a reserved word.

The syntax .tbl_name means the table tbl_name in the default database. This syntax is accepted
for ODBC compatibility because some ODBC programs prefix table names with a ‘.’ character.

9.2.2. Identifier Case Sensitivity
In MySQL, databases correspond to directories within the data directory. Each table within a database
corresponds to at least one file within the database directory (and possibly more, depending on the stor-
age engine). Consequently, the case sensitivity of the underlying operating system determines the case

Language Structure

586

sensitivity of database and table names. This means database and table names are case sensitive in most
varieties of Unix, and not case sensitive in Windows. One notable exception is Mac OS X, which is
Unix-based but uses a default filesystem type (HFS+) that is not case sensitive. However, Mac OS X
also supports UFS volumes, which are case sensitive just as on any Unix. See Section 1.9.4, “MySQL
Extensions to Standard SQL”. The lower_case_table_names system variable also affects how
the server handles identifier case sensitivity, as described later in this section.

Note: Although database and table names are not case sensitive on some platforms, you should not refer
to a given database or table using different cases within the same statement. The following statement
would not work because it refers to a table both as my_table and as MY_TABLE:

mysql> SELECT * FROM my_table WHERE MY_TABLE.col=1;

Column, index and stored routine names are not case sensitive on any platform, nor are column aliases.
Trigger names are case sensitive.

By default, table aliases are case sensitive on Unix, but not so on Windows or Mac OS X. The following
statement would not work on Unix, because it refers to the alias both as a and as A:

mysql> SELECT col_name FROM tbl_name AS a
-> WHERE a.col_name = 1 OR A.col_name = 2;

However, this same statement is permitted on Windows. To avoid problems caused by such differences,
it is best to adopt a consistent convention, such as always creating and referring to databases and tables
using lowercase names. This convention is recommended for maximum portability and ease of use.

How table and database names are stored on disk and used in MySQL is affected by the
lower_case_table_names system variable, which you can set when starting mysqld.
lower_case_table_names can take the values shown in the following table. On Unix, the default
value of lower_case_table_names is 0. On Windows the default value is 1. On Mac OS X, the
default value is 2.

Value Meaning

0 Table and database names are stored on disk using the lettercase specified in the CREATE
TABLE or CREATE DATABASE statement. Name comparisons are case sensitive. Note that
if you force this variable to 0 with --lower-case-table-names=0 on a case-
insensitive filesystem and access MyISAM tablenames using different lettercases, index cor-
ruption may result.

1 Table names are stored in lowercase on disk and name comparisons are not case sensitive.
MySQL converts all table names to lowercase on storage and lookup. This behavior also ap-
plies to database names and table aliases.

2 Table and database names are stored on disk using the lettercase specified in the CREATE
TABLE or CREATE DATABASE statement, but MySQL converts them to lowercase on
lookup. Name comparisons are not case sensitive. Note: This works only on filesystems that
are not case sensitive! InnoDB table names are stored in lowercase, as for
lower_case_table_names=1.

If you are using MySQL on only one platform, you don't normally have to change the
lower_case_table_names variable. However, you may encounter difficulties if you want to trans-
fer tables between platforms that differ in filesystem case sensitivity. For example, on Unix, you can
have two different tables named my_table and MY_TABLE, but on Windows these two names are
considered identical. To avoid data transfer problems stemming from lettercase of database or table
names, you have two options:

Language Structure

587

• Use lower_case_table_names=1 on all systems. The main disadvantage with this is that
when you use SHOW TABLES or SHOW DATABASES, you don't see the names in their original let-
tercase.

• Use lower_case_table_names=0 on Unix and lower_case_table_names=2 on Win-
dows. This preserves the lettercase of database and table names. The disadvantage of this is that you
must ensure that your statements always refer to your database and table names with the correct let-
tercase on Windows. If you transfer your statements to Unix, where lettercase is significant, they do
not work if the lettercase is incorrect.

Exception: If you are using InnoDB tables, you should set lower_case_table_names to 1 on
all platforms to force names to be converted to lowercase.

Note that if you plan to set the lower_case_table_names system variable to 1 on Unix, you must
first convert your old database and table names to lowercase before restarting mysqld with the new
variable setting.

Object names may be considered duplicates if their uppercase forms are equal according to a binary col-
lation. That is true for names of cursors, conditions, functions, procedures, savepoints, and routine local
variables. It is not true for names of columns, constraints, databases, statements prepared with PRE-
PARE, tables, triggers, users, and user-defined variables.

9.3. User-Defined Variables
You can store a value in a user-defined variable and then refer to it later. This enables you to pass values
from one statement to another. User-defined variables are connection-specific. That is, a user variable
defined by one client cannot be seen or used by other clients. All variables for a given client connection
are automatically freed when that client exits.

User variables are written as @var_name, where the variable name var_name may consist of alpha-
numeric characters from the current character set, ‘.’, ‘_’, and ‘$’. The default character set is latin1
(cp1252 West European). This may be changed with the --default-character-set option to
mysqld. See Section 5.11.1, “The Character Set Used for Data and Sorting”. A user variable name can
contain other characters if you quote it as a string or identifier (for example, @'my-var',
@"my-var", or @`my-var`).

Note: User variable names are case sensitive before MySQL 5.0 and not case sensitive in MySQL 5.0
and up.

One way to set a user-defined variable is by issuing a SET statement:

SET @var_name = expr [, @var_name = expr] ...

For SET, either = or := can be used as the assignment operator. The expr assigned to each variable
can evaluate to an integer, real, string, or NULL value. However, if the value of the variable is selected
in a result set, it is returned to the client as a string.

You can also assign a value to a user variable in statements other than SET. In this case, the assignment
operator must be := and not = because = is treated as a comparison operator in non-SET statements:

mysql> SET @t1=0, @t2=0, @t3=0;
mysql> SELECT @t1:=(@t2:=1)+@t3:=4,@t1,@t2,@t3;
+----------------------+------+------+------+
| @t1:=(@t2:=1)+@t3:=4 | @t1 | @t2 | @t3 |
+----------------------+------+------+------+
| 5 | 5 | 1 | 4 |
+----------------------+------+------+------+

Language Structure

588

User variables may be used in contexts where expressions are allowed. This does not currently include
contexts that explicitly require a literal value, such as in the LIMIT clause of a SELECT statement, or
the IGNORE N LINES clause of a LOAD DATA statement.

If a user variable is assigned a string value, it has the same character set and collation as the string. The
coercibility of user variables is implicit as of MySQL 5.0.3. (This is the same coercibility as for table
column values.)

Note: In a SELECT statement, each expression is evaluated only when sent to the client. This means that
in a HAVING, GROUP BY, or ORDER BY clause, you cannot refer to an expression that involves vari-
ables that are set in the SELECT list. For example, the following statement does not work as expected:

mysql> SELECT (@aa:=id) AS a, (@aa+3) AS b FROM tbl_name HAVING b=5;

The reference to b in the HAVING clause refers to an alias for an expression in the SELECT list that
uses @aa. This does not work as expected: @aa contains the value of id from the previous selected
row, not from the current row.

The order of evaluation for user variables is undefined and may change based on the elements contained
within a given query. In SELECT @a, @a := @a+1 ..., you might think that MySQL will evalu-
ate @a first and then do an assignment second, but changing the query (for example, by adding a GROUP
BY, HAVING, or ORDER BY clause) may change the order of evaluation.

The general rule is to never assign a value to a user variable in one part of a statement and use the same
variable in some other part the same statement. You might get the results you expect, but this is not
guaranteed.

Another issue with setting a variable and using it in the same statement is that the default result type of a
variable is based on the type of the variable at the start of the statement. The following example illus-
trates this:

mysql> SET @a='test';
mysql> SELECT @a,(@a:=20) FROM tbl_name;

For this SELECT statement, MySQL reports to the client that column one is a string and converts all ac-
cesses of @a to strings, even though @a is set to a number for the second row. After the SELECT state-
ment executes, @a is regarded as a number for the next statement.

To avoid problems with this behavior, either do not set and use the same variable within a single state-
ment, or else set the variable to 0, 0.0, or '' to define its type before you use it.

If you refer to a variable that has not been initialized, it has a value of NULL and a type of string.

9.4. Comment Syntax
MySQL Server supports three comment styles:

• From a ‘#’ character to the end of the line.

• From a ‘-- ’ sequence to the end of the line. In MySQL, the ‘-- ’ (double-dash) comment style
requires the second dash to be followed by at least one whitespace or control character (such as a
space, tab, newline, and so on). This syntax differs slightly from standard SQL comment syntax, as
discussed in Section 1.9.5.7, “'--' as the Start of a Comment”.

• From a /* sequence to the following */ sequence, as in the C programming language. This syntax
allows a comment to extend over multiple lines because the beginning and closing sequences need
not be on the same line.

Language Structure

589

The following example demonstrates all three comment styles:

mysql> SELECT 1+1; # This comment continues to the end of line
mysql> SELECT 1+1; -- This comment continues to the end of line
mysql> SELECT 1 /* this is an in-line comment */ + 1;
mysql> SELECT 1+
/*
this is a
multiple-line comment
*/
1;

MySQL Server supports some variants of C-style comments. These enable you to write code that in-
cludes MySQL extensions, but is still portable, by using comments of the following form:

/*! MySQL-specific code */

In this case, MySQL Server parses and executes the code within the comment as it would any other SQL
statement, but other SQL servers will ignore the extensions. For example, MySQL Server recognizes the
STRAIGHT_JOIN keyword in the following statement, but other servers will not:

SELECT /*! STRAIGHT_JOIN */ col1 FROM table1,table2 WHERE ...

If you add a version number after the ‘!’ character, the syntax within the comment is executed only if
the MySQL version is greater than or equal to the specified version number. The TEMPORARY keyword
in the following comment is executed only by servers from MySQL 3.23.02 or higher:

CREATE /*!32302 TEMPORARY */ TABLE t (a INT);

The comment syntax just described applies to how the mysqld server parses SQL statements. The
mysql client program also performs some parsing of statements before sending them to the server. (It
does this to determine statement boundaries within a multiple-statement input line.)

9.5. Treatment of Reserved Words in MySQL
A common problem stems from trying to use an identifier such as a table or column name that is a re-
served word such as SELECT or the name of a built-in MySQL data type or function such as
TIMESTAMP or GROUP.

If an identifier is a reserved word, you must quote it as described in Section 9.2, “Database, Table, In-
dex, Column, and Alias Names”. Exception: A word that follows a period in a qualified name must be
an identifier, so it is not necessary to quote it, even if it is a reserved word.

You are permitted to use function names as identifiers. For example, ABS is acceptable as a column
name. However, by default, no whitespace is allowed in function invocations between the function name
and the following ‘(’ character. This requirement allows a function call to be distinguished from a refer-
ence to a column name.

A side effect of this behavior is that omitting a space in some contexts causes an identifier to be inter-
preted as a function name. For example, this statement is legal:

mysql> CREATE TABLE abs (val INT);

But omitting the space after abs causes a syntax error because the statement then appears to invoke the
ABS() function:

mysql> CREATE TABLE abs(val INT);
ERROR 1064 (42000) at line 2: You have an error in your SQL
syntax ... near 'abs(val INT)'

Language Structure

590

If the IGNORE_SPACE SQL mode is enabled, the server allows function invocations to have
whitespace between a function name and the following ‘(’ character. This causes function names to be
treated as reserved words. As a result, identifiers that are the same as function names must be quoted as
described in Section 9.2, “Database, Table, Index, Column, and Alias Names”. The server SQL mode is
controlled as described in Section 5.2.6, “SQL Modes”.

The words in the following table are explicitly reserved in MySQL 5.0. At some point, you might update
to a higher version, so it's a good idea to have a look at future reserved words, too. You can find these in
the manuals that cover higher versions of MySQL. Most of the words in the table are forbidden by
standard SQL as column or table names (for example, GROUP). A few are reserved because MySQL
needs them and (currently) uses a yacc parser. A reserved word can be used as an identifier if you
quote it.

ADD ALL ALTER

ANALYZE AND AS

ASC ASENSITIVE BEFORE

BETWEEN BIGINT BINARY

BLOB BOTH BY

CALL CASCADE CASE

CHANGE CHAR CHARACTER

CHECK COLLATE COLUMN

CONDITION CONNECTION CONSTRAINT

CONTINUE CONVERT CREATE

CROSS CURRENT_DATE CURRENT_TIME

CURRENT_TIMESTAMP CURRENT_USER CURSOR

DATABASE DATABASES DAY_HOUR

DAY_MICROSECOND DAY_MINUTE DAY_SECOND

DEC DECIMAL DECLARE

DEFAULT DELAYED DELETE

DESC DESCRIBE DETERMINISTIC

DISTINCT DISTINCTROW DIV

DOUBLE DROP DUAL

EACH ELSE ELSEIF

ENCLOSED ESCAPED EXISTS

EXIT EXPLAIN FALSE

FETCH FLOAT FLOAT4

FLOAT8 FOR FORCE

FOREIGN FROM FULLTEXT

GRANT GROUP HAVING

HIGH_PRIORITY HOUR_MICROSECOND HOUR_MINUTE

HOUR_SECOND IF IGNORE

IN INDEX INFILE

INNER INOUT INSENSITIVE

INSERT INT INT1

INT2 INT3 INT4

Language Structure

591

INT8 INTEGER INTERVAL

INTO IS ITERATE

JOIN KEY KEYS

KILL LEADING LEAVE

LEFT LIKE LIMIT

LINES LOAD LOCALTIME

LOCALTIMESTAMP LOCK LONG

LONGBLOB LONGTEXT LOOP

LOW_PRIORITY MATCH MEDIUMBLOB

MEDIUMINT MEDIUMTEXT MIDDLEINT

MINUTE_MICROSECOND MINUTE_SECOND MOD

MODIFIES NATURAL NOT

NO_WRITE_TO_BINLOG NULL NUMERIC

ON OPTIMIZE OPTION

OPTIONALLY OR ORDER

OUT OUTER OUTFILE

PRECISION PRIMARY PROCEDURE

PURGE RAID0 READ

READS REAL REFERENCES

REGEXP RELEASE RENAME

REPEAT REPLACE REQUIRE

RESTRICT RETURN REVOKE

RIGHT RLIKE SCHEMA

SCHEMAS SECOND_MICROSECOND SELECT

SENSITIVE SEPARATOR SET

SHOW SMALLINT SONAME

SPATIAL SPECIFIC SQL

SQLEXCEPTION SQLSTATE SQLWARNING

SQL_BIG_RESULT SQL_CALC_FOUND_ROWS SQL_SMALL_RESULT

SSL STARTING STRAIGHT_JOIN

TABLE TERMINATED THEN

TINYBLOB TINYINT TINYTEXT

TO TRAILING TRIGGER

TRUE UNDO UNION

UNIQUE UNLOCK UNSIGNED

UPDATE USAGE USE

USING UTC_DATE UTC_TIME

UTC_TIMESTAMP VALUES VARBINARY

VARCHAR VARCHARACTER VARYING

WHEN WHERE WHILE

WITH WRITE X509

XOR YEAR_MONTH ZEROFILL

Language Structure

592

The following are new reserved words in MySQL 5.0: ASENSITIVE, CALL, CONDITION, CONNEC-
TION, CONTINUE, CURSOR, DECLARE, DETERMINISTIC, EACH, ELSEIF, EXIT, FETCH, GOTO,
INOUT, INSENSITIVE, ITERATE, LABEL, LEAVE, LOOP, MODIFIES, OUT, READS, RELEASE,
REPEAT, RETURN, SCHEMA, SCHEMAS, SENSITIVE, SPECIFIC, SQL, SQLEXCEPTION, SQL-
STATE, SQLWARNING, TRIGGER, UNDO, UPGRADE, WHILE.

MySQL allows some keywords to be used as unquoted identifiers because many people previously used
them. Examples are those in the following list:

• ACTION

• BIT

• DATE

• ENUM

• NO

• TEXT

• TIME

• TIMESTAMP

Language Structure

593

Chapter 10. Character Set Support
MySQL includes character set support that enables you to store data using a variety of character sets and
perform comparisons according to a variety of collations. You can specify character sets at the server,
database, table, and column level. MySQL supports the use of character sets for the MyISAM, MEMORY,
NDBCluster, and InnoDB storage engines.

This chapter discusses the following topics:

• What are character sets and collations?

• The multiple-level default system for character set assignment

• Syntax for specifying character sets and collations

• Affected functions and operations

• Unicode support

• The character sets and collations that are available, with notes

Character set issues affect data storage, but also communication between client programs and the
MySQL server. If you want the client program to communicate with the server using a character set dif-
ferent from the default, you'll need to indicate which one. For example, to use the utf8 Unicode char-
acter set, issue this statement after connecting to the server:

SET NAMES 'utf8';

For more information about character set-related issues in client/server communication, see Sec-
tion 10.4, “Connection Character Sets and Collations”.

10.1. Character Sets and Collations in General
A character set is a set of symbols and encodings. A collation is a set of rules for comparing characters
in a character set. Let's make the distinction clear with an example of an imaginary character set.

Suppose that we have an alphabet with four letters: ‘A’, ‘B’, ‘a’, ‘b’. We give each letter a number: ‘A’
= 0, ‘B’ = 1, ‘a’ = 2, ‘b’ = 3. The letter ‘A’ is a symbol, the number 0 is the encoding for ‘A’, and the
combination of all four letters and their encodings is a character set.

Suppose that we want to compare two string values, ‘A’ and ‘B’. The simplest way to do this is to look
at the encodings: 0 for ‘A’ and 1 for ‘B’. Because 0 is less than 1, we say ‘A’ is less than ‘B’. What we've
just done is apply a collation to our character set. The collation is a set of rules (only one rule in this
case): “compare the encodings.” We call this simplest of all possible collations a binary collation.

But what if we want to say that the lowercase and uppercase letters are equivalent? Then we would have
at least two rules: (1) treat the lowercase letters ‘a’ and ‘b’ as equivalent to ‘A’ and ‘B’; (2) then com-
pare the encodings. We call this a case-insensitive collation. It's a little more complex than a binary col-
lation.

In real life, most character sets have many characters: not just ‘A’ and ‘B’ but whole alphabets, some-
times multiple alphabets or eastern writing systems with thousands of characters, along with many spe-
cial symbols and punctuation marks. Also in real life, most collations have many rules, not just for
whether to distinguish lettercase, but also for whether to distinguish accents (an “accent” is a mark at-
tached to a character as in German ‘Ö’), and for multiple-character mappings (such as the rule that ‘Ö’ =

594

‘OE’ in one of the two German collations).

MySQL can do these things for you:

• Store strings using a variety of character sets

• Compare strings using a variety of collations

• Mix strings with different character sets or collations in the same server, the same database, or even
the same table

• Allow specification of character set and collation at any level

In these respects, MySQL is far ahead of most other database management systems. However, to use
these features effectively, you need to know what character sets and collations are available, how to
change the defaults, and how they affect the behavior of string operators and functions.

10.2. Character Sets and Collations in MySQL
The MySQL server can support multiple character sets. To list the available character sets, use the SHOW
CHARACTER SET statement. A partial listing follows. For more complete information, see Sec-
tion 10.9, “Character Sets and Collations That MySQL Supports”.

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
cp850	DOS West European	cp850_general_ci	1
hp8	HP West European	hp8_english_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
swe7	7bit Swedish	swe7_swedish_ci	1
ascii	US ASCII	ascii_general_ci	1
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
hebrew	ISO 8859-8 Hebrew	hebrew_general_ci	1
tis620	TIS620 Thai	tis620_thai_ci	1
euckr	EUC-KR Korean	euckr_korean_ci	2
koi8u	KOI8-U Ukrainian	koi8u_general_ci	1
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
greek	ISO 8859-7 Greek	greek_general_ci	1
cp1250	Windows Central European	cp1250_general_ci	1
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
...

Any given character set always has at least one collation. It may have several collations. To list the col-
lations for a character set, use the SHOW COLLATION statement. For example, to see the collations for
the latin1 (cp1252 West European) character set, use this statement to find those collation names that
begin with latin1:

mysql> SHOW COLLATION LIKE 'latin1%';
+---------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+---------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5			0
latin1_swedish_ci	latin1	8	Yes	Yes	1
latin1_danish_ci	latin1	15			0
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	1
latin1_general_ci	latin1	48			0
latin1_general_cs	latin1	49			0
latin1_spanish_ci	latin1	94			0
+---------------------+---------+----+---------+----------+---------+

Character Set Support

595

The latin1 collations have the following meanings:

Collation Meaning

latin1_german1_ci German DIN-1

latin1_swedish_ci Swedish/Finnish

latin1_danish_ci Danish/Norwegian

latin1_german2_ci German DIN-2

latin1_bin Binary according to latin1 encoding

latin1_general_ci Multilingual (Western European)

latin1_general_cs Multilingual (ISO Western European), case sensitive

latin1_spanish_ci Modern Spanish

Collations have these general characteristics:

• Two different character sets cannot have the same collation.

• Each character set has one collation that is the default collation. For example, the default collation
for latin1 is latin1_swedish_ci. The output for SHOW CHARACTER SET indicates which
collation is the default for each displayed character set.

• There is a convention for collation names: They start with the name of the character set with which
they are associated, they usually include a language name, and they end with _ci (case insensitive),
_cs (case sensitive), or _bin (binary).

10.3. Specifying Character Sets and Collations
There are default settings for character sets and collations at four levels: server, database, table, and
column. The following description may appear complex, but it has been found in practice that multiple-
level defaulting leads to natural and obvious results.

CHARACTER SET is used in clauses that specify a character set. CHARSET may be used as a synonym
for CHARACTER SET.

10.3.1. Server Character Set and Collation
MySQL Server has a server character set and a server collation. These can be set at server startup and
changed at runtime.

Initially, the server character set and collation depend on the options that you use when you start
mysqld. You can use --character-set-server for the character set. Along with it, you can add
--collation-server for the collation. If you don't specify a character set, that is the same as say-
ing --character-set-server=latin1. If you specify only a character set (for example, lat-
in1) but not a collation, that is the same as saying --character-set-server=latin1 -
-collation-server=latin1_swedish_ci because latin1_swedish_ci is the default
collation for latin1. Therefore, the following three commands all have the same effect:

shell> mysqld
shell> mysqld --character-set-server=latin1
shell> mysqld --character-set-server=latin1 \

--collation-server=latin1_swedish_ci

Character Set Support

596

One way to change the settings is by recompiling. If you want to change the default server character set
and collation when building from sources, use: --with-charset and --with-collation as ar-
guments for configure. For example:

shell> ./configure --with-charset=latin1

Or:

shell> ./configure --with-charset=latin1 \
--with-collation=latin1_german1_ci

Both mysqld and configure verify that the character set/collation combination is valid. If not, each
program displays an error message and terminates.

The current server character set and collation can be determined from the values of the charac-
ter_set_server and collation_server system variables. These variables can be changed at
runtime.

10.3.2. Database Character Set and Collation
Every database has a database character set and a database collation. The CREATE DATABASE and
ALTER DATABASE statements have optional clauses for specifying the database character set and col-
lation:

CREATE DATABASE db_name
[[DEFAULT] CHARACTER SET charset_name]
[[DEFAULT] COLLATE collation_name]

ALTER DATABASE db_name
[[DEFAULT] CHARACTER SET charset_name]
[[DEFAULT] COLLATE collation_name]

The keyword SCHEMA can be used instead of DATABASE.

All database options are stored in a text file named db.opt that can be found in the database directory.

The CHARACTER SET and COLLATE clauses make it possible to create databases with different char-
acter sets and collations on the same MySQL server.

Example:

CREATE DATABASE db_name CHARACTER SET latin1 COLLATE latin1_swedish_ci;

MySQL chooses the database character set and database collation in the following manner:

• If both CHARACTER SET X and COLLATE Y were specified, then character set X and collation Y.

• If CHARACTER SET X was specified without COLLATE, then character set X and its default colla-
tion.

• If COLLATE Y was specified without CHARACTER SET, then the character set associated with Y
and collation Y.

• Otherwise, the server character set and server collation.

The database character set and collation are used as default values if the table character set and collation
are not specified in CREATE TABLE statements. They have no other purpose.

Character Set Support

597

The character set and collation for the default database can be determined from the values of the char-
acter_set_database and collation_database system variables. The server sets these vari-
ables whenever the default database changes. If there is no default database, the variables have the same
value as the corresponding server-level system variables, character_set_server and colla-
tion_server.

10.3.3. Table Character Set and Collation
Every table has a table character set and a table collation. The CREATE TABLE and ALTER TABLE
statements have optional clauses for specifying the table character set and collation:

CREATE TABLE tbl_name (column_list)
[[DEFAULT] CHARACTER SET charset_name] [COLLATE collation_name]]

ALTER TABLE tbl_name
[[DEFAULT] CHARACTER SET charset_name] [COLLATE collation_name]

Example:

CREATE TABLE t1 (...) CHARACTER SET latin1 COLLATE latin1_danish_ci;

MySQL chooses the table character set and collation in the following manner:

• If both CHARACTER SET X and COLLATE Y were specified, then character set X and collation Y.

• If CHARACTER SET X was specified without COLLATE, then character set X and its default colla-
tion.

• If COLLATE Y was specified without CHARACTER SET, then the character set associated with Y
and collation Y.

• Otherwise, the database character set and collation.

The table character set and collation are used as default values if the column character set and collation
are not specified in individual column definitions. The table character set and collation are MySQL ex-
tensions; there are no such things in standard SQL.

10.3.4. Column Character Set and Collation
Every “character” column (that is, a column of type CHAR, VARCHAR, or TEXT) has a column character
set and a column collation. Column definition syntax has optional clauses for specifying the column
character set and collation:

col_name {CHAR | VARCHAR | TEXT} (col_length)
[CHARACTER SET charset_name] [COLLATE collation_name]

Example:

CREATE TABLE Table1
(

column1 VARCHAR(5) CHARACTER SET latin1 COLLATE latin1_german1_ci
);

MySQL chooses the column character set and collation in the following manner:

• If both CHARACTER SET X and COLLATE Y were specified, then character set X and collation Y

Character Set Support

598

are used.

• If CHARACTER SET X was specified without COLLATE, then character set X and its default colla-
tion are used.

• If COLLATE Y was specified without CHARACTER SET, then the character set associated with Y
and collation Y.

• Otherwise, the table character set and collation are used.

The CHARACTER SET and COLLATE clauses are standard SQL.

10.3.5. Character String Literal Character Set and Collation
Every character string literal has a character set and a collation.

A character string literal may have an optional character set introducer and COLLATE clause:

[_charset_name]'string' [COLLATE collation_name]

Examples:

SELECT 'string';
SELECT _latin1'string';
SELECT _latin1'string' COLLATE latin1_danish_ci;

For the simple statement SELECT 'string', the string has the character set and collation defined by
the character_set_connection and collation_connection system variables.

The _charset_name expression is formally called an introducer. It tells the parser, “the string that is
about to follow uses character set X.” Because this has confused people in the past, we emphasize that an
introducer does not cause any conversion; it is strictly a signal that does not change the string's value.
An introducer is also legal before standard hex literal and numeric hex literal notation (x'literal'
and 0xnnnn)>.

Examples:

SELECT _latin1 x'AABBCC';
SELECT _latin1 0xAABBCC;

MySQL determines a literal's character set and collation in the following manner:

• If both _X and COLLATE Y were specified, then character set X and collation Y are used.

• If _X is specified but COLLATE is not specified, then character set X and its default collation are
used.

• Otherwise, the character set and collation given by the character_set_connection and
collation_connection system variables are used.

Examples:

• A string with latin1 character set and latin1_german1_ci collation:

SELECT _latin1'Müller' COLLATE latin1_german1_ci;

Character Set Support

599

• A string with latin1 character set and its default collation (that is, latin1_swedish_ci):

SELECT _latin1'Müller';

• A string with the connection default character set and collation:

SELECT 'Müller';

Character set introducers and the COLLATE clause are implemented according to standard SQL specific-
ations.

10.3.6. National Character Set
Standard SQL defines NCHAR or NATIONAL CHAR as a way to indicate that a CHAR column should
use some predefined character set. MySQL 5.0 uses utf8 as this predefined character set. For example,
these data type declarations are equivalent:

CHAR(10) CHARACTER SET utf8
NATIONAL CHARACTER(10)
NCHAR(10)

As are these:

VARCHAR(10) CHARACTER SET utf8
NATIONAL VARCHAR(10)
NCHAR VARCHAR(10)
NATIONAL CHARACTER VARYING(10)
NATIONAL CHAR VARYING(10)

You can use N'literal' to create a string in the national character set. These two statements are
equivalent:

SELECT N'some text';
SELECT _utf8'some text';

For information on upgrading character sets to MySQL 5.0 from versions prior to 4.1, see the MySQL
3.23, 4.0, 4.1 Reference Manual.

10.3.7. Examples of Character Set and Collation Assignment
The following examples show how MySQL determines default character set and collation values.

Example 1: Table and Column Definition

CREATE TABLE t1
(

c1 CHAR(10) CHARACTER SET latin1 COLLATE latin1_german1_ci
) DEFAULT CHARACTER SET latin2 COLLATE latin2_bin;

Here we have a column with a latin1 character set and a latin1_german1_ci collation. The
definition is explicit, so that's straightforward. Notice that there is no problem with storing a latin1
column in a latin2 table.

Example 2: Table and Column Definition

Character Set Support

600

CREATE TABLE t1
(

c1 CHAR(10) CHARACTER SET latin1
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

This time we have a column with a latin1 character set and a default collation. Although it might
seem natural, the default collation is not taken from the table level. Instead, because the default collation
for latin1 is always latin1_swedish_ci, column c1 has a collation of latin1_swedish_ci
(not latin1_danish_ci).

Example 3: Table and Column Definition

CREATE TABLE t1
(

c1 CHAR(10)
) DEFAULT CHARACTER SET latin1 COLLATE latin1_danish_ci;

We have a column with a default character set and a default collation. In this circumstance, MySQL
checks the table level to determine the column character set and collation. Consequently, the character
set for column c1 is latin1 and its collation is latin1_danish_ci.

Example 4: Database, Table, and Column Definition

CREATE DATABASE d1
DEFAULT CHARACTER SET latin2 COLLATE latin2_czech_ci;

USE d1;
CREATE TABLE t1
(

c1 CHAR(10)
);

We create a column without specifying its character set and collation. We're also not specifying a char-
acter set and a collation at the table level. In this circumstance, MySQL checks the database level to de-
termine the table settings, which thereafter become the column settings.) Consequently, the character set
for column c1 is latin2 and its collation is latin2_czech_ci.

10.3.8. Compatibility with Other DBMSs
For MaxDB compatibility these two statements are the same:

CREATE TABLE t1 (f1 CHAR(N) UNICODE);
CREATE TABLE t1 (f1 CHAR(N) CHARACTER SET ucs2);

10.4. Connection Character Sets and Collations
Several character set and collation system variables relate to a client's interaction with the server. Some
of these have been mentioned in earlier sections:

• The server character set and collation can be determined from the values of the charac-
ter_set_server and collation_server system variables.

• The character set and collation of the default database can be determined from the values of the
character_set_database and collation_database system variables.

Additional character set and collation system variables are involved in handling traffic for the connec-
tion between a client and the server. Every client has connection-related character set and collation sys-
tem variables.

Character Set Support

601

Consider what a “connection” is: It's what you make when you connect to the server. The client sends
SQL statements, such as queries, over the connection to the server. The server sends responses, such as
result sets, over the connection back to the client. This leads to several questions about character set and
collation handling for client connections, each of which can be answered in terms of system variables:

• What character set is the statement in when it leaves the client?

The server takes the character_set_client system variable to be the character set in which
statements are sent by the client.

• What character set should the server translate a statement to after receiving it?

For this, the server uses the character_set_connection and collation_connection
system variables. It converts statements sent by the client from character_set_client to
character_set_connection (except for string literals that have an introducer such as
_latin1 or _utf8). collation_connection is important for comparisons of literal strings.
For comparisons of strings with column values, collation_connection does not matter be-
cause columns have their own collation, which has a higher collation precedence.

• What character set should the server translate to before shipping result sets or error messages back to
the client?

The character_set_results system variable indicates the character set in which the server
returns query results to the client. This includes result data such as column values, and result
metadata such as column names.

You can fine-tune the settings for these variables, or you can depend on the defaults (in which case, you
can skip the rest of this section).

There are two statements that affect the connection character sets:

SET NAMES 'charset_name'
SET CHARACTER SET charset_name

SET NAMES indicates what character set the client will use to send SQL statements to the server. Thus,
SET NAMES 'cp1251' tells the server “future incoming messages from this client are in character
set cp1251.” It also specifies the character set that the server should use for sending results back to the
client. (For example, it indicates what character set to use for column values if you use a SELECT state-
ment.)

A SET NAMES 'x' statement is equivalent to these three statements:

SET character_set_client = x;
SET character_set_results = x;
SET character_set_connection = x;

Setting character_set_connection to x also sets collation_connection to the default
collation for x. To specify one of the character set's collations explicitly, use the optional COLLATE
clause:

SET NAMES 'charset_name' COLLATE 'collation_name'

SET CHARACTER SET is similar to SET NAMES but sets connection_character_set and
collation_connection to character_set_database and collation_database. A
SET CHARACTER SET x statement is equivalent to these three statements:

SET character_set_client = x;

Character Set Support

602

SET character_set_results = x;
SET collation_connection = @@collation_database;

Setting collation_connection also sets character_set_connection to the character set
associated with the collation.

When a client connects, it sends to the server the name of the character set that it wants to use. The serv-
er uses the name to set the character_set_client, character_set_results, and char-
acter_set_connection system variables. In effect, the server performs a SET NAMES operation
using the character set name.

With the mysql client, it is not necessary to execute SET NAMES every time you start up if you want
to use a character set different from the default. You can add the --default-character-set op-
tion setting to your mysql statement line, or in your option file. For example, the following option file
setting changes the three character set variables set to koi8r each time you invoke mysql:

[mysql]
default-character-set=koi8r

If you are using the mysql client with auto-reconnect enabled (which is not recommended), it is prefer-
able to use the charset command rather than SET NAMES. For example:

mysql> charset utf8
Charset changed

The charset command issues a SET NAMES statement, and also changes the default character set
that is used if mysql reconnects after the connection has dropped.

Example: Suppose that column1 is defined as CHAR(5) CHARACTER SET latin2. If you do not
say SET NAMES or SET CHARACTER SET, then for SELECT column1 FROM t, the server sends
back all the values for column1 using the character set that the client specified when it connected. On
the other hand, if you say SET NAMES 'latin1' or SET CHARACTER SET latin1 before issu-
ing the SELECT statement, the server converts the latin2 values to latin1 just before sending res-
ults back. Conversion may be lossy if there are characters that are not in both character sets.

If you do not want the server to perform any conversion of result sets, set charac-
ter_set_results to NULL:

SET character_set_results = NULL;

Note: Currently, UCS-2 cannot be used as a client character set, which means that SET NAMES
'ucs2' does not work.

To see the values of the character set and collation system variables that apply to your connection, use
these statements:

SHOW VARIABLES LIKE 'character_set%';
SHOW VARIABLES LIKE 'collation%';

10.5. Collation Issues
The following sections various aspects of character set collations.

10.5.1. Using COLLATE in SQL Statements
With the COLLATE clause, you can override whatever the default collation is for a comparison. COL-
LATE may be used in various parts of SQL statements. Here are some examples:

Character Set Support

603

• With ORDER BY:

SELECT k
FROM t1
ORDER BY k COLLATE latin1_german2_ci;

• With AS:

SELECT k COLLATE latin1_german2_ci AS k1
FROM t1
ORDER BY k1;

• With GROUP BY:

SELECT k
FROM t1
GROUP BY k COLLATE latin1_german2_ci;

• With aggregate functions:

SELECT MAX(k COLLATE latin1_german2_ci)
FROM t1;

• With DISTINCT:

SELECT DISTINCT k COLLATE latin1_german2_ci
FROM t1;

• With WHERE:

SELECT *
FROM t1
WHERE _latin1 'Müller' COLLATE latin1_german2_ci = k;

SELECT *
FROM t1
WHERE k LIKE _latin1 'Müller' COLLATE latin1_german2_ci;

• With HAVING:

SELECT k
FROM t1
GROUP BY k
HAVING k = _latin1 'Müller' COLLATE latin1_german2_ci;

10.5.2. COLLATE Clause Precedence
The COLLATE clause has high precedence (higher than ||), so the following two expressions are equi-
valent:

x || y COLLATE z
x || (y COLLATE z)

10.5.3. BINARY Operator
The BINARY operator casts the string following it to a binary string. This is an easy way to force a com-
parison to be done byte by byte rather than character by character. BINARY also causes trailing spaces

Character Set Support

604

to be significant.

mysql> SELECT 'a' = 'A';
-> 1

mysql> SELECT BINARY 'a' = 'A';
-> 0

mysql> SELECT 'a' = 'a ';
-> 1

mysql> SELECT BINARY 'a' = 'a ';
-> 0

BINARY str is shorthand for CAST(str AS BINARY).

The BINARY attribute in character column definitions has a different effect. A character column defined
with the BINARY attribute is assigned the binary collation of the column's character set. Every character
set has a binary collation. For example, the binary collation for the latin1 character set is lat-
in1_bin, so if the table default character set is latin1, these two column definitions are equivalent:

CHAR(10) BINARY
CHAR(10) CHARACTER SET latin1 COLLATE latin1_bin

The effect of BINARY as a column attribute differs from its effect prior to MySQL 4.1. Formerly, BIN-
ARY resulted in a column that was treated as a binary string. A binary string is a string of bytes that has
no character set or collation, which differs from a non-binary character string that has a binary collation.
For both types of strings, comparisons are based on the numeric values of the string unit, but for non-
binary strings the unit is the character and some character sets allow multi-byte characters. Sec-
tion 11.4.2, “The BINARY and VARBINARY Types”.

The use of CHARACTER SET binary in the definition of a CHAR, VARCHAR, or TEXT column
causes the column to be treated as a binary data type. For example, the following pairs of definitions are
equivalent:

CHAR(10) CHARACTER SET binary
BINARY(10)

VARCHAR(10) CHARACTER SET binary
VARBINARY(10)

TEXT CHARACTER SET binary
BLOB

10.5.4. Some Special Cases Where the Collation Determina-
tion Is Tricky

In the great majority of statements, it is obvious what collation MySQL uses to resolve a comparison op-
eration. For example, in the following cases, it should be clear that the collation is the collation of
column x:

SELECT x FROM T ORDER BY x;
SELECT x FROM T WHERE x = x;
SELECT DISTINCT x FROM T;

However, when multiple operands are involved, there can be ambiguity. For example:

SELECT x FROM T WHERE x = 'Y';

Should this query use the collation of the column x, or of the string literal 'Y'?

Standard SQL resolves such questions using what used to be called “coercibility” rules. Basically, this
means: Both x and 'Y' have collations, so which collation takes precedence? This can be difficult to re-
solve, but the following rules cover most situations:

Character Set Support

605

• An explicit COLLATE clause has a coercibility of 0. (Not coercible at all.)

• The concatenation of two strings with different collations has a coercibility of 1.

• The collation of a column or a stored routine parameter or local variable has a coercibility of 2.

• A “system constant” (the string returned by functions such as USER() or VERSION()) has a coer-
cibility of 3.

• A literal's collation has a coercibility of 4.

• NULL or an expression that is derived from NULL has a coercibility of 5.

The preceding coercibility values are current as of MySQL 5.0.3. In MySQL 5.0 prior to 5.0.3, there is
no system constant or ignorable coercibility. Functions such as USER() have a coercibility of 2 rather
than 3, and literals have a coercibility of 3 rather than 4.

Those rules resolve ambiguities in the following manner:

• Use the collation with the lowest coercibility value.

• If both sides have the same coercibility, then it is an error if the collations aren't the same.

Examples:

column1 = 'A' Use collation of column1

column1 = 'A' COLLATE x Use collation of 'A' COLLATE x

column1 COLLATE x = 'A' COLLATE y Error

The COERCIBILITY() function can be used to determine the coercibility of a string expression:

mysql> SELECT COERCIBILITY('A' COLLATE latin1_swedish_ci);
-> 0

mysql> SELECT COERCIBILITY(VERSION());
-> 3

mysql> SELECT COERCIBILITY('A');
-> 4

See Section 12.9.3, “Information Functions”.

10.5.5. Collations Must Be for the Right Character Set
Each character set has one or more collations, but each collation is associated with one and only one
character set. Therefore, the following statement causes an error message because the latin2_bin
collation is not legal with the latin1 character set:

mysql> SELECT _latin1 'x' COLLATE latin2_bin;
ERROR 1253 (42000): COLLATION 'latin2_bin' is not valid
for CHARACTER SET 'latin1'

10.5.6. An Example of the Effect of Collation
Suppose that column X in table T has these latin1 column values:

Muffler

Character Set Support

606

Müller
MX Systems
MySQL

Suppose also that the column values are retrieved using the following statement:

SELECT X FROM T ORDER BY X COLLATE collation_name;

The following table shows the resulting order of the values if we use ORDER BY with different colla-
tions:

latin1_swedish_ci latin1_german1_ci latin1_german2_ci

Muffler Muffler Müller

MX Systems Müller Muffler

Müller MX Systems MX Systems

MySQL MySQL MySQL

The character that causes the different sort orders in this example is the U with two dots over it (ü),
which the Germans call “U-umlaut.”

• The first column shows the result of the SELECT using the Swedish/Finnish collating rule, which
says that U-umlaut sorts with Y.

• The second column shows the result of the SELECT using the German DIN-1 rule, which says that
U-umlaut sorts with U.

• The third column shows the result of the SELECT using the German DIN-2 rule, which says that U-
umlaut sorts with UE.

10.6. Operations Affected by Character Set Support
This section describes operations that take character set information into account.

10.6.1. Result Strings
MySQL has many operators and functions that return a string. This section answers the question: What
is the character set and collation of such a string?

For simple functions that take string input and return a string result as output, the output's character set
and collation are the same as those of the principal input value. For example, UPPER(X) returns a
string whose character string and collation are the same as that of X. The same applies for INSTR(),
LCASE(), LOWER(), LTRIM(), MID(), REPEAT(), REPLACE(), REVERSE(), RIGHT(),
RPAD(), RTRIM(), SOUNDEX(), SUBSTRING(), TRIM(), UCASE(), and UPPER().

Note: The REPLACE() function, unlike all other functions, always ignores the collation of the string in-
put and performs a case-sensitive comparison.

If a string input or function result is a binary string, the string has no character set or collation. This can
be check by using the CHARSET() and COLLATION() functions, both of which return binary to in-
dicate that their argument is a binary string:

mysql> SELECT CHARSET(BINARY 'a'), COLLATION(BINARY 'a');
+---------------------+-----------------------+

Character Set Support

607

| CHARSET(BINARY 'a') | COLLATION(BINARY 'a') |
+---------------------+-----------------------+
| binary | binary |
+---------------------+-----------------------+

For operations that combine multiple string inputs and return a single string output, the “aggregation
rules” of standard SQL apply for determining the collation of the result:

• If an explicit COLLATE X occurs, use X.

• If explicit COLLATE X and COLLATE Y occur, raise an error.

• Otherwise, if all collations are X, use X.

• Otherwise, the result has no collation.

For example, with CASE ... WHEN a THEN b WHEN b THEN c COLLATE X END, the res-
ulting collation is X. The same applies for UNION, ||, CONCAT(), ELT(), GREATEST(), IF(), and
LEAST().

For operations that convert to character data, the character set and collation of the strings that result from
the operations are defined by the character_set_connection and collation_connection
system variables. This applies to CAST(), CONV(), FORMAT(), HEX(), SPACE(). Before MySQL
5.0.15, it also applies to CHAR().

10.6.2. CONVERT() and CAST()

CONVERT() provides a way to convert data between different character sets. The syntax is:

CONVERT(expr USING transcoding_name)

In MySQL, transcoding names are the same as the corresponding character set names.

Examples:

SELECT CONVERT(_latin1'Müller' USING utf8);
INSERT INTO utf8table (utf8column)

SELECT CONVERT(latin1field USING utf8) FROM latin1table;

CONVERT(... USING ...) is implemented according to the standard SQL specification.

You may also use CAST() to convert a string to a different character set. The syntax is:

CAST(character_string AS character_data_type CHARACTER SET charset_name)

Example:

SELECT CAST(_latin1'test' AS CHAR CHARACTER SET utf8);

If you use CAST() without specifying CHARACTER SET, the resulting character set and collation are
defined by the character_set_connection and collation_connection system variables.
If you use CAST() with CHARACTER SET X, the resulting character set and collation are X and the
default collation of X.

You may not use a COLLATE clause inside a CAST(), but you may use it outside. That is, CAST(...
COLLATE ...) is illegal, but CAST(...) COLLATE ... is legal.

Character Set Support

608

Example:

SELECT CAST(_latin1'test' AS CHAR CHARACTER SET utf8) COLLATE utf8_bin;

10.6.3. SHOW Statements and INFORMATION_SCHEMA

Several SHOW statements provide additional character set information. These include SHOW CHARAC-
TER SET, SHOW COLLATION, SHOW CREATE DATABASE, SHOW CREATE TABLE and SHOW
COLUMNS. These statements are described here briefly. For more information, see Section 13.5.4,
“SHOW Syntax”.

INFORMATION_SCHEMA has several tables that contain information similar to that displayed by the
SHOW statements. For example, the CHARACTER_SETS and COLLATIONS tables contain the informa-
tion displayed by SHOW CHARACTER SET and SHOW COLLATION. Chapter 20, The INFORMA-
TION_SCHEMA Database.

The SHOW CHARACTER SET command shows all available character sets. It takes an optional LIKE
clause that indicates which character set names to match. For example:

mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
+---------+-----------------------------+-------------------+--------+

The output from SHOW COLLATION includes all available character sets. It takes an optional LIKE
clause that indicates which collation names to match. For example:

mysql> SHOW COLLATION LIKE 'latin1%';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5			0
latin1_swedish_ci	latin1	8	Yes	Yes	0
latin1_danish_ci	latin1	15			0
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	0
latin1_general_ci	latin1	48			0
latin1_general_cs	latin1	49			0
latin1_spanish_ci	latin1	94			0
+-------------------+---------+----+---------+----------+---------+

SHOW CREATE DATABASE displays the CREATE DATABASE statement that creates a given data-
base:

mysql> SHOW CREATE DATABASE test;
+----------+---+
| Database | Create Database |
+----------+---+
| test | CREATE DATABASE `test` /*!40100 DEFAULT CHARACTER SET latin1 */ |
+----------+---+

If no COLLATE clause is shown, the default collation for the character set applies.

SHOW CREATE TABLE is similar, but displays the CREATE TABLE statement to create a given table.
The column definitions indicate any character set specifications, and the table options include character
set information.

The SHOW COLUMNS statement displays the collations of a table's columns when invoked as SHOW

Character Set Support

609

FULL COLUMNS. Columns with CHAR, VARCHAR, or TEXT data types have collations. Numeric and
other non-character types have no collation (indicated by NULL as the Collation value). For ex-
ample:

mysql> SHOW FULL COLUMNS FROM person\G
*************************** 1. row ***************************

Field: id
Type: smallint(5) unsigned

Collation: NULL
Null: NO
Key: PRI

Default: NULL
Extra: auto_increment

Privileges: select,insert,update,references
Comment:

*************************** 2. row ***************************
Field: name
Type: char(60)

Collation: latin1_swedish_ci
Null: NO
Key:

Default:
Extra:

Privileges: select,insert,update,references
Comment:

The character set is not part of the display but is implied by the collation name.

10.7. Unicode Support
MySQL 5.0 supports two character sets for storing Unicode data:

• ucs2, the UCS-2 Unicode character set.

• utf8, the UTF-8 encoding of the Unicode character set.

In UCS-2 (binary Unicode representation), every character is represented by a two-byte Unicode code
with the most significant byte first. For example: LATIN CAPITAL LETTER A has the code
0x0041 and it is stored as a two-byte sequence: 0x00 0x41. CYRILLIC SMALL LETTER YERU
(Unicode 0x044B) is stored as a two-byte sequence: 0x04 0x4B. For Unicode characters and their
codes, please refer to the Unicode Home Page [http://www.unicode.org/].

Currently, UCS-2 cannot be used as a client character set, which means that SET NAMES 'ucs2'
does not work.

The UTF-8 character set (transform Unicode representation) is an alternative way to store Unicode data.
It is implemented according to RFC 3629. The idea of the UTF-8 character set is that various Unicode
characters are encoded using byte sequences of different lengths:

• Basic Latin letters, digits, and punctuation signs use one byte.

• Most European and Middle East script letters fit into a two-byte sequence: extended Latin letters
(with tilde, macron, acute, grave and other accents), Cyrillic, Greek, Armenian, Hebrew, Arabic,
Syriac, and others.

• Korean, Chinese, and Japanese ideographs use three-byte sequences.

RFC 3629 describes encoding sequences that take from one to four bytes. Currently, MySQL support for
UTF-8 does not include four-byte sequences. (An older standard for UTF-8 encoding is given by RFC
2279, which describes UTF-8 sequences that take from one to six bytes. RFC 3629 renders RFC 2279

Character Set Support

610

http://www.unicode.org/

obsolete; for this reason, sequences with five and six bytes are no longer used.)

Tip: To save space with UTF-8, use VARCHAR instead of CHAR. Otherwise, MySQL must reserve three
bytes for each character in a CHAR CHARACTER SET utf8 column because that is the maximum
possible length. For example, MySQL must reserve 30 bytes for a CHAR(10) CHARACTER SET
utf8 column.

10.8. UTF-8 for Metadata
Metadata is “the data about the data.” Anything that describes the database — as opposed to being the
contents of the database — is metadata. Thus column names, database names, usernames, version
names, and most of the string results from SHOW are metadata. This is also true of the contents of tables
in INFORMATION_SCHEMA, because those tables by definition contain information about database ob-
jects.

Representation of metadata must satisfy these requirements:

• All metadata must be in the same character set. Otherwise, neither the SHOW commands nor SE-
LECT statements for tables in INFORMATION_SCHEMA would work properly because different
rows in the same column of the results of these operations would be in different character sets.

• Metadata must include all characters in all languages. Otherwise, users would not be able to name
columns and tables using their own languages.

To satisfy both requirements, MySQL stores metadata in a Unicode character set, namely UTF-8. This
does not cause any disruption if you never use accented or non-Latin characters. But if you do, you
should be aware that metadata is in UTF-8.

The metadata requirements mean that the return values of the USER(), CURRENT_USER(), SES-
SION_USER(), SYSTEM_USER(), DATABASE(), and VERSION() functions have the UTF-8 char-
acter set by default.

The server sets the character_set_system system variable to the name of the metadata character
set:

mysql> SHOW VARIABLES LIKE 'character_set_system';
+----------------------+-------+
| Variable_name | Value |
+----------------------+-------+
| character_set_system | utf8 |
+----------------------+-------+

Storage of metadata using Unicode does not mean that the server returns headers of columns and the res-
ults of DESCRIBE functions in the character_set_system character set by default. When you
use SELECT column1 FROM t, the name column1 itself is returned from the server to the client in
the character set determined by the value of the character_set_results system variable, which
has a default value of latin1. If you want the server to pass metadata results back in a different char-
acter set, use the SET NAMES statement to force the server to perform character set conversion. SET
NAMES sets the character_set_results and other related system variables. (See Section 10.4,
“Connection Character Sets and Collations”.) Alternatively, a client program can perform the conversion
after receiving the result from the server. It is more efficient for the client perform the conversion, but
this option is not always available for all clients.

If character_set_results is set to NULL, no conversion is performed and the server returns
metadata using its original character set (the set indicated by character_set_system).

Error messages returned from the server to the client are converted to the client character set automatic-

Character Set Support

611

ally, as with metadata.

If you are using (for example) the USER() function for comparison or assignment within a single state-
ment, don't worry. MySQL performs some automatic conversion for you.

SELECT * FROM Table1 WHERE USER() = latin1_column;

This works because the contents of latin1_column are automatically converted to UTF-8 before the
comparison.

INSERT INTO Table1 (latin1_column) SELECT USER();

This works because the contents of USER() are automatically converted to latin1 before the assign-
ment. Automatic conversion is not fully implemented yet, but should work correctly in a later version.

Although automatic conversion is not in the SQL standard, the SQL standard document does say that
every character set is (in terms of supported characters) a “subset” of Unicode. Because it is a well-
known principle that “what applies to a superset can apply to a subset,” we believe that a collation for
Unicode can apply for comparisons with non-Unicode strings.

10.9. Character Sets and Collations That MySQL Sup-
ports

MySQL supports 70+ collations for 30+ character sets. This section indicates which character sets
MySQL supports. There is one subsection for each group of related character sets. For each character
set, the allowable collations are listed.

You can always list the available character sets and their default collations with the SHOW CHARACTER
SET statement:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+
| Charset | Description | Default collation |
+----------+-----------------------------+---------------------+
big5	Big5 Traditional Chinese	big5_chinese_ci
dec8	DEC West European	dec8_swedish_ci
cp850	DOS West European	cp850_general_ci
hp8	HP West European	hp8_english_ci
koi8r	KOI8-R Relcom Russian	koi8r_general_ci
latin1	cp1252 West European	latin1_swedish_ci
latin2	ISO 8859-2 Central European	latin2_general_ci
swe7	7bit Swedish	swe7_swedish_ci
ascii	US ASCII	ascii_general_ci
ujis	EUC-JP Japanese	ujis_japanese_ci
sjis	Shift-JIS Japanese	sjis_japanese_ci
hebrew	ISO 8859-8 Hebrew	hebrew_general_ci
tis620	TIS620 Thai	tis620_thai_ci
euckr	EUC-KR Korean	euckr_korean_ci
koi8u	KOI8-U Ukrainian	koi8u_general_ci
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci
greek	ISO 8859-7 Greek	greek_general_ci
cp1250	Windows Central European	cp1250_general_ci
gbk	GBK Simplified Chinese	gbk_chinese_ci
latin5	ISO 8859-9 Turkish	latin5_turkish_ci
armscii8	ARMSCII-8 Armenian	armscii8_general_ci
utf8	UTF-8 Unicode	utf8_general_ci
ucs2	UCS-2 Unicode	ucs2_general_ci
cp866	DOS Russian	cp866_general_ci
keybcs2	DOS Kamenicky Czech-Slovak	keybcs2_general_ci
macce	Mac Central European	macce_general_ci
macroman	Mac West European	macroman_general_ci
cp852	DOS Central European	cp852_general_ci
latin7	ISO 8859-13 Baltic	latin7_general_ci
cp1251	Windows Cyrillic	cp1251_general_ci
cp1256	Windows Arabic	cp1256_general_ci
cp1257	Windows Baltic	cp1257_general_ci

Character Set Support

612

binary	Binary pseudo charset	binary
geostd8	GEOSTD8 Georgian	geostd8_general_ci
cp932	SJIS for Windows Japanese	cp932_japanese_ci
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci
+----------+-----------------------------+---------------------+

10.9.1. Unicode Character Sets
MySQL has two Unicode character sets. You can store text in about 650 languages using these character
sets.

• ucs2 (UCS-2 Unicode) collations:

• ucs2_bin

• ucs2_czech_ci

• ucs2_danish_ci

• ucs2_esperanto_ci

• ucs2_estonian_ci

• ucs2_general_ci (default)

• ucs2_hungarian_ci

• ucs2_icelandic_ci

• ucs2_latvian_ci

• ucs2_lithuanian_ci

• ucs2_persian_ci

• ucs2_polish_ci

• ucs2_roman_ci

• ucs2_romanian_ci

• ucs2_slovak_ci

• ucs2_slovenian_ci

• ucs2_spanish2_ci

• ucs2_spanish_ci

• ucs2_swedish_ci

• ucs2_turkish_ci

• ucs2_unicode_ci

• utf8 (UTF-8 Unicode) collations:

• utf8_bin

• utf8_czech_ci

Character Set Support

613

• utf8_danish_ci

• utf8_esperanto_ci

• utf8_estonian_ci

• utf8_general_ci (default)

• utf8_hungarian_ci

• utf8_icelandic_ci

• utf8_latvian_ci

• utf8_lithuanian_ci

• utf8_persian_ci

• utf8_polish_ci

• utf8_roman_ci

• utf8_romanian_ci

• utf8_slovak_ci

• utf8_slovenian_ci

• utf8_spanish2_ci

• utf8_spanish_ci

• utf8_swedish_ci

• utf8_turkish_ci

• utf8_unicode_ci

Note that in the ucs2_roman_ci and utf8_roman_ci collations, I and J compare as equals, and
U and V compare as equals.

The ucs2_esperanto_ci and utf8_esperanto_ci collations were added in MySQL 5.0.13.
The ucs2_hungarian_ci and utf8_hungarian_ci collations were added in MySQL 5.0.19.

MySQL implements the utf8_unicode_ci collation according to the Unicode Collation Algorithm
(UCA) described at http://www.unicode.org/reports/tr10/. The collation uses the version-4.0.0 UCA
weight keys: http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt. The following discussion uses
utf8_unicode_ci, but it is also true for ucs2_unicode_ci.

Currently, the utf8_unicode_ci collation has only partial support for the Unicode Collation Al-
gorithm. Some characters are not supported yet. Also, combining marks are not fully supported. This af-
fects primarily Vietnamese and some minority languages in Russia such as Udmurt, Tatar, Bashkir, and
Mari.

The most significant feature in utf8_unicode_ci is that it supports expansions; that is, when one
character compares as equal to combinations of other characters. For example, in German and some oth-
er languages ‘ß’ is equal to ‘ss’.

Character Set Support

614

http://www.unicode.org/reports/tr10/
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt

utf8_general_ci is a legacy collation that does not support expansions. It can make only one-
to-one comparisons between characters. This means that comparisons for the utf8_general_ci col-
lation are faster, but slightly less correct, than comparisons for utf8_unicode_ci.

For example, the following equalities hold in both utf8_general_ci and utf8_unicode_ci:

Ä = A
Ö = O
Ü = U

A difference between the collations is that this is true for utf8_general_ci:

ß = s

Whereas this is true for utf8_unicode_ci:

ß = ss

MySQL implements language-specific collations for the utf8 character set only if the ordering with
utf8_unicode_ci does not work well for a language. For example, utf8_unicode_ci works
fine for German and French, so there is no need to create special utf8 collations for these two lan-
guages.

utf8_general_ci also is satisfactory for both German and French, except that ‘ß’ is equal to ‘s’,
and not to ‘ss’. If this is acceptable for your application, then you should use utf8_general_ci be-
cause it is faster. Otherwise, use utf8_unicode_ci because it is more accurate.

utf8_swedish_ci, like other utf8 language-specific collations, is derived from
utf8_unicode_ci with additional language rules. For example, in Swedish, the following relation-
ship holds, which is not something expected by a German or French speaker:

Ü = Y < Ö

The utf8_spanish_ci and utf8_spanish2_ci collations correspond to modern Spanish and
traditional Spanish, respectively. In both collations, ‘ñ’ (n-tilde) is a separate letter between ‘n’ and ‘o’.
In addition, for traditional Spanish, ‘ch’ is a separate letter between ‘c’ and ‘d’, and ‘ll’ is a separate
letter between ‘l’ and ‘m’

10.9.2. West European Character Sets
Western European character sets cover most West European languages, such as French, Spanish,
Catalan, Basque, Portuguese, Italian, Albanian, Dutch, German, Danish, Swedish, Norwegian, Finnish,
Faroese, Icelandic, Irish, Scottish, and English.

• ascii (US ASCII) collations:

• ascii_bin

• ascii_general_ci (default)

• cp850 (DOS West European) collations:

• cp850_bin

• cp850_general_ci (default)

Character Set Support

615

• dec8 (DEC Western European) collations:

• dec8_bin

• dec8_swedish_ci (default)

• hp8 (HP Western European) collations:

• hp8_bin

• hp8_english_ci (default)

• latin1 (cp1252 West European) collations:

• latin1_bin

• latin1_danish_ci

• latin1_general_ci

• latin1_general_cs

• latin1_german1_ci

• latin1_german2_ci

• latin1_spanish_ci

• latin1_swedish_ci (default)

latin1 is the default character set. MySQL's latin1 is the same as the Windows cp1252 char-
acter set. This means it is the same as the official ISO 8859-1 or IANA (Internet Assigned Num-
bers Authority) latin1, but IANA latin1 treats the code points between 0x80 and 0x9f as
“undefined,” whereas cp1252, and therefore MySQL's latin1, assign characters for those posi-
tions. For example, 0x80 is the Euro sign. For the “undefined” entries in cp1252, MySQL trans-
lates 0x81 to Unicode 0x0081, 0x8d to 0x008d, 0x8f to 0x008f, 0x90 to 0x0090, and
0x9d to 0x009d.

The latin1_swedish_ci collation is the default that probably is used by the majority of
MySQL customers. Although it is frequently said that it is based on the Swedish/Finnish collation
rules, there are Swedes and Finns who disagree with this statement.

The latin1_german1_ci and latin1_german2_ci collations are based on the DIN-1 and
DIN-2 standards, where DIN stands for Deutsches Institut für Normung (the German equivalent of
ANSI). DIN-1 is called the “dictionary collation” and DIN-2 is called the “phone book collation.”

• latin1_german1_ci (dictionary) rules:

Ä = A
Ö = O
Ü = U
ß = s

• latin1_german2_ci (phone-book) rules:

Ä = AE
Ö = OE
Ü = UE
ß = ss

Character Set Support

616

In the latin1_spanish_ci collation, ‘ñ’ (n-tilde) is a separate letter between ‘n’ and ‘o’.

• macroman (Mac West European) collations:

• macroman_bin

• macroman_general_ci (default)

• swe7 (7bit Swedish) collations:

• swe7_bin

• swe7_swedish_ci (default)

10.9.3. Central European Character Sets
MySQL provides some support for character sets used in the Czech Republic, Slovakia, Hungary, Ro-
mania, Slovenia, Croatia, and Poland.

• cp1250 (Windows Central European) collations:

• cp1250_bin

• cp1250_croatian_ci

• cp1250_czech_cs

• cp1250_general_ci (default)

• cp852 (DOS Central European) collations:

• cp852_bin

• cp852_general_ci (default)

• keybcs2 (DOS Kamenicky Czech-Slovak) collations:

• keybcs2_bin

• keybcs2_general_ci (default)

• latin2 (ISO 8859-2 Central European) collations:

• latin2_bin

• latin2_croatian_ci

• latin2_czech_cs

• latin2_general_ci (default)

• latin2_hungarian_ci

• macce (Mac Central European) collations:

• macce_bin

Character Set Support

617

• macce_general_ci (default)

10.9.4. South European and Middle East Character Sets
South European and Middle Eastern character sets supported by MySQL include Armenian, Arabic,
Georgian, Greek, Hebrew, and Turkish.

• armscii8 (ARMSCII-8 Armenian) collations:

• armscii8_bin

• armscii8_general_ci (default)

• cp1256 (Windows Arabic) collations:

• cp1256_bin

• cp1256_general_ci (default)

• geostd8 (GEOSTD8 Georgian) collations:

• geostd8_bin

• geostd8_general_ci (default)

• greek (ISO 8859-7 Greek) collations:

• greek_bin

• greek_general_ci (default)

• hebrew (ISO 8859-8 Hebrew) collations:

• hebrew_bin

• hebrew_general_ci (default)

• latin5 (ISO 8859-9 Turkish) collations:

• latin5_bin

• latin5_turkish_ci (default)

10.9.5. Baltic Character Sets
The Baltic character sets cover Estonian, Latvian, and Lithuanian languages.

• cp1257 (Windows Baltic) collations:

• cp1257_bin

• cp1257_general_ci (default)

• cp1257_lithuanian_ci

Character Set Support

618

• latin7 (ISO 8859-13 Baltic) collations:

• latin7_bin

• latin7_estonian_cs

• latin7_general_ci (default)

• latin7_general_cs

10.9.6. Cyrillic Character Sets
The Cyrillic character sets and collations are for use with Belarusian, Bulgarian, Russian, and Ukrainian
languages.

• cp1251 (Windows Cyrillic) collations:

• cp1251_bin

• cp1251_bulgarian_ci

• cp1251_general_ci (default)

• cp1251_general_cs

• cp1251_ukrainian_ci

• cp866 (DOS Russian) collations:

• cp866_bin

• cp866_general_ci (default)

• koi8r (KOI8-R Relcom Russian) collations:

• koi8r_bin

• koi8r_general_ci (default)

• koi8u (KOI8-U Ukrainian) collations:

• koi8u_bin

• koi8u_general_ci (default)

10.9.7. Asian Character Sets
The Asian character sets that we support include Chinese, Japanese, Korean, and Thai. These can be
complicated. For example, the Chinese sets must allow for thousands of different characters. See Sec-
tion 10.9.7.1, “The cp932 Character Set”, for additional information about the cp932 and sjis char-
acter sets.

• big5 (Big5 Traditional Chinese) collations:

• big5_bin

Character Set Support

619

• big5_chinese_ci (default)

• cp932 (SJIS for Windows Japanese) collations:

• cp932_bin

• cp932_japanese_ci (default)

• eucjpms (UJIS for Windows Japanese) collations:

• eucjpms_bin

• eucjpms_japanese_ci (default)

• euckr (EUC-KR Korean) collations:

• euckr_bin

• euckr_korean_ci (default)

• gb2312 (GB2312 Simplified Chinese) collations:

• gb2312_bin

• gb2312_chinese_ci (default)

• gbk (GBK Simplified Chinese) collations:

• gbk_bin

• gbk_chinese_ci (default)

• sjis (Shift-JIS Japanese) collations:

• sjis_bin

• sjis_japanese_ci (default)

• tis620 (TIS620 Thai) collations:

• tis620_bin

• tis620_thai_ci (default)

• ujis (EUC-JP Japanese) collations:

• ujis_bin

• ujis_japanese_ci (default)

10.9.7.1. The cp932 Character Set

Why is cp932 needed?

In MySQL, the sjis character set corresponds to the Shift_JIS character set defined by IANA,
which supports JIS X0201 and JIS X0208 characters. (See ht-
tp://www.iana.org/assignments/character-sets.)

Character Set Support

620

http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

However, the meaning of “SHIFT JIS” as a descriptive term has become very vague and it often in-
cludes the extensions to Shift_JIS that are defined by various vendors.

For example, “SHIFT JIS” used in Japanese Windows environments is a Microsoft extension of
Shift_JIS and its exact name is Microsoft Windows Codepage : 932 or cp932. In addi-
tion to the characters supported by Shift_JIS, cp932 supports extension characters such as NEC
special characters, NEC selected — IBM extended characters, and IBM extended characters.

Many Japanese users have experienced problems using these extension characters. These problems stem
from the following factors:

• MySQL automatically converts character sets.

• Character sets are converted via Unicode (ucs2).

• The sjis character set does not support the conversion of these extension characters.

• There are several conversion rules from so-called “SHIFT JIS” to Unicode, and some characters are
converted to Unicode differently depending on the conversion rule. MySQL supports only one of
these rules (described later).

The MySQL cp932 character set is designed to solve these problems. It is available as of MySQL
5.0.3.

Because MySQL supports character set conversion, it is important to separate IANA Shift_JIS and
cp932 into two different character sets because they provide different conversion rules.

How does cp932 differ from sjis?

The cp932 character set differs from sjis in the following ways:

• cp932 supports NEC special characters, NEC selected — IBM extended characters, and IBM selec-
ted characters.

• Some cp932 characters have two different code points, both of which convert to the same Unicode
code point. When converting from Unicode back to cp932, one of the code points must be selected.
For this “round trip conversion,” the rule recommended by Microsoft is used. (See ht-
tp://support.microsoft.com/kb/170559/EN-US/.)

The conversion rule works like this:

• If the character is in both JIS X 0208 and NEC special characters, use the code point of JIS X
0208.

• If the character is in both NEC special characters and IBM selected characters, use the code point
of NEC special characters.

• If the character is in both IBM selected characters and NEC selected — IBM extended charac-
ters, use the code point of IBM extended characters.

The table shown at http://www.microsoft.com/globaldev/reference/dbcs/932.htm provides informa-
tion about the Unicode values of cp932 characters. For cp932 table entries with characters under
which a four-digit number appears, the number represents the corresponding Unicode (ucs2) en-
coding. For table entries with an underlined two-digit value appears, there is a range of cp932 char-
acter values that begin with those two digits. Clicking such a table entry takes you to a page that dis-
plays the Unicode value for each of the cp932 characters that begin with those digits.

Character Set Support

621

http://support.microsoft.com/kb/170559/EN-US/
http://support.microsoft.com/kb/170559/EN-US/
http://www.microsoft.com/globaldev/reference/dbcs/932.htm

The following links are of special interest. They correspond to the encodings for the following sets
of characters:

• NEC special characters:

http://www.microsoft.com/globaldev/reference/dbcs/932/932_87.htm

• NEC selected — IBM extended characters:

http://www.microsoft.com/globaldev/reference/dbcs/932/932_ED.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_EE.htm

• IBM selected characters:

http://www.microsoft.com/globaldev/reference/dbcs/932/932_FA.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FB.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FC.htm

• Starting from version 5.0.3, cp932 supports conversion of user-defined characters in combination
with eucjpms, and solves the problems with sjis/ujis conversion. For details, please refer to
http://www.opengroup.or.jp/jvc/cde/sjis-euc-e.html.

For some characters, conversion to and from ucs2 is different for sjis and cp932. The following
tables illustrate these differences.

Conversion to ucs2:

sjis/cp932 Value sjis -> ucs2 Conversion cp932 -> ucs2 Conversion

5C 005C 005C

7E 007E 007E

815C 2015 2015

815F 005C FF3C

8160 301C FF5E

8161 2016 2225

817C 2212 FF0D

8191 00A2 FFE0

8192 00A3 FFE1

81CA 00AC FFE2

Conversion from ucs2:

ucs2 value ucs2 -> sjis Conversion ucs2 -> cp932 Conversion

005C 815F 5C

007E 7E 7E

00A2 8191 3F

00A3 8192 3F

00AC 81CA 3F

2015 815C 815C

Character Set Support

622

http://www.microsoft.com/globaldev/reference/dbcs/932/932_87.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_ED.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_EE.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FA.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FB.htm
http://www.microsoft.com/globaldev/reference/dbcs/932/932_FC.htm
http://www.opengroup.or.jp/jvc/cde/sjis-euc-e.html

2016 8161 3F

2212 817C 3F

2225 3F 8161

301C 8160 3F

FF0D 3F 817C

FF3C 3F 815F

FF5E 3F 8160

FFE0 3F 8191

FFE1 3F 8192

FFE2 3F 81CA

Users of any Japanese character sets should be aware that using -
-character-set-client-handshake (or -
-skip-character-set-client-handshake) has an important effect. See Section 5.2.2,
“Command Options”.

10.10. FAQ: MySQL Chinese, Japanese, and Korean
Character Sets

This Frequently-Asked-Questions section comes from the experiences of MySQL's Support and Devel-
opment groups, after handling many enquiries about CJK (Chinese Japanese Korean) issues.

10.10.1. SELECT shows non-Latin characters as "?"s. Why?
You inserted CJK characters with INSERT, but when you do a SELECT, they all look like “?”. It usu-
ally is a setting in MySQL that doesn't match the settings for the application program or the operating
system. These are common troubleshooting steps:

• Find out: what version do you have? The statement SELECT VERSION(); will tell you. This
FAQ is for MySQL version 5, so some of the answers here will not apply to you if you have version
4.0 or 4.1.

• Find out: what character set is the database column really in? Too frequently, people think that the
character set will be the same as the server's set (false), or the set used for display purposes (false).
Make sure, by saying SHOW CREATE TABLE tablename, or better yet by saying this:

SELECT character_set_name, collation_name
FROM information_schema.columns WHERE table_schema = your_database_name
AND table_name = your_table_name
AND column_name = your_column_name;

• Find out: what is the hexadecimal value?

SELECT HEX(your_column_name)
FROM your_table_name;

If you see 3F, then that really is the encoding for ?, so no wonder you see “?”. Probably this
happened because of a problem converting a particular character from your client character set to the
target character set.

• Find out: is a literal round trip possible, that is, if you select “literal” (or “_introducer hexadecimal-
value”) do you get “literal” as a result? For example, with the Japanese Katakana Letter Pe, which

Character Set Support

623

looks like ', and which exists in all CJK character sets, and which has the code point value
(hexadecimal coding) 0x30da, enter:

SELECT ' ' AS ` `; /* or SELECT _ucs2 0x30da; */

If the result doesn't look like , a round trip failed. For bug reports, we might ask people to follow
up with SELECT hex(' ');. Then we can see whether the client encoding is right.

• Find out: is it the browser or application? Just use mysql (the MySQL client program, which on
Windows will be mysql.exe). If mysql displays correctly but your application doesn't, then your
problem is probably “Settings”, but consult also the question about “Troubles with Access (or Perl)
(or PHP) (etc.)” much later in this FAQ.

To find your settings, the statement you need here is SHOW VARIABLES. For example:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
character_set_client	utf8
character_set_connection	utf8
character_set_database	latin1
character_set_filesystem	binary
character_set_results	utf8
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/local/mysql/share/mysql/charsets/
+--------------------------+--+
8 rows in set (0.03 sec)

The above are typical character-set settings for an international-oriented client (notice the use of
utf8 Unicode) connected to a server in the West (latin1 is a West Europe character set and a de-
fault for MySQL).

Although Unicode (usually the utf8 variant on Unix, usually the ucs2 variant on Windows) is bet-
ter than “latin”, it's often not what your operating system utilities support best. Many Windows users
find that a Microsoft character set, such as cp932 for Japanese Windows, is what's suitable.

If you can't control the server settings, and you have no idea what your underlying computer is
about, then try changing to a common character set for the country that you're in (euckr = Korea,
gb2312 or gbk = People's Republic of China, big5 = other China, sjis or ujis or cp932 or
eucjpms = Japan, ucs2 or utf8 = anywhere). Usually it is only necessary to change the client
and connection and results settings, and there is a simple statement which changes all three at once,
namely SET NAMES. For example:

SET NAMES 'big5';

Once you get the correct setting, you can make it permanent by editing my.cnf or my.ini. For
example you might add lines looking like this:

[mysqld]
character-set-server=big5
[client]
default-character-set=big5

10.10.2. Troubles with GB character sets (Chinese)
MySQL supports the two common variants of the GB (“Guojia Biaozhun” or “National Standard”) char-
acter sets which are official in the People's Republic of China: gb2312 and gbk. Sometimes people try
to insert gbk characters into gb2312, and it works most of the time because gbk is a superset of
gb2312. But eventually they try to insert a rarer Chinese character and it doesn't work. (Example:
Bug#16072 [http://bugs.mysql.com/16072] in our bugs database, ht-
tp://bugs.mysql.com/bug.php?id=16072). So we'll try to clarify here exactly what characters are legitim-

Character Set Support

624

http://bugs.mysql.com/16072
http://bugs.mysql.com/bug.php?id=16072
http://bugs.mysql.com/bug.php?id=16072

ate in gb2312 or gbk, with reference to the official documents. Please check these references before
reporting gb2312 or gbk bugs. We now have a graphic listing of the gbk characters, currently on the
site of Mr Alexander Barkov (MySQL's principal programmer for character set issues). The chart is in
order according to the gb2312_chinese_ci collation: ht-
tp://d.udm.net/bar/~bar/charts/gb2312_chinese_ci.html. MySQL's gbk is in reality “Microsoft code
page 936”. This differs from the official gbk for characters A1A4 (middle dot), A1AA (em dash),
A6E0-A6F5, and A8BB-A8C0. For a listing of the differences, see ht-
tp://recode.progiciels-bpi.ca/showfile.html?name=dist/libiconv/gbk.h. For a listing of gbk/Unicode map-
pings, see http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT.
For MySQL's listing of gbk characters, see http://d.udm.net/bar/~bar/charts/gbk_chinese_ci.html.

10.10.3. Troubles with big5 character set (Chinese)
MySQL supports the Big5 character set which is common in Hong Kong and the Republic of China
(Taiwan). MySQL's big5 is in reality “Microsoft code page 950”, which is very similar to the original
big5 character set. This is a recent change, starting with MySQL version 4.1.16 / 5.0.16. We made the
change as a result of a bug report, Bug#12476 [http://bugs.mysql.com/12476] in our bugs database, ht-
tp://bugs.mysql.com/bug.php?id=12476 (title: “Some big5 codes are still missing ...”). For example, the
following statements work in the current version of MySQL, but not in old versions:

mysql> create table big5 (big5 char(1) character set big5);
Query OK, 0 rows affected (0.13 sec)

mysql> insert into big5 values (0xf9dc);
Query OK, 1 row affected (0.00 sec)

mysql> select * from big5;
+------+
| big5 |
+------+
| |
+------+
1 row in set (0.02 sec)

There is a feature request for adding HKSCS extensions (Bug#13577 [http://bugs.mysql.com/13577] in
our bugs database, http://bugs.mysql.com/bug.php?id=13577). People who need the extension may find
the suggested patch for Bug#13577 [http://bugs.mysql.com/13577] is of interest.

10.10.4. Troubles with character-set conversions (Japanese)
MySQL supports the sjis, ujis, cp932, and eucjpms character sets, as well as Unicode. A common
need is to convert between character sets. For example, there might be a Unix server (typically with
sjis or ujis) and a Windows client (typically with cp932). But conversions can seem to fail. Here's
why. In this conversion table, the ucs2 column is the source, and the sjis/cp932/ujis/eucjpms
columns are the destination, that is, what the hexadecimal result would be if we used CONVERT(ucs2)
or if we assigned a ucs2 column containing the value to an sjis/cp932/ujis/eucjpms column.

character name ucs2 sjis cp932 ujis eucjpms
-------------- ---- ---- ---- ---- -------

BROKEN BAR 00A6 3F 3F 8FA2C3 3F
FULLWIDTH BROKEN BAR FFE4 3F FA55 3F 8FA2

YEN SIGN 00A5 3F 3F 20 3F
FULLWIDTH YEN SIGN FFE5 818F 818F A1EF 3F

TILDE 007E 7E 7E 7E 7E
OVERLINE 203E 3F 3F 20 3F

HORIZONTAL BAR 2015 815C 815C A1BD A1BD
EM DASH 2014 3F 3F 3F 3F

REVERSE SOLIDUS 005C 815F 5C 5C 5C
FULLWIDTH "" FF3C 3F 815F 3F A1C0

WAVE DASH 301C 8160 3F A1C1 3F
FULLWIDTH TILDE FF5E 3F 8160 3F A1C1

Character Set Support

625

http://d.udm.net/bar/~bar/charts/gb2312_chinese_ci.html
http://d.udm.net/bar/~bar/charts/gb2312_chinese_ci.html
http://recode.progiciels-bpi.ca/showfile.html?name=dist/libiconv/gbk.h
http://recode.progiciels-bpi.ca/showfile.html?name=dist/libiconv/gbk.h
http://www.unicode.org/Public/MAPPINGS/VENDORS/MICSFT/WINDOWS/CP936.TXT
http://d.udm.net/bar/~bar/charts/gbk_chinese_ci.html
http://bugs.mysql.com/12476
http://bugs.mysql.com/bug.php?id=12476
http://bugs.mysql.com/bug.php?id=12476
http://bugs.mysql.com/13577
http://bugs.mysql.com/bug.php?id=13577
http://bugs.mysql.com/13577

DOUBLE VERTICAL LINE 2016 8161 3F A1C2 3F
PARALLEL TO 2225 3F 8161 3F A1C2

MINUS SIGN 2212 817C 3F A1DD 3F
FULLWIDTH HYPHEN-MINUS FF0D 3F 817C 3F A1DD

CENT SIGN 00A2 8191 3F A1F1 3F
FULLWIDTH CENT SIGN FFE0 3F 8191 3F A1F1

POUND SIGN 00A3 8192 3F A1F2 3F
FULLWIDTH POUND SIGN FFE1 3F 8192 3F A1F2

NOT SIGN 00AC 81CA 3F A2CC 3F
FULLWIDTH NOT SIGN FFE2 3F 81CA 3F A2CC

For example, consider this extract from the table:

ucs2 sjis cp932
---- ---- -----

NOT SIGN 00AC 81CA 3F
FULLWIDTH NOT SIGN FFE2 3F 81CA

It means “for NOT SIGN which is Unicode U+00AC, MySQL converts to sjis code point 0x81CA and
to cp932 code point 3F”. (3F is question mark (“?”) and is what we always use when we can't convert.)
Now, what should we do if we want to convert sjis 81CA to cp932? Our answer is: “?”. There are
serious complaints about this, many people would prefer a “loose” conversion, so that 81CA (NOT
SIGN) in sjis becomes 81CA (FULLWIDTH NOT SIGN) in cp932. We are considering chan-
ging.

10.10.5. The Great Yen Sign problem (Japanese)
In SJIS the code for Yen Sign (¥) is 5C. In SJIS the code for Reverse Solidus (\) is 5C. Since the above
statements are contradictory, confusion often results. Well, to put it more seriously, some versions of Ja-
panese character sets (both sjis and euc) have treated 5C as a reverse solidus, also known as a back-
slash, and others have treated it as a yen sign. There's nothing we can do, except take sides: MySQL fol-
lows only one version of the JIS (Japanese Industrial Standards) standard description, and 5C is Reverse
Solidus, always. Should we make a separate character set where 5C is Yen Sign, as another DBMS
(Oracle) does? We haven't decided. Certainly not in version 5.1 or 5.2. But if people keep complaining
about The Great Yen Sign Problem, that's one possible solution.

10.10.6. Troubles with euckr character set (Korean)
MySQL supports the euckr (Extended Unix Code Korea) character set which is common in South
Korea. In theory, problems could arise because there have been several versions of this character set. So
far, only one problem has been noted, for Korea's currency symbol. We use the “ASCII” variant of
EUC-KR, in which the code point 0x5c is REVERSE SOLIDUS, that is \, instead of the “KS-Roman”
variant of EUC-KR, in which the code point 0x5c is WON SIGN, that is “ ”. You can't convert Uni-
code U+20A9 WON SIGN to euckr:

mysql> SELECT CONVERT(' ' USING euckr) AS euckr,
-> HEX(CONVERT(' ' USING euckr)) AS hexeuckr;
+-------+----------+
| euckr | hexeuckr |
+-------+----------+
| ? | 3F |
+-------+----------+
1 row in set (0.00 sec)

MySQL's graphic Korean chart is here: http://d.udm.net/bar/~bar/charts/euckr_korean_ci.html.

10.10.7. The “Data truncated” message
For illustration, we'll make a table with one Unicode (ucs2) column and one Chinese (gb2312)
column.

Character Set Support

626

http://d.udm.net/bar/~bar/charts/euckr_korean_ci.html

mysql> CREATE TABLE ch
-> (ucs2 CHAR(3) CHARACTER SET ucs2,
-> gb2312 CHAR(3) CHARACTER SET gb2312);

Query OK, 0 rows affected (0.05 sec)

We'll try to place the rare character in both columns.

mysql> INSERT INTO ch VALUES ('A B','A B');
Query OK, 1 row affected, 1 warning (0.00 sec)

Ah, there's a warning. Let's see what it is.

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1265 | Data truncated for column 'gb2312' at row 1 |
+---------+------+---+
1 row in set (0.00 sec)

So it's a warning about the gb2312 column only.

mysql> SELECT ucs2,HEX(ucs2),gb2312,HEX(gb2312) FROM ch;
+-------+--------------+--------+-------------+
| ucs2 | HEX(ucs2) | gb2312 | HEX(gb2312) |
+-------+--------------+--------+-------------+
| A B | 00416C4C0042 | A?B | 413F42 |
+-------+--------------+--------+-------------+
1 row in set (0.00 sec)

There are several things that need explanation here.

1. The fact that it's a “warning” rather than an “error” is characteristic of MySQL. We like to try to do
what we can, to get the best fit, rather than give up.

2. The character isn't in the gb2312 character set. We described that problem earlier.

3. Admittedly the message is misleading. We didn't “truncate” in this case, we replaced with a ques-
tion mark. We've had a complaint about this message (Bug#9337 [http://bugs.mysql.com/9337]).
But until we come up with something better, just accept that error/warning code 2165 can mean a
variety of things.

4. With SQL_MODE=TRADITIONAL, there would be an error message, but instead of error 2165 you
would see: ERROR 1406 (22001): Data too long for column 'gb2312' at
row 1.

10.10.8. Troubles with Access, Perl, PHP, etc.
You can't get things to look right with your special program for a GUI front end or browser? Get a direct
connection to the server (with mysql on Unix or with mysql.exe on Windows) and try the same
query there. If mysql is okay, then the trouble is probably that your application interface needs some ini-
tializing. Use mysql to tell you what character set(s) it uses, by saying SHOW VARIABLES LIKE
'char%';. If it's Access, you're probably connecting with MyODBC. So you'll want to check out the
Reference Manual page for configuring an ODBC DSN, and pay attention particularly to the illustra-
tions for “SQL command on connect”. You should enter SET NAMES 'big5' (supposing that you
use big5) (you don't need a ; here). If it's ASP, you might need to add SET NAMES in the code. Here
is an example that has worked in the past:

<%
Session.CodePage=0
Dim strConnection
Dim Conn
strConnection="driver={MySQL ODBC 3.51 Driver};server=yourserver;uid=yourusername;" \

& "pwd=yourpassword;database=yourdatabase;stmt=SET NAMES 'big5';"
Set Conn = Server.CreateObject(“ADODB.Connection”)

Character Set Support

627

http://bugs.mysql.com/9337

Conn.Open strConnection
%>

If it's PHP, here's a slightly different user suggestion:

<?php
$link = mysql_connect($host,$usr,$pwd);
mysql_select_db($db);
if (mysql_error()) { print "Database ERROR: " . mysql_error(); }
mysql_query("SET CHARACTER SET utf8", $link);
mysql_query("SET NAMES 'utf8'", $link);

?>

In this case, the tipper used SET CHARACTER SET statement to change character_set_client
and character_set_result, and used SET NAMES to change character_set_client and
character_set_connection and character_set_results. So actually the SET CHAR-
ACTER SET statement is redundant. (Incidentally, MySQL people encourage the use of the mysqli
extension, rather than the mysql example that this example uses.) Another thing to check with PHP is
the browser assumptions. Sometimes a meta tag change in the heading area suffices, for example:
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">

For Connector/J tips, see the manual section in the Connectors chapter titled “Using Character Sets and
Unicode”.

10.10.9. How can I get old MySQL 4.0 behaviour back?
In the old days, with MySQL Version 4.0, there was a single “global” character set for both server and
client sides, and the decision was made by the server administrator. We changed that starting with
MySQL Version 4.1. What happens now is a “handshake”. The MySQL Reference Manual describes it
thus:

When a client connects, it sends to the server the name of the character set that it
wants to use. The server uses the name to set the character_set_client,
character_set_results, and character_set_connection system vari-
ables. In effect, the server performs a SET NAMES operation using the character set
name.

The effect of this is: you can't control the client character set by saying mysqld -
-character-set-server=utf8. But some Asian customers said that they don't like that, they
want the MySQL 4.0 behaviour. So we added a mysqld switch, -
-character-set-client-handshake, which (and this is the interesting part) can be turned off
with --skip-character-set-client-handshake. If you start mysqld with -
-skip-character-set-client-handshake, then the behaviour is like this: When a client
connects, it sends to the server the name of the character set that it wants to use. The server ignores it!
Here is an illustration with the handshake switch on or off. Pretend that your favourite server character
set is latin1 (of course that's unlikely in a CJK area but it's MySQL's default if there's no my.ini or
my.cnf file). Pretend that the client operates with utf8 because that's what the client's operating sys-
tem supports. Start the server with a default character set, latin1:

mysqld --character-set-server=latin1

Start the client with a default character set, utf8:

mysql --default-character-set=utf8

Show what the current settings are:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
character_set_client	utf8
character_set_connection	utf8
character_set_database	latin1

Character Set Support

628

character_set_filesystem	binary
character_set_results	utf8
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/local/mysql/share/mysql/charsets/
+--------------------------+--+
8 rows in set (0.01 sec)

Stop the client. Stop the server with mysqladmin. Start the server again but this time say “skip the
handshake”:

mysqld --character-set-server=utf8 --skip-character-set-client-handshake

Start the client with a default character set, utf8, again. Show what the current settings are, again:

mysql> SHOW VARIABLES LIKE 'char%';
+--------------------------+--+
| Variable_name | Value |
+--------------------------+--+
character_set_client	latin1
character_set_connection	latin1
character_set_database	latin1
character_set_filesystem	binary
character_set_results	latin1
character_set_server	latin1
character_set_system	utf8
character_sets_dir	/usr/local/mysql/share/mysql/charsets/
+--------------------------+--+
8 rows in set (0.01 sec)

As you can see by comparing the SHOW VARIABLES results, the server ignores the client's initial set-
tings if the --skip-character-set-client-handshake is used.

10.10.10. Why do some LIKE and FULLTEXT searches fail?
There is a simple problem with LIKE searches on BINARY and BLOB columns: we need to know the
end of a character. With multi-byte character sets, different characters might have different octet lengths.
For example, in utf8, A requires one byte but requires three bytes. Illustration:

+-------------------------+---------------------------+
| octet_length(_utf8 'A') | octet_length(_utf8 ' ') |
+-------------------------+---------------------------+
| 1 | 3 |
+-------------------------+---------------------------+
1 row in set (0.00 sec)

If we don't know where the first character ends, then we don't know where the second character begins,
and even simple-looking searches like LIKE '_A%' will fail. The solution is to use a regular CJK
character set in the first place, or convert to a CJK character character set before comparing. Incident-
ally, this is one reason why MySQL cannot allow encodings of nonexistent characters: It must be strict
about rejecting bad input, or it won't know where characters end. There is a simple problem with FULL-
TEXT: we need to know the end of a word. With Western writing this is rarely a problem because there
are spaces between words. With Asian writing this is not the case. We could use half-good solutions,
like saying that all Han characters represent words, or depending on (Japanese) changes from Katakana
to Hiragana which are due to grammatical endings. But the only good solution requires a dictionary, and
we haven't found a good open-source dictionary.

10.10.11. What CJK character sets are available?
The list of CJK character sets may vary depending on version. For example, the eucjpms character set
is a recent addition. But the language name appears in the DESCRIPTION column for every entry in
information_schema.character_sets. Therefore, to get a current list of all the non-Unicode
CJK character sets, say:

mysql> SELECT character_set_name, description
-> FROM information_schema.character_sets
-> WHERE description LIKE '%Chinese%'

Character Set Support

629

-> OR description LIKE '%Japanese%'
-> OR description LIKE '%Korean%'
-> ORDER BY character_set_name;

+--------------------+---------------------------+
| character_set_name | description |
+--------------------+---------------------------+
big5	Big5 Traditional Chinese
cp932	SJIS for Windows Japanese
eucjpms	UJIS for Windows Japanese
euckr	EUC-KR Korean
gb2312	GB2312 Simplified Chinese
gbk	GBK Simplified Chinese
sjis	Shift-JIS Japanese
ujis	EUC-JP Japanese
+--------------------+---------------------------+
8 rows in set (0.01 sec)

10.10.12. Is character X available in all character sets?
The majority of everyday-use Chinese/Japanese characters (simplified Chinese and basic non-halfwidth
Kana Japanese) appear in all CJK character sets. Here is a stored procedure which accepts a UCS-2 Uni-
code character, converts it to all other character sets, and displays the results in hexadecimal.

DELIMITER //

CREATE PROCEDURE p_convert (ucs2_char CHAR(1) CHARACTER SET ucs2)
BEGIN

CREATE TABLE tj
(ucs2 CHAR(1) character set ucs2,
utf8 CHAR(1) character set utf8,
big5 CHAR(1) character set big5,
cp932 CHAR(1) character set cp932,
eucjpms CHAR(1) character set eucjpms,
euckr CHAR(1) character set euckr,
gb2312 CHAR(1) character set gb2312,
gbk CHAR(1) character set gbk,
sjis CHAR(1) character set sjis,
ujis CHAR(1) character set ujis);

INSERT INTO tj (ucs2) VALUES (ucs2_char);

UPDATE tj SET utf8=ucs2,
big5=ucs2,
cp932=ucs2,
eucjpms=ucs2,
euckr=ucs2,
gb2312=ucs2,
gbk=ucs2,
sjis=ucs2,
ujis=ucs2;

/* If there's a conversion problem, UPDATE will produce a warning. */

SELECT hex(ucs2) AS ucs2,
hex(utf8) AS utf8,
hex(big5) AS big5,
hex(cp932) AS cp932,
hex(eucjpms) AS eucjpms,
hex(euckr) AS euckr,
hex(gb2312) AS gb2312,
hex(gbk) AS gbk,
hex(sjis) AS sjis,
hex(ujis) AS ujis

FROM tj;

DROP TABLE tj;

END//

The input can be any single ucs2 character, or it can be the code point value (hexadecimal representa-
tion) of that character. Here's an example of what P_CONVERT() can do. An earlier answer said that
the character “Katakana Letter Pe” appears in all CJK character sets. We know that the code point value
of Katakana Letter Pe is 0x30da. (By the way, we got the name from Unicode's list of ucs2 encodings
and names: http://www.unicode.org/Public/UNIDATA/UnicodeData.txt.) So we'll say:

Character Set Support

630

http://www.unicode.org/Public/UNIDATA/UnicodeData.txt

mysql> CALL P_CONVERT(0x30da)//
+------+--------+------+-------+---------+-------+--------+------+------+------+
| ucs2 | utf8 | big5 | cp932 | eucjpms | euckr | gb2312 | gbk | sjis | ujis |
+------+--------+------+-------+---------+-------+--------+------+------+------+
| 30DA | E3839A | C772 | 8379 | A5DA | ABDA | A5DA | A5DA | 8379 | A5DA |
+------+--------+------+-------+---------+-------+--------+------+------+------+
1 row in set (0.04 sec)

Since none of the column values is 3F, we know that every conversion worked.

10.10.13. Strings don't sort correctly in Unicode (I)
Sometimes people observe that the result of a utf8_unicode_ci or ucs2_unicode_ci search or
ORDER BY sort is not what they think a native would expect. Although we never rule out the chance
that there is a bug, we have found in the past that people are not correctly reading the standard table of
weights for the Unicode Collation Algorithm. So, here's how to check whether we're using the right col-
lation. The correct table for MySQL is this one: ht-
tp://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt. This is different from the first table you will
find by navigating from the unicode.org home page. MySQL deliberately uses the older 4.0.0
“allkeys” table, instead of the current 4.1.0 table. We are very wary about changing ordering which af-
fects indexes. Here is an example of a problem that we handled recently, for a complaint in our bugs
database, http://bugs.mysql.com/bug.php?id=16526:

mysql> CREATE TABLE tj (s1 CHAR(1) CHARACTER SET utf8 COLLATE utf8_unicode_ci);
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO tj VALUES (' '),(' ');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM tj WHERE s1 = ' ';
+------+
| s1 |
+------+
| |
| |
+------+
2 rows in set (0.00 sec)

If your eyes are sharp, you'll see that the character in the first result row isn't the one that we searched
for. Why did MySQL retrieve it? First we look for the Unicode code point value, which is possible by
reading the hexadecimal number for the ucs2 version of the characters:

mysql> SELECT s1,HEX(CONVERT(s1 USING ucs2)) FROM tj;
+------+-----------------------------+
| s1 | HEX(CONVERT(s1 USING ucs2)) |
+------+-----------------------------+
| | 304C |
| | 304B |
+------+-----------------------------+
2 rows in set (0.03 sec)

Now let's search for 304B and 304C in the 4.0.0 allkeys table. We'll find these lines:

304B ; [.1E57.0020.000E.304B] # HIRAGANA LETTER KA
304C ; [.1E57.0020.000E.304B][.0000.0140.0002.3099] # HIRAGANA LETTER GA; QQCM

The official Unicode names (following the “#” mark) are informative; they tell us the Japanese syllabary
(Hiragana), the informal classification (letter instead of digit or punctuation), and the Western identifier
(KA or GA, which happen to be voiced/unvoiced components of the same letter pair). More importantly,
the Primary Weight (the first hexadecimal number inside the square brackets) is 1E57 on both lines. For
comparisons in both searching and sorting, MySQL pays attention only to the Primary Weight, it ignores
all the other numbers. So now we know that we're sorting and correctly according to the Unicode
specification. If we wanted to distinguish them, we'd have to use a non-Unicode-Collation-Algorithm
collation (utf8_unicode_bin or utf8_general_ci), or compare the HEX() values, or say OR-
DER BY CONVERT(s1 USING sjis). Being correct “according to Unicode” isn't enough, of
course: the person who submitted the bug was equally correct. We plan to add another collation for Ja-

Character Set Support

631

http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
http://www.unicode.org/Public/UCA/4.0.0/allkeys-4.0.0.txt
http://bugs.mysql.com/bug.php?id=16526

panese according to the JIS X 4061 standard, where voiced/unvoiced letters like KA/GA are distinguish-
able for ordering purposes.

10.10.14. Strings don't sort correctly in Unicode (II)
You're using Unicode (ucs2 or utf8), and you know what the Unicode sort order is (see the previous
question and answer), but MySQL still seems to sort your table wrong? This might be easy.

mysql> SHOW CREATE TABLE t\G
******************** 1. row ******************
Table: t
Create Table: CREATE TABLE `t` (
`s1` char(1) CHARACTER SET ucs2 DEFAULT NULL
) ENGINE=MyISAM DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

Hmm, the character set looks okay. Let's look at the information_schema for this column.

mysql> SELECT column_name, character_set_name, collation_name
-> FROM information_schema.columns
-> WHERE column_name = 's1'
-> AND table_name = 't';

+-------------+--------------------+-----------------+
| column_name | character_set_name | collation_name |
+-------------+--------------------+-----------------+
| s1 | ucs2 | ucs2_general_ci |
+-------------+--------------------+-----------------+
1 row in set (0.01 sec)

Oops, the collation is ucs2_general_ci instead of ucs2_unicode_ci! Here's why:

mysql> SHOW CHARSET LIKE 'ucs2%';
+---------+---------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------+-------------------+--------+
| ucs2 | UCS-2 Unicode | ucs2_general_ci | 2 |
+---------+---------------+-------------------+--------+
1 row in set (0.00 sec)

For ucs2 and utf8, the “general” collation is the default. To specify that you wanted a “unicode” col-
lation, you should have specified COLLATE ucs2_unicode_ci.

10.10.15. My supplementary characters get rejected
Right. MySQL doesn't support supplementary characters (characters which need more than 3 bytes with
UTF-8). We support only what Unicode calls the Basic Multilingual Plane / Plane 0. Only a few very
rare Han characters are supplementary; support for them is uncommon. This has led to Bug#12600
[http://bugs.mysql.com/12600] (http://bugs.mysql.com/bug.php?id=12600) which we rejected as “not a
bug”. With utf8, we must truncate an input string when we encounter bytes that we don't understand.
Otherwise, we wouldn't know how long the bad multi-byte character is. A workaround is: if you use
ucs2 instead of utf8, then the bad characters will change to question marks, but there will be no trun-
cation. Or change the data type to BLOB or BINARY, which have no validity checking. In our bugs data-
base, Bug#14052 [http://bugs.mysql.com/14052] (http://bugs.mysql.com/bug.php?id=14052) is a feature
request for Wikipedia, asking us to support supplementary characters extending ucs2 as well as utf8.

10.10.16. Shouldn't it be CJKV (V for Vietnamese)?
No. The term CJKV (Chinese Japanese Korean Vietnamese) refers to character sets which contain Han
(originally Chinese) characters. MySQL has no plan to support the old Vietnamese script using Han
characters. MySQL does of course support the modern Vietnamese script with Western characters. An-
other question that has come up (once) is a request for specialized Vietnamese collation, see ht-
tp://bugs.mysql.com/bug.php?id=4745. We might do something about it someday, if many more re-
quests arise.

Character Set Support

632

http://bugs.mysql.com/12600
http://bugs.mysql.com/bug.php?id=12600
http://bugs.mysql.com/14052
http://bugs.mysql.com/bug.php?id=14052
http://bugs.mysql.com/bug.php?id=4745
http://bugs.mysql.com/bug.php?id=4745

10.10.17. Will MySQL fix any CJK problems in version 5.1?
Yes. We're changing the names of files and directories. Here's an example, using mysql as root under
Linux:

1. Create a table with a name containing a Han character:

mysql> CREATE TABLE tab_ (s1 INT);
Query OK, 0 rows affected (0.07 sec)

2. Find out where MySQL stores database files:

mysql> SHOW VARIABLES LIKE 'datadir';
+---------------+-----------------------+
| Variable_name | Value |
+---------------+-----------------------+
| datadir | /usr/local/mysql/var/ |
+---------------+-----------------------+
1 row in set (0.00 sec)

3. Look at the directory to see the MyISAM table files:

cd /usr/local/mysql/var/dba
dir tab_*
-rw-rw---- 1 root root 0 2006-05-16 10:22 tab_@696e.MYD
-rw-rw---- 1 root root 1024 2006-05-16 10:22 tab_@696e.MYI
-rw-rw---- 1 root root 8556 2006-05-16 10:22 tab_@696e.frm

Notice that MySQL has converted the Han character to @ + (Unicode value of Han character), that is, to
a purely ASCII representation. This solves an old problem, that database files weren't portable, because
some computers wouldn't allow in a file name. Conversion to the new file names will be automatic
when you upgrade to version 5.1. This should take care of Bug#6313 [http://bugs.mysql.com/6313] in
our bugs database, http://bugs.mysql.com/bug.php?id=6313.

10.10.18. When will MySQL translate the manual again?
A Beijing-based group has produced a Simplified Chinese version for us under contract. It's complete
and can be found on http://dev.mysql.com/doc/#chinese-5.1. It's up to date as of version 5.1.2. The Ja-
panese manual can be downloaded from http://dev.mysql.com/doc/#japanese-4.1. It is still for version
4.1.

10.10.19. Whom can I talk to?
Check http://dev.mysql.com/user-groups/ to see if there is a MySQL user group near you. If there isn't:
why not start one yourself? To contact a sales engineer in MySQL KK's Japan office:

Tel: +81(0)3-5326-3133
Fax: +81(0)3-5326-3001
Email: dsaito@mysql.com

To see feature requests about language issues:

• Go to http://bugs.mysql.com.

• Click Advanced Search.

• In the Severity dropdown box, click S4 (Feature Request).

• In the list box beside Category, click Character Sets.

Character Set Support

633

http://bugs.mysql.com/6313
http://bugs.mysql.com/bug.php?id=6313
http://dev.mysql.com/doc/#chinese-5.1
http://dev.mysql.com/doc/#japanese-4.1
http://dev.mysql.com/user-groups/
http://bugs.mysql.com

• Click the Search button.

You can post CJK questions, or see previous answers, on MySQL's “Character Sets, Collation, Uni-
code” forum: http://forums.mysql.com/list.php?103. MySQL plans to add native-language forums on ht-
tp://forums.mysql.com/ very soon.

Character Set Support

634

http://forums.mysql.com/list.php?103
http://forums.mysql.com/
http://forums.mysql.com/

Chapter 11. Data Types
MySQL supports a number of data types in several categories: numeric types, date and time types, and
string (character) types. This chapter first gives an overview of these data types, and then provides a
more detailed description of the properties of the types in each category, and a summary of the data type
storage requirements. The initial overview is intentionally brief. The more detailed descriptions later in
the chapter should be consulted for additional information about particular data types, such as the allow-
able formats in which you can specify values.

MySQL also supports extensions for handing spatial data. Chapter 16, Spatial Extensions, provides in-
formation about these data types.

Several of the data type descriptions use these conventions:

• M indicates the maximum display width for integer types. For floating-point and fixed-point types, M
is the total number of digits. For string types, M is the maximum length. The maximum allowable
value of M depends on the data type.

• D applies to floating-point and fixed-point types and indicates the number of digits following the
decimal point. The maximum possible value is 30, but should be no greater than M–2.

• Square brackets (‘[’ and ‘]’) indicate optional parts of type definitions.

11.1. Data Type Overview

11.1.1. Overview of Numeric Types
A summary of the numeric data types follows. For additional information, see Section 11.2, “Numeric
Types”. Storage requirements are given in Section 11.5, “Data Type Storage Requirements”.

M indicates the maximum display width. The maximum legal display width is 255. Display width is un-
related to the range of values a type can contain, as described in Section 11.2, “Numeric Types”.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute
to the column.

SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT UNIQUE.

SERIAL DEFAULT VALUE in the definition of an integer column is an alias for NOT NULL
AUTO_INCREMENT UNIQUE.

Warning: When you use subtraction between integer values where one is of type UNSIGNED, the result
is unsigned unless the NO_UNSIGNED_SUBTRACTION SQL mode is enabled. See Section 12.8, “Cast
Functions and Operators”.

• BIT[(M)]

A bit-field type. M indicates the number of bits per value, from 1 to 64. The default is 1 if M is omit-
ted.

This data type was added in MySQL 5.0.3 for MyISAM, and extended in 5.0.5 to MEMORY, InnoDB,
and BDB. Before 5.0.3, BIT is a synonym for TINYINT(1).

• TINYINT[(M)] [UNSIGNED] [ZEROFILL]

635

A very small integer. The signed range is -128 to 127. The unsigned range is 0 to 255.

• BOOL, BOOLEAN

These types are synonyms for TINYINT(1). A value of zero is considered false. Non-zero values
are considered true:

mysql> SELECT IF(0, 'true', 'false');
+------------------------+
| IF(0, 'true', 'false') |
+------------------------+
| false |
+------------------------+

mysql> SELECT IF(1, 'true', 'false');
+------------------------+
| IF(1, 'true', 'false') |
+------------------------+
| true |
+------------------------+

mysql> SELECT IF(2, 'true', 'false');
+------------------------+
| IF(2, 'true', 'false') |
+------------------------+
| true |
+------------------------+

However, the values TRUE and FALSE are merely aliases for 1 and 0, respectively, as shown here:

mysql> SELECT IF(0 = FALSE, 'true', 'false');
+--------------------------------+
| IF(0 = FALSE, 'true', 'false') |
+--------------------------------+
| true |
+--------------------------------+

mysql> SELECT IF(1 = TRUE, 'true', 'false');
+-------------------------------+
| IF(1 = TRUE, 'true', 'false') |
+-------------------------------+
| true |
+-------------------------------+

mysql> SELECT IF(2 = TRUE, 'true', 'false');
+-------------------------------+
| IF(2 = TRUE, 'true', 'false') |
+-------------------------------+
| false |
+-------------------------------+

mysql> SELECT IF(2 = FALSE, 'true', 'false');
+--------------------------------+
| IF(2 = FALSE, 'true', 'false') |
+--------------------------------+
| false |
+--------------------------------+

The last two statements display the results shown because 2 is equal to neither 1 nor 0.

We intend to implement full boolean type handling, in accordance with standard SQL, in a future
MySQL release.

• SMALLINT[(M)] [UNSIGNED] [ZEROFILL]

A small integer. The signed range is -32768 to 32767. The unsigned range is 0 to 65535.

• MEDIUMINT[(M)] [UNSIGNED] [ZEROFILL]

Data Types

636

A medium-sized integer. The signed range is -8388608 to 8388607. The unsigned range is 0 to
16777215.

• INT[(M)] [UNSIGNED] [ZEROFILL]

A normal-size integer. The signed range is -2147483648 to 2147483647. The unsigned range is
0 to 4294967295.

• INTEGER[(M)] [UNSIGNED] [ZEROFILL]

This type is a synonym for INT.

• BIGINT[(M)] [UNSIGNED] [ZEROFILL]

A large integer. The signed range is -9223372036854775808 to 9223372036854775807.
The unsigned range is 0 to 18446744073709551615.

Some things you should be aware of with respect to BIGINT columns:

• All arithmetic is done using signed BIGINT or DOUBLE values, so you should not use unsigned
big integers larger than 9223372036854775807 (63 bits) except with bit functions! If you do
that, some of the last digits in the result may be wrong because of rounding errors when convert-
ing a BIGINT value to a DOUBLE.

MySQL can handle BIGINT in the following cases:

• When using integers to store large unsigned values in a BIGINT column.

• In MIN(col_name) or MAX(col_name), where col_name refers to a BIGINT
column.

• When using operators (+, -, *, and so on) where both operands are integers.

• You can always store an exact integer value in a BIGINT column by storing it using a string. In
this case, MySQL performs a string-to-number conversion that involves no intermediate double-
precision representation.

• The -, +, and * operators use BIGINT arithmetic when both operands are integer values. This
means that if you multiply two big integers (or results from functions that return integers), you
may get unexpected results when the result is larger than 9223372036854775807.

• FLOAT[(M,D)] [UNSIGNED] [ZEROFILL]

A small (single-precision) floating-point number. Allowable values are -3.402823466E+38 to -
1.175494351E-38, 0, and 1.175494351E-38 to 3.402823466E+38. These are the theor-
etical limits, based on the IEEE standard. The actual range might be slightly smaller depending on
your hardware or operating system.

M is the total number of decimal digits and D is the number of digits following the decimal point. If M
and D are omitted, values are stored to the limits allowed by the hardware. A single-precision float-
ing-point number is accurate to approximately 7 decimal places.

UNSIGNED, if specified, disallows negative values.

Using FLOAT might give you some unexpected problems because all calculations in MySQL are
done with double precision. See Section A.5.7, “Solving Problems with No Matching Rows”.

• DOUBLE[(M,D)] [UNSIGNED] [ZEROFILL]

Data Types

637

A normal-size (double-precision) floating-point number. Allowable values are -
1.7976931348623157E+308 to -2.2250738585072014E-308, 0, and
2.2250738585072014E-308 to 1.7976931348623157E+308. These are the theoretical
limits, based on the IEEE standard. The actual range might be slightly smaller depending on your
hardware or operating system.

M is the total number of decimal digits and D is the number of digits following the decimal point. If M
and D are omitted, values are stored to the limits allowed by the hardware. A double-precision float-
ing-point number is accurate to approximately 15 decimal places.

UNSIGNED, if specified, disallows negative values.

• DOUBLE PRECISION[(M,D)] [UNSIGNED] [ZEROFILL], REAL[(M,D)]
[UNSIGNED] [ZEROFILL]

These types are synonyms for DOUBLE. Exception: If the REAL_AS_FLOAT SQL mode is enabled,
REAL is a synonym for FLOAT rather than DOUBLE.

• FLOAT(p) [UNSIGNED] [ZEROFILL]

A floating-point number. p represents the precision in bits, but MySQL uses this value only to de-
termine whether to use FLOAT or DOUBLE for the resulting data type. If p is from 0 to 24, the data
type becomes FLOAT with no M or D values. If p is from 25 to 53, the data type becomes DOUBLE
with no M or D values. The range of the resulting column is the same as for the single-precision
FLOAT or double-precision DOUBLE data types described earlier in this section.

FLOAT(p) syntax is provided for ODBC compatibility.

• DECIMAL[(M[,D])] [UNSIGNED] [ZEROFILL]

For MySQL 5.0.3 and above:

A packed “exact” fixed-point number. M is the total number of decimal digits (the precision) and D is
the number of digits after the decimal point (the scale). The decimal point and (for negative num-
bers) the ‘-’ sign are not counted in M. If D is 0, values have no decimal point or fractional part. The
maximum number of digits (M) for DECIMAL is 65 (64 from 5.0.3 to 5.0.5). The maximum number
of supported decimals (D) is 30. If D is omitted, the default is 0. If M is omitted, the default is 10.

UNSIGNED, if specified, disallows negative values.

All basic calculations (+, -, *, /) with DECIMAL columns are done with a precision of 65 di-
gits.

Before MySQL 5.0.3:

An unpacked fixed-point number. Behaves like a CHAR column; “unpacked” means the number is
stored as a string, using one character for each digit of the value. M is the total number of digits and D
is the number of digits after the decimal point. The decimal point and (for negative numbers) the ‘-’
sign are not counted in M, although space for them is reserved. If D is 0, values have no decimal point
or fractional part. The maximum range of DECIMAL values is the same as for DOUBLE, but the actu-
al range for a given DECIMAL column may be constrained by the choice of M and D. If D is omitted,
the default is 0. If M is omitted, the default is 10.

UNSIGNED, if specified, disallows negative values.

The behavior used by the server for DECIMAL columns in a table depends on the version of MySQL
used to create the table. If your server is from MySQL 5.0.3 or higher, but you have DECIMAL
columns in tables that were created before 5.0.3, the old behavior still applies to those columns. To

Data Types

638

convert the tables to the newer DECIMAL format, dump them with mysqldump and reload them.

• DEC[(M[,D])] [UNSIGNED] [ZEROFILL], NUMERIC[(M[,D])] [UNSIGNED]
[ZEROFILL], FIXED[(M[,D])] [UNSIGNED] [ZEROFILL]

These types are synonyms for DECIMAL. The FIXED synonym is available for compatibility with
other database systems.

11.1.2. Overview of Date and Time Types
A summary of the temporal data types follows. For additional information, see Section 11.3, “Date and
Time Types”. Storage requirements are given in Section 11.5, “Data Type Storage Requirements”.

For the DATETIME and DATE range descriptions, “supported” means that although earlier values might
work, there is no guarantee.

The SUM() and AVG() aggregate functions do not work with temporal values. (They convert the values
to numbers, which loses the part after the first non-numeric character.) To work around this problem,
you can convert to numeric units, perform the aggregate operation, and convert back to a temporal
value. Examples:

SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col))) FROM tbl_name;
SELECT FROM_DAYS(SUM(TO_DAYS(date_col))) FROM tbl_name;

• DATE

A date. The supported range is '1000-01-01' to '9999-12-31'. MySQL displays DATE val-
ues in 'YYYY-MM-DD' format, but allows you to assign values to DATE columns using either
strings or numbers.

• DATETIME

A date and time combination. The supported range is '1000-01-01 00:00:00' to
'9999-12-31 23:59:59'. MySQL displays DATETIME values in 'YYYY-MM-DD
HH:MM:SS' format, but allows you to assign values to DATETIME columns using either strings or
numbers.

• TIMESTAMP

A timestamp. The range is '1970-01-01 00:00:00' to partway through the year 2037.

A TIMESTAMP column is useful for recording the date and time of an INSERT or UPDATE opera-
tion. By default, the first TIMESTAMP column in a table is automatically set to the date and time of
the most recent operation if you do not assign it a value yourself. You can also set any TIMESTAMP
column to the current date and time by assigning it a NULL value. Variations on automatic initializa-
tion and update properties are described in Section 11.3.1.1, “TIMESTAMP Properties as of MySQL
4.1”.

A TIMESTAMP value is returned as a string in the format 'YYYY-MM-DD HH:MM:SS' with a dis-
play width fixed at 19 characters. To obtain the value as a number, you should add +0 to the
timestamp column.

Note: The TIMESTAMP format that was used prior to MySQL 4.1 is not supported in MySQL 5.0;
see MySQL 3.23, 4.0, 4.1 Reference Manual for information regarding the old format.

• TIME

Data Types

639

A time. The range is '-838:59:59' to '838:59:59'. MySQL displays TIME values in
'HH:MM:SS' format, but allows you to assign values to TIME columns using either strings or
numbers.

• YEAR[(2|4)]

A year in two-digit or four-digit format. The default is four-digit format. In four-digit format, the al-
lowable values are 1901 to 2155, and 0000. In two-digit format, the allowable values are 70 to
69, representing years from 1970 to 2069. MySQL displays YEAR values in YYYY format, but al-
lows you to assign values to YEAR columns using either strings or numbers.

11.1.3. Overview of String Types
A summary of the string data types follows. For additional information, see Section 11.4, “String
Types”. Storage requirements are given in Section 11.5, “Data Type Storage Requirements”.

In some cases, MySQL may change a string column to a type different from that given in a CREATE
TABLE or ALTER TABLE statement. See Section 13.1.5.1, “Silent Column Specification Changes”.

In MySQL 4.1 and up, string data types include some features that you may not have encountered in
working with versions of MySQL prior to 4.1:

• MySQL interprets length specifications in character column definitions in character units. (Before
MySQL 4.1, column lengths were interpreted in bytes.) This applies to CHAR, VARCHAR, and the
TEXT types.

• Column definitions for many string data types can include attributes that specify the character set or
collation of the column. These attributes apply to the CHAR, VARCHAR, the TEXT types, ENUM, and
SET data types:

• The CHARACTER SET attribute specifies the character set, and the COLLATE attribute specifies
a collation for the the character set. For example:

CREATE TABLE t
(

c1 VARCHAR(20) CHARACTER SET utf8,
c2 TEXT CHARACTER SET latin1 COLLATE latin1_general_cs

);

This table definition creates a column named c1 that has a character set of utf8 with the de-
fault collation for that character set, and a column named c2 that has a character set of latin1
and a case-sensitive collation.

CHARSET is a synonym for CHARACTER SET.

• The ASCII attribute is shorthand for CHARACTER SET latin1.

• The UNICODE attribute is shorthand for CHARACTER SET ucs2.

• The BINARY attribute is shorthand for specifying the binary collation of the column character
set. In this case, sorting and comparison are based on numeric character values. (Before MySQL
4.1, BINARY caused a column to store binary strings and sorting and comparison were based on
numeric byte values. This is the same as using character values for single-byte character sets, but
not for multi-byte character sets.)

• Character column sorting and comparison are based on the character set assigned to the column.

Data Types

640

(Before MySQL 4.1, sorting and comparison were based on the collation of the server character set.)
For the CHAR, VARCHAR, TEXT, ENUM, and SET data types, you can declare a column with a bin-
ary collation or the BINARY attribute to cause sorting and comparison to use the underlying charac-
ter code values rather than a lexical ordering.

Chapter 10, Character Set Support, provides additional information about use of character sets in
MySQL.

• [NATIONAL] CHAR(M) [CHARACTER SET charset_name] [COLLATE colla-
tion_name]

A fixed-length string that is always right-padded with spaces to the specified length when stored. M
represents the column length. The range of M is 0 to 255 characters.

Note: Trailing spaces are removed when CHAR values are retrieved.

Before MySQL 5.0.3, a CHAR column with a length specification greater than 255 is converted to
the smallest TEXT type that can hold values of the given length. For example, CHAR(500) is con-
verted to TEXT, and CHAR(200000) is converted to MEDIUMTEXT. This is a compatibility fea-
ture. However, this conversion causes the column to become a variable-length column, and also af-
fects trailing-space removal.

In MySQL 5.0.3 and later, if you attempt to set the length of a CHAR greater than 255, the CREATE
TABLE or ALTER TABLE statement in which this is done fails with an error:

mysql> CREATE TABLE c1 (col1 INT, col2 CHAR(500));
ERROR 1074 (42000): Column length too big for column 'col' (max = 255);
use BLOB or TEXT instead
mysql> SHOW CREATE TABLE c1;
ERROR 1146 (42S02): Table 'test.c1' doesn't exist

CHAR is shorthand for CHARACTER. NATIONAL CHAR (or its equivalent short form, NCHAR) is
the standard SQL way to define that a CHAR column should use some predefined character set.
MySQL 4.1 and up uses utf8 as this predefined character set. Section 10.3.6, “National Character
Set”.

The CHAR BYTE data type is an alias for the BINARY data type. This is a compatibility feature.

MySQL allows you to create a column of type CHAR(0). This is useful primarily when you have to
be compliant with old applications that depend on the existence of a column but that do not actually
use its value. CHAR(0) is also quite nice when you need a column that can take only two values: A
column that is defined as CHAR(0) NULL occupies only one bit and can take only the values NULL
and '' (the empty string).

• CHAR [CHARACTER SET charset_name] [COLLATE collation_name]

This type is a synonym for CHAR(1).

• [NATIONAL] VARCHAR(M) [CHARACTER SET charset_name] [COLLATE colla-
tion_name]

A variable-length string. M represents the maximum column length. In MySQL 5.0, the range of M is
0 to 255 before MySQL 5.0.3, and 0 to 65,535 in MySQL 5.0.3 and later. (The actual maximum
length of a VARCHAR in MySQL 5.0 is determined by the maximum row size and the character set
you use. The maximum effective length starting with MySQL 5.0.3 is 65,532 bytes.)

Note: Before 5.0.3, trailing spaces were removed when VARCHAR values were stored, which differs
from the standard SQL specification.

Data Types

641

Prior to MySQL 5.0.3, a VARCHAR column with a length specification greater than 255 was conver-
ted to the smallest TEXT type that could hold values of the given length. For example,
VARCHAR(500) was converted to TEXT, and VARCHAR(200000) was converted to MEDIUM-
TEXT. This was a compatibility feature. However, this conversion affected trailing-space removal.

VARCHAR is shorthand for CHARACTER VARYING.

VARCHAR values are stored using as many characters as are needed, plus one byte to record the
length (two bytes for columns that are declared with a length longer than 255).

• BINARY(M)

The BINARY type is similar to the CHAR type, but stores binary byte strings rather than non-binary
character strings.

• VARBINARY(M)

The VARBINARY type is similar to the VARCHAR type, but stores binary byte strings rather than
non-binary character strings.

• TINYBLOB

A BLOB column with a maximum length of 255 (28 – 1) bytes.

• TINYTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 255 (28 – 1) characters.

• BLOB[(M)]

A BLOB column with a maximum length of 65,535 (216 – 1) bytes.

An optional length M can be given for this type. If this is done, MySQL creates the column as the
smallest BLOB type large enough to hold values M bytes long.

• TEXT[(M)] [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 65,535 (216 – 1) characters.

An optional length M can be given for this type. If this is done, MySQL creates the column as the
smallest TEXT type large enough to hold values M characters long.

• MEDIUMBLOB

A BLOB column with a maximum length of 16,777,215 (224 – 1) bytes.

• MEDIUMTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 16,777,215 (224 – 1) characters.

• LONGBLOB

A BLOB column with a maximum length of 4,294,967,295 or 4GB (232 – 1) bytes. The maximum ef-
fective (permitted) length of LONGBLOB columns depends on the configured maximum packet size
in the client/server protocol and available memory.

• LONGTEXT [CHARACTER SET charset_name] [COLLATE collation_name]

A TEXT column with a maximum length of 4,294,967,295 or 4GB (232 – 1) characters. The maxim-

Data Types

642

um effective (permitted) length of LONGTEXT columns depends on the configured maximum packet
size in the client/server protocol and available memory.

• ENUM('value1','value2',...) [CHARACTER SET charset_name] [COLLATE
collation_name]

An enumeration. A string object that can have only one value, chosen from the list of values
'value1', 'value2', ..., NULL or the special '' error value. An ENUM column can have a
maximum of 65,535 distinct values. ENUM values are represented internally as integers.

• SET('value1','value2',...) [CHARACTER SET charset_name] [COLLATE
collation_name]

A set. A string object that can have zero or more values, each of which must be chosen from the list
of values 'value1', 'value2', ... A SET column can have a maximum of 64 members. SET
values are represented internally as integers.

11.1.4. Data Type Default Values
The DEFAULT value clause in a data type specification indicates a default value for a column. With
one exception, the default value must be a constant; it cannot be a function or an expression. This
means, for example, that you cannot set the default for a date column to be the value of a function such
as NOW() or CURRENT_DATE. The exception is that you can specify CURRENT_TIMESTAMP as the
default for a TIMESTAMP column. See Section 11.3.1.1, “TIMESTAMP Properties as of MySQL 4.1”.

Prior to MySQL 5.0.2, if a column definition includes no explicit DEFAULT value, MySQL determines
the default value as follows:

If the column can take NULL as a value, the column is defined with an explicit DEFAULT NULL clause.

If the column cannot take NULL as the value, MySQL defines the column with an explicit DEFAULT
clause, using the implicit default value for the column data type. Implicit defaults are defined as follows:

• For numeric types other than integer types declared with the AUTO_INCREMENT attribute, the de-
fault is 0. For an AUTO_INCREMENT column, the default value is the next value in the sequence.

• For date and time types other than TIMESTAMP, the default is the appropriate “zero” value for the
type. For the first TIMESTAMP column in a table, the default value is the current date and time. See
Section 11.3, “Date and Time Types”.

• For string types other than ENUM, the default value is the empty string. For ENUM, the default is the
first enumeration value.

BLOB and TEXT columns cannot be assigned a default value.

As of MySQL 5.0.2, if a column definition includes no explicit DEFAULT value, MySQL determines
the default value as follows:

If the column can take NULL as a value, the column is defined with an explicit DEFAULT NULL clause.
This is the same as before 5.0.2.

If the column cannot take NULL as the value, MySQL defines the column with no explicit DEFAULT
clause. For data entry, if an INSERT or REPLACE statement includes no value for the column, MySQL
handles the column according to the SQL mode in effect at the time:

Data Types

643

• If strict SQL mode is not enabled, MySQL sets the column to the implicit default value for the
column data type.

• If strict mode is enabled, an error occurs for transactional tables and the statement is rolled back. For
non-transactional tables, an error occurs, but if this happens for the second or subsequent row of a
multiple-row statement, the preceding rows will have been inserted.

Suppose that a table t is defined as follows:

CREATE TABLE t (i INT NOT NULL);

In this case, i has no explicit default, so in strict mode each of the following statements produce an error
and no row is inserted. When not using strict mode, only the third statement produces an error; the im-
plicit default is inserted for the first two statements, but the third fails because DEFAULT(i) cannot
produce a value:

INSERT INTO t VALUES();
INSERT INTO t VALUES(DEFAULT);
INSERT INTO t VALUES(DEFAULT(i));

See Section 5.2.6, “SQL Modes”.

For a given table, you can use the SHOW CREATE TABLE statement to see which columns have an ex-
plicit DEFAULT clause.

11.2. Numeric Types
MySQL supports all of the standard SQL numeric data types. These types include the exact numeric
data types (INTEGER, SMALLINT, DECIMAL, and NUMERIC), as well as the approximate numeric
data types (FLOAT, REAL, and DOUBLE PRECISION). The keyword INT is a synonym for
INTEGER, and the keyword DEC is a synonym for DECIMAL. For numeric type storage requirements,
see Section 11.5, “Data Type Storage Requirements”.

As of MySQL 5.0.3, a BIT data type is available for storing bit-field values. (Before 5.0.3, MySQL in-
terprets BIT as TINYINT(1).) In MySQL 5.0.3, BIT is supported only for MyISAM. MySQL 5.0.5
extends BIT support to MEMORY, InnoDB, and BDB.

As an extension to the SQL standard, MySQL also supports the integer types TINYINT, MEDIUMINT,
and BIGINT. The following table shows the required storage and range for each of the integer types.

Type Bytes Minimum Value Maximum Value

(Signed/Unsigned) (Signed/Unsigned)

TINYINT 1 -128 127

0 255

SMALLINT 2 -32768 32767

0 65535

MEDIUMINT 3 -8388608 8388607

0 16777215

INT 4 -2147483648 2147483647

0 4294967295

BIGINT 8 -9223372036854775808 9223372036854775807

0 18446744073709551615

Data Types

644

Another extension is supported by MySQL for optionally specifying the display width of an integer
value in parentheses following the base keyword for the type (for example, INT(4)). This optional dis-
play width specification is used to left-pad the display of values having a width less than the width spe-
cified for the column.

The display width does not constrain the range of values that can be stored in the column, nor the num-
ber of digits that are displayed for values having a width exceeding that specified for the column.

When used in conjunction with the optional extension attribute ZEROFILL, the default padding of
spaces is replaced with zeros. For example, for a column declared as INT(5) ZEROFILL, a value of 4
is retrieved as 00004. Note that if you store larger values than the display width in an integer column,
you may experience problems when MySQL generates temporary tables for some complicated joins, be-
cause in these cases MySQL assumes that the data fits into the original column width.

Note: The ZEROFILL attribute is stripped when a column is involved in expressions or UNION queries.

All integer types can have an optional (non-standard) attribute UNSIGNED. Unsigned values can be used
when you want to allow only non-negative numbers in a column and you need a larger upper numeric
range for the column. For example, if an INT column is UNSIGNED, the size of the column's range is
the same but its endpoints shift from -2147483648 and 2147483647 up to 0 and 4294967295.

Floating-point and fixed-point types also can be UNSIGNED. As with integer types, this attribute pre-
vents negative values from being stored in the column. However, unlike the integer types, the upper
range of column values remains the same.

If you specify ZEROFILL for a numeric column, MySQL automatically adds the UNSIGNED attribute
to the column.

For floating-point data types, MySQL uses four bytes for single-precision values and eight bytes for
double-precision values.

The FLOAT and DOUBLE data types are used to represent approximate numeric data values. For FLOAT
the SQL standard allows an optional specification of the precision (but not the range of the exponent) in
bits following the keyword FLOAT in parentheses. MySQL also supports this optional precision spe-
cification, but the precision value is used only to determine storage size. A precision from 0 to 23 results
in a four-byte single-precision FLOAT column. A precision from 24 to 53 results in an eight-byte
double-precision DOUBLE column.

MySQL allows a non-standard syntax: FLOAT(M,D) or REAL(M,D) or DOUBLE
PRECISION(M,D). Here, “(M,D)” means than values are displayed with up to M digits in total, of
which D digits may be after the decimal point. For example, a column defined as FLOAT(7,4) will
look like -999.9999 when displayed. MySQL performs rounding when storing values, so if you insert
999.00009 into a FLOAT(7,4) column, the approximate result is 999.0001.

MySQL treats DOUBLE as a synonym for DOUBLE PRECISION (a non-standard extension). MySQL
also treats REAL as a synonym for DOUBLE PRECISION (a non-standard variation), unless the
REAL_AS_FLOAT SQL mode is enabled.

For maximum portability, code requiring storage of approximate numeric data values should use FLOAT
or DOUBLE PRECISION with no specification of precision or number of digits.

The DECIMAL and NUMERIC data types are used to store exact numeric data values. In MySQL, NU-
MERIC is implemented as DECIMAL. These types are used to store values for which it is important to
preserve exact precision, for example with monetary data.

As of MySQL 5.0.3, DECIMAL and NUMERIC values are stored in binary format. Previously, they were
stored as strings, with one character used for each digit of the value, the decimal point (if the scale is
greater than 0), and the ‘-’ sign (for negative numbers). See Chapter 21, Precision Math.

Data Types

645

When declaring a DECIMAL or NUMERIC column, the precision and scale can be (and usually is) spe-
cified; for example:

salary DECIMAL(5,2)

In this example, 5 is the precision and 2 is the scale. The precision represents the number of significant
digits that are stored for values, and the scale represents the number of digits that can be stored follow-
ing the decimal point. If the scale is 0, DECIMAL and NUMERIC values contain no decimal point or
fractional part.

Standard SQL requires that the salary column be able to store any value with five digits and two
decimals. In this case, therefore, the range of values that can be stored in the salary column is from -
999.99 to 999.99. MySQL enforces this limit as of MySQL 5.0.3. Before 5.0.3, on the positive end
of the range, the column could actually store numbers up to 9999.99. (For positive numbers, MySQL
5.0.2 and earlier used the byte reserved for the sign to extend the upper end of the range.)

In standard SQL, the syntax DECIMAL(M) is equivalent to DECIMAL(M,0). Similarly, the syntax
DECIMAL is equivalent to DECIMAL(M,0), where the implementation is allowed to decide the value
of M. MySQL supports both of these variant forms of the DECIMAL and NUMERIC syntax. The default
value of M is 10.

The maximum number of digits for DECIMAL or NUMERIC is 65 (64 from MySQL 5.0.3 to 5.0.5). Be-
fore MySQL 5.0.3, the maximum range of DECIMAL and NUMERIC values is the same as for DOUBLE,
but the actual range for a given DECIMAL or NUMERIC column can be constrained by the precision or
scale for a given column. When such a column is assigned a value with more digits following the decim-
al point than are allowed by the specified scale, the value is converted to that scale. (The precise behavi-
or is operating system-specific, but generally the effect is truncation to the allowable number of digits.)

As of MySQL 5.0.3, the BIT data type is used to store bit-field values. A type of BIT(M) allows for
storage of M-bit values. M can range from 1 to 64.

To specify bit values, b'value' notation can be used. value is a binary value written using zeros and
ones. For example, b'111' and b'10000000' represent 7 and 128, respectively. See Section 9.1.5,
“Bit-Field Values”.

If you assign a value to a BIT(M) column that is less than M bits long, the value is padded on the left
with zeros. For example, assigning a value of b'101' to a BIT(6) column is, in effect, the same as
assigning b'000101'.

When asked to store a value in a numeric column that is outside the data type's allowable range,
MySQL's behavior depends on the SQL mode in effect at the time. For example, if no restrictive modes
are enabled, MySQL clips the value to the appropriate endpoint of the range and stores the resulting
value instead. However, if the mode is set to TRADITIONAL, MySQL rejects a value that is out of
range with an error, and the insert fails, in accordance with the SQL standard.

In non-strict mode, when an out-of-range value is assigned to an integer column, MySQL stores the
value representing the corresponding endpoint of the column data type range. If you store 256 into a
TINYINT or TINYINT UNSIGNED column, MySQL stores 127 or 255, respectively. When a floating-
point or fixed-point column is assigned a value that exceeds the range implied by the specified (or de-
fault) precision and scale, MySQL stores the value representing the corresponding endpoint of that
range.

Conversions that occur due to clipping when MySQL is not operating in strict mode are reported as
warnings for ALTER TABLE, LOAD DATA INFILE, UPDATE, and multiple-row INSERT state-
ments. When MySQL is operating in strict mode, these statements fail, and some or all of the values will
not be inserted or changed, depending on whether the table is a transactional table and other factors. For
details, see Section 5.2.6, “SQL Modes”.

Data Types

646

11.3. Date and Time Types
The date and time types for representing temporal values are DATETIME, DATE, TIMESTAMP, TIME,
and YEAR. Each temporal type has a range of legal values, as well as a “zero” value that may be used
when you specify an illegal value that MySQL cannot represent. The TIMESTAMP type has special
automatic updating behavior, described later on. For temporary type storage requirements, see Sec-
tion 11.5, “Data Type Storage Requirements”.

Starting from MySQL 5.0.2, MySQL gives warnings or errors if you try to insert an illegal date. By set-
ting the SQL mode to the appropriate value, you can specify more exactly what kind of dates you want
MySQL to support. (See Section 5.2.6, “SQL Modes”.) You can get MySQL to accept certain dates,
such as '1999-11-31', by using the ALLOW_INVALID_DATES SQL mode. (Before 5.0.2, this
mode was the default behavior for MySQL.) This is useful when you want to store a “possibly wrong”
value which the user has specified (for example, in a web form) in the database for future processing.
Under this mode, MySQL verifies only that the month is in the range from 0 to 12 and that the day is in
the range from 0 to 31. These ranges are defined to include zero because MySQL allows you to store
dates where the day or month and day are zero in a DATE or DATETIME column. This is extremely use-
ful for applications that need to store a birthdate for which you do not know the exact date. In this case,
you simply store the date as '1999-00-00' or '1999-01-00'. If you store dates such as these,
you should not expect to get correct results for functions such as DATE_SUB() or DATE_ADD that re-
quire complete dates. (If you do not want to allow zero in dates, you can use the NO_ZERO_IN_DATE
SQL mode).

MySQL also allows you to store '0000-00-00' as a “dummy date” (if you are not using the
NO_ZERO_DATE SQL mode). This is in some cases is more convenient (and uses less space in data and
index) than using NULL values.

Here are some general considerations to keep in mind when working with date and time types:

• MySQL retrieves values for a given date or time type in a standard output format, but it attempts to
interpret a variety of formats for input values that you supply (for example, when you specify a value
to be assigned to or compared to a date or time type). Only the formats described in the following
sections are supported. It is expected that you supply legal values. Unpredictable results may occur if
you use values in other formats.

• Dates containing two-digit year values are ambiguous because the century is unknown. MySQL in-
terprets two-digit year values using the following rules:

• Year values in the range 70-99 are converted to 1970-1999.

• Year values in the range 00-69 are converted to 2000-2069.

• Although MySQL tries to interpret values in several formats, dates always must be given in year-
month-day order (for example, '98-09-04'), rather than in the month-day-year or day-
month-year orders commonly used elsewhere (for example, '09-04-98', '04-09-98').

• MySQL automatically converts a date or time type value to a number if the value is used in a numer-
ic context and vice versa.

• By default, when MySQL encounters a value for a date or time type that is out of range or otherwise
illegal for the type (as described at the beginning of this section), it converts the value to the “zero”
value for that type. The exception is that out-of-range TIME values are clipped to the appropriate en-
dpoint of the TIME range.

The following table shows the format of the “zero” value for each type. Note that the use of these
values produces warnings if the NO_ZERO_DATE SQL mode is enabled.

Data Type “Zero” Value

Data Types

647

DATETIME '0000-00-00 00:00:00'

DATE '0000-00-00'

TIMESTAMP '0000-00-00 00:00:00'

TIME '00:00:00'

YEAR 0000

• The “zero” values are special, but you can store or refer to them explicitly using the values shown in
the table. You can also do this using the values '0' or 0, which are easier to write.

• “Zero” date or time values used through MyODBC are converted automatically to NULL in MyOD-
BC 2.50.12 and above, because ODBC cannot handle such values.

11.3.1. The DATETIME, DATE, and TIMESTAMP Types
The DATETIME, DATE, and TIMESTAMP types are related. This section describes their characteristics,
how they are similar, and how they differ.

The DATETIME type is used when you need values that contain both date and time information.
MySQL retrieves and displays DATETIME values in 'YYYY-MM-DD HH:MM:SS' format. The sup-
ported range is '1000-01-01 00:00:00' to '9999-12-31 23:59:59'.

The DATE type is used when you need only a date value, without a time part. MySQL retrieves and dis-
plays DATE values in 'YYYY-MM-DD' format. The supported range is '1000-01-01' to
'9999-12-31'.

For the DATETIME and DATE range descriptions, “supported” means that although earlier values might
work, there is no guarantee.

The TIMESTAMP data type has varying properties, depending on the MySQL version and the SQL
mode the server is running in. These properties are described later in this section.

You can specify DATETIME, DATE, and TIMESTAMP values using any of a common set of formats:

• As a string in either 'YYYY-MM-DD HH:MM:SS' or 'YY-MM-DD HH:MM:SS' format. A
“relaxed” syntax is allowed: Any punctuation character may be used as the delimiter between date
parts or time parts. For example, '98-12-31 11:30:45', '98.12.31 11+30+45',
'98/12/31 11*30*45', and '98@12@31 11^30^45' are equivalent.

• As a string in either 'YYYY-MM-DD' or 'YY-MM-DD' format. A “relaxed” syntax is allowed here,
too. For example, '98-12-31', '98.12.31', '98/12/31', and '98@12@31' are equival-
ent.

• As a string with no delimiters in either 'YYYYMMDDHHMMSS' or 'YYMMDDHHMMSS' format,
provided that the string makes sense as a date. For example, '19970523091528' and
'970523091528' are interpreted as '1997-05-23 09:15:28', but '971122129015' is
illegal (it has a nonsensical minute part) and becomes '0000-00-00 00:00:00'.

• As a string with no delimiters in either 'YYYYMMDD' or 'YYMMDD' format, provided that the
string makes sense as a date. For example, '19970523' and '970523' are interpreted as
'1997-05-23', but '971332' is illegal (it has nonsensical month and day parts) and becomes
'0000-00-00'.

Data Types

648

• As a number in either YYYYMMDDHHMMSS or YYMMDDHHMMSS format, provided that the number
makes sense as a date. For example, 19830905132800 and 830905132800 are interpreted as
'1983-09-05 13:28:00'.

• As a number in either YYYYMMDD or YYMMDD format, provided that the number makes sense as a
date. For example, 19830905 and 830905 are interpreted as '1983-09-05'.

• As the result of a function that returns a value that is acceptable in a DATETIME, DATE, or
TIMESTAMP context, such as NOW() or CURRENT_DATE.

Illegal DATETIME, DATE, or TIMESTAMP values are converted to the “zero” value of the appropriate
type ('0000-00-00 00:00:00' or '0000-00-00').

For values specified as strings that include date part delimiters, it is not necessary to specify two digits
for month or day values that are less than 10. '1979-6-9' is the same as '1979-06-09'. Simil-
arly, for values specified as strings that include time part delimiters, it is not necessary to specify two di-
gits for hour, minute, or second values that are less than 10. '1979-10-30 1:2:3' is the same as
'1979-10-30 01:02:03'.

Values specified as numbers should be 6, 8, 12, or 14 digits long. If a number is 8 or 14 digits long, it is
assumed to be in YYYYMMDD or YYYYMMDDHHMMSS format and that the year is given by the first 4 di-
gits. If the number is 6 or 12 digits long, it is assumed to be in YYMMDD or YYMMDDHHMMSS format and
that the year is given by the first 2 digits. Numbers that are not one of these lengths are interpreted as
though padded with leading zeros to the closest length.

Values specified as non-delimited strings are interpreted using their length as given. If the string is 8 or
14 characters long, the year is assumed to be given by the first 4 characters. Otherwise, the year is as-
sumed to be given by the first 2 characters. The string is interpreted from left to right to find year,
month, day, hour, minute, and second values, for as many parts as are present in the string. This means
you should not use strings that have fewer than 6 characters. For example, if you specify '9903',
thinking that represents March, 1999, MySQL inserts a “zero” date value into your table. This occurs
because the year and month values are 99 and 03, but the day part is completely missing, so the value is
not a legal date. However, you can explicitly specify a value of zero to represent missing month or day
parts. For example, you can use '990300' to insert the value '1999-03-00'.

You can to some extent assign values of one date type to an object of a different date type. However,
there may be some alteration of the value or loss of information:

• If you assign a DATE value to a DATETIME or TIMESTAMP object, the time part of the resulting
value is set to '00:00:00' because the DATE value contains no time information.

• If you assign a DATETIME or TIMESTAMP value to a DATE object, the time part of the resulting
value is deleted because the DATE type stores no time information.

• Remember that although DATETIME, DATE, and TIMESTAMP values all can be specified using the
same set of formats, the types do not all have the same range of values. For example, TIMESTAMP
values cannot be earlier than 1970 or later than 2037. This means that a date such as
'1968-01-01', while legal as a DATETIME or DATE value, is not valid as a TIMESTAMP value
and is converted to 0.

Be aware of certain pitfalls when specifying date values:

• The relaxed format allowed for values specified as strings can be deceiving. For example, a value
such as '10:11:12' might look like a time value because of the ‘:’ delimiter, but if used in a date
context is interpreted as the year '2010-11-12'. The value '10:45:15' is converted to

Data Types

649

'0000-00-00' because '45' is not a legal month.

• As of 5.0.2, the server requires that month and day values be legal, and not merely in the range 1 to
12 and 1 to 31, respectively. With strict mode disabled, invalid dates such as '2004-04-31' are
converted to '0000-00-00' and a warning is generated. With strict mode enabled, invalid dates
generate an error. To allow such dates, enable ALLOW_INVALID_DATES. See Section 5.2.6, “SQL
Modes”, for more information.

Before MySQL 5.0.2, the MySQL server performs only basic checking on the validity of a date: The
ranges for year, month, and day are 1000 to 9999, 00 to 12, and 00 to 31, respectively. Any date con-
taining parts not within these ranges is subject to conversion to '0000-00-00'. Please note that
this still allows you to store invalid dates such as '2002-04-31'. To ensure that a date is valid,
you should perform a check in your application.

• Dates containing two-digit year values are ambiguous because the century is unknown. MySQL in-
terprets two-digit year values using the following rules:

• Year values in the range 00-69 are converted to 2000-2069.

• Year values in the range 70-99 are converted to 1970-1999.

11.3.1.1. TIMESTAMP Properties as of MySQL 4.1

Note: In older versions of MySQL (prior to 4.1), the properties of the TIMESTAMP data type differed
significantly in many ways from what is described in this section. If you need to convert older
TIMESTAMP data to work with MySQL 5.0, be sure to see the MySQL 3.23, 4.0, 4.1 Reference Manual
for details.

TIMESTAMP columns are displayed in the same format as DATETIME columns. In other words, the dis-
play width is fixed at 19 characters, and the format is YYYY-MM-DD HH:MM:SS.

The MySQL server can be also be run with the MAXDB SQL mode enabled. When the server runs with
this mode enabled, TIMESTAMP is identical with DATETIME. That is, if this mode is enabled at the
time that a table is created, TIMESTAMP columns are created as DATETIME columns. As a result, such
columns use DATETIME display format, have the same range of values, and there is no automatic ini-
tialization or updating to the current date and time.

To enable MAXDB mode, set the server SQL mode to MAXDB at startup using the -
-sql-mode=MAXDB server option or by setting the global sql_mode variable at runtime:

mysql> SET GLOBAL sql_mode=MAXDB;

A client can cause the server to run in MAXDB mode for its own connection as follows:

mysql> SET SESSION sql_mode=MAXDB;

Note that the information in the following discussion applies to TIMESTAMP columns only for tables
not created with MAXDB mode enabled, because such columns are created as DATETIME columns.

As of MySQL 5.0.2, MySQL does not accept timestamp values that include a zero in the day or month
column or values that are not a valid date. The sole exception to this rule is the special value
'0000-00-00 00:00:00'.

You have considerable flexibility in determining when automatic TIMESTAMP initialization and updat-
ing occur and which column should have those behaviors:

Data Types

650

• For one TIMESTAMP column in a table, you can assign the current timestamp as the default value
and the auto-update value. It is possible to have the current timestamp be the default value for initial-
izing the column, for the auto-update value, or both. It is not possible to have the current timestamp
be the default value for one column and the auto-update value for another column.

• You can specify which TIMESTAMP column to automatically initialize or update to the current date
and time. This need not be the first TIMESTAMP column.

The following rules govern initialization and updating of TIMESTAMP columns:

• If a DEFAULT value is specified for the first TIMESTAMP column in a table, it is not ignored. The
default can be CURRENT_TIMESTAMP or a constant date and time value.

• DEFAULT NULL is the same as DEFAULT CURRENT_TIMESTAMP for the first TIMESTAMP
column. For any other TIMESTAMP column, DEFAULT NULL is treated as DEFAULT 0.

• Any single TIMESTAMP column in a table can be used as the one that is initialized to the current
timestamp or updated automatically.

• In a CREATE TABLE statement, the first TIMESTAMP column can be declared in any of the follow-
ing ways:

• With both DEFAULT CURRENT_TIMESTAMP and ON UPDATE CURRENT_TIMESTAMP
clauses, the column has the current timestamp for its default value, and is automatically updated.

• With neither DEFAULT nor ON UPDATE clauses, it is the same as DEFAULT CUR-
RENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP.

• With a DEFAULT CURRENT_TIMESTAMP clause and no ON UPDATE clause, the column has
the current timestamp for its default value but is not automatically updated.

• With no DEFAULT clause and with an ON UPDATE CURRENT_TIMESTAMP clause, the
column has a default of 0 and is automatically updated.

• With a constant DEFAULT value, the column has the given default. If the column has an ON
UPDATE CURRENT_TIMESTAMP clause, it is automatically updated, otherwise not.

In other words, you can use the current timestamp for both the initial value and the auto-update
value, or either one, or neither. (For example, you can specify ON UPDATE to enable auto-update
without also having the column auto-initialized.)

• CURRENT_TIMESTAMP or any of its synonyms (CURRENT_TIMESTAMP(), NOW(), LOCAL-
TIME, LOCALTIME(), LOCALTIMESTAMP, or LOCALTIMESTAMP()) can be used in the DE-
FAULT and ON UPDATE clauses. They all mean “the current timestamp.” (UTC_TIMESTAMP is
not allowed. Its range of values does not align with those of the TIMESTAMP column anyway unless
the current time zone is UTC.)

• The order of the DEFAULT and ON UPDATE attributes does not matter. If both DEFAULT and ON
UPDATE are specified for a TIMESTAMP column, either can precede the other. For example, these
statements are equivalent:

CREATE TABLE t (ts TIMESTAMP);
CREATE TABLE t (ts TIMESTAMP DEFAULT CURRENT_TIMESTAMP

ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t (ts TIMESTAMP ON UPDATE CURRENT_TIMESTAMP

DEFAULT CURRENT_TIMESTAMP);

• To specify automatic default or updating for a TIMESTAMP column other than the first one, you

Data Types

651

must suppress the automatic initialization and update behaviors for the first TIMESTAMP column by
explicitly assigning it a constant DEFAULT value (for example, DEFAULT 0 or DEFAULT
'2003-01-01 00:00:00'). Then, for the other TIMESTAMP column, the rules are the same as
for the first TIMESTAMP column, except that if you omit both of the DEFAULT and ON UPDATE
clauses, no automatic initialization or updating occurs.

Example. These statements are equivalent:

CREATE TABLE t (
ts1 TIMESTAMP DEFAULT 0,
ts2 TIMESTAMP DEFAULT CURRENT_TIMESTAMP

ON UPDATE CURRENT_TIMESTAMP);
CREATE TABLE t (

ts1 TIMESTAMP DEFAULT 0,
ts2 TIMESTAMP ON UPDATE CURRENT_TIMESTAMP

DEFAULT CURRENT_TIMESTAMP);

You can set the current time zone on a per-connection basis, as described in Section 5.11.8, “MySQL
Server Time Zone Support”. TIMESTAMP values are stored in UTC, being converted from the current
time zone for storage, and converted back to the current time zone upon retrieval. As long as the time
zone setting remains constant, you get back the same value you store. If you store a TIMESTAMP value,
and then change the time zone and retrieve the value, the retrieved value is different than the value you
stored. This occurs because the same time zone was not used for conversion in both directions. The cur-
rent time zone is available as the value of the time_zone system variable.

You can include the NULL attribute in the definition of a TIMESTAMP column to allow the column to
contain NULL values. For example:

CREATE TABLE t
(

ts1 TIMESTAMP NULL DEFAULT NULL,
ts2 TIMESTAMP NULL DEFAULT 0,
ts3 TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP

);

If the NULL attribute is not specified, setting the column to NULL sets it to the current timestamp. Note
that a TIMESTAMP column which allows NULL values will not take on the current timestamp except
under one of the following conditions:

• Its default value is defined as CURRENT_TIMESTAMP

• NOW() or CURRENT_TIMESTAMP is inserted into the column

In other words, a TIMESTAMP column defined as NULL will auto-initialize only if it is created using a
definition such as the following:

CREATE TABLE t (ts TIMESTAMP NULL DEFAULT CURRENT_TIMESTAMP);

Otherwise — that is, if the TIMESTAMP column is defined to allow NULL values but not using DE-
FAULT TIMESTAMP, as shown here

CREATE TABLE t1 (ts TIMESTAMP NULL DEFAULT NULL);
CREATE TABLE t2 (ts TIMESTAMP NULL DEFAULT '0000-00-00 00:00:00');

then you must explicitly insert a value corresponding to the current date and time. For example:

INSERT INTO t1 VALUES (NOW());
INSERT INTO t2 VALUES (CURRENT_TIMESTAMP);

Data Types

652

11.3.2. The TIME Type
MySQL retrieves and displays TIME values in 'HH:MM:SS' format (or 'HHH:MM:SS' format for
large hours values). TIME values may range from '-838:59:59' to '838:59:59'. The hours part
may be so large because the TIME type can be used not only to represent a time of day (which must be
less than 24 hours), but also elapsed time or a time interval between two events (which may be much
greater than 24 hours, or even negative).

You can specify TIME values in a variety of formats:

• As a string in 'D HH:MM:SS.fraction' format. You can also use one of the following
“relaxed” syntaxes: 'HH:MM:SS.fraction', 'HH:MM:SS', 'HH:MM', 'D HH:MM:SS', 'D
HH:MM', 'D HH', or 'SS'. Here D represents days and can have a value from 0 to 34. Note that
MySQL does not store the fraction part.

• As a string with no delimiters in 'HHMMSS' format, provided that it makes sense as a time. For ex-
ample, '101112' is understood as '10:11:12', but '109712' is illegal (it has a nonsensical
minute part) and becomes '00:00:00'.

• As a number in HHMMSS format, provided that it makes sense as a time. For example, 101112 is
understood as '10:11:12'. The following alternative formats are also understood: SS, MMSS,
HHMMSS, HHMMSS.fraction. Note that MySQL does not store the fraction part.

• As the result of a function that returns a value that is acceptable in a TIME context, such as CUR-
RENT_TIME.

For TIME values specified as strings that include a time part delimiter, it is not necessary to specify two
digits for hours, minutes, or seconds values that are less than 10. '8:3:2' is the same as
'08:03:02'.

Be careful about assigning abbreviated values to a TIME column. Without colons, MySQL interprets
values using the assumption that the two rightmost digits represent seconds. (MySQL interprets TIME
values as elapsed time rather than as time of day.) For example, you might think of '1112' and 1112
as meaning '11:12:00' (12 minutes after 11 o'clock), but MySQL interprets them as '00:11:12'
(11 minutes, 12 seconds). Similarly, '12' and 12 are interpreted as '00:00:12'. TIME values with
colons, by contrast, are always treated as time of the day. That is, '11:12' mean '11:12:00', not
'00:11:12'.

By default, values that lie outside the TIME range but are otherwise legal are clipped to the closest end-
point of the range. For example, '-850:00:00' and '850:00:00' are converted to '-
838:59:59' and '838:59:59'. Illegal TIME values are converted to '00:00:00'. Note that be-
cause '00:00:00' is itself a legal TIME value, there is no way to tell, from a value of '00:00:00'
stored in a table, whether the original value was specified as '00:00:00' or whether it was illegal.

For more restrictive treatment of invalid TIME values, enable strict SQL mode to cause errors to occur.
See Section 5.2.6, “SQL Modes”.

11.3.3. The YEAR Type
The YEAR type is a one-byte type used for representing years.

MySQL retrieves and displays YEAR values in YYYY format. The range is 1901 to 2155.

You can specify YEAR values in a variety of formats:

• As a four-digit string in the range '1901' to '2155'.

Data Types

653

• As a four-digit number in the range 1901 to 2155.

• As a two-digit string in the range '00' to '99'. Values in the ranges '00' to '69' and '70' to
'99' are converted to YEAR values in the ranges 2000 to 2069 and 1970 to 1999.

• As a two-digit number in the range 1 to 99. Values in the ranges 1 to 69 and 70 to 99 are conver-
ted to YEAR values in the ranges 2001 to 2069 and 1970 to 1999. Note that the range for two-di-
git numbers is slightly different from the range for two-digit strings, because you cannot specify zero
directly as a number and have it be interpreted as 2000. You must specify it as a string '0' or
'00' or it is interpreted as 0000.

• As the result of a function that returns a value that is acceptable in a YEAR context, such as NOW().

Illegal YEAR values are converted to 0000.

11.3.4. Y2K Issues and Date Types
As discussed in Section 1.4.5, “Year 2000 Compliance”, MySQL itself is year 2000 (Y2K) safe.
However, particular input values presented to MySQL may not be Y2K safe. Any value containing a
two-digit year is ambiguous, because the century is unknown. Such values must be interpreted into four-
digit form because MySQL stores years internally using four digits.

For DATETIME, DATE, TIMESTAMP, and YEAR types, MySQL interprets dates with ambiguous year
values using the following rules:

• Year values in the range 00-69 are converted to 2000-2069.

• Year values in the range 70-99 are converted to 1970-1999.

Remember that these rules are only heuristics that provide reasonable guesses as to what your data val-
ues mean. If the rules used by MySQL do not produce the correct values, you should provide unambigu-
ous input containing four-digit year values.

ORDER BY properly sorts YEAR values that have two-digit years.

Some functions like MIN() and MAX() convert a YEAR to a number. This means that a value with a
two-digit year does not work properly with these functions. The fix in this case is to convert the
TIMESTAMP or YEAR to four-digit year format.

11.4. String Types
The string types are CHAR, VARCHAR, BINARY, VARBINARY, BLOB, TEXT, ENUM, and SET. This
section describes how these types work and how to use them in your queries. For string type storage re-
quirements, see Section 11.5, “Data Type Storage Requirements”.

11.4.1. The CHAR and VARCHAR Types
The CHAR and VARCHAR types are similar, but differ in the way they are stored and retrieved. As of
MySQL 5.0.3, they also differ in maximum length and in whether trailing spaces are retained.

The CHAR and VARCHAR types are declared with a length that indicates the maximum number of char-
acters you want to store. For example, CHAR(30) can hold up to 30 characters.

The length of a CHAR column is fixed to the length that you declare when you create the table. The

Data Types

654

length can be any value from 0 to 255. When CHAR values are stored, they are right-padded with spaces
to the specified length. When CHAR values are retrieved, trailing spaces are removed.

Values in VARCHAR columns are variable-length strings. The length can be specified as a value from 0
to 255 before MySQL 5.0.3, and 0 to 65,535 in 5.0.3 and later versions. (The maximum effective length
of a VARCHAR in MySQL 5.0.3 and later is determined by the maximum row size and the character set
used. The maximum length overall is 65,532 bytes.)

In contrast to CHAR, VARCHAR values are stored using only as many characters as are needed, plus one
byte to record the length (two bytes for columns that are declared with a length longer than 255).

VARCHAR values are not padded when they are stored. Handling of trailing spaces is version-dependent.
As of MySQL 5.0.3, trailing spaces are retained when values are stored and retrieved, in conformance
with standard SQL. Before MySQL 5.0.3, trailing spaces are removed from values when they are stored
into a VARCHAR column; this means that the spaces also are absent from retrieved values.

If you assign a value to a CHAR or VARCHAR column that exceeds the column's maximum length, the
value is truncated to fit. If the truncated characters are not spaces, a warning is generated. For truncation
of non-space characters, you can cause an error to occur (rather than a warning) and suppress insertion
of the value by using strict SQL mode. See Section 5.2.6, “SQL Modes”.

Before MySQL 5.0.3, if you need a data type for which trailing spaces are not removed, consider using a
BLOB or TEXT type. Also, if you want to store binary values such as results from an encryption or com-
pression function that might contain arbitrary byte values, use a BLOB column rather than a CHAR or
VARCHAR column, to avoid potential problems with trailing space removal that would change data val-
ues.

The following table illustrates the differences between CHAR and VARCHAR by showing the result of
storing various string values into CHAR(4) and VARCHAR(4) columns:

Value CHAR(4) Storage Required VARCHAR(4) Storage Required

'' ' ' 4 bytes '' 1 byte

'ab' 'ab ' 4 bytes 'ab' 3 bytes

'abcd' 'abcd' 4 bytes 'abcd' 5 bytes

'abcdefgh' 'abcd' 4 bytes 'abcd' 5 bytes

Note that the values shown as stored in the last row of the table apply only when not using strict mode; if
MySQL is running in strict mode, values that exceed the column length are not stored, and an error res-
ults.

If a given value is stored into the CHAR(4) and VARCHAR(4) columns, the values retrieved from the
columns are not always the same because trailing spaces are removed from CHAR columns upon retriev-
al. The following example illustrates this difference:

mysql> CREATE TABLE vc (v VARCHAR(4), c CHAR(4));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO vc VALUES ('ab ', 'ab ');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT CONCAT('(', v, ')'), CONCAT('(', c, ')') FROM vc;
+---------------------+---------------------+
| CONCAT('(', v, ')') | CONCAT('(', c, ')') |
+---------------------+---------------------+
| (ab) | (ab) |
+---------------------+---------------------+
1 row in set (0.06 sec)

Values in CHAR and VARCHAR columns are sorted and compared according to the character set colla-

Data Types

655

tion assigned to the column.

Note that all MySQL collations are of type PADSPACE. This means that all CHAR and VARCHAR values
in MySQL are compared without regard to any trailing spaces. For example:

mysql> CREATE TABLE names (myname CHAR(10), yourname VARCHAR(10));
Query OK, 0 rows affected (0.09 sec)

mysql> INSERT INTO names VALUES ('Monty ', 'Monty ');
Query OK, 1 row affected (0.00 sec)

mysql> SELECT myname = 'Monty ', yourname = 'Monty ' FROM names;
+--------------------+----------------------+
| myname = 'Monty ' | yourname = 'Monty ' |
+--------------------+----------------------+
| 1 | 1 |
+--------------------+----------------------+
1 row in set (0.00 sec)

Note that this is true for all MySQL versions, and it makes no difference whether your version trims
trailing spaces from VARCHAR values before storing them. Nor does the server SQL mode make any dif-
ference in this regard.

For those cases where trailing pad characters are stripped or comparisons ignore them, if a column has
an index that requires unique values, inserting into the column values that differ only in number of trail-
ing pad characters will result in a duplicate-key error. For example, if a table contains 'a', an attempt
to store 'a ' causes a duplicate-key error.

11.4.2. The BINARY and VARBINARY Types
The BINARY and VARBINARY types are similar to CHAR and VARCHAR, except that they contain bin-
ary strings rather than non-binary strings. That is, they contain byte strings rather than character strings.
This means that they have no character set, and sorting and comparison are based on the numeric values
of the bytes in the values.

The allowable maximum length is the same for BINARY and VARBINARY as it is for CHAR and
VARCHAR, except that the length for BINARY and VARBINARY is a length in bytes rather than in char-
acters.

The BINARY and VARBINARY data types are distinct from the CHAR BINARY and VARCHAR BIN-
ARY data types. For the latter types, the BINARY attribute does not cause the column to be treated as a
binary string column. Instead, it causes the binary collation for the column character set to be used, and
the column itself contains non-binary character strings rather than binary byte strings. For example,
CHAR(5) BINARY is treated as CHAR(5) CHARACTER SET latin1 COLLATE
latin1_bin, assuming that the default character set is latin1. This differs from BINARY(5),
which stores 5-bytes binary strings that have no character set or collation.

When BINARY values are stored, they are right-padded with the pad value to the specified length. The
pad value and how it is handled is version specific:

• As of MySQL 5.0.15, the pad value is 0x00 (the zero byte). Values are right-padded with 0x00 on
insert, and no trailing bytes are removed on select. All bytes are significant in comparisons, includ-
ing ORDER BY and DISTINCT operations. 0x00 bytes and spaces are different in comparisons,
with 0x00 < space.

Example: For a BINARY(3) column, 'a ' becomes 'a \0' when inserted. 'a\0' becomes
'a\0\0' when inserted. Both inserted values remain unchanged when selected.

• Before MySQL 5.0.15, the pad value is space. Values are right-padded with space on insert, and
trailing spaces are removed on select. Trailing spaces are ignored in comparisons, including ORDER
BY and DISTINCT operations. 0x00 bytes and spaces are different in comparisons, with 0x00 <

Data Types

656

space.

Example: For a BINARY(3) column, 'a ' becomes 'a ' when inserted and 'a' when selec-
ted. 'a\0' becomes 'a\0 ' when inserted and 'a\0' when selected.

For VARBINARY, there is no padding on insert and no bytes are stripped on select. All bytes are signi-
ficant in comparisons, including ORDER BY and DISTINCT operations. 0x00 bytes and spaces are
different in comparisons, with 0x00 < space. (Exceptions: Before MySQL 5.0.3, trailing spaces are re-
moved when values are stored. Before MySQL 5.0.15, trailing 0x00 bytes are removed for ORDER BY
operations.)

Note: The InnoDB storage engine continues to preserve trailing spaces in BINARY and VARBINARY
column values through MySQL 5.0.18. Beginning with MySQL 5.0.19, InnoDB uses trailing space
characters in making comparisons as do other MySQL storage engines.

For those cases where trailing pad bytes are stripped or comparisons ignore them, if a column has an in-
dex that requires unique values, inserting into the column values that differ only in number of trailing
pad bytes will result in a duplicate-key error. For example, if a table contains 'a', an attempt to store
'a\0' causes a duplicate-key error.

You should consider the preceding padding and stripping characteristics carefully if you plan to use the
BINARY data type for storing binary data and you require that the value retrieved be exactly the same as
the value stored. The following example illustrates how 0x00-padding of BINARY values affects
column value comparisons:

mysql> CREATE TABLE t (c BINARY(3));
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t SET c = 'a';
Query OK, 1 row affected (0.01 sec)

mysql> SELECT HEX(c), c = 'a', c = 'a\0\0' from t;
+--------+---------+-------------+
| HEX(c) | c = 'a' | c = 'a\0\0' |
+--------+---------+-------------+
| 610000 | 0 | 1 |
+--------+---------+-------------+
1 row in set (0.09 sec)

If the value retrieved must be the same as the value specified for storage with no padding, it might be
preferable to use VARBINARY or one of the BLOB data types instead.

11.4.3. The BLOB and TEXT Types
A BLOB is a binary large object that can hold a variable amount of data. The four BLOB types are
TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB. These differ only in the maximum length of the
values they can hold. The four TEXT types are TINYTEXT, TEXT, MEDIUMTEXT, and LONGTEXT.
These correspond to the four BLOB types and have the same maximum lengths and storage require-
ments. See Section 11.5, “Data Type Storage Requirements”. No lettercase conversion for TEXT or
BLOB columns takes place during storage or retrieval.

BLOB columns are treated as binary strings (byte strings). TEXT columns are treated as non-binary
strings (character strings). BLOB columns have no character set, and sorting and comparison are based
on the numeric values of the bytes in column values. TEXT columns have a character set, and values are
sorted and compared based on the collation of the character set.

If a TEXT column is indexed, index entry comparisons are space-padded at the end. This means that, if
the index requires unique values, duplicate-key errors will occur for values that differ only in the num-
ber of trailing spaces. For example, if a table contains 'a', an attempt to store 'a ' causes a duplicate-
key error. This is not true for BLOB columns.

Data Types

657

When not running in strict mode, if you assign a value to a BLOB or TEXT column that exceeds the data
type's maximum length, the value is truncated to fit. If the truncated characters are not spaces, a warning
is generated. You can cause an error to occur and the value to be rejected rather than to be truncated
with a warning by using strict SQL mode. See Section 5.2.6, “SQL Modes”.

In most respects, you can regard a BLOB column as a VARBINARY column that can be as large as you
like. Similarly, you can regard a TEXT column as a VARCHAR column. BLOB and TEXT differ from
VARBINARY and VARCHAR in the following ways:

• There is no trailing-space removal for BLOB and TEXT columns when values are stored or retrieved.
Before MySQL 5.0.3, this differs from VARBINARY and VARCHAR, for which trailing spaces are re-
moved when values are stored.

Note that TEXT is on comparison space extended to fit the compared object, exactly like CHAR and
VARCHAR.

• For indexes on BLOB and TEXT columns, you must specify an index prefix length. For CHAR and
VARCHAR, a prefix length is optional. See Section 7.4.3, “Column Indexes”.

• BLOB and TEXT columns cannot have DEFAULT values.

LONG and LONG VARCHAR map to the MEDIUMTEXT data type. This is a compatibility feature. If you
use the BINARY attribute with a TEXT data type, the column is assigned the binary collation of the
column character set.

MySQL Connector/ODBC defines BLOB values as LONGVARBINARY and TEXT values as
LONGVARCHAR.

Because BLOB and TEXT values can be extremely long, you might encounter some constraints in using
them:

• Only the first max_sort_length bytes of the column are used when sorting. The default value of
max_sort_length is 1024. This value can be changed using the --max_sort_length=N op-
tion when starting the mysqld server. See Section 5.2.3, “System Variables”.

You can make more bytes significant in sorting or grouping by increasing the value of
max_sort_length at runtime. Any client can change the value of its session
max_sort_length variable:

mysql> SET max_sort_length = 2000;
mysql> SELECT id, comment FROM t

-> ORDER BY comment;

Another way to use GROUP BY or ORDER BY on a BLOB or TEXT column containing long values
when you want more than max_sort_length bytes to be significant is to convert the column
value into a fixed-length object. The standard way to do this is with the SUBSTRING() function.
For example, the following statement causes 2000 bytes of the comment column to be taken into
account for sorting:

mysql> SELECT id, SUBSTRING(comment,1,2000) FROM t
-> ORDER BY SUBSTRING(comment,1,2000);

• The maximum size of a BLOB or TEXT object is determined by its type, but the largest value you ac-
tually can transmit between the client and server is determined by the amount of available memory
and the size of the communications buffers. You can change the message buffer size by changing the
value of the max_allowed_packet variable, but you must do so for both the server and your cli-

Data Types

658

ent program. For example, both mysql and mysqldump allow you to change the client-side
max_allowed_packet value. See Section 7.5.2, “Tuning Server Parameters”, Section 8.6,
“mysql — The MySQL Command-Line Tool”, and Section 8.12, “mysqldump — A Database
Backup Program”. You may also want to compare the packet sizes and the size of the data objects
you are storing with the storage requirements, see Section 11.5, “Data Type Storage Requirements”

Each BLOB or TEXT value is represented internally by a separately allocated object. This is in contrast
to all other data types, for which storage is allocated once per column when the table is opened.

In some cases, it may be desirable to store binary data such as media files in BLOB or TEXT columns.
You may find MySQL's string handling functions useful for working with such data. See Section 12.3,
“String Functions”. For security and other reasons, it is usually preferable to do so using application
code rather than allowing application users the FILE privilege. You can discuss specifics for various
languages and platforms in the MySQL Forums (http://forums.mysql.com/).

11.4.4. The ENUM Type
An ENUM is a string object with a value chosen from a list of allowed values that are enumerated expli-
citly in the column specification at table creation time.

An enumeration value must be a quoted string literal; it may not be an expression, even one that evalu-
ates to a string value. This means that you also may not employ a user variable as an enumeration value.

For example, you can create a table with an ENUM column like this:

CREATE TABLE sizes (
name ENUM('small', 'medium', 'large')

);

However, this version of the previous CREATE TABLE statement does not work:

CREATE TABLE sizes (
c1 ENUM('small', CONCAT('med','ium'), 'large')

);

You also may not employ a user variable as an enumeration value. This pair of statements do not work:

SET @mysize = 'medium';

CREATE TABLE sizes (
name ENUM('small', @mysize, 'large')

);

If you wish to use a number as an enumeration value, you must enclose it in quotes.

The value may also be the empty string ('') or NULL under certain circumstances:

• If you insert an invalid value into an ENUM (that is, a string not present in the list of allowed values),
the empty string is inserted instead as a special error value. This string can be distinguished from a
“normal” empty string by the fact that this string has the numerical value 0. More about this later.

If strict SQL mode is enabled, attempts to insert invalid ENUM values result in an error.

• If an ENUM column is declared to allow NULL, the NULL value is a legal value for the column, and
the default value is NULL. If an ENUM column is declared NOT NULL, its default value is the first
element of the list of allowed values.

Data Types

659

http://forums.mysql.com/

Each enumeration value has an index:

• Values from the list of allowable elements in the column specification are numbered beginning with
1.

• The index value of the empty string error value is 0. This means that you can use the following SE-
LECT statement to find rows into which invalid ENUM values were assigned:

mysql> SELECT * FROM tbl_name WHERE enum_col=0;

• The index of the NULL value is NULL.

• The term “index” here refers only to position within the list of enumeration values. It has nothing to
do with table indexes.

For example, a column specified as ENUM('one', 'two', 'three') can have any of the values
shown here. The index of each value is also shown:

Value Index

NULL NULL

'' 0

'one' 1

'two' 2

'three' 3

An enumeration can have a maximum of 65,535 elements.

Trailing spaces are automatically deleted from ENUM member values in the table definition when a table
is created.

When retrieved, values stored into an ENUM column are displayed using the lettercase that was used in
the column definition. Note that ENUM columns can be assigned a character set and collation. For binary
or case-sensitive collations, lettercase is taken into account when assigning values to the column.

If you retrieve an ENUM value in a numeric context, the column value's index is returned. For example,
you can retrieve numeric values from an ENUM column like this:

mysql> SELECT enum_col+0 FROM tbl_name;

If you store a number into an ENUM column, the number is treated as the index into the possible values,
and the value stored is the enumeration member with that index. (However, this does not work with
LOAD DATA, which treats all input as strings.) If the numeric value is quoted, it is still interpreted as an
index if there is no matching string in the list of enumeration values. For these reasons, it is not advis-
able to define an ENUM column with enumeration values that look like numbers, because this can easily
become confusing. For example, the following column has enumeration members with string values of
'0', '1', and '2', but numeric index values of 1, 2, and 3:

numbers ENUM('0','1','2')

If you store 2, it is interpreted as an index value, and becomes '1' (the value with index 2). If you store
'2', it matches an enumeration value, so it is stored as '2'. If you store '3', it does not match any
enumeration value, so it is treated as an index and becomes '2' (the value with index 3).

Data Types

660

mysql> INSERT INTO t (numbers) VALUES(2),('2'),('3');
mysql> SELECT * FROM t;
+---------+
| numbers |
+---------+
| 1 |
| 2 |
| 2 |
+---------+

ENUM values are sorted according to the order in which the enumeration members were listed in the
column specification. (In other words, ENUM values are sorted according to their index numbers.) For
example, 'a' sorts before 'b' for ENUM('a', 'b'), but 'b' sorts before 'a' for ENUM('b',
'a'). The empty string sorts before non-empty strings, and NULL values sort before all other enumera-
tion values. To prevent unexpected results, specify the ENUM list in alphabetical order. You can also use
GROUP BY CAST(col AS CHAR) or GROUP BY CONCAT(col) to make sure that the column is
sorted lexically rather than by index number.

If you want to determine all possible values for an ENUM column, use SHOW COLUMNS FROM
tbl_name LIKE enum_col and parse the ENUM definition in the Type column of the output.

11.4.5. The SET Type
A SET is a string object that can have zero or more values, each of which must be chosen from a list of
allowed values specified when the table is created. SET column values that consist of multiple set mem-
bers are specified with members separated by commas (‘,’). A consequence of this is that SET member
values should not themselves contain commas.

For example, a column specified as SET('one', 'two') NOT NULL can have any of these values:

''
'one'
'two'
'one,two'

A SET can have a maximum of 64 different members.

Trailing spaces are automatically deleted from SET member values in the table definition when a table
is created.

When retrieved, values stored in a SET column are displayed using the lettercase that was used in the
column definition. Note that SET columns can be assigned a character set and collation. For binary or
case-sensitive collations, lettercase is taken into account when assigning values to the column.

MySQL stores SET values numerically, with the low-order bit of the stored value corresponding to the
first set member. If you retrieve a SET value in a numeric context, the value retrieved has bits set corres-
ponding to the set members that make up the column value. For example, you can retrieve numeric val-
ues from a SET column like this:

mysql> SELECT set_col+0 FROM tbl_name;

If a number is stored into a SET column, the bits that are set in the binary representation of the number
determine the set members in the column value. For a column specified as
SET('a','b','c','d'), the members have the following decimal and binary values:

SET Member Decimal Value Binary Value

'a' 1 0001

'b' 2 0010

'c' 4 0100

Data Types

661

'd' 8 1000

If you assign a value of 9 to this column, that is 1001 in binary, so the first and fourth SET value mem-
bers 'a' and 'd' are selected and the resulting value is 'a,d'.

For a value containing more than one SET element, it does not matter what order the elements are listed
in when you insert the value. It also does not matter how many times a given element is listed in the
value. When the value is retrieved later, each element in the value appears once, with elements listed ac-
cording to the order in which they were specified at table creation time. For example, suppose that a
column is specified as SET('a','b','c','d'):

mysql> CREATE TABLE myset (col SET('a', 'b', 'c', 'd'));

If you insert the values 'a,d', 'd,a', 'a,d,d', 'a,d,a', and 'd,a,d':

mysql> INSERT INTO myset (col) VALUES
-> ('a,d'), ('d,a'), ('a,d,a'), ('a,d,d'), ('d,a,d');
Query OK, 5 rows affected (0.01 sec)
Records: 5 Duplicates: 0 Warnings: 0

Then all of these values appear as 'a,d' when retrieved:

mysql> SELECT col FROM myset;
+------+
| col |
+------+
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
+------+
5 rows in set (0.04 sec)

If you set a SET column to an unsupported value, the value is ignored and a warning is issued:

mysql> INSERT INTO myset (col) VALUES ('a,d,d,s');
Query OK, 1 row affected, 1 warning (0.03 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1265 | Data truncated for column 'col' at row 1 |
+---------+------+--+
1 row in set (0.04 sec)

mysql> SELECT col FROM myset;
+------+
| col |
+------+
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
| a,d |
+------+
6 rows in set (0.01 sec)

If strict SQL mode is enabled, attempts to insert invalid SET values result in an error.

SET values are sorted numerically. NULL values sort before non-NULL SET values.

Normally, you search for SET values using the FIND_IN_SET() function or the LIKE operator:

Data Types

662

mysql> SELECT * FROM tbl_name WHERE FIND_IN_SET('value',set_col)>0;
mysql> SELECT * FROM tbl_name WHERE set_col LIKE '%value%';

The first statement finds rows where set_col contains the value set member. The second is similar,
but not the same: It finds rows where set_col contains value anywhere, even as a substring of an-
other set member.

The following statements also are legal:

mysql> SELECT * FROM tbl_name WHERE set_col & 1;
mysql> SELECT * FROM tbl_name WHERE set_col = 'val1,val2';

The first of these statements looks for values containing the first set member. The second looks for an
exact match. Be careful with comparisons of the second type. Comparing set values to 'val1,val2'
returns different results than comparing values to 'val2,val1'. You should specify the values in the
same order they are listed in the column definition.

If you want to determine all possible values for a SET column, use SHOW COLUMNS FROM
tbl_name LIKE set_col and parse the SET definition in the Type column of the output.

11.5. Data Type Storage Requirements
The storage requirements for each of the data types supported by MySQL are listed here by category.

The maximum size of a row in a MyISAM table is 65,534 bytes. Each BLOB and TEXT column accounts
for only five to nine bytes toward this size.

Important: For tables using the NDBCluster storage engine, there is the factor of 4-byte alignment to
be taken into account when calculating storage requirements. This means that all NDB data storage is
done in multiples of 4 bytes. Thus, a column value that — in a table using a storage engine other than
NDB — would take 15 bytes for storage, requires 16 bytes in an NDB table. This requirement applies in
addition to any other considerations that are discussed in this section. For example, in NDBCluster
tables, the TINYINT, SMALLINT, MEDIUMINT, and INTEGER (INT) column types each require 4
bytes storage per record.

In addition, when calculating storage requirements for Cluster tables, you must remember that every ta-
ble using the NDBCluster storage engine requires a primary key; if no primary key is defined by the
user, then a “hidden” primary key will be created by NDB. This hidden primary key consumes 31-35
bytes per table record.

When calculating Cluster memory requirements, you may find useful the ndb_size.pl utility which
is available on MySQLForge [http://forge.mysql.com/]. This Perl script connects to a current MySQL
(non-Cluster) database and creates a report on how much space that database would require if it used the
NDBCluster storage engine.

Storage Requirements for Numeric Types

Data Type Storage Required

TINYINT 1 byte

SMALLINT 2 bytes

MEDIUMINT 3 bytes

INT, INTEGER 4 bytes

BIGINT 8 bytes

FLOAT(p) 4 bytes if 0 <= p <= 24, 8 bytes if 25 <= p <= 53

FLOAT 4 bytes

Data Types

663

http://forge.mysql.com/

DOUBLE [PRECISION], REAL 8 bytes

DECIMAL(M,D), NUMERIC(M,D) Varies; see following discussion

BIT(M) approximately (M+7)/8 bytes

The storage requirements for DECIMAL (and NUMERIC) are version-specific:

As of MySQL 5.0.3, values for DECIMAL columns are represented using a binary format that packs nine
decimal (base 10) digits into four bytes. Storage for the integer and fractional parts of each value are de-
termined separately. Each multiple of nine digits requires four bytes, and the “leftover” digits require
some fraction of four bytes. The storage required for excess digits is given by the following table:

Leftover Digits Number of Bytes

0 0

1 1

2 1

3 2

4 2

5 3

6 3

7 4

8 4

Before MySQL 5.0.3, DECIMAL columns are represented as strings and storage requirements are: M+2
bytes if D > 0, M+1 bytes if D = 0 (D+2, if M < D)

Storage Requirements for Date and Time Types

Data Type Storage Required

DATE 3 bytes

DATETIME 8 bytes

TIMESTAMP 4 bytes

TIME 3 bytes

YEAR 1 byte

Storage Requirements for String Types

Data Type Storage Required

CHAR(M) M bytes, 0 <= M <= 255

VARCHAR(M) Prior to MySQL 5.0.3: L + 1 bytes, where L <= M and 0 <=
M <= 255. MySQL 5.0.3 and later: L + 1 bytes, where L <=
M and 0 <= M <= 255 or L + 2 bytes, where L <= M and
256 <= M <= 65535 (see note below).

BINARY(M) M bytes, 0 <= M <= 255

VARBINARY(M) Prior to MySQL 5.0.3: L + 1 bytes, where L <= M and 0 <=
M <= 255. MySQL 5.0.3 and later: L + 1 bytes, where L <=
M and 0 <= M <= 255 or L + 2 bytes, where L <= M and

Data Types

664

256 <= M <= 65535 (see note below).

TINYBLOB, TINYTEXT L+1 byte, where L < 28

BLOB, TEXT L+2 bytes, where L < 216

MEDIUMBLOB, MEDIUMTEXT L+3 bytes, where L < 224

LONGBLOB, LONGTEXT L+4 bytes, where L < 232

ENUM('value1','value2',...) 1 or 2 bytes, depending on the number of enumeration values
(65,535 values maximum)

SET('value1','value2',...) 1, 2, 3, 4, or 8 bytes, depending on the number of set mem-
bers (64 members maximum)

For the CHAR, VARCHAR, and TEXT types, the values L and M in the preceding table should be inter-
preted as number of characters, and lengths for these types in column specifications indicate the number
of characters. For example, to store a TINYTEXT value requires L characters plus one byte.

VARCHAR, VARBINARY, and the BLOB and TEXT types are variable-length types. For each, the storage
requirements depend on these factors:

• The actual length of the column value

• The column's maximum possible length

• The character set used for the column

For example, a VARCHAR(10) column can hold a string with a maximum length of 10. Assuming that
the column uses the latin1 character set (one byte per character), the actual storage required is the
length of the string (L), plus one byte to record the length of the string. For the string 'abcd', L is 4
and the storage requirement is five bytes. If the same column was instead declared as VARCHAR(500),
the string 'abcd' requires 4 + 2 = 6 bytes. Two bytes rather than one are required for the prefix be-
cause the length of the column is greater than 255 characters.

To calculate the number of bytes used to store a particular CHAR, VARCHAR, or TEXT column value,
you must take into account the character set used for that column. In particular, when using the utf8
Unicode character set, you must keep in mind that not all utf8 characters use the same number of
bytes. For a breakdown of the storage used for different categories of utf8 characters, see Section 10.7,
“Unicode Support”.

Note: In MySQL 5.0.3 and later, the effective maximum length for a VARCHAR or VARBINARY column
is 65,532.

As of MySQL 5.0.3, the NDBCLUSTER engine supports only fixed-width columns. This means that a
VARCHAR column from a table in a MySQL Cluster will behave as follows:

• If the size of the column is fewer than 256 characters, the column requires one byte extra storage per
row.

• If the size of the column is 256 characters or more, the column requires two bytes extra storage per
row.

Note that the number of bytes required per character varies according to the character set used. For ex-
ample, if a VARCHAR(100) column in a Cluster table uses the utf8 character set, then each character
requires 3 bytes storage. This means that each record in such a column takes up 100 × 3 + 1 = 301 bytes

Data Types

665

for storage, regardless of the length of the string actually stored in any given record. For a
VARCHAR(1000) column in a table using the NDBCLUSTER storage engine with the utf8 character
set, each record will use 1000 × 3 + 2 = 3002 bytes storage; that is, the column is 1,000 characters wide,
each character requires 3 bytes storage, and each record has a 2-byte overhead because 1,000 > 256.

The BLOB and TEXT types require 1, 2, 3, or 4 bytes to record the length of the column value, depend-
ing on the maximum possible length of the type. See Section 11.4.3, “The BLOB and TEXT Types”.

TEXT and BLOB columns are implemented differently in the NDB Cluster storage engine, wherein each
row in a TEXT column is made up of two separate parts. One of these is of fixed size (256 bytes), and is
actually stored in the original table. The other consists of any data in excess of 256 bytes, which stored
in a hidden table. The rows in this second table are always 2,000 bytes long. This means that the size of
a TEXT column is 256 if size <= 256 (where size represents the size of the row); otherwise, the size
is 256 + size + (2000 – (size – 256) % 2000).

The size of an ENUM object is determined by the number of different enumeration values. One byte is
used for enumerations with up to 255 possible values. Two bytes are used for enumerations having
between 256 and 65,535 possible values. See Section 11.4.4, “The ENUM Type”.

The size of a SET object is determined by the number of different set members. If the set size is N, the
object occupies (N+7)/8 bytes, rounded up to 1, 2, 3, 4, or 8 bytes. A SET can have a maximum of 64
members. See Section 11.4.5, “The SET Type”.

11.6. Choosing the Right Type for a Column
For optimum storage, you should try to use the most precise type in all cases. For example, if an integer
column is used for values in the range from 1 to 99999, MEDIUMINT UNSIGNED is the best type. Of
the types that represent all the required values, this type uses the least amount of storage.

Tables created in MySQL 5.0.3 and above uses a new storage format for DECIMAL columns. All basic
calculation (+,-,*,/) with DECIMAL columns are done with precision of 65 decimal (base 10) digits.
See Section 11.1.1, “Overview of Numeric Types”.

Prior to MySQL 5.0.3, calculations on DECIMAL values are performed using double-precision opera-
tions. If accuracy is not too important or if speed is the highest priority, the DOUBLE type may be good
enough. For high precision, you can always convert to a fixed-point type stored in a BIGINT. This al-
lows you to do all calculations with 64-bit integers and then convert results back to floating-point values
as necessary.

11.7. Using Data Types from Other Database Engines
To facilitate the use of code written for SQL implementations from other vendors, MySQL maps data
types as shown in the following table. These mappings make it easier to import table definitions from
other database systems into MySQL:

Other Vendor Type MySQL Type

BOOL, TINYINT

BOOLEAN TINYINT

CHAR VARYING(M) VARCHAR(M)

DEC DECIMAL

FIXED DECIMAL

FLOAT4 FLOAT

FLOAT8 DOUBLE

INT1 TINYINT

Data Types

666

INT2 SMALLINT

INT3 MEDIUMINT

INT4 INT

INT8 BIGINT

LONG VARBINARY MEDIUMBLOB

LONG VARCHAR MEDIUMTEXT

LONG MEDIUMTEXT

MIDDLEINT MEDIUMINT

NUMERIC DECIMAL

Data type mapping occurs at table creation time, after which the original type specifications are dis-
carded. If you create a table with types used by other vendors and then issue a DESCRIBE tbl_name
statement, MySQL reports the table structure using the equivalent MySQL types. For example:

mysql> CREATE TABLE t (a BOOL, b FLOAT8, c LONG VARCHAR, d NUMERIC);
Query OK, 0 rows affected (0.00 sec)

mysql> DESCRIBE t;
+-------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------------+------+-----+---------+-------+
a	tinyint(1)	YES		NULL	
b	double	YES		NULL	
c	mediumtext	YES		NULL	
d	decimal(10,0)	YES		NULL	
+-------+---------------+------+-----+---------+-------+
4 rows in set (0.01 sec)

Data Types

667

Chapter 12. Functions and Operators
Expressions can be used at several points in SQL statements, such as in the ORDER BY or HAVING
clauses of SELECT statements, in the WHERE clause of a SELECT, DELETE, or UPDATE statement, or
in SET statements. Expressions can be written using literal values, column values, NULL, built-in func-
tions, stored functions, user-defined functions, and operators. This chapter describes the functions and
operators that are allowed for writing expressions in MySQL. Instructions for writing stored functions
and user-defined functions are given in Chapter 17, Stored Procedures and Functions, and Section 24.2,
“Adding New Functions to MySQL”.

An expression that contains NULL always produces a NULL value unless otherwise indicated in the doc-
umentation for a particular function or operator.

Note: By default, there must be no whitespace between a function name and the parenthesis following it.
This helps the MySQL parser distinguish between function calls and references to tables or columns that
happen to have the same name as a function. However, spaces around function arguments are permitted.

You can tell the MySQL server to accept spaces after function names by starting it with the -
-sql-mode=IGNORE_SPACE option. (See Section 5.2.6, “SQL Modes”.) Individual client programs
can request this behavior by using the CLIENT_IGNORE_SPACE option for
mysql_real_connect(). In either case, all function names become reserved words.

For the sake of brevity, most examples in this chapter display the output from the mysql program in ab-
breviated form. Rather than showing examples in this format:

mysql> SELECT MOD(29,9);
+-----------+
| mod(29,9) |
+-----------+
| 2 |
+-----------+
1 rows in set (0.00 sec)

This format is used instead:

mysql> SELECT MOD(29,9);
-> 2

12.1. Operators

12.1.1. Operator Precedence
Operator precedences are shown in the following list, from lowest precedence to the highest. Operators
that are shown together on a line have the same precedence.

:=
||, OR, XOR
&&, AND
NOT
BETWEEN, CASE, WHEN, THEN, ELSE
=, <=>, >=, >, <=, <, <>, !=, IS, LIKE, REGEXP, IN
|
&
<<, >>
-, +
*, /, DIV, %, MOD
^
- (unary minus), ~ (unary bit inversion)
!
BINARY, COLLATE

668

The precedence shown for NOT is as of MySQL 5.0.2. For earlier versions, or from 5.0.2 on if the
HIGH_NOT_PRECEDENCE SQL mode is enabled, the precedence of NOT is the same as that of the !
operator. See Section 5.2.6, “SQL Modes”.

The precedence of operators determines the order of evaluation of terms in an expression. To override
this order and group terms explicitly, use parentheses. For example:

mysql> SELECT 1+2*3;
-> 7

mysql> SELECT (1+2)*3;
-> 9

12.1.2. Type Conversion in Expression Evaluation
When an operator is used with operands of different types, type conversion occurs to make the operands
compatible. Some conversions occur implicitly. For example, MySQL automatically converts numbers
to strings as necessary, and vice versa.

mysql> SELECT 1+'1';
-> 2

mysql> SELECT CONCAT(2,' test');
-> '2 test'

It is also possible to perform explicit conversions. If you want to convert a number to a string explicitly,
use the CAST() or CONCAT() function (CAST() is preferable):

mysql> SELECT 38.8, CAST(38.8 AS CHAR);
-> 38.8, '38.8'

mysql> SELECT 38.8, CONCAT(38.8);
-> 38.8, '38.8'

The following rules describe how conversion occurs for comparison operations:

• If one or both arguments are NULL, the result of the comparison is NULL, except for the NULL-safe
<=> equality comparison operator. For NULL <=> NULL, the result is true.

• If both arguments in a comparison operation are strings, they are compared as strings.

• If both arguments are integers, they are compared as integers.

• Hexadecimal values are treated as binary strings if not compared to a number.

• If one of the arguments is a TIMESTAMP or DATETIME column and the other argument is a con-
stant, the constant is converted to a timestamp before the comparison is performed. This is done to
be more ODBC-friendly. Note that this is not done for the arguments to IN()! To be safe, always
use complete datetime, date, or time strings when doing comparisons.

• In all other cases, the arguments are compared as floating-point (real) numbers.

The following examples illustrate conversion of strings to numbers for comparison operations:

mysql> SELECT 1 > '6x';
-> 0

mysql> SELECT 7 > '6x';
-> 1

mysql> SELECT 0 > 'x6';
-> 0

mysql> SELECT 0 = 'x6';
-> 1

Functions and Operators

669

Note that when you are comparing a string column with a number, MySQL cannot use an index on the
column to look up the value quickly. If str_col is an indexed string column, the index cannot be used
when performing the lookup in the following statement:

SELECT * FROM tbl_name WHERE str_col=1;

The reason for this is that there are many different strings that may convert to the value 1, such as '1',
' 1', or '1a'.

Comparisons that use floating-point numbers (or values that are converted to floating-point numbers) are
approximate because such numbers are inexact. This might lead to results that appear inconsistent:

mysql> SELECT '18015376320243458' = 18015376320243458;
-> 1

mysql> SELECT '18015376320243459' = 18015376320243459;
-> 0

Such results can occur because the values are converted to floating-point numbers, which have only 53
bits of precision and are subject to rounding:

mysql> SELECT '18015376320243459'+0.0;
-> 1.8015376320243e+16

Furthermore, the conversion from string to floating-point and from integer to floating-point do not ne-
cessarily occur the same way. The integer may be converted to floating-point by the CPU, whereas the
string is converted digit by digit in an operation that involves floating-point multiplications.

The results shown will vary on different systems, and can be affected by factors such as computer archi-
tecture or the compiler version or optimization level. One way to avoid such problems is to use CAST()
so that a value will not be converted implicitly to a float-point number:

mysql> SELECT CAST('18015376320243459' AS UNSIGNED) = 18015376320243459;
-> 1

For more information about floating-point comparisons, see Section A.5.8, “Problems with Floating-
Point Comparisons”.

12.1.3. Comparison Functions and Operators
Comparison operations result in a value of 1 (TRUE), 0 (FALSE), or NULL. These operations work for
both numbers and strings. Strings are automatically converted to numbers and numbers to strings as ne-
cessary.

Some of the functions in this section (such as LEAST() and GREATEST()) return values other than 1
(TRUE), 0 (FALSE), or NULL. However, the value they return is based on comparison operations per-
formed according to the rules described in Section 12.1.2, “Type Conversion in Expression Evaluation”.

To convert a value to a specific type for comparison purposes, you can use the CAST() function. String
values can be converted to a different character set using CONVERT(). See Section 12.8, “Cast Func-
tions and Operators”.

By default, string comparisons are not case sensitive and use the current character set. The default is
latin1 (cp1252 West European), which also works well for English.

• =

Equal:

Functions and Operators

670

mysql> SELECT 1 = 0;
-> 0

mysql> SELECT '0' = 0;
-> 1

mysql> SELECT '0.0' = 0;
-> 1

mysql> SELECT '0.01' = 0;
-> 0

mysql> SELECT '.01' = 0.01;
-> 1

• <=>

NULL-safe equal. This operator performs an equality comparison like the = operator, but returns 1
rather than NULL if both operands are NULL, and 0 rather than NULL if one operand is NULL.

mysql> SELECT 1 <=> 1, NULL <=> NULL, 1 <=> NULL;
-> 1, 1, 0

mysql> SELECT 1 = 1, NULL = NULL, 1 = NULL;
-> 1, NULL, NULL

• <>, !=

Not equal:

mysql> SELECT '.01' <> '0.01';
-> 1

mysql> SELECT .01 <> '0.01';
-> 0

mysql> SELECT 'zapp' <> 'zappp';
-> 1

• <=

Less than or equal:

mysql> SELECT 0.1 <= 2;
-> 1

• <

Less than:

mysql> SELECT 2 < 2;
-> 0

• >=

Greater than or equal:

mysql> SELECT 2 >= 2;
-> 1

• >

Greater than:

mysql> SELECT 2 > 2;
-> 0

• IS boolean_value, IS NOT boolean_value

Functions and Operators

671

Tests a value against a boolean value, where boolean_value can be TRUE, FALSE, or UN-
KNOWN.

mysql> SELECT 1 IS TRUE, 0 IS FALSE, NULL IS UNKNOWN;
-> 1, 1, 1

mysql> SELECT 1 IS NOT UNKNOWN, 0 IS NOT UNKNOWN, NULL IS NOT UNKNOWN;
-> 1, 1, 0

IS [NOT] boolean_value syntax was added in MySQL 5.0.2.

• IS NULL, IS NOT NULL

Tests whether a value is or is not NULL.

mysql> SELECT 1 IS NULL, 0 IS NULL, NULL IS NULL;
-> 0, 0, 1

mysql> SELECT 1 IS NOT NULL, 0 IS NOT NULL, NULL IS NOT NULL;
-> 1, 1, 0

To work well with ODBC programs, MySQL supports the following extra features when using IS
NULL:

• You can find the row that contains the most recent AUTO_INCREMENT value by issuing a state-
ment of the following form immediately after generating the value:

SELECT * FROM tbl_name WHERE auto_col IS NULL

This behavior can be disabled by setting SQL_AUTO_IS_NULL=0. See Section 13.5.3, “SET
Syntax”.

• For DATE and DATETIME columns that are declared as NOT NULL, you can find the special
date '0000-00-00' by using a statement like this:

SELECT * FROM tbl_name WHERE date_column IS NULL

This is needed to get some ODBC applications to work because ODBC does not support a
'0000-00-00' date value.

• expr BETWEEN min AND max

If expr is greater than or equal to min and expr is less than or equal to max, BETWEEN returns 1,
otherwise it returns 0. This is equivalent to the expression (min <= expr AND expr <=
max) if all the arguments are of the same type. Otherwise type conversion takes place according to
the rules described in Section 12.1.2, “Type Conversion in Expression Evaluation”, but applied to all
the three arguments.

mysql> SELECT 1 BETWEEN 2 AND 3;
-> 0

mysql> SELECT 'b' BETWEEN 'a' AND 'c';
-> 1

mysql> SELECT 2 BETWEEN 2 AND '3';
-> 1

mysql> SELECT 2 BETWEEN 2 AND 'x-3';
-> 0

• expr NOT BETWEEN min AND max

This is the same as NOT (expr BETWEEN min AND max).

• COALESCE(value,...)

Functions and Operators

672

Returns the first non-NULL value in the list, or NULL if there are no non-NULL values.

mysql> SELECT COALESCE(NULL,1);
-> 1

mysql> SELECT COALESCE(NULL,NULL,NULL);
-> NULL

• GREATEST(value1,value2,...)

With two or more arguments, returns the largest (maximum-valued) argument. The arguments are
compared using the same rules as for LEAST().

mysql> SELECT GREATEST(2,0);
-> 2

mysql> SELECT GREATEST(34.0,3.0,5.0,767.0);
-> 767.0

mysql> SELECT GREATEST('B','A','C');
-> 'C'

Before MySQL 5.0.13, GREATEST() returns NULL only if all arguments are NULL. As of 5.0.13, it
returns NULL if any argument is NULL.

• expr IN (value,...)

Returns 1 if expr is equal to any of the values in the IN list, else returns 0. If all values are con-
stants, they are evaluated according to the type of expr and sorted. The search for the item then is
done using a binary search. This means IN is very quick if the IN value list consists entirely of con-
stants. Otherwise, type conversion takes place according to the rules described in Section 12.1.2,
“Type Conversion in Expression Evaluation”, but applied to all the arguments.

mysql> SELECT 2 IN (0,3,5,7);
-> 0

mysql> SELECT 'wefwf' IN ('wee','wefwf','weg');
-> 1

You should never mix quoted and unquoted values in an IN list because the comparison rules for
quoted values (such as strings) and unquoted values (such as numbers) differ. Mixing types may
therefore lead to inconsistent results. For example, do not write an IN expression like this:

SELECT val1 FROM tbl1 WHERE val1 IN (1,2,'a');

Instead, write it like this:

SELECT val1 FROM tbl1 WHERE val1 IN ('1','2','a');

The number of values in the IN list is only limited by the max_allowed_packet value.

To comply with the SQL standard, IN returns NULL not only if the expression on the left hand side
is NULL, but also if no match is found in the list and one of the expressions in the list is NULL.

IN() syntax can also be used to write certain types of subqueries. See Section 13.2.8.3, “Subqueries
with ANY, IN, and SOME”.

• expr NOT IN (value,...)

This is the same as NOT (expr IN (value,...)).

• ISNULL(expr)

Functions and Operators

673

If expr is NULL, ISNULL() returns 1, otherwise it returns 0.

mysql> SELECT ISNULL(1+1);
-> 0

mysql> SELECT ISNULL(1/0);
-> 1

ISNULL() can be used instead of = to test whether a value is NULL. (Comparing a value to NULL
using = always yields false.)

The ISNULL() function shares some special behaviors with the IS NULL comparison operator.
See the description of IS NULL.

• INTERVAL(N,N1,N2,N3,...)

Returns 0 if N < N1, 1 if N < N2 and so on or -1 if N is NULL. All arguments are treated as integers.
It is required that N1 < N2 < N3 < ... < Nn for this function to work correctly. This is because a
binary search is used (very fast).

mysql> SELECT INTERVAL(23, 1, 15, 17, 30, 44, 200);
-> 3

mysql> SELECT INTERVAL(10, 1, 10, 100, 1000);
-> 2

mysql> SELECT INTERVAL(22, 23, 30, 44, 200);
-> 0

• LEAST(value1,value2,...)

With two or more arguments, returns the smallest (minimum-valued) argument. The arguments are
compared using the following rules:

• If the return value is used in an INTEGER context or all arguments are integer-valued, they are
compared as integers.

• If the return value is used in a REAL context or all arguments are real-valued, they are compared
as reals.

• If any argument is a case-sensitive string, the arguments are compared as case-sensitive strings.

• In all other cases, the arguments are compared as case-insensitive strings.

Before MySQL 5.0.13, LEAST() returns NULL only if all arguments are NULL. As of 5.0.13, it re-
turns NULL if any argument is NULL.

mysql> SELECT LEAST(2,0);
-> 0

mysql> SELECT LEAST(34.0,3.0,5.0,767.0);
-> 3.0

mysql> SELECT LEAST('B','A','C');
-> 'A'

Note that the preceding conversion rules can produce strange results in some borderline cases:

mysql> SELECT CAST(LEAST(3600, 9223372036854775808.0) as SIGNED);
-> -9223372036854775808

This happens because MySQL reads 9223372036854775808.0 in an integer context. The in-
teger representation is not good enough to hold the value, so it wraps to a signed integer.

Functions and Operators

674

12.1.4. Logical Operators
In SQL, all logical operators evaluate to TRUE, FALSE, or NULL (UNKNOWN). In MySQL, these are im-
plemented as 1 (TRUE), 0 (FALSE), and NULL. Most of this is common to different SQL database serv-
ers, although some servers may return any non-zero value for TRUE.

• NOT, !

Logical NOT. Evaluates to 1 if the operand is 0, to 0 if the operand is non-zero, and NOT NULL re-
turns NULL.

mysql> SELECT NOT 10;
-> 0

mysql> SELECT NOT 0;
-> 1

mysql> SELECT NOT NULL;
-> NULL

mysql> SELECT ! (1+1);
-> 0

mysql> SELECT ! 1+1;
-> 1

The last example produces 1 because the expression evaluates the same way as (!1)+1.

Note that the precedence of the NOT operator changed in MySQL 5.0.2. See Section 12.1.1,
“Operator Precedence”.

• AND, &&

Logical AND. Evaluates to 1 if all operands are non-zero and not NULL, to 0 if one or more oper-
ands are 0, otherwise NULL is returned.

mysql> SELECT 1 && 1;
-> 1

mysql> SELECT 1 && 0;
-> 0

mysql> SELECT 1 && NULL;
-> NULL

mysql> SELECT 0 && NULL;
-> 0

mysql> SELECT NULL && 0;
-> 0

• OR, ||

Logical OR. When both operands are non-NULL, the result is 1 if any operand is non-zero, and 0
otherwise. With a NULL operand, the result is 1 if the other operand is non-zero, and NULL other-
wise. If both operands are NULL, the result is NULL.

mysql> SELECT 1 || 1;
-> 1

mysql> SELECT 1 || 0;
-> 1

mysql> SELECT 0 || 0;
-> 0

mysql> SELECT 0 || NULL;
-> NULL

mysql> SELECT 1 || NULL;
-> 1

• XOR

Logical XOR. Returns NULL if either operand is NULL. For non-NULL operands, evaluates to 1 if an
odd number of operands is non-zero, otherwise 0 is returned.

Functions and Operators

675

mysql> SELECT 1 XOR 1;
-> 0

mysql> SELECT 1 XOR 0;
-> 1

mysql> SELECT 1 XOR NULL;
-> NULL

mysql> SELECT 1 XOR 1 XOR 1;
-> 1

a XOR b is mathematically equal to (a AND (NOT b)) OR ((NOT a) and b).

12.2. Control Flow Functions

• CASE value WHEN [compare_value] THEN result [WHEN [compare_value]
THEN result ...] [ELSE result] END

CASE WHEN [condition] THEN result [WHEN [condition] THEN result
...] [ELSE result] END

The first version returns the result where value=compare_value. The second version re-
turns the result for the first condition that is true. If there was no matching result value, the result
after ELSE is returned, or NULL if there is no ELSE part.

mysql> SELECT CASE 1 WHEN 1 THEN 'one'
-> WHEN 2 THEN 'two' ELSE 'more' END;

-> 'one'
mysql> SELECT CASE WHEN 1>0 THEN 'true' ELSE 'false' END;

-> 'true'
mysql> SELECT CASE BINARY 'B'

-> WHEN 'a' THEN 1 WHEN 'b' THEN 2 END;
-> NULL

The default return type of a CASE expression is the compatible aggregated type of all return values,
but also depends on the context in which it is used. If used in a string context, the result is returned
as a string. If used in a numeric context, then the result is returned as a decimal, real, or integer
value.

Note: The syntax of the CASE expression shown here differs slightly from that of the SQL CASE
statement described in Section 17.2.10.2, “CASE Statement”, for use inside stored routines. The
CASE statement cannot have an ELSE NULL clause, and it is terminated with END CASE instead
of END.

• IF(expr1,expr2,expr3)

If expr1 is TRUE (expr1 <> 0 and expr1 <> NULL) then IF() returns expr2; otherwise it
returns expr3. IF() returns a numeric or string value, depending on the context in which it is
used.

mysql> SELECT IF(1>2,2,3);
-> 3

mysql> SELECT IF(1<2,'yes','no');
-> 'yes'

mysql> SELECT IF(STRCMP('test','test1'),'no','yes');
-> 'no'

If only one of expr2 or expr3 is explicitly NULL, the result type of the IF() function is the type
of the non-NULL expression.

expr1 is evaluated as an integer value, which means that if you are testing floating-point or string

Functions and Operators

676

values, you should do so using a comparison operation.

mysql> SELECT IF(0.1,1,0);
-> 0

mysql> SELECT IF(0.1<>0,1,0);
-> 1

In the first case shown, IF(0.1) returns 0 because 0.1 is converted to an integer value, resulting
in a test of IF(0). This may not be what you expect. In the second case, the comparison tests the
original floating-point value to see whether it is non-zero. The result of the comparison is used as an
integer.

The default return type of IF() (which may matter when it is stored into a temporary table) is cal-
culated as follows:

Expression Return Value

expr2 or expr3 returns a string string

expr2 or expr3 returns a floating-point value floating-point

expr2 or expr3 returns an integer integer

If expr2 and expr3 are both strings, the result is case sensitive if either string is case sensitive.

Note: There is also an IF statement, which differs from the IF() function described here. See Sec-
tion 17.2.10.1, “IF Statement”.

• IFNULL(expr1,expr2)

If expr1 is not NULL, IFNULL() returns expr1; otherwise it returns expr2. IFNULL() returns
a numeric or string value, depending on the context in which it is used.

mysql> SELECT IFNULL(1,0);
-> 1

mysql> SELECT IFNULL(NULL,10);
-> 10

mysql> SELECT IFNULL(1/0,10);
-> 10

mysql> SELECT IFNULL(1/0,'yes');
-> 'yes'

The default result value of IFNULL(expr1,expr2) is the more “general” of the two expressions,
in the order STRING, REAL, or INTEGER. Consider the case of a table based on expressions or
where MySQL must internally store a value returned by IFNULL() in a temporary table:

mysql> CREATE TABLE tmp SELECT IFNULL(1,'test') AS test;
mysql> DESCRIBE tmp;
+-------+---------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+---------+------+-----+---------+-------+
| test | char(4) | | | | |
+-------+---------+------+-----+---------+-------+

In this example, the type of the test column is CHAR(4).

• NULLIF(expr1,expr2)

Returns NULL if expr1 = expr2 is true, otherwise returns expr1. This is the same as CASE
WHEN expr1 = expr2 THEN NULL ELSE expr1 END.

mysql> SELECT NULLIF(1,1);
-> NULL

Functions and Operators

677

mysql> SELECT NULLIF(1,2);
-> 1

Note that MySQL evaluates expr1 twice if the arguments are not equal.

12.3. String Functions
String-valued functions return NULL if the length of the result would be greater than the value of the
max_allowed_packet system variable. See Section 7.5.2, “Tuning Server Parameters”.

For functions that operate on string positions, the first position is numbered 1.

• ASCII(str)

Returns the numeric value of the leftmost character of the string str. Returns 0 if str is the empty
string. Returns NULL if str is NULL. ASCII() works for characters with numeric values from 0
to 255.

mysql> SELECT ASCII('2');
-> 50

mysql> SELECT ASCII(2);
-> 50

mysql> SELECT ASCII('dx');
-> 100

See also the ORD() function.

• BIN(N)

Returns a string representation of the binary value of N, where N is a longlong (BIGINT) number.
This is equivalent to CONV(N,10,2). Returns NULL if N is NULL.

mysql> SELECT BIN(12);
-> '1100'

• BIT_LENGTH(str)

Returns the length of the string str in bits.

mysql> SELECT BIT_LENGTH('text');
-> 32

• CHAR(N,... [USING charset_name])

CHAR() interprets each argument N as an integer and returns a string consisting of the characters
given by the code values of those integers. NULL values are skipped.

mysql> SELECT CHAR(77,121,83,81,'76');
-> 'MySQL'

mysql> SELECT CHAR(77,77.3,'77.3');
-> 'MMM'

As of MySQL 5.0.15, CHAR() arguments larger than 255 are converted into multiple result bytes.
For example, CHAR(256) is equivalent to CHAR(1,0), and CHAR(256*256) is equivalent to
CHAR(1,0,0):

mysql> SELECT HEX(CHAR(1,0)), HEX(CHAR(256));
+----------------+----------------+

Functions and Operators

678

| HEX(CHAR(1,0)) | HEX(CHAR(256)) |
+----------------+----------------+
| 0100 | 0100 |
+----------------+----------------+
mysql> SELECT HEX(CHAR(1,0,0)), HEX(CHAR(256*256));
+------------------+--------------------+
| HEX(CHAR(1,0,0)) | HEX(CHAR(256*256)) |
+------------------+--------------------+
| 010000 | 010000 |
+------------------+--------------------+

By default, CHAR() returns a binary string. To produce a string in a given character set, use the op-
tional USING clause:

mysql> SELECT CHARSET(CHAR(0x65)), CHARSET(CHAR(0x65 USING utf8));
+---------------------+--------------------------------+
| CHARSET(CHAR(0x65)) | CHARSET(CHAR(0x65 USING utf8)) |
+---------------------+--------------------------------+
| binary | utf8 |
+---------------------+--------------------------------+

If USING is given and the result string is illegal for the given character set, a warning is issued.
Also, if strict SQL mode is enabled, the result from CHAR() becomes NULL.

Before MySQL 5.0.15, CHAR() returns a string in the connection character set and the USING
clause is unavailable. In addition, each argument is interpreted modulo 256, so CHAR(256) and
CHAR(256*256) both are equivalent to CHAR(0).

• CHAR_LENGTH(str)

Returns the length of the string str, measured in characters. A multi-byte character counts as a
single character. This means that for a string containing five two-byte characters, LENGTH() returns
10, whereas CHAR_LENGTH() returns 5.

• CHARACTER_LENGTH(str)

CHARACTER_LENGTH() is a synonym for CHAR_LENGTH().

• CONCAT(str1,str2,...)

Returns the string that results from concatenating the arguments. May have one or more arguments.
If all arguments are non-binary strings, the result is a non-binary string. If the arguments include any
binary strings, the result is a binary string. A numeric argument is converted to its equivalent binary
string form; if you want to avoid that, you can use an explicit type cast, as in this example:

SELECT CONCAT(CAST(int_col AS CHAR), char_col);

CONCAT() returns NULL if any argument is NULL.

mysql> SELECT CONCAT('My', 'S', 'QL');
-> 'MySQL'

mysql> SELECT CONCAT('My', NULL, 'QL');
-> NULL

mysql> SELECT CONCAT(14.3);
-> '14.3'

• CONCAT_WS(separator,str1,str2,...)

CONCAT_WS() stands for Concatenate With Separator and is a special form of CONCAT(). The
first argument is the separator for the rest of the arguments. The separator is added between the
strings to be concatenated. The separator can be a string, as can the rest of the arguments. If the sep-
arator is NULL, the result is NULL.

Functions and Operators

679

mysql> SELECT CONCAT_WS(',','First name','Second name','Last Name');
-> 'First name,Second name,Last Name'

mysql> SELECT CONCAT_WS(',','First name',NULL,'Last Name');
-> 'First name,Last Name'

CONCAT_WS() does not skip empty strings. However, it does skip any NULL values after the separ-
ator argument.

• CONV(N,from_base,to_base)

Converts numbers between different number bases. Returns a string representation of the number N,
converted from base from_base to base to_base. Returns NULL if any argument is NULL. The
argument N is interpreted as an integer, but may be specified as an integer or a string. The minimum
base is 2 and the maximum base is 36. If to_base is a negative number, N is regarded as a signed
number. Otherwise, N is treated as unsigned. CONV() works with 64-bit precision.

mysql> SELECT CONV('a',16,2);
-> '1010'

mysql> SELECT CONV('6E',18,8);
-> '172'

mysql> SELECT CONV(-17,10,-18);
-> '-H'

mysql> SELECT CONV(10+'10'+'10'+0xa,10,10);
-> '40'

• ELT(N,str1,str2,str3,...)

Returns str1 if N = 1, str2 if N = 2, and so on. Returns NULL if N is less than 1 or greater than
the number of arguments. ELT() is the complement of FIELD().

mysql> SELECT ELT(1, 'ej', 'Heja', 'hej', 'foo');
-> 'ej'

mysql> SELECT ELT(4, 'ej', 'Heja', 'hej', 'foo');
-> 'foo'

• EXPORT_SET(bits,on,off[,separator[,number_of_bits]])

Returns a string such that for every bit set in the value bits, you get an on string and for every re-
set bit, you get an off string. Bits in bits are examined from right to left (from low-order to high-
order bits). Strings are added to the result from left to right, separated by the separator string (the
default being the comma character ‘,’). The number of bits examined is given by num-
ber_of_bits (defaults to 64).

mysql> SELECT EXPORT_SET(5,'Y','N',',',4);
-> 'Y,N,Y,N'

mysql> SELECT EXPORT_SET(6,'1','0',',',10);
-> '0,1,1,0,0,0,0,0,0,0'

• FIELD(str,str1,str2,str3,...)

Returns the index (position) of str in the str1, str2, str3, ... list. Returns 0 if str is not
found.

If all arguments to FIELD() are strings, all arguments are compared as strings. If all arguments are
numbers, they are compared as numbers. Otherwise, the arguments are compared as double.

If str is NULL, the return value is 0 because NULL fails equality comparison with any value.
FIELD() is the complement of ELT().

mysql> SELECT FIELD('ej', 'Hej', 'ej', 'Heja', 'hej', 'foo');
-> 2

mysql> SELECT FIELD('fo', 'Hej', 'ej', 'Heja', 'hej', 'foo');

Functions and Operators

680

-> 0

• FIND_IN_SET(str,strlist)

Returns a value in the range of 1 to N if the string str is in the string list strlist consisting of N
substrings. A string list is a string composed of substrings separated by ‘,’ characters. If the first ar-
gument is a constant string and the second is a column of type SET, the FIND_IN_SET() function
is optimized to use bit arithmetic. Returns 0 if str is not in strlist or if strlist is the empty
string. Returns NULL if either argument is NULL. This function does not work properly if the first ar-
gument contains a comma (‘,’) character.

mysql> SELECT FIND_IN_SET('b','a,b,c,d');
-> 2

• FORMAT(X,D)

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and re-
turns the result as a string. If D is 0, the result has no decimal point or fractional part.

mysql> SELECT FORMAT(12332.123456, 4);
-> '12,332.1235'

mysql> SELECT FORMAT(12332.1,4);
-> '12,332.1000'

mysql> SELECT FORMAT(12332.2,0);
-> '12,332'

• HEX(N_or_S)

If N_or_S is a number, returns a string representation of the hexadecimal value of N, where N is a
longlong (BIGINT) number. This is equivalent to CONV(N,10,16).

If N_or_S is a string, returns a hexadecimal string representation of N_or_S where each character
in N_or_S is converted to two hexadecimal digits.

mysql> SELECT HEX(255);
-> 'FF'

mysql> SELECT 0x616263;
-> 'abc'

mysql> SELECT HEX('abc');
-> 616263

• INSERT(str,pos,len,newstr)

Returns the string str, with the substring beginning at position pos and len characters long re-
placed by the string newstr. Returns the original string if pos is not within the length of the string.
Replaces the rest of the string from position pos is len is not within the length of the rest of the
string. Returns NULL if any argument is NULL.

mysql> SELECT INSERT('Quadratic', 3, 4, 'What');
-> 'QuWhattic'

mysql> SELECT INSERT('Quadratic', -1, 4, 'What');
-> 'Quadratic'

mysql> SELECT INSERT('Quadratic', 3, 100, 'What');
-> 'QuWhat'

This function is multi-byte safe.

• INSTR(str,substr)

Returns the position of the first occurrence of substring substr in string str. This is the same as
the two-argument form of LOCATE(), except that the order of the arguments is reversed.

Functions and Operators

681

mysql> SELECT INSTR('foobarbar', 'bar');
-> 4

mysql> SELECT INSTR('xbar', 'foobar');
-> 0

This function is multi-byte safe, and is case sensitive only if at least one argument is a binary string.

• LCASE(str)

LCASE() is a synonym for LOWER().

• LEFT(str,len)

Returns the leftmost len characters from the string str, or NULL if any argument is NULL.

mysql> SELECT LEFT('foobarbar', 5);
-> 'fooba'

• LENGTH(str)

Returns the length of the string str, measured in bytes. A multi-byte character counts as multiple
bytes. This means that for a string containing five two-byte characters, LENGTH() returns 10,
whereas CHAR_LENGTH() returns 5.

mysql> SELECT LENGTH('text');
-> 4

• LOAD_FILE(file_name)

Reads the file and returns the file contents as a string. To use this function, the file must be located
on the server host, you must specify the full pathname to the file, and you must have the FILE priv-
ilege. The file must be readable by all and its size less than max_allowed_packet bytes.

If the file does not exist or cannot be read because one of the preceding conditions is not satisfied,
the function returns NULL.

As of MySQL 5.0.19, the character_set_filesystem system variable controls interpretation
of filenames that are given as literal strings.

mysql> UPDATE t
SET blob_col=LOAD_FILE('/tmp/picture')
WHERE id=1;

• LOCATE(substr,str), LOCATE(substr,str,pos)

The first syntax returns the position of the first occurrence of substring substr in string str. The
second syntax returns the position of the first occurrence of substring substr in string str, start-
ing at position pos. Returns 0 if substr is not in str.

mysql> SELECT LOCATE('bar', 'foobarbar');
-> 4

mysql> SELECT LOCATE('xbar', 'foobar');
-> 0

mysql> SELECT LOCATE('bar', 'foobarbar', 5);
-> 7

This function is multi-byte safe, and is case-sensitive only if at least one argument is a binary string.

• LOWER(str)

Functions and Operators

682

Returns the string str with all characters changed to lowercase according to the current character
set mapping. The default is latin1 (cp1252 West European).

mysql> SELECT LOWER('QUADRATICALLY');
-> 'quadratically'

This function is multi-byte safe.

• LPAD(str,len,padstr)

Returns the string str, left-padded with the string padstr to a length of len characters. If str is
longer than len, the return value is shortened to len characters.

mysql> SELECT LPAD('hi',4,'??');
-> '??hi'

mysql> SELECT LPAD('hi',1,'??');
-> 'h'

• LTRIM(str)

Returns the string str with leading space characters removed.

mysql> SELECT LTRIM(' barbar');
-> 'barbar'

This function is multi-byte safe.

• MAKE_SET(bits,str1,str2,...)

Returns a set value (a string containing substrings separated by ‘,’ characters) consisting of the
strings that have the corresponding bit in bits set. str1 corresponds to bit 0, str2 to bit 1, and so
on. NULL values in str1, str2, ... are not appended to the result.

mysql> SELECT MAKE_SET(1,'a','b','c');
-> 'a'

mysql> SELECT MAKE_SET(1 | 4,'hello','nice','world');
-> 'hello,world'

mysql> SELECT MAKE_SET(1 | 4,'hello','nice',NULL,'world');
-> 'hello'

mysql> SELECT MAKE_SET(0,'a','b','c');
-> ''

• MID(str,pos,len)

MID(str,pos,len) is a synonym for SUBSTRING(str,pos,len).

• OCT(N)

Returns a string representation of the octal value of N, where N is a longlong (BIGINT) number.
This is equivalent to CONV(N,10,8). Returns NULL if N is NULL.

mysql> SELECT OCT(12);
-> '14'

• OCTET_LENGTH(str)

OCTET_LENGTH() is a synonym for LENGTH().

• ORD(str)

Functions and Operators

683

If the leftmost character of the string str is a multi-byte character, returns the code for that charac-
ter, calculated from the numeric values of its constituent bytes using this formula:

(1st byte code)
+ (2nd byte code × 256)
+ (3rd byte code × 2562) ...

If the leftmost character is not a multi-byte character, ORD() returns the same value as the AS-
CII() function.

mysql> SELECT ORD('2');
-> 50

• POSITION(substr IN str)

POSITION(substr IN str) is a synonym for LOCATE(substr,str).

• QUOTE(str)

Quotes a string to produce a result that can be used as a properly escaped data value in an SQL state-
ment. The string is returned enclosed by single quotes and with each instance of single quote (‘'’),
backslash (‘\’), ASCII NUL, and Control-Z preceded by a backslash. If the argument is NULL, the
return value is the word “NULL” without enclosing single quotes.

mysql> SELECT QUOTE('Don\'t!');
-> 'Don\'t!'

mysql> SELECT QUOTE(NULL);
-> NULL

• REPEAT(str,count)

Returns a string consisting of the string str repeated count times. If count is less than 1, returns
an empty string. Returns NULL if str or count are NULL.

mysql> SELECT REPEAT('MySQL', 3);
-> 'MySQLMySQLMySQL'

• REPLACE(str,from_str,to_str)

Returns the string str with all occurrences of the string from_str replaced by the string
to_str. REPLACE() performs a case-sensitive match when searching for from_str.

mysql> SELECT REPLACE('www.mysql.com', 'w', 'Ww');
-> 'WwWwWw.mysql.com'

This function is multi-byte safe.

• REVERSE(str)

Returns the string str with the order of the characters reversed.

mysql> SELECT REVERSE('abc');
-> 'cba'

This function is multi-byte safe.

• RIGHT(str,len)

Functions and Operators

684

Returns the rightmost len characters from the string str, or NULL if any argument is NULL.

mysql> SELECT RIGHT('foobarbar', 4);
-> 'rbar'

This function is multi-byte safe.

• RPAD(str,len,padstr)

Returns the string str, right-padded with the string padstr to a length of len characters. If str
is longer than len, the return value is shortened to len characters.

mysql> SELECT RPAD('hi',5,'?');
-> 'hi???'

mysql> SELECT RPAD('hi',1,'?');
-> 'h'

This function is multi-byte safe.

• RTRIM(str)

Returns the string str with trailing space characters removed.

mysql> SELECT RTRIM('barbar ');
-> 'barbar'

This function is multi-byte safe.

• SOUNDEX(str)

Returns a soundex string from str. Two strings that sound almost the same should have identical
soundex strings. A standard soundex string is four characters long, but the SOUNDEX() function re-
turns an arbitrarily long string. You can use SUBSTRING() on the result to get a standard soundex
string. All non-alphabetic characters in str are ignored. All international alphabetic characters out-
side the A-Z range are treated as vowels.

mysql> SELECT SOUNDEX('Hello');
-> 'H400'

mysql> SELECT SOUNDEX('Quadratically');
-> 'Q36324'

Note: This function implements the original Soundex algorithm, not the more popular enhanced ver-
sion (also described by D. Knuth). The difference is that original version discards vowels first and
duplicates second, whereas the enhanced version discards duplicates first and vowels second.

• expr1 SOUNDS LIKE expr2

This is the same as SOUNDEX(expr1) = SOUNDEX(expr2).

• SPACE(N)

Returns a string consisting of N space characters.

mysql> SELECT SPACE(6);
-> ' '

• SUBSTRING(str,pos), SUBSTRING(str FROM pos), SUBSTRING(str,pos,len),
SUBSTRING(str FROM pos FOR len)

Functions and Operators

685

The forms without a len argument return a substring from string str starting at position pos. The
forms with a len argument return a substring len characters long from string str, starting at posi-
tion pos. The forms that use FROM are standard SQL syntax. It is also possible to use a negative
value for pos. In this case, the beginning of the substring is pos characters from the end of the
string, rather than the beginning. A negative value may be used for pos in any of the forms of this
function.

mysql> SELECT SUBSTRING('Quadratically',5);
-> 'ratically'

mysql> SELECT SUBSTRING('foobarbar' FROM 4);
-> 'barbar'

mysql> SELECT SUBSTRING('Quadratically',5,6);
-> 'ratica'

mysql> SELECT SUBSTRING('Sakila', -3);
-> 'ila'

mysql> SELECT SUBSTRING('Sakila', -5, 3);
-> 'aki'

mysql> SELECT SUBSTRING('Sakila' FROM -4 FOR 2);
-> 'ki'

This function is multi-byte safe.

If len is less than 1, the result is the empty string.

SUBSTR() is a synonym for SUBSTRING().

• SUBSTRING_INDEX(str,delim,count)

Returns the substring from string str before count occurrences of the delimiter delim. If count
is positive, everything to the left of the final delimiter (counting from the left) is returned. If count
is negative, everything to the right of the final delimiter (counting from the right) is returned. SUB-
STRING_INDEX() performs a case-sensitive match when searching for delim.

mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', 2);
-> 'www.mysql'

mysql> SELECT SUBSTRING_INDEX('www.mysql.com', '.', -2);
-> 'mysql.com'

This function is multi-byte safe.

• TRIM([{BOTH | LEADING | TRAILING} [remstr] FROM] str), TRIM([remstr
FROM] str)

Returns the string str with all remstr prefixes or suffixes removed. If none of the specifiers
BOTH, LEADING, or TRAILING is given, BOTH is assumed. remstr is optional and, if not spe-
cified, spaces are removed.

mysql> SELECT TRIM(' bar ');
-> 'bar'

mysql> SELECT TRIM(LEADING 'x' FROM 'xxxbarxxx');
-> 'barxxx'

mysql> SELECT TRIM(BOTH 'x' FROM 'xxxbarxxx');
-> 'bar'

mysql> SELECT TRIM(TRAILING 'xyz' FROM 'barxxyz');
-> 'barx'

This function is multi-byte safe.

• UCASE(str)

UCASE() is a synonym for UPPER().

Functions and Operators

686

• UNHEX(str)

Performs the inverse operation of HEX(str). That is, it interprets each pair of hexadecimal digits
in the argument as a number and converts it to the character represented by the number. The result-
ing characters are returned as a binary string.

mysql> SELECT UNHEX('4D7953514C');
-> 'MySQL'

mysql> SELECT 0x4D7953514C;
-> 'MySQL'

mysql> SELECT UNHEX(HEX('string'));
-> 'string'

mysql> SELECT HEX(UNHEX('1267'));
-> '1267'

• UPPER(str)

Returns the string str with all characters changed to uppercase according to the current character
set mapping. The default is latin1 (cp1252 West European).

mysql> SELECT UPPER('Hej');
-> 'HEJ'

This function is multi-byte safe.

12.3.1. String Comparison Functions
If a string function is given a binary string as an argument, the resulting string is also a binary string. A
number converted to a string is treated as a binary string. This affects only comparisons.

Normally, if any expression in a string comparison is case sensitive, the comparison is performed in
case-sensitive fashion.

• expr LIKE pat [ESCAPE 'escape_char']

Pattern matching using SQL simple regular expression comparison. Returns 1 (TRUE) or 0
(FALSE). If either expr or pat is NULL, the result is NULL.

The pattern need not be a literal string. For example, it can be specified as a string expression or ta-
ble column.

Per the SQL standard, LIKE performs matching on a per-character basis, thus it can produce results
different from the = comparison operator:

mysql> SELECT 'ä' LIKE 'ae' COLLATE latin1_german2_ci;
+---+
| 'ä' LIKE 'ae' COLLATE latin1_german2_ci |
+---+
| 0 |
+---+
mysql> SELECT 'ä' = 'ae' COLLATE latin1_german2_ci;
+--------------------------------------+
| 'ä' = 'ae' COLLATE latin1_german2_ci |
+--------------------------------------+
| 1 |
+--------------------------------------+

With LIKE you can use the following two wildcard characters in the pattern:

Character Description

Functions and Operators

687

% Matches any number of characters, even zero characters

_ Matches exactly one character

mysql> SELECT 'David!' LIKE 'David_';
-> 1

mysql> SELECT 'David!' LIKE '%D%v%';
-> 1

To test for literal instances of a wildcard character, precede it by the escape character. If you do not
specify the ESCAPE character, ‘\’ is assumed.

String Description

\% Matches one ‘%’ character

_ Matches one ‘_’ character

mysql> SELECT 'David!' LIKE 'David_';
-> 0

mysql> SELECT 'David_' LIKE 'David_';
-> 1

To specify a different escape character, use the ESCAPE clause:

mysql> SELECT 'David_' LIKE 'David|_' ESCAPE '|';
-> 1

The escape sequence should be empty or one character long. As of MySQL 5.0.16, if the
NO_BACKSLASH_ESCAPES SQL mode is enabled, the sequence cannot be empty.

The following two statements illustrate that string comparisons are not case sensitive unless one of
the operands is a binary string:

mysql> SELECT 'abc' LIKE 'ABC';
-> 1

mysql> SELECT 'abc' LIKE BINARY 'ABC';
-> 0

In MySQL, LIKE is allowed on numeric expressions. (This is an extension to the standard SQL
LIKE.)

mysql> SELECT 10 LIKE '1%';
-> 1

Note: Because MySQL uses C escape syntax in strings (for example, ‘\n’ to represent a newline
character), you must double any ‘\’ that you use in LIKE strings. For example, to search for ‘\n’,
specify it as ‘\\n’. To search for ‘\’, specify it as ‘\\\\’; this is because the backslashes are
stripped once by the parser and again when the pattern match is made, leaving a single backslash to
be matched against. (Exception: At the end of the pattern string, backslash can be specified as ‘\\’.
At the end of the string, backslash stands for itself because there is nothing following to escape.)

• expr NOT LIKE pat [ESCAPE 'escape_char']

This is the same as NOT (expr LIKE pat [ESCAPE 'escape_char']).

• expr NOT REGEXP pat, expr NOT RLIKE pat

Functions and Operators

688

This is the same as NOT (expr REGEXP pat).

• expr REGEXP pat expr RLIKE pat

Performs a pattern match of a string expression expr against a pattern pat. The pattern can be an
extended regular expression. The syntax for regular expressions is discussed in Appendix G, Regular
Expressions. Returns 1 if expr matches pat; otherwise it returns 0. If either expr or pat is
NULL, the result is NULL. RLIKE is a synonym for REGEXP, provided for mSQL compatibility.

The pattern need not be a literal string. For example, it can be specified as a string expression or ta-
ble column.

Note: Because MySQL uses the C escape syntax in strings (for example, ‘\n’ to represent the
newline character), you must double any ‘\’ that you use in your REGEXP strings.

REGEXP is not case sensitive, except when used with binary strings.

mysql> SELECT 'Monty!' REGEXP 'm%y%%';
-> 0

mysql> SELECT 'Monty!' REGEXP '.*';
-> 1

mysql> SELECT 'new*\n*line' REGEXP 'new*.*line';
-> 1

mysql> SELECT 'a' REGEXP 'A', 'a' REGEXP BINARY 'A';
-> 1 0

mysql> SELECT 'a' REGEXP '^[a-d]';
-> 1

REGEXP and RLIKE use the current character set when deciding the type of a character. The default
is latin1 (cp1252 West European). Warning: These operators are not multi-byte safe.

• STRCMP(expr1,expr2)

STRCMP() returns 0 if the strings are the same, -1 if the first argument is smaller than the second
according to the current sort order, and 1 otherwise.

mysql> SELECT STRCMP('text', 'text2');
-> -1

mysql> SELECT STRCMP('text2', 'text');
-> 1

mysql> SELECT STRCMP('text', 'text');
-> 0

STRCMP() uses the current character set when performing comparisons. This makes the default
comparison behavior case insensitive unless one or both of the operands are binary strings.

12.4. Numeric Functions

12.4.1. Arithmetic Operators
The usual arithmetic operators are available. The precision of the result is determined according to the
following rules:

• Note that in the case of -, +, and *, the result is calculated with BIGINT (64-bit) precision if both
arguments are integers.

• If one of the arguments is an unsigned integer, and the other argument is also an integer, the result is
an unsigned integer.

Functions and Operators

689

• If any of the operands of a +, -, /, *, % is a real or string value, then the precision of the result is the
precision of the argument with the maximum precision.

• In multiplication and division, the precision of the result when using two integer values is the preci-
sion of the first argument + the value of the div_precision_increment global variable. For
example, the expression 5.05 / 0.0014 would have a precision of six decimal places
(4.047976).

These rules are applied for each operation, such that nested calculations imply the precision of each
component. Hence, (14620 / 9432456) / (24250 / 9432456), would resolve first to
(0.0014) / (0.0026), with the final result having 8 decimal places (0.57692308).

Because of these rules and the method they are applied, care should be taken to ensure that components
and sub-components of a calculation use the appropriate level of precision. See Section 12.8, “Cast
Functions and Operators”.

• +

Addition:

mysql> SELECT 3+5;
-> 8

• -

Subtraction:

mysql> SELECT 3-5;
-> -2

• -

Unary minus. This operator changes the sign of the argument.

mysql> SELECT - 2;
-> -2

Note: If this operator is used with a BIGINT, the return value is also a BIGINT. This means that
you should avoid using – on integers that may have the value of –263.

• *

Multiplication:

mysql> SELECT 3*5;
-> 15

mysql> SELECT 18014398509481984*18014398509481984.0;
-> 324518553658426726783156020576256.0

mysql> SELECT 18014398509481984*18014398509481984;
-> 0

The result of the last expression is incorrect because the result of the integer multiplication exceeds
the 64-bit range of BIGINT calculations. (See Section 11.2, “Numeric Types”.)

• /

Division:

Functions and Operators

690

mysql> SELECT 3/5;
-> 0.60

Division by zero produces a NULL result:

mysql> SELECT 102/(1-1);
-> NULL

A division is calculated with BIGINT arithmetic only if performed in a context where its result is
converted to an integer.

• DIV

Integer division. Similar to FLOOR(), but is safe with BIGINT values.

mysql> SELECT 5 DIV 2;
-> 2

12.4.2. Mathematical Functions
All mathematical functions return NULL in the event of an error.

• ABS(X)

Returns the absolute value of X.

mysql> SELECT ABS(2);
-> 2

mysql> SELECT ABS(-32);
-> 32

This function is safe to use with BIGINT values.

• ACOS(X)

Returns the arc cosine of X, that is, the value whose cosine is X. Returns NULL if X is not in the
range -1 to 1.

mysql> SELECT ACOS(1);
-> 0

mysql> SELECT ACOS(1.0001);
-> NULL

mysql> SELECT ACOS(0);
-> 1.5707963267949

• ASIN(X)

Returns the arc sine of X, that is, the value whose sine is X. Returns NULL if X is not in the range -1
to 1.

mysql> SELECT ASIN(0.2);
-> 0.20135792079033

mysql> SELECT ASIN('foo');

+-------------+
| ASIN('foo') |
+-------------+
| 0 |
+-------------+
1 row in set, 1 warning (0.00 sec)

Functions and Operators

691

mysql> SHOW WARNINGS;
+---------+------+---+
| Level | Code | Message |
+---------+------+---+
| Warning | 1292 | Truncated incorrect DOUBLE value: 'foo' |
+---------+------+---+

• ATAN(X)

Returns the arc tangent of X, that is, the value whose tangent is X.

mysql> SELECT ATAN(2);
-> 1.1071487177941

mysql> SELECT ATAN(-2);
-> -1.1071487177941

• ATAN(Y,X), ATAN2(Y,X)

Returns the arc tangent of the two variables X and Y. It is similar to calculating the arc tangent of Y
/ X, except that the signs of both arguments are used to determine the quadrant of the result.

mysql> SELECT ATAN(-2,2);
-> -0.78539816339745

mysql> SELECT ATAN2(PI(),0);
-> 1.5707963267949

• CEILING(X), CEIL(X)

Returns the smallest integer value not less than X.

mysql> SELECT CEILING(1.23);
-> 2

mysql> SELECT CEIL(-1.23);
-> -1

These two functions are synonymous. Note that the return value is converted to a BIGINT.

• COS(X)

Returns the cosine of X, where X is given in radians.

mysql> SELECT COS(PI());
-> -1

• COT(X)

Returns the cotangent of X.

mysql> SELECT COT(12);
-> -1.5726734063977

mysql> SELECT COT(0);
-> NULL

• CRC32(expr)

Computes a cyclic redundancy check value and returns a 32-bit unsigned value. The result is NULL
if the argument is NULL. The argument is expected to be a string and (if possible) is treated as one if
it is not.

mysql> SELECT CRC32('MySQL');
-> 3259397556

mysql> SELECT CRC32('mysql');

Functions and Operators

692

-> 2501908538

• DEGREES(X)

Returns the argument X, converted from radians to degrees.

mysql> SELECT DEGREES(PI());
-> 180

mysql> SELECT DEGREES(PI() / 2);
-> 90

• EXP(X)

Returns the value of e (the base of natural logarithms) raised to the power of X.

mysql> SELECT EXP(2);
-> 7.3890560989307

mysql> SELECT EXP(-2);
-> 0.13533528323661

mysql> SELECT EXP(0);
-> 1

• FLOOR(X)

Returns the largest integer value not greater than X.

mysql> SELECT FLOOR(1.23);
-> 1

mysql> SELECT FLOOR(-1.23);
-> -2

Note that the return value is converted to a BIGINT.

• FORMAT(X,D)

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and re-
turns the result as a string. For details, see Section 12.3, “String Functions”.

• LN(X)

Returns the natural logarithm of X; that is, the base-e logarithm of X.

mysql> SELECT LN(2);
-> 0.69314718055995

mysql> SELECT LN(-2);
-> NULL

This function is synonymous with LOG(X).

• LOG(X), LOG(B,X)

If called with one parameter, this function returns the natural logarithm of X.

mysql> SELECT LOG(2);
-> 0.69314718055995

mysql> SELECT LOG(-2);
-> NULL

If called with two parameters, this function returns the logarithm of X for an arbitrary base B.

mysql> SELECT LOG(2,65536);
-> 16

Functions and Operators

693

mysql> SELECT LOG(10,100);
-> 2

LOG(B,X) is equivalent to LOG(X) / LOG(B).

• LOG2(X)

Returns the base-2 logarithm of X.

mysql> SELECT LOG2(65536);
-> 16

mysql> SELECT LOG2(-100);
-> NULL

LOG2() is useful for finding out how many bits a number requires for storage. This function is
equivalent to the expression LOG(X) / LOG(2).

• LOG10(X)

Returns the base-10 logarithm of X.

mysql> SELECT LOG10(2);
-> 0.30102999566398

mysql> SELECT LOG10(100);
-> 2

mysql> SELECT LOG10(-100);
-> NULL

LOG10(X) is equivalent to LOG(10,X).

• MOD(N,M), N % M, N MOD M

Modulo operation. Returns the remainder of N divided by M.

mysql> SELECT MOD(234, 10);
-> 4

mysql> SELECT 253 % 7;
-> 1

mysql> SELECT MOD(29,9);
-> 2

mysql> SELECT 29 MOD 9;
-> 2

This function is safe to use with BIGINT values.

MOD() also works on values that have a fractional part and returns the exact remainder after divi-
sion:

mysql> SELECT MOD(34.5,3);
-> 1.5

• PI()

Returns the value of (pi). The default number of decimal places displayed is seven, but MySQL
uses the full double-precision value internally.

mysql> SELECT PI();
-> 3.141593

mysql> SELECT PI()+0.000000000000000000;
-> 3.141592653589793116

• POW(X,Y), POWER(X,Y)

Functions and Operators

694

Returns the value of X raised to the power of Y.

mysql> SELECT POW(2,2);
-> 4

mysql> SELECT POW(2,-2);
-> 0.25

• RADIANS(X)

Returns the argument X, converted from degrees to radians. (Note that radians equals 180 de-
grees.)

mysql> SELECT RADIANS(90);
-> 1.5707963267949

• RAND(), RAND(N)

Returns a random floating-point value v between 0 and 1 inclusive (that is, in the range 0 <= v <=
1.0). If an integer argument N is specified, it is used as the seed value, which produces a repeatable
sequence of column values.

mysql> SELECT RAND();
-> 0.9233482386203

mysql> SELECT RAND(20);
-> 0.15888261251047

mysql> SELECT RAND(20);
-> 0.15888261251047

mysql> SELECT RAND();
-> 0.63553050033332

mysql> SELECT RAND();
-> 0.70100469486881

mysql> SELECT RAND(20);
-> 0.15888261251047

To obtain a random integer R in the range i <= R <= j, use the expression FLOOR(i + RAND()
* (j – i). For example, to obtain a random integer in the range of 7 to 12 inclusive, you could
use the following statement:

SELECT FLOOR(7 + (RAND() * 5));

You cannot use a column with RAND() values in an ORDER BY clause, because ORDER BY would
evaluate the column multiple times. However, you can retrieve rows in random order like this:

mysql> SELECT * FROM tbl_name ORDER BY RAND();

ORDER BY RAND() combined with LIMIT is useful for selecting a random sample from a set of
rows:

mysql> SELECT * FROM table1, table2 WHERE a=b AND c<d -> ORDER BY RAND() LIMIT 1000;

Note that RAND() in a WHERE clause is re-evaluated every time the WHERE is executed.

RAND() is not meant to be a perfect random generator, but instead is a fast way to generate ad hoc
random numbers which is portable between platforms for the same MySQL version.

• ROUND(X), ROUND(X,D)

Returns the argument X, rounded to the nearest integer. With two arguments, returns X rounded to D
decimal places. D can be negative to cause D digits left of the decimal point of the value X to become
zero.

Functions and Operators

695

mysql> SELECT ROUND(-1.23);
-> -1

mysql> SELECT ROUND(-1.58);
-> -2

mysql> SELECT ROUND(1.58);
-> 2

mysql> SELECT ROUND(1.298, 1);
-> 1.3

mysql> SELECT ROUND(1.298, 0);
-> 1

mysql> SELECT ROUND(23.298, -1);
-> 20

The return type is the same type as that of the first argument (assuming that it is integer, double, or
decimal). This means that for an integer argument, the result is an integer (no decimal places).

Before MySQL 5.0.3, the behavior of ROUND() when the argument is halfway between two in-
tegers depends on the C library implementation. Different implementations round to the nearest even
number, always up, always down, or always toward zero. If you need one kind of rounding, you
should use a well-defined function such as TRUNCATE() or FLOOR() instead.

As of MySQL 5.0.3, ROUND() uses the precision math library for exact-value arguments when the
first argument is a decimal value:

• For exact-value numbers, ROUND() uses the “round half up” or “round toward nearest” rule: A
value with a fractional part of .5 or greater is rounded up to the next integer if positive or down
to the next integer if negative. (In other words, it is rounded away from zero.) A value with a
fractional part less than .5 is rounded down to the next integer if positive or up to the next integer
if negative.

• For approximate-value numbers, the result depends on the C library. On many systems, this
means that ROUND() uses the "round to nearest even" rule: A value with any fractional part is
rounded to the nearest even integer.

The following example shows how rounding differs for exact and approximate values:

mysql> SELECT ROUND(2.5), ROUND(25E-1);
+------------+--------------+
| ROUND(2.5) | ROUND(25E-1) |
+------------+--------------+
| 3 | 2 |
+------------+--------------+

For more information, see Chapter 21, Precision Math.

• SIGN(X)

Returns the sign of the argument as -1, 0, or 1, depending on whether X is negative, zero, or posit-
ive.

mysql> SELECT SIGN(-32);
-> -1

mysql> SELECT SIGN(0);
-> 0

mysql> SELECT SIGN(234);
-> 1

• SIN(X)

Returns the sine of X, where X is given in radians.

mysql> SELECT SIN(PI());
-> 1.2246063538224e-16

Functions and Operators

696

mysql> SELECT ROUND(SIN(PI()));
-> 0

• SQRT(X)

Returns the square root of a non-negative number X.

mysql> SELECT SQRT(4);
-> 2

mysql> SELECT SQRT(20);
-> 4.4721359549996

mysql> SELECT SQRT(-16);
-> NULL

• TAN(X)

Returns the tangent of X, where X is given in radians.

mysql> SELECT TAN(PI());
-> -1.2246063538224e-16

mysql> SELECT TAN(PI()+1);
-> 1.5574077246549

• TRUNCATE(X,D)

Returns the number X, truncated to D decimal places. If D is 0, the result has no decimal point or
fractional part. D can be negative to cause D digits left of the decimal point of the value X to become
zero.

mysql> SELECT TRUNCATE(1.223,1);
-> 1.2

mysql> SELECT TRUNCATE(1.999,1);
-> 1.9

mysql> SELECT TRUNCATE(1.999,0);
-> 1

mysql> SELECT TRUNCATE(-1.999,1);
-> -1.9

mysql> SELECT TRUNCATE(122,-2);
-> 100

mysql> SELECT TRUNCATE(10.28*100,0);
-> 1028

All numbers are rounded toward zero.

12.5. Date and Time Functions
This section describes the functions that can be used to manipulate temporal values. See Section 11.3,
“Date and Time Types”, for a description of the range of values each date and time type has and the val-
id formats in which values may be specified.

Here is an example that uses date functions. The following query selects all rows with a date_col
value from within the last 30 days:

mysql> SELECT something FROM tbl_name
-> WHERE DATE_SUB(CURDATE(),INTERVAL 30 DAY) <= date_col;

Note that the query also selects rows with dates that lie in the future.

Functions that expect date values usually accept datetime values and ignore the time part. Functions that
expect time values usually accept datetime values and ignore the date part.

Functions and Operators

697

Functions that return the current date or time each are evaluated only once per query at the start of query
execution. This means that multiple references to a function such as NOW() within a single query al-
ways produce the same result (for our purposes a single query also includes a call to a stored routine or
trigger and all sub-routines called by that routine/trigger). This principle also applies to CURDATE(),
CURTIME(), UTC_DATE(), UTC_TIME(), UTC_TIMESTAMP(), and to any of their synonyms.

The CURRENT_TIMESTAMP(), CURRENT_TIME(), CURRENT_DATE(), and
FROM_UNIXTIME() functions return values in the connection's current time zone, which is available
as the value of the time_zone system variable. In addition, UNIX_TIMESTAMP() assumes that its
argument is a datetime value in the current time zone. See Section 5.11.8, “MySQL Server Time Zone
Support”.

Some date functions can be used with “zero” dates or incomplete dates such as '2001-11-00',
whereas others cannot. Functions that extract parts of dates typically work with incomplete dates. For
example:

mysql> SELECT DAYOFMONTH('2001-11-00'), MONTH('2005-00-00');
-> 0, 0

Other functions expect complete dates and return NULL for incomplete dates. These include functions
that perform date arithmetic or that map parts of dates to names. For example:

mysql> SELECT DATE_ADD('2006-05-00',INTERVAL 1 DAY);
-> NULL

mysql> SELECT DAYNAME('2006-05-00');
-> NULL

• ADDDATE(date,INTERVAL expr unit), ADDDATE(expr,days)

When invoked with the INTERVAL form of the second argument, ADDDATE() is a synonym for
DATE_ADD(). The related function SUBDATE() is a synonym for DATE_SUB(). For information
on the INTERVAL unit argument, see the discussion for DATE_ADD().

mysql> SELECT DATE_ADD('1998-01-02', INTERVAL 31 DAY);
-> '1998-02-02'

mysql> SELECT ADDDATE('1998-01-02', INTERVAL 31 DAY);
-> '1998-02-02'

When invoked with the days form of the second argument, MySQL treats it as an integer number
of days to be added to expr.

mysql> SELECT ADDDATE('1998-01-02', 31);
-> '1998-02-02'

• ADDTIME(expr1,expr2)

ADDTIME() adds expr2 to expr1 and returns the result. expr1 is a time or datetime expression,
and expr2 is a time expression.

mysql> SELECT ADDTIME('1997-12-31 23:59:59.999999',
-> '1 1:1:1.000002');

-> '1998-01-02 01:01:01.000001'
mysql> SELECT ADDTIME('01:00:00.999999', '02:00:00.999998');

-> '03:00:01.999997'

• CONVERT_TZ(dt,from_tz,to_tz)

CONVERT_TZ() converts a datetime value dt from the time zone given by from_tz to the time
zone given by to_tz and returns the resulting value. Time zones are specified as described in Sec-

Functions and Operators

698

tion 5.11.8, “MySQL Server Time Zone Support”. This function returns NULL if the arguments are
invalid.

If the value falls out of the supported range of the TIMESTAMP type when converted fom from_tz
to UTC, no conversion occurs. The TIMESTAMP range is described in Section 11.1.2, “Overview of
Date and Time Types”.

mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','GMT','MET');
-> '2004-01-01 13:00:00'

mysql> SELECT CONVERT_TZ('2004-01-01 12:00:00','+00:00','+10:00');
-> '2004-01-01 22:00:00'

Note: To use named time zones such as 'MET' or 'Europe/Moscow', the time zone tables must
be properly set up. See Section 5.11.8, “MySQL Server Time Zone Support”, for instructions.

If you intend to use CONVERT_TZ() while other tables are locked with LOCK TABLES, you must
also lock the mysql.time_zone_name table.

• CURDATE()

Returns the current date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on wheth-
er the function is used in a string or numeric context.

mysql> SELECT CURDATE();
-> '1997-12-15'

mysql> SELECT CURDATE() + 0;
-> 19971215

• CURRENT_DATE, CURRENT_DATE()

CURRENT_DATE and CURRENT_DATE() are synonyms for CURDATE().

• CURTIME()

Returns the current time as a value in 'HH:MM:SS' or HHMMSS format, depending on whether the
function is used in a string or numeric context.

mysql> SELECT CURTIME();
-> '23:50:26'

mysql> SELECT CURTIME() + 0;
-> 235026

• CURRENT_TIME, CURRENT_TIME()

CURRENT_TIME and CURRENT_TIME() are synonyms for CURTIME().

• CURRENT_TIMESTAMP, CURRENT_TIMESTAMP()

CURRENT_TIMESTAMP and CURRENT_TIMESTAMP() are synonyms for NOW().

• DATE(expr)

Extracts the date part of the date or datetime expression expr.

mysql> SELECT DATE('2003-12-31 01:02:03');
-> '2003-12-31'

• DATEDIFF(expr1,expr2)

DATEDIFF() returns expr1 – expr2 expressed as a value in days from one date to the other.

Functions and Operators

699

expr1 and expr2 are date or date-and-time expressions. Only the date parts of the values are used
in the calculation.

mysql> SELECT DATEDIFF('1997-12-31 23:59:59','1997-12-30');
-> 1

mysql> SELECT DATEDIFF('1997-11-30 23:59:59','1997-12-31');
-> -31

• DATE_ADD(date,INTERVAL expr unit), DATE_SUB(date,INTERVAL expr unit)

These functions perform date arithmetic. date is a DATETIME or DATE value specifying the start-
ing date. expr is an expression specifying the interval value to be added or subtracted from the
starting date. expr is a string; it may start with a ‘-’ for negative intervals. unit is a keyword in-
dicating the units in which the expression should be interpreted.

The INTERVAL keyword and the unit specifier are not case sensitive.

The following table shows the expected form of the expr argument for each unit value.

unit Value Expected expr Format

MICROSECOND MICROSECONDS

SECOND SECONDS

MINUTE MINUTES

HOUR HOURS

DAY DAYS

WEEK WEEKS

MONTH MONTHS

QUARTER QUARTERS

YEAR YEARS

SECOND_MICROSECOND 'SECONDS.MICROSECONDS'

MINUTE_MICROSECOND 'MINUTES.MICROSECONDS'

MINUTE_SECOND 'MINUTES:SECONDS'

HOUR_MICROSECOND 'HOURS.MICROSECONDS'

HOUR_SECOND 'HOURS:MINUTES:SECONDS'

HOUR_MINUTE 'HOURS:MINUTES'

DAY_MICROSECOND 'DAYS.MICROSECONDS'

DAY_SECOND 'DAYS HOURS:MINUTES:SECONDS'

DAY_MINUTE 'DAYS HOURS:MINUTES'

DAY_HOUR 'DAYS HOURS'

YEAR_MONTH 'YEARS-MONTHS'

The values QUARTER and WEEK are available beginning with MySQL 5.0.0.

MySQL allows any punctuation delimiter in the expr format. Those shown in the table are the sug-
gested delimiters. If the date argument is a DATE value and your calculations involve only YEAR,
MONTH, and DAY parts (that is, no time parts), the result is a DATE value. Otherwise, the result is a
DATETIME value.

Date arithmetic also can be performed using INTERVAL together with the + or - operator:

Functions and Operators

700

date + INTERVAL expr unit
date - INTERVAL expr unit

INTERVAL expr unit is allowed on either side of the + operator if the expression on the other
side is a date or datetime value. For the - operator, INTERVAL expr unit is allowed only on
the right side, because it makes no sense to subtract a date or datetime value from an interval.

mysql> SELECT '1997-12-31 23:59:59' + INTERVAL 1 SECOND;
-> '1998-01-01 00:00:00'

mysql> SELECT INTERVAL 1 DAY + '1997-12-31';
-> '1998-01-01'

mysql> SELECT '1998-01-01' - INTERVAL 1 SECOND;
-> '1997-12-31 23:59:59'

mysql> SELECT DATE_ADD('1997-12-31 23:59:59',
-> INTERVAL 1 SECOND);

-> '1998-01-01 00:00:00'
mysql> SELECT DATE_ADD('1997-12-31 23:59:59',

-> INTERVAL 1 DAY);
-> '1998-01-01 23:59:59'

mysql> SELECT DATE_ADD('1997-12-31 23:59:59',
-> INTERVAL '1:1' MINUTE_SECOND);

-> '1998-01-01 00:01:00'
mysql> SELECT DATE_SUB('1998-01-01 00:00:00',

-> INTERVAL '1 1:1:1' DAY_SECOND);
-> '1997-12-30 22:58:59'

mysql> SELECT DATE_ADD('1998-01-01 00:00:00',
-> INTERVAL '-1 10' DAY_HOUR);

-> '1997-12-30 14:00:00'
mysql> SELECT DATE_SUB('1998-01-02', INTERVAL 31 DAY);

-> '1997-12-02'
mysql> SELECT DATE_ADD('1992-12-31 23:59:59.000002',

-> INTERVAL '1.999999' SECOND_MICROSECOND);
-> '1993-01-01 00:00:01.000001'

If you specify an interval value that is too short (does not include all the interval parts that would be
expected from the unit keyword), MySQL assumes that you have left out the leftmost parts of the
interval value. For example, if you specify a unit of DAY_SECOND, the value of expr is expected
to have days, hours, minutes, and seconds parts. If you specify a value like '1:10', MySQL as-
sumes that the days and hours parts are missing and the value represents minutes and seconds. In
other words, '1:10' DAY_SECOND is interpreted in such a way that it is equivalent to '1:10'
MINUTE_SECOND. This is analogous to the way that MySQL interprets TIME values as represent-
ing elapsed time rather than as a time of day.

If you add to or subtract from a date value something that contains a time part, the result is automat-
ically converted to a datetime value:

mysql> SELECT DATE_ADD('1999-01-01', INTERVAL 1 DAY);
-> '1999-01-02'

mysql> SELECT DATE_ADD('1999-01-01', INTERVAL 1 HOUR);
-> '1999-01-01 01:00:00'

If you add MONTH, YEAR_MONTH, or YEAR and the resulting date has a day that is larger than the
maximum day for the new month, the day is adjusted to the maximum days in the new month:

mysql> SELECT DATE_ADD('1998-01-30', INTERVAL 1 MONTH);
-> '1998-02-28'

Date arithmetic operations require complete dates and do not work with incomplete dates such as
'2006-07-00' or badly malformed dates:

mysql> SELECT DATE_ADD('2006-07-00', INTERVAL 1 DAY);
-> NULL

mysql> SELECT '2005-03-32' + INTERVAL 1 MONTH;
-> NULL

Functions and Operators

701

• DATE_FORMAT(date,format)

Formats the date value according to the format string.

The following specifiers may be used in the format string. The ‘%’ character is required before
format specifier characters.

Specifier Description

%a Abbreviated weekday name (Sun..Sat)

%b Abbreviated month name (Jan..Dec)

%c Month, numeric (0..12)

%D Day of the month with English suffix (0th, 1st, 2nd, 3rd,)

%d Day of the month, numeric (00..31)

%e Day of the month, numeric (0..31)

%f Microseconds (000000..999999)

%H Hour (00..23)

%h Hour (01..12)

%I Hour (01..12)

%i Minutes, numeric (00..59)

%j Day of year (001..366)

%k Hour (0..23)

%l Hour (1..12)

%M Month name (January..December)

%m Month, numeric (00..12)

%p AM or PM

%r Time, 12-hour (hh:mm:ss followed by AM or PM)

%S Seconds (00..59)

%s Seconds (00..59)

%T Time, 24-hour (hh:mm:ss)

%U Week (00..53), where Sunday is the first day of the week

%u Week (00..53), where Monday is the first day of the week

%V Week (01..53), where Sunday is the first day of the week; used with %X

%v Week (01..53), where Monday is the first day of the week; used with %x

%W Weekday name (Sunday..Saturday)

%w Day of the week (0=Sunday..6=Saturday)

%X Year for the week where Sunday is the first day of the week, numeric, four di-
gits; used with %V

%x Year for the week, where Monday is the first day of the week, numeric, four di-
gits; used with %v

%Y Year, numeric, four digits

%y Year, numeric (two digits)

%% A literal ‘%’ character

%x x, for any ‘x’ not listed above

Functions and Operators

702

Ranges for the month and day specifiers begin with zero due to the fact that MySQL allows the stor-
ing of incomplete dates such as '2004-00-00'.

mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00', '%W %M %Y');
-> 'Saturday October 1997'

mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00', '%H:%i:%s');
-> '22:23:00'

mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00',
'%D %y %a %d %m %b %j');

-> '4th 97 Sat 04 10 Oct 277'
mysql> SELECT DATE_FORMAT('1997-10-04 22:23:00',

'%H %k %I %r %T %S %w');
-> '22 22 10 10:23:00 PM 22:23:00 00 6'

mysql> SELECT DATE_FORMAT('1999-01-01', '%X %V');
-> '1998 52'

mysql> SELECT DATE_FORMAT('2006-06-00', '%d');
-> '00'

• DAY(date)

DAY() is a synonym for DAYOFMONTH().

• DAYNAME(date)

Returns the name of the weekday for date.

mysql> SELECT DAYNAME('1998-02-05');
-> 'Thursday'

• DAYOFMONTH(date)

Returns the day of the month for date, in the range 0 to 31.

mysql> SELECT DAYOFMONTH('1998-02-03');
-> 3

• DAYOFWEEK(date)

Returns the weekday index for date (1 = Sunday, 2 = Monday, , 7 = Saturday). These index val-
ues correspond to the ODBC standard.

mysql> SELECT DAYOFWEEK('1998-02-03');
-> 3

• DAYOFYEAR(date)

Returns the day of the year for date, in the range 1 to 366.

mysql> SELECT DAYOFYEAR('1998-02-03');
-> 34

• EXTRACT(unit FROM date)

The EXTRACT() function uses the same kinds of unit specifiers as DATE_ADD() or
DATE_SUB(), but extracts parts from the date rather than performing date arithmetic.

mysql> SELECT EXTRACT(YEAR FROM '1999-07-02');
-> 1999

mysql> SELECT EXTRACT(YEAR_MONTH FROM '1999-07-02 01:02:03');
-> 199907

mysql> SELECT EXTRACT(DAY_MINUTE FROM '1999-07-02 01:02:03');
-> 20102

mysql> SELECT EXTRACT(MICROSECOND

Functions and Operators

703

-> FROM '2003-01-02 10:30:00.00123');
-> 123

• FROM_DAYS(N)

Given a day number N, returns a DATE value.

mysql> SELECT FROM_DAYS(729669);
-> '1997-10-07'

Use FROM_DAYS() with caution on old dates. It is not intended for use with values that precede the
advent of the Gregorian calendar (1582). See Section 12.6, “What Calendar Is Used By MySQL?”.

• FROM_UNIXTIME(unix_timestamp), FROM_UNIXTIME(unix_timestamp,format)

Returns a representation of the unix_timestamp argument as a value in 'YYYY-MM-DD
HH:MM:SS' or YYYYMMDDHHMMSS format, depending on whether the function is used in a string
or numeric context. unix_timestamp is an internal timestamp value such as is produced by the
UNIX_TIMESTAMP() function.

If format is given, the result is formatted according to the format string, which is used the same
way as listed in the entry for the DATE_FORMAT() function.

mysql> SELECT FROM_UNIXTIME(875996580);
-> '1997-10-04 22:23:00'

mysql> SELECT FROM_UNIXTIME(875996580) + 0;
-> 19971004222300

mysql> SELECT FROM_UNIXTIME(UNIX_TIMESTAMP(),
-> '%Y %D %M %h:%i:%s %x');

-> '2003 6th August 06:22:58 2003'

Note: If you use UNIX_TIMESTAMP() and FROM_UNIXTIME() to convert between
TIMESTAMP values and Unix timestamp values, the conversion is lossy because the mapping is not
one-to-one in both directions. For details, see the description of the UNIX_TIMESTAMP() func-
tion.

• GET_FORMAT(DATE|TIME|DATETIME, 'EUR'|'USA'|'JIS'|'ISO'|'INTERNAL')

Returns a format string. This function is useful in combination with the DATE_FORMAT() and the
STR_TO_DATE() functions.

The possible values for the first and second arguments result in several possible format strings (for
the specifiers used, see the table in the DATE_FORMAT() function description). ISO format refers
to ISO 9075, not ISO 8601.

Function Call Result

GET_FORMAT(DATE,'USA') '%m.%d.%Y'

GET_FORMAT(DATE,'JIS') '%Y-%m-%d'

GET_FORMAT(DATE,'ISO') '%Y-%m-%d'

GET_FORMAT(DATE,'EUR') '%d.%m.%Y'

GET_FORMAT(DATE,'INTERNAL') '%Y%m%d'

GET_FORMAT(DATETIME,'USA') '%Y-%m-%d %H.%i.%s'

GET_FORMAT(DATETIME,'JIS') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'ISO') '%Y-%m-%d %H:%i:%s'

GET_FORMAT(DATETIME,'EUR') '%Y-%m-%d %H.%i.%s'

Functions and Operators

704

GET_FORMAT(DATETIME,'INTERNAL') '%Y%m%d%H%i%s'

GET_FORMAT(TIME,'USA') '%h:%i:%s %p'

GET_FORMAT(TIME,'JIS') '%H:%i:%s'

GET_FORMAT(TIME,'ISO') '%H:%i:%s'

GET_FORMAT(TIME,'EUR') '%H.%i.%s'

GET_FORMAT(TIME,'INTERNAL') '%H%i%s'

TIMESTAMP can also be used as the first argument to GET_FORMAT(), in which case the function
returns the same values as for DATETIME.

mysql> SELECT DATE_FORMAT('2003-10-03',GET_FORMAT(DATE,'EUR'));
-> '03.10.2003'

mysql> SELECT STR_TO_DATE('10.31.2003',GET_FORMAT(DATE,'USA'));
-> '2003-10-31'

• HOUR(time)

Returns the hour for time. The range of the return value is 0 to 23 for time-of-day values.
However, the range of TIME values actually is much larger, so HOUR can return values greater than
23.

mysql> SELECT HOUR('10:05:03');
-> 10

mysql> SELECT HOUR('272:59:59');
-> 272

• LAST_DAY(date)

Takes a date or datetime value and returns the corresponding value for the last day of the month. Re-
turns NULL if the argument is invalid.

mysql> SELECT LAST_DAY('2003-02-05');
-> '2003-02-28'

mysql> SELECT LAST_DAY('2004-02-05');
-> '2004-02-29'

mysql> SELECT LAST_DAY('2004-01-01 01:01:01');
-> '2004-01-31'

mysql> SELECT LAST_DAY('2003-03-32');
-> NULL

• LOCALTIME, LOCALTIME()

LOCALTIME and LOCALTIME() are synonyms for NOW().

• LOCALTIMESTAMP, LOCALTIMESTAMP()

LOCALTIMESTAMP and LOCALTIMESTAMP() are synonyms for NOW().

• MAKEDATE(year,dayofyear)

Returns a date, given year and day-of-year values. dayofyear must be greater than 0 or the result
is NULL.

mysql> SELECT MAKEDATE(2001,31), MAKEDATE(2001,32);
-> '2001-01-31', '2001-02-01'

mysql> SELECT MAKEDATE(2001,365), MAKEDATE(2004,365);
-> '2001-12-31', '2004-12-30'

mysql> SELECT MAKEDATE(2001,0);
-> NULL

Functions and Operators

705

• MAKETIME(hour,minute,second)

Returns a time value calculated from the hour, minute, and second arguments.

mysql> SELECT MAKETIME(12,15,30);
-> '12:15:30'

• MICROSECOND(expr)

Returns the microseconds from the time or datetime expression expr as a number in the range from
0 to 999999.

mysql> SELECT MICROSECOND('12:00:00.123456');
-> 123456

mysql> SELECT MICROSECOND('1997-12-31 23:59:59.000010');
-> 10

• MINUTE(time)

Returns the minute for time, in the range 0 to 59.

mysql> SELECT MINUTE('98-02-03 10:05:03');
-> 5

• MONTH(date)

Returns the month for date, in the range 0 to 12.

mysql> SELECT MONTH('1998-02-03');
-> 2

• MONTHNAME(date)

Returns the full name of the month for date.

mysql> SELECT MONTHNAME('1998-02-05');
-> 'February'

• NOW()

Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDH-
HMMSS format, depending on whether the function is used in a string or numeric context.

mysql> SELECT NOW();
-> '1997-12-15 23:50:26'

mysql> SELECT NOW() + 0;
-> 19971215235026

NOW() returns a constant time that indicates the time at which the statement began to execute.
(Within a stored routine or trigger, NOW() returns the time at which the routine or triggering state-
ment began to execute.) This differs from the behavior for SYSDATE(), which returns the exact
time at which it executes as of MySQL 5.0.13.

mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW() | SLEEP(2) | NOW() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 | 0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+

Functions and Operators

706

mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+
| SYSDATE() | SLEEP(2) | SYSDATE() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 | 0 | 2006-04-12 13:47:46 |
+---------------------+----------+---------------------+

See the description for SYSDATE() for additional information about the differences between the
two functions.

• PERIOD_ADD(P,N)

Adds N months to period P (in the format YYMM or YYYYMM). Returns a value in the format
YYYYMM. Note that the period argument P is not a date value.

mysql> SELECT PERIOD_ADD(9801,2);
-> 199803

• PERIOD_DIFF(P1,P2)

Returns the number of months between periods P1 and P2. P1 and P2 should be in the format
YYMM or YYYYMM. Note that the period arguments P1 and P2 are not date values.

mysql> SELECT PERIOD_DIFF(9802,199703);
-> 11

• QUARTER(date)

Returns the quarter of the year for date, in the range 1 to 4.

mysql> SELECT QUARTER('98-04-01');
-> 2

• SECOND(time)

Returns the second for time, in the range 0 to 59.

mysql> SELECT SECOND('10:05:03');
-> 3

• SEC_TO_TIME(seconds)

Returns the seconds argument, converted to hours, minutes, and seconds, as a value in
'HH:MM:SS' or HHMMSS format, depending on whether the function is used in a string or numeric
context.

mysql> SELECT SEC_TO_TIME(2378);
-> '00:39:38'

mysql> SELECT SEC_TO_TIME(2378) + 0;
-> 3938

• STR_TO_DATE(str,format)

This is the inverse of the DATE_FORMAT() function. It takes a string str and a format string
format. STR_TO_DATE() returns a DATETIME value if the format string contains both date and
time parts, or a DATE or TIME value if the string contains only date or time parts.

The date, time, or datetime values contained in str should be given in the format indicated by
format. For the specifiers that can be used in format, see the DATE_FORMAT() function de-
scription. If str contains an illegal date, time, or datetime value, STR_TO_DATE() returns NULL.

Functions and Operators

707

Starting from MySQL 5.0.3, an illegal value also produces a warning.

Range checking on the parts of date values is as described in Section 11.3.1, “The DATETIME,
DATE, and TIMESTAMP Types”. This means, for example, that “zero” dates or dates with part val-
ues of 0 are allowed unless the SQL mode is set to disallow such values.

mysql> SELECT STR_TO_DATE('00/00/0000', '%m/%d/%Y');
-> '0000-00-00'

mysql> SELECT STR_TO_DATE('04/31/2004', '%m/%d/%Y');
-> '2004-04-31'

Note: You cannot use format "%X%V" to convert a year-week string to a date because the combina-
tion of a year and week does not uniquely identify a year and month if the week crosses a month
boundary. To convert a year-week to a date, then you should also specify the weekday:

mysql> SELECT STR_TO_DATE('200442 Monday', '%X%V %W');
-> '2004-10-18'

• SUBDATE(date,INTERVAL expr unit), SUBDATE(expr,days)

When invoked with the INTERVAL form of the second argument, SUBDATE() is a synonym for
DATE_SUB(). For information on the INTERVAL unit argument, see the discussion for
DATE_ADD().

mysql> SELECT DATE_SUB('1998-01-02', INTERVAL 31 DAY);
-> '1997-12-02'

mysql> SELECT SUBDATE('1998-01-02', INTERVAL 31 DAY);
-> '1997-12-02'

The second form allows the use of an integer value for days. In such cases, it is interpreted as the
number of days to be subtracted from the date or datetime expression expr.

mysql> SELECT SUBDATE('1998-01-02 12:00:00', 31);
-> '1997-12-02 12:00:00'

• SUBTIME(expr1,expr2)

SUBTIME() returns expr1 – expr2 expressed as a value in the same format as expr1. expr1
is a time or datetime expression, and expr2 is a time expression.

mysql> SELECT SUBTIME('1997-12-31 23:59:59.999999','1 1:1:1.000002');
-> '1997-12-30 22:58:58.999997'

mysql> SELECT SUBTIME('01:00:00.999999', '02:00:00.999998');
-> '-00:59:59.999999'

• SYSDATE()

Returns the current date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMMDDH-
HMMSS format, depending on whether the function is used in a string or numeric context.

As of MySQL 5.0.13, SYSDATE() returns the time at which it executes. This differs from the beha-
vior for NOW(), which returns a constant time that indicates the time at which the statement began to
execute. (Within a stored routine or trigger, NOW() returns the time at which the routine or trigger-
ing statement began to execute.)

mysql> SELECT NOW(), SLEEP(2), NOW();
+---------------------+----------+---------------------+
| NOW() | SLEEP(2) | NOW() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:36 | 0 | 2006-04-12 13:47:36 |
+---------------------+----------+---------------------+

Functions and Operators

708

mysql> SELECT SYSDATE(), SLEEP(2), SYSDATE();
+---------------------+----------+---------------------+
| SYSDATE() | SLEEP(2) | SYSDATE() |
+---------------------+----------+---------------------+
| 2006-04-12 13:47:44 | 0 | 2006-04-12 13:47:46 |
+---------------------+----------+---------------------+

In addition, the SET TIMESTAMP statement affects the value returned by NOW() but not by SYS-
DATE(). This means that timestamp settings in the binary log have no effect on invocations of
SYSDATE().

Because SYSDATE() can return different values even within the same statement, and is not affected
by SET TIMESTAMP, it is non-deterministic and therefore unsafe for replication. If that is a prob-
lem, you can start the server with the --sysdate-is-now option to cause SYSDATE() to be an
alias for NOW().

• TIME(expr)

Extracts the time part of the time or datetime expression expr and returns it as a string.

mysql> SELECT TIME('2003-12-31 01:02:03');
-> '01:02:03'

mysql> SELECT TIME('2003-12-31 01:02:03.000123');
-> '01:02:03.000123'

• TIMEDIFF(expr1,expr2)

TIMEDIFF() returns expr1 – expr2 expressed as a time value. expr1 and expr2 are time or
date-and-time expressions, but both must be of the same type.

mysql> SELECT TIMEDIFF('2000:01:01 00:00:00',
-> '2000:01:01 00:00:00.000001');

-> '-00:00:00.000001'
mysql> SELECT TIMEDIFF('1997-12-31 23:59:59.000001',

-> '1997-12-30 01:01:01.000002');
-> '46:58:57.999999'

• TIMESTAMP(expr), TIMESTAMP(expr1,expr2)

With a single argument, this function returns the date or datetime expression expr as a datetime
value. With two arguments, it adds the time expression expr2 to the date or datetime expression
expr1 and returns the result as a datetime value.

mysql> SELECT TIMESTAMP('2003-12-31');
-> '2003-12-31 00:00:00'

mysql> SELECT TIMESTAMP('2003-12-31 12:00:00','12:00:00');
-> '2004-01-01 00:00:00'

• TIMESTAMPADD(unit,interval,datetime_expr)

Adds the integer expression interval to the date or datetime expression datetime_expr. The
unit for interval is given by the unit argument, which should be one of the following values:
FRAC_SECOND, SECOND, MINUTE, HOUR, DAY, WEEK, MONTH, QUARTER, or YEAR.

The unit value may be specified using one of keywords as shown, or with a prefix of SQL_TSI_.
For example, DAY and SQL_TSI_DAY both are legal.

mysql> SELECT TIMESTAMPADD(MINUTE,1,'2003-01-02');
-> '2003-01-02 00:01:00'

mysql> SELECT TIMESTAMPADD(WEEK,1,'2003-01-02');
-> '2003-01-09'

Functions and Operators

709

TIMESTAMPADD() is available as of MySQL 5.0.0.

• TIMESTAMPDIFF(unit,datetime_expr1,datetime_expr2)

Returns the integer difference between the date or datetime expressions datetime_expr1 and
datetime_expr2. The unit for the result is given by the unit argument. The legal values for
unit are the same as those listed in the description of the TIMESTAMPADD() function.

mysql> SELECT TIMESTAMPDIFF(MONTH,'2003-02-01','2003-05-01');
-> 3

mysql> SELECT TIMESTAMPDIFF(YEAR,'2002-05-01','2001-01-01');
-> -1

TIMESTAMPDIFF() is available as of MySQL 5.0.0.

• TIME_FORMAT(time,format)

This is used like the DATE_FORMAT() function, but the format string may contain format spe-
cifiers only for hours, minutes, and seconds. Other specifiers produce a NULL value or 0.

If the time value contains an hour part that is greater than 23, the %H and %k hour format specifiers
produce a value larger than the usual range of 0..23. The other hour format specifiers produce the
hour value modulo 12.

mysql> SELECT TIME_FORMAT('100:00:00', '%H %k %h %I %l');
-> '100 100 04 04 4'

• TIME_TO_SEC(time)

Returns the time argument, converted to seconds.

mysql> SELECT TIME_TO_SEC('22:23:00');
-> 80580

mysql> SELECT TIME_TO_SEC('00:39:38');
-> 2378

• TO_DAYS(date)

Given a date date, returns a day number (the number of days since year 0).

mysql> SELECT TO_DAYS(950501);
-> 728779

mysql> SELECT TO_DAYS('1997-10-07');
-> 729669

TO_DAYS() is not intended for use with values that precede the advent of the Gregorian calendar
(1582), because it does not take into account the days that were lost when the calendar was changed.
For dates before 1582 (and possibly a later year in other locales), results from this function are not
reliable. See Section 12.6, “What Calendar Is Used By MySQL?”, for details.

Remember that MySQL converts two-digit year values in dates to four-digit form using the rules in
Section 11.3, “Date and Time Types”. For example, '1997-10-07' and '97-10-07' are seen
as identical dates:

mysql> SELECT TO_DAYS('1997-10-07'), TO_DAYS('97-10-07');
-> 729669, 729669

• UNIX_TIMESTAMP(), UNIX_TIMESTAMP(date)

Functions and Operators

710

If called with no argument, returns a Unix timestamp (seconds since '1970-01-01 00:00:00'
UTC) as an unsigned integer. If UNIX_TIMESTAMP() is called with a date argument, it returns
the value of the argument as seconds since '1970-01-01 00:00:00' UTC. date may be a
DATE string, a DATETIME string, a TIMESTAMP, or a number in the format YYMMDD or YYYYMM-
DD. The server interprets date as a value in the current time zone and converts it to an internal
value in UTC. Clients can set their time zone as described in Section 5.11.8, “MySQL Server Time
Zone Support”.

mysql> SELECT UNIX_TIMESTAMP();
-> 882226357

mysql> SELECT UNIX_TIMESTAMP('1997-10-04 22:23:00');
-> 875996580

When UNIX_TIMESTAMP is used on a TIMESTAMP column, the function returns the internal
timestamp value directly, with no implicit “string-to-Unix-timestamp” conversion. If you pass an
out-of-range date to UNIX_TIMESTAMP(), it returns 0.

Note: If you use UNIX_TIMESTAMP() and FROM_UNIXTIME() to convert between
TIMESTAMP values and Unix timestamp values, the conversion is lossy because the mapping is not
one-to-one in both directions. For example, due to conventions for local time zone changes, it is pos-
sible for two UNIX_TIMESTAMP() to map two TIMESTAMP values to the same Unix timestamp
value. FROM_UNIXTIME() will map that value back to only one of the original TIMESTAMP val-
ues. Here is an example, using TIMESTAMP values in the CET time zone:

mysql> SELECT UNIX_TIMESTAMP('2005-03-27 03:00:00');
+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 03:00:00') |
+---------------------------------------+
| 1111885200 |
+---------------------------------------+
mysql> SELECT UNIX_TIMESTAMP('2005-03-27 02:00:00');
+---------------------------------------+
| UNIX_TIMESTAMP('2005-03-27 02:00:00') |
+---------------------------------------+
| 1111885200 |
+---------------------------------------+
mysql> SELECT FROM_UNIXTIME(1111885200);
+---------------------------+
| FROM_UNIXTIME(1111885200) |
+---------------------------+
| 2005-03-27 03:00:00 |
+---------------------------+

If you want to subtract UNIX_TIMESTAMP() columns, you might want to cast the result to signed
integers. See Section 12.8, “Cast Functions and Operators”.

• UTC_DATE, UTC_DATE()

Returns the current UTC date as a value in 'YYYY-MM-DD' or YYYYMMDD format, depending on
whether the function is used in a string or numeric context.

mysql> SELECT UTC_DATE(), UTC_DATE() + 0;
-> '2003-08-14', 20030814

• UTC_TIME, UTC_TIME()

Returns the current UTC time as a value in 'HH:MM:SS' or HHMMSS format, depending on wheth-
er the function is used in a string or numeric context.

mysql> SELECT UTC_TIME(), UTC_TIME() + 0;
-> '18:07:53', 180753

Functions and Operators

711

• UTC_TIMESTAMP, UTC_TIMESTAMP()

Returns the current UTC date and time as a value in 'YYYY-MM-DD HH:MM:SS' or YYYYMM-
DDHHMMSS format, depending on whether the function is used in a string or numeric context.

mysql> SELECT UTC_TIMESTAMP(), UTC_TIMESTAMP() + 0;
-> '2003-08-14 18:08:04', 20030814180804

• WEEK(date[,mode])

This function returns the week number for date. The two-argument form of WEEK() allows you to
specify whether the week starts on Sunday or Monday and whether the return value should be in the
range from 0 to 53 or from 1 to 53. If the mode argument is omitted, the value of the de-
fault_week_format system variable is used. See Section 5.2.3, “System Variables”.

The following table describes how the mode argument works.

First day

Mode of week Range Week 1 is the first week

0 Sunday 0-53 with a Sunday in this year

1 Monday 0-53 with more than 3 days this year

2 Sunday 1-53 with a Sunday in this year

3 Monday 1-53 with more than 3 days this year

4 Sunday 0-53 with more than 3 days this year

5 Monday 0-53 with a Monday in this year

6 Sunday 1-53 with more than 3 days this year

7 Monday 1-53 with a Monday in this year

mysql> SELECT WEEK('1998-02-20');
-> 7

mysql> SELECT WEEK('1998-02-20',0);
-> 7

mysql> SELECT WEEK('1998-02-20',1);
-> 8

mysql> SELECT WEEK('1998-12-31',1);
-> 53

Note that if a date falls in the last week of the previous year, MySQL returns 0 if you do not use 2,
3, 6, or 7 as the optional mode argument:

mysql> SELECT YEAR('2000-01-01'), WEEK('2000-01-01',0);
-> 2000, 0

One might argue that MySQL should return 52 for the WEEK() function, because the given date ac-
tually occurs in the 52nd week of 1999. We decided to return 0 instead because we want the func-
tion to return “the week number in the given year.” This makes use of the WEEK() function reliable
when combined with other functions that extract a date part from a date.

If you would prefer the result to be evaluated with respect to the year that contains the first day of
the week for the given date, use 0, 2, 5, or 7 as the optional mode argument.

mysql> SELECT WEEK('2000-01-01',2);
-> 52

Alternatively, use the YEARWEEK() function:

Functions and Operators

712

mysql> SELECT YEARWEEK('2000-01-01');
-> 199952

mysql> SELECT MID(YEARWEEK('2000-01-01'),5,2);
-> '52'

• WEEKDAY(date)

Returns the weekday index for date (0 = Monday, 1 = Tuesday, 6 = Sunday).

mysql> SELECT WEEKDAY('1998-02-03 22:23:00');
-> 1

mysql> SELECT WEEKDAY('1997-11-05');
-> 2

• WEEKOFYEAR(date)

Returns the calendar week of the date as a number in the range from 1 to 53. WEEKOFYEAR() is a
compatibility function that is equivalent to WEEK(date,3).

mysql> SELECT WEEKOFYEAR('1998-02-20');
-> 8

• YEAR(date)

Returns the year for date, in the range 1000 to 9999, or 0 for the “zero” date.

mysql> SELECT YEAR('98-02-03');
-> 1998

• YEARWEEK(date), YEARWEEK(date,start)

Returns year and week for a date. The start argument works exactly like the start argument to
WEEK(). The year in the result may be different from the year in the date argument for the first and
the last week of the year.

mysql> SELECT YEARWEEK('1987-01-01');
-> 198653

Note that the week number is different from what the WEEK() function would return (0) for option-
al arguments 0 or 1, as WEEK() then returns the week in the context of the given year.

12.6. What Calendar Is Used By MySQL?
MySQL uses what is known as a proleptic Gregorian calendar.

Every country that has switched from the Julian to the Gregorian calendar has had to discard at least ten
days during the switch. To see how this works, consider the month of October 1582, when the first Juli-
an-to-Gregorian switch occurred:

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

1 2 3 4 15 16 17

18 19 20 21 22 23 24

25 26 27 28 29 30 31

Functions and Operators

713

There are no dates between October 4 and October 15. This discontinuity is called the cutover. Any
dates before the cutover are Julian, and any dates following the cutover are Gregorian. Dates during a
cutover are non-existent.

A calendar applied to dates when it wasn't actually in use is called proleptic. Thus, if we assume there
was never a cutover and Gregorian rules always rule, we have a proleptic Gregorian calendar. This is
what is used by MySQL, as is required by standard SQL. For this reason, dates prior to the cutover
stored as MySQL DATE or DATETIME values must be adjusted to compensate for the difference. It is
important to realize that the cutover did not occur at the same time in all countries, and that the later it
happened, the more days were lost. For example, in Great Britain, it took place in 1752, when Wednes-
day September 2 was followed by Thursday September 14. Russia remained on the Julian calendar until
1918, losing 13 days in the process, and what is popularly referred to as its “October Revolution” oc-
curred in November according to the Gregorian calendar.

12.7. Full-Text Search Functions
MATCH (col1,col2,...) AGAINST (expr [search_modifier])

search_modifier: { IN BOOLEAN MODE | WITH QUERY EXPANSION }

MySQL has support for full-text indexing and searching:

• A full-text index in MySQL is an index of type FULLTEXT.

• Full-text indexes can be used only with MyISAM tables, and can be created only for CHAR,
VARCHAR, or TEXT columns.

• A FULLTEXT index definition can be given in the CREATE TABLE statement when a table is cre-
ated, or added later using ALTER TABLE or CREATE INDEX.

• For large datasets, it is much faster to load your data into a table that has no FULLTEXT index and
then create the index after that, than to load data into a table that has an existing FULLTEXT index.

Full-text searching is performed using MATCH() ... AGAINST syntax. MATCH() takes a comma-
separated list that names the columns to be searched. AGAINST takes a string to search for, and an op-
tional modifier that indicates what type of search to perform. The search string must be a literal string,
not a variable or a column name. There are three types of full-text searches:

• A boolean search interprets the search string using the rules of a special query language. The string
contains the words to search for. It can also contain operators that specify requirements such that a
word must be present or absent in matching rows, or that it should be weighted higher or lower than
usual. Common words such as “some” or “then” are stopwords and do not match if present in the
search string. The IN BOOLEAN MODE modifier specifies a boolean search. For more information,
see Section 12.7.1, “Boolean Full-Text Searches”.

• A natural language search interprets the search string as a phrase in natural human language (a
phrase in free text). There are no special operators. The stopword list applies. In addition, words that
are present in more than 50% of the rows are considered common and do not match. Full-text
searches are natural language searches if no modifier is given.

• A query expansion search is a modification of a natural language search. The search string is used to
perform a natural language search. Then words from the most relevant rows returned by the search
are added to the search string and the search is done again. The query returns the rows from the
second search. The WITH QUERY EXPANSION modifier specifies a query expansion search. For
more information, see Section 12.7.2, “Full-Text Searches with Query Expansion”.

Functions and Operators

714

Constraints on full-text searching are listed in Section 12.7.4, “Full-Text Restrictions”.

mysql> CREATE TABLE articles (
-> id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
-> title VARCHAR(200),
-> body TEXT,
-> FULLTEXT (title,body)
->);

Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO articles (title,body) VALUES
-> ('MySQL Tutorial','DBMS stands for DataBase ...'),
-> ('How To Use MySQL Well','After you went through a ...'),
-> ('Optimizing MySQL','In this tutorial we will show ...'),
-> ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
-> ('MySQL vs. YourSQL','In the following database comparison ...'),
-> ('MySQL Security','When configured properly, MySQL ...');

Query OK, 6 rows affected (0.00 sec)
Records: 6 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM articles
-> WHERE MATCH (title,body) AGAINST ('database');

+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
+----+-------------------+--+
2 rows in set (0.00 sec)

The MATCH() function performs a natural language search for a string against a text collection. A col-
lection is a set of one or more columns included in a FULLTEXT index. The search string is given as the
argument to AGAINST(). For each row in the table, MATCH() returns a relevance value; that is, a sim-
ilarity measure between the search string and the text in that row in the columns named in the MATCH()
list.

By default, the search is performed in case-insensitive fashion. However, you can perform a case-
sensitive full-text search by using a binary collation for the indexed columns. For example, a column
that uses the latin1 character set of can be assigned a collation of latin1_bin to make it case sens-
itive for full-text searches.

When MATCH() is used in a WHERE clause, as in the example shown earlier, the rows returned are auto-
matically sorted with the highest relevance first. Relevance values are non-negative floating-point num-
bers. Zero relevance means no similarity. Relevance is computed based on the number of words in the
row, the number of unique words in that row, the total number of words in the collection, and the num-
ber of documents (rows) that contain a particular word.

For natural-language full-text searches, it is a requirement that the columns named in the MATCH()
function be the same columns included in some FULLTEXT index in your table. For the preceding
query, note that the columns named in the MATCH() function (title and body) are the same as those
named in the definition of the article table's FULLTEXT index. If you wanted to search the title
or body separately, you would need to create separate FULLTEXT indexes for each column.

It is also possible to perform a boolean search or a search with query expansion. These search types are
described in Section 12.7.1, “Boolean Full-Text Searches”, and Section 12.7.2, “Full-Text Searches with
Query Expansion”.

The preceding example is a basic illustration that shows how to use the MATCH() function where rows
are returned in order of decreasing relevance. The next example shows how to retrieve the relevance val-
ues explicitly. Returned rows are not ordered because the SELECT statement includes neither WHERE
nor ORDER BY clauses:

mysql> SELECT id, MATCH (title,body) AGAINST ('Tutorial')
-> FROM articles;

+----+---+
| id | MATCH (title,body) AGAINST ('Tutorial') |
+----+---+

Functions and Operators

715

1	0.65545833110809
2	0
3	0.66266459226608
4	0
5	0
6	0
+----+---+
6 rows in set (0.00 sec)

The following example is more complex. The query returns the relevance values and it also sorts the
rows in order of decreasing relevance. To achieve this result, you should specify MATCH() twice: once
in the SELECT list and once in the WHERE clause. This causes no additional overhead, because the
MySQL optimizer notices that the two MATCH() calls are identical and invokes the full-text search
code only once.

mysql> SELECT id, body, MATCH (title,body) AGAINST
-> ('Security implications of running MySQL as root') AS score
-> FROM articles WHERE MATCH (title,body) AGAINST
-> ('Security implications of running MySQL as root');

+----+-------------------------------------+-----------------+
| id | body | score |
+----+-------------------------------------+-----------------+
| 4 | 1. Never run mysqld as root. 2. ... | 1.5219271183014 |
| 6 | When configured properly, MySQL ... | 1.3114095926285 |
+----+-------------------------------------+-----------------+
2 rows in set (0.00 sec)

The MySQL FULLTEXT implementation regards any sequence of true word characters (letters, digits,
and underscores) as a word. That sequence may also contain apostrophes (‘'’), but not more than one in
a row. This means that aaa'bbb is regarded as one word, but aaa''bbb is regarded as two words.
Apostrophes at the beginning or the end of a word are stripped by the FULLTEXT parser; 'aaa'bbb'
would be parsed as aaa'bbb.

The FULLTEXT parser determines where words start and end by looking for certain delimiter charac-
ters; for example, ‘ ’ (space), ‘,’ (comma), and ‘.’ (period). If words are not separated by delimiters
(as in, for example, Chinese), the FULLTEXT parser cannot determine where a word begins or ends. To
be able to add words or other indexed terms in such languages to a FULLTEXT index, you must prepro-
cess them so that they are separated by some arbitrary delimiter such as ‘"’.

Some words are ignored in full-text searches:

• Any word that is too short is ignored. The default minimum length of words that are found by full-
text searches is four characters.

• Words in the stopword list are ignored. A stopword is a word such as “the” or “some” that is so com-
mon that it is considered to have zero semantic value. There is a built-in stopword list, but it can be
overwritten by a user-defined list.

The default stopword list is given in Section 12.7.3, “Full-Text Stopwords”. The default minimum word
length and stopword list can be changed as described in Section 12.7.5, “Fine-Tuning MySQL Full-Text
Search”.

Every correct word in the collection and in the query is weighted according to its significance in the col-
lection or query. Consequently, a word that is present in many documents has a lower weight (and may
even have a zero weight), because it has lower semantic value in this particular collection. Conversely, if
the word is rare, it receives a higher weight. The weights of the words are combined to compute the rel-
evance of the row.

Such a technique works best with large collections (in fact, it was carefully tuned this way). For very
small tables, word distribution does not adequately reflect their semantic value, and this model may
sometimes produce bizarre results. For example, although the word “MySQL” is present in every row of

Functions and Operators

716

the articles table shown earlier, a search for the word produces no results:

mysql> SELECT * FROM articles
-> WHERE MATCH (title,body) AGAINST ('MySQL');

Empty set (0.00 sec)

The search result is empty because the word “MySQL” is present in at least 50% of the rows. As such, it
is effectively treated as a stopword. For large datasets, this is the most desirable behavior: A natural lan-
guage query should not return every second row from a 1GB table. For small datasets, it may be less de-
sirable.

A word that matches half of the rows in a table is less likely to locate relevant documents. In fact, it
most likely finds plenty of irrelevant documents. We all know this happens far too often when we are
trying to find something on the Internet with a search engine. It is with this reasoning that rows contain-
ing the word are assigned a low semantic value for the particular dataset in which they occur. A given
word may exceed the 50% threshold in one dataset but not another.

The 50% threshold has a significant implication when you first try full-text searching to see how it
works: If you create a table and insert only one or two rows of text into it, every word in the text occurs
in at least 50% of the rows. As a result, no search returns any results. Be sure to insert at least three
rows, and preferably many more. Users who need to bypass the 50% limitation can use the boolean
search mode; see Section 12.7.1, “Boolean Full-Text Searches”.

12.7.1. Boolean Full-Text Searches
MySQL can perform boolean full-text searches using the IN BOOLEAN MODE modifier:

mysql> SELECT * FROM articles WHERE MATCH (title,body)
-> AGAINST ('+MySQL -YourSQL' IN BOOLEAN MODE);

+----+-----------------------+-------------------------------------+
| id | title | body |
+----+-----------------------+-------------------------------------+
1	MySQL Tutorial	DBMS stands for DataBase ...
2	How To Use MySQL Well	After you went through a ...
3	Optimizing MySQL	In this tutorial we will show ...
4	1001 MySQL Tricks	1. Never run mysqld as root. 2. ...
6	MySQL Security	When configured properly, MySQL ...
+----+-----------------------+-------------------------------------+

The + and - operators indicate that a word is required to be present or absent, respectively, for a match
to occur. Thus, this query retrieves all the rows that contain the word “MySQL” but that do not contain
the word “YourSQL”.

Boolean full-text searches have these characteristics:

• They do not use the 50% threshold.

• They do not automatically sort rows in order of decreasing relevance. You can see this from the pre-
ceding query result: The row with the highest relevance is the one that contains “MySQL” twice, but
it is listed last, not first.

• They can work even without a FULLTEXT index, although a search executed in this fashion would
be quite slow.

• The minimum and maximum word length full-text parameters apply.

• The stopword list applies.

The boolean full-text search capability supports the following operators:

Functions and Operators

717

• +

A leading plus sign indicates that this word must be present in each row that is returned.

• -

A leading minus sign indicates that this word must not be present in any of the rows that are re-
turned.

Note: The - operator acts only to exclude rows that are otherwise matched by other search terms.
Thus, a boolean-mode search that contains only terms preceded by - returns an empty result. It does
not return “all rows except those containing any of the excluded terms.”

• (no operator)

By default (when neither + nor - is specified) the word is optional, but the rows that contain it are
rated higher. This mimics the behavior of MATCH() ... AGAINST() without the IN BOOLEAN
MODE modifier.

• > <

These two operators are used to change a word's contribution to the relevance value that is assigned
to a row. The > operator increases the contribution and the < operator decreases it. See the example
following this list.

• ()

Parentheses group words into subexpressions. Parenthesized groups can be nested.

• ~

A leading tilde acts as a negation operator, causing the word's contribution to the row's relevance to
be negative. This is useful for marking “noise” words. A row containing such a word is rated lower
than others, but is not excluded altogether, as it would be with the - operator.

• *

The asterisk serves as the truncation (or wildcard) operator. Unlike the other operators, it should be
appended to the word to be affected. Words match if they begin with the word preceding the * oper-
ator.

• "

A phrase that is enclosed within double quote (‘"’) characters matches only rows that contain the
phrase literally, as it was typed. The full-text engine splits the phrase into words, performs a search
in the FULLTEXT index for the words. Prior to MySQL 5.0.3, the engine then performed a substring
search for the phrase in the records that were found, so the match must include non-word characters
in the phrase. As of MySQL 5.0.3, non-word characters need not be matched exactly: Phrase search-
ing requires only that matches contain exactly the same words as the phrase and in the same order.
For example, "test phrase" matches "test, phrase" in MySQL 5.0.3, but not before.

If the phrase contains no words that are in the index, the result is empty. For example, if all words
are either stopwords or shorter than the minimum length of indexed words, the result is empty.

The following examples demonstrate some search strings that use boolean full-text operators:

• 'apple banana'

Functions and Operators

718

Find rows that contain at least one of the two words.

• '+apple +juice'

Find rows that contain both words.

• '+apple macintosh'

Find rows that contain the word “apple”, but rank rows higher if they also contain “macintosh”.

• '+apple -macintosh'

Find rows that contain the word “apple” but not “macintosh”.

• '+apple ~macintosh'

Find rows that contain the word “apple”, but if the row also contains the word “macintosh”, rate it
lower than if row does not. This is “softer” than a search for '+apple -macintosh', for which
the presence of “macintosh” causes the row not to be returned at all.

• '+apple +(>turnover <strudel)'

Find rows that contain the words “apple” and “turnover”, or “apple” and “strudel” (in any order), but
rank “apple turnover” higher than “apple strudel”.

• 'apple*'

Find rows that contain words such as “apple”, “apples”, “applesauce”, or “applet”.

• '"some words"'

Find rows that contain the exact phrase “some words” (for example, rows that contain “some words
of wisdom” but not “some noise words”). Note that the ‘"’ characters that enclose the phrase are op-
erator characters that delimit the phrase. They are not the quotes that enclose the search string itself.

12.7.2. Full-Text Searches with Query Expansion
Full-text search supports query expansion (and in particular, its variant “blind query expansion”). This is
generally useful when a search phrase is too short, which often means that the user is relying on implied
knowledge that the full-text search engine lacks. For example, a user searching for “database” may
really mean that “MySQL”, “Oracle”, “DB2”, and “RDBMS” all are phrases that should match
“databases” and should be returned, too. This is implied knowledge.

Blind query expansion (also known as automatic relevance feedback) is enabled by adding WITH
QUERY EXPANSION following the search phrase. It works by performing the search twice, where the
search phrase for the second search is the original search phrase concatenated with the few most highly
relevant documents from the first search. Thus, if one of these documents contains the word “databases”
and the word “MySQL”, the second search finds the documents that contain the word “MySQL” even if
they do not contain the word “database”. The following example shows this difference:

mysql> SELECT * FROM articles
-> WHERE MATCH (title,body) AGAINST ('database');

+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
| 5 | MySQL vs. YourSQL | In the following database comparison ... |
| 1 | MySQL Tutorial | DBMS stands for DataBase ... |
+----+-------------------+--+
2 rows in set (0.00 sec)

Functions and Operators

719

mysql> SELECT * FROM articles
-> WHERE MATCH (title,body)
-> AGAINST ('database' WITH QUERY EXPANSION);

+----+-------------------+--+
| id | title | body |
+----+-------------------+--+
1	MySQL Tutorial	DBMS stands for DataBase ...
5	MySQL vs. YourSQL	In the following database comparison ...
3	Optimizing MySQL	In this tutorial we will show ...
+----+-------------------+--+
3 rows in set (0.00 sec)

Another example could be searching for books by Georges Simenon about Maigret, when a user is not
sure how to spell “Maigret”. A search for “Megre and the reluctant witnesses” finds only “Maigret and
the Reluctant Witnesses” without query expansion. A search with query expansion finds all books with
the word “Maigret” on the second pass.

Note: Because blind query expansion tends to increase noise significantly by returning non-relevant
documents, it is meaningful to use only when a search phrase is rather short.

12.7.3. Full-Text Stopwords
The following table shows the default list of full-text stopwords.

a's able about above according

accordingly across actually after afterwards

again against ain't all allow

allows almost alone along already

also although always am among

amongst an and another any

anybody anyhow anyone anything anyway

anyways anywhere apart appear appreciate

appropriate are aren't around as

aside ask asking associated at

available away awfully be became

because become becomes becoming been

before beforehand behind being believe

below beside besides best better

between beyond both brief but

by c'mon c's came can

can't cannot cant cause causes

certain certainly changes clearly co

com come comes concerning consequently

consider considering contain containing contains

corresponding could couldn't course currently

definitely described despite did didn't

different do does doesn't doing

don't done down downwards during

each edu eg eight either

else elsewhere enough entirely especially

Functions and Operators

720

et etc even ever every

everybody everyone everything everywhere ex

exactly example except far few

fifth first five followed following

follows for former formerly forth

four from further furthermore get

gets getting given gives go

goes going gone got gotten

greetings had hadn't happens hardly

has hasn't have haven't having

he he's hello help hence

her here here's hereafter hereby

herein hereupon hers herself hi

him himself his hither hopefully

how howbeit however i'd i'll

i'm i've ie if ignored

immediate in inasmuch inc indeed

indicate indicated indicates inner insofar

instead into inward is isn't

it it'd it'll it's its

itself just keep keeps kept

know knows known last lately

later latter latterly least less

lest let let's like liked

likely little look looking looks

ltd mainly many may maybe

me mean meanwhile merely might

more moreover most mostly much

must my myself name namely

nd near nearly necessary need

needs neither never nevertheless new

next nine no nobody non

none noone nor normally not

nothing novel now nowhere obviously

of off often oh ok

okay old on once one

ones only onto or other

others otherwise ought our ours

ourselves out outside over overall

own particular particularly per perhaps

placed please plus possible presumably

probably provides que quite qv

Functions and Operators

721

rather rd re really reasonably

regarding regardless regards relatively respectively

right said same saw say

saying says second secondly see

seeing seem seemed seeming seems

seen self selves sensible sent

serious seriously seven several shall

she should shouldn't since six

so some somebody somehow someone

something sometime sometimes somewhat somewhere

soon sorry specified specify specifying

still sub such sup sure

t's take taken tell tends

th than thank thanks thanx

that that's thats the their

theirs them themselves then thence

there there's thereafter thereby therefore

therein theres thereupon these they

they'd they'll they're they've think

third this thorough thoroughly those

though three through throughout thru

thus to together too took

toward towards tried tries truly

try trying twice two un

under unfortunately unless unlikely until

unto up upon us use

used useful uses using usually

value various very via viz

vs want wants was wasn't

way we we'd we'll we're

we've welcome well went were

weren't what what's whatever when

whence whenever where where's whereafter

whereas whereby wherein whereupon wherever

whether which while whither who

who's whoever whole whom whose

why will willing wish with

within without won't wonder would

would wouldn't yes yet you

you'd you'll you're you've your

yours yourself yourselves zero

Functions and Operators

722

12.7.4. Full-Text Restrictions

• Full-text searches are supported for MyISAM tables only.

• Full-text searches can be used with most multi-byte character sets. The exception is that for Unicode,
the utf8 character set can be used, but not the ucs2 character set.

• Ideographic languages such as Chinese and Japanese do not have word delimiters. Therefore, the
FULLTEXT parser cannot determine where words begin and end in these and other such languages.
The implications of this and some workarounds for the problem are described in Section 12.7,
“Full-Text Search Functions”.

• Although the use of multiple character sets within a single table is supported, all columns in a
FULLTEXT index must use the same character set and collation.

• The MATCH() column list must match exactly the column list in some FULLTEXT index definition
for the table, unless this MATCH() is IN BOOLEAN MODE. Boolean-mode searches can be done on
non-indexed columns, although they are likely to be slow.

• The argument to AGAINST() must be a constant string.

12.7.5. Fine-Tuning MySQL Full-Text Search
MySQL's full-text search capability has few user-tunable parameters. You can exert more control over
full-text searching behavior if you have a MySQL source distribution because some changes require
source code modifications. See Section 2.9, “MySQL Installation Using a Source Distribution”.

Note that full-text search is carefully tuned for the most effectiveness. Modifying the default behavior in
most cases can actually decrease effectiveness. Do not alter the MySQL sources unless you know what
you are doing.

Most full-text variables described in this section must be set at server startup time. A server restart is re-
quired to change them; they cannot be modified while the server is running.

Some variable changes require that you rebuild the FULLTEXT indexes in your tables. Instructions for
doing this are given at the end of this section.

• The minimum and maximum lengths of words to be indexed are defined by the
ft_min_word_len and ft_max_word_len system variables. (See Section 5.2.3, “System
Variables”.) The default minimum value is four characters; the default maximum is version depend-
ent. If you change either value, you must rebuild your FULLTEXT indexes. For example, if you want
three-character words to be searchable, you can set the ft_min_word_len variable by putting the
following lines in an option file:

[mysqld]
ft_min_word_len=3

Then you must restart the server and rebuild your FULLTEXT indexes. Note particularly the remarks
regarding myisamchk in the instructions following this list.

• To override the default stopword list, set the ft_stopword_file system variable. (See Sec-
tion 5.2.3, “System Variables”.) The variable value should be the pathname of the file containing the
stopword list, or the empty string to disable stopword filtering. After changing the value of this vari-
able or the contents of the stopword file, restart the server and rebuild your FULLTEXT indexes.

The stopword list is free-form. That is, you may use any non-alphanumeric character such as

Functions and Operators

723

newline, space, or comma to separate stopwords. Exceptions are the underscore character (‘_’) and a
single apostrophe (‘'’) which are treated as part of a word. The character set of the stopword list is
the server's default character set; see Section 10.3.1, “Server Character Set and Collation”.

• The 50% threshold for natural language searches is determined by the particular weighting scheme
chosen. To disable it, look for the following line in myisam/ftdefs.h:

#define GWS_IN_USE GWS_PROB

Change that line to this:

#define GWS_IN_USE GWS_FREQ

Then recompile MySQL. There is no need to rebuild the indexes in this case. Note: By making this
change, you severely decrease MySQL's ability to provide adequate relevance values for the
MATCH() function. If you really need to search for such common words, it would be better to search
using IN BOOLEAN MODE instead, which does not observe the 50% threshold.

• To change the operators used for boolean full-text searches, set the ft_boolean_syntax system
variable. This variable can be changed while the server is running, but you must have the SUPER
privilege to do so. No rebuilding of indexes is necessary in this case. See Section 5.2.3, “System
Variables”, which describes the rules governing how to set this variable.

• If you want to change the set of characters that are considered word characters, you can do so in two
ways. Suppose that you want to treat the hyphen character ('-') as a word character. Use either of
these methods:

• Modify the MySQL source: In myisam/ftdefs.h, see the true_word_char() and
misc_word_char() macros. Add '-' to one of those macros and recompile MySQL.

• Modify a character set file: This requires no recompilation. The true_word_char() macro
uses a “character type” table to distinguish letters and numbers from other characters. . You can
edit the <ctype><map> contents in one of the character set XML files to specify that '-' is a
“letter.” Then use the given character set for your FULLTEXT indexes.

After making the modification, you must rebuild the indexes for each table that contains any FULL-
TEXT indexes.

If you modify full-text variables that affect indexing (ft_min_word_len, ft_max_word_len, or
ft_stopword_file), or if you change the stopword file itself, you must rebuild your FULLTEXT
indexes after making the changes and restarting the server. To rebuild the indexes in this case, it is suffi-
cient to do a QUICK repair operation:

mysql> REPAIR TABLE tbl_name QUICK;

Each table that contains any FULLTEXT index must be repaired as just shown. Otherwise, queries for
the table may yield incorrect results, and modifications to the table will cause the server to see the table
as corrupt and in need of repair.

Note that if you use myisamchk to perform an operation that modifies table indexes (such as repair or
analyze), the FULLTEXT indexes are rebuilt using the default full-text parameter values for minimum
word length, maximum word length, and stopword file unless you specify otherwise. This can result in
queries failing.

The problem occurs because these parameters are known only by the server. They are not stored in My-
ISAM index files. To avoid the problem if you have modified the minimum or maximum word length or

Functions and Operators

724

stopword file values used by the server, specify the same ft_min_word_len, ft_max_word_len,
and ft_stopword_file values to myisamchk that you use for mysqld. For example, if you have
set the minimum word length to 3, you can repair a table with myisamchk like this:

shell> myisamchk --recover --ft_min_word_len=3 tbl_name.MYI

To ensure that myisamchk and the server use the same values for full-text parameters, place each one
in both the [mysqld] and [myisamchk] sections of an option file:

[mysqld]
ft_min_word_len=3

[myisamchk]
ft_min_word_len=3

An alternative to using myisamchk is to use the REPAIR TABLE, ANALYZE TABLE, OPTIMIZE
TABLE, or ALTER TABLE statements. These statements are performed by the server, which knows the
proper full-text parameter values to use.

12.8. Cast Functions and Operators

• BINARY

The BINARY operator casts the string following it to a binary string. This is an easy way to force a
column comparison to be done byte by byte rather than character by character. This causes the com-
parison to be case sensitive even if the column isn't defined as BINARY or BLOB. BINARY also
causes trailing spaces to be significant.

mysql> SELECT 'a' = 'A';
-> 1

mysql> SELECT BINARY 'a' = 'A';
-> 0

mysql> SELECT 'a' = 'a ';
-> 1

mysql> SELECT BINARY 'a' = 'a ';
-> 0

In a comparison, BINARY affects the entire operation; it can be given before either operand with the
same result.

BINARY str is shorthand for CAST(str AS BINARY).

Note that in some contexts, if you cast an indexed column to BINARY, MySQL is not able to use the
index efficiently.

• CAST(expr AS type), CONVERT(expr,type), CONVERT(expr USING transcod-
ing_name)

The CAST() and CONVERT() functions take a value of one type and produce a value of another
type.

The type can be one of the following values:

• BINARY[(N)]

• CHAR[(N)]

• DATE

• DATETIME

Functions and Operators

725

• DECIMAL

• SIGNED [INTEGER]

• TIME

• UNSIGNED [INTEGER]

BINARY produces a string with the BINARY data type. See Section 11.4.2, “The BINARY and
VARBINARY Types” for a description of how this affects comparisons. If the optional length N is
given, BINARY(N) causes the cast to use no more than N bytes of the argument. As of MySQL
5.0.17, values shorter than N bytes are padded with 0x00 bytes to a length of N.

CHAR(N) causes the cast to use no more than N characters of the argument.

The DECIMAL type is available as of MySQL 5.0.8.

CAST() and CONVERT(... USING ...) are standard SQL syntax. The non-USING form of
CONVERT() is ODBC syntax.

CONVERT() with USING is used to convert data between different character sets. In MySQL,
transcoding names are the same as the corresponding character set names. For example, this state-
ment converts the string 'abc' in the default character set to the corresponding string in the utf8
character set:

SELECT CONVERT('abc' USING utf8);

Normally, you cannot compare a BLOB value or other binary string in case-insensitive fashion because
binary strings have no character set, and thus no concept of lettercase. To perform a case-insensitive
comparison, use the CONVERT() function to convert the value to a non-binary string. If the character
set of the result has a case-insensitive collation, the LIKE operation is not case sensitive:

SELECT 'A' LIKE CONVERT(blob_col USING latin1) FROM tbl_name;

To use a different character set, substitute its name for latin1 in the preceding statement. To ensure
that a case-insensitive collation is used, specify a COLLATE clause following the CONVERT() call.

CONVERT() can be used more generally for comparing strings that are represented in different charac-
ter sets.

The cast functions are useful when you want to create a column with a specific type in a CREATE ...
SELECT statement:

CREATE TABLE new_table SELECT CAST('2000-01-01' AS DATE);

The functions also can be useful for sorting ENUM columns in lexical order. Normally, sorting of ENUM
columns occurs using the internal numeric values. Casting the values to CHAR results in a lexical sort:

SELECT enum_col FROM tbl_name ORDER BY CAST(enum_col AS CHAR);

CAST(str AS BINARY) is the same thing as BINARY str. CAST(expr AS CHAR) treats the
expression as a string with the default character set.

CAST() also changes the result if you use it as part of a more complex expression such as CON-
CAT('Date: ',CAST(NOW() AS DATE)).

Functions and Operators

726

You should not use CAST() to extract data in different formats but instead use string functions like
LEFT() or EXTRACT(). See Section 12.5, “Date and Time Functions”.

To cast a string to a numeric value in numeric context, you normally do not have to do anything other
than to use the string value as though it were a number:

mysql> SELECT 1+'1';
-> 2

If you use a number in string context, the number automatically is converted to a BINARY string.

mysql> SELECT CONCAT('hello you ',2);
-> 'hello you 2'

MySQL supports arithmetic with both signed and unsigned 64-bit values. If you are using numeric oper-
ators (such as + or -) and one of the operands is an unsigned integer, the result is unsigned. You can
override this by using the SIGNED and UNSIGNED cast operators to cast the operation to a signed or
unsigned 64-bit integer, respectively.

mysql> SELECT CAST(1-2 AS UNSIGNED)
-> 18446744073709551615

mysql> SELECT CAST(CAST(1-2 AS UNSIGNED) AS SIGNED);
-> -1

Note that if either operand is a floating-point value, the result is a floating-point value and is not affected
by the preceding rule. (In this context, DECIMAL column values are regarded as floating-point values.)

mysql> SELECT CAST(1 AS UNSIGNED) - 2.0;
-> -1.0

If you are using a string in an arithmetic operation, this is converted to a floating-point number.

If you convert a “zero” date string to a date, CONVERT() and CAST() return NULL when the
NO_ZERO_DATE SQL mode is enabled. As of MySQL 5.0.4, they also produce a warning.

12.9. Other Functions

12.9.1. Bit Functions
MySQL uses BIGINT (64-bit) arithmetic for bit operations, so these operators have a maximum range
of 64 bits.

• |

Bitwise OR:

mysql> SELECT 29 | 15;
-> 31

The result is an unsigned 64-bit integer.

• &

Bitwise AND:

mysql> SELECT 29 & 15;
-> 13

Functions and Operators

727

The result is an unsigned 64-bit integer.

• ^

Bitwise XOR:

mysql> SELECT 1 ^ 1;
-> 0

mysql> SELECT 1 ^ 0;
-> 1

mysql> SELECT 11 ^ 3;
-> 8

The result is an unsigned 64-bit integer.

• <<

Shifts a longlong (BIGINT) number to the left.

mysql> SELECT 1 << 2;
-> 4

The result is an unsigned 64-bit integer.

• >>

Shifts a longlong (BIGINT) number to the right.

mysql> SELECT 4 >> 2;
-> 1

The result is an unsigned 64-bit integer.

• ~

Invert all bits.

mysql> SELECT 5 & ~1;
-> 4

The result is an unsigned 64-bit integer.

• BIT_COUNT(N)

Returns the number of bits that are set in the argument N.

mysql> SELECT BIT_COUNT(29), BIT_COUNT(b'101010');
-> 4, 3

12.9.2. Encryption and Compression Functions
The functions in this section perform encryption and decryption, and compression and uncompression:

Compression or encryption Uncompression or decryption

AES_ENCRYT() AES_DECRYPT()

COMPRESS() UNCOMPRESS()

Functions and Operators

728

ENCODE() DECODE()

DES_ENCRYPT() DES_DECRYPT()

ENCRYPT() Not available

MD5() Not available

OLD_PASSWORD() Not available

PASSWORD() Not available

SHA() or SHA1() Not available

Not available UNCOMPRESSED_LENGTH()

Note: The encryption and compression functions return binary strings. For many of these functions, the
result might contain arbitrary byte values. If you want to store these results, use a BLOB column rather
than a CHAR or (before MySQL 5.0.3) VARCHAR column to avoid potential problems with trailing space
removal that would change data values.

Note: Exploits for the MD5 and SHA-1 algorithms have become known. You may wish to consider us-
ing one of the other encryption functions described in this section instead.

• AES_ENCRYPT(str,key_str), AES_DECRYPT(crypt_str,key_str)

These functions allow encryption and decryption of data using the official AES (Advanced Encryp-
tion Standard) algorithm, previously known as “Rijndael.” Encoding with a 128-bit key length is
used, but you can extend it up to 256 bits by modifying the source. We chose 128 bits because it is
much faster and it is secure enough for most purposes.

AES_ENCRYPT() encrypts a string and returns a binary string. AES_DECRYPT() decrypts the en-
crypted string and returns the original string. The input arguments may be any length. If either argu-
ment is NULL, the result of this function is also NULL.

Because AES is a block-level algorithm, padding is used to encode uneven length strings and so the
result string length may be calculated using this formula:

16 × (trunc(string_length / 16) + 1)

If AES_DECRYPT() detects invalid data or incorrect padding, it returns NULL. However, it is pos-
sible for AES_DECRYPT() to return a non-NULL value (possibly garbage) if the input data or the
key is invalid.

You can use the AES functions to store data in an encrypted form by modifying your queries:

INSERT INTO t VALUES (1,AES_ENCRYPT('text','password'));

AES_ENCRYPT() and AES_DECRYPT() can be considered the most cryptographically secure en-
cryption functions currently available in MySQL.

• COMPRESS(string_to_compress)

Compresses a string and returns the result as a binary string. This function requires MySQL to have
been compiled with a compression library such as zlib. Otherwise, the return value is always
NULL. The compressed string can be uncompressed with UNCOMPRESS().

mysql> SELECT LENGTH(COMPRESS(REPEAT('a',1000)));
-> 21

mysql> SELECT LENGTH(COMPRESS(''));
-> 0

Functions and Operators

729

mysql> SELECT LENGTH(COMPRESS('a'));
-> 13

mysql> SELECT LENGTH(COMPRESS(REPEAT('a',16)));
-> 15

The compressed string contents are stored the following way:

• Empty strings are stored as empty strings.

• Non-empty strings are stored as a four-byte length of the uncompressed string (low byte first),
followed by the compressed string. If the string ends with space, an extra ‘.’ character is added
to avoid problems with endspace trimming should the result be stored in a CHAR or VARCHAR
column. (Use of CHAR or VARCHAR to store compressed strings is not recommended. It is better
to use a BLOB column instead.)

• DECODE(crypt_str,pass_str)

Decrypts the encrypted string crypt_str using pass_str as the password. crypt_str should
be a string returned from ENCODE().

• ENCODE(str,pass_str)

Encrypt str using pass_str as the password. To decrypt the result, use DECODE().

The result is a binary string of the same length as str.

The strength of the encryption is based on how good the random generator is. It should suffice for
short strings.

• DES_DECRYPT(crypt_str[,key_str])

Decrypts a string encrypted with DES_ENCRYPT(). If an error occurs, this function returns NULL.

Note that this function works only if MySQL has been configured with SSL support. See Sec-
tion 5.9.7, “Using Secure Connections”.

If no key_str argument is given, DES_DECRYPT() examines the first byte of the encrypted
string to determine the DES key number that was used to encrypt the original string, and then reads
the key from the DES key file to decrypt the message. For this to work, the user must have the SU-
PER privilege. The key file can be specified with the --des-key-file server option.

If you pass this function a key_str argument, that string is used as the key for decrypting the mes-
sage.

If the crypt_str argument does not appear to be an encrypted string, MySQL returns the given
crypt_str.

• DES_ENCRYPT(str[,{key_num|key_str}])

Encrypts the string with the given key using the Triple-DES algorithm.

Note that this function works only if MySQL has been configured with SSL support. See Sec-
tion 5.9.7, “Using Secure Connections”.

The encryption key to use is chosen based on the second argument to DES_ENCRYPT(), if one was
given:

Argument Description

No argument The first key from the DES key file is used.

Functions and Operators

730

key_num The given key number (0-9) from the DES key file is used.

key_str The given key string is used to encrypt str.

The key file can be specified with the --des-key-file server option.

The return string is a binary string where the first character is CHAR(128 | key_num). If an er-
ror occurs, DES_ENCRYPT() returns NULL.

The 128 is added to make it easier to recognize an encrypted key. If you use a string key, key_num
is 127.

The string length for the result is given by this formula:

new_len = orig_len + (8 - (orig_len % 8)) + 1

Each line in the DES key file has the following format:

key_num des_key_str

Each key_num value must be a number in the range from 0 to 9. Lines in the file may be in any or-
der. des_key_str is the string that is used to encrypt the message. There should be at least one
space between the number and the key. The first key is the default key that is used if you do not spe-
cify any key argument to DES_ENCRYPT().

You can tell MySQL to read new key values from the key file with the FLUSH DES_KEY_FILE
statement. This requires the RELOAD privilege.

One benefit of having a set of default keys is that it gives applications a way to check for the exist-
ence of encrypted column values, without giving the end user the right to decrypt those values.

mysql> SELECT customer_address FROM customer_table
> WHERE crypted_credit_card = DES_ENCRYPT('credit_card_number');

• ENCRYPT(str[,salt])

Encrypts str using the Unix crypt() system call and returns a binary string. The salt argument
should be a string with at least two characters. If no salt argument is given, a random value is
used.

mysql> SELECT ENCRYPT('hello');
-> 'VxuFAJXVARROc'

ENCRYPT() ignores all but the first eight characters of str, at least on some systems. This behavi-
or is determined by the implementation of the underlying crypt() system call.

The use of ENCYPT() with multi-byte character sets other than utf8 is not recommended because
the system call expects a string terminated by a zero byte.

If crypt() is not available on your system (as is the case with Windows), ENCRYPT() always re-
turns NULL.

• MD5(str)

Calculates an MD5 128-bit checksum for the string. The value is returned as a binary string of 32
hex digits, or NULL if the argument was NULL. The return value can, for example, be used as a hash

Functions and Operators

731

key.

mysql> SELECT MD5('testing');
-> 'ae2b1fca515949e5d54fb22b8ed95575'

This is the “RSA Data Security, Inc. MD5 Message-Digest Algorithm.”

If you want to convert the value to uppercase, see the description of binary string conversion given
in the entry for the BINARY operator in Section 12.8, “Cast Functions and Operators”.

See the note regarding the MD5 algorithm at the beginning this section.

• OLD_PASSWORD(str)

OLD_PASSWORD() was added to MySQL when the implementation of PASSWORD() was
changed to improve security. OLD_PASSWORD() returns the value of the old (pre-4.1) implementa-
tion of PASSWORD() as a binary string, and is intended to permit you to reset passwords for any
pre-4.1 clients that need to connect to your version 5.0 MySQL server without locking them out. See
Section 5.8.9, “Password Hashing as of MySQL 4.1”.

• PASSWORD(str)

Calculates and returns a password string from the plaintext password str and returns a binary
string, or NULL if the argument was NULL. This is the function that is used for encrypting MySQL
passwords for storage in the Password column of the user grant table.

mysql> SELECT PASSWORD('badpwd');
-> '*AAB3E285149C0135D51A520E1940DD3263DC008C'

PASSWORD() encryption is one-way (not reversible).

PASSWORD() does not perform password encryption in the same way that Unix passwords are en-
crypted. See ENCRYPT().

Note: The PASSWORD() function is used by the authentication system in MySQL Server; you
should not use it in your own applications. For that purpose, consider MD5() or SHA1() instead.
Also see RFC 2195, section 2 (Challenge-Response Authentication Mechanism (CRAM))
[http://rfc.net/rfc2195.html], for more information about handling passwords and authentication se-
curely in your applications.

• SHA1(str), SHA(str)

Calculates an SHA-1 160-bit checksum for the string, as described in RFC 3174 (Secure Hash Al-
gorithm). The value is returned as a binary string of 40 hex digits, or NULL if the argument was
NULL. One of the possible uses for this function is as a hash key. You can also use it as a crypto-
graphic function for storing passwords. SHA() is synonymous with SHA1().

mysql> SELECT SHA1('abc');
-> 'a9993e364706816aba3e25717850c26c9cd0d89d'

SHA1() can be considered a cryptographically more secure equivalent of MD5(). However, see the
note regarding the MD5 and SHA-1 algorithms at the beginning this section.

• UNCOMPRESS(string_to_uncompress)

Uncompresses a string compressed by the COMPRESS() function. If the argument is not a com-
pressed value, the result is NULL. This function requires MySQL to have been compiled with a com-
pression library such as zlib. Otherwise, the return value is always NULL.

Functions and Operators

732

http://rfc.net/rfc2195.html

mysql> SELECT UNCOMPRESS(COMPRESS('any string'));
-> 'any string'

mysql> SELECT UNCOMPRESS('any string');
-> NULL

• UNCOMPRESSED_LENGTH(compressed_string)

Returns the length that the compressed string had before being compressed.

mysql> SELECT UNCOMPRESSED_LENGTH(COMPRESS(REPEAT('a',30)));
-> 30

12.9.3. Information Functions

• BENCHMARK(count,expr)

The BENCHMARK() function executes the expression expr repeatedly count times. It may be
used to time how quickly MySQL processes the expression. The result value is always 0. The inten-
ded use is from within the mysql client, which reports query execution times:

mysql> SELECT BENCHMARK(1000000,ENCODE('hello','goodbye'));
+--+
| BENCHMARK(1000000,ENCODE('hello','goodbye')) |
+--+
| 0 |
+--+
1 row in set (4.74 sec)

The time reported is elapsed time on the client end, not CPU time on the server end. It is advisable to
execute BENCHMARK() several times, and to interpret the result with regard to how heavily loaded
the server machine is.

• CHARSET(str)

Returns the character set of the string argument.

mysql> SELECT CHARSET('abc');
-> 'latin1'

mysql> SELECT CHARSET(CONVERT('abc' USING utf8));
-> 'utf8'

mysql> SELECT CHARSET(USER());
-> 'utf8'

• COERCIBILITY(str)

Returns the collation coercibility value of the string argument.

mysql> SELECT COERCIBILITY('abc' COLLATE latin1_swedish_ci);
-> 0

mysql> SELECT COERCIBILITY(USER());
-> 3

mysql> SELECT COERCIBILITY('abc');
-> 4

The return values have the meanings shown in the following table. Lower values have higher preced-
ence.

Coercibility Meaning Example

0 Explicit colla- Value with COLLATE clause

Functions and Operators

733

tion

1 No collation Concatenation of strings with different collations

2 Implicit colla-
tion

Column value

3 System con-
stant

USER() return value

4 Coercible Literal string

5 Ignorable NULL or an expression derived from NULL

Before MySQL 5.0.3, the return values are shown as follows, and functions such as USER() have a
coercibility of 2:

Coercibility Meaning Example

0 Explicit colla-
tion

Value with COLLATE clause

1 No collation Concatenation of strings with different collations

2 Implicit colla-
tion

Column value, stored routine parameter or local variable

3 Coercible Literal string

• COLLATION(str)

Returns the collation of the string argument.

mysql> SELECT COLLATION('abc');
-> 'latin1_swedish_ci'

mysql> SELECT COLLATION(_utf8'abc');
-> 'utf8_general_ci'

• CONNECTION_ID()

Returns the connection ID (thread ID) for the connection. Every connection has an ID that is unique
among the set of currently connected clients.

mysql> SELECT CONNECTION_ID();
-> 23786

• CURRENT_USER, CURRENT_USER()

Returns the username and hostname combination for the MySQL account that the server used to au-
thenticate the current client. This account determines your access privileges. As of MySQL 5.0.10,
within a stored routine that is defined with the SQL SECURITY DEFINER characteristic, CUR-
RENT_USER() returns the creator of the routine. The return value is a string in the utf8 character
set.

The value of CURRENT_USER() can differ from the value of USER().

mysql> SELECT USER();
-> 'davida@localhost'

mysql> SELECT * FROM mysql.user;
ERROR 1044: Access denied for user ''@'localhost' to
database 'mysql'
mysql> SELECT CURRENT_USER();

-> '@localhost'

Functions and Operators

734

The example illustrates that although the client specified a username of davida (as indicated by the
value of the USER() function), the server authenticated the client using an anonymous user account
(as seen by the empty username part of the CURRENT_USER() value). One way this might occur is
that there is no account listed in the grant tables for davida.

• DATABASE()

Returns the default (current) database name as a string in the utf8 character set. If there is no de-
fault database, DATABASE() returns NULL. Within a stored routine, the default database is the
database that the routine is associated with, which is not necessarily the same as the database that is
the default in the calling context.

mysql> SELECT DATABASE();
-> 'test'

• FOUND_ROWS()

A SELECT statement may include a LIMIT clause to restrict the number of rows the server returns
to the client. In some cases, it is desirable to know how many rows the statement would have re-
turned without the LIMIT, but without running the statement again. To obtain this row count, in-
clude a SQL_CALC_FOUND_ROWS option in the SELECT statement, and then invoke
FOUND_ROWS() afterward:

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM tbl_name
-> WHERE id > 100 LIMIT 10;

mysql> SELECT FOUND_ROWS();

The second SELECT returns a number indicating how many rows the first SELECT would have re-
turned had it been written without the LIMIT clause. (If the preceding SELECT statement does not
include the SQL_CALC_FOUND_ROWS option, then FOUND_ROWS() may return a different result
when LIMIT is used than when it is not.)

The row count available through FOUND_ROWS() is transient and not intended to be available past
the statement following the SELECT SQL_CALC_FOUND_ROWS statement. If you need to refer to
the value later, save it:

mysql> SELECT SQL_CALC_FOUND_ROWS * FROM ... ;
mysql> SET @rows = FOUND_ROWS();

If you are using SELECT SQL_CALC_FOUND_ROWS, MySQL must calculate how many rows are
in the full result set. However, this is faster than running the query again without LIMIT, because
the result set need not be sent to the client.

SQL_CALC_FOUND_ROWS and FOUND_ROWS() can be useful in situations when you want to re-
strict the number of rows that a query returns, but also determine the number of rows in the full res-
ult set without running the query again. An example is a Web script that presents a paged display
containing links to the pages that show other sections of a search result. Using FOUND_ROWS() al-
lows you to determine how many other pages are needed for the rest of the result.

The use of SQL_CALC_FOUND_ROWS and FOUND_ROWS() is more complex for UNION state-
ments than for simple SELECT statements, because LIMIT may occur at multiple places in a UNI-
ON. It may be applied to individual SELECT statements in the UNION, or global to the UNION result
as a whole.

The intent of SQL_CALC_FOUND_ROWS for UNION is that it should return the row count that
would be returned without a global LIMIT. The conditions for use of SQL_CALC_FOUND_ROWS
with UNION are:

Functions and Operators

735

• The SQL_CALC_FOUND_ROWS keyword must appear in the first SELECT of the UNION.

• The value of FOUND_ROWS() is exact only if UNION ALL is used. If UNION without ALL is
used, duplicate removal occurs and the value of FOUND_ROWS() is only approximate.

• If no LIMIT is present in the UNION, SQL_CALC_FOUND_ROWS is ignored and returns the
number of rows in the temporary table that is created to process the UNION.

• LAST_INSERT_ID(), LAST_INSERT_ID(expr)

LAST_INSERT_ID() (with no argument) returns the first automatically generated value that was
set for an AUTO_INCREMENT column by the most recently executed INSERT or UPDATE state-
ment to affect such a column. For example, after inserting a row that generates an
AUTO_INCREMENT value, you can get the value like this:

mysql> SELECT LAST_INSERT_ID();
-> 195

The currently executing statement does not affect the value of LAST_INSERT_ID(). Suppose that
you generate an AUTO_INCREMENT value with one statement, and then refer to
LAST_INSERT_ID() in a multiple-row INSERT statement that inserts rows into a table with its
own AUTO_INCREMENT column. The value of LAST_INSERT_ID() will remain stable in the
second statement; its value for the second and later rows is not affected by the earlier row insertions.
(However, if you mix references to LAST_INSERT_ID() and LAST_INSERT_ID(expr), the
effect is undefined.)

Within the body of a stored routine (procedure or function) or a trigger, the value of
LAST_INSERT_ID() changes the same way as for statements executed outside the body of these
kinds of objects. The effect of a stored routine or trigger upon the value of LAST_INSERT_ID()
that is seen by following statements depends on the kind of routine:

• If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the
changed value will be seen by statements that follow the procedure call.

• For stored functions and triggers that change the value, the value is restored when the function or
trigger ends, so following statements will not see a changed value.

The ID that was generated is maintained in the server on a per-connection basis. This means that the
value returned by the function to a given client is the first AUTO_INCREMENT value generated for
most recent statement affecting an AUTO_INCREMENT column by that client. This value cannot be
affected by other clients, even if they generate AUTO_INCREMENT values of their own. This beha-
vior ensures that each client can retrieve its own ID without concern for the activity of other clients,
and without the need for locks or transactions.

The value of LAST_INSERT_ID() is not changed if you set the AUTO_INCREMENT column of a
row to a non-“magic” value (that is, a value that is not NULL and not 0).

Important: If you insert multiple rows using a single INSERT statement, LAST_INSERT_ID()
returns the value generated for the first inserted row only. The reason for this is to make it possible to
reproduce easily the same INSERT statement against some other server.

For example:

mysql> USE test;
Database changed
mysql> CREATE TABLE t (

-> id INT AUTO_INCREMENT NOT NULL PRIMARY KEY,
-> name VARCHAR(10) NOT NULL
->);

Query OK, 0 rows affected (0.09 sec)

Functions and Operators

736

mysql> INSERT INTO t VALUES (NULL, 'Bob');
Query OK, 1 row affected (0.01 sec)

mysql> SELECT * FROM t;
+----+------+
| id | name |
+----+------+
| 1 | Bob |
+----+------+
1 row in set (0.01 sec)

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 1 |
+------------------+
1 row in set (0.00 sec)

mysql> INSERT INTO t VALUES
-> (NULL, 'Mary'), (NULL, 'Jane'), (NULL, 'Lisa');

Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM t;
+----+------+
| id | name |
+----+------+
1	Bob
2	Mary
3	Jane
4	Lisa
+----+------+
4 rows in set (0.01 sec)

mysql> SELECT LAST_INSERT_ID();
+------------------+
| LAST_INSERT_ID() |
+------------------+
| 2 |
+------------------+
1 row in set (0.00 sec)

Although the second INSERT statement inserted three new rows into t, the ID generated for the
first of these rows was 2, and it is this value that is returned by LAST_INSERT_ID() for the fol-
lowing SELECT statement.

If you use INSERT IGNORE and the row is ignored, the AUTO_INCREMENT counter is not incre-
mented and LAST_INSERT_ID() returns 0, which reflects that no row was inserted.

If expr is given as an argument to LAST_INSERT_ID(), the value of the argument is returned by
the function and is remembered as the next value to be returned by LAST_INSERT_ID(). This can
be used to simulate sequences:

1. Create a table to hold the sequence counter and initialize it:

mysql> CREATE TABLE sequence (id INT NOT NULL);
mysql> INSERT INTO sequence VALUES (0);

2. Use the table to generate sequence numbers like this:

mysql> UPDATE sequence SET id=LAST_INSERT_ID(id+1);
mysql> SELECT LAST_INSERT_ID();

The UPDATE statement increments the sequence counter and causes the next call to
LAST_INSERT_ID() to return the updated value. The SELECT statement retrieves that
value. The mysql_insert_id() C API function can also be used to get the value. See Sec-
tion 22.2.3.36, “mysql_insert_id()”.

Functions and Operators

737

You can generate sequences without calling LAST_INSERT_ID(), but the utility of using the
function this way is that the ID value is maintained in the server as the last automatically generated
value. It is multi-user safe because multiple clients can issue the UPDATE statement and get their
own sequence value with the SELECT statement (or mysql_insert_id()), without affecting or
being affected by other clients that generate their own sequence values.

Note that mysql_insert_id() is only updated after INSERT and UPDATE statements, so you
cannot use the C API function to retrieve the value for LAST_INSERT_ID(expr) after executing
other SQL statements like SELECT or SET.

• ROW_COUNT()

ROW_COUNT() returns the number of rows updated, inserted, or deleted by the preceding statement.
This is the same as the row count that the mysql client displays and the value from the
mysql_affected_rows() C API function.

mysql> INSERT INTO t VALUES(1),(2),(3);
Query OK, 3 rows affected (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 0

mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
| 3 |
+-------------+
1 row in set (0.00 sec)

mysql> DELETE FROM t WHERE i IN(1,2);
Query OK, 2 rows affected (0.00 sec)

mysql> SELECT ROW_COUNT();
+-------------+
| ROW_COUNT() |
+-------------+
| 2 |
+-------------+
1 row in set (0.00 sec)

ROW_COUNT() was added in MySQL 5.0.1.

• SCHEMA()

This function is a synonym for DATABASE(). It was added in MySQL 5.0.2.

• SESSION_USER()

SESSION_USER() is a synonym for USER().

• SYSTEM_USER()

SYSTEM_USER() is a synonym for USER().

• USER()

Returns the current MySQL username and hostname as a string in the utf8 character set.

mysql> SELECT USER();
-> 'davida@localhost'

The value indicates the username you specified when connecting to the server, and the client host
from which you connected. The value can be different from that of CURRENT_USER().

Functions and Operators

738

You can extract only the username part like this:

mysql> SELECT SUBSTRING_INDEX(USER(),'@',1);
-> 'davida'

• VERSION()

Returns a string that indicates the MySQL server version. The string uses the utf8 character set.

mysql> SELECT VERSION();
-> '5.0.25-standard'

Note that if your version string ends with -log this means that logging is enabled.

12.9.4. Miscellaneous Functions

• DEFAULT(col_name)

Returns the default value for a table column. Starting with MySQL 5.0.2, an error results if the
column has no default value.

mysql> UPDATE t SET i = DEFAULT(i)+1 WHERE id < 100;

• FORMAT(X,D)

Formats the number X to a format like '#,###,###.##', rounded to D decimal places, and re-
turns the result as a string. For details, see Section 12.3, “String Functions”.

• GET_LOCK(str,timeout)

Tries to obtain a lock with a name given by the string str, using a timeout of timeout seconds.
Returns 1 if the lock was obtained successfully, 0 if the attempt timed out (for example, because an-
other client has previously locked the name), or NULL if an error occurred (such as running out of
memory or the thread was killed with mysqladmin kill). If you have a lock obtained with
GET_LOCK(), it is released when you execute RELEASE_LOCK(), execute a new GET_LOCK(),
or your connection terminates (either normally or abnormally). Locks obtained with GET_LOCK()
do not interact with transactions. That is, committing a transaction does not release any such locks
obtained during the transaction.

This function can be used to implement application locks or to simulate record locks. Names are
locked on a server-wide basis. If a name has been locked by one client, GET_LOCK() blocks any
request by another client for a lock with the same name. This allows clients that agree on a given
lock name to use the name to perform cooperative advisory locking. But be aware that it also allows
a client that is not among the set of cooperating clients to lock a name, either inadvertently or delib-
erately, and thus prevent any of the cooperating clients from locking that name. One way to reduce
the likelihood of this is to use lock names that are database-specific or application-specific. For ex-
ample, use lock names of the form db_name.str or app_name.str.

mysql> SELECT GET_LOCK('lock1',10);
-> 1

mysql> SELECT IS_FREE_LOCK('lock2');
-> 1

mysql> SELECT GET_LOCK('lock2',10);
-> 1

mysql> SELECT RELEASE_LOCK('lock2');
-> 1

mysql> SELECT RELEASE_LOCK('lock1');
-> NULL

Functions and Operators

739

The second RELEASE_LOCK() call returns NULL because the lock 'lock1' was automatically
released by the second GET_LOCK() call.

Note: If a client attempts to acquire a lock that is already held by another client, it blocks according
to the timeout argument. If the blocked client terminates, its thread does not die until the lock re-
quest times out. This is a known bug.

• INET_ATON(expr)

Given the dotted-quad representation of a network address as a string, returns an integer that repres-
ents the numeric value of the address. Addresses may be 4- or 8-byte addresses.

mysql> SELECT INET_ATON('209.207.224.40');
-> 3520061480

The generated number is always in network byte order. For the example just shown, the number is
calculated as 209×2563 + 207×2562 + 224×256 + 40.

INET_ATON() also understands short-form IP addresses:

mysql> SELECT INET_ATON('127.0.0.1'), INET_ATON('127.1');
-> 2130706433, 2130706433

Note: When storing values generated by INET_ATON(), it is recommended that you use an INT
UNSIGNED column. If you use a (signed) INT column, values corresponding to IP addresses for
which the first octet is greater than 127 cannot be stored correctly. See Section 11.2, “Numeric
Types”.

• INET_NTOA(expr)

Given a numeric network address (4 or 8 byte), returns the dotted-quad representation of the address
as a string.

mysql> SELECT INET_NTOA(3520061480);
-> '209.207.224.40'

• IS_FREE_LOCK(str)

Checks whether the lock named str is free to use (that is, not locked). Returns 1 if the lock is free
(no one is using the lock), 0 if the lock is in use, and NULL if an error occurs (such as an incorrect
argument).

• IS_USED_LOCK(str)

Checks whether the lock named str is in use (that is, locked). If so, it returns the connection identi-
fier of the client that holds the lock. Otherwise, it returns NULL.

• MASTER_POS_WAIT(log_name,log_pos[,timeout])

This function is useful for control of master/slave synchronization. It blocks until the slave has read
and applied all updates up to the specified position in the master log. The return value is the number
of log events the slave had to wait for to advance to the specified position. The function returns
NULL if the slave SQL thread is not started, the slave's master information is not initialized, the ar-
guments are incorrect, or an error occurs. It returns -1 if the timeout has been exceeded. If the slave
SQL thread stops while MASTER_POS_WAIT() is waiting, the function returns NULL. If the slave
is past the specified position, the function returns immediately.

Functions and Operators

740

If a timeout value is specified, MASTER_POS_WAIT() stops waiting when timeout seconds
have elapsed. timeout must be greater than 0; a zero or negative timeout means no timeout.

• NAME_CONST(name,value)

Returns the given value. When used to produce a result set column, NAME_CONST() causes the
column to have the given name.

mysql> SELECT NAME_CONST('myname', 14);
+--------+
| myname |
+--------+
| 14 |
+--------+

This function was added in MySQL 5.0.12. It is for internal use only. The server uses it when writ-
ing statements from stored routines that contain references to local routine variables, as described in
Section 17.5, “Binary Logging of Stored Routines and Triggers”, You might see this function in the
output from mysqlbinlog.

• RELEASE_LOCK(str)

Releases the lock named by the string str that was obtained with GET_LOCK(). Returns 1 if the
lock was released, 0 if the lock was not established by this thread (in which case the lock is not re-
leased), and NULL if the named lock did not exist. The lock does not exist if it was never obtained
by a call to GET_LOCK() or if it has previously been released.

The DO statement is convenient to use with RELEASE_LOCK(). See Section 13.2.2, “DO Syntax”.

• SLEEP(duration)

Sleeps (pauses) for the number of seconds given by the duration argument, then returns 0. If
SLEEP() is interrupted, it returns 1. The duration may have a fractional part given in microseconds.
This function was added in MySQL 5.0.12.

• UUID()

Returns a Universal Unique Identifier (UUID) generated according to “DCE 1.1: Remote Procedure
Call” (Appendix A) CAE (Common Applications Environment) Specifications published by The
Open Group in October 1997 (Document Number C706, ht-
tp://www.opengroup.org/public/pubs/catalog/c706.htm).

A UUID is designed as a number that is globally unique in space and time. Two calls to UUID() are
expected to generate two different values, even if these calls are performed on two separate com-
puters that are not connected to each other.

A UUID is a 128-bit number represented by a string of five hexadecimal numbers in aaaaaaaa-
bbbb-cccc-dddd-eeeeeeeeeeee format:

• The first three numbers are generated from a timestamp.

• The fourth number preserves temporal uniqueness in case the timestamp value loses monoton-
icity (for example, due to daylight saving time).

• The fifth number is an IEEE 802 node number that provides spatial uniqueness. A random num-
ber is substituted if the latter is not available (for example, because the host computer has no Eth-
ernet card, or we do not know how to find the hardware address of an interface on your operating
system). In this case, spatial uniqueness cannot be guaranteed. Nevertheless, a collision should
have very low probability.

Functions and Operators

741

http://www.opengroup.org/public/pubs/catalog/c706.htm
http://www.opengroup.org/public/pubs/catalog/c706.htm

Currently, the MAC address of an interface is taken into account only on FreeBSD and Linux.
On other operating systems, MySQL uses a randomly generated 48-bit number.

mysql> SELECT UUID();
-> '6ccd780c-baba-1026-9564-0040f4311e29'

Note that UUID() does not yet work with replication.

• VALUES(col_name)

In an INSERT ... ON DUPLICATE KEY UPDATE statement, you can use the
VALUES(col_name) function in the UPDATE clause to refer to column values from the INSERT
portion of the statement. In other words, VALUES(col_name) in the UPDATE clause refers to the
value of col_name that would be inserted, had no duplicate-key conflict occurred. This function is
especially useful in multiple-row inserts. The VALUES() function is meaningful only in INSERT
... ON DUPLICATE KEY UPDATE statements and returns NULL otherwise. Section 13.2.4.3,
“INSERT ... ON DUPLICATE KEY UPDATE Syntax”.

mysql> INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)
-> ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

12.10. Functions and Modifiers for Use with GROUP BY
Clauses

12.10.1. GROUP BY (Aggregate) Functions
This section describes group (aggregate) functions that operate on sets of values. Unless otherwise
stated, group functions ignore NULL values.

If you use a group function in a statement containing no GROUP BY clause, it is equivalent to grouping
on all rows.

For numeric arguments, the variance and standard deviation functions return a DOUBLE value. The
SUM() and AVG() functions return a DECIMAL value for exact-value arguments (integer or
DECIMAL), and a DOUBLE value for approximate-value arguments (FLOAT or DOUBLE). (Before
MySQL 5.0.3, SUM() and AVG() return DOUBLE for all numeric arguments.)

The SUM() and AVG() aggregate functions do not work with temporal values. (They convert the values
to numbers, which loses the part after the first non-numeric character.) To work around this problem,
you can convert to numeric units, perform the aggregate operation, and convert back to a temporal
value. Examples:

SELECT SEC_TO_TIME(SUM(TIME_TO_SEC(time_col))) FROM tbl_name;
SELECT FROM_DAYS(SUM(TO_DAYS(date_col))) FROM tbl_name;

• AVG([DISTINCT] expr)

Returns the average value of expr. The DISTINCT option can be used as of MySQL 5.0.3 to re-
turn the average of the distinct values of expr.

AVG() returns NULL if there were no matching rows.

mysql> SELECT student_name, AVG(test_score)

Functions and Operators

742

-> FROM student
-> GROUP BY student_name;

• BIT_AND(expr)

Returns the bitwise AND of all bits in expr. The calculation is performed with 64-bit (BIGINT)
precision.

This function returns 18446744073709551615 if there were no matching rows. (This is the
value of an unsigned BIGINT value with all bits set to 1.)

• BIT_OR(expr)

Returns the bitwise OR of all bits in expr. The calculation is performed with 64-bit (BIGINT) pre-
cision.

This function returns 0 if there were no matching rows.

• BIT_XOR(expr)

Returns the bitwise XOR of all bits in expr. The calculation is performed with 64-bit (BIGINT)
precision.

This function returns 0 if there were no matching rows.

• COUNT(expr)

Returns a count of the number of non-NULL values in the rows retrieved by a SELECT statement.
The result is a BIGINT value.

COUNT() returns 0 if there were no matching rows.

mysql> SELECT student.student_name,COUNT(*)
-> FROM student,course
-> WHERE student.student_id=course.student_id
-> GROUP BY student_name;

COUNT(*) is somewhat different in that it returns a count of the number of rows retrieved, whether
or not they contain NULL values.

COUNT(*) is optimized to return very quickly if the SELECT retrieves from one table, no other
columns are retrieved, and there is no WHERE clause. For example:

mysql> SELECT COUNT(*) FROM student;

This optimization applies only to MyISAM tables only, because an exact row count is stored for this
storage engine and can be accessed very quickly. For transactional storage engines such as InnoDB
and BDB, storing an exact row count is more problematic because multiple transactions may be oc-
curring, each of which may affect the count.

• COUNT(DISTINCT expr,[expr...])

Returns a count of the number of different non-NULL values.

COUNT(DISTINCT) returns 0 if there were no matching rows.

mysql> SELECT COUNT(DISTINCT results) FROM student;

In MySQL, you can obtain the number of distinct expression combinations that do not contain NULL

Functions and Operators

743

by giving a list of expressions. In standard SQL, you would have to do a concatenation of all expres-
sions inside COUNT(DISTINCT ...).

• GROUP_CONCAT(expr)

This function returns a string result with the concatenated non-NULL values from a group. It returns
NULL if there are no non-NULL values. The full syntax is as follows:

GROUP_CONCAT([DISTINCT] expr [,expr ...]
[ORDER BY {unsigned_integer | col_name | expr}

[ASC | DESC] [,col_name ...]]
[SEPARATOR str_val])

mysql> SELECT student_name,
-> GROUP_CONCAT(test_score)
-> FROM student
-> GROUP BY student_name;

Or:

mysql> SELECT student_name,
-> GROUP_CONCAT(DISTINCT test_score
-> ORDER BY test_score DESC SEPARATOR ' ')
-> FROM student
-> GROUP BY student_name;

In MySQL, you can get the concatenated values of expression combinations. You can eliminate du-
plicate values by using DISTINCT. If you want to sort values in the result, you should use ORDER
BY clause. To sort in reverse order, add the DESC (descending) keyword to the name of the column
you are sorting by in the ORDER BY clause. The default is ascending order; this may be specified
explicitly using the ASC keyword. SEPARATOR is followed by the string value that should be inser-
ted between values of result. The default is a comma (‘,’). You can eliminate the separator altogeth-
er by specifying SEPARATOR ''.

You can set a maximum allowed length with the group_concat_max_len system variable.
(The default value is 1024.) The syntax to do this at runtime is as follows, where val is an unsigned
integer:

SET [SESSION | GLOBAL] group_concat_max_len = val;

If a maximum length has been set, the result is truncated to this maximum length.

Beginning with MySQL 5.0.19, the type returned by GROUP_CONCAT() is always VARCHAR un-
less group_concat_max_len is greater than 512, in which case, it returns a BLOB. (Previously,
it returned a BLOB with group_concat_max_len greater than 512 only if the query included an
ORDER BY clause.)

See also CONCAT() and CONCAT_WS(): Section 12.3, “String Functions”.

• MIN([DISTINCT] expr), MAX([DISTINCT] expr)

Returns the minimum or maximum value of expr. MIN() and MAX() may take a string argument;
in such cases they return the minimum or maximum string value. See Section 7.4.5, “How MySQL
Uses Indexes”. The DISTINCT keyword can be used to find the minimum or maximum of the dis-
tinct values of expr, however, this produces the same result as omitting DISTINCT.

MIN() and MAX() return NULL if there were no matching rows.

mysql> SELECT student_name, MIN(test_score), MAX(test_score)
-> FROM student
-> GROUP BY student_name;

Functions and Operators

744

For MIN(), MAX(), and other aggregate functions, MySQL currently compares ENUM and SET
columns by their string value rather than by the string's relative position in the set. This differs from
how ORDER BY compares them. This is expected to be rectified in a future MySQL release.

• STD(expr) STDDEV(expr)

Returns the population standard deviation of expr. This is an extension to standard SQL. The
STDDEV() form of this function is provided for compatibility with Oracle. As of MySQL 5.0.3, the
standard SQL function STDDEV_POP() can be used instead.

These functions return NULL if there were no matching rows.

• STDDEV_POP(expr)

Returns the population standard deviation of expr (the square root of VAR_POP()). This function
was added in MySQL 5.0.3. Before 5.0.3, you can use STD() or STDDEV(), which are equivalent
but not standard SQL.

STDDEV_POP() returns NULL if there were no matching rows.

• STDDEV_SAMP(expr)

Returns the sample standard deviation of expr (the square root of VAR_SAMP(). This function
was added in MySQL 5.0.3.

STDDEV_SAMP() returns NULL if there were no matching rows.

• SUM([DISTINCT] expr)

Returns the sum of expr. If the return set has no rows, SUM() returns NULL. The DISTINCT
keyword can be used in MySQL 5.0 to sum only the distinct values of expr.

SUM() returns NULL if there were no matching rows.

• VAR_POP(expr)

Returns the population standard variance of expr. It considers rows as the whole population, not as
a sample, so it has the number of rows as the denominator. This function was added in MySQL
5.0.3. Before 5.0.3, you can use VARIANCE(), which is equivalent but is not standard SQL.

VAR_POP() returns NULL if there were no matching rows.

• VAR_SAMP(expr)

Returns the sample variance of expr. That is, the denominator is the number of rows minus one.
This function was added in MySQL 5.0.3.

VAR_SAMP() returns NULL if there were no matching rows.

• VARIANCE(expr)

Returns the population standard variance of expr. This is an extension to standard SQL. As of
MySQL 5.0.3, the standard SQL function VAR_POP() can be used instead.

VARIANCE() returns NULL if there were no matching rows.

Functions and Operators

745

12.10.2. GROUP BY Modifiers
The GROUP BY clause allows a WITH ROLLUP modifier that causes extra rows to be added to the
summary output. These rows represent higher-level (or super-aggregate) summary operations. ROLLUP
thus allows you to answer questions at multiple levels of analysis with a single query. It can be used, for
example, to provide support for OLAP (Online Analytical Processing) operations.

Suppose that a table named sales has year, country, product, and profit columns for record-
ing sales profitability:

CREATE TABLE sales
(

year INT NOT NULL,
country VARCHAR(20) NOT NULL,
product VARCHAR(32) NOT NULL,
profit INT

);

The table's contents can be summarized per year with a simple GROUP BY like this:

mysql> SELECT year, SUM(profit) FROM sales GROUP BY year;
+------+-------------+
| year | SUM(profit) |
+------+-------------+
| 2000 | 4525 |
| 2001 | 3010 |
+------+-------------+

This output shows the total profit for each year, but if you also want to determine the total profit
summed over all years, you must add up the individual values yourself or run an additional query.

Or you can use ROLLUP, which provides both levels of analysis with a single query. Adding a WITH
ROLLUP modifier to the GROUP BY clause causes the query to produce another row that shows the
grand total over all year values:

mysql> SELECT year, SUM(profit) FROM sales GROUP BY year WITH ROLLUP;
+------+-------------+
| year | SUM(profit) |
+------+-------------+
2000	4525
2001	3010
NULL	7535
+------+-------------+

The grand total super-aggregate line is identified by the value NULL in the year column.

ROLLUP has a more complex effect when there are multiple GROUP BY columns. In this case, each
time there is a “break” (change in value) in any but the last grouping column, the query produces an ex-
tra super-aggregate summary row.

For example, without ROLLUP, a summary on the sales table based on year, country, and
product might look like this:

mysql> SELECT year, country, product, SUM(profit)
-> FROM sales
-> GROUP BY year, country, product;

+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	India	Calculator	150
2000	India	Computer	1200
2000	USA	Calculator	75
2000	USA	Computer	1500
2001	Finland	Phone	10
2001	USA	Calculator	50

Functions and Operators

746

| 2001 | USA | Computer | 2700 |
| 2001 | USA | TV | 250 |
+------+---------+------------+-------------+

The output indicates summary values only at the year/country/product level of analysis. When ROLLUP
is added, the query produces several extra rows:

mysql> SELECT year, country, product, SUM(profit)
-> FROM sales
-> GROUP BY year, country, product WITH ROLLUP;

+------+---------+------------+-------------+
| year | country | product | SUM(profit) |
+------+---------+------------+-------------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	Finland	NULL	1600
2000	India	Calculator	150
2000	India	Computer	1200
2000	India	NULL	1350
2000	USA	Calculator	75
2000	USA	Computer	1500
2000	USA	NULL	1575
2000	NULL	NULL	4525
2001	Finland	Phone	10
2001	Finland	NULL	10
2001	USA	Calculator	50
2001	USA	Computer	2700
2001	USA	TV	250
2001	USA	NULL	3000
2001	NULL	NULL	3010
NULL	NULL	NULL	7535
+------+---------+------------+-------------+

For this query, adding ROLLUP causes the output to include summary information at four levels of ana-
lysis, not just one. Here's how to interpret the ROLLUP output:

• Following each set of product rows for a given year and country, an extra summary row is produced
showing the total for all products. These rows have the product column set to NULL.

• Following each set of rows for a given year, an extra summary row is produced showing the total for
all countries and products. These rows have the country and products columns set to NULL.

• Finally, following all other rows, an extra summary row is produced showing the grand total for all
years, countries, and products. This row has the year, country, and products columns set to
NULL.

Other Considerations When using ROLLUP

The following items list some behaviors specific to the MySQL implementation of ROLLUP:

When you use ROLLUP, you cannot also use an ORDER BY clause to sort the results. In other words,
ROLLUP and ORDER BY are mutually exclusive. However, you still have some control over sort order.
GROUP BY in MySQL sorts results, and you can use explicit ASC and DESC keywords with columns
named in the GROUP BY list to specify sort order for individual columns. (The higher-level summary
rows added by ROLLUP still appear after the rows from which they are calculated, regardless of the sort
order.)

LIMIT can be used to restrict the number of rows returned to the client. LIMIT is applied after ROL-
LUP, so the limit applies against the extra rows added by ROLLUP. For example:

mysql> SELECT year, country, product, SUM(profit)
-> FROM sales
-> GROUP BY year, country, product WITH ROLLUP
-> LIMIT 5;

+------+---------+------------+-------------+
| year | country | product | SUM(profit) |

Functions and Operators

747

+------+---------+------------+-------------+
2000	Finland	Computer	1500
2000	Finland	Phone	100
2000	Finland	NULL	1600
2000	India	Calculator	150
2000	India	Computer	1200
+------+---------+------------+-------------+

Using LIMIT with ROLLUP may produce results that are more difficult to interpret, because you have
less context for understanding the super-aggregate rows.

The NULL indicators in each super-aggregate row are produced when the row is sent to the client. The
server looks at the columns named in the GROUP BY clause following the leftmost one that has changed
value. For any column in the result set with a name that is a lexical match to any of those names, its
value is set to NULL. (If you specify grouping columns by column number, the server identifies which
columns to set to NULL by number.)

Because the NULL values in the super-aggregate rows are placed into the result set at such a late stage in
query processing, you cannot test them as NULL values within the query itself. For example, you cannot
add HAVING product IS NULL to the query to eliminate from the output all but the super-ag-
gregate rows.

On the other hand, the NULL values do appear as NULL on the client side and can be tested as such us-
ing any MySQL client programming interface.

12.10.3. GROUP BY and HAVING with Hidden Fields
MySQL extends the use of GROUP BY so that you can use non-aggregated columns or calculations in
the SELECT list that do not appear in the GROUP BY clause. You can use this feature to get better per-
formance by avoiding unnecessary column sorting and grouping. For example, you do not need to group
on customer.name in the following query:

SELECT order.custid, customer.name, MAX(payments)
FROM order,customer
WHERE order.custid = customer.custid
GROUP BY order.custid;

In standard SQL, you would have to add customer.name to the GROUP BY clause. In MySQL, the
name is redundant.

Do not use this feature if the columns you omit from the GROUP BY part are not constant in the group.
The server is free to return any value from the group, so the results are indeterminate unless all values
are the same.

A similar MySQL extension applies to the HAVING clause. The SQL standard does not allow the HAV-
ING clause to name any column that is not found in the GROUP BY clause if it is not enclosed in an ag-
gregate function. MySQL allows the use of such columns to simplify calculations. This extension as-
sumes that the non-grouped columns will have the same group-wise values. Otherwise, the result is in-
determinate.

If the ONLY_FULL_GROUP_BY SQL mode is enabled, the MySQL extension to GROUP BY does not
apply. That is, columns not named in the GROUP BY clause cannot be used in the SELECT list or HAV-
ING clause if not used in an aggregate function.

The select list extension also applies to ORDER BY. That is, you can use non-aggregated columns or
calculations in the ORDER BY clause that do not appear in the GROUP BY clause. This extension does
not apply if the ONLY_FULL_GROUP_BY SQL mode is enabled.

In some cases, you can use MIN() and MAX() to obtain a specific column value even if it isn't unique.
The following gives the value of column from the row containing the smallest value in the sort

Functions and Operators

748

column:

SUBSTR(MIN(CONCAT(RPAD(sort,6,' '),column)),7)

See Section 3.6.4, “The Rows Holding the Group-wise Maximum of a Certain Field”.

Note that if you are trying to follow standard SQL, you can't use expressions in GROUP BY clauses.
You can work around this limitation by using an alias for the expression:

SELECT id,FLOOR(value/100) AS val
FROM tbl_name
GROUP BY id, val;

MySQL does allow expressions in GROUP BY clauses. For example:

SELECT id,FLOOR(value/100)
FROM tbl_name
GROUP BY id, FLOOR(value/100);

Functions and Operators

749

Chapter 13. SQL Statement Syntax
This chapter describes the syntax for most of the SQL statements supported by MySQL. Additional
statement descriptions can be found in the following chapters:

• The EXPLAIN statement is discussed in Chapter 7, Optimization.

• Statements for writing stored routines are covered in Chapter 17, Stored Procedures and Functions.

• Statements for writing triggers are covered in Chapter 18, Triggers.

• View-related statements are covered in Chapter 19, Views.

13.1. Data Definition Statements

13.1.1. ALTER DATABASE Syntax
ALTER {DATABASE | SCHEMA} [db_name]

alter_specification [alter_specification] ...

alter_specification:
[DEFAULT] CHARACTER SET charset_name

| [DEFAULT] COLLATE collation_name

ALTER DATABASE enables you to change the overall characteristics of a database. These characterist-
ics are stored in the db.opt file in the database directory. To use ALTER DATABASE, you need the
ALTER privilege on the database. ALTER SCHEMA is a synonym for ALTER DATABASE as of
MySQL 5.0.2.

The CHARACTER SET clause changes the default database character set. The COLLATE clause
changes the default database collation. Chapter 10, Character Set Support, discusses character set and
collation names.

The database name can be omitted, in which case the statement applies to the default database.

13.1.2. ALTER TABLE Syntax
ALTER [IGNORE] TABLE tbl_name

alter_specification [, alter_specification] ...

alter_specification:
ADD [COLUMN] column_definition [FIRST | AFTER col_name]

| ADD [COLUMN] (column_definition,...)
| ADD {INDEX|KEY} [index_name] [index_type] (index_col_name,...)
| ADD [CONSTRAINT [symbol]]

PRIMARY KEY [index_type] (index_col_name,...)
| ADD [CONSTRAINT [symbol]]

UNIQUE [INDEX|KEY] [index_name] [index_type] (index_col_name,...)
| ADD [FULLTEXT|SPATIAL] [INDEX|KEY] [index_name] (index_col_name,...)
| ADD [CONSTRAINT [symbol]]

FOREIGN KEY [index_name] (index_col_name,...)
[reference_definition]

| ALTER [COLUMN] col_name {SET DEFAULT literal | DROP DEFAULT}
| CHANGE [COLUMN] old_col_name column_definition

[FIRST|AFTER col_name]
| MODIFY [COLUMN] column_definition [FIRST | AFTER col_name]
| DROP [COLUMN] col_name
| DROP PRIMARY KEY
| DROP {INDEX|KEY} index_name
| DROP FOREIGN KEY fk_symbol
| DISABLE KEYS
| ENABLE KEYS

750

| RENAME [TO] new_tbl_name
| ORDER BY col_name
| CONVERT TO CHARACTER SET charset_name [COLLATE collation_name]
| [DEFAULT] CHARACTER SET charset_name [COLLATE collation_name]
| DISCARD TABLESPACE
| IMPORT TABLESPACE
| table_option ...

index_col_name:
col_name [(length)] [ASC | DESC]

index_type:
USING {BTREE | HASH}

ALTER TABLE enables you to change the structure of an existing table. For example, you can add or
delete columns, create or destroy indexes, change the type of existing columns, or rename columns or
the table itself. You can also change the comment for the table and type of the table.

The syntax for many of the allowable alterations is similar to clauses of the CREATE TABLE statement.
This includes table_option modifications, for options such as ENGINE, AUTO_INCREMENT, and
AVG_ROW_LENGTH. (However, ALTER TABLE ignores the DATA DIRECTORY and INDEX DIR-
ECTORY table options.) Section 13.1.5, “CREATE TABLE Syntax”, lists all table options. As of
MySQL 5.0.23, to prevent inadvertent loss of data, ALTER TABLE cannot be used to change the stor-
age engine of a table to MERGE or BLACKHOLE.

Some operations may result in warnings if attempted on a table for which the storage engine does not
support the operation. These warnings can be displayed with SHOW WARNINGS. See Section 13.5.4.26,
“SHOW WARNINGS Syntax”.

If you use ALTER TABLE to change a column specification but DESCRIBE tbl_name indicates that
your column was not changed, it is possible that MySQL ignored your modification for one of the reas-
ons described in Section 13.1.5.1, “Silent Column Specification Changes”.

In most cases, ALTER TABLE works by making a temporary copy of the original table. The alteration
is performed on the copy, and then the original table is deleted and the new one is renamed. While AL-
TER TABLE is executing, the original table is readable by other clients. Updates and writes to the table
are stalled until the new table is ready, and then are automatically redirected to the new table without
any failed updates.

If you use ALTER TABLE tbl_name RENAME TO new_tbl_name without any other options,
MySQL simply renames any files that correspond to the table tbl_name. There is no need to create a
temporary table. (You can also use the RENAME TABLE statement to rename tables. See Section 13.1.9,
“RENAME TABLE Syntax”.)

If you use any option to ALTER TABLE other than RENAME, MySQL always creates a temporary table,
even if the data wouldn't strictly need to be copied (such as when you change the name of a column).
For MyISAM tables, you can speed up the index re-creation operation (which is the slowest part of the
alteration process) by setting the myisam_sort_buffer_size system variable to a high value.

• To use ALTER TABLE, you need ALTER, INSERT, and CREATE privileges for the table.

• IGNORE is a MySQL extension to standard SQL. It controls how ALTER TABLE works if there are
duplicates on unique keys in the new table or if warnings occur when strict mode is enabled. If IG-
NORE is not specified, the copy is aborted and rolled back if duplicate-key errors occur. If IGNORE
is specified, only the first row is used of rows with duplicates on a unique key, The other conflicting
rows are deleted. Incorrect values are truncated to the closest matching acceptable value.

• You can issue multiple ADD, ALTER, DROP, and CHANGE clauses in a single ALTER TABLE state-
ment, separated by commas. This is a MySQL extension to standard SQL, which allows only one of
each clause per ALTER TABLE statement. For example, to drop multiple columns in a single state-
ment, do this:

SQL Statement Syntax

751

ALTER TABLE t2 DROP COLUMN c, DROP COLUMN d;

• CHANGE col_name, DROP col_name, and DROP INDEX are MySQL extensions to standard
SQL.

• MODIFY is an Oracle extension to ALTER TABLE.

• The word COLUMN is optional and can be omitted.

• column_definition clauses use the same syntax for ADD and CHANGE as for CREATE TA-
BLE. Note that this syntax includes the column name, not just its data type. See Section 13.1.5,
“CREATE TABLE Syntax”.

• You can rename a column using a CHANGE old_col_name column_definition clause. To
do so, specify the old and new column names and the type that the column currently has. For ex-
ample, to rename an INTEGER column from a to b, you can do this:

ALTER TABLE t1 CHANGE a b INTEGER;

If you want to change a column's type but not the name, CHANGE syntax still requires an old and
new column name, even if they are the same. For example:

ALTER TABLE t1 CHANGE b b BIGINT NOT NULL;

You can also use MODIFY to change a column's type without renaming it:

ALTER TABLE t1 MODIFY b BIGINT NOT NULL;

• If you use CHANGE or MODIFY to shorten a column for which an index exists on the column, and
the resulting column length is less than the index length, MySQL shortens the index automatically.

• When you change a data type using CHANGE or MODIFY, MySQL tries to convert existing column
values to the new type as well as possible.

• To add a column at a specific position within a table row, use FIRST or AFTER col_name. The
default is to add the column last. You can also use FIRST and AFTER in CHANGE or MODIFY oper-
ations.

• ALTER ... SET DEFAULT or ALTER ... DROP DEFAULT specify a new default value for a
column or remove the old default value, respectively. If the old default is removed and the column
can be NULL, the new default is NULL. If the column cannot be NULL, MySQL assigns a default
value, as described in Section 11.1.4, “Data Type Default Values”.

• DROP INDEX removes an index. This is a MySQL extension to standard SQL. See Section 13.1.7,
“DROP INDEX Syntax”.

• If columns are dropped from a table, the columns are also removed from any index of which they are
a part. If all columns that make up an index are dropped, the index is dropped as well.

• If a table contains only one column, the column cannot be dropped. If what you intend is to remove
the table, use DROP TABLE instead.

• DROP PRIMARY KEY drops the primary index. Note: In older versions of MySQL, if no primary
index existed, DROP PRIMARY KEY would drop the first UNIQUE index in the table. This is not
the case in MySQL 5.0, where trying to use DROP PRIMARY KEY on a table with no primary key
results in an error.

SQL Statement Syntax

752

If you add a UNIQUE INDEX or PRIMARY KEY to a table, it is stored before any non-unique in-
dex so that MySQL can detect duplicate keys as early as possible.

• Some storage engines allow you to specify an index type when creating an index. The syntax for the
index_type specifier is USING type_name. For details about USING, see Section 13.1.4,
“CREATE INDEX Syntax”.

• ORDER BY enables you to create the new table with the rows in a specific order. Note that the table
does not remain in this order after inserts and deletes. This option is useful primarily when you know
that you are mostly to query the rows in a certain order most of the time. By using this option after
major changes to the table, you might be able to get higher performance. In some cases, it might
make sorting easier for MySQL if the table is in order by the column that you want to order it by
later.

• If you use ALTER TABLE on a MyISAM table, all non-unique indexes are created in a separate
batch (as for REPAIR TABLE). This should make ALTER TABLE much faster when you have
many indexes.

This feature can be activated explicitly. ALTER TABLE ... DISABLE KEYS tells MySQL to
stop updating non-unique indexes for a MyISAM table. ALTER TABLE ... ENABLE KEYS then
should be used to re-create missing indexes. MySQL does this with a special algorithm that is much
faster than inserting keys one by one, so disabling keys before performing bulk insert operations
should give a considerable speedup. Using ALTER TABLE ... DISABLE KEYS requires the
INDEX privilege in addition to the privileges mentioned earlier.

• The FOREIGN KEY and REFERENCES clauses are supported by the InnoDB storage engine,
which implements ADD [CONSTRAINT [symbol]] FOREIGN KEY (...) REFERENCES
... (...). See Section 14.2.6.4, “FOREIGN KEY Constraints”. For other storage engines, the
clauses are parsed but ignored. The CHECK clause is parsed but ignored by all storage engines. See
Section 13.1.5, “CREATE TABLE Syntax”. The reason for accepting but ignoring syntax clauses is
for compatibility, to make it easier to port code from other SQL servers, and to run applications that
create tables with references. See Section 1.9.5, “MySQL Differences from Standard SQL”.

You cannot add a foreign key and drop a foreign key in separate clauses of a single ALTER TABLE
statement. You must use separate statements.

• InnoDB supports the use of ALTER TABLE to drop foreign keys:

ALTER TABLE tbl_name DROP FOREIGN KEY fk_symbol;

You cannot add a foreign key and drop a foreign key in separate clauses of a single ALTER TABLE
statement. You must use separate statements.

For more information, see Section 14.2.6.4, “FOREIGN KEY Constraints”.

• Pending INSERT DELAYED statements are lost if a table is write locked and ALTER TABLE is
used to modify the table structure.

• If you want to change the table default character set and all character columns (CHAR, VARCHAR,
TEXT) to a new character set, use a statement like this:

ALTER TABLE tbl_name CONVERT TO CHARACTER SET charset_name;

Warning: The preceding operation converts column values between the character sets. This is not
what you want if you have a column in one character set (like latin1) but the stored values actu-
ally use some other, incompatible character set (like utf8). In this case, you have to do the follow-
ing for each such column:

SQL Statement Syntax

753

ALTER TABLE t1 CHANGE c1 c1 BLOB;
ALTER TABLE t1 CHANGE c1 c1 TEXT CHARACTER SET utf8;

The reason this works is that there is no conversion when you convert to or from BLOB columns.

If you specify CONVERT TO CHARACTER SET binary, the CHAR, VARCHAR, and TEXT
columns are converted to their corresponding binary string types (BINARY, VARBINARY, BLOB).
This means that the columns no longer will have a character set and a subsequent CONVERT TO op-
eration will not apply to them.

To change only the default character set for a table, use this statement:

ALTER TABLE tbl_name DEFAULT CHARACTER SET charset_name;

The word DEFAULT is optional. The default character set is the character set that is used if you do
not specify the character set for a new column which you add to a table (for example, with ALTER
TABLE ... ADD column).

• For an InnoDB table that is created with its own tablespace in an .ibd file, that file can be dis-
carded and imported. To discard the .ibd file, use this statement:

ALTER TABLE tbl_name DISCARD TABLESPACE;

This deletes the current .ibd file, so be sure that you have a backup first. Attempting to access the
table while the tablespace file is discarded results in an error.

To import the backup .ibd file back into the table, copy it into the database directory, and then is-
sue this statement:

ALTER TABLE tbl_name IMPORT TABLESPACE;

See Section 14.2.3.1, “Using Per-Table Tablespaces”.

With the mysql_info() C API function, you can find out how many rows were copied, and (when
IGNORE is used) how many rows were deleted due to duplication of unique key values. See Sec-
tion 22.2.3.34, “mysql_info()”.

Here are some examples that show uses of ALTER TABLE. Begin with a table t1 that is created as
shown here:

CREATE TABLE t1 (a INTEGER,b CHAR(10));

To rename the table from t1 to t2:

ALTER TABLE t1 RENAME t2;

To change column a from INTEGER to TINYINT NOT NULL (leaving the name the same), and to
change column b from CHAR(10) to CHAR(20) as well as renaming it from b to c:

ALTER TABLE t2 MODIFY a TINYINT NOT NULL, CHANGE b c CHAR(20);

To add a new TIMESTAMP column named d:

ALTER TABLE t2 ADD d TIMESTAMP;

SQL Statement Syntax

754

To add indexes on column d and on column a:

ALTER TABLE t2 ADD INDEX (d), ADD INDEX (a);

To remove column c:

ALTER TABLE t2 DROP COLUMN c;

To add a new AUTO_INCREMENT integer column named c:

ALTER TABLE t2 ADD c INT UNSIGNED NOT NULL AUTO_INCREMENT,
ADD PRIMARY KEY (c);

Note that we indexed c (as a PRIMARY KEY), because AUTO_INCREMENT columns must be indexed,
and also that we declare c as NOT NULL, because primary key columns cannot be NULL.

When you add an AUTO_INCREMENT column, column values are filled in with sequence numbers for
you automatically. For MyISAM tables, you can set the first sequence number by executing SET IN-
SERT_ID=value before ALTER TABLE or by using the AUTO_INCREMENT=value table option.
See Section 13.5.3, “SET Syntax”.

From MySQL 5.0.3, you can use the ALTER TABLE ... AUTO_INCREMENT=value table option
for InnoDB tables to set the sequence number for new rows if the value is greater than the maximum
value in the AUTO_INCREMENT column. If the value is less than the current maximum value in the
column, no error message is given and the current sequence value is not changed.

With MyISAM tables, if you do not change the AUTO_INCREMENT column, the sequence number is not
affected. If you drop an AUTO_INCREMENT column and then add another AUTO_INCREMENT
column, the numbers are resequenced beginning with 1.

When replication is used, adding an AUTO_INCREMENT column to a table might not produce the same
ordering of the rows on the slave and the master. This occurs because the order in which the rows are
numbered depends on the specific storage engine used for the table and the order in which the rows were
inserted. If it is important to have the same order on the master and slave, the rows must be ordered be-
fore assigning an AUTO_INCREMENT number. Assuming that you want to add an AUTO_INCREMENT
column to the table t1, the following statements produce a new table t2 identical to t1 but with an
AUTO_INCREMENT column:

CREATE TABLE t2 (id INT AUTO_INCREMENT PRIMARY KEY)
SELECT * FROM t1 ORDER BY col1, col2;

This assumes that the table t1 has columns col1 and col2.

This set of statements will also produce a new table t2 identical to t1, with the addition of an
AUTO_INCREMENT column:

CREATE TABLE t2 LIKE t1;
ALTER TABLE T2 ADD id INT AUTO_INCREMENT PRIMARY KEY;
INSERT INTO t2 SELECT * FROM t1 ORDER BY col1, col2;

Important: To guarantee the same ordering on both master and slave, all columns of t1 must be refer-
enced in the ORDER BY clause.

Regardless of the method used to create and populate the copy having the AUTO_INCREMENT column,
the final step is to drop the original table and then rename the copy:

DROP t1;
ALTER TABLE t2 RENAME t1;

SQL Statement Syntax

755

See also Section A.7.1, “Problems with ALTER TABLE”.

13.1.3. CREATE DATABASE Syntax
CREATE {DATABASE | SCHEMA} [IF NOT EXISTS] db_name

[create_specification [create_specification] ...]

create_specification:
[DEFAULT] CHARACTER SET charset_name

| [DEFAULT] COLLATE collation_name

CREATE DATABASE creates a database with the given name. To use this statement, you need the
CREATE privilege for the database. CREATE SCHEMA is a synonym for CREATE DATABASE as of
MySQL 5.0.2.

An error occurs if the database exists and you did not specify IF NOT EXISTS.

create_specification options specify database characteristics. Database characteristics are
stored in the db.opt file in the database directory. The CHARACTER SET clause specifies the default
database character set. The COLLATE clause specifies the default database collation. Chapter 10, Char-
acter Set Support, discusses character set and collation names.

A database in MySQL is implemented as a directory containing files that correspond to tables in the
database. Because there are no tables in a database when it is initially created, the CREATE DATABASE
statement creates only a directory under the MySQL data directory and the db.opt file. Rules for al-
lowable database names are given in Section 9.2, “Database, Table, Index, Column, and Alias Names”.

If you manually create a directory under the data directory (for example, with mkdir), the server con-
siders it a database directory and it shows up in the output of SHOW DATABASES.

You can also use the mysqladmin program to create databases. See Section 8.9, “mysqladmin —
Client for Administering a MySQL Server”.

13.1.4. CREATE INDEX Syntax
CREATE [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name

[index_type]
ON tbl_name (index_col_name,...)

index_col_name:
col_name [(length)] [ASC | DESC]

index_type:
USING {BTREE | HASH}

CREATE INDEX is mapped to an ALTER TABLE statement to create indexes. See Section 13.1.2,
“ALTER TABLE Syntax”. For more information about indexes, see Section 7.4.5, “How MySQL Uses
Indexes”.

Normally, you create all indexes on a table at the time the table itself is created with CREATE TABLE.
See Section 13.1.5, “CREATE TABLE Syntax”. CREATE INDEX enables you to add indexes to exist-
ing tables.

A column list of the form (col1,col2,...) creates a multiple-column index. Index values are
formed by concatenating the values of the given columns.

For CHAR, VARCHAR, BINARY, and VARBINARY columns, indexes can be created that use only the
leading part of column values, using col_name(length) syntax to specify an index prefix length.
BLOB and TEXT columns also can be indexed, but a prefix length must be given. Prefix lengths are giv-
en in characters for non-binary string types and in bytes for binary string types. That is, index entries

SQL Statement Syntax

756

consist of the first length characters of each column value for CHAR, VARCHAR, and TEXT columns,
and the first length bytes of each column value for BINARY, VARBINARY, and BLOB columns.

The statement shown here creates an index using the first 10 characters of the name column:

CREATE INDEX part_of_name ON customer (name(10));

If names in the column usually differ in the first 10 characters, this index should not be much slower
than an index created from the entire name column. Also, using partial columns for indexes can make
the index file much smaller, which could save a lot of disk space and might also speed up INSERT oper-
ations.

Prefixes can be up to 1000 bytes long (767 bytes for InnoDB tables). Note that prefix limits are meas-
ured in bytes, whereas the prefix length in CREATE INDEX statements is interpreted as number of
characters for non-binary data types (CHAR, VARCHAR, TEXT). Take this into account when specifying
a prefix length for a column that uses a multi-byte character set.

A UNIQUE index creates a constraint such that all values in the index must be distinct. An error occurs
if you try to add a new row with a key value that matches an existing row. This constraint does not apply
to NULL values except for the BDB storage engine. For other engines, a UNIQUE index allows multiple
NULL values for columns that can contain NULL.

FULLTEXT indexes are supported only for MyISAM tables and can include only CHAR, VARCHAR, and
TEXT columns. Indexing always happens over the entire column; partial indexing is not supported and
any prefix length is ignored if specified. See Section 12.7, “Full-Text Search Functions”, for details of
operation.

SPATIAL indexes are supported only for MyISAM tables and can include only spatial columns that are
defined as NOT NULL. Chapter 16, Spatial Extensions, describes the spatial data types.

In MySQL 5.0:

• You can add an index on a column that can have NULL values only if you are using the MyISAM,
InnoDB, BDB, or MEMORY storage engine.

• You can add an index on a BLOB or TEXT column only if you are using the MyISAM, BDB, or In-
noDB storage engine.

An index_col_name specification can end with ASC or DESC. These keywords are allowed for fu-
ture extensions for specifying ascending or descending index value storage. Currently, they are parsed
but ignored; index values are always stored in ascending order.

Some storage engines allow you to specify an index type when creating an index. The allowable index
type values supported by different storage engines are shown in the following table. Where multiple in-
dex types are listed, the first one is the default when no index type specifier is given.

Storage Engine Allowable Index Types

MyISAM BTREE

InnoDB BTREE

MEMORY/HEAP HASH, BTREE

If you specify an index type that is not legal for a given storage engine, but there is another index type
available that the engine can use without affecting query results, the engine uses the available type.

Examples:

SQL Statement Syntax

757

CREATE TABLE lookup (id INT) ENGINE = MEMORY;
CREATE INDEX id_index USING BTREE ON lookup (id);

TYPE type_name is recognized as a synonym for USING type_name. However, USING is the
preferred form.

13.1.5. CREATE TABLE Syntax
CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name

(create_definition,...)
[table_option ...]

Or:

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
[(create_definition,...)]
[table_option ...]
select_statement

Or:

CREATE [TEMPORARY] TABLE [IF NOT EXISTS] tbl_name
{ LIKE old_tbl_name | (LIKE old_tbl_name) }

create_definition:
column_definition

| [CONSTRAINT [symbol]] PRIMARY KEY [index_type] (index_col_name,...)
| {INDEX|KEY} [index_name] [index_type] (index_col_name,...)
| [CONSTRAINT [symbol]] UNIQUE [INDEX|KEY]

[index_name] [index_type] (index_col_name,...)
| {FULLTEXT|SPATIAL} [INDEX|KEY] [index_name] (index_col_name,...)
| [CONSTRAINT [symbol]] FOREIGN KEY

[index_name] (index_col_name,...) [reference_definition]
| CHECK (expr)

column_definition:
col_name data_type [NOT NULL | NULL] [DEFAULT default_value]

[AUTO_INCREMENT] [UNIQUE [KEY] | [PRIMARY] KEY]
[COMMENT 'string'] [reference_definition]

data_type:
BIT[(length)]

| TINYINT[(length)] [UNSIGNED] [ZEROFILL]
| SMALLINT[(length)] [UNSIGNED] [ZEROFILL]
| MEDIUMINT[(length)] [UNSIGNED] [ZEROFILL]
| INT[(length)] [UNSIGNED] [ZEROFILL]
| INTEGER[(length)] [UNSIGNED] [ZEROFILL]
| BIGINT[(length)] [UNSIGNED] [ZEROFILL]
| REAL[(length,decimals)] [UNSIGNED] [ZEROFILL]
| DOUBLE[(length,decimals)] [UNSIGNED] [ZEROFILL]
| FLOAT[(length,decimals)] [UNSIGNED] [ZEROFILL]
| DECIMAL(length,decimals) [UNSIGNED] [ZEROFILL]
| NUMERIC(length,decimals) [UNSIGNED] [ZEROFILL]
| DATE
| TIME
| TIMESTAMP
| DATETIME
| YEAR
| CHAR(length)

[CHARACTER SET charset_name] [COLLATE collation_name]
| VARCHAR(length)

[CHARACTER SET charset_name] [COLLATE collation_name]
| BINARY(length)
| VARBINARY(length)
| TINYBLOB
| BLOB
| MEDIUMBLOB
| LONGBLOB
| TINYTEXT [BINARY]

[CHARACTER SET charset_name] [COLLATE collation_name]
| TEXT [BINARY]

[CHARACTER SET charset_name] [COLLATE collation_name]
| MEDIUMTEXT [BINARY]

SQL Statement Syntax

758

[CHARACTER SET charset_name] [COLLATE collation_name]
| LONGTEXT [BINARY]

[CHARACTER SET charset_name] [COLLATE collation_name]
| ENUM(value1,value2,value3,...)

[CHARACTER SET charset_name] [COLLATE collation_name]
| SET(value1,value2,value3,...)

[CHARACTER SET charset_name] [COLLATE collation_name]
| spatial_type

index_col_name:
col_name [(length)] [ASC | DESC]

index_type:
USING {BTREE | HASH}

reference_definition:
REFERENCES tbl_name [(index_col_name,...)]

[MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
[ON DELETE reference_option]
[ON UPDATE reference_option]

reference_option:
RESTRICT | CASCADE | SET NULL | NO ACTION

table_option:
{ENGINE|TYPE} [=] engine_name

| AUTO_INCREMENT [=] value
| AVG_ROW_LENGTH [=] value
| [DEFAULT] CHARACTER SET charset_name
| CHECKSUM [=] {0 | 1}
| COLLATE collation_name
| COMMENT [=] 'string'
| CONNECTION [=] 'connect_string'
| DATA DIRECTORY [=] 'absolute path to directory'
| DELAY_KEY_WRITE [=] {0 | 1}
| INDEX DIRECTORY [=] 'absolute path to directory'
| INSERT_METHOD [=] { NO | FIRST | LAST }
| MAX_ROWS [=] value
| MIN_ROWS [=] value
| PACK_KEYS [=] {0 | 1 | DEFAULT}
| PASSWORD [=] 'string'
| ROW_FORMAT [=] {DEFAULT|DYNAMIC|FIXED|COMPRESSED|REDUNDANT|COMPACT}
| UNION [=] (tbl_name[,tbl_name]...)

select_statement:
[IGNORE | REPLACE] [AS] SELECT ... (Some legal select statement)

CREATE TABLE creates a table with the given name. You must have the CREATE privilege for the ta-
ble.

Rules for allowable table names are given in Section 9.2, “Database, Table, Index, Column, and Alias
Names”. By default, the table is created in the default database. An error occurs if the table exists, if
there is no default database, or if the database does not exist.

The table name can be specified as db_name.tbl_name to create the table in a specific database.
This works regardless of whether there is a default database, assuming that the database exists. If you
use quoted identifiers, quote the database and table names separately. For example, write
`mydb`.`mytbl`, not `mydb.mytbl`.

You can use the TEMPORARY keyword when creating a table. A TEMPORARY table is visible only to
the current connection, and is dropped automatically when the connection is closed. This means that two
different connections can use the same temporary table name without conflicting with each other or with
an existing non-TEMPORARY table of the same name. (The existing table is hidden until the temporary
table is dropped.) To create temporary tables, you must have the CREATE TEMPORARY TABLES priv-
ilege.

The keywords IF NOT EXISTS prevent an error from occurring if the table exists. However, there is
no verification that the existing table has a structure identical to that indicated by the CREATE TABLE
statement. Note: If you use IF NOT EXISTS in a CREATE TABLE ... SELECT statement, any
rows selected by the SELECT part are inserted regardless of whether the table already exists.

SQL Statement Syntax

759

MySQL represents each table by an .frm table format (definition) file in the database directory. The
storage engine for the table might create other files as well. In the case of MyISAM tables, the storage
engine creates data and index files. Thus, for each MyISAM table tbl_name, there are three disk files:

File Purpose

tbl_name.frm Table format (definition) file

tbl_name.MYD Data file

tbl_name.MYI Index file

Chapter 14, Storage Engines and Table Types, describes what files each storage engine creates to repres-
ent tables.

data_type represents the data type is a column definition. spatial_type represents a spatial data
type. For general information on the properties of data types other than the spatial types, see Chapter 11,
Data Types. For information about spatial data types, see Chapter 16, Spatial Extensions.

Some attributes do not apply to all data types. AUTO_INCREMENT applies only to integer types. DE-
FAULT does not apply to the BLOB or TEXT types.

• If neither NULL nor NOT NULL is specified, the column is treated as though NULL had been spe-
cified.

• An integer column can have the additional attribute AUTO_INCREMENT. When you insert a value
of NULL (recommended) or 0 into an indexed AUTO_INCREMENT column, the column is set to the
next sequence value. Typically this is value+1, where value is the largest value for the column
currently in the table. AUTO_INCREMENT sequences begin with 1.

To retrieve an AUTO_INCREMENT value after inserting a row, use the LAST_INSERT_ID() SQL
function or the mysql_insert_id() C API function. See Section 12.9.3, “Information Func-
tions”, and Section 22.2.3.36, “mysql_insert_id()”.

If the NO_AUTO_VALUE_ON_ZERO SQL mode is enabled, you can store 0 in AUTO_INCREMENT
columns as 0 without generating a new sequence value. See Section 5.2.6, “SQL Modes”.

Note: There can be only one AUTO_INCREMENT column per table, it must be indexed, and it can-
not have a DEFAULT value. An AUTO_INCREMENT column works properly only if it contains only
positive values. Inserting a negative number is regarded as inserting a very large positive number.
This is done to avoid precision problems when numbers “wrap” over from positive to negative and
also to ensure that you do not accidentally get an AUTO_INCREMENT column that contains 0.

For MyISAM and BDB tables, you can specify an AUTO_INCREMENT secondary column in a mul-
tiple-column key. See Section 3.6.9, “Using AUTO_INCREMENT”.

To make MySQL compatible with some ODBC applications, you can find the AUTO_INCREMENT
value for the last inserted row with the following query:

SELECT * FROM tbl_name WHERE auto_col IS NULL

For information about InnoDB and AUTO_INCREMENT, see Section 14.2.6.3, “How
AUTO_INCREMENT Columns Work in InnoDB”.

• The attribute SERIAL is an alias for BIGINT UNSIGNED NOT NULL AUTO_INCREMENT
UNIQUE.

• Character data types (CHAR, VARCHAR, TEXT) can include CHARACTER SET and COLLATE at-

SQL Statement Syntax

760

tributes to specify the character set and collation for the column. For details, see Chapter 10, Char-
acter Set Support. CHARSET is a synonym for CHARACTER SET. Example:

CREATE TABLE t (c CHAR(20) CHARACTER SET utf8 COLLATE utf8_bin);

MySQL 5.0 interprets length specifications in character column definitions in characters. (Versions
before MySQL 4.1 interpreted them in bytes.) Lengths for BINARY and VARBINARY are in bytes.

• The DEFAULT clause specifies a default value for a column. With one exception, the default value
must be a constant; it cannot be a function or an expression. This means, for example, that you can-
not set the default for a date column to be the value of a function such as NOW() or CUR-
RENT_DATE. The exception is that you can specify CURRENT_TIMESTAMP as the default for a
TIMESTAMP column. See Section 11.3.1.1, “TIMESTAMP Properties as of MySQL 4.1”.

If a column definition includes no explicit DEFAULT value, MySQL determines the default value as
described in Section 11.1.4, “Data Type Default Values”.

BLOB and TEXT columns cannot be assigned a default value.

• A comment for a column can be specified with the COMMENT option, up to 255 characters long. The
comment is displayed by the SHOW CREATE TABLE and SHOW FULL COLUMNS statements.

• KEY is normally a synonym for INDEX. The key attribute PRIMARY KEY can also be specified as
just KEY when given in a column definition. This was implemented for compatibility with other
database systems.

• A UNIQUE index creates a constraint such that all values in the index must be distinct. An error oc-
curs if you try to add a new row with a key value that matches an existing row. This constraint does
not apply to NULL values except for the BDB storage engine. For other engines, a UNIQUE index al-
lows multiple NULL values for columns that can contain NULL.

• A PRIMARY KEY is a unique index where all key columns must be defined as NOT NULL. If they
are not explicitly declared as NOT NULL, MySQL declares them so implicitly (and silently). A table
can have only one PRIMARY KEY. If you do not have a PRIMARY KEY and an application asks for
the PRIMARY KEY in your tables, MySQL returns the first UNIQUE index that has no NULL
columns as the PRIMARY KEY.

In InnoDB tables, having a long PRIMARY KEY wastes a lot of space. (See Section 14.2.13, “In-
noDB Table and Index Structures”.)

• In the created table, a PRIMARY KEY is placed first, followed by all UNIQUE indexes, and then the
non-unique indexes. This helps the MySQL optimizer to prioritize which index to use and also more
quickly to detect duplicated UNIQUE keys.

• A PRIMARY KEY can be a multiple-column index. However, you cannot create a multiple-column
index using the PRIMARY KEY key attribute in a column specification. Doing so only marks that
single column as primary. You must use a separate PRIMARY KEY(index_col_name, ...)
clause.

• If a PRIMARY KEY or UNIQUE index consists of only one column that has an integer type, you can
also refer to the column as _rowid in SELECT statements.

• In MySQL, the name of a PRIMARY KEY is PRIMARY. For other indexes, if you do not assign a
name, the index is assigned the same name as the first indexed column, with an optional suffix (_2,
_3, ...) to make it unique. You can see index names for a table using SHOW INDEX FROM
tbl_name. See Section 13.5.4.13, “SHOW INDEX Syntax”.

• Some storage engines allow you to specify an index type when creating an index. The syntax for the

SQL Statement Syntax

761

index_type specifier is USING type_name.

Example:

CREATE TABLE lookup
(id INT, INDEX USING BTREE (id))
ENGINE = MEMORY;

For details about USING, see Section 13.1.4, “CREATE INDEX Syntax”.

For more information about indexes, see Section 7.4.5, “How MySQL Uses Indexes”.

• In MySQL 5.0, only the MyISAM, InnoDB, BDB, and MEMORY storage engines support indexes on
columns that can have NULL values. In other cases, you must declare indexed columns as NOT
NULL or an error results.

• For CHAR, VARCHAR, BINARY, and VARBINARY columns, indexes can be created that use only the
leading part of column values, using col_name(length) syntax to specify an index prefix
length. BLOB and TEXT columns also can be indexed, but a prefix length must be given. Prefix
lengths are given in characters for non-binary string types and in bytes for binary string types. That
is, index entries consist of the first length characters of each column value for CHAR, VARCHAR,
and TEXT columns, and the first length bytes of each column value for BINARY, VARBINARY,
and BLOB columns. Indexing only a prefix of column values like this can make the index file much
smaller. See Section 7.4.3, “Column Indexes”.

Only the MyISAM, BDB, and InnoDB storage engines support indexing on BLOB and TEXT
columns. For example:

CREATE TABLE test (blob_col BLOB, INDEX(blob_col(10)));

Prefixes can be up to 1000 bytes long (767 bytes for InnoDB tables). Note that prefix limits are
measured in bytes, whereas the prefix length in CREATE TABLE statements is interpreted as num-
ber of characters for non-binary data types (CHAR, VARCHAR, TEXT). Take this into account when
specifying a prefix length for a column that uses a multi-byte character set.

• An index_col_name specification can end with ASC or DESC. These keywords are allowed for
future extensions for specifying ascending or descending index value storage. Currently, they are
parsed but ignored; index values are always stored in ascending order.

• When you use ORDER BY or GROUP BY on a TEXT or BLOB column in a SELECT, the server
sorts values using only the initial number of bytes indicated by the max_sort_length system
variable. See Section 11.4.3, “The BLOB and TEXT Types”.

• You can create special FULLTEXT indexes, which are used for full-text searches. Only the MyISAM
storage engine supports FULLTEXT indexes. They can be created only from CHAR, VARCHAR, and
TEXT columns. Indexing always happens over the entire column; partial indexing is not supported
and any prefix length is ignored if specified. See Section 12.7, “Full-Text Search Functions”, for de-
tails of operation.

• You can create SPATIAL indexes on spatial data types. Spatial types are supported only for MyIS-
AM tables and indexed columns must be declared as NOT NULL. See Chapter 16, Spatial Extensions.

• InnoDB tables support checking of foreign key constraints. See Section 14.2, “The InnoDB Stor-
age Engine”. Note that the FOREIGN KEY syntax in InnoDB is more restrictive than the syntax
presented for the CREATE TABLE statement at the beginning of this section: The columns of the
referenced table must always be explicitly named. InnoDB supports both ON DELETE and ON
UPDATE actions on foreign keys. For the precise syntax, see Section 14.2.6.4, “FOREIGN KEY
Constraints”.

SQL Statement Syntax

762

For other storage engines, MySQL Server parses and ignores the FOREIGN KEY and REFER-
ENCES syntax in CREATE TABLE statements. The CHECK clause is parsed but ignored by all stor-
age engines. See Section 1.9.5.5, “Foreign Keys”.

• For MyISAM tables, each NULL column takes one bit extra, rounded up to the nearest byte. The
maximum row length in bytes can be calculated as follows:

row length = 1
+ (sum of column lengths)
+ (number of NULL columns + delete_flag + 7)/8
+ (number of variable-length columns)

delete_flag is 1 for tables with static row format. Static tables use a bit in the row record for a
flag that indicates whether the row has been deleted. delete_flag is 0 for dynamic tables be-
cause the flag is stored in the dynamic row header.

These calculations do not apply for InnoDB tables, for which storage size is no different for NULL
columns than for NOT NULL columns.

The ENGINE table option specifies the storage engine for the table. TYPE is a synonym, but ENGINE is
the preferred option name.

The ENGINE table option takes the storage engine names shown in the following table.

Storage Engine Description

ARCHIVE The archiving storage engine. See Section 14.8, “The ARCHIVE Storage
Engine”.

BDB Transaction-safe tables with page locking. Also known as BerkeleyDB.
See Section 14.5, “The BDB (BerkeleyDB) Storage Engine”.

CSV Tables that store rows in comma-separated values format. See Section 14.9,
“The CSV Storage Engine”.

EXAMPLE An example engine. See Section 14.6, “The EXAMPLE Storage Engine”.

FEDERATED Storage engine that accesses remote tables. See Section 14.7, “The FEDER-
ATED Storage Engine”.

HEAP This is a synonym for MEMORY.

ISAM (OBSOLETE) Not available in MySQL 5.0. If you are upgrading to MySQL 5.0 from a
previous version, you should convert any existing ISAM tables to MyISAM
before performing the upgrade.

InnoDB Transaction-safe tables with row locking and foreign keys. See Sec-
tion 14.2, “The InnoDB Storage Engine”.

MEMORY The data for this storage engine is stored only in memory. See Section 14.4,
“The MEMORY (HEAP) Storage Engine”.

MERGE A collection of MyISAM tables used as one table. Also known as
MRG_MyISAM. See Section 14.3, “The MERGE Storage Engine”.

MyISAM The binary portable storage engine that is the default storage engine used by
MySQL. See Section 14.1, “The MyISAM Storage Engine”.

NDBCLUSTER Clustered, fault-tolerant, memory-based tables. Also known as NDB. See
Chapter 15, MySQL Cluster.

If a storage engine is specified that is not available, MySQL uses the default engine instead. Normally,
this is MyISAM. For example, if a table definition includes the ENGINE=BDB option but the MySQL

SQL Statement Syntax

763

server does not support BDB tables, the table is created as a MyISAM table. This makes it possible to
have a replication setup where you have transactional tables on the master but tables created on the slave
are non-transactional (to get more speed). In MySQL 5.0, a warning occurs if the storage engine spe-
cification is not honored.

The other table options are used to optimize the behavior of the table. In most cases, you do not have to
specify any of them. These options apply to all storage engines unless otherwise indicated. Options that
do not apply to a given storage engine may be accepted and remembered as part of the table definition.
Such options then apply if you later use ALTER TABLE to convert the table to use a different storage
engine.

• AUTO_INCREMENT

The initial AUTO_INCREMENT value for the table. In MySQL 5.0, this works for MyISAM and
MEMORY tables. It is also supported for InnoDB as of MySQL 5.0.3. To set the first auto-increment
value for engines that do not support the AUTO_INCREMENT table option, insert a “dummy” row
with a value one less than the desired value after creating the table, and then delete the dummy row.

For engines that support the AUTO_INCREMENT table option in CREATE TABLE statements, you
can also use ALTER TABLE tbl_name AUTO_INCREMENT = N to reset the
AUTO_INCREMENT value.

• AVG_ROW_LENGTH

An approximation of the average row length for your table. You need to set this only for large tables
with variable-size rows.

When you create a MyISAM table, MySQL uses the product of the MAX_ROWS and
AVG_ROW_LENGTH options to decide how big the resulting table is. If you don't specify either op-
tion, the maximum size for a table is 65,536TB of data (4GB before MySQL 5.0.6). (If your operat-
ing system does not support files that large, table sizes are constrained by the file size limit.) If you
want to keep down the pointer sizes to make the index smaller and faster and you don't really need
big files, you can decrease the default pointer size by setting the myisam_data_pointer_size
system variable, which was added in MySQL 4.1.2. (See Section 5.2.3, “System Variables”.) If you
want all your tables to be able to grow above the default limit and are willing to have your tables
slightly slower and larger than necessary, you can increase the default pointer size by setting this
variable.

• [DEFAULT] CHARACTER SET

Specify a default character set for the table. CHARSET is a synonym for CHARACTER SET.

• CHECKSUM

Set this to 1 if you want MySQL to maintain a live checksum for all rows (that is, a checksum that
MySQL updates automatically as the table changes). This makes the table a little slower to update,
but also makes it easier to find corrupted tables. The CHECKSUM TABLE statement reports the
checksum. (MyISAM only.)

• COLLATE

Specify a default collation for the table.

• COMMENT

A comment for the table, up to 60 characters long.

• CONNECTION

SQL Statement Syntax

764

The connection string for a FEDERATED table. This option is available as of MySQL 5.0.13; before
that, use a COMMENT option for the connection string.

• DATA DIRECTORY, INDEX DIRECTORY

By using DATA DIRECTORY='directory' or INDEX DIRECTORY='directory' you can
specify where the MyISAM storage engine should put a table's data file and index file. The directory
must be the full pathname to the directory, not a relative path.

These options work only when you are not using the --skip-symbolic-links option. Your
operating system must also have a working, thread-safe realpath() call. See Section 7.6.1.2,
“Using Symbolic Links for Tables on Unix”, for more complete information.

• DELAY_KEY_WRITE

Set this to 1 if you want to delay key updates for the table until the table is closed. See the descrip-
tion of the delay_key_write system variable in Section 5.2.3, “System Variables”. (MyISAM
only.)

• INSERT_METHOD

If you want to insert data into a MERGE table, you must specify with INSERT_METHOD the table in-
to which the row should be inserted. INSERT_METHOD is an option useful for MERGE tables only.
Use a value of FIRST or LAST to have inserts go to the first or last table, or a value of NO to pre-
vent inserts. See Section 14.3, “The MERGE Storage Engine”.

• MAX_ROWS

The maximum number of rows you plan to store in the table. This is not a hard limit, but rather a
hint to the storage engine that the table must be able to store at least this many rows.

• MIN_ROWS

The minimum number of rows you plan to store in the table.

• PACK_KEYS

PACK_KEYS takes effect only with MyISAM tables. Set this option to 1 if you want to have smaller
indexes. This usually makes updates slower and reads faster. Setting the option to 0 disables all
packing of keys. Setting it to DEFAULT tells the storage engine to pack only long CHAR or
VARCHAR columns.

If you do not use PACK_KEYS, the default is to pack strings, but not numbers. If you use
PACK_KEYS=1, numbers are packed as well.

When packing binary number keys, MySQL uses prefix compression:

• Every key needs one extra byte to indicate how many bytes of the previous key are the same for
the next key.

• The pointer to the row is stored in high-byte-first order directly after the key, to improve com-
pression.

This means that if you have many equal keys on two consecutive rows, all following “same” keys
usually only take two bytes (including the pointer to the row). Compare this to the ordinary case
where the following keys takes storage_size_for_key + pointer_size (where the
pointer size is usually 4). Conversely, you get a significant benefit from prefix compression only if
you have many numbers that are the same. If all keys are totally different, you use one byte more per

SQL Statement Syntax

765

key, if the key is not a key that can have NULL values. (In this case, the packed key length is stored
in the same byte that is used to mark if a key is NULL.)

• PASSWORD

Encrypt the .frm file with a password. This option does nothing in the standard MySQL version.

• ROW_FORMAT

Defines how the rows should be stored. For MyISAM tables, the option value can be FIXED or DY-
NAMIC for static or variable-length row format. myisampack sets the type to COMPRESSED. See
Section 14.1.3, “MyISAM Table Storage Formats”.

Starting with MySQL 5.0.3, for InnoDB tables, rows are stored in compact format
(ROW_FORMAT=COMPACT) by default. The non-compact format used in older versions of MySQL
can still be requested by specifying ROW_FORMAT=REDUNDANT.

• RAID_TYPE

RAID support has been removed as of MySQL 5.0. For information on RAID, see ht-
tp://dev.mysql.com/doc/refman/4.1/en/create-table.html.

• UNION

UNION is used when you want to access a collection of identical MyISAM tables as one. This works
only with MERGE tables. See Section 14.3, “The MERGE Storage Engine”.

You must have SELECT, UPDATE, and DELETE privileges for the tables you map to a MERGE ta-
ble. (Note: Formerly, all tables used had to be in the same database as the MERGE table itself. This
restriction no longer applies.)

You can create one table from another by adding a SELECT statement at the end of the CREATE TA-
BLE statement:

CREATE TABLE new_tbl SELECT * FROM orig_tbl;

MySQL creates new columns for all elements in the SELECT. For example:

mysql> CREATE TABLE test (a INT NOT NULL AUTO_INCREMENT,
-> PRIMARY KEY (a), KEY(b))
-> ENGINE=MyISAM SELECT b,c FROM test2;

This creates a MyISAM table with three columns, a, b, and c. Notice that the columns from the SELECT
statement are appended to the right side of the table, not overlapped onto it. Take the following example:

mysql> SELECT * FROM foo;
+---+
| n |
+---+
| 1 |
+---+

mysql> CREATE TABLE bar (m INT) SELECT n FROM foo;
Query OK, 1 row affected (0.02 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM bar;
+------+---+
| m | n |
+------+---+
| NULL | 1 |
+------+---+
1 row in set (0.00 sec)

SQL Statement Syntax

766

http://dev.mysql.com/doc/refman/4.1/en/create-table.html
http://dev.mysql.com/doc/refman/4.1/en/create-table.html

For each row in table foo, a row is inserted in bar with the values from foo and default values for the
new columns.

In a table resulting from CREATE TABLE ... SELECT, columns named only in the CREATE TA-
BLE part come first. Columns named in both parts or only in the SELECT part come after that. The data
type of SELECT columns can be overridden by also specifying the column in the CREATE TABLE part.

If any errors occur while copying the data to the table, it is automatically dropped and not created.

CREATE TABLE ... SELECT does not automatically create any indexes for you. This is done inten-
tionally to make the statement as flexible as possible. If you want to have indexes in the created table,
you should specify these before the SELECT statement:

mysql> CREATE TABLE bar (UNIQUE (n)) SELECT n FROM foo;

Some conversion of data types might occur. For example, the AUTO_INCREMENT attribute is not pre-
served, and VARCHAR columns can become CHAR columns.

When creating a table with CREATE ... SELECT, make sure to alias any function calls or expres-
sions in the query. If you do not, the CREATE statement might fail or result in undesirable column
names.

CREATE TABLE artists_and_works
SELECT artist.name, COUNT(work.artist_id) AS number_of_works
FROM artist LEFT JOIN work ON artist.id = work.artist_id
GROUP BY artist.id;

You can also explicitly specify the data type for a generated column:

CREATE TABLE foo (a TINYINT NOT NULL) SELECT b+1 AS a FROM bar;

Use LIKE to create an empty table based on the definition of another table, including any column attrib-
utes and indexes defined in the original table:

CREATE TABLE new_tbl LIKE orig_tbl;

CREATE TABLE ... LIKE does not preserve any DATA DIRECTORY or INDEX DIRECTORY ta-
ble options that were specified for the original table, or any foreign key definitions.

You can precede the SELECT by IGNORE or REPLACE to indicate how to handle rows that duplicate
unique key values. With IGNORE, new rows that duplicate an existing row on a unique key value are
discarded. With REPLACE, new rows replace rows that have the same unique key value. If neither IG-
NORE nor REPLACE is specified, duplicate unique key values result in an error.

To ensure that the binary log can be used to re-create the original tables, MySQL does not allow concur-
rent inserts during CREATE TABLE ... SELECT.

13.1.5.1. Silent Column Specification Changes

In some cases, MySQL silently changes column specifications from those given in a CREATE TABLE
or ALTER TABLE statement. These might be changes to a data type, to attributes associated with a data
type, or to an index specification.

Possible data type changes are given in the following list. These occur prior to MySQL 5.0.3. As of
5.0.3, an error occurs if a column cannot be created using the specified data type.

SQL Statement Syntax

767

• VARCHAR columns with a length less than four are changed to CHAR.

• If any column in a table has a variable length, the entire row becomes variable-length as a result.
Therefore, if a table contains any variable-length columns (VARCHAR, TEXT, or BLOB), all CHAR
columns longer than three characters are changed to VARCHAR columns. This does not affect how
you use the columns in any way; in MySQL, VARCHAR is just a different way to store characters.
MySQL performs this conversion because it saves space and makes table operations faster. See
Chapter 14, Storage Engines and Table Types.

• Before MySQL 5.0.3, a CHAR or VARCHAR column with a length specification greater than 255 is
converted to the smallest TEXT type that can hold values of the given length. For example,
VARCHAR(500) is converted to TEXT, and VARCHAR(200000) is converted to MEDIUMTEXT.
Note that this conversion results in a change in behavior with regard to treatment of trailing spaces.

Similar conversions occur for BINARY and VARBINARY, except that they are converted to a BLOB
type.

Starting with MySQL 5.0.3, a CHAR or BINARY column with a length specification greater than 255
is not silently converted. Instead, an error occurs. From MySQL 5.0.6 on, silent conversion of
VARCHAR and VARBINARY columns with a length specification greater than 65,535 does not occur
if strict SQL mode is enabled. Instead, an error occurs.

• For a specification of DECIMAL(M,D), if M is not larger than D, it is adjusted upward. For example,
DECIMAL(10,10) becomes DECIMAL(11,10).

Other silent column specification changes include changes to attribute or index specifications:

• TIMESTAMP display sizes are discarded. Note that TIMESTAMP columns have changed consider-
ably in recent versions of MySQL prior to 5.0; for a description of these changes, see the MySQL
3.23, 4.0, 4.1 Reference Manual.

• Columns that are part of a PRIMARY KEY are made NOT NULL even if not declared that way.

• Trailing spaces are automatically deleted from ENUM and SET member values when the table is cre-
ated.

• MySQL maps certain data types used by other SQL database vendors to MySQL types. See Sec-
tion 11.7, “Using Data Types from Other Database Engines”.

• If you include a USING clause to specify an index type that is not legal for a given storage engine,
but there is another index type available that the engine can use without affecting query results, the
engine uses the available type.

To see whether MySQL used a data type other than the one you specified, issue a DESCRIBE or SHOW
CREATE TABLE statement after creating or altering the table.

Certain other data type changes can occur if you compress a table using myisampack. See Sec-
tion 14.1.3.3, “Compressed Table Characteristics”.

13.1.6. DROP DATABASE Syntax
DROP {DATABASE | SCHEMA} [IF EXISTS] db_name

DROP DATABASE drops all tables in the database and deletes the database. Be very careful with this
statement! To use DROP DATABASE, you need the DROP privilege on the database. DROP SCHEMA is

SQL Statement Syntax

768

a synonym for DROP DATABASE as of MySQL 5.0.2.

IF EXISTS is used to prevent an error from occurring if the database does not exist.

If you use DROP DATABASE on a symbolically linked database, both the link and the original database
are deleted.

DROP DATABASE returns the number of tables that were removed. This corresponds to the number of
.frm files removed.

The DROP DATABASE statement removes from the given database directory those files and directories
that MySQL itself may create during normal operation:

• All files with these extensions:

.BAK .DAT .HSH .MRG

.MYD .MYI .TRG .TRN

.db .frm .ibd .ndb

• All subdirectories with names that consist of two hex digits 00-ff. These are subdirectories used for
RAID tables. (These directories are not removed as of MySQL 5.0, when support for RAID tables
was removed. You should convert any existing RAID tables and remove these directories manually
before upgrading to MySQL 5.0. See Section 2.11.2, “Upgrading from MySQL 4.1 to 5.0”.)

• The db.opt file, if it exists.

If other files or directories remain in the database directory after MySQL removes those just listed, the
database directory cannot be removed. In this case, you must remove any remaining files or directories
manually and issue the DROP DATABASE statement again.

You can also drop databases with mysqladmin. See Section 8.9, “mysqladmin — Client for Ad-
ministering a MySQL Server”.

13.1.7. DROP INDEX Syntax
DROP INDEX index_name ON tbl_name

DROP INDEX drops the index named index_name from the table tbl_name. This statement is
mapped to an ALTER TABLE statement to drop the index. See Section 13.1.2, “ALTER TABLE Syn-
tax”.

13.1.8. DROP TABLE Syntax
DROP [TEMPORARY] TABLE [IF EXISTS]

tbl_name [, tbl_name] ...
[RESTRICT | CASCADE]

DROP TABLE removes one or more tables. You must have the DROP privilege for each table. All table
data and the table definition are removed, so be careful with this statement! If any of the tables named in
the argument list do not exist, MySQL returns an error indicating by name which non-existing tables it
was unable to drop, but it also drops all of the tables in the list that do exist.

Use IF EXISTS to prevent an error from occurring for tables that do not exist. A NOTE is generated
for each non-existent table when using IF EXISTS. See Section 13.5.4.26, “SHOW WARNINGS Syn-

SQL Statement Syntax

769

tax”.

RESTRICT and CASCADE are allowed to make porting easier. For the moment, they do nothing.

Note: DROP TABLE automatically commits the current active transaction, unless you use the TEM-
PORARY keyword.

The TEMPORARY keyword has the following effects:

• The statement drops only TEMPORARY tables.

• The statement does not end an ongoing transaction.

• No access rights are checked. (A TEMPORARY table is visible only to the client that created it, so no
check is necessary.)

Using TEMPORARY is a good way to ensure that you do not accidentally drop a non-TEMPORARY table.

13.1.9. RENAME TABLE Syntax
RENAME TABLE tbl_name TO new_tbl_name

[, tbl_name2 TO new_tbl_name2] ...

This statement renames one or more tables.

The rename operation is done atomically, which means that no other thread can access any of the tables
while the rename is running. For example, if you have an existing table old_table, you can create an-
other table new_table that has the same structure but is empty, and then replace the existing table
with the empty one as follows (assuming that backup_table does not already exist):

CREATE TABLE new_table (...);
RENAME TABLE old_table TO backup_table, new_table TO old_table;

If the statement renames more than one table, renaming operations are done from left to right. If you
want to swap two table names, you can do so like this (assuming that tmp_table does not already ex-
ist):

RENAME TABLE old_table TO tmp_table,
new_table TO old_table,
tmp_table TO new_table;

As long as two databases are on the same filesystem, you can use RENAME TABLE to move a table
from one database to another:

RENAME TABLE current_db.tbl_name TO other_db.tbl_name;

As of MySQL 5.0.14, RENAME TABLE also works for views, as long as you do not try to rename a
view into a different database.

When you execute RENAME, you cannot have any locked tables or active transactions. You must also
have the ALTER and DROP privileges on the original table, and the CREATE and INSERT privileges on
the new table.

If MySQL encounters any errors in a multiple-table rename, it does a reverse rename for all renamed
tables to return everything to its original state.

SQL Statement Syntax

770

13.2. Data Manipulation Statements

13.2.1. DELETE Syntax
Single-table syntax:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM tbl_name
[WHERE where_condition]
[ORDER BY ...]
[LIMIT row_count]

Multiple-table syntax:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
tbl_name[.*] [, tbl_name[.*]] ...
FROM table_references
[WHERE where_condition]

Or:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE]
FROM tbl_name[.*] [, tbl_name[.*]] ...
USING table_references
[WHERE where_condition]

For the single-table syntax, the DELETE statement deletes rows from tbl_name and returns the num-
ber of rows deleted. The WHERE clause, if given, specifies the conditions that identify which rows to de-
lete. With no WHERE clause, all rows are deleted. If the ORDER BY clause is specified, the rows are de-
leted in the order that is specified. The LIMIT clause places a limit on the number of rows that can be
deleted.

For the multiple-table syntax, DELETE deletes from each tbl_name the rows that satisfy the condi-
tions. In this case, ORDER BY and LIMIT cannot be used.

where_condition is an expression that evaluates to true for each row to be deleted. It is specified as
described in Section 13.2.7, “SELECT Syntax”.

As stated, a DELETE statement with no WHERE clause deletes all rows. A faster way to do this, when
you do not want to know the number of deleted rows, is to use TRUNCATE TABLE. See Section 13.2.9,
“TRUNCATE Syntax”.

If you delete the row containing the maximum value for an AUTO_INCREMENT column, the value is re-
used later for a BDB table, but not for a MyISAM or InnoDB table. If you delete all rows in the table
with DELETE FROM tbl_name (without a WHERE clause) in AUTOCOMMIT mode, the sequence
starts over for all storage engines except InnoDB and MyISAM. There are some exceptions to this beha-
vior for InnoDB tables, as discussed in Section 14.2.6.3, “How AUTO_INCREMENT Columns Work in
InnoDB”.

For MyISAM and BDB tables, you can specify an AUTO_INCREMENT secondary column in a multiple-
column key. In this case, reuse of values deleted from the top of the sequence occurs even for MyISAM
tables. See Section 3.6.9, “Using AUTO_INCREMENT”.

The DELETE statement supports the following modifiers:

• If you specify LOW_PRIORITY, the server delays execution of the DELETE until no other clients
are reading from the table.

• For MyISAM tables, if you use the QUICK keyword, the storage engine does not merge index leaves
during delete, which may speed up some kinds of delete operations.

SQL Statement Syntax

771

• The IGNORE keyword causes MySQL to ignore all errors during the process of deleting rows.
(Errors encountered during the parsing stage are processed in the usual manner.) Errors that are ig-
nored due to the use of OPTION are returned as warnings.

The speed of delete operations may also be affected by factors discussed in Section 7.2.18, “Speed of
DELETE Statements”.

In MyISAM tables, deleted rows are maintained in a linked list and subsequent INSERT operations reuse
old row positions. To reclaim unused space and reduce file sizes, use the OPTIMIZE TABLE statement
or the myisamchk utility to reorganize tables. OPTIMIZE TABLE is easier, but myisamchk is
faster. See Section 13.5.2.5, “OPTIMIZE TABLE Syntax”, and Section 8.3, “myisamchk — MyIS-
AM Table-Maintenance Utility”.

The QUICK modifier affects whether index leaves are merged for delete operations. DELETE QUICK is
most useful for applications where index values for deleted rows are replaced by similar index values
from rows inserted later. In this case, the holes left by deleted values are reused.

DELETE QUICK is not useful when deleted values lead to undef-filled index blocks spanning a range
of index values for which new inserts occur again. In this case, use of QUICK can lead to wasted space
in the index that remains unreclaimed. Here is an example of such a scenario:

1. Create a table that contains an indexed AUTO_INCREMENT column.

2. Insert many rows into the table. Each insert results in an index value that is added to the high end of
the index.

3. Delete a block of rows at the low end of the column range using DELETE QUICK.

In this scenario, the index blocks associated with the deleted index values become undef-filled but are
not merged with other index blocks due to the use of QUICK. They remain undef-filled when new in-
serts occur, because new rows do not have index values in the deleted range. Furthermore, they remain
undef-filled even if you later use DELETE without QUICK, unless some of the deleted index values hap-
pen to lie in index blocks within or adjacent to the undef-filled blocks. To reclaim unused index space
under these circumstances, use OPTIMIZE TABLE.

If you are going to delete many rows from a table, it might be faster to use DELETE QUICK followed
by OPTIMIZE TABLE. This rebuilds the index rather than performing many index block merge opera-
tions.

The MySQL-specific LIMIT row_count option to DELETE tells the server the maximum number of
rows to be deleted before control is returned to the client. This can be used to ensure that a given DE-
LETE statement does not take too much time. You can simply repeat the DELETE statement until the
number of affected rows is less than the LIMIT value.

If the DELETE statement includes an ORDER BY clause, the rows are deleted in the order specified by
the clause. This is really useful only in conjunction with LIMIT. For example, the following statement
finds rows matching the WHERE clause, sorts them by timestamp_column, and deletes the first
(oldest) one:

DELETE FROM somelog WHERE user = 'jcole'
ORDER BY timestamp_column LIMIT 1;

You can specify multiple tables in a DELETE statement to delete rows from one or more tables depend-
ing on the particular condition in the WHERE clause. However, you cannot use ORDER BY or LIMIT in
a multiple-table DELETE. The table_references clause lists the tables involved in the join. Its
syntax is described in Section 13.2.7.1, “JOIN Syntax”.

SQL Statement Syntax

772

For the first multiple-table syntax, only matching rows from the tables listed before the FROM clause are
deleted. For the second multiple-table syntax, only matching rows from the tables listed in the FROM
clause (before the USING clause) are deleted. The effect is that you can delete rows from many tables at
the same time and have additional tables that are used only for searching:

DELETE t1, t2 FROM t1, t2, t3 WHERE t1.id=t2.id AND t2.id=t3.id;

Or:

DELETE FROM t1, t2 USING t1, t2, t3 WHERE t1.id=t2.id AND t2.id=t3.id;

These statements use all three tables when searching for rows to delete, but delete matching rows only
from tables t1 and t2.

The preceding examples show inner joins that use the comma operator, but multiple-table DELETE
statements can use any type of join allowed in SELECT statements, such as LEFT JOIN.

The syntax allows .* after the table names for compatibility with Access.

If you use a multiple-table DELETE statement involving InnoDB tables for which there are foreign key
constraints, the MySQL optimizer might process tables in an order that differs from that of their parent/
child relationship. In this case, the statement fails and rolls back. Instead, you should delete from a
single table and rely on the ON DELETE capabilities that InnoDB provides to cause the other tables to
be modified accordingly.

Note: If you provide an alias for a table, you must use the alias when referring to the table:

DELETE t1 FROM test AS t1, test2 WHERE ...

Cross-database deletes are supported for multiple-table deletes, but in this case, you must refer to the
tables without using aliases. For example:

DELETE test1.tmp1, test2.tmp2 FROM test1.tmp1, test2.tmp2 WHERE ...

Currently, you cannot delete from a table and select from the same table in a subquery.

13.2.2. DO Syntax
DO expr [, expr] ...

DO executes the expressions but does not return any results. In most respects, DO is shorthand for SE-
LECT expr, ..., but has the advantage that it is slightly faster when you do not care about the res-
ult.

DO is useful primarily with functions that have side effects, such as RELEASE_LOCK().

13.2.3. HANDLER Syntax
HANDLER tbl_name OPEN [AS alias]
HANDLER tbl_name READ index_name { = | >= | <= | < } (value1,value2,...)

[WHERE where_condition] [LIMIT ...]
HANDLER tbl_name READ index_name { FIRST | NEXT | PREV | LAST }

[WHERE where_condition] [LIMIT ...]
HANDLER tbl_name READ { FIRST | NEXT }

[WHERE where_condition] [LIMIT ...]
HANDLER tbl_name CLOSE

SQL Statement Syntax

773

The HANDLER statement provides direct access to table storage engine interfaces. It is available for My-
ISAM and InnoDB tables.

The HANDLER ... OPEN statement opens a table, making it accessible via subsequent HANDLER
... READ statements. This table object is not shared by other threads and is not closed until the thread
calls HANDLER ... CLOSE or the thread terminates. If you open the table using an alias, further ref-
erences to the open table with other HANDLER statements must use the alias rather than the table name.

The first HANDLER ... READ syntax fetches a row where the index specified satisfies the given val-
ues and the WHERE condition is met. If you have a multiple-column index, specify the index column val-
ues as a comma-separated list. Either specify values for all the columns in the index, or specify values
for a leftmost prefix of the index columns. Suppose that an index my_idx includes three columns
named col_a, col_b, and col_c, in that order. The HANDLER statement can specify values for all
three columns in the index, or for the columns in a leftmost prefix. For example:

HANDLER ... READ my_idx = (col_a_val,col_b_val,col_c_val) ...
HANDLER ... READ my_idx = (col_a_val,col_b_val) ...
HANDLER ... READ my_idx = (col_a_val) ...

To employ the HANDLER interface to refer to a table's PRIMARY KEY, use the quoted identifier
`PRIMARY`:

HANDLER tbl_name READ `PRIMARY` ...

The second HANDLER ... READ syntax fetches a row from the table in index order that matches the
WHERE condition.

The third HANDLER ... READ syntax fetches a row from the table in natural row order that matches
the WHERE condition. It is faster than HANDLER tbl_name READ index_name when a full table
scan is desired. Natural row order is the order in which rows are stored in a MyISAM table data file. This
statement works for InnoDB tables as well, but there is no such concept because there is no separate
data file.

Without a LIMIT clause, all forms of HANDLER ... READ fetch a single row if one is available. To
return a specific number of rows, include a LIMIT clause. It has the same syntax as for the SELECT
statement. See Section 13.2.7, “SELECT Syntax”.

HANDLER ... CLOSE closes a table that was opened with HANDLER ... OPEN.

HANDLER is a somewhat low-level statement. For example, it does not provide consistency. That is,
HANDLER ... OPEN does not take a snapshot of the table, and does not lock the table. This means
that after a HANDLER ... OPEN statement is issued, table data can be modified (by the current thread
or other threads) and these modifications might be only partially visible to HANDLER ... NEXT or
HANDLER ... PREV scans.

There are several reasons to use the HANDLER interface instead of normal SELECT statements:

• HANDLER is faster than SELECT:

• A designated storage engine handler object is allocated for the HANDLER ... OPEN. The ob-
ject is reused for subsequent HANDLER statements for that table; it need not be reinitialized for
each one.

• There is less parsing involved.

• There is no optimizer or query-checking overhead.

• The table does not have to be locked between two handler requests.

SQL Statement Syntax

774

• The handler interface does not have to provide a consistent look of the data (for example, dirty
reads are allowed), so the storage engine can use optimizations that SELECT does not normally
allow.

• For applications that use a low-level ISAM-like interface, HANDLER makes it much easier to port
them to MySQL.

• HANDLER enables you to traverse a database in a manner that is difficult (or even impossible) to ac-
complish with SELECT. The HANDLER interface is a more natural way to look at data when work-
ing with applications that provide an interactive user interface to the database.

13.2.4. INSERT Syntax
INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]

[INTO] tbl_name [(col_name,...)]
VALUES ({expr | DEFAULT},...),(...),...
[ON DUPLICATE KEY UPDATE col_name=expr, ...]

Or:

INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
[INTO] tbl_name
SET col_name={expr | DEFAULT}, ...
[ON DUPLICATE KEY UPDATE col_name=expr, ...]

Or:

INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]
[INTO] tbl_name [(col_name,...)]
SELECT ...
[ON DUPLICATE KEY UPDATE col_name=expr, ...]

INSERT inserts new rows into an existing table. The INSERT ... VALUES and INSERT ...
SET forms of the statement insert rows based on explicitly specified values. The INSERT ... SE-
LECT form inserts rows selected from another table or tables. INSERT ... SELECT is discussed fur-
ther in Section 13.2.4.1, “INSERT ... SELECT Syntax”.

You can use REPLACE instead of INSERT to overwrite old rows. REPLACE is the counterpart to IN-
SERT IGNORE in the treatment of new rows that contain unique key values that duplicate old rows:
The new rows are used to replace the old rows rather than being discarded. See Section 13.2.6, “RE-
PLACE Syntax”.

tbl_name is the table into which rows should be inserted. The columns for which the statement
provides values can be specified as follows:

• You can provide a comma-separated list of column names following the table name. In this case, a
value for each named column must be provided by the VALUES list or the SELECT statement.

• If you do not specify a list of column names for INSERT ... VALUES or INSERT ... SE-
LECT, values for every column in the table must be provided by the VALUES list or the SELECT
statement. If you do not know the order of the columns in the table, use DESCRIBE tbl_name to
find out.

• The SET clause indicates the column names explicitly.

Column values can be given in several ways:

SQL Statement Syntax

775

• If you are not running in strict SQL mode, any column not explicitly given a value is set to its de-
fault (explicit or implicit) value. For example, if you specify a column list that does not name all the
columns in the table, unnamed columns are set to their default values. Default value assignment is
described in Section 11.1.4, “Data Type Default Values”. See also Section 1.9.6.2, “Constraints on
Invalid Data”.

If you want an INSERT statement to generate an error unless you explicitly specify values for all
columns that do not have a default value, you should use strict mode. See Section 5.2.6, “SQL
Modes”.

• Use the keyword DEFAULT to set a column explicitly to its default value. This makes it easier to
write INSERT statements that assign values to all but a few columns, because it enables you to
avoid writing an incomplete VALUES list that does not include a value for each column in the table.
Otherwise, you would have to write out the list of column names corresponding to each value in the
VALUES list.

You can also use DEFAULT(col_name) as a more general form that can be used in expressions to
produce a given column's default value.

• If both the column list and the VALUES list are empty, INSERT creates a row with each column set
to its default value:

INSERT INTO tbl_name () VALUES();

In strict mode, an error occurs if any column doesn't have a default value. Otherwise, MySQL uses
the implicit default value for any column that does not have an explicitly defined default.

• You can specify an expression expr to provide a column value. This might involve type conversion
if the type of the expression does not match the type of the column, and conversion of a given value
can result in different inserted values depending on the data type. For example, inserting the string
'1999.0e-2' into an INT, FLOAT, DECIMAL(10,6), or YEAR column results in the values
1999, 19.9921, 19.992100, and 1999 being inserted, respectively. The reason the value stored
in the INT and YEAR columns is 1999 is that the string-to-integer conversion looks only at as much
of the initial part of the string as may be considered a valid integer or year. For the floating-point and
fixed-point columns, the string-to-floating-point conversion considers the entire string a valid float-
ing-point value.

An expression expr can refer to any column that was set earlier in a value list. For example, you
can do this because the value for col2 refers to col1, which has previously been assigned:

INSERT INTO tbl_name (col1,col2) VALUES(15,col1*2);

But the following is not legal, because the value for col1 refers to col2, which is assigned after
col1:

INSERT INTO tbl_name (col1,col2) VALUES(col2*2,15);

One exception involves columns that contain AUTO_INCREMENT values. Because the
AUTO_INCREMENT value is generated after other value assignments, any reference to an
AUTO_INCREMENT column in the assignment returns a 0.

INSERT statements that use VALUES syntax can insert multiple rows. To do this, include multiple lists
of column values, each enclosed within parentheses and separated by commas. Example:

INSERT INTO tbl_name (a,b,c) VALUES(1,2,3),(4,5,6),(7,8,9);

SQL Statement Syntax

776

The values list for each row must be enclosed within parentheses. The following statement is illegal be-
cause the number of values in the list does not match the number of column names:

INSERT INTO tbl_name (a,b,c) VALUES(1,2,3,4,5,6,7,8,9);

The rows-affected value for an INSERT can be obtained using the mysql_affected_rows() C
API function. See Section 22.2.3.1, “mysql_affected_rows()”.

If you use an INSERT ... VALUES statement with multiple value lists or INSERT ... SELECT,
the statement returns an information string in this format:

Records: 100 Duplicates: 0 Warnings: 0

Records indicates the number of rows processed by the statement. (This is not necessarily the number
of rows actually inserted because Duplicates can be non-zero.) Duplicates indicates the number
of rows that could not be inserted because they would duplicate some existing unique index value.
Warnings indicates the number of attempts to insert column values that were problematic in some
way. Warnings can occur under any of the following conditions:

• Inserting NULL into a column that has been declared NOT NULL. For multiple-row INSERT state-
ments or INSERT INTO ... SELECT statements, the column is set to the implicit default value
for the column data type. This is 0 for numeric types, the empty string ('') for string types, and the
“zero” value for date and time types. INSERT INTO ... SELECT statements are handled the
same way as multiple-row inserts because the server does not examine the result set from the SE-
LECT to see whether it returns a single row. (For a single-row INSERT, no warning occurs when
NULL is inserted into a NOT NULL column. Instead, the statement fails with an error.)

• Setting a numeric column to a value that lies outside the column's range. The value is clipped to the
closest endpoint of the range.

• Assigning a value such as '10.34 a' to a numeric column. The trailing non-numeric text is
stripped off and the remaining numeric part is inserted. If the string value has no leading numeric
part, the column is set to 0.

• Inserting a string into a string column (CHAR, VARCHAR, TEXT, or BLOB) that exceeds the column's
maximum length. The value is truncated to the column's maximum length.

• Inserting a value into a date or time column that is illegal for the data type. The column is set to the
appropriate zero value for the type.

If you are using the C API, the information string can be obtained by invoking the mysql_info()
function. See Section 22.2.3.34, “mysql_info()”.

If INSERT inserts a row into a table that has an AUTO_INCREMENT column, you can find the value
used for that column by using the SQL LAST_INSERT_ID() function. From within the C API, use the
mysql_insert_id() function. However, you should note that the two functions do not always be-
have identically. The behavior of INSERT statements with respect to AUTO_INCREMENT columns is
discussed further in Section 12.9.3, “Information Functions”, and Section 22.2.3.36,
“mysql_insert_id()”.

The INSERT statement supports the following modifiers:

• If you use the DELAYED keyword, the server puts the row or rows to be inserted into a buffer, and
the client issuing the INSERT DELAYED statement can then continue immediately. If the table is in
use, the server holds the rows. When the table is free, the server begins inserting rows, checking

SQL Statement Syntax

777

periodically to see whether there are any new read requests for the table. If there are, the delayed row
queue is suspended until the table becomes free again. See Section 13.2.4.2, “INSERT DELAYED
Syntax”.

DELAYED is ignored with INSERT ... SELECT or INSERT ... ON DUPLICATE KEY
UPDATE.

• If you use the LOW_PRIORITY keyword, execution of the INSERT is delayed until no other clients
are reading from the table. This includes other clients that began reading while existing clients are
reading, and while the INSERT LOW_PRIORITY statement is waiting. It is possible, therefore, for
a client that issues an INSERT LOW_PRIORITY statement to wait for a very long time (or even
forever) in a read-heavy environment. (This is in contrast to INSERT DELAYED, which lets the cli-
ent continue at once. Note that LOW_PRIORITY should normally not be used with MyISAM tables
because doing so disables concurrent inserts. See Section 7.3.3, “Concurrent Inserts”.

• If you specify HIGH_PRIORITY, it overrides the effect of the --low-priority-updates op-
tion if the server was started with that option. It also causes concurrent inserts not to be used.

• If you use the IGNORE keyword, errors that occur while executing the INSERT statement are
treated as warnings instead. For example, without IGNORE, a row that duplicates an existing
UNIQUE index or PRIMARY KEY value in the table causes a duplicate-key error and the statement
is aborted. With IGNORE, the row still is not inserted, but no error is issued. Data conversions that
would trigger errors abort the statement if IGNORE is not specified. With IGNORE, invalid values
are adjusted to the closest values and inserted; warnings are produced but the statement does not
abort. You can determine with the mysql_info() C API function how many rows were actually
inserted into the table.

• If you specify ON DUPLICATE KEY UPDATE, and a row is inserted that would cause a duplicate
value in a UNIQUE index or PRIMARY KEY, an UPDATE of the old row is performed. See Sec-
tion 13.2.4.3, “INSERT ... ON DUPLICATE KEY UPDATE Syntax”.

13.2.4.1. INSERT ... SELECT Syntax
INSERT [LOW_PRIORITY | HIGH_PRIORITY] [IGNORE]

[INTO] tbl_name [(col_name,...)]
SELECT ...
[ON DUPLICATE KEY UPDATE col_name=expr, ...]

With INSERT ... SELECT, you can quickly insert many rows into a table from one or many tables.
For example:

INSERT INTO tbl_temp2 (fld_id)
SELECT tbl_temp1.fld_order_id
FROM tbl_temp1 WHERE tbl_temp1.fld_order_id > 100;

The following conditions hold for a INSERT ... SELECT statements:

• Specify IGNORE to ignore rows that would cause duplicate-key violations.

• DELAYED is ignored with INSERT ... SELECT.

• The target table of the INSERT statement may appear in the FROM clause of the SELECT part of the
query. (This was not possible in some older versions of MySQL.) In this case, MySQL creates a
temporary table to hold the rows from the SELECT and then inserts those rows into the target table.

• AUTO_INCREMENT columns work as usual.

SQL Statement Syntax

778

• To ensure that the binary log can be used to re-create the original tables, MySQL does not allow
concurrent inserts for INSERT ... SELECT statements.

• Currently, you cannot insert into a table and select from the same table in a subquery.

In the values part of ON DUPLICATE KEY UPDATE, you can refer to columns in other tables, as long
as you do not use GROUP BY in the SELECT part. One side effect is that you must qualify non-unique
column names in the values part.

13.2.4.2. INSERT DELAYED Syntax
INSERT DELAYED ...

The DELAYED option for the INSERT statement is a MySQL extension to standard SQL that is very
useful if you have clients that cannot or need not wait for the INSERT to complete. This is a common
situation when you use MySQL for logging and you also periodically run SELECT and UPDATE state-
ments that take a long time to complete.

When a client uses INSERT DELAYED, it gets an okay from the server at once, and the row is queued
to be inserted when the table is not in use by any other thread.

Another major benefit of using INSERT DELAYED is that inserts from many clients are bundled to-
gether and written in one block. This is much faster than performing many separate inserts.

Note that INSERT DELAYED is slower than a normal INSERT if the table is not otherwise in use.
There is also the additional overhead for the server to handle a separate thread for each table for which
there are delayed rows. This means that you should use INSERT DELAYED only when you are really
sure that you need it.

The queued rows are held only in memory until they are inserted into the table. This means that if you
terminate mysqld forcibly (for example, with kill -9) or if mysqld dies unexpectedly, any queued
rows that have not been written to disk are lost.

There are some constraints on the use of DELAYED:

• INSERT DELAYED works only with MyISAM, MEMORY, and ARCHIVE tables. See Section 14.1,
“The MyISAM Storage Engine”, Section 14.4, “The MEMORY (HEAP) Storage Engine”, and Sec-
tion 14.8, “The ARCHIVE Storage Engine”.

For MyISAM tables, if there are no free blocks in the middle of the data file, concurrent SELECT and
INSERT statements are supported. Under these circumstances, you very seldom need to use IN-
SERT DELAYED with MyISAM.

• INSERT DELAYED should be used only for INSERT statements that specify value lists. The server
ignores DELAYED for INSERT ... SELECT or INSERT ... ON DUPLICATE KEY UP-
DATE statements.

• Because the INSERT DELAYED statement returns immediately, before the rows are inserted, you
cannot use LAST_INSERT_ID() to get the AUTO_INCREMENT value that the statement might
generate.

• DELAYED rows are not visible to SELECT statements until they actually have been inserted.

• DELAYED is ignored on slave replication servers because it could cause the slave to have different
data than the master.

SQL Statement Syntax

779

• Pending INSERT DELAYED statements are lost if a table is write locked and ALTER TABLE is
used to modify the table structure.

The following describes in detail what happens when you use the DELAYED option to INSERT or RE-
PLACE. In this description, the “thread” is the thread that received an INSERT DELAYED statement
and “handler” is the thread that handles all INSERT DELAYED statements for a particular table.

• When a thread executes a DELAYED statement for a table, a handler thread is created to process all
DELAYED statements for the table, if no such handler already exists.

• The thread checks whether the handler has previously acquired a DELAYED lock; if not, it tells the
handler thread to do so. The DELAYED lock can be obtained even if other threads have a READ or
WRITE lock on the table. However, the handler waits for all ALTER TABLE locks or FLUSH
TABLES statements to finish, to ensure that the table structure is up to date.

• The thread executes the INSERT statement, but instead of writing the row to the table, it puts a copy
of the final row into a queue that is managed by the handler thread. Any syntax errors are noticed by
the thread and reported to the client program.

• The client cannot obtain from the server the number of duplicate rows or the AUTO_INCREMENT
value for the resulting row, because the INSERT returns before the insert operation has been com-
pleted. (If you use the C API, the mysql_info() function does not return anything meaningful,
for the same reason.)

• The binary log is updated by the handler thread when the row is inserted into the table. In case of
multiple-row inserts, the binary log is updated when the first row is inserted.

• Each time that delayed_insert_limit rows are written, the handler checks whether any SE-
LECT statements are still pending. If so, it allows these to execute before continuing.

• When the handler has no more rows in its queue, the table is unlocked. If no new INSERT
DELAYED statements are received within delayed_insert_timeout seconds, the handler ter-
minates.

• If more than delayed_queue_size rows are pending in a specific handler queue, the thread re-
questing INSERT DELAYED waits until there is room in the queue. This is done to ensure that
mysqld does not use all memory for the delayed memory queue.

• The handler thread shows up in the MySQL process list with delayed_insert in the Command
column. It is killed if you execute a FLUSH TABLES statement or kill it with KILL thread_id.
However, before exiting, it first stores all queued rows into the table. During this time it does not ac-
cept any new INSERT statements from other threads. If you execute an INSERT DELAYED state-
ment after this, a new handler thread is created.

Note that this means that INSERT DELAYED statements have higher priority than normal INSERT
statements if there is an INSERT DELAYED handler running. Other update statements have to wait
until the INSERT DELAYED queue is empty, someone terminates the handler thread (with KILL
thread_id), or someone executes a FLUSH TABLES.

• The following status variables provide information about INSERT DELAYED statements:

Status Variable Meaning

Delayed_insert_threads Number of handler threads

Delayed_writes Number of rows written with INSERT DELAYED

Not_flushed_delayed_rows Number of rows waiting to be written

SQL Statement Syntax

780

You can view these variables by issuing a SHOW STATUS statement or by executing a mysqlad-
min extended-status command.

13.2.4.3. INSERT ... ON DUPLICATE KEY UPDATE Syntax

If you specify ON DUPLICATE KEY UPDATE, and a row is inserted that would cause a duplicate
value in a UNIQUE index or PRIMARY KEY, an UPDATE of the old row is performed. For example, if
column a is declared as UNIQUE and contains the value 1, the following two statements have identical
effect:

INSERT INTO table (a,b,c) VALUES (1,2,3)
ON DUPLICATE KEY UPDATE c=c+1;

UPDATE table SET c=c+1 WHERE a=1;

The rows-affected value is 1 if the row is inserted as a new record and 2 if an existing record is updated.

If column b is also unique, the INSERT is equivalent to this UPDATE statement instead:

UPDATE table SET c=c+1 WHERE a=1 OR b=2 LIMIT 1;

If a=1 OR b=2 matches several rows, only one row is updated. In general, you should try to avoid us-
ing an ON DUPLICATE KEY clause on tables with multiple unique indexes.

You can use the VALUES(col_name) function in the UPDATE clause to refer to column values from
the INSERT portion of the INSERT ... UPDATE statement. In other words, VALUES(col_name)
in the UPDATE clause refers to the value of col_name that would be inserted, had no duplicate-key
conflict occurred. This function is especially useful in multiple-row inserts. The VALUES() function is
meaningful only in INSERT ... UPDATE statements and returns NULL otherwise. Example:

INSERT INTO table (a,b,c) VALUES (1,2,3),(4,5,6)
ON DUPLICATE KEY UPDATE c=VALUES(a)+VALUES(b);

That statement is identical to the following two statements:

INSERT INTO table (a,b,c) VALUES (1,2,3)
ON DUPLICATE KEY UPDATE c=3;

INSERT INTO table (a,b,c) VALUES (4,5,6)
ON DUPLICATE KEY UPDATE c=9;

If a table contains an AUTO_INCREMENT column and INSERT ... UPDATE inserts a row, the
LAST_INSERT_ID() function returns the AUTO_INCREMENT value. If the statement updates a row
instead, LAST_INSERT_ID() is not meaningful. However, you can work around this by using
LAST_INSERT_ID(expr). Suppose that id is the AUTO_INCREMENT column. To make
LAST_INSERT_ID() meaningful for updates, insert rows as follows:

INSERT INTO table (a,b,c) VALUES (1,2,3)
ON DUPLICATE KEY UPDATE id=LAST_INSERT_ID(id), c=3;

The DELAYED option is ignored when you use ON DUPLICATE KEY UPDATE.

13.2.5. LOAD DATA INFILE Syntax
LOAD DATA [LOW_PRIORITY | CONCURRENT] [LOCAL] INFILE 'file_name'

[REPLACE | IGNORE]
INTO TABLE tbl_name
[FIELDS

[TERMINATED BY 'string']

SQL Statement Syntax

781

[[OPTIONALLY] ENCLOSED BY 'char']
[ESCAPED BY 'char']

]
[LINES

[STARTING BY 'string']
[TERMINATED BY 'string']

]
[IGNORE number LINES]
[(col_name_or_user_var,...)]
[SET col_name = expr,...)]

The LOAD DATA INFILE statement reads rows from a text file into a table at a very high speed. The
filename must be given as a literal string.

LOAD DATA INFILE is the complement of SELECT ... INTO OUTFILE. (See Section 13.2.7,
“SELECT Syntax”.) To write data from a table to a file, use SELECT ... INTO OUTFILE. To read
the file back into a table, use LOAD DATA INFILE. The syntax of the FIELDS and LINES clauses is
the same for both statements. Both clauses are optional, but FIELDS must precede LINES if both are
specified.

For more information about the efficiency of INSERT versus LOAD DATA INFILE and speeding up
LOAD DATA INFILE, see Section 7.2.16, “Speed of INSERT Statements”.

The character set indicated by the character_set_database system variable is used to interpret
the information in the file. SET NAMES and the setting of character_set_client do not affect
interpretation of input.

Note that it is currently not possible to load data files that use the ucs2 character set.

As of MySQL 5.0.19, the character_set_filesystem system variable controls the interpretation
of the filename.

You can also load data files by using the mysqlimport utility; it operates by sending a LOAD DATA
INFILE statement to the server. The --local option causes mysqlimport to read data files from
the client host. You can specify the --compress option to get better performance over slow networks
if the client and server support the compressed protocol. See Section 8.14, “mysqlimport — A Data
Import Program”.

If you use LOW_PRIORITY, execution of the LOAD DATA statement is delayed until no other clients
are reading from the table.

If you specify CONCURRENT with a MyISAM table that satisfies the condition for concurrent inserts
(that is, it contains no free blocks in the middle), other threads can retrieve data from the table while
LOAD DATA is executing. Using this option affects the performance of LOAD DATA a bit, even if no
other thread is using the table at the same time.

The LOCAL keyword, if specified, is interpreted with respect to the client end of the connection:

• If LOCAL is specified, the file is read by the client program on the client host and sent to the server.
The file can be given as a full pathname to specify its exact location. If given as a relative pathname,
the name is interpreted relative to the directory in which the client program was started.

• If LOCAL is not specified, the file must be located on the server host and is read directly by the serv-
er. The server uses the following rules to locate the file:

• If the filename is an absolute pathname, the server uses it as given.

• If the filename is a relative pathname with one or more leading components, the server searches
for the file relative to the server's data directory.

• If a filename with no leading components is given, the server looks for the file in the database

SQL Statement Syntax

782

directory of the default database.

Note that, in the non-LOCAL case, these rules mean that a file named as ./myfile.txt is read from
the server's data directory, whereas the file named as myfile.txt is read from the database directory
of the default database. For example, if db1 is the default database, the following LOAD DATA state-
ment reads the file data.txt from the database directory for db1, even though the statement expli-
citly loads the file into a table in the db2 database:

LOAD DATA INFILE 'data.txt' INTO TABLE db2.my_table;

Windows pathnames are specified using forward slashes rather than backslashes. If you do use back-
slashes, you must double them.

For security reasons, when reading text files located on the server, the files must either reside in the
database directory or be readable by all. Also, to use LOAD DATA INFILE on server files, you must
have the FILE privilege. See Section 5.8.3, “Privileges Provided by MySQL”.

Using LOCAL is a bit slower than letting the server access the files directly, because the contents of the
file must be sent over the connection by the client to the server. On the other hand, you do not need the
FILE privilege to load local files.

LOCAL works only if your server and your client both have been enabled to allow it. For example, if
mysqld was started with --local-infile=0, LOCAL does not work. See Section 5.7.4, “Security
Issues with LOAD DATA LOCAL”.

On Unix, if you need LOAD DATA to read from a pipe, you can use the following technique (here we
load the listing of the / directory into a table):

mkfifo /mysql/db/x/x
chmod 666 /mysql/db/x/x
find / -ls > /mysql/db/x/x
mysql -e "LOAD DATA INFILE 'x' INTO TABLE x" x

The REPLACE and IGNORE keywords control handling of input rows that duplicate existing rows on
unique key values:

• If you specify REPLACE, input rows replace existing rows. In other words, rows that have the same
value for a primary key or unique index as an existing row. See Section 13.2.6, “REPLACE Syntax”.

• If you specify IGNORE, input rows that duplicate an existing row on a unique key value are skipped.
If you do not specify either option, the behavior depends on whether the LOCAL keyword is spe-
cified. Without LOCAL, an error occurs when a duplicate key value is found, and the rest of the text
file is ignored. With LOCAL, the default behavior is the same as if IGNORE is specified; this is be-
cause the server has no way to stop transmission of the file in the middle of the operation.

If you want to ignore foreign key constraints during the load operation, you can issue a SET FOR-
EIGN_KEY_CHECKS=0 statement before executing LOAD DATA.

If you use LOAD DATA INFILE on an empty MyISAM table, all non-unique indexes are created in a
separate batch (as for REPAIR TABLE). Normally, this makes LOAD DATA INFILE much faster
when you have many indexes. In some extreme cases, you can create the indexes even faster by turning
them off with ALTER TABLE ... DISABLE KEYS before loading the file into the table and using
ALTER TABLE ... ENABLE KEYS to re-create the indexes after loading the file. See Sec-
tion 7.2.16, “Speed of INSERT Statements”.

SQL Statement Syntax

783

For both the LOAD DATA INFILE and SELECT ... INTO OUTFILE statements, the syntax of
the FIELDS and LINES clauses is the same. Both clauses are optional, but FIELDS must precede
LINES if both are specified.

If you specify a FIELDS clause, each of its subclauses (TERMINATED BY, [OPTIONALLY] EN-
CLOSED BY, and ESCAPED BY) is also optional, except that you must specify at least one of them.

If you specify no FIELDS clause, the defaults are the same as if you had written this:

FIELDS TERMINATED BY '\t' ENCLOSED BY '' ESCAPED BY '\\'

If you specify no LINES clause, the defaults are the same as if you had written this:

LINES TERMINATED BY '\n' STARTING BY ''

In other words, the defaults cause LOAD DATA INFILE to act as follows when reading input:

• Look for line boundaries at newlines.

• Do not skip over any line prefix.

• Break lines into fields at tabs.

• Do not expect fields to be enclosed within any quoting characters.

• Interpret occurrences of tab, newline, or ‘\’ preceded by ‘\’ as literal characters that are part of field
values.

Conversely, the defaults cause SELECT ... INTO OUTFILE to act as follows when writing output:

• Write tabs between fields.

• Do not enclose fields within any quoting characters.

• Use ‘\’ to escape instances of tab, newline, or ‘\’ that occur within field values.

• Write newlines at the ends of lines.

Backslash is the MySQL escape character within strings, so to write FIELDS ESCAPED BY '\\',
you must specify two backslashes for the value to be interpreted as a single backslash.

Note: If you have generated the text file on a Windows system, you might have to use LINES TER-
MINATED BY '\r\n' to read the file properly, because Windows programs typically use two charac-
ters as a line terminator. Some programs, such as WordPad, might use \r as a line terminator when
writing files. To read such files, use LINES TERMINATED BY '\r'.

If all the lines you want to read in have a common prefix that you want to ignore, you can use LINES
STARTING BY 'prefix_string' to skip over the prefix, and anything before it. If a line does not
include the prefix, the entire line is skipped. Suppose that you issue the following statement:

LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test
FIELDS TERMINATED BY ',' LINES STARTING BY 'xxx';

If the data file looks like this:

SQL Statement Syntax

784

xxx"abc",1
something xxx"def",2
"ghi",3

The resulting rows will be ("abc",1) and ("def",2). The third row in the file is skipped because
it does not contain the prefix.

The IGNORE number LINES option can be used to ignore lines at the start of the file. For example,
you can use IGNORE 1 LINES to skip over an initial header line containing column names:

LOAD DATA INFILE '/tmp/test.txt' INTO TABLE test IGNORE 1 LINES;

When you use SELECT ... INTO OUTFILE in tandem with LOAD DATA INFILE to write data
from a database into a file and then read the file back into the database later, the field- and line-handling
options for both statements must match. Otherwise, LOAD DATA INFILE will not interpret the con-
tents of the file properly. Suppose that you use SELECT ... INTO OUTFILE to write a file with
fields delimited by commas:

SELECT * INTO OUTFILE 'data.txt'
FIELDS TERMINATED BY ','
FROM table2;

To read the comma-delimited file back in, the correct statement would be:

LOAD DATA INFILE 'data.txt' INTO TABLE table2
FIELDS TERMINATED BY ',';

If instead you tried to read in the file with the statement shown following, it wouldn't work because it in-
structs LOAD DATA INFILE to look for tabs between fields:

LOAD DATA INFILE 'data.txt' INTO TABLE table2
FIELDS TERMINATED BY '\t';

The likely result is that each input line would be interpreted as a single field.

LOAD DATA INFILE can be used to read files obtained from external sources. For example, many
programs can export data in comma-separate values (CSV) format, such that lines have fields separated
by commas and enclosed within double quotes. If lines in such a file are terminated by newlines, the
statement shown here illustrates the field- and line-handling options you would use to load the file:

LOAD DATA INFILE 'data.txt' INTO TABLE tbl_name
FIELDS TERMINATED BY ',' ENCLOSED BY '"'
LINES TERMINATED BY '\n';

Any of the field- or line-handling options can specify an empty string (''). If not empty, the FIELDS
[OPTIONALLY] ENCLOSED BY and FIELDS ESCAPED BY values must be a single character.
The FIELDS TERMINATED BY, LINES STARTING BY, and LINES TERMINATED BY values
can be more than one character. For example, to write lines that are terminated by carriage return/line-
feed pairs, or to read a file containing such lines, specify a LINES TERMINATED BY '\r\n'
clause.

To read a file containing jokes that are separated by lines consisting of %%, you can do this

CREATE TABLE jokes
(a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
joke TEXT NOT NULL);

LOAD DATA INFILE '/tmp/jokes.txt' INTO TABLE jokes
FIELDS TERMINATED BY ''
LINES TERMINATED BY '\n%%\n' (joke);

SQL Statement Syntax

785

FIELDS [OPTIONALLY] ENCLOSED BY controls quoting of fields. For output (SELECT ...
INTO OUTFILE), if you omit the word OPTIONALLY, all fields are enclosed by the ENCLOSED BY
character. An example of such output (using a comma as the field delimiter) is shown here:

"1","a string","100.20"
"2","a string containing a , comma","102.20"
"3","a string containing a \" quote","102.20"
"4","a string containing a \", quote and comma","102.20"

If you specify OPTIONALLY, the ENCLOSED BY character is used only to enclose values from
columns that have a string data type (such as CHAR, BINARY, TEXT, or ENUM):

1,"a string",100.20
2,"a string containing a , comma",102.20
3,"a string containing a \" quote",102.20
4,"a string containing a \", quote and comma",102.20

Note that occurrences of the ENCLOSED BY character within a field value are escaped by prefixing
them with the ESCAPED BY character. Also note that if you specify an empty ESCAPED BY value, it
is possible to inadvertently generate output that cannot be read properly by LOAD DATA INFILE. For
example, the preceding output just shown would appear as follows if the escape character is empty. Ob-
serve that the second field in the fourth line contains a comma following the quote, which (erroneously)
appears to terminate the field:

1,"a string",100.20
2,"a string containing a , comma",102.20
3,"a string containing a " quote",102.20
4,"a string containing a ", quote and comma",102.20

For input, the ENCLOSED BY character, if present, is stripped from the ends of field values. (This is
true regardless of whether OPTIONALLY is specified; OPTIONALLY has no effect on input interpreta-
tion.) Occurrences of the ENCLOSED BY character preceded by the ESCAPED BY character are inter-
preted as part of the current field value.

If the field begins with the ENCLOSED BY character, instances of that character are recognized as ter-
minating a field value only if followed by the field or line TERMINATED BY sequence. To avoid ambi-
guity, occurrences of the ENCLOSED BY character within a field value can be doubled and are inter-
preted as a single instance of the character. For example, if ENCLOSED BY '"' is specified, quotes
are handled as shown here:

"The ""BIG"" boss" -> The "BIG" boss
The "BIG" boss -> The "BIG" boss
The ""BIG"" boss -> The ""BIG"" boss

FIELDS ESCAPED BY controls how to write or read special characters. If the FIELDS ESCAPED
BY character is not empty, it is used to prefix the following characters on output:

• The FIELDS ESCAPED BY character

• The FIELDS [OPTIONALLY] ENCLOSED BY character

• The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values

• ASCII 0 (what is actually written following the escape character is ASCII ‘0’, not a zero-valued
byte)

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as
NULL, not \N. It is probably not a good idea to specify an empty escape character, particularly if field

SQL Statement Syntax

786

values in your data contain any of the characters in the list just given.

For input, if the FIELDS ESCAPED BY character is not empty, occurrences of that character are
stripped and the following character is taken literally as part of a field value. The exceptions are an es-
caped ‘0’ or ‘N’ (for example, \0 or \N if the escape character is ‘\’). These sequences are interpreted
as ASCII NUL (a zero-valued byte) and NULL. The rules for NULL handling are described later in this
section.

For more information about ‘\’-escape syntax, see Section 9.1, “Literal Values”.

In certain cases, field- and line-handling options interact:

• If LINES TERMINATED BY is an empty string and FIELDS TERMINATED BY is non-empty,
lines are also terminated with FIELDS TERMINATED BY.

• If the FIELDS TERMINATED BY and FIELDS ENCLOSED BY values are both empty (''), a
fixed-row (non-delimited) format is used. With fixed-row format, no delimiters are used between
fields (but you can still have a line terminator). Instead, column values are read and written using a
field width wide enough to hold all values in the field. For TINYINT, SMALLINT, MEDIUMINT,
INT, and BIGINT, the field widths are 4, 6, 8, 11, and 20, respectively, no matter what the declared
display width is.

LINES TERMINATED BY is still used to separate lines. If a line does not contain all fields, the rest
of the columns are set to their default values. If you do not have a line terminator, you should set this
to ''. In this case, the text file must contain all fields for each row.

Fixed-row format also affects handling of NULL values, as described later. Note that fixed-size
format does not work if you are using a multi-byte character set.

Note: Before MySQL 5.0.6, fixed-row format used the display width of the column. For example,
INT(4) was read or written using a field with a width of 4. However, if the column contained wider
values, they were dumped to their full width, leading to the possibility of a “ragged” field holding
values of different widths. Using a field wide enough to hold all values in the field prevents this
problem. However, data files written before this change was made might not be reloaded correctly
with LOAD DATA INFILE for MySQL 5.0.6 and up. This change also affects data files read by
mysqlimport and written by mysqldump --tab, which use LOAD DATA INFILE and SE-
LECT ... INTO OUTFILE.

Handling of NULL values varies according to the FIELDS and LINES options in use:

• For the default FIELDS and LINES values, NULL is written as a field value of \N for output, and a
field value of \N is read as NULL for input (assuming that the ESCAPED BY character is ‘\’).

• If FIELDS ENCLOSED BY is not empty, a field containing the literal word NULL as its value is
read as a NULL value. This differs from the word NULL enclosed within FIELDS ENCLOSED BY
characters, which is read as the string 'NULL'.

• If FIELDS ESCAPED BY is empty, NULL is written as the word NULL.

• With fixed-row format (which is used when FIELDS TERMINATED BY and FIELDS EN-
CLOSED BY are both empty), NULL is written as an empty string. Note that this causes both NULL
values and empty strings in the table to be indistinguishable when written to the file because both are
written as empty strings. If you need to be able to tell the two apart when reading the file back in,
you should not use fixed-row format.

An attempt to load NULL into a NOT NULL column causes assignment of the implicit default value for

SQL Statement Syntax

787

the column's data type and a warning, or an error in strict SQL mode. Implicit default values are dis-
cussed in Section 11.1.4, “Data Type Default Values”.

Some cases are not supported by LOAD DATA INFILE:

• Fixed-size rows (FIELDS TERMINATED BY and FIELDS ENCLOSED BY both empty) and
BLOB or TEXT columns.

• If you specify one separator that is the same as or a prefix of another, LOAD DATA INFILE cannot
interpret the input properly. For example, the following FIELDS clause would cause problems:

FIELDS TERMINATED BY '"' ENCLOSED BY '"'

• If FIELDS ESCAPED BY is empty, a field value that contains an occurrence of FIELDS EN-
CLOSED BY or LINES TERMINATED BY followed by the FIELDS TERMINATED BY value
causes LOAD DATA INFILE to stop reading a field or line too early. This happens because LOAD
DATA INFILE cannot properly determine where the field or line value ends.

The following example loads all columns of the persondata table:

LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata;

By default, when no column list is provided at the end of the LOAD DATA INFILE statement, input
lines are expected to contain a field for each table column. If you want to load only some of a table's
columns, specify a column list:

LOAD DATA INFILE 'persondata.txt' INTO TABLE persondata (col1,col2,...);

You must also specify a column list if the order of the fields in the input file differs from the order of the
columns in the table. Otherwise, MySQL cannot tell how to match input fields with table columns.

Before MySQL 5.0.3, the column list must contain only names of columns in the table being loaded, and
the SET clause is not supported. As of MySQL 5.0.3, the column list can contain either column names
or user variables. With user variables, the SET clause enables you to perform transformations on their
values before assigning the result to columns.

User variables in the SET clause can be used in several ways. The following example uses the first input
column directly for the value of t1.column1, and assigns the second input column to a user variable
that is subjected to a division operation before being used for the value of t1.column2:

LOAD DATA INFILE 'file.txt'
INTO TABLE t1
(column1, @var1)
SET column2 = @var1/100;

The SET clause can be used to supply values not derived from the input file. The following statement
sets column3 to the current date and time:

LOAD DATA INFILE 'file.txt'
INTO TABLE t1
(column1, column2)
SET column3 = CURRENT_TIMESTAMP;

You can also discard an input value by assigning it to a user variable and not assigning the variable to a
table column:

LOAD DATA INFILE 'file.txt'
INTO TABLE t1

SQL Statement Syntax

788

(column1, @dummy, column2, @dummy, column3);

Use of the column/variable list and SET clause is subject to the following restrictions:

• Assignments in the SET clause should have only column names on the left hand side of assignment
operators.

• You can use subqueries in the right hand side of SET assignments. A subquery that returns a value to
be assigned to a column may be a scalar subquery only. Also, you cannot use a subquery to select
from the table that is being loaded.

• Lines ignored by an IGNORE clause are not processed for the column/variable list or SET clause.

• User variables cannot be used when loading data with fixed-row format because user variables do
not have a display width.

When processing an input line, LOAD DATA splits it into fields and uses the values according to the
column/variable list and the SET clause, if they are present. Then the resulting row is inserted into the
table. If there are BEFORE INSERT or AFTER INSERT triggers for the table, they are activated be-
fore or after inserting the row, respectively.

If an input line has too many fields, the extra fields are ignored and the number of warnings is incremen-
ted.

If an input line has too few fields, the table columns for which input fields are missing are set to their de-
fault values. Default value assignment is described in Section 11.1.4, “Data Type Default Values”.

An empty field value is interpreted differently than if the field value is missing:

• For string types, the column is set to the empty string.

• For numeric types, the column is set to 0.

• For date and time types, the column is set to the appropriate “zero” value for the type. See Sec-
tion 11.3, “Date and Time Types”.

These are the same values that result if you assign an empty string explicitly to a string, numeric, or date
or time type explicitly in an INSERT or UPDATE statement.

TIMESTAMP columns are set to the current date and time only if there is a NULL value for the column
(that is, \N), or if the TIMESTAMP column's default value is the current timestamp and it is omitted
from the field list when a field list is specified.

LOAD DATA INFILE regards all input as strings, so you cannot use numeric values for ENUM or SET
columns the way you can with INSERT statements. All ENUM and SET values must be specified as
strings.

BIT values cannot be loaded using binary notation (for example, b'011010'). To work around this,
specify the values as regular integers and use the SET clause to convert them so that MySQL performs a
numeric type conversion and loads them into the BIT column properly:

shell> cat /tmp/bit_test.txt
2
127
shell> mysql test
mysql> LOAD DATA INFILE '/tmp/bit_test.txt'

-> INTO TABLE bit_test (@var1) SET b= CAST(@var1 AS SIGNED);

SQL Statement Syntax

789

Query OK, 2 rows affected (0.00 sec)
Records: 2 Deleted: 0 Skipped: 0 Warnings: 0

mysql> SELECT BIN(b+0) FROM bit_test;
+----------+
| bin(b+0) |
+----------+
| 10 |
| 1111111 |
+----------+
2 rows in set (0.00 sec)

When the LOAD DATA INFILE statement finishes, it returns an information string in the following
format:

Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

If you are using the C API, you can get information about the statement by calling the mysql_info()
function. See Section 22.2.3.34, “mysql_info()”.

Warnings occur under the same circumstances as when values are inserted via the INSERT statement
(see Section 13.2.4, “INSERT Syntax”), except that LOAD DATA INFILE also generates warnings
when there are too few or too many fields in the input row. The warnings are not stored anywhere; the
number of warnings can be used only as an indication of whether everything went well.

You can use SHOW WARNINGS to get a list of the first max_error_count warnings as information
about what went wrong. See Section 13.5.4.26, “SHOW WARNINGS Syntax”.

13.2.6. REPLACE Syntax
REPLACE [LOW_PRIORITY | DELAYED]

[INTO] tbl_name [(col_name,...)]
VALUES ({expr | DEFAULT},...),(...),...

Or:

REPLACE [LOW_PRIORITY | DELAYED]
[INTO] tbl_name
SET col_name={expr | DEFAULT}, ...

Or:

REPLACE [LOW_PRIORITY | DELAYED]
[INTO] tbl_name [(col_name,...)]
SELECT ...

REPLACE works exactly like INSERT, except that if an old row in the table has the same value as a
new row for a PRIMARY KEY or a UNIQUE index, the old row is deleted before the new row is inser-
ted. See Section 13.2.4, “INSERT Syntax”.

REPLACE is a MySQL extension to the SQL standard. It either inserts, or deletes and inserts. For anoth-
er MySQL extension to standard SQL — that either inserts or updates — see Section 13.2.4.3, “IN-
SERT ... ON DUPLICATE KEY UPDATE Syntax”.

Note that unless the table has a PRIMARY KEY or UNIQUE index, using a REPLACE statement makes
no sense. It becomes equivalent to INSERT, because there is no index to be used to determine whether a
new row duplicates another.

Values for all columns are taken from the values specified in the REPLACE statement. Any missing
columns are set to their default values, just as happens for INSERT. You cannot refer to values from the
current row and use them in the new row. If you use an assignment such as SET col_name =

SQL Statement Syntax

790

col_name + 1, the reference to the column name on the right hand side is treated as
DEFAULT(col_name), so the assignment is equivalent to SET col_name =
DEFAULT(col_name) + 1.

To use REPLACE, you must have both the INSERT and DELETE privileges for the table.

The REPLACE statement returns a count to indicate the number of rows affected. This is the sum of the
rows deleted and inserted. If the count is 1 for a single-row REPLACE, a row was inserted and no rows
were deleted. If the count is greater than 1, one or more old rows were deleted before the new row was
inserted. It is possible for a single row to replace more than one old row if the table contains multiple
unique indexes and the new row duplicates values for different old rows in different unique indexes.

The affected-rows count makes it easy to determine whether REPLACE only added a row or whether it
also replaced any rows: Check whether the count is 1 (added) or greater (replaced).

If you are using the C API, the affected-rows count can be obtained using the
mysql_affected_rows() function.

Currently, you cannot replace into a table and select from the same table in a subquery.

MySQL uses the following algorithm for REPLACE (and LOAD DATA ... REPLACE):

1. Try to insert the new row into the table

2. While the insertion fails because a duplicate-key error occurs for a primary key or unique index:

a. Delete from the table the conflicting row that has the duplicate key value

b. Try again to insert the new row into the table

13.2.7. SELECT Syntax
SELECT

[ALL | DISTINCT | DISTINCTROW]
[HIGH_PRIORITY]
[STRAIGHT_JOIN]
[SQL_SMALL_RESULT] [SQL_BIG_RESULT] [SQL_BUFFER_RESULT]
[SQL_CACHE | SQL_NO_CACHE] [SQL_CALC_FOUND_ROWS]

select_expr, ...
[FROM table_references
[WHERE where_condition]
[GROUP BY {col_name | expr | position}

[ASC | DESC], ... [WITH ROLLUP]]
[HAVING where_condition]
[ORDER BY {col_name | expr | position}

[ASC | DESC], ...]
[LIMIT {[offset,] row_count | row_count OFFSET offset}]
[PROCEDURE procedure_name(argument_list)]
[INTO OUTFILE 'file_name' export_options

| INTO DUMPFILE 'file_name'
| INTO @var_name [, @var_name]]

[FOR UPDATE | LOCK IN SHARE MODE]]

SELECT is used to retrieve rows selected from one or more tables, and can include UNION statements
and subqueries. See Section 13.2.7.2, “UNION Syntax”, and Section 13.2.8, “Subquery Syntax”.

The most commonly used clauses of SELECT statements are these:

• Each select_expr indicates a column that you want to retrieve. There must be at least one se-
lect_expr.

SQL Statement Syntax

791

• table_references indicates the table or tables from which to retrieve rows. Its syntax is de-
scribed in Section 13.2.7.1, “JOIN Syntax”.

• The WHERE clause, if given, indicates the condition or conditions that rows must satisfy to be selec-
ted. where_condition is an expression that evaluates to true for each row to be selected. The
statement selects all rows if there is no WHERE clause.

In the WHERE clause, you can use any of the functions and operators that MySQL supports, except
for aggregate (summary) functions. See Chapter 12, Functions and Operators.

SELECT can also be used to retrieve rows computed without reference to any table.

For example:

mysql> SELECT 1 + 1;
-> 2

You are allowed to specify DUAL as a dummy table name in situations where no tables are referenced:

mysql> SELECT 1 + 1 FROM DUAL;
-> 2

DUAL is purely for the convenience of people who require that all SELECT statements should have
FROM and possibly other clauses. MySQL may ignore the clauses. MySQL does not require FROM
DUAL if no tables are referenced.

In general, clauses used must be given in exactly the order shown in the syntax description. For ex-
ample, a HAVING clause must come after any GROUP BY clause and before any ORDER BY clause.
The exception is that the INTO clause can appear either as shown in the syntax description or immedi-
ately preceding the FROM clause.

• A select_expr can be given an alias using AS alias_name. The alias is used as the expres-
sion's column name and can be used in GROUP BY, ORDER BY, or HAVING clauses. For example:

SELECT CONCAT(last_name,', ',first_name) AS full_name
FROM mytable ORDER BY full_name;

The AS keyword is optional when aliasing a select_expr. The preceding example could have
been written like this:

SELECT CONCAT(last_name,', ',first_name) full_name
FROM mytable ORDER BY full_name;

However, because the AS is optional, a subtle problem can occur if you forget the comma between
two select_expr expressions: MySQL interprets the second as an alias name. For example, in
the following statement, columnb is treated as an alias name:

SELECT columna columnb FROM mytable;

For this reason, it is good practice to be in the habit of using AS explicitly when specifying column
aliases.

• It is not allowable to use a column alias in a WHERE clause, because the column value might not yet
be determined when the WHERE clause is executed. See Section A.5.4, “Problems with Column Ali-
ases”.

SQL Statement Syntax

792

• The FROM table_references clause indicates the table or tables from which to retrieve rows.
If you name more than one table, you are performing a join. For information on join syntax, see Sec-
tion 13.2.7.1, “JOIN Syntax”. For each table specified, you can optionally specify an alias.

tbl_name [[AS] alias]
[{USE|IGNORE|FORCE} INDEX (key_list)]

The use of USE INDEX, IGNORE INDEX, FORCE INDEX to give the optimizer hints about how
to choose indexes is described in Section 13.2.7.1, “JOIN Syntax”.

You can use SET max_seeks_for_key=value as an alternative way to force MySQL to
prefer key scans instead of table scans. See Section 5.2.3, “System Variables”.

• You can refer to a table within the default database as tbl_name, or as db_name.tbl_name to
specify a database explicitly. You can refer to a column as col_name, tbl_name.col_name, or
db_name.tbl_name.col_name. You need not specify a tbl_name or db_name.tbl_name
prefix for a column reference unless the reference would be ambiguous. See Section 9.2.1,
“Identifier Qualifiers”, for examples of ambiguity that require the more explicit column reference
forms.

• A table reference can be aliased using tbl_name AS alias_name or tbl_name ali-
as_name:

SELECT t1.name, t2.salary FROM employee AS t1, info AS t2
WHERE t1.name = t2.name;

SELECT t1.name, t2.salary FROM employee t1, info t2
WHERE t1.name = t2.name;

• Columns selected for output can be referred to in ORDER BY and GROUP BY clauses using column
names, column aliases, or column positions. Column positions are integers and begin with 1:

SELECT college, region, seed FROM tournament
ORDER BY region, seed;

SELECT college, region AS r, seed AS s FROM tournament
ORDER BY r, s;

SELECT college, region, seed FROM tournament
ORDER BY 2, 3;

To sort in reverse order, add the DESC (descending) keyword to the name of the column in the OR-
DER BY clause that you are sorting by. The default is ascending order; this can be specified expli-
citly using the ASC keyword.

Use of column positions is deprecated because the syntax has been removed from the SQL standard.

• If you use GROUP BY, output rows are sorted according to the GROUP BY columns as if you had an
ORDER BY for the same columns. To avoid the overhead of sorting that GROUP BY produces, add
ORDER BY NULL:

SELECT a, COUNT(b) FROM test_table GROUP BY a ORDER BY NULL;

• MySQL extends the GROUP BY clause so that you can also specify ASC and DESC after columns
named in the clause:

SELECT a, COUNT(b) FROM test_table GROUP BY a DESC;

• MySQL extends the use of GROUP BY to allow selecting fields that are not mentioned in the
GROUP BY clause. If you are not getting the results that you expect from your query, please read the

SQL Statement Syntax

793

description of GROUP BY found in Section 12.10, “Functions and Modifiers for Use with GROUP
BY Clauses”.

• GROUP BY allows a WITH ROLLUP modifier. See Section 12.10.2, “GROUP BY Modifiers”.

• The HAVING clause is applied nearly last, just before items are sent to the client, with no optimiza-
tion. (LIMIT is applied after HAVING.)

A HAVING clause can refer to any column or alias named in a select_expr in the SELECT list
or in outer subqueries, and to aggregate functions. However, the SQL standard requires that HAV-
ING must reference only columns in the GROUP BY clause or columns used in aggregate functions.
To accommodate both standard SQL and the MySQL-specific behavior of being able to refer
columns in the SELECT list, MySQL 5.0.2 and up allows HAVING to refer to columns in the SE-
LECT list, columns in the GROUP BY clause, columns in outer subqueries, and to aggregate func-
tions.

For example, the following statement works in MySQL 5.0.2 but produces an error for earlier ver-
sions:

mysql> SELECT COUNT(*) FROM t GROUP BY col1 HAVING col1 = 2;

If the HAVING clause refers to a column that is ambiguous, a warning occurs. In the following state-
ment, col2 is ambiguous because it is used as both an alias and a column name:

SELECT COUNT(col1) AS col2 FROM t GROUP BY col2 HAVING col2 = 2;

Preference is given to standard SQL behavior, so if a HAVING column name is used both in GROUP
BY and as an aliased column in the output column list, preference is given to the column in the
GROUP BY column.

• Do not use HAVING for items that should be in the WHERE clause. For example, do not write the fol-
lowing:

SELECT col_name FROM tbl_name HAVING col_name > 0;

Write this instead:

SELECT col_name FROM tbl_name WHERE col_name > 0;

• The HAVING clause can refer to aggregate functions, which the WHERE clause cannot:

SELECT user, MAX(salary) FROM users
GROUP BY user HAVING MAX(salary) > 10;

(This did not work in some older versions of MySQL.)

• MySQL allows duplicate column names. That is, there can be more than one select_expr with
the same name. This is an extension to standard SQL. Because MySQL also allows GROUP BY and
HAVING to refer to select_expr values, this can result in an ambiguity:

SELECT 12 AS a, a FROM t GROUP BY a;

In that statement, both columns have the name a. To ensure that the correct column is used for
grouping, use different names for each select_expr.

• MySQL resolves unqualified column or alias references in ORDER BY clauses by searching in the
select_expr values, then in the columns of the tables in the FROM clause. For GROUP BY or

SQL Statement Syntax

794

HAVING clauses, it searches the FROM clause before searching in the select_expr values. (For
GROUP BY and HAVING, this differs from the pre-MySQL 5.0 behavior that used the same rules as
for ORDER BY.)

• The LIMIT clause can be used to constrain the number of rows returned by the SELECT statement.
LIMIT takes one or two numeric arguments, which must both be non-negative integer constants
(except when using prepared statements).

With two arguments, the first argument specifies the offset of the first row to return, and the second
specifies the maximum number of rows to return. The offset of the initial row is 0 (not 1):

SELECT * FROM tbl LIMIT 5,10; # Retrieve rows 6-15

To retrieve all rows from a certain offset up to the end of the result set, you can use some large num-
ber for the second parameter. This statement retrieves all rows from the 96th row to the last:

SELECT * FROM tbl LIMIT 95,18446744073709551615;

With one argument, the value specifies the number of rows to return from the beginning of the result
set:

SELECT * FROM tbl LIMIT 5; # Retrieve first 5 rows

In other words, LIMIT row_count is equivalent to LIMIT 0, row_count.

For prepared statements, you can use placeholders (supported as of MySQL version 5.0.7). The fol-
lowing statements will return one row from the tbl table:

SET @a=1;
PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?';
EXECUTE STMT USING @a;

The following statements will return the second to sixth row from the tbl table:

SET @skip=1; SET @numrows=5;
PREPARE STMT FROM 'SELECT * FROM tbl LIMIT ?, ?';
EXECUTE STMT USING @skip, @numrows;

For compatibility with PostgreSQL, MySQL also supports the LIMIT row_count OFFSET
offset syntax.

• The SELECT ... INTO OUTFILE 'file_name' form of SELECT writes the selected rows
to a file. The file is created on the server host, so you must have the FILE privilege to use this syn-
tax. file_name cannot be an existing file, which among other things prevents files such as /
etc/passwd and database tables from being destroyed. As of MySQL 5.0.19, the charac-
ter_set_filesystem system variable controls the interpretation of the filename.

The SELECT ... INTO OUTFILE statement is intended primarily to let you very quickly dump
a table to a text file on the server machine. If you want to create the resulting file on some client host
other than the server host, you cannot use SELECT ... INTO OUTFILE. In that case, you
should instead use a command such as mysql -e "SELECT ..." > file_name to generate
the file on the client host.

SELECT ... INTO OUTFILE is the complement of LOAD DATA INFILE; the syntax for the
export_options part of the statement consists of the same FIELDS and LINES clauses that are
used with the LOAD DATA INFILE statement. See Section 13.2.5, “LOAD DATA INFILE Syn-
tax”.

SQL Statement Syntax

795

FIELDS ESCAPED BY controls how to write special characters. If the FIELDS ESCAPED BY
character is not empty, it is used as a prefix that precedes following characters on output:

• The FIELDS ESCAPED BY character

• The FIELDS [OPTIONALLY] ENCLOSED BY character

• The first character of the FIELDS TERMINATED BY and LINES TERMINATED BY values

• ASCII NUL (the zero-valued byte; what is actually written following the escape character is AS-
CII ‘0’, not a zero-valued byte)

The FIELDS TERMINATED BY, ENCLOSED BY, ESCAPED BY, or LINES TERMINATED BY
characters must be escaped so that you can read the file back in reliably. ASCII NUL is escaped to
make it easier to view with some pagers.

The resulting file does not have to conform to SQL syntax, so nothing else need be escaped.

If the FIELDS ESCAPED BY character is empty, no characters are escaped and NULL is output as
NULL, not \N. It is probably not a good idea to specify an empty escape character, particularly if
field values in your data contain any of the characters in the list just given.

Here is an example that produces a file in the comma-separated values (CSV) format used by many
programs:

SELECT a,b,a+b INTO OUTFILE '/tmp/result.txt'
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
LINES TERMINATED BY '\n'
FROM test_table;

• If you use INTO DUMPFILE instead of INTO OUTFILE, MySQL writes only one row into the
file, without any column or line termination and without performing any escape processing. This is
useful if you want to store a BLOB value in a file.

• The INTO clause can name a list of one or more user-defined variables. The selected values are as-
signed to the variables. The number of variables must match the number of columns.

Within a stored routine, the variables can be routine parameters or local variables. See Sec-
tion 17.2.7.3, “SELECT ... INTO Statement”.

• Note: Any file created by INTO OUTFILE or INTO DUMPFILE is writable by all users on the
server host. The reason for this is that the MySQL server cannot create a file that is owned by any-
one other than the user under whose account it is running. (You should never run mysqld as root
for this and other reasons.) The file thus must be world-writable so that you can manipulate its con-
tents.

• The SELECT syntax description at the beginning this section shows the INTO clause near the end of
the statement. It is also possible to use INTO OUTFILE or INTO DUMPFILE immediately preced-
ing the FROM clause.

• A PROCEDURE clause names a procedure that should process the data in the result set. For an ex-
ample, see Section 24.3.1, “Procedure Analyse”.

• If you use FOR UPDATE with a storage engine that uses page or row locks, rows examined by the
query are write-locked until the end of the current transaction. Using LOCK IN SHARE MODE sets
a shared lock that allows other transactions to read the examined rows but not to update or delete
them. See Section 14.2.10.5, “SELECT ... FOR UPDATE and SELECT ... LOCK IN
SHARE MODE Locking Reads”.

SQL Statement Syntax

796

Following the SELECT keyword, you can use a number of options that affect the operation of the state-
ment.

The ALL, DISTINCT, and DISTINCTROW options specify whether duplicate rows should be returned.
If none of these options are given, the default is ALL (all matching rows are returned). DISTINCT and
DISTINCTROW are synonyms and specify removal of duplicate rows from the result set.

HIGH_PRIORITY, STRAIGHT_JOIN, and options beginning with SQL_ are MySQL extensions to
standard SQL.

• HIGH_PRIORITY gives the SELECT higher priority than a statement that updates a table. You
should use this only for queries that are very fast and must be done at once. A SELECT
HIGH_PRIORITY query that is issued while the table is locked for reading runs even if there is an
update statement waiting for the table to be free.

HIGH_PRIORITY cannot be used with SELECT statements that are part of a UNION.

• STRAIGHT_JOIN forces the optimizer to join the tables in the order in which they are listed in the
FROM clause. You can use this to speed up a query if the optimizer joins the tables in non-optimal
order. See Section 7.2.1, “Optimizing Queries with EXPLAIN”. STRAIGHT_JOIN also can be used
in the table_references list. See Section 13.2.7.1, “JOIN Syntax”.

• SQL_BIG_RESULT can be used with GROUP BY or DISTINCT to tell the optimizer that the result
set has many rows. In this case, MySQL directly uses disk-based temporary tables if needed, and
prefers sorting to using a temporary table with a key on the GROUP BY elements.

• SQL_BUFFER_RESULT forces the result to be put into a temporary table. This helps MySQL free
the table locks early and helps in cases where it takes a long time to send the result set to the client.

• SQL_SMALL_RESULT can be used with GROUP BY or DISTINCT to tell the optimizer that the
result set is small. In this case, MySQL uses fast temporary tables to store the resulting table instead
of using sorting. This should not normally be needed.

• SQL_CALC_FOUND_ROWS tells MySQL to calculate how many rows there would be in the result
set, disregarding any LIMIT clause. The number of rows can then be retrieved with SELECT
FOUND_ROWS(). See Section 12.9.3, “Information Functions”.

• SQL_CACHE tells MySQL to store the query result in the query cache if you are using a
query_cache_type value of 2 or DEMAND. For a query that uses UNION or subqueries, this op-
tion effects any SELECT in the query. See Section 5.14, “The MySQL Query Cache”.

• SQL_NO_CACHE tells MySQL not to store the query result in the query cache. See Section 5.14,
“The MySQL Query Cache”. For a query that uses UNION or subqueries, this option effects any
SELECT in the query.

13.2.7.1. JOIN Syntax

MySQL supports the following JOIN syntaxes for the table_references part of SELECT state-
ments and multiple-table DELETE and UPDATE statements:

table_references:
table_reference [, table_reference] ...

table_reference:
table_factor

| join_table

table_factor:
tbl_name [[AS] alias]

SQL Statement Syntax

797

[{USE|IGNORE|FORCE} INDEX (key_list)]
| (table_references)
| { OJ table_reference LEFT OUTER JOIN table_reference

ON conditional_expr }

join_table:
table_reference [INNER | CROSS] JOIN table_factor [join_condition]

| table_reference STRAIGHT_JOIN table_factor
| table_reference STRAIGHT_JOIN table_factor ON condition
| table_reference LEFT [OUTER] JOIN table_reference join_condition
| table_reference NATURAL [LEFT [OUTER]] JOIN table_factor
| table_reference RIGHT [OUTER] JOIN table_reference join_condition
| table_reference NATURAL [RIGHT [OUTER]] JOIN table_factor

join_condition:
ON conditional_expr

| USING (column_list)

A table reference is also known as a join expression.

The syntax of table_factor is extended in comparison with the SQL Standard. The latter accepts
only table_reference, not a list of them inside a pair of parentheses.

This is a conservative extension if we consider each comma in a list of table_reference items as
equivalent to an inner join. For example:

SELECT * FROM t1 LEFT JOIN (t2, t3, t4)
ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

is equivalent to:

SELECT * FROM t1 LEFT JOIN (t2 CROSS JOIN t3 CROSS JOIN t4)
ON (t2.a=t1.a AND t3.b=t1.b AND t4.c=t1.c)

In MySQL, CROSS JOIN is a syntactic equivalent to INNER JOIN (they can replace each other). In
standard SQL, they are not equivalent. INNER JOIN is used with an ON clause, CROSS JOIN is used
otherwise.

In versions of MySQL prior to 5.0.1, parentheses in table_references were just omitted and all
join operations were grouped to the left. In general, parentheses can be ignored in join expressions con-
taining only inner join operations. As of 5.0.1, nested joins are allowed (see Section 7.2.10, “Nested Join
Optimization”).

Further changes in join processing were made in 5.0.12 to make MySQL more compliant with standard
SQL. These charges are described later in this section.

The following list describes general factors to take into account when writing joins.

• A table reference can be aliased using tbl_name AS alias_name or tbl_name ali-
as_name:

SELECT t1.name, t2.salary
FROM employee AS t1 INNER JOIN info AS t2 ON t1.name = t2.name;

SELECT t1.name, t2.salary
FROM employee t1 INNER JOIN info t2 ON t1.name = t2.name;

• INNER JOIN and , (comma) are semantically equivalent in the absence of a join condition: both
produce a Cartesian product between the specified tables (that is, each and every row in the first ta-
ble is joined to each and every row in the second table).

However, the precedence of the comma operator is less than than of INNER JOIN, CROSS JOIN,
LEFT JOIN, and so on. If you mix comma joins with the other join types when there is a join con-

SQL Statement Syntax

798

dition, an error of the form Unknown column 'col_name' in 'on clause' may occur.
Information about dealing with this problem is given later in this section.

• The ON conditional is any conditional expression of the form that can be used in a WHERE clause.
Generally, you should use the ON clause for conditions that specify how to join tables, and the
WHERE clause to restrict which rows you want in the result set.

• If there is no matching row for the right table in the ON or USING part in a LEFT JOIN, a row with
all columns set to NULL is used for the right table. You can use this fact to find rows in a table that
have no counterpart in another table:

SELECT table1.* FROM table1
LEFT JOIN table2 ON table1.id=table2.id
WHERE table2.id IS NULL;

This example finds all rows in table1 with an id value that is not present in table2 (that is, all
rows in table1 with no corresponding row in table2). This assumes that table2.id is de-
clared NOT NULL. See Section 7.2.9, “LEFT JOIN and RIGHT JOIN Optimization”.

• The USING(column_list) clause names a list of columns that must exist in both tables. If
tables a and b both contain columns c1, c2, and c3, the following join compares corresponding
columns from the two tables:

a LEFT JOIN b USING (c1,c2,c3)

• The NATURAL [LEFT] JOIN of two tables is defined to be semantically equivalent to an INNER
JOIN or a LEFT JOIN with a USING clause that names all columns that exist in both tables.

• RIGHT JOIN works analogously to LEFT JOIN. To keep code portable across databases, it is re-
commended that you use LEFT JOIN instead of RIGHT JOIN.

• The { OJ ... LEFT OUTER JOIN ...} syntax shown in the join syntax description exists
only for compatibility with ODBC. The curly braces in the syntax should be written literally; they
are not metasyntax as used elsewhere in syntax descriptions.

• STRAIGHT_JOIN is identical to JOIN, except that the left table is always read before the right ta-
ble. This can be used for those (few) cases for which the join optimizer puts the tables in the wrong
order.

Some join examples:

SELECT * FROM table1, table2;

SELECT * FROM table1 INNER JOIN table2 ON table1.id=table2.id;

SELECT * FROM table1 LEFT JOIN table2 ON table1.id=table2.id;

SELECT * FROM table1 LEFT JOIN table2 USING (id);

SELECT * FROM table1 LEFT JOIN table2 ON table1.id=table2.id
LEFT JOIN table3 ON table2.id=table3.id;

You can provide hints as to which index MySQL should use when retrieving information from a table.
By specifying USE INDEX (key_list), you can tell MySQL to use only one of the possible in-
dexes to find rows in the table. The alternative syntax IGNORE INDEX (key_list) can be used to
tell MySQL to not use some particular index. These hints are useful if EXPLAIN shows that MySQL is
using the wrong index from the list of possible indexes.

You can also use FORCE INDEX, which acts like USE INDEX (key_list) but with the addition
that a table scan is assumed to be very expensive. In other words, a table scan is used only if there is no

SQL Statement Syntax

799

way to use one of the given indexes to find rows in the table.

USE INDEX, IGNORE INDEX, and FORCE INDEX affect only which indexes are used when MySQL
decides how to find rows in the table and how to do the join. They do not affect whether an index is used
when resolving an ORDER BY or GROUP BY.

USE KEY, IGNORE KEY, and FORCE KEY are synonyms for USE INDEX, IGNORE INDEX, and
FORCE INDEX.

Examples:

SELECT * FROM table1 USE INDEX (key1,key2)
WHERE key1=1 AND key2=2 AND key3=3;

SELECT * FROM table1 IGNORE INDEX (key3)
WHERE key1=1 AND key2=2 AND key3=3;

Join Processing Changes in MySQL 5.0.12

Beginning with MySQL 5.0.12, natural joins and joins with USING, including outer join variants, are
processed according to the SQL:2003 standard. The goal was to align the syntax and semantics of
MySQL with respect to NATURAL JOIN and JOIN ... USING according to SQL:2003. However,
these changes in join processing can result in different output columns for some joins. Also, some quer-
ies that appeared to work correctly in older versions must be rewritten to comply with the standard.

These changes have five main aspects:

• The way that MySQL determines the result columns of NATURAL or USING join operations (and
thus the result of the entire FROM clause).

• Expansion of SELECT * and SELECT tbl_name.* into a list of selected columns.

• Resolution of column names in NATURAL or USING joins.

• Transformation of NATURAL or USING joins into JOIN ... ON.

• Resolution of column names in the ON condition of a JOIN ... ON.

The following list provides more detail about several effects of the 5.0.12 change in join processing. The
term “previously” means “prior to MySQL 5.0.12.”

• The columns of a NATURAL join or a USING join may be different from previously. Specifically, re-
dundant output columns no longer appear, and the order of columns for SELECT * expansion may
be different from before.

Consider this set of statements:

CREATE TABLE t1 (i INT, j INT);
CREATE TABLE t2 (k INT, j INT);
INSERT INTO t1 VALUES(1,1);
INSERT INTO t2 VALUES(1,1);
SELECT * FROM t1 NATURAL JOIN t2;
SELECT * FROM t1 JOIN t2 USING (j);

Previously, the statements produced this output:

+------+------+------+------+
| i | j | k | j |
+------+------+------+------+
| 1 | 1 | 1 | 1 |

SQL Statement Syntax

800

+------+------+------+------+
+------+------+------+------+
| i | j | k | j |
+------+------+------+------+
| 1 | 1 | 1 | 1 |
+------+------+------+------+

In the first SELECT statement, column j appears in both tables and thus becomes a join column, so,
according to standard SQL, it should appear only once in the output, not twice. Similarly, in the
second SELECT statement, column j is named in the USING clause and should appear only once in
the output, not twice. But in both cases, the redundant column is not eliminated. Also, the order of
the columns is not correct according to standard SQL.

Now the statements produce this output:

+------+------+------+
| j | i | k |
+------+------+------+
| 1 | 1 | 1 |
+------+------+------+
+------+------+------+
| j | i | k |
+------+------+------+
| 1 | 1 | 1 |
+------+------+------+

The redundant column is eliminated and the column order is correct according to standard SQL:

• First, coalesced common columns of the two joined tables, in the order in which they occur in
the first table

• Second, columns unique to the first table, in order in which they occur in that table

• Third, columns unique to the second table, in order in which they occur in that table

The single result column that replaces two common columns is defined via the coalesce operation.
That is, fro two t1.a and t2.a the resulting single join column a is defined as a = CO-
ALESCE(t1.a, t2.a), where:

COALESCE(x, y) = (CASE WHEN V1 IS NOT NULL THEN V1 ELSE V2 END)

If the join operation is any other join, the result columns of the join consists of the concatenation of
all columns of the joined tables. This is the same as previously.

A consequence of the definition of coalesced columns is that, for outer joins, the coalesced column
contains the value of the non-NULL column if one of the two columns is always NULL. If neither or
both columns are NULL, both common columns have the same value, so it doesn't matter which one
is chosen as the value of the coalesced column. A simple way to interpret this is to consider that a
coalesced column of an outer join is represented by the common column of the inner table of a
JOIN. Suppose that the tables t1(a,b) and t2(a,c) have the following contents:

t1 t2
---- ----
1 x 2 z
2 y 3 w

Then:

mysql> SELECT * FROM t1 NATURAL LEFT JOIN t2;
+------+------+------+
| a | b | c |
+------+------+------+

SQL Statement Syntax

801

| 1 | x | NULL |
| 2 | y | z |
+------+------+------+

Here column a contains the values of t1.a.

mysql> SELECT * FROM t1 NATURAL RIGHT JOIN t2;
+------+------+------+
| a | c | b |
+------+------+------+
| 2 | z | y |
| 3 | w | NULL |
+------+------+------+

Here column a contains the values of t2.a.

Compare these results to the otherwise equivalent queries with JOIN ... ON:

mysql> SELECT * FROM t1 LEFT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a | b | a | c |
+------+------+------+------+
| 1 | x | NULL | NULL |
| 2 | y | 2 | z |
+------+------+------+------+

mysql> SELECT * FROM t1 RIGHT JOIN t2 ON (t1.a = t2.a);
+------+------+------+------+
| a | b | a | c |
+------+------+------+------+
| 2 | y | 2 | z |
| NULL | NULL | 3 | w |
+------+------+------+------+

• Previously, a USING clause could be rewritten as an ON clause that compares corresponding
columns. For example, the following two clauses were semantically identical:

a LEFT JOIN b USING (c1,c2,c3)
a LEFT JOIN b ON a.c1=b.c1 AND a.c2=b.c2 AND a.c3=b.c3

Now the two clauses no longer are quite the same:

• With respect to determining which rows satisfy the join condition, both joins remain semantic-
ally identical.

• With respect to determining which columns to display for SELECT * expansion, the two joins
are not semantically identical. The USING join selects the coalesced value of corresponding
columns, whereas the ON join selects all columns from all tables. For the preceding USING join,
SELECT * selects these values:

COALESCE(a.c1,b.c1), COALESCE(a.c2,b.c2), COALESCE(a.c3,b.c3)

For the ON join, SELECT * selects these values:

a.c1, a.c2, a.c3, b.c1, b.c2, b.c3

With an inner join, COALESCE(a.c1,b.c1) is the same as either a.c1 or b.c1 because
both columns will have the same value. With an outer join (such as LEFT JOIN), one of the
two columns can be NULL. That column will be omitted from the result.

• The evaluation of multi-way natural joins differs in a very important way that affects the result of
NATURAL or USING joins and that can require query rewriting. Suppose that you have three tables

SQL Statement Syntax

802

t1(a,b), t2(c,b), and t3(a,c) that each have one row: t1(1,2), t2(10,2), and
t3(7,10). Suppose also that you have this NATURAL JOIN on the three tables:

SELECT ... FROM t1 NATURAL JOIN t2 NATURAL JOIN t3;

Previously, the left operand of the second join was considered to be t2, whereas it should be the
nested join (t1 NATURAL JOIN t2). As a result, the columns of t3 are checked for common
columns only in t2, and, if t3 has common columns with t1, these columns are not used as equi-
join columns. Thus, previously, the preceding query was transformed to the following equi-join:

SELECT ... FROM t1, t2, t3
WHERE t1.b = t2.b AND t2.c = t3.c;

That join is missing one more equi-join predicate (t1.a = t3.a). As a result, it produces one
row, not the empty result that it should. The correct equivalent query is this:

SELECT ... FROM t1, t2, t3
WHERE t1.b = t2.b AND t2.c = t3.c AND t1.a = t3.a;

If you require the same query result in current versions of MySQL as in older versions, rewrite the
natural join as the first equi-join.

• Previously, the comma operator (,) and JOIN both had the same precedence, so the join expression
t1, t2 JOIN t3 was interpreted as ((t1, t2) JOIN t3). Now JOIN has higher preced-
ence, so the expression is interpreted as (t1, (t2 JOIN t3)). This change affects statements
that use an ON clause, because that clause can refer only to columns in the operands of the join, and
the change in precedence changes interpretation of what those operands are.

Example:

CREATE TABLE t1 (i1 INT, j1 INT);
CREATE TABLE t2 (i2 INT, j2 INT);
CREATE TABLE t3 (i3 INT, j3 INT);
INSERT INTO t1 VALUES(1,1);
INSERT INTO t2 VALUES(1,1);
INSERT INTO t3 VALUES(1,1);
SELECT * FROM t1, t2 JOIN t3 ON (t1.i1 = t3.i3);

Previously, the SELECT was legal due to the implicit grouping of t1,t2 as (t1,t2). Now the
JOIN takes precedence, so the operands for the ON clause are t2 and t3. Because t1.i1 is not a
column in either of the operands, the result is an Unknown column 't1.i1' in 'on
clause' error. To allow the join to be processed, group the first two tables explicitly with paren-
theses so that the operands for the ON clause are (t1,t2) and t3:

SELECT * FROM (t1, t2) JOIN t3 ON (t1.i1 = t3.i3);

Alternatively, avoid the use of the comma operator and use JOIN instead:

SELECT * FROM t1 JOIN t2 JOIN t3 ON (t1.i1 = t3.i3);

This change also applies to statements that mix the comma operator with INNER JOIN, CROSS
JOIN, LEFT JOIN, and RIGHT JOIN, all of which now have higher precedence than the comma
operator.

• Previously, the ON clause could refer to columns in tables named to its right. Now an ON clause can
refer only to its operands.

Example:

SQL Statement Syntax

803

CREATE TABLE t1 (i1 INT);
CREATE TABLE t2 (i2 INT);
CREATE TABLE t3 (i3 INT);
SELECT * FROM t1 JOIN t2 ON (i1 = i3) JOIN t3;

Previously, the SELECT statement was legal. Now the statement fails with an Unknown column
'i3' in 'on clause' error because i3 is a column in t3, which is not an operand of the ON
clause. The statement should be rewritten as follows:

SELECT * FROM t1 JOIN t2 JOIN t3 ON (i1 = i3);

• Resolution of column names in NATURAL or USING joins is different than previously. For column
names that are outside the FROM clause, MySQL now handles a superset of the queries compared to
previously. That is, in cases when MySQL formerly issued an error that some column is ambiguous,
the query now is handled correctly. This is due to the fact that MySQL now treats the common
columns of NATURAL or USING joins as a single column, so when a query refers to such columns,
the query compiler does not consider them as ambiguous.

Example:

SELECT * FROM t1 NATURAL JOIN t2 WHERE b > 1;

Previously, this query would produce an error ERROR 1052 (23000): Column 'b' in
where clause is ambiguous. Now the query produces the correct result:

+------+------+------+
| b | c | y |
+------+------+------+
| 4 | 2 | 3 |
+------+------+------+

One extension of MySQL compared to the SQL:2003 standard is that MySQL allows you to qualify
the common (coalesced) columns of NATURAL or USING joins (just as previously), while the stand-
ard disallows that.

13.2.7.2. UNION Syntax
SELECT ...
UNION [ALL | DISTINCT] SELECT ...
[UNION [ALL | DISTINCT] SELECT ...]

UNION is used to combine the result from multiple SELECT statements into a single result set.

The column names from the first SELECT statement are used as the column names for the results re-
turned. Selected columns listed in corresponding positions of each SELECT statement should have the
same data type. (For example, the first column selected by the first statement should have the same type
as the first column selected by the other statements.)

If the data types of corresponding SELECT columns do not match, the types and lengths of the columns
in the UNION result take into account the values retrieved by all of the SELECT statements. For ex-
ample, consider the following:

mysql> SELECT REPEAT('a',1) UNION SELECT REPEAT('b',10);
+---------------+
| REPEAT('a',1) |
+---------------+
| a |
| bbbbbbbbbb |
+---------------+

SQL Statement Syntax

804

(In some earlier versions of MySQL, only the type and length from the first SELECT would have been
used and the second row would have been truncated to a length of 1.)

The SELECT statements are normal select statements, but with the following restrictions:

• Only the last SELECT statement can use INTO OUTFILE.

• HIGH_PRIORITY cannot be used with SELECT statements that are part of a UNION. If you specify
it for the first SELECT, it has no effect. If you specify it for any subsequent SELECT statements, a
syntax error results.

The default behavior for UNION is that duplicate rows are removed from the result. The optional DIS-
TINCT keyword has no effect other than the default because it also specifies duplicate-row removal.
With the optional ALL keyword, duplicate-row removal does not occur and the result includes all match-
ing rows from all the SELECT statements.

You can mix UNION ALL and UNION DISTINCT in the same query. Mixed UNION types are treated
such that a DISTINCT union overrides any ALL union to its left. A DISTINCT union can be produced
explicitly by using UNION DISTINCT or implicitly by using UNION with no following DISTINCT or
ALL keyword.

To use an ORDER BY or LIMIT clause to sort or limit the entire UNION result, parenthesize the indi-
vidual SELECT statements and place the ORDER BY or LIMIT after the last one. The following ex-
ample uses both clauses:

(SELECT a FROM t1 WHERE a=10 AND B=1)
UNION
(SELECT a FROM t2 WHERE a=11 AND B=2)
ORDER BY a LIMIT 10;

This kind of ORDER BY cannot use column references that include a table name (that is, names in
tbl_name.col_name format). Instead, provide a column alias in the first SELECT statement and
refer to the alias in the ORDER BY. (Alternatively, refer to the column in the ORDER BY using its
column position. However, use of column positions is deprecated.)

Also, if a column to be sorted is aliased, the ORDER BY clause must refer to the alias, not the column
name. The first of the following statements will work, but the second will fail with an Unknown
column 'a' in 'order clause' error:

(SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY b;
(SELECT a AS b FROM t) UNION (SELECT ...) ORDER BY a;

To apply ORDER BY or LIMIT to an individual SELECT, place the clause inside the parentheses that
enclose the SELECT:

(SELECT a FROM t1 WHERE a=10 AND B=1 ORDER BY a LIMIT 10)
UNION
(SELECT a FROM t2 WHERE a=11 AND B=2 ORDER BY a LIMIT 10);

Use of ORDER BY for individual SELECT statements implies nothing about the order in which the rows
appear in the final result because UNION by default produces an unordered set of rows. If ORDER BY
appears with LIMIT, it is used to determine the subset of the selected rows to retrieve for the SELECT,
but does not necessarily affect the order of those rows in the final UNION result. If ORDER BY appears
without LIMIT in a SELECT, it is optimized away because it will have no effect anyway.

To cause rows in a UNION result to consist of the sets of rows retrieved by each SELECT one after the

SQL Statement Syntax

805

other, select an additional column in each SELECT to use as a sort column and add an ORDER BY fol-
lowing the last SELECT:

(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1)
UNION
(SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col;

To additionally maintain sort order within individual SELECT results, add a secondary column to the
ORDER BY clause:

(SELECT 1 AS sort_col, col1a, col1b, ... FROM t1)
UNION
(SELECT 2, col2a, col2b, ... FROM t2) ORDER BY sort_col, col1a;

13.2.8. Subquery Syntax
A subquery is a SELECT statement within another statement.

Starting with MySQL 4.1, all subquery forms and operations that the SQL standard requires are suppor-
ted, as well as a few features that are MySQL-specific.

Here is an example of a subquery:

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

In this example, SELECT * FROM t1 ... is the outer query (or outer statement), and (SELECT
column1 FROM t2) is the subquery. We say that the subquery is nested within the outer query, and
in fact it is possible to nest subqueries within other subqueries, to a considerable depth. A subquery must
always appear within parentheses.

The main advantages of subqueries are:

• They allow queries that are structured so that it is possible to isolate each part of a statement.

• They provide alternative ways to perform operations that would otherwise require complex joins and
unions.

• They are, in many people's opinion, readable. Indeed, it was the innovation of subqueries that gave
people the original idea of calling the early SQL “Structured Query Language.”

Here is an example statement that shows the major points about subquery syntax as specified by the
SQL standard and supported in MySQL:

DELETE FROM t1
WHERE s11 > ANY
(SELECT COUNT(*) /* no hint */ FROM t2
WHERE NOT EXISTS
(SELECT * FROM t3
WHERE ROW(5*t2.s1,77)=
(SELECT 50,11*s1 FROM t4 UNION SELECT 50,77 FROM
(SELECT * FROM t5) AS t5)));

A subquery can return a scalar (a single value), a single row, a single column, or a table (one or more
rows of one or more columns). These are called scalar, column, row, and table subqueries. Subqueries
that return a particular kind of result often can be used only in certain contexts, as described in the fol-
lowing sections.

There are few restrictions on the type of statements in which subqueries can be used. A subquery can
contain any of the keywords or clauses that an ordinary SELECT can contain: DISTINCT, GROUP BY,

SQL Statement Syntax

806

ORDER BY, LIMIT, joins, index hints, UNION constructs, comments, functions, and so on.

One restriction is that a subquery's outer statement must be one of: SELECT, INSERT, UPDATE, DE-
LETE, SET, or DO. Another restriction is that currently you cannot modify a table and select from the
same table in a subquery. This applies to statements such as DELETE, INSERT, REPLACE, UPDATE,
and (because subqueries can be used in the SET clause) LOAD DATA INFILE.

A more comprehensive discussion of restrictions on subquery use, including performance issues for cer-
tain forms of subquery syntax, is given in Section I.3, “Restrictions on Subqueries”.

13.2.8.1. The Subquery as Scalar Operand

In its simplest form, a subquery is a scalar subquery that returns a single value. A scalar subquery is a
simple operand, and you can use it almost anywhere a single column value or literal is legal, and you
can expect it to have those characteristics that all operands have: a data type, a length, an indication
whether it can be NULL, and so on. For example:

CREATE TABLE t1 (s1 INT, s2 CHAR(5) NOT NULL);
INSERT INTO t1 VALUES(100, 'abcde');
SELECT (SELECT s2 FROM t1);

The subquery in this SELECT returns a single value ('abcde') that has a data type of CHAR, a length
of 5, a character set and collation equal to the defaults in effect at CREATE TABLE time, and an indica-
tion that the value in the column can be NULL. In fact, almost all subqueries can be NULL. If the table
used in the example were empty, the value of the subquery would be NULL.

There are a few contexts in which a scalar subquery cannot be used. If a statement allows only a literal
value, you cannot use a subquery. For example, LIMIT requires literal integer arguments, and LOAD
DATA INFILE requires a literal string filename. You cannot use subqueries to supply these values.

When you see examples in the following sections that contain the rather spartan construct (SELECT
column1 FROM t1), imagine that your own code contains much more diverse and complex con-
structions.

Suppose that we make two tables:

CREATE TABLE t1 (s1 INT);
INSERT INTO t1 VALUES (1);
CREATE TABLE t2 (s1 INT);
INSERT INTO t2 VALUES (2);

Then perform a SELECT:

SELECT (SELECT s1 FROM t2) FROM t1;

The result is 2 because there is a row in t2 containing a column s1 that has a value of 2.

A scalar subquery can be part of an expression, but remember the parentheses, even if the subquery is an
operand that provides an argument for a function. For example:

SELECT UPPER((SELECT s1 FROM t1)) FROM t2;

13.2.8.2. Comparisons Using Subqueries

The most common use of a subquery is in the form:

non_subquery_operand comparison_operator (subquery)

SQL Statement Syntax

807

Where comparison_operator is one of these operators:

= > < >= <= <>

For example:

... 'a' = (SELECT column1 FROM t1)

At one time the only legal place for a subquery was on the right side of a comparison, and you might
still find some old DBMSs that insist on this.

Here is an example of a common-form subquery comparison that you cannot do with a join. It finds all
the values in table t1 that are equal to a maximum value in table t2:

SELECT column1 FROM t1
WHERE column1 = (SELECT MAX(column2) FROM t2);

Here is another example, which again is impossible with a join because it involves aggregating for one
of the tables. It finds all rows in table t1 containing a value that occurs twice in a given column:

SELECT * FROM t1 AS t
WHERE 2 = (SELECT COUNT(*) FROM t1 WHERE t1.id = t.id);

For a comparison performed with one of these operators, the subquery must return a scalar, with the ex-
ception that = can be used with row subqueries. See Section 13.2.8.5, “Row Subqueries”.

13.2.8.3. Subqueries with ANY, IN, and SOME

Syntax:

operand comparison_operator ANY (subquery)
operand IN (subquery)
operand comparison_operator SOME (subquery)

The ANY keyword, which must follow a comparison operator, means “return TRUE if the comparison is
TRUE for ANY of the values in the column that the subquery returns.” For example:

SELECT s1 FROM t1 WHERE s1 > ANY (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 contains
(21,14,7) because there is a value 7 in t2 that is less than 10. The expression is FALSE if table t2
contains (20,10), or if table t2 is empty. The expression is UNKNOWN if table t2 contains
(NULL,NULL,NULL).

The word IN is an alias for = ANY. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 = ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 IN (SELECT s1 FROM t2);

However, NOT IN is not an alias for <> ANY, but for <> ALL. See Section 13.2.8.4, “Subqueries with
ALL”.

The word SOME is an alias for ANY. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 <> ANY (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 <> SOME (SELECT s1 FROM t2);

SQL Statement Syntax

808

Use of the word SOME is rare, but this example shows why it might be useful. To most people's ears, the
English phrase “a is not equal to any b” means “there is no b which is equal to a,” but that is not what is
meant by the SQL syntax. The syntax means “there is some b to which a is not equal.” Using <> SOME
instead helps ensure that everyone understands the true meaning of the query.

13.2.8.4. Subqueries with ALL

Syntax:

operand comparison_operator ALL (subquery)

The word ALL, which must follow a comparison operator, means “return TRUE if the comparison is
TRUE for ALL of the values in the column that the subquery returns.” For example:

SELECT s1 FROM t1 WHERE s1 > ALL (SELECT s1 FROM t2);

Suppose that there is a row in table t1 containing (10). The expression is TRUE if table t2 contains
(-5,0,+5) because 10 is greater than all three values in t2. The expression is FALSE if table t2
contains (12,6,NULL,-100) because there is a single value 12 in table t2 that is greater than 10.
The expression is unknown (that is, NULL) if table t2 contains (0,NULL,1).

Finally, if table t2 is empty, the result is TRUE. So, the following statement is TRUE when table t2 is
empty:

SELECT * FROM t1 WHERE 1 > ALL (SELECT s1 FROM t2);

But this statement is NULL when table t2 is empty:

SELECT * FROM t1 WHERE 1 > (SELECT s1 FROM t2);

In addition, the following statement is NULL when table t2 is empty:

SELECT * FROM t1 WHERE 1 > ALL (SELECT MAX(s1) FROM t2);

In general, tables containing NULL values and empty tables are “edge cases.” When writing subquery
code, always consider whether you have taken those two possibilities into account.

NOT IN is an alias for <> ALL. Thus, these two statements are the same:

SELECT s1 FROM t1 WHERE s1 <> ALL (SELECT s1 FROM t2);
SELECT s1 FROM t1 WHERE s1 NOT IN (SELECT s1 FROM t2);

13.2.8.5. Row Subqueries

The discussion to this point has been of scalar or column subqueries; that is, subqueries that return a
single value or a column of values. A row subquery is a subquery variant that returns a single row and
can thus return more than one column value. Here are two examples:

SELECT * FROM t1 WHERE (1,2) = (SELECT column1, column2 FROM t2);
SELECT * FROM t1 WHERE ROW(1,2) = (SELECT column1, column2 FROM t2);

The queries here are both TRUE if table t2 has a row where column1 = 1 and column2 = 2.

The expressions (1,2) and ROW(1,2) are sometimes called row constructors. The two are equival-
ent. They are legal in other contexts as well. For example, the following two statements are semantically
equivalent (although the first one cannot be optimized until MySQL 5.0.26):

SQL Statement Syntax

809

SELECT * FROM t1 WHERE (column1,column2) = (1,1);
SELECT * FROM t1 WHERE column1 = 1 AND column2 = 1;

The normal use of row constructors is for comparisons with subqueries that return two or more columns.
For example, the following query answers the request, “find all rows in table t1 that also exist in table
t2”:

SELECT column1,column2,column3
FROM t1
WHERE (column1,column2,column3) IN
(SELECT column1,column2,column3 FROM t2);

13.2.8.6. EXISTS and NOT EXISTS

If a subquery returns any rows at all, EXISTS subquery is TRUE, and NOT EXISTS subquery is
FALSE. For example:

SELECT column1 FROM t1 WHERE EXISTS (SELECT * FROM t2);

Traditionally, an EXISTS subquery starts with SELECT *, but it could begin with SELECT 5 or SE-
LECT column1 or anything at all. MySQL ignores the SELECT list in such a subquery, so it makes no
difference.

For the preceding example, if t2 contains any rows, even rows with nothing but NULL values, the EX-
ISTS condition is TRUE. This is actually an unlikely example because a [NOT] EXISTS subquery al-
most always contains correlations. Here are some more realistic examples:

• What kind of store is present in one or more cities?

SELECT DISTINCT store_type FROM stores
WHERE EXISTS (SELECT * FROM cities_stores

WHERE cities_stores.store_type = stores.store_type);

• What kind of store is present in no cities?

SELECT DISTINCT store_type FROM stores
WHERE NOT EXISTS (SELECT * FROM cities_stores

WHERE cities_stores.store_type = stores.store_type);

• What kind of store is present in all cities?

SELECT DISTINCT store_type FROM stores s1
WHERE NOT EXISTS (
SELECT * FROM cities WHERE NOT EXISTS (

SELECT * FROM cities_stores
WHERE cities_stores.city = cities.city
AND cities_stores.store_type = stores.store_type));

The last example is a double-nested NOT EXISTS query. That is, it has a NOT EXISTS clause within
a NOT EXISTS clause. Formally, it answers the question “does a city exist with a store that is not in
Stores”? But it is easier to say that a nested NOT EXISTS answers the question “is x TRUE for all
y?”

13.2.8.7. Correlated Subqueries

A correlated subquery is a subquery that contains a reference to a table that also appears in the outer
query. For example:

SQL Statement Syntax

810

SELECT * FROM t1 WHERE column1 = ANY
(SELECT column1 FROM t2 WHERE t2.column2 = t1.column2);

Notice that the subquery contains a reference to a column of t1, even though the subquery's FROM
clause does not mention a table t1. So, MySQL looks outside the subquery, and finds t1 in the outer
query.

Suppose that table t1 contains a row where column1 = 5 and column2 = 6; meanwhile, table t2
contains a row where column1 = 5 and column2 = 7. The simple expression ... WHERE
column1 = ANY (SELECT column1 FROM t2) would be TRUE, but in this example, the
WHERE clause within the subquery is FALSE (because (5,6) is not equal to (5,7)), so the subquery
as a whole is FALSE.

Scoping rule: MySQL evaluates from inside to outside. For example:

SELECT column1 FROM t1 AS x
WHERE x.column1 = (SELECT column1 FROM t2 AS x
WHERE x.column1 = (SELECT column1 FROM t3
WHERE x.column2 = t3.column1));

In this statement, x.column2 must be a column in table t2 because SELECT column1 FROM t2
AS x ... renames t2. It is not a column in table t1 because SELECT column1 FROM t1 ...
is an outer query that is farther out.

For subqueries in HAVING or ORDER BY clauses, MySQL also looks for column names in the outer se-
lect list.

For certain cases, a correlated subquery is optimized. For example:

val IN (SELECT key_val FROM tbl_name WHERE correlated_condition)

Otherwise, they are inefficient and likely to be slow. Rewriting the query as a join might improve per-
formance.

Correlated subqueries cannot refer to the results of aggregate functions from the outer query.

13.2.8.8. Subqueries in the FROM clause

Subqueries are legal in a SELECT statement's FROM clause. The actual syntax is:

SELECT ... FROM (subquery) [AS] name ...

The [AS] name clause is mandatory, because every table in a FROM clause must have a name. Any
columns in the subquery select list must have unique names. You can find this syntax described else-
where in this manual, where the term used is “derived tables.”

For the sake of illustration, assume that you have this table:

CREATE TABLE t1 (s1 INT, s2 CHAR(5), s3 FLOAT);

Here is how to use a subquery in the FROM clause, using the example table:

INSERT INTO t1 VALUES (1,'1',1.0);
INSERT INTO t1 VALUES (2,'2',2.0);
SELECT sb1,sb2,sb3
FROM (SELECT s1 AS sb1, s2 AS sb2, s3*2 AS sb3 FROM t1) AS sb
WHERE sb1 > 1;

SQL Statement Syntax

811

Result: 2, '2', 4.0.

Here is another example: Suppose that you want to know the average of a set of sums for a grouped ta-
ble. This does not work:

SELECT AVG(SUM(column1)) FROM t1 GROUP BY column1;

However, this query provides the desired information:

SELECT AVG(sum_column1)
FROM (SELECT SUM(column1) AS sum_column1
FROM t1 GROUP BY column1) AS t1;

Notice that the column name used within the subquery (sum_column1) is recognized in the outer
query.

Subqueries in the FROM clause can return a scalar, column, row, or table. Subqueries in the FROM clause
cannot be correlated subqueries.

Subqueries in the FROM clause are executed even for the EXPLAIN statement (that is, derived tempor-
ary tables are built). This occurs because upper level queries need information about all tables during
optimization phase.

13.2.8.9. Subquery Errors

There are some errors that apply only to subqueries. This section describes them.

• Unsupported subquery syntax:

ERROR 1235 (ER_NOT_SUPPORTED_YET)
SQLSTATE = 42000
Message = "This version of MySQL does not yet support
'LIMIT & IN/ALL/ANY/SOME subquery'"

This means that statements of the following form do not work yet:

SELECT * FROM t1 WHERE s1 IN (SELECT s2 FROM t2 ORDER BY s1 LIMIT 1)

• Incorrect number of columns from subquery:

ERROR 1241 (ER_OPERAND_COL)
SQLSTATE = 21000
Message = "Operand should contain 1 column(s)"

This error occurs in cases like this:

SELECT (SELECT column1, column2 FROM t2) FROM t1;

You may use a subquery that returns multiple columns, if the purpose is comparison. See Sec-
tion 13.2.8.5, “Row Subqueries”. However, in other contexts, the subquery must be a scalar operand.

• Incorrect number of rows from subquery:

ERROR 1242 (ER_SUBSELECT_NO_1_ROW)
SQLSTATE = 21000
Message = "Subquery returns more than 1 row"

SQL Statement Syntax

812

This error occurs for statements where the subquery returns more than one row. Consider the follow-
ing example:

SELECT * FROM t1 WHERE column1 = (SELECT column1 FROM t2);

If SELECT column1 FROM t2 returns just one row, the previous query will work. If the sub-
query returns more than one row, error 1242 will occur. In that case, the query should be rewritten
as:

SELECT * FROM t1 WHERE column1 = ANY (SELECT column1 FROM t2);

• Incorrectly used table in subquery:

Error 1093 (ER_UPDATE_TABLE_USED)
SQLSTATE = HY000
Message = "You can't specify target table 'x'
for update in FROM clause"

This error occurs in cases such as the following:

UPDATE t1 SET column2 = (SELECT MAX(column1) FROM t1);

You can use a subquery for assignment within an UPDATE statement because subqueries are legal in
UPDATE and DELETE statements as well as in SELECT statements. However, you cannot use the
same table (in this case, table t1) for both the subquery's FROM clause and the update target.

For transactional storage engines, the failure of a subquery causes the entire statement to fail. For non-
transactional storage engines, data modifications made before the error was encountered are preserved.

13.2.8.10. Optimizing Subqueries

Development is ongoing, so no optimization tip is reliable for the long term. The following list provides
some interesting tricks that you might want to play with:

• Use subquery clauses that affect the number or order of the rows in the subquery. For example:

SELECT * FROM t1 WHERE t1.column1 IN
(SELECT column1 FROM t2 ORDER BY column1);
SELECT * FROM t1 WHERE t1.column1 IN
(SELECT DISTINCT column1 FROM t2);
SELECT * FROM t1 WHERE EXISTS
(SELECT * FROM t2 LIMIT 1);

• Replace a join with a subquery. For example, try this:

SELECT DISTINCT column1 FROM t1 WHERE t1.column1 IN (
SELECT column1 FROM t2);

Instead of this:

SELECT DISTINCT t1.column1 FROM t1, t2
WHERE t1.column1 = t2.column1;

• Some subqueries can be transformed to joins for compatibility with older versions of MySQL that do
not support subqueries. However, in some cases, converting a subquery to a join may improve per-
formance. See Section 13.2.8.11, “Rewriting Subqueries as Joins for Earlier MySQL Versions”.

SQL Statement Syntax

813

• Move clauses from outside to inside the subquery. For example, use this query:

SELECT * FROM t1
WHERE s1 IN (SELECT s1 FROM t1 UNION ALL SELECT s1 FROM t2);

Instead of this query:

SELECT * FROM t1
WHERE s1 IN (SELECT s1 FROM t1) OR s1 IN (SELECT s1 FROM t2);

For another example, use this query:

SELECT (SELECT column1 + 5 FROM t1) FROM t2;

Instead of this query:

SELECT (SELECT column1 FROM t1) + 5 FROM t2;

• Use a row subquery instead of a correlated subquery. For example, use this query:

SELECT * FROM t1
WHERE (column1,column2) IN (SELECT column1,column2 FROM t2);

Instead of this query:

SELECT * FROM t1
WHERE EXISTS (SELECT * FROM t2 WHERE t2.column1=t1.column1
AND t2.column2=t1.column2);

• Use NOT (a = ANY (...)) rather than a <> ALL (...).

• Use x = ANY (table containing (1,2)) rather than x=1 OR x=2.

• Use = ANY rather than EXISTS.

• For uncorrelated subqueries that always return one row, IN is always slower than =. For example,
use this query:

SELECT * FROM t1 WHERE t1.col_name
= (SELECT a FROM t2 WHERE b = some_const);

Instead of this query:

SELECT * FROM t1 WHERE t1.col_name
IN (SELECT a FROM t2 WHERE b = some_const);

These tricks might cause programs to go faster or slower. Using MySQL facilities like the BENCH-
MARK() function, you can get an idea about what helps in your own situation. See Section 12.9.3,
“Information Functions”.

Some optimizations that MySQL itself makes are:

• MySQL executes non-correlated subqueries only once. Use EXPLAIN to make sure that a given sub-
query really is non-correlated.

• MySQL rewrites IN, ALL, ANY, and SOME subqueries in an attempt to take advantage of the possib-

SQL Statement Syntax

814

ility that the select-list columns in the subquery are indexed.

• MySQL replaces subqueries of the following form with an index-lookup function, which EXPLAIN
describes as a special join type (unique_subquery or index_subquery):

... IN (SELECT indexed_column FROM single_table ...)

• MySQL enhances expressions of the following form with an expression involving MIN() or
MAX(), unless NULL values or empty sets are involved:

value {ALL|ANY|SOME} {> | < | >= | <=} (non-correlated subquery)

For example, this WHERE clause:

WHERE 5 > ALL (SELECT x FROM t)

might be treated by the optimizer like this:

WHERE 5 > (SELECT MAX(x) FROM t)

There is a chapter titled “How MySQL Transforms Subqueries” in the MySQL Internals Manual, avail-
able at http://dev.mysql.com/doc/.

13.2.8.11. Rewriting Subqueries as Joins for Earlier MySQL Versions

In previous versions of MySQL (prior to MySQL 4.1), only nested queries of the form INSERT ...
SELECT ... and REPLACE ... SELECT ... were supported. Although this is not the case in
MySQL 5.0, it is still true that there are sometimes other ways to test membership in a set of values. It is
also true that on some occasions, it is not only possible to rewrite a query without a subquery, but it can
be more efficient to make use of some of these techniques rather than to use subqueries. One of these is
the IN() construct:

For example, this query:

SELECT * FROM t1 WHERE id IN (SELECT id FROM t2);

Can be rewritten as:

SELECT DISTINCT t1.* FROM t1, t2 WHERE t1.id=t2.id;

The queries:

SELECT * FROM t1 WHERE id NOT IN (SELECT id FROM t2);
SELECT * FROM t1 WHERE NOT EXISTS (SELECT id FROM t2 WHERE t1.id=t2.id);

Can be be rewritten using IN():

SELECT table1.* FROM table1 LEFT JOIN table2 ON table1.id=table2.id
WHERE table2.id IS NULL;

A LEFT [OUTER] JOIN can be faster than an equivalent subquery because the server might be able
to optimize it better — a fact that is not specific to MySQL Server alone. Prior to SQL-92, outer joins
did not exist, so subqueries were the only way to do certain things. Today, MySQL Server and many
other modern database systems offer a wide range of outer join types.

SQL Statement Syntax

815

http://dev.mysql.com/doc/

MySQL Server supports multiple-table DELETE statements that can be used to efficiently delete rows
based on information from one table or even from many tables at the same time. Multiple-table UPDATE
statements are also supported.

13.2.9. TRUNCATE Syntax
TRUNCATE [TABLE] tbl_name

TRUNCATE TABLE empties a table completely. Logically, this is equivalent to a DELETE statement
that deletes all rows, but there are practical differences under some circumstances.

For InnoDB before version 5.0.3, TRUNCATE TABLE is mapped to DELETE, so there is no difference.
Starting with MySQL 5.0.3, fast TRUNCATE TABLE is available. However, the operation is still
mapped to DELETE if there are foreign key constraints that reference the table. (When fast truncate is
used, it resets any AUTO_INCREMENT counter. From MySQL 5.0.13 on, the AUTO_INCREMENT
counter is reset by TRUNCATE TABLE, regardless of whether there is a foreign key constraint.)

For other storage engines, TRUNCATE TABLE differs from DELETE in the following ways in MySQL
5.0:

• Truncate operations drop and re-create the table, which is much faster than deleting rows one by one.

• Truncate operations are not transaction-safe; an error occurs when attempting one in the course of an
active transaction or active table lock.

• The number of deleted rows is not returned.

• As long as the table format file tbl_name.frm is valid, the table can be re-created as an empty ta-
ble with TRUNCATE TABLE, even if the data or index files have become corrupted.

• The table handler does not remember the last used AUTO_INCREMENT value, but starts counting
from the beginning. This is true even for MyISAM and InnoDB, which normally do not reuse se-
quence values.

Since truncation of a table does not make any use of DELETE, the TRUNCATE statement does not in-
voke ON DELETE triggers.

TRUNCATE TABLE is an Oracle SQL extension adopted in MySQL.

13.2.10. UPDATE Syntax
Single-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] tbl_name
SET col_name1=expr1 [, col_name2=expr2 ...]
[WHERE where_condition]
[ORDER BY ...]
[LIMIT row_count]

Multiple-table syntax:

UPDATE [LOW_PRIORITY] [IGNORE] table_references
SET col_name1=expr1 [, col_name2=expr2 ...]
[WHERE where_condition]

For the single-table syntax, the UPDATE statement updates columns of existing rows in tbl_name

SQL Statement Syntax

816

with new values. The SET clause indicates which columns to modify and the values they should be giv-
en. The WHERE clause, if given, specifies the conditions that identify which rows to update. With no
WHERE clause, all rows are updated. If the ORDER BY clause is specified, the rows are updated in the
order that is specified. The LIMIT clause places a limit on the number of rows that can be updated.

For the multiple-table syntax, UPDATE updates rows in each table named in table_references
that satisfy the conditions. In this case, ORDER BY and LIMIT cannot be used.

where_condition is an expression that evaluates to true for each row to be updated. It is specified
as described in Section 13.2.7, “SELECT Syntax”.

The UPDATE statement supports the following modifiers:

• If you use the LOW_PRIORITY keyword, execution of the UPDATE is delayed until no other clients
are reading from the table.

• If you use the IGNORE keyword, the update statement does not abort even if errors occur during the
update. Rows for which duplicate-key conflicts occur are not updated. Rows for which columns are
updated to values that would cause data conversion errors are updated to the closest valid values in-
stead.

If you access a column from tbl_name in an expression, UPDATE uses the current value of the
column. For example, the following statement sets the age column to one more than its current value:

UPDATE persondata SET age=age+1;

Single-table UPDATE assignments are generally evaluated from left to right. For multiple-table updates,
there is no guarantee that assignments are carried out in any particular order.

If you set a column to the value it currently has, MySQL notices this and does not update it.

If you update a column that has been declared NOT NULL by setting to NULL, the column is set to the
default value appropriate for the data type and the warning count is incremented. The default value is 0
for numeric types, the empty string ('') for string types, and the “zero” value for date and time types.

UPDATE returns the number of rows that were actually changed. The mysql_info() C API function
returns the number of rows that were matched and updated and the number of warnings that occurred
during the UPDATE.

You can use LIMIT row_count to restrict the scope of the UPDATE. A LIMIT clause is a rows-
matched restriction. The statement stops as soon as it has found row_count rows that satisfy the
WHERE clause, whether or not they actually were changed.

If an UPDATE statement includes an ORDER BY clause, the rows are updated in the order specified by
the clause. This can be useful in certain situations that might otherwise result in an error. Suppose that a
table t contains a column id that has a unique index. The following statement could fail with a duplic-
ate-key error, depending on the order in which rows are updated:

UPDATE t SET id = id + 1;

For example, if the table contains 1 and 2 in the id column and 1 is updated to 2 before 2 is updated to
3, an error occurs. To avoid this problem, add an ORDER BY clause to cause the rows with larger id
values to be updated before those with smaller values:

UPDATE t SET id = id + 1 ORDER BY id DESC;

You can also perform UPDATE operations covering multiple tables. However, you cannot use ORDER

SQL Statement Syntax

817

BY or LIMIT with a multiple-table UPDATE. The table_references clause lists the tables in-
volved in the join. Its syntax is described in Section 13.2.7.1, “JOIN Syntax”. Here is an example:

UPDATE items,month SET items.price=month.price
WHERE items.id=month.id;

The preceding example shows an inner join that uses the comma operator, but multiple-table UPDATE
statements can use any type of join allowed in SELECT statements, such as LEFT JOIN.

You need the UPDATE privilege only for columns referenced in a multiple-table UPDATE that are actu-
ally updated. You need only the SELECT privilege for any columns that are read but not modified.

If you use a multiple-table UPDATE statement involving InnoDB tables for which there are foreign key
constraints, the MySQL optimizer might process tables in an order that differs from that of their parent/
child relationship. In this case, the statement fails and rolls back. Instead, update a single table and rely
on the ON UPDATE capabilities that InnoDB provides to cause the other tables to be modified accord-
ingly. See Section 14.2.6.4, “FOREIGN KEY Constraints”.

Currently, you cannot update a table and select from the same table in a subquery.

13.3. MySQL Utility Statements

13.3.1. DESCRIBE Syntax
{DESCRIBE | DESC} tbl_name [col_name | wild]

DESCRIBE provides information about the columns in a table. It is a shortcut for SHOW COLUMNS
FROM. As of MySQL 5.0.1, these statements also display information for views. (See Section 13.5.4.3,
“SHOW COLUMNS Syntax”.)

col_name can be a column name, or a string containing the SQL ‘%’ and ‘_’ wildcard characters to
obtain output only for the columns with names matching the string. There is no need to enclose the
string within quotes unless it contains spaces or other special characters.

mysql> DESCRIBE city;
+------------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------+----------+------+-----+---------+----------------+
Id	int(11)	NO	PRI	NULL	auto_increment
Name	char(35)	NO			
Country	char(3)	NO	UNI		
District	char(20)	YES	MUL		
Population	int(11)	NO		0	
+------------+----------+------+-----+---------+----------------+
5 rows in set (0.00 sec)

Field indicates the column name.

The Null field indicates whether NULL values can be stored in the column.

The Key field indicates whether the column is indexed. A value of PRI indicates that the column is part
of the table's primary key. UNI indicates that the column is part of a UNIQUE index. The MUL value in-
dicates that multiple occurrences of a given value are allowed within the column.

One reason for MUL to be displayed on a UNIQUE index is that several columns form a composite
UNIQUE index; although the combination of the columns is unique, each column can still hold multiple
occurrences of a given value. Note that in a composite index, only the leftmost column of the index has
an entry in the Key field.

Before MySQL 5.0.11, if the column allows NULL values, the Key value can be MUL even when a

SQL Statement Syntax

818

UNIQUE index is used. The rationale was that multiple rows in a UNIQUE index can hold a NULL value
if the column is not declared NOT NULL. As of MySQL 5.0.11, the display is UNI rather than MUL re-
gardless of whether the column allows NULL; you can see from the Null field whether or not the
column can contain NULL.

The Default field indicates the default value that is assigned to the column.

The Extra field contains any additional information that is available about a given column. In the ex-
ample shown, the Extra field indicates that the Id column was created with the AUTO_INCREMENT
keyword.

If the data types are different from what you expect them to be based on a CREATE TABLE statement,
note that MySQL sometimes changes data types. See Section 13.1.5.1, “Silent Column Specification
Changes”.

The DESCRIBE statement is provided for compatibility with Oracle.

The SHOW CREATE TABLE and SHOW TABLE STATUS statements also provide information about
tables. See Section 13.5.4, “SHOW Syntax”.

13.3.2. HELP Syntax
HELP 'search_string'

The HELP statement returns online information from the MySQL Reference manual. Its proper opera-
tion requires that the help tables in the mysql database be initialized with help topic information (see
Section 5.2.8, “Server-Side Help”).

The HELP statement searches the help tables for the given search string and displays the result of the
search. The search string is not case sensitive.

The HELP statement understands several types of search strings:

• At the most general level, use contents to retrieve a list of the top-level help categories:

HELP 'contents'

• For a list of topics in a given help category, such as Data Types, use the category name:

HELP 'data types'

• For help on a specific help topic, such as as the ASCII() function or the CREATE TABLE state-
ment, use the associated keyword or keywords:

HELP 'ascii'
HELP 'create table'

In other words, the search string matches a category, many topics, or a single topic. You cannot neces-
sarily tell in advance whether a given search string will return a list of items or the help information for a
single help topic. However, you can tell what kind of response HELP returned by examining the number
of rows and columns in the result set.

The following descriptions indicate the forms that the result set can take. Output for the example state-
ments is shown using the familar “tabular” or “vertical” format that you see when using the mysql cli-
ent, but note that mysql itself reformats HELP result sets in a different way.

SQL Statement Syntax

819

• Empty result set

No match could be found for the search string.

• Result set containing a single row with three columns

This means that the search string yielded a hit for the help topic. The result has three columns:

• name: The topic name.

• description: Descriptive help text for the topic.

• example: Usage example or exmples. This column might be blank.

Example: HELP 'replace'

Yields:

name: REPLACE
description: Syntax:
REPLACE(str,from_str,to_str)

Returns the string str with all occurrences of the string from_str
replaced by the string to_str. REPLACE() performs a case-sensitive
match when searching for from_str.
example: mysql> SELECT REPLACE('www.mysql.com', 'w', 'Ww');

-> 'WwWwWw.mysql.com'

• Result set containing multiple rows with two columns

This means that the search string matched many help topics. The result set indicates the help topic
names:

• name: The help topic name.

• is_it_category: Y if the name represents a help category, N if it does not. If it does not, the
name value when specified as the argument to the HELP statement should yield a single-row
result set containing a description for the named item.

Example: HELP 'status'

Yields:

+-----------------------+----------------+
| name | is_it_category |
+-----------------------+----------------+
SHOW	N
SHOW ENGINE	N
SHOW INNODB STATUS	N
SHOW MASTER STATUS	N
SHOW PROCEDURE STATUS	N
SHOW SLAVE STATUS	N
SHOW STATUS	N
SHOW TABLE STATUS	N
+-----------------------+----------------+

• Result set containing multiple rows with three columns

This means the search string matches a category. The result set contains category entries:

• source_category_name: The help category name.

• name: The category or topic name

SQL Statement Syntax

820

• is_it_category: Y if the name represents a help category, N if it does not. If it does not, the
name value when specified as the argument to the HELP statement should yield a single-row
result set containing a description for the named item.

Example: HELP 'functions'

Yields:

+----------------------+-------------------------+----------------+
| source_category_name | name | is_it_category |
+----------------------+-------------------------+----------------+
Functions	CREATE FUNCTION	N
Functions	DROP FUNCTION	N
Functions	Bit Functions	Y
Functions	Comparison operators	Y
Functions	Control flow functions	Y
Functions	Date and Time Functions	Y
Functions	Encryption Functions	Y
Functions	Information Functions	Y
Functions	Logical operators	Y
Functions	Miscellaneous Functions	Y
Functions	Numeric Functions	Y
Functions	String Functions	Y
+----------------------+-------------------------+----------------+

13.3.3. USE Syntax
USE db_name

The USE db_name statement tells MySQL to use the db_name database as the default (current) data-
base for subsequent statements. The database remains the default until the end of the session or another
USE statement is issued:

USE db1;
SELECT COUNT(*) FROM mytable; # selects from db1.mytable
USE db2;
SELECT COUNT(*) FROM mytable; # selects from db2.mytable

Making a particular database the default by means of the USE statement does not preclude you from ac-
cessing tables in other databases. The following example accesses the author table from the db1 data-
base and the editor table from the db2 database:

USE db1;
SELECT author_name,editor_name FROM author,db2.editor

WHERE author.editor_id = db2.editor.editor_id;

The USE statement is provided for compatibility with Sybase.

13.4. MySQL Transactional and Locking Statements
MySQL supports local transactions (within a given client connection) through statements such as SET
AUTOCOMMIT, START TRANSACTION, COMMIT, and ROLLBACK. See Section 13.4.1, “START
TRANSACTION, COMMIT, and ROLLBACK Syntax”. Beginning with MySQL 5.0, XA transaction sup-
port is available, which enables MySQL to participate in distributed transactions as well. See Sec-
tion 13.4.7, “XA Transactions”.

13.4.1. START TRANSACTION, COMMIT, and ROLLBACK Syntax
START TRANSACTION | BEGIN [WORK]

SQL Statement Syntax

821

COMMIT [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
ROLLBACK [WORK] [AND [NO] CHAIN] [[NO] RELEASE]
SET AUTOCOMMIT = {0 | 1}

The START TRANSACTION and BEGIN statement begin a new transaction. COMMIT commits the cur-
rent transaction, making its changes permanent. ROLLBACK rolls back the current transaction, canceling
its changes. The SET AUTOCOMMIT statement disables or enables the default autocommit mode for the
current connection.

Beginning with MySQL 5.0.3, the optional WORK keyword is supported for COMMIT and RELEASE, as
are the CHAIN and RELEASE clauses. CHAIN and RELEASE can be used for additional control over
transaction completion. The value of the completion_type system variable determines the default
completion behavior. See Section 5.2.3, “System Variables”.

The AND CHAIN clause causes a new transaction to begin as soon as the current one ends, and the new
transaction has the same isolation level as the just-terminated transaction. The RELEASE clause causes
the server to disconnect the current client connection after terminating the current transaction. Including
the NO keyword suppresses CHAIN or RELEASE completion, which can be useful if the comple-
tion_type system variable is set to cause chaining or release completion by default.

By default, MySQL runs with autocommit mode enabled. This means that as soon as you execute a
statement that updates (modifies) a table, MySQL stores the update on disk.

If you are using a transaction-safe storage engine (such as InnoDB, BDB, or NDB Cluster), you can
disable autocommit mode with the following statement:

SET AUTOCOMMIT=0;

After disabling autocommit mode by setting the AUTOCOMMIT variable to zero, you must use COMMIT
to store your changes to disk or ROLLBACK if you want to ignore the changes you have made since the
beginning of your transaction.

To disable autocommit mode for a single series of statements, use the START TRANSACTION state-
ment:

START TRANSACTION;
SELECT @A:=SUM(salary) FROM table1 WHERE type=1;
UPDATE table2 SET summary=@A WHERE type=1;
COMMIT;

With START TRANSACTION, autocommit remains disabled until you end the transaction with COM-
MIT or ROLLBACK. The autocommit mode then reverts to its previous state.

BEGIN and BEGIN WORK are supported as aliases of START TRANSACTION for initiating a transac-
tion. START TRANSACTION is standard SQL syntax and is the recommended way to start an ad-hoc
transaction.

The BEGIN statement differs from the use of the BEGIN keyword that starts a BEGIN ... END com-
pound statement. The latter does not begin a transaction. See Section 17.2.5, “BEGIN ... END Com-
pound Statement Syntax”.

You can also begin a transaction like this:

START TRANSACTION WITH CONSISTENT SNAPSHOT;

The WITH CONSISTENT SNAPSHOT clause starts a consistent read for storage engines that are cap-
able of it. Currently, this applies only to InnoDB. The effect is the same as issuing a START TRANS-
ACTION followed by a SELECT from any InnoDB table. See Section 14.2.10.4, “Consistent Non-

SQL Statement Syntax

822

Locking Read”.

The WITH CONSISTENT SNAPSHOT clause does not change the current transaction isolation level,
so it provides a consistent snapshot only if the current isolation level is one that allows consistent read
(REPEATABLE READ or SERIALIZABLE).

Beginning a transaction causes an implicit UNLOCK TABLES to be performed.

For best results, transactions should be performed using only tables managed by a single transactional
storage engine. Otherwise, the following problems can occur:

• If you use tables from more than one transaction-safe storage engine (such as InnoDB and BDB),
and the transaction isolation level is not SERIALIZABLE, it is possible that when one transaction
commits, another ongoing transaction that uses the same tables will see only some of the changes
made by the first transaction. That is, the atomicity of transactions is not guaranteed with mixed en-
gines and inconsistencies can result. (If mixed-engine transactions are infrequent, you can use SET
TRANSACTION ISOLATION LEVEL to set the isolation level to SERIALIZABLE on a per-
transaction basis as necessary.)

• If you use non-transaction-safe tables within a transaction, any changes to those tables are stored at
once, regardless of the status of autocommit mode.

If you issue a ROLLBACK statement after updating a non-transactional table within a transaction, an
ER_WARNING_NOT_COMPLETE_ROLLBACK warning occurs. Changes to transaction-safe tables
are rolled back, but not changes to non-transaction-safe tables.

Each transaction is stored in the binary log in one chunk, upon COMMIT. Transactions that are rolled
back are not logged. (Exception: Modifications to non-transactional tables cannot be rolled back. If a
transaction that is rolled back includes modifications to non-transactional tables, the entire transaction is
logged with a ROLLBACK statement at the end to ensure that the modifications to those tables are replic-
ated.) See Section 5.12.3, “The Binary Log”.

You can change the isolation level for transactions with SET TRANSACTION ISOLATION LEVEL.
See Section 13.4.6, “SET TRANSACTION Syntax”.

Rolling back can be a slow operation that may occur without the user having explicitly asked for it (for
example, when an error occurs). Because of this, SHOW PROCESSLIST displays Rolling back in
the State column for the connection during implicit and explicit (ROLLBACK SQL statement) roll-
backs.

13.4.2. Statements That Cannot Be Rolled Back
Some statements cannot be rolled back. In general, these include data definition language (DDL) state-
ments, such as those that create or drop databases, those that create, drop, or alter tables or stored
routines.

You should design your transactions not to include such statements. If you issue a statement early in a
transaction that cannot be rolled back, and then another statement later fails, the full effect of the trans-
action cannot be rolled back in such cases by issuing a ROLLBACK statement.

13.4.3. Statements That Cause an Implicit Commit
Each of the following statements (and any synonyms for them) implicitly end a transaction, as if you had
done a COMMIT before executing the statement:

• ALTER FUNCTION, ALTER PROCEDURE, ALTER TABLE, BEGIN, CREATE DATABASE,

SQL Statement Syntax

823

CREATE FUNCTION, CREATE INDEX, CREATE PROCEDURE, CREATE TABLE, DROP
DATABASE, DROP FUNCTION, DROP INDEX, DROP PROCEDURE, DROP TABLE, LOAD
MASTER DATA, LOCK TABLES, LOAD DATA INFILE, RENAME TABLE, SET AUTOCOM-
MIT=1, START TRANSACTION, TRUNCATE TABLE, UNLOCK TABLES.

• UNLOCK TABLES commits a transaction only if any tables currently are locked.

• The CREATE TABLE, CREATE DATABASE DROP DATABASE, and TRUNCATE TABLE state-
ments cause an implicit commit beginning with MySQL 5.0.8. The ALTER FUNCTION, ALTER
PROCEDURE, CREATE FUNCTION, CREATE PROCEDURE, DROP FUNCTION, and DROP
PROCEDURE statements cause an implicit commit beginning with MySQL 5.0.13.

• The CREATE TABLE statement in InnoDB is processed as a single transaction. This means that a
ROLLBACK from the user does not undo CREATE TABLE statements the user made during that
transaction.

Transactions cannot be nested. This is a consequence of the implicit COMMIT performed for any current
transaction when you issue a START TRANSACTION statement or one of its synonyms.

Statements that cause implicit cannot be used in an XA transaction while the transaction is in an ACT-
IVE state.

13.4.4. SAVEPOINT and ROLLBACK TO SAVEPOINT Syntax
SAVEPOINT identifier
ROLLBACK [WORK] TO SAVEPOINT identifier
RELEASE SAVEPOINT identifier

InnoDB supports the SQL statements SAVEPOINT and ROLLBACK TO SAVEPOINT. Starting from
MySQL 5.0.3, RELEASE SAVEPOINT and the optional WORK keyword for ROLLBACK are supported
as well.

The SAVEPOINT statement sets a named transaction savepoint with a name of identifier. If the
current transaction has a savepoint with the same name, the old savepoint is deleted and a new one is set.

The ROLLBACK TO SAVEPOINT statement rolls back a transaction to the named savepoint. Modifica-
tions that the current transaction made to rows after the savepoint was set are undone in the rollback, but
InnoDB does not release the row locks that were stored in memory after the savepoint. (Note that for a
new inserted row, the lock information is carried by the transaction ID stored in the row; the lock is not
separately stored in memory. In this case, the row lock is released in the undo.) Savepoints that were set
at a later time than the named savepoint are deleted.

If the ROLLBACK TO SAVEPOINT statement returns the following error, it means that no savepoint
with the specified name exists:

ERROR 1181: Got error 153 during ROLLBACK

The RELEASE SAVEPOINT statement removes the named savepoint from the set of savepoints of the
current transaction. No commit or rollback occurs. It is an error if the savepoint does not exist.

All savepoints of the current transaction are deleted if you execute a COMMIT, or a ROLLBACK that
does not name a savepoint.

Beginning with MySQL 5.0.17, a new savepoint level is created when a stored function is invoked or a
trigger is activated. The savepoints on previous levels become unavailable and thus do not conflict with
savepoints on the new level. When the function or trigger terminates, any savepoints it created are re-
leased and the previous savepoint level is restored.

SQL Statement Syntax

824

13.4.5. LOCK TABLES and UNLOCK TABLES Syntax
LOCK TABLES

tbl_name [AS alias] {READ [LOCAL] | [LOW_PRIORITY] WRITE}
[, tbl_name [AS alias] {READ [LOCAL] | [LOW_PRIORITY] WRITE}] ...

UNLOCK TABLES

LOCK TABLES locks base tables (but not views) for the current thread. If any of the tables are locked
by other threads, it blocks until all locks can be acquired. UNLOCK TABLES releases any locks held by
the current thread. All tables that are locked by the current thread are implicitly unlocked when the
thread issues another LOCK TABLES, or when the connection to the server is closed.

A table lock protects only against inappropriate reads or writes by other clients. The client holding the
lock, even a read lock, can perform table-level operations such as DROP TABLE. Truncate operations
are not transaction-safe, so an error occurs if the client attempts one during an active transaction or while
holding a table lock.

Note the following regarding the use of LOCK TABLES with transactional tables:

• LOCK TABLES is not transaction-safe and implicitly commits any active transactions before at-
tempting to lock the tables. Also, beginning a transaction (for example, with START TRANSAC-
TION) implicitly performs an UNLOCK TABLES. (See Section 13.4.3, “Statements That Cause an
Implicit Commit”.)

• The correct way to use LOCK TABLES with transactional tables, such as InnoDB tables, is to set
AUTOCOMMIT = 0 and not to call UNLOCK TABLES until you commit the transaction explicitly.
When you call LOCK TABLES, InnoDB internally takes its own table lock, and MySQL takes its
own table lock. InnoDB releases its table lock at the next commit, but for MySQL to release its ta-
ble lock, you have to call UNLOCK TABLES. You should not have AUTOCOMMIT = 1, because
then InnoDB releases its table lock immediately after the call of LOCK TABLES, and deadlocks
can very easily happen. Note that we do not acquire the InnoDB table lock at all if AUTOCOM-
MIT=1, to help old applications avoid unnecessary deadlocks.

• ROLLBACK does not release MySQL's non-transactional table locks.

To use LOCK TABLES, you must have the LOCK TABLES privilege and the SELECT privilege for the
involved tables.

The main reasons to use LOCK TABLES are to emulate transactions or to get more speed when updat-
ing tables. This is explained in more detail later.

If a thread obtains a READ lock on a table, that thread (and all other threads) can only read from the ta-
ble. If a thread obtains a WRITE lock on a table, only the thread holding the lock can write to the table.
Other threads are blocked from reading or writing the table until the lock has been released.

The difference between READ LOCAL and READ is that READ LOCAL allows non-conflicting IN-
SERT statements (concurrent inserts) to execute while the lock is held. However, this cannot be used if
you are going to manipulate the database files outside MySQL while you hold the lock. For InnoDB
tables, READ LOCAL is the same as READ as of MySQL 5.0.13. (Before that, READ LOCAL essentially
does nothing: It does not lock the table at all, so for InnoDB tables, the use of READ LOCAL is deprec-
ated because a plain consistent-read SELECT does the same thing, and no locks are needed.)

When you use LOCK TABLES, you must lock all tables that you are going to use in your queries. Be-
cause LOCK TABLES will not lock views, if the operation that you are performing uses any views, you
must also lock all of the base tables on which those views depend. While the locks obtained with a
LOCK TABLES statement are in effect, you cannot access any tables that were not locked by the state-
ment. Also, you cannot use a locked table multiple times in a single query. Use aliases instead, in which

SQL Statement Syntax

825

case you must obtain a lock for each alias separately.

mysql> LOCK TABLE t WRITE, t AS t1 WRITE;
mysql> INSERT INTO t SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES
mysql> INSERT INTO t SELECT * FROM t AS t1;

If your queries refer to a table by means of an alias, you must lock the table using that same alias. It does
not work to lock the table without specifying the alias:

mysql> LOCK TABLE t READ;
mysql> SELECT * FROM t AS myalias;
ERROR 1100: Table 'myalias' was not locked with LOCK TABLES

Conversely, if you lock a table using an alias, you must refer to it in your queries using that alias:

mysql> LOCK TABLE t AS myalias READ;
mysql> SELECT * FROM t;
ERROR 1100: Table 't' was not locked with LOCK TABLES
mysql> SELECT * FROM t AS myalias;

WRITE locks normally have higher priority than READ locks to ensure that updates are processed as
soon as possible. This means that if one thread obtains a READ lock and then another thread requests a
WRITE lock, subsequent READ lock requests wait until the WRITE thread has gotten the lock and re-
leased it. You can use LOW_PRIORITY WRITE locks to allow other threads to obtain READ locks
while the thread is waiting for the WRITE lock. You should use LOW_PRIORITY WRITE locks only if
you are sure that eventually there will be a time when no threads have a READ lock.

LOCK TABLES works as follows:

1. Sort all tables to be locked in an internally defined order. From the user standpoint, this order is un-
defined.

2. If a table is locked with a read and a write lock, put the write lock before the read lock.

3. Lock one table at a time until the thread gets all locks.

This policy ensures that table locking is deadlock free. There are, however, other things you need to be
aware of about this policy: If you are using a LOW_PRIORITY WRITE lock for a table, it means only
that MySQL waits for this particular lock until there are no threads that want a READ lock. When the
thread has gotten the WRITE lock and is waiting to get the lock for the next table in the lock table list,
all other threads wait for the WRITE lock to be released. If this becomes a serious problem with your ap-
plication, you should consider converting some of your tables to transaction-safe tables.

You can safely use KILL to terminate a thread that is waiting for a table lock. See Section 13.5.5.3,
“KILL Syntax”.

Note that you should not lock any tables that you are using with INSERT DELAYED because in that
case the INSERT is performed by a separate thread.

Normally, you do not need to lock tables, because all single UPDATE statements are atomic; no other
thread can interfere with any other currently executing SQL statement. However, there are a few cases
when locking tables may provide an advantage:

• If you are going to run many operations on a set of MyISAM tables, it is much faster to lock the
tables you are going to use. Locking MyISAM tables speeds up inserting, updating, or deleting on
them. The downside is that no thread can update a READ-locked table (including the one holding the
lock) and no thread can access a WRITE-locked table other than the one holding the lock.

SQL Statement Syntax

826

The reason some MyISAM operations are faster under LOCK TABLES is that MySQL does not flush
the key cache for the locked tables until UNLOCK TABLES is called. Normally, the key cache is
flushed after each SQL statement.

• If you are using a storage engine in MySQL that does not support transactions, you must use LOCK
TABLES if you want to ensure that no other thread comes between a SELECT and an UPDATE. The
example shown here requires LOCK TABLES to execute safely:

LOCK TABLES trans READ, customer WRITE;
SELECT SUM(value) FROM trans WHERE customer_id=some_id;
UPDATE customer

SET total_value=sum_from_previous_statement
WHERE customer_id=some_id;

UNLOCK TABLES;

Without LOCK TABLES, it is possible that another thread might insert a new row in the trans ta-
ble between execution of the SELECT and UPDATE statements.

You can avoid using LOCK TABLES in many cases by using relative updates (UPDATE customer
SET value=value+new_value) or the LAST_INSERT_ID() function. See Section 1.9.5.3,
“Transactions and Atomic Operations”.

You can also avoid locking tables in some cases by using the user-level advisory lock functions
GET_LOCK() and RELEASE_LOCK(). These locks are saved in a hash table in the server and imple-
mented with pthread_mutex_lock() and pthread_mutex_unlock() for high speed. See
Section 12.9.4, “Miscellaneous Functions”.

See Section 7.3.1, “Locking Methods”, for more information on locking policy.

You can lock all tables in all databases with read locks with the FLUSH TABLES WITH READ LOCK
statement. See Section 13.5.5.2, “FLUSH Syntax”. This is a very convenient way to get backups if you
have a filesystem such as Veritas that can take snapshots in time.

Note: If you use ALTER TABLE on a locked table, it may become unlocked. See Section A.7.1,
“Problems with ALTER TABLE”.

13.4.6. SET TRANSACTION Syntax
SET [GLOBAL | SESSION] TRANSACTION ISOLATION LEVEL
{ READ UNCOMMITTED | READ COMMITTED | REPEATABLE READ | SERIALIZABLE }

This statement sets the transaction isolation level for the next transaction, globally, or for the current ses-
sion.

The default behavior of SET TRANSACTION is to set the isolation level for the next (not yet started)
transaction. If you use the GLOBAL keyword, the statement sets the default transaction level globally for
all new connections created from that point on. Existing connections are unaffected. You need the SU-
PER privilege to do this. Using the SESSION keyword sets the default transaction level for all future
transactions performed on the current connection.

For descriptions of each InnoDB transaction isolation level, see Section 14.2.10.3, “InnoDB and
TRANSACTION ISOLATION LEVEL”. InnoDB supports each of these levels in MySQL 5.0. The
default level is REPEATABLE READ.

To set the initial default global isolation level for mysqld, use the --transaction-isolation
option. See Section 5.2.2, “Command Options”.

SQL Statement Syntax

827

13.4.7. XA Transactions
MySQL 5.0.3 and up provides server-side support for XA transactions. Currently, this support is avail-
able for the InnoDB storage engine. The MySQL XA implementation is based on the X/Open CAE
document Distributed Transaction Processing: The XA Specification. This document is published by
The Open Group and available at http://www.opengroup.org/public/pubs/catalog/c193.htm. Limitations
of the current XA implementation are described in Section I.5, “Restrictions on XA Transactions”.

On the client side, there are no special requirements. The XA interface to a MySQL server consists of
SQL statements that begin with the XA keyword. MySQL client programs must be able to send SQL
statements and to understand the semantics of the XA statement interface. They do not need be linked
against a recent client library. Older client libraries also will work.

Currently, among the MySQL Connectors, MySQL Connector/J 5.0.0 supports XA directly (by means
of a class interface that handles the XA SQL statement interface for you).

XA supports distributed transactions; that is, the ability to allow multiple separate transactional re-
sources to participate in a global transaction. Transactional resources often are RDBMSs but may be
other kinds of resources.

A global transaction involves several actions that are transactional in themselves, but that all must either
complete successfully as a group, or all be rolled back as a group. In essence, this extends ACID proper-
ties “up a level” so that multiple ACID transactions can be executed in concert as components of a glob-
al operation that also has ACID properties. (However, for a distributed transaction, you must use the
SERIALIZABLE isolation level to achieve ACID properties. It is enough to use REPEATABLE READ
for a non-distributed transaction, but not for a distributed transaction.)

Some examples of distributed transactions:

• An application may act as an integration tool that combines a messaging service with an RDBMS.
The application makes sure that transactions dealing with message sending, retrieval, and processing
that also involve a transactional database all happen in a global transaction. You can think of this as
“transactional email.”

• An application performs actions that involve different database servers, such as a MySQL server and
an Oracle server (or multiple MySQL servers), where actions that involve multiple servers must hap-
pen as part of a global transaction, rather than as separate transactions local to each server.

• A bank keeps account information in an RDBMS and distributes and receives money via automated
teller machines (ATMs). It is necessary to ensure that ATM actions are correctly reflected in the ac-
counts, but this cannot be done with the RDBMS alone. A global transaction manager integrates the
ATM and database resources to ensure overall consistency of financial transactions.

Applications that use global transactions involve one or more Resource Managers and a Transaction
Manager:

• A Resource Manager (RM) provides access to transactional resources. A database server is one kind
of resource manager. It must be possible to either commit or roll back transactions managed by the
RM.

• A Transaction Manager (TM) coordinates the transactions that are part of a global transaction. It
communicates with the RMs that handle each of these transactions. The individual transactions with-
in a global transaction are “branches” of the global transaction. Global transactions and their
branches are identified by a naming scheme described later.

SQL Statement Syntax

828

http://www.opengroup.org/public/pubs/catalog/c193.htm

The MySQL implementation of XA MySQL enables a MySQL server to act as a Resource Manager that
handles XA transactions within a global transaction. A client program that connects to the MySQL serv-
er acts as the Transaction Manager.

To carry out a global transaction, it is necessary to know which components are involved, and bring
each component to a point when it can be committed or rolled back. Depending on what each compon-
ent reports about its ability to succeed, they must all commit or roll back as an atomic group. That is,
either all components must commit, or all components musts roll back. To manage a global transaction,
it is necessary to take into account that any component or the connecting network might fail.

The process for executing a global transaction uses two-phase commit (2PC). This takes place after the
actions performed by the branches of the global transaction have been executed.

1. In the first phase, all branches are prepared. That is, they are told by the TM to get ready to commit.
Typically, this means each RM that manages a branch records the actions for the branch in stable
storage. The branches indicate whether they are able to do this, and these results are used for the
second phase.

2. In the second phase, the TM tells the RMs whether to commit or roll back. If all branches indicated
when they were prepared that they will be able to commit, all branches are told to commit. If any
branch indicated when it was prepared that it will not be able to commit, all branches are told to roll
back.

In some cases, a global transaction might use one-phase commit (1PC). For example, when a Transac-
tion Manager finds that a global transaction consists of only one transactional resource (that is, a single
branch), that resource can be told to prepare and commit at the same time.

13.4.7.1. XA Transaction SQL Syntax

To perform XA transactions in MySQL, use the following statements:

XA {START|BEGIN} xid [JOIN|RESUME]

XA END xid [SUSPEND [FOR MIGRATE]]

XA PREPARE xid

XA COMMIT xid [ONE PHASE]

XA ROLLBACK xid

XA RECOVER

For XA START, the JOIN and RESUME clauses are not supported.

For XA END the SUSPEND [FOR MIGRATE] clause is not supported.

Each XA statement begins with the XA keyword, and most of them require an xid value. An xid is an
XA transaction identifier. It indicates which transaction the statement applies to. xid values are sup-
plied by the client, or generated by the MySQL server. An xid value has from one to three parts:

xid: gtrid [, bqual [, formatID]]

gtrid is a global transaction identifier, bqual is a branch qualifier, and formatID is a number that
identifies the format used by the gtrid and bqual values. As indicated by the syntax, bqual and
formatID are optional. The default bqual value is '' if not given. The default formatID value is 1
if not given.

SQL Statement Syntax

829

gtrid and bqual must be string literals, each up to 64 bytes (not characters) long. gtrid and
bqual can be specified in several ways. You can use a quoted string ('ab'), hex string (0x6162,
X'ab'), or bit value (b'nnnn').

formatID is an unsigned integer.

The gtrid and bqual values are interpreted in bytes by the MySQL server's underlying XA support
routines. However, while an SQL statement containing an XA statement is being parsed, the server
works with some specific character set. To be safe, write gtrid and bqual as hex strings.

xid values typically are generated by the Transaction Manager. Values generated by one TM must be
different from values generated by other TMs. A given TM must be able to recognize its own xid val-
ues in a list of values returned by the XA RECOVER statement.

XA START xid starts an XA transaction with the given xid value. Each XA transaction must have a
unique xid value, so the value must not currently be used by another XA transaction. Uniqueness is as-
sessed using the gtrid and bqual values. All following XA statements for the XA transaction must
be specified using the same xid value as that given in the XA START statement. If you use any of
those statements but specify an xid value that does not correspond to some existing XA transaction, an
error occurs.

One or more XA transactions can be part of the same global transaction. All XA transactions within a
given global transaction must use the same gtrid value in the xid value. For this reason, gtrid val-
ues must be globally unique so that there is no ambiguity about which global transaction a given XA
transaction is part of. The bqual part of the xid value must be different for each XA transaction with-
in a global transaction. (The requirement that bqual values be different is a limitation of the current
MySQL XA implementation. It is not part of the XA specification.)

The XA RECOVER statement returns information for those XA transactions on the MySQL server that
are in the PREPARED state. (See Section 13.4.7.2, “XA Transaction States”.) The output includes a row
for each such XA transaction on the server, regardless of which client started it.

XA RECOVER output rows look like this (for an example xid value consisting of the parts 'abc',
'def', and 7):

mysql> XA RECOVER;
+----------+--------------+--------------+--------+
| formatID | gtrid_length | bqual_length | data |
+----------+--------------+--------------+--------+
| 7 | 3 | 3 | abcdef |
+----------+--------------+--------------+--------+

The output columns have the following meanings:

• formatID is the formatID part of the transaction xid

• gtrid_length is the length in bytes of the gtrid part of the xid

• bqual_length is the length in bytes of the bqual part of the xid

• data is the concatenation of the gtrid and bqual parts of the xid

13.4.7.2. XA Transaction States

An XA transaction progresses through the following states:

1. Use XA START to start an XA transaction and put it in the ACTIVE state.

SQL Statement Syntax

830

2. For an ACTIVE XA transaction, issue the SQL statements that make up the transaction, and then
issue an XA END statement. XA END puts the transaction in the IDLE state.

3. For an IDLE XA transaction, you can issue either an XA PREPARE statement or an XA COMMIT
... ONE PHASE statement:

• XA PREPARE puts the transaction in the PREPARED state. An XA RECOVER statement at this
point will include the transaction's xid value in its output, because XA RECOVER lists all XA
transactions that are in the PREPARED state.

• XA COMMIT ... ONE PHASE prepares and commits the transaction. The xid value will
not be listed by XA RECOVER because the transaction terminates.

4. For a PREPARED XA transaction, you can issue an XA COMMIT statement to commit and termin-
ate the transaction, or XA ROLLBACK to roll back and terminate the transaction.

Here is a simple XA transaction that inserts a row into a table as part of a global transaction:

mysql> XA START 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO mytable (i) VALUES(10);
Query OK, 1 row affected (0.04 sec)

mysql> XA END 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> XA PREPARE 'xatest';
Query OK, 0 rows affected (0.00 sec)

mysql> XA COMMIT 'xatest';
Query OK, 0 rows affected (0.00 sec)

Within the context of a given client connection, XA transactions and local (non-XA) transactions are
mutually exclusive. For example, if XA START has been issued to begin an XA transaction, a local
transaction cannot be started until the XA transaction has been committed or rolled back. Conversely, if
a local transaction has been started with START TRANSACTION, no XA statements can be used until
the transaction has been committed or rolled back.

Note that if an XA transaction is in the ACTIVE state, you cannot issue any statements that cause an im-
plicit commit. That would violate the XA contract because you could not roll back the XA transaction.
You will receive the following error if you try to execute such a statement:

ERROR 1399 (XAE07): XAER_RMFAIL: The command cannot be executed
when global transaction is in the ACTIVE state

Statements to which the preceding remark applies are listed at Section 13.4.3, “Statements That Cause
an Implicit Commit”.

13.5. Database Administration Statements

13.5.1. Account Management Statements
MySQL account information is stored in the tables of the mysql database. This database and the access
control system are discussed extensively in Chapter 5, Database Administration, which you should con-
sult for additional details.

Important: Some releases of MySQL introduce changes to the structure of the grant tables to add new
privileges or features. Whenever you update to a new version of MySQL, you should update your grant

SQL Statement Syntax

831

tables to make sure that they have the current structure so that you can take advantage of any new capab-
ilities. See Section 5.6.2, “mysql_upgrade — Check Tables for MySQL Upgrade”.

13.5.1.1. CREATE USER Syntax
CREATE USER user [IDENTIFIED BY [PASSWORD] 'password']

[, user [IDENTIFIED BY [PASSWORD] 'password']] ...

The CREATE USER statement was added in MySQL 5.0.2. This statement creates new MySQL ac-
counts. To use it, you must have the global CREATE USER privilege or the INSERT privilege for the
mysql database. For each account, CREATE USER creates a new record in the mysql.user table
that has no privileges. An error occurs if the account already exists. Each account is named using the
same format as for the GRANT statement; for example, 'jeffrey'@'localhost'. The user and
host parts of the account name correspond to the User and Host column values of the user table row
for the account.

The account can be given a password with the optional IDENTIFIED BY clause. The user value and
the password are given the same way as for the GRANT statement. In particular, to specify the password
in plain text, omit the PASSWORD keyword. To specify the password as the hashed value as returned by
the PASSWORD() function, include the PASSWORD keyword. See Section 13.5.1.3, “GRANT Syntax”.

13.5.1.2. DROP USER Syntax
DROP USER user [, user] ...

The DROP USER statement removes one or more MySQL accounts. To use it, you must have the global
CREATE USER privilege or the DELETE privilege for the mysql database. Each account is named us-
ing the same format as for the GRANT statement; for example, 'jeffrey'@'localhost'. The user
and host parts of the account name correspond to the User and Host column values of the user table
row for the account.

DROP USER as present in MySQL 5.0.0 removes only accounts that have no privileges. In MySQL
5.0.2, it was modified to remove account privileges as well. This means that the procedure for removing
an account depends on your version of MySQL.

As of MySQL 5.0.2, you can remove an account and its privileges as follows:

DROP USER user;

The statement removes privilege rows for the account from all grant tables.

In MySQL 5.0.0 and 5.0.1, DROP USER deletes only MySQL accounts that have no privileges. In these
MySQL versions, it serves only to remove each account record from the user table. To remove a
MySQL account completely (including all of its privileges), you should use the following procedure,
performing these steps in the order shown:

1. Use SHOW GRANTS to determine what privileges the account has. See Section 13.5.4.12, “SHOW
GRANTS Syntax”.

2. Use REVOKE to revoke the privileges displayed by SHOW GRANTS. This removes rows for the ac-
count from all the grant tables except the user table, and revokes any global privileges listed in
the user table. See Section 13.5.1.3, “GRANT Syntax”.

3. Delete the account by using DROP USER to remove the user table record.

Important: DROP USER does not automatically close any open user sessions. Rather, in the event that a

SQL Statement Syntax

832

user with an open session is dropped, the statement does not take effect until that user's session is closed.
Once the session is closed, the user is dropped, and that user's next attempt to log in will fail. This is by
design.

13.5.1.3. GRANT Syntax
GRANT priv_type [(column_list)] [, priv_type [(column_list)]] ...

ON [object_type] {tbl_name | * | *.* | db_name.*}
TO user [IDENTIFIED BY [PASSWORD] 'password']

[, user [IDENTIFIED BY [PASSWORD] 'password']] ...
[REQUIRE

NONE |
[{SSL| X509}]
[CIPHER 'cipher' [AND]]
[ISSUER 'issuer' [AND]]
[SUBJECT 'subject']]

[WITH with_option [with_option] ...]

object_type =
TABLE

| FUNCTION
| PROCEDURE

with_option =
GRANT OPTION

| MAX_QUERIES_PER_HOUR count
| MAX_UPDATES_PER_HOUR count
| MAX_CONNECTIONS_PER_HOUR count
| MAX_USER_CONNECTIONS count

The GRANT statement enables system administrators to create MySQL user accounts and to grant rights
to from accounts. To use GRANT, you must have the GRANT OPTION privilege, and you must have the
privileges that you are granting. The REVOKE statement is related and enables administrators to remove
account privileges. See Section 13.5.1.5, “REVOKE Syntax”.

MySQL account information is stored in the tables of the mysql database. This database and the access
control system are discussed extensively in Chapter 5, Database Administration, which you should con-
sult for additional details.

Important: Some releases of MySQL introduce changes to the structure of the grant tables to add new
privileges or features. Whenever you update to a new version of MySQL, you should update your grant
tables to make sure that they have the current structure so that you can take advantage of any new capab-
ilities. See Section 5.6.2, “mysql_upgrade — Check Tables for MySQL Upgrade”.

If the grant tables hold privilege rows that contain mixed-case database or table names and the
lower_case_table_names system variable is set to a non-zero value, REVOKE cannot be used to
revoke these privileges. It will be necessary to manipulate the grant tables directly. (GRANT will not cre-
ate such rows when lower_case_table_names is set, but such rows might have been created prior
to setting the variable.)

Privileges can be granted at several levels:

• Global level

Global privileges apply to all databases on a given server. These privileges are stored in the
mysql.user table. GRANT ALL ON *.* and REVOKE ALL ON *.* grant and revoke only
global privileges.

• Database level

Database privileges apply to all objects in a given database. These privileges are stored in the
mysql.db and mysql.host tables. GRANT ALL ON db_name.* and REVOKE ALL ON
db_name.* grant and revoke only database privileges.

SQL Statement Syntax

833

• Table level

Table privileges apply to all columns in a given table. These privileges are stored in the
mysql.tables_priv table. GRANT ALL ON db_name.tbl_name and REVOKE ALL ON
db_name.tbl_name grant and revoke only table privileges.

• Column level

Column privileges apply to single columns in a given table. These privileges are stored in the
mysql.columns_priv table. When using REVOKE, you must specify the same columns that
were granted.

• Routine level

The CREATE ROUTINE, ALTER ROUTINE, EXECUTE, and GRANT privileges apply to stored
routines (functions and procedures). They can be granted at the global and database levels. Also, ex-
cept for CREATE ROUTINE, these privileges can be granted at the routine level for individual
routines and are stored in the mysql.procs_priv table.

The object_type clause was added in MySQL 5.0.6. It should be specified as TABLE, FUNCTION,
or PROCEDURE when the following object is a table, a stored function, or a stored procedure.

For the GRANT and REVOKE statements, priv_type can be specified as any of the following:

Privilege Meaning

ALL [PRIVILEGES] Sets all simple privileges except GRANT OPTION

ALTER Enables use of ALTER TABLE

ALTER ROUTINE Enables stored routines to be altered or dropped

CREATE Enables use of CREATE TABLE

CREATE ROUTINE Enables creation of stored routines

CREATE TEMPORARY
TABLES

Enables use of CREATE TEMPORARY TABLE

CREATE USER Enables use of CREATE USER, DROP USER, RENAME USER, and
REVOKE ALL PRIVILEGES.

CREATE VIEW Enables use of CREATE VIEW

DELETE Enables use of DELETE

DROP Enables use of DROP TABLE

EXECUTE Enables the user to run stored routines

FILE Enables use of SELECT ... INTO OUTFILE and LOAD DATA
INFILE

INDEX Enables use of CREATE INDEX and DROP INDEX

INSERT Enables use of INSERT

LOCK TABLES Enables use of LOCK TABLES on tables for which you have the SE-
LECT privilege

PROCESS Enables use of SHOW FULL PROCESSLIST

REFERENCES Not implemented

RELOAD Enables use of FLUSH

REPLICATION CLIENT Enables the user to ask where slave or master servers are

REPLICATION SLAVE Needed for replication slaves (to read binary log events from the mas-
ter)

SQL Statement Syntax

834

SELECT Enables use of SELECT

SHOW DATABASES SHOW DATABASES shows all databases

SHOW VIEW Enables use of SHOW CREATE VIEW

SHUTDOWN Enables use of mysqladmin shutdown

SUPER Enables use of CHANGE MASTER, KILL, PURGE MASTER LOGS,
and SET GLOBAL statements, the mysqladmin debug command;
allows you to connect (once) even if max_connections is reached

UPDATE Enables use of UPDATE

USAGE Synonym for “no privileges”

GRANT OPTION Enables privileges to be granted

The EXECUTE privilege is not operational until MySQL 5.0.3. CREATE VIEW and SHOW VIEW were
added in MySQL 5.0.1. CREATE USER, CREATE ROUTINE, and ALTER ROUTINE were added in
MySQL 5.0.3.

The REFERENCES privilege currently is unused.

USAGE can be specified when you want to create a user that has no privileges.

Use SHOW GRANTS to determine what privileges an account has. See Section 13.5.4.12, “SHOW
GRANTS Syntax”.

You can assign global privileges by using ON *.* syntax or database-level privileges by using ON
db_name.* syntax. If you specify ON * and you have selected a default database, the privileges are
granted in that database. (Warning: If you specify ON * and you have not selected a default database,
the privileges granted are global.)

The FILE, PROCESS, RELOAD, REPLICATION CLIENT, REPLICATION SLAVE, SHOW DATA-
BASES, SHUTDOWN, and SUPER privileges are administrative privileges that can only be granted glob-
ally (using ON *.* syntax).

Other privileges can be granted globally or at more specific levels.

The priv_type values that you can specify for a table are SELECT, INSERT, UPDATE, DELETE,
CREATE, DROP, GRANT OPTION, INDEX, ALTER, CREATE VIEW and SHOW VIEW.

The priv_type values that you can specify for a column (that is, when you use a column_list
clause) are SELECT, INSERT, and UPDATE.

The priv_type values that you can specify at the routine level are ALTER ROUTINE, EXECUTE,
and GRANT OPTION. CREATE ROUTINE is not a routine-level privilege because you must have this
privilege to create a routine in the first place.

For the global, database, table, and routine levels, GRANT ALL assigns only the privileges that exist at
the level you are granting. For example, GRANT ALL ON db_name.* is a database-level statement,
so it does not grant any global-only privileges such as FILE.

MySQL allows you to grant privileges even on database objects that do not exist. In such cases, the priv-
ileges to be granted must include the CREATE privilege. This behavior is by design, and is intended to
enable the database administrator to prepare user accounts and privileges for database objects that are to
be created at a later time.

Important: MySQL does not automatically revoke any privileges when you drop a table or database.
However, if you drop a routine, any routine-level privileges granted for that routine are revoked.

SQL Statement Syntax

835

Note: the ‘_’ and ‘%’ wildcards are allowed when specifying database names in GRANT statements that
grant privileges at the global or database levels. This means, for example, that if you want to use a ‘_’
character as part of a database name, you should specify it as ‘_’ in the GRANT statement, to prevent
the user from being able to access additional databases matching the wildcard pattern; for example,
GRANT ... ON `foo_bar`.* TO

To accommodate granting rights to users from arbitrary hosts, MySQL supports specifying the user
value in the form user_name@host_name. If a user_name or host_name value is legal as an
unquoted identifier, you need not quote it. However, quotes are necessary to specify a user_name
string containing special characters (such as ‘-’), or a host_name string containing special characters
or wildcard characters (such as ‘%’); for example, 'test-user'@'test-hostname'. Quote the
username and hostname separately.

You can specify wildcards in the hostname. For example, user_name@'%.loc.gov' applies to
user_name for any host in the loc.gov domain, and user_name@'144.155.166.%' applies to
user_name for any host in the 144.155.166 class C subnet.

The simple form user_name is a synonym for user_name@'%'.

MySQL does not support wildcards in usernames. Anonymous users are defined by inserting entries
with User='' into the mysql.user table or by creating a user with an empty name with the GRANT
statement:

GRANT ALL ON test.* TO ''@'localhost' ...

When specifying quoted values, quote database, table, column, and routine names as identifiers, using
backticks (‘`’). Quote hostnames, usernames, and passwords as strings, using single quotes (‘'’).

Warning: If you allow anonymous users to connect to the MySQL server, you should also grant priv-
ileges to all local users as user_name@localhost. Otherwise, the anonymous user account for
localhost in the mysql.user table (created during MySQL installation) is used when named users
try to log in to the MySQL server from the local machine. For details, see Section 5.8.5, “Access Con-
trol, Stage 1: Connection Verification”.

You can determine whether this applies to you by executing the following query, which lists any an-
onymous users:

SELECT Host, User FROM mysql.user WHERE User='';

If you want to delete the local anonymous user account to avoid the problem just described, use these
statements:

DELETE FROM mysql.user WHERE Host='localhost' AND User='';
FLUSH PRIVILEGES;

GRANT supports hostnames up to 60 characters long. Database, table, column, and routine names can be
up to 64 characters. Usernames can be up to 16 characters. Note: The allowable length for usernames
cannot be changed by altering the mysql.user table, and attempting to do so results in unpredictable
behavior which may even make it impossible for users to log in to the MySQL server. You should never
alter any of the tables in the mysql database in any manner whatsoever except by means of the proced-
ure prescribed by MySQL AB that is described in Section 5.6.2, “mysql_upgrade — Check Tables
for MySQL Upgrade”.

The privileges for a table, column, or routine are formed additively as the logical OR of the privileges at
each of the privilege levels. For example, if the mysql.user table specifies that a user has a global
SELECT privilege, the privilege cannot be denied by an entry at the database, table, or column level.

The privileges for a column can be calculated as follows:

SQL Statement Syntax

836

global privileges
OR (database privileges AND host privileges)
OR table privileges
OR column privileges
OR routine privileges

In most cases, you grant rights to a user at only one of the privilege levels, so life is not normally this
complicated. The details of the privilege-checking procedure are presented in Section 5.8, “The MySQL
Access Privilege System”.

If you grant privileges for a username/hostname combination that does not exist in the mysql.user
table, an entry is added and remains there until deleted with a DELETE statement. In other words,
GRANT may create user table entries, but REVOKE does not remove them; you must do that explicitly
using DROP USER or DELETE.

Warning: If you create a new user but do not specify an IDENTIFIED BY clause, the user has no
password. This is very insecure. As of MySQL 5.0.2, you can enable the NO_AUTO_CREATE_USER
SQL mode to prevent GRANT from creating a new user if it would otherwise do so, unless IDENTI-
FIED BY is given to provide the new user a non-empty password.

If a new user is created or if you have global grant privileges, the user's password is set to the password
specified by the IDENTIFIED BY clause, if one is given. If the user already had a password, this is re-
placed by the new one.

Passwords can also be set with the SET PASSWORD statement. See Section 13.5.1.6, “SET PASS-
WORD Syntax”.

In the IDENTIFIED BY clause, the password should be given as the literal password value. It is unne-
cessary to use the PASSWORD() function as it is for the SET PASSWORD statement. For example:

GRANT ... IDENTIFIED BY 'mypass';

If you do not want to send the password in clear text and you know the hashed value that PASSWORD()
would return for the password, you can specify the hashed value preceded by the keyword PASSWORD:

GRANT ...
IDENTIFIED BY PASSWORD '*6C8989366EAF75BB670AD8EA7A7FC1176A95CEF4';

In a C program, you can get the hashed value by using the make_scrambled_password() C API
function.

If you grant privileges for a database, an entry in the mysql.db table is created if needed. If all priv-
ileges for the database are removed with REVOKE, this entry is deleted.

The SHOW DATABASES privilege enables the account to see database names by issuing the SHOW
DATABASE statement. Accounts that do not have this privilege see only databases for which they have
some privileges, and cannot use the statement at all if the server was started with the -
-skip-show-database option.

If a user has no privileges for a table, the table name is not displayed when the user requests a list of
tables (for example, with a SHOW TABLES statement).

The WITH GRANT OPTION clause gives the user the ability to give to other users any privileges the
user has at the specified privilege level. You should be careful to whom you give the GRANT OPTION
privilege, because two users with different privileges may be able to join privileges!

You cannot grant another user a privilege which you yourself do not have; the GRANT OPTION priv-
ilege enables you to assign only those privileges which you yourself possess.

SQL Statement Syntax

837

Be aware that when you grant a user the GRANT OPTION privilege at a particular privilege level, any
privileges the user possesses (or may be given in the future) at that level can also be granted by that user
to other users. Suppose that you grant a user the INSERT privilege on a database. If you then grant the
SELECT privilege on the database and specify WITH GRANT OPTION, that user can give to other
users not only the SELECT privilege, but also INSERT. If you then grant the UPDATE privilege to the
user on the database, the user can grant INSERT, SELECT, and UPDATE.

For a non-administrative user, you should not grant the ALTER privilege globally or for the mysql
database. If you do that, the user can try to subvert the privilege system by renaming tables!

The MAX_QUERIES_PER_HOUR count, MAX_UPDATES_PER_HOUR count, and
MAX_CONNECTIONS_PER_HOUR count options limit the number of queries, updates, and logins a
user can perform during any given one-hour period. If count is 0 (the default), this means that there is
no limitation for that user.

The MAX_USER_CONNECTIONS count option, implemented in MySQL 5.0.3, limits the maximum
number of simultaneous connections that the account can make. If count is 0 (the default), the
max_user_connections system variable determines the number of simultaneous connections for
the account.

Note: To specify any of these resource-limit options for an existing user without affecting existing priv-
ileges, use GRANT USAGE ON *.* ... WITH MAX_....

See Section 5.9.4, “Limiting Account Resources”.

MySQL can check X509 certificate attributes in addition to the usual authentication that is based on the
username and password. To specify SSL-related options for a MySQL account, use the REQUIRE
clause of the GRANT statement. (For background information on the use of SSL with MySQL, see Sec-
tion 5.9.7, “Using Secure Connections”.)

There are a number of different possibilities for limiting connection types for a given account:

• If the account has no SSL or X509 requirements, unencrypted connections are allowed if the user-
name and password are valid. However, encrypted connections can also be used, at the client's op-
tion, if the client has the proper certificate and key files.

• The REQUIRE SSL option tells the server to allow only SSL-encrypted connections for the ac-
count. Note that this option can be omitted if there are any access-control rows that allow non-SSL
connections.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
IDENTIFIED BY 'goodsecret' REQUIRE SSL;

• REQUIRE X509 means that the client must have a valid certificate but that the exact certificate, is-
suer, and subject do not matter. The only requirement is that it should be possible to verify its signa-
ture with one of the CA certificates.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
IDENTIFIED BY 'goodsecret' REQUIRE X509;

• REQUIRE ISSUER 'issuer' places the restriction on connection attempts that the client must
present a valid X509 certificate issued by CA 'issuer'. If the client presents a certificate that is
valid but has a different issuer, the server rejects the connection. Use of X509 certificates always im-
plies encryption, so the SSL option is unnecessary in this case.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
IDENTIFIED BY 'goodsecret'
REQUIRE ISSUER '/C=FI/ST=Some-State/L=Helsinki/
O=MySQL Finland AB/CN=Tonu Samuel/Email=tonu@example.com';

SQL Statement Syntax

838

Note that the 'issuer' value should be entered as a single string.

• REQUIRE SUBJECT 'subject' places the restriction on connection attempts that the client
must present a valid X509 certificate containing the subject subject. If the client presents a certi-
ficate that is valid but has a different subject, the server rejects the connection.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
IDENTIFIED BY 'goodsecret'
REQUIRE SUBJECT '/C=EE/ST=Some-State/L=Tallinn/
O=MySQL demo client certificate/
CN=Tonu Samuel/Email=tonu@example.com';

Note that the 'subject' value should be entered as a single string.

• REQUIRE CIPHER 'cipher' is needed to ensure that ciphers and key lengths of sufficient
strength are used. SSL itself can be weak if old algorithms using short encryption keys are used. Us-
ing this option, you can ask that a specific cipher method is used to allow a connection.

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
IDENTIFIED BY 'goodsecret'
REQUIRE CIPHER 'EDH-RSA-DES-CBC3-SHA';

The SUBJECT, ISSUER, and CIPHER options can be combined in the REQUIRE clause like this:

GRANT ALL PRIVILEGES ON test.* TO 'root'@'localhost'
IDENTIFIED BY 'goodsecret'
REQUIRE SUBJECT '/C=EE/ST=Some-State/L=Tallinn/
O=MySQL demo client certificate/
CN=Tonu Samuel/Email=tonu@example.com'

AND ISSUER '/C=FI/ST=Some-State/L=Helsinki/
O=MySQL Finland AB/CN=Tonu Samuel/Email=tonu@example.com'

AND CIPHER 'EDH-RSA-DES-CBC3-SHA';

The AND keyword is optional between REQUIRE options.

The order of the options does not matter, but no option can be specified twice.

When mysqld starts, all privileges are read into memory. For details, see Section 5.8.7, “When Priv-
ilege Changes Take Effect”.

Note that if you are using table, column, or routine privileges for even one user, the server examines ta-
ble, column, and routine privileges for all users and this slows down MySQL a bit. Similarly, if you lim-
it the number of queries, updates, or connections for any users, the server must monitor these values.

The biggest differences between the standard SQL and MySQL versions of GRANT are:

• In MySQL, privileges are associated with the combination of a hostname and username and not with
only a username.

• Standard SQL does not have global or database-level privileges, nor does it support all the privilege
types that MySQL supports.

• MySQL does not support the standard SQL TRIGGER or UNDER privileges.

• Standard SQL privileges are structured in a hierarchical manner. If you remove a user, all privileges
the user has been granted are revoked. This is also true in MySQL 5.0.2 and up if you use DROP
USER. Before 5.0.2, the granted privileges are not automatically revoked; you must revoke them

SQL Statement Syntax

839

yourself. See Section 13.5.1.2, “DROP USER Syntax”.

• In standard SQL, when you drop a table, all privileges for the table are revoked. In standard SQL,
when you revoke a privilege, all privileges that were granted based on that privilege are also re-
voked. In MySQL, privileges can be dropped only with explicit REVOKE statements or by manipu-
lating values stored in the MySQL grant tables.

• In MySQL, it is possible to have the INSERT privilege for only some of the columns in a table. In
this case, you can still execute INSERT statements on the table, provided that you omit those
columns for which you do not have the INSERT privilege. The omitted columns are set to their im-
plicit default values if strict SQL mode is not enabled. In strict mode, the statement is rejected if any
of the omitted columns have no default value. (Standard SQL requires you to have the INSERT
privilege on all columns.) Section 5.2.6, “SQL Modes”, discusses strict mode. Section 11.1.4, “Data
Type Default Values”, discusses implicit default values.

13.5.1.4. RENAME USER Syntax
RENAME USER old_user TO new_user

[, old_user TO new_user] ...

The RENAME USER statement renames existing MySQL accounts. To use it, you must have the global
CREATE USER privilege or the UPDATE privilege for the mysql database. An error occurs if any old
account does not exist or any new account exists. Each account is named using the same format as for
the GRANT statement; for example, 'jeffrey'@'localhost'. The user and host parts of the ac-
count name correspond to the User and Host column values of the user table row for the account.

The RENAME USER statement was added in MySQL 5.0.2.

13.5.1.5. REVOKE Syntax
REVOKE priv_type [(column_list)] [, priv_type [(column_list)]] ...

ON [object_type] {tbl_name | * | *.* | db_name.*}
FROM user [, user] ...

REVOKE ALL PRIVILEGES, GRANT OPTION FROM user [, user] ...

The REVOKE statement enables system administrators to revoke privileges from MySQL accounts. To
use REVOKE, you must have the GRANT OPTION privilege, and you must have the privileges that you
are revoking.

For details on the levels at which privileges exist, the allowable priv_type values, and the syntax for
specifying users and passwords, see Section 13.5.1.3, “GRANT Syntax”

If the grant tables hold privilege rows that contain mixed-case database or table names and the
lower_case_table_names system variable is set to a non-zero value, REVOKE cannot be used to
revoke these privileges. It will be necessary to manipulate the grant tables directly. (GRANT will not cre-
ate such rows when lower_case_table_names is set, but such rows might have been created prior
to setting the variable.)

To revoke all privileges, use the following syntax, which drops all global, database-, table-, and column-
level privileges for the named user or users:

REVOKE ALL PRIVILEGES, GRANT OPTION FROM user [, user] ...

To use this REVOKE syntax, you must have the global CREATE USER privilege or the UPDATE priv-
ilege for the mysql database.

SQL Statement Syntax

840

13.5.1.6. SET PASSWORD Syntax
SET PASSWORD [FOR user] = PASSWORD('some password')

The SET PASSWORD statement assigns a password to an existing MySQL user account.

With no FOR clause, this statement sets the password for the current user. Any client that has connected
to the server using a non-anonymous account can change the password for that account.

With a FOR clause, this statement sets the password for a specific account on the current server host.
Only clients that have the UPDATE privilege for the mysql database can do this. The user value
should be given in user_name@host_name format, where user_name and host_name are ex-
actly as they are listed in the User and Host columns of the mysql.user table entry. For example, if
you had an entry with User and Host column values of 'bob' and '%.loc.gov', you would write
the statement like this:

SET PASSWORD FOR 'bob'@'%.loc.gov' = PASSWORD('newpass');

That is equivalent to the following statements:

UPDATE mysql.user SET Password=PASSWORD('newpass')
WHERE User='bob' AND Host='%.loc.gov';

FLUSH PRIVILEGES;

Note: If you are connecting to a MySQL 4.1 or later server using a pre-4.1 client program, do not use
the preceding SET PASSWORD or UPDATE statement without reading Section 5.8.9, “Password Hash-
ing as of MySQL 4.1”, first. The password format changed in MySQL 4.1, and under certain circum-
stances it is possible that if you change your password, you might not be able to connect to the server af-
terward.

You can see which account the server authenticated you as by executing SELECT
CURRENT_USER().

13.5.2. Table Maintenance Statements

13.5.2.1. ANALYZE TABLE Syntax
ANALYZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, tbl_name] ...

ANALYZE TABLE analyzes and stores the key distribution for a table. During the analysis, the table is
locked with a read lock for MyISAM and BDB. For InnoDB the table is locked with a write lock. This
statement works with MyISAM, BDB, and InnoDB tables. For MyISAM tables, this statement is equival-
ent to using myisamchk --analyze.

For more information on how the analysis works withinInnoDB, see Section 14.2.16, “Restrictions on
InnoDB Tables”.

MySQL uses the stored key distribution to decide the order in which tables should be joined when you
perform a join on something other than a constant.

This statement requires SELECT and INSERT privileges for the table.

ANALYZE TABLE returns a result set with the following columns:

Column Value

Table The table name

SQL Statement Syntax

841

Op Always analyze

Msg_type One of status, error, info, or warning

Msg_text The message

You can check the stored key distribution with the SHOW INDEX statement. See Section 13.5.4.13,
“SHOW INDEX Syntax”.

If the table has not changed since the last ANALYZE TABLE statement, the table is not analyzed again.

ANALYZE TABLE statements are written to the binary log unless the optional
NO_WRITE_TO_BINLOG keyword (or its alias LOCAL) is used. This is done so that ANALYZE TA-
BLE statements used on a MySQL server acting as a replication master will be replicated by default to
the replication slave.

13.5.2.2. BACKUP TABLE Syntax
BACKUP TABLE tbl_name [, tbl_name] ... TO '/path/to/backup/directory'

Note: This statement is deprecated. We are working on a better replacement for it that will provide on-
line backup capabilities. In the meantime, the mysqlhotcopy script can be used instead.

BACKUP TABLE copies to the backup directory the minimum number of table files needed to restore
the table, after flushing any buffered changes to disk. The statement works only for MyISAM tables. It
copies the .frm definition and .MYD data files. The .MYI index file can be rebuilt from those two
files. The directory should be specified as a full pathname. To restore the table, use RESTORE TABLE.

During the backup, a read lock is held for each table, one at time, as they are being backed up. If you
want to back up several tables as a snapshot (preventing any of them from being changed during the
backup operation), issue a LOCK TABLES statement first, to obtain a read lock for all tables in the
group.

BACKUP TABLE returns a result set with the following columns:

Column Value

Table The table name

Op Always backup

Msg_type One of status, error, info, or warning

Msg_text The message

13.5.2.3. CHECK TABLE Syntax
CHECK TABLE tbl_name [, tbl_name] ... [option] ...

option = {FOR UPGRADE | QUICK | FAST | MEDIUM | EXTENDED | CHANGED}

CHECK TABLE checks a table or tables for errors. CHECK TABLE works for MyISAM, InnoDB, and
(as of MySQL 5.0.16) ARCHIVE tables. For MyISAM tables, the key statistics are updated as well.

As of MySQL 5.0.2, CHECK TABLE can also check views for problems, such as tables that are refer-
enced in the view definition that no longer exist.

CHECK TABLE returns a result set with the following columns:

SQL Statement Syntax

842

Column Value

Table The table name

Op Always check

Msg_type One of status, error, info, or warning

Msg_text The message

Note that the statement might produce many rows of information for each checked table. The last row
has a Msg_type value of status and the Msg_text normally should be OK. If you don't get OK, or
Table is already up to date you should normally run a repair of the table. See Sec-
tion 5.10.4, “Table Maintenance and Crash Recovery”. Table is already up to date means
that the storage engine for the table indicated that there was no need to check the table.

The FOR UPGRADE option checks whether the named tables are compatible with the current version of
MySQL. This option was added in MySQL 5.0.19. With FOR UPGRADE, the server checks each table
to determine whether there have been any incompatible changes in any of the table's data types or in-
dexes since the table was created. If not, the check succeeds. Otherwise, if there is a possible incompat-
ibility, the server runs a full check on the table (which might take some time). If the full check succeeds,
the server marks the table's .frm file with the current MySQL version number. Marking the .frm file
ensures that further checks for the table with the same version of the server will be fast.

Incompatibilities might occur because the storage format for a data type has changed or because its sort
order has changed. Our aim is to avoid these changes, but occasionally they are necessary to correct
problems that would be worse than an incompatibility between releases.

Currently, FOR UPGRADE discovers these incompatibilities:

• The indexing order for end-space in TEXT columns for InnoDB and MyISAM tables changed
between MySQL 4.1 and 5.0.

• The storage method of the new DECIMAL data type changed between MySQL 5.0.3 and 5.0.5.

The other check options that can be given are shown in the following table. These options apply only to
checking MyISAM tables and are ignored for InnoDB tables and views.

Type Meaning

QUICK Do not scan the rows to check for incorrect links.

FAST Check only tables that have not been closed properly.

CHANGED Check only tables that have been changed since the last check or that have not been
closed properly.

MEDIUM Scan rows to verify that deleted links are valid. This also calculates a key checksum for
the rows and verifies this with a calculated checksum for the keys.

EXTENDED Do a full key lookup for all keys for each row. This ensures that the table is 100% con-
sistent, but takes a long time.

If none of the options QUICK, MEDIUM, or EXTENDED are specified, the default check type for dynam-
ic-format MyISAM tables is MEDIUM. This has the same result as running myisamchk -
-medium-check tbl_name on the table. The default check type also is MEDIUM for static-format
MyISAM tables, unless CHANGED or FAST is specified. In that case, the default is QUICK. The row scan
is skipped for CHANGED and FAST because the rows are very seldom corrupted.

SQL Statement Syntax

843

You can combine check options, as in the following example that does a quick check on the table to de-
termine whether it was closed properly:

CHECK TABLE test_table FAST QUICK;

Note: In some cases, CHECK TABLE changes the table. This happens if the table is marked as
“corrupted” or “not closed properly” but CHECK TABLE does not find any problems in the table. In this
case, CHECK TABLE marks the table as okay.

If a table is corrupted, it is most likely that the problem is in the indexes and not in the data part. All of
the preceding check types check the indexes thoroughly and should thus find most errors.

If you just want to check a table that you assume is okay, you should use no check options or the QUICK
option. The latter should be used when you are in a hurry and can take the very small risk that QUICK
does not find an error in the data file. (In most cases, under normal usage, MySQL should find any error
in the data file. If this happens, the table is marked as “corrupted” and cannot be used until it is re-
paired.)

FAST and CHANGED are mostly intended to be used from a script (for example, to be executed from
cron) if you want to check tables from time to time. In most cases, FAST is to be preferred over
CHANGED. (The only case when it is not preferred is when you suspect that you have found a bug in the
MyISAM code.)

EXTENDED is to be used only after you have run a normal check but still get strange errors from a table
when MySQL tries to update a row or find a row by key. This is very unlikely if a normal check has suc-
ceeded.

Some problems reported by CHECK TABLE cannot be corrected automatically:

• Found row where the auto_increment column has the value 0.

This means that you have a row in the table where the AUTO_INCREMENT index column contains
the value 0. (It is possible to create a row where the AUTO_INCREMENT column is 0 by explicitly
setting the column to 0 with an UPDATE statement.)

This is not an error in itself, but could cause trouble if you decide to dump the table and restore it or
do an ALTER TABLE on the table. In this case, the AUTO_INCREMENT column changes value ac-
cording to the rules of AUTO_INCREMENT columns, which could cause problems such as a duplic-
ate-key error.

To get rid of the warning, simply execute an UPDATE statement to set the column to some value oth-
er than 0.

13.5.2.4. CHECKSUM TABLE Syntax
CHECKSUM TABLE tbl_name [, tbl_name] ... [QUICK | EXTENDED]

CHECKSUM TABLE reports a table checksum.

With QUICK, the live table checksum is reported if it is available, or NULL otherwise. This is very fast.
A live checksum is enabled by specifying the CHECKSUM=1 table option when you create the table; cur-
rently, this is supported only for MyISAM tables. See Section 13.1.5, “CREATE TABLE Syntax”.

With EXTENDED, the entire table is read row by row and the checksum is calculated. This can be very
slow for large tables.

SQL Statement Syntax

844

If neither QUICK nor EXTENDED is specified, MySQL returns a live checksum if the table storage en-
gine supports it and scans the table otherwise.

For a non-existent table, CHECKSUM TABLE returns NULL and, as of MySQL 5.0.3, generates a warn-
ing.

13.5.2.5. OPTIMIZE TABLE Syntax
OPTIMIZE [LOCAL | NO_WRITE_TO_BINLOG] TABLE tbl_name [, tbl_name] ...

OPTIMIZE TABLE should be used if you have deleted a large part of a table or if you have made many
changes to a table with variable-length rows (tables that have VARCHAR, VARBINARY, BLOB, or TEXT
columns). Deleted rows are maintained in a linked list and subsequent INSERT operations reuse old row
positions. You can use OPTIMIZE TABLE to reclaim the unused space and to defragment the data file.

This statement requires SELECT and INSERT privileges for the table.

In most setups, you need not run OPTIMIZE TABLE at all. Even if you do a lot of updates to variable-
length rows, it is not likely that you need to do this more than once a week or month and only on certain
tables.

OPTIMIZE TABLE works only for MyISAM, BDB, and InnoDB tables.

For MyISAM tables, OPTIMIZE TABLE works as follows:

1. If the table has deleted or split rows, repair the table.

2. If the index pages are not sorted, sort them.

3. If the table's statistics are not up to date (and the repair could not be accomplished by sorting the in-
dex), update them.

For BDB tables, OPTIMIZE TABLE currently is mapped to ANALYZE TABLE. See Section 13.5.2.1,
“ANALYZE TABLE Syntax”.

For InnoDB tables, OPTIMIZE TABLE is mapped to ALTER TABLE, which rebuilds the table to up-
date index statistics and free unused space in the clustered index.

You can make OPTIMIZE TABLE work on other storage engines by starting mysqld with the -
-skip-new or --safe-mode option. In this case, OPTIMIZE TABLE is just mapped to ALTER
TABLE.

OPTIMIZE TABLE returns a result set with the following columns:

Column Value

Table The table name

Op Always optimize

Msg_type One of status, error, info, or warning

Msg_text The message

Note that MySQL locks the table during the time OPTIMIZE TABLE is running.

OPTIMIZE TABLE statements are written to the binary log unless the optional

SQL Statement Syntax

845

NO_WRITE_TO_BINLOG keyword(or its alias LOCAL) is used. This is done so that OPTIMIZE TA-
BLE statements used on a MySQL server acting as a replication master will be replicated by default to
the replication slave.

13.5.2.6. REPAIR TABLE Syntax
REPAIR [LOCAL | NO_WRITE_TO_BINLOG] TABLE

tbl_name [, tbl_name] ... [QUICK] [EXTENDED] [USE_FRM]

REPAIR TABLE repairs a possibly corrupted table. By default, it has the same effect as myisamchk
--recover tbl_name. REPAIR TABLE works for MyISAM and for ARCHIVE tables. See Sec-
tion 14.1, “The MyISAM Storage Engine”, and Section 14.8, “The ARCHIVE Storage Engine”.

This statement requires SELECT and INSERT privileges for the table.

Normally, you should never have to run this statement. However, if disaster strikes, REPAIR TABLE is
very likely to get back all your data from a MyISAM table. If your tables become corrupted often, you
should try to find the reason for it, to eliminate the need to use REPAIR TABLE. See Section A.4.2,
“What to Do If MySQL Keeps Crashing”, and Section 14.1.4, “MyISAM Table Problems”.

Warning: If the server dies during a REPAIR TABLE operation, it is essential after restarting it that
you immediately execute another REPAIR TABLE statement for the table before performing any other
operations on it. (It is always a good idea to start by making a backup.) In the worst case, you might
have a new clean index file without information about the data file, and then the next operation you per-
form could overwrite the data file. This is an unlikely but possible scenario.

REPAIR TABLE returns a result set with the following columns:

Column Value

Table The table name

Op Always repair

Msg_type One of status, error, info, or warning

Msg_text The message

The REPAIR TABLE statement might produce many rows of information for each repaired table. The
last row has a Msg_type value of status and Msg_test normally should be OK. If you do not get
OK, you should try repairing the table with myisamchk --safe-recover. (REPAIR TABLE does
not yet implement all the options of myisamchk.) With myisamchk --safe-recover, you can
also use options that REPAIR TABLE does not support, such as --max-record-length.

If QUICK is given, REPAIR TABLE tries to repair only the index tree. This type of repair is like that
done by myisamchk --recover --quick.

If you use EXTENDED, MySQL creates the index row by row instead of creating one index at a time
with sorting. This type of repair is like that done by myisamchk --safe-recover.

There is also a USE_FRM mode available for REPAIR TABLE. Use this if the .MYI index file is miss-
ing or if its header is corrupted. In this mode, MySQL re-creates the .MYI file using information from
the .frm file. This kind of repair cannot be done with myisamchk. Note: Use this mode only if you
cannot use regular REPAIR modes. The .MYI header contains important table metadata (in particular,
current AUTO_INCREMENT value and Delete link) that are lost in REPAIR ... USE_FRM.
Don't use USE_FRM if the table is compressed because this information is also stored in the .MYI file.

REPAIR TABLE statements are written to the binary log unless the optional NO_WRITE_TO_BINLOG
keyword (or its alias LOCAL) is used. This is done so that REPAIR TABLE statements used on a
MySQL server acting as a replication master will be replicated by default to the replication slave.

SQL Statement Syntax

846

13.5.2.7. RESTORE TABLE Syntax
RESTORE TABLE tbl_name [, tbl_name] ... FROM '/path/to/backup/directory'

RESTORE TABLE restores the table or tables from a backup that was made with BACKUP TABLE.
The directory should be specified as a full pathname.

Existing tables are not overwritten; if you try to restore over an existing table, an error occurs. Just as for
BACKUP TABLE, RESTORE TABLE currently works only for MyISAM tables. Restored tables are not
replicated from master to slave.

The backup for each table consists of its .frm format file and .MYD data file. The restore operation re-
stores those files, and then uses them to rebuild the .MYI index file. Restoring takes longer than backing
up due to the need to rebuild the indexes. The more indexes the table has, the longer it takes.

RESTORE TABLE returns a result set with the following columns:

Column Value

Table The table name

Op Always restore

Msg_type One of status, error, info, or warning

Msg_text The message

13.5.3. SET Syntax
SET variable_assignment [, variable_assignment] ...

variable_assignment:
user_var_name = expr

| [GLOBAL | SESSION] system_var_name = expr
| [@@global. | @@session. | @@]system_var_name = expr

The SET statement assigns values to different types of variables that affect the operation of the server or
your client. Older versions of MySQL employed SET OPTION, but this syntax is deprecated in favor
of SET without OPTION.

This section describes use of SET for assigning values to system variables or user variables. For general
information about these types of variables, see Section 5.2.3, “System Variables”, and Section 9.3,
“User-Defined Variables”. System variables also can be set at server startup, as described in Sec-
tion 5.2.4, “Using System Variables”.

Some variants of SET syntax are used in other contexts:

• SET PASSWORD assigns account passwords. See Section 13.5.1.6, “SET PASSWORD Syntax”.

• SET TRANSACTION ISOLATION LEVEL sets the isolation level for transaction processing. See
Section 13.4.6, “SET TRANSACTION Syntax”.

• SET is used within stored routines to assign values to local routine variables. See Section 17.2.7.2,
“Variable SET Statement”.

The following discussion shows the different SET syntaxes that you can use to set variables. The ex-
amples use the = assignment operator, but the := operator also is allowable.

SQL Statement Syntax

847

A user variable is written as @var_name and can be set as follows:

SET @var_name = expr;

Many system variables are dynamic and can be changed while the server runs by using the SET state-
ment. For a list, see Section 5.2.4.2, “Dynamic System Variables”. To change a system variable with
SET, refer to it as var_name, optionally preceded by a modifier:

• To indicate explicitly that a variable is a global variable, precede its name by GLOBAL or
@@global.. The SUPER privilege is required to set global variables.

• To indicate explicitly that a variable is a session variable, precede its name by SESSION,
@@session., or @@. Setting a session variable requires no special privilege, but a client can
change only its own session variables, not those of any other client.

• LOCAL and @@local. are synonyms for SESSION and @@session..

• If no modifier is present, SET changes the session variable.

A SET statement can contain multiple variable assignments, separated by commas. If you set several
system variables, the most recent GLOBAL or SESSION modifier in the statement is used for following
variables that have no modifier specified.

Examples:

SET sort_buffer_size=10000;
SET @@local.sort_buffer_size=10000;
SET GLOBAL sort_buffer_size=1000000, SESSION sort_buffer_size=1000000;
SET @@sort_buffer_size=1000000;
SET @@global.sort_buffer_size=1000000, @@local.sort_buffer_size=1000000;

When you assign a value to a system variable with SET, you cannot use suffix letters in the value (as
can be done with startup options). However, the value can take the form of an expression:

SET sort_buffer_size = 10 * 1024 * 1024;

The @@var_name syntax for system variables is supported for compatibility with some other database
systems.

If you change a session system variable, the value remains in effect until your session ends or until you
change the variable to a different value. The change is not visible to other clients.

If you change a global system variable, the value is remembered and used for new connections until the
server restarts. (To make a global system variable setting permanent, you should set it in an option file.)
The change is visible to any client that accesses that global variable. However, the change affects the
corresponding session variable only for clients that connect after the change. The global variable change
does not affect the session variable for any client that is currently connected (not even that of the client
that issues the SET GLOBAL statement).

To prevent incorrect usage, MySQL produces an error if you use SET GLOBAL with a variable that can
only be used with SET SESSION or if you do not specify GLOBAL (or @@global.) when setting a
global variable.

To set a SESSION variable to the GLOBAL value or a GLOBAL value to the compiled-in MySQL de-
fault value, use the DEFAULT keyword. For example, the following two statements are identical in set-
ting the session value of max_join_size to the global value:

SQL Statement Syntax

848

SET max_join_size=DEFAULT;
SET @@session.max_join_size=@@global.max_join_size;

Not all system variables can be set to DEFAULT. In such cases, use of DEFAULT results in an error.

You can refer to the values of specific global or sesson system variables in expressions by using one of
the @@-modifiers. For example, you can retrieve values in a SELECT statement like this:

SELECT @@global.sql_mode, @@session.sql_mode, @@sql_mode;

When you refer to a system variable in an expression as @@var_name (that is, when you do not specify
@@global. or @@session.), MySQL returns the session value if it exists and the global value oth-
erwise. (This differs from SET @@var_name = value, which always refers to the session value.)

To display system variables names and values, use the SHOW VARIABLES statement. (See Sec-
tion 13.5.4.25, “SHOW VARIABLES Syntax”.)

The following list describes options that have non-standard syntax or that are not described in the list of
system variables found in Section 5.2.3, “System Variables”. Although the options described here are
not displayed by SHOW VARIABLES, you can obtain their values with SELECT (with the exception of
CHARACTER SET and SET NAMES). For example:

mysql> SELECT @@AUTOCOMMIT;
+--------------+
| @@AUTOCOMMIT |
+--------------+
| 1 |
+--------------+

The lettercase of thse options does not matter.

• AUTOCOMMIT = {0 | 1}

Set the autocommit mode. If set to 1, all changes to a table take effect immediately. If set to 0 you
have to use COMMIT to accept a transaction or ROLLBACK to cancel it. By default, client connec-
tions begin with AUTOCOMMIT set to 1. If you change AUTOCOMMIT mode from 0 to 1, MySQL
performs an automatic COMMIT of any open transaction. Another way to begin a transaction is to
use a START TRANSACTION or BEGIN statement. See Section 13.4.1, “START TRANSACTION,
COMMIT, and ROLLBACK Syntax”.

• BIG_TABLES = {0 | 1}

If set to 1, all temporary tables are stored on disk rather than in memory. This is a little slower, but
the error The table tbl_name is full does not occur for SELECT operations that require
a large temporary table. The default value for a new connection is 0 (use in-memory temporary
tables). Normally, you should never need to set this variable, because in-memory tables are automat-
ically converted to disk-based tables as required. (Note: This variable was formerly named
SQL_BIG_TABLES.)

• CHARACTER SET {charset_name | DEFAULT}

This maps all strings from and to the client with the given mapping. You can add new mappings by
editing sql/convert.cc in the MySQL source distribution. SET CHARACTER SET sets three
session system variables: character_set_client and character_set_results are set
to the given character set, and character_set_connection to the value of charac-
ter_set_database. See Section 10.4, “Connection Character Sets and Collations”.

The default mapping can be restored by using the value DEFAULT. The default depends on the serv-

SQL Statement Syntax

849

er configuration.

Note that the syntax for SET CHARACTER SET differs from that for setting most other options.

• FOREIGN_KEY_CHECKS = {0 | 1}

If set to 1 (the default), foreign key constraints for InnoDB tables are checked. If set to 0, they are
ignored. Disabling foreign key checking can be useful for reloading InnoDB tables in an order dif-
ferent from that required by their parent/child relationships. See Section 14.2.6.4, “FOREIGN KEY
Constraints”.

• IDENTITY = value

This variable is a synonym for the LAST_INSERT_ID variable. It exists for compatibility with oth-
er database systems. You can read its value with SELECT @@IDENTITY, and set it using SET
IDENTITY.

• INSERT_ID = value

Set the value to be used by the following INSERT or ALTER TABLE statement when inserting an
AUTO_INCREMENT value. This is mainly used with the binary log.

• LAST_INSERT_ID = value

Set the value to be returned from LAST_INSERT_ID(). This is stored in the binary log when you
use LAST_INSERT_ID() in a statement that updates a table. Setting this variable does not update
the value returned by the mysql_insert_id() C API function.

• NAMES {'charset_name' [COLLATE 'collation_name'} | DEFAULT}

SET NAMES sets the three session system variables character_set_client, charac-
ter_set_connection, and character_set_results to the given character set. Setting
character_set_connection to charset_name also sets collation_connection to
the default collation for charset_name. The optional COLLATE clause may be used to specify a
collation explicitly. See Section 10.4, “Connection Character Sets and Collations”.

The default mapping can be restored by using a value of DEFAULT. The default depends on the
server configuration.

Note that the syntax for SET NAMES differs from that for setting most other options.

• ONE_SHOT

This option is a modifier, not a variable. It can be used to influence the effect of variables that set the
character set, the collation, and the time zone. ONE_SHOT is primarily used for replication purposes:
mysqlbinlog uses SET ONE_SHOT to modify temporarily the values of character set, collation,
and time zone variables to reflect at rollforward what they were originally. ONE_SHOT is available
as of MySQL 5.0.

You cannot use ONE_SHOT with other than the allowed set of variables; if you try, you get an error
like this:

mysql> SET ONE_SHOT max_allowed_packet = 1;
ERROR 1382 (HY000): The 'SET ONE_SHOT' syntax is reserved for purposes
internal to the MySQL server

If ONE_SHOT is used with the allowed variables, it changes the variables as requested, but only for
the next non-SET statement. After that, the server resets all character set, collation, and time zone-
related system variables to their previous values. Example:

SQL Statement Syntax

850

mysql> SET ONE_SHOT character_set_connection = latin5;

mysql> SET ONE_SHOT collation_connection = latin5_turkish_ci;

mysql> SHOW VARIABLES LIKE '%_connection';
+--------------------------+-------------------+
| Variable_name | Value |
+--------------------------+-------------------+
| character_set_connection | latin5 |
| collation_connection | latin5_turkish_ci |
+--------------------------+-------------------+

mysql> SHOW VARIABLES LIKE '%_connection';
+--------------------------+-------------------+
| Variable_name | Value |
+--------------------------+-------------------+
| character_set_connection | latin1 |
| collation_connection | latin1_swedish_ci |
+--------------------------+-------------------+

• SQL_AUTO_IS_NULL = {0 | 1}

If set to 1 (the default), you can find the last inserted row for a table that contains an
AUTO_INCREMENT column by using the following construct:

WHERE auto_increment_column IS NULL

This behavior is used by some ODBC programs, such as Access.

• SQL_BIG_SELECTS = {0 | 1}

If set to 0, MySQL aborts SELECT statements that are likely to take a very long time to execute (that
is, statements for which the optimizer estimates that the number of examined rows exceeds the value
of max_join_size). This is useful when an inadvisable WHERE statement has been issued. The
default value for a new connection is 1, which allows all SELECT statements.

If you set the max_join_size system variable to a value other than DEFAULT,
SQL_BIG_SELECTS is set to 0.

• SQL_BUFFER_RESULT = {0 | 1}

If set to 1, SQL_BUFFER_RESULT forces results from SELECT statements to be put into temporary
tables. This helps MySQL free the table locks early and can be beneficial in cases where it takes a
long time to send results to the client. The default value is 0.

• SQL_LOG_BIN = {0 | 1}

If set to 0, no logging is done to the binary log for the client. The client must have the SUPER priv-
ilege to set this option. The default value is 1.

• SQL_LOG_OFF = {0 | 1}

If set to 1, no logging is done to the general query log for this client. The client must have the SU-
PER privilege to set this option. The default value is 0.

• SQL_LOG_UPDATE = {0 | 1}

This variable is deprecated, and is mapped to SQL_LOG_BIN.

• SQL_NOTES = {0 | 1}

If set to 1 (the default), warnings of Note level are recorded. If set to 0, Note warnings are sup-

SQL Statement Syntax

851

pressed. mysqldump includes output to set this variable to 0 so that reloading the dump file does
not produce warnings for events that do not affect the integrity of the reload operation. SQL_NOTES
was added in MySQL 5.0.3.

• SQL_QUOTE_SHOW_CREATE = {0 | 1}

If set to 1 (the default), the server quotes identifiers for SHOW CREATE TABLE and SHOW CRE-
ATE DATABASE statements. If set to 0, quoting is disabled. This option is enabled by default so
that replication works for identifiers that require quoting. See Section 13.5.4.6, “SHOW CREATE
TABLE Syntax”, and Section 13.5.4.4, “SHOW CREATE DATABASE Syntax”.

• SQL_SAFE_UPDATES = {0 | 1}

If set to 1, MySQL aborts UPDATE or DELETE statements that do not use a key in the WHERE
clause or a LIMIT clause. This makes it possible to catch UPDATE or DELETE statements where
keys are not used properly and that would probably change or delete a large number of rows. The de-
fault value is 0.

• SQL_SELECT_LIMIT = {value | DEFAULT}

The maximum number of rows to return from SELECT statements. The default value for a new con-
nection is “unlimited.” If you have changed the limit, the default value can be restored by using a
SQL_SELECT_LIMIT value of DEFAULT.

If a SELECT has a LIMIT clause, the LIMIT takes precedence over the value of
SQL_SELECT_LIMIT.

SQL_SELECT_LIMIT does not apply to SELECT statements executed within stored routines. It
also does not apply to SELECT statements that do not produce a result set to be returned to the cli-
ent. These include SELECT statements in subqueries, CREATE TABLE ... SELECT, and IN-
SERT INTO ... SELECT.

• SQL_WARNINGS = {0 | 1}

This variable controls whether single-row INSERT statements produce an information string if
warnings occur. The default is 0. Set the value to 1 to produce an information string.

• TIMESTAMP = {timestamp_value | DEFAULT}

Set the time for this client. This is used to get the original timestamp if you use the binary log to re-
store rows. timestamp_value should be a Unix epoch timestamp, not a MySQL timestamp.

SET TIMESTAMP affects the value returned by NOW() but not by SYSDATE(). This means that
timestamp settings in the binary log have no effect on invocations of SYSDATE(). The server can
be started with the --sysdate-is-now option to cause SYSDATE() to be an alias for NOW(),
in which case SET TIMESTAMP affects both functions.

• UNIQUE_CHECKS = {0 | 1}

If set to 1 (the default), uniqueness checks for secondary indexes in InnoDB tables are performed. If
set to 0, storage engines are allowed to assume that duplicate keys are not present in input data. If
you know for certain that your data does not contain uniqueness violations, you can set this to 0 to
speed up large table imports to InnoDB.

Note that setting this variable to 0 does not require storage engines to ignore duplicate keys. An en-
gine is still allowed to check for them and issue duplicate-key errors if it detects them.

SQL Statement Syntax

852

13.5.4. SHOW Syntax
SHOW has many forms that provide information about databases, tables, columns, or status information
about the server. This section describes those following:

SHOW [FULL] COLUMNS FROM tbl_name [FROM db_name] [LIKE 'pattern']
SHOW CREATE DATABASE db_name
SHOW CREATE FUNCTION funcname
SHOW CREATE PROCEDURE procname
SHOW CREATE TABLE tbl_name
SHOW DATABASES [LIKE 'pattern']
SHOW ENGINE engine_name {LOGS | STATUS }
SHOW [STORAGE] ENGINES
SHOW ERRORS [LIMIT [offset,] row_count]
SHOW FUNCTION STATUS [LIKE 'pattern']
SHOW GRANTS FOR user
SHOW INDEX FROM tbl_name [FROM db_name]
SHOW INNODB STATUS
SHOW PROCEDURE STATUS [LIKE 'pattern']
SHOW [BDB] LOGS
SHOW MUTEX STATUS
SHOW PRIVILEGES
SHOW [FULL] PROCESSLIST
SHOW [GLOBAL | SESSION] STATUS [LIKE 'pattern']
SHOW TABLE STATUS [FROM db_name] [LIKE 'pattern']
SHOW [OPEN] TABLES [FROM db_name] [LIKE 'pattern']
SHOW TRIGGERS
SHOW [GLOBAL | SESSION] VARIABLES [LIKE 'pattern']
SHOW WARNINGS [LIMIT [offset,] row_count]

The SHOW statement also has forms that provide information about replication master and slave servers
and are described in Section 13.6, “Replication Statements”:

SHOW BINARY LOGS
SHOW BINLOG EVENTS
SHOW MASTER STATUS
SHOW SLAVE HOSTS
SHOW SLAVE STATUS

If the syntax for a given SHOW statement includes a LIKE 'pattern' part, 'pattern' is a string
that can contain the SQL ‘%’ and ‘_’ wildcard characters. The pattern is useful for restricting statement
output to matching values.

Several SHOW statements also accept a WHERE clause that provides more flexibility in specifying which
rows to display. See Section 20.18, “Extensions to SHOW Statements”.

13.5.4.1. SHOW CHARACTER SET Syntax
SHOW CHARACTER SET [LIKE 'pattern']

The SHOW CHARACTER SET statement shows all available character sets. It takes an optional LIKE
clause that indicates which character set names to match. For example:

mysql> SHOW CHARACTER SET LIKE 'latin%';
+---------+-----------------------------+-------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+-----------------------------+-------------------+--------+
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
latin5	ISO 8859-9 Turkish	latin5_turkish_ci	1
latin7	ISO 8859-13 Baltic	latin7_general_ci	1
+---------+-----------------------------+-------------------+--------+

The Maxlen column shows the maximum number of bytes required to store one character.

13.5.4.2. SHOW COLLATION Syntax

SQL Statement Syntax

853

SHOW COLLATION [LIKE 'pattern']

The output from SHOW COLLATION includes all available character sets. It takes an optional LIKE
clause whose pattern indicates which collation names to match. For example:

mysql> SHOW COLLATION LIKE 'latin1%';
+-------------------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-------------------+---------+----+---------+----------+---------+
latin1_german1_ci	latin1	5			0
latin1_swedish_ci	latin1	8	Yes	Yes	0
latin1_danish_ci	latin1	15			0
latin1_german2_ci	latin1	31		Yes	2
latin1_bin	latin1	47		Yes	0
latin1_general_ci	latin1	48			0
latin1_general_cs	latin1	49			0
latin1_spanish_ci	latin1	94			0
+-------------------+---------+----+---------+----------+---------+

The Default column indicates whether a collation is the default for its character set. Compiled in-
dicates whether the character set is compiled into the server. Sortlen is related to the amount of
memory required to sort strings expressed in the character set.

13.5.4.3. SHOW COLUMNS Syntax
SHOW [FULL] COLUMNS FROM tbl_name [FROM db_name] [LIKE 'pattern']

SHOW COLUMNS displays information about the columns in a given table. It also works for views as of
MySQL 5.0.1.

If the data types differ from what you expect them to be based on your CREATE TABLE statement, note
that MySQL sometimes changes data types when you create or alter a table. The conditions for which
this occurs are described in Section 13.1.5.1, “Silent Column Specification Changes”.

The FULL keyword causes the output to include the privileges you have as well as any per-column com-
ments for each column.

You can use db_name.tbl_name as an alternative to the tbl_name FROM db_name syntax. In
other words, these two statements are equivalent:

mysql> SHOW COLUMNS FROM mytable FROM mydb;
mysql> SHOW COLUMNS FROM mydb.mytable;

SHOW FIELDS is a synonym for SHOW COLUMNS. You can also list a table's columns with the
mysqlshow db_name tbl_name command.

The DESCRIBE statement provides information similar to SHOW COLUMNS. See Section 13.3.1, “DE-
SCRIBE Syntax”.

13.5.4.4. SHOW CREATE DATABASE Syntax
SHOW CREATE {DATABASE | SCHEMA} db_name

Shows the CREATE DATABASE statement that creates the given database. SHOW CREATE SCHEMA
is a synonym for SHOW CREATE DATABASE as of MySQL 5.0.2.

mysql> SHOW CREATE DATABASE test\G
*************************** 1. row ***************************

Database: test
Create Database: CREATE DATABASE `test`

/*!40100 DEFAULT CHARACTER SET latin1 */

SQL Statement Syntax

854

mysql> SHOW CREATE SCHEMA test\G
*************************** 1. row ***************************

Database: test
Create Database: CREATE DATABASE `test`

/*!40100 DEFAULT CHARACTER SET latin1 */

SHOW CREATE DATABASE quotes table and column names according to the value of the
SQL_QUOTE_SHOW_CREATE option. See Section 13.5.3, “SET Syntax”.

13.5.4.5. SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION
Syntax

SHOW CREATE {PROCEDURE | FUNCTION} sp_name

This statement is a MySQL extension. Similar to SHOW CREATE TABLE, it returns the exact string
that can be used to re-create the named routine.

mysql> SHOW CREATE FUNCTION test.hello\G
*************************** 1. row ***************************

Function: hello
sql_mode:

Create Function: CREATE FUNCTION `test`.`hello`(s CHAR(20)) RETURNS CHAR(50)
RETURN CONCAT('Hello, ',s,'!')

13.5.4.6. SHOW CREATE TABLE Syntax
SHOW CREATE TABLE tbl_name

Shows the CREATE TABLE statement that creates the given table. As of MySQL 5.0.1, this statement
also works with views.

mysql> SHOW CREATE TABLE t\G
*************************** 1. row ***************************

Table: t
Create Table: CREATE TABLE t (

id INT(11) default NULL auto_increment,
s char(60) default NULL,
PRIMARY KEY (id)

) ENGINE=MyISAM

SHOW CREATE TABLE quotes table and column names according to the value of the
SQL_QUOTE_SHOW_CREATE option. See Section 13.5.3, “SET Syntax”.

13.5.4.7. SHOW CREATE VIEW Syntax
SHOW CREATE VIEW view_name

This statement shows a CREATE VIEW statement that creates the given view.

mysql> SHOW CREATE VIEW v;
+------+--+
| View | Create View |
+------+--+
| v | CREATE VIEW `test`.`v` AS select 1 AS `a`,2 AS `b` |
+------+--+

This statement was added in MySQL 5.0.1.

Prior to MySQL 5.0.11, the output columns from this statement were shown as Table and Create

SQL Statement Syntax

855

Table.

Use of SHOW CREATE VIEW requires the SHOW VIEW privilege and the SELECT privilege for the
view in question.

You can also obtain information about view objects from INFORMATION_SCHEMA, which contains a
VIEWS table. See Section 20.15, “The INFORMATION_SCHEMA VIEWS Table”.

13.5.4.8. SHOW DATABASES Syntax
SHOW {DATABASES | SCHEMAS} [LIKE 'pattern']

SHOW DATABASES lists the databases on the MySQL server host. SHOW SCHEMAS is a synonym for
SHOW DATABASES as of MySQL 5.0.2.

You see only those databases for which you have some kind of privilege, unless you have the global
SHOW DATABASES privilege. You can also get this list using the mysqlshow command.

If the server was started with the --skip-show-database option, you cannot use this statement at
all unless you have the SHOW DATABASES privilege.

13.5.4.9. SHOW ENGINE Syntax
SHOW ENGINE engine_name {LOGS | STATUS }

SHOW ENGINE displays log or status information about a storage engine. The following statements cur-
rently are supported:

SHOW ENGINE BDB LOGS
SHOW ENGINE INNODB STATUS

SHOW ENGINE BDB LOGS displays status information about existing BDB log files. It returns the fol-
lowing fields:

• File

The full path to the log file.

• Type

The log file type (BDB for Berkeley DB log files).

• Status

The status of the log file (FREE if the file can be removed, or IN USE if the file is needed by the
transaction subsystem)

SHOW ENGINE INNODB STATUS displays extensive information about the state of the InnoDB
storage engine.

The InnoDB Monitors provide additional information about InnoDB processing. See Sec-
tion 14.2.11.1, “SHOW ENGINE INNODB STATUS and the InnoDB Monitors”.

Older (and now deprecated) synonyms for these statements are SHOW [BDB] LOGS and SHOW IN-
NODB STATUS.

SQL Statement Syntax

856

13.5.4.10. SHOW ENGINES Syntax
SHOW [STORAGE] ENGINES

SHOW ENGINES displays status information about the server's storage engines. This is particularly use-
ful for checking whether a storage engine is supported, or to see what the default engine is. SHOW TA-
BLE TYPES is a deprecated synonym.

mysql> SHOW ENGINES\G
*************************** 1. row ***************************
Engine: MyISAM

Support: DEFAULT
Comment: Default engine as of MySQL 3.23 with great performance
*************************** 2. row ***************************
Engine: MEMORY

Support: YES
Comment: Hash based, stored in memory, useful for temporary tables
*************************** 3. row ***************************
Engine: HEAP

Support: YES
Comment: Alias for MEMORY
*************************** 4. row ***************************
Engine: MERGE

Support: YES
Comment: Collection of identical MyISAM tables
*************************** 5. row ***************************
Engine: MRG_MYISAM

Support: YES
Comment: Alias for MERGE
*************************** 6. row ***************************
Engine: ISAM

Support: NO
Comment: Obsolete storage engine, now replaced by MyISAM
*************************** 7. row ***************************
Engine: MRG_ISAM

Support: NO
Comment: Obsolete storage engine, now replaced by MERGE
*************************** 8. row ***************************
Engine: InnoDB

Support: YES
Comment: Supports transactions, row-level locking, and foreign keys
*************************** 9. row ***************************
Engine: INNOBASE

Support: YES
Comment: Alias for INNODB
*************************** 10. row ***************************
Engine: BDB

Support: YES
Comment: Supports transactions and page-level locking
*************************** 11. row ***************************
Engine: BERKELEYDB

Support: YES
Comment: Alias for BDB
*************************** 12. row ***************************
Engine: NDBCLUSTER

Support: NO
Comment: Clustered, fault-tolerant, memory-based tables
*************************** 13. row ***************************
Engine: NDB

Support: NO
Comment: Alias for NDBCLUSTER
*************************** 14. row ***************************
Engine: EXAMPLE

Support: NO
Comment: Example storage engine
*************************** 15. row ***************************
Engine: ARCHIVE

Support: YES
Comment: Archive storage engine
*************************** 16. row ***************************
Engine: CSV

Support: NO
Comment: CSV storage engine
*************************** 17. row ***************************
Engine: FEDERATED

Support: YES

SQL Statement Syntax

857

Comment: Federated MySQL storage engine
*************************** 18. row ***************************
Engine: BLACKHOLE

Support: YES
Comment: /dev/null storage engine (anything you write to it disappears)

The output from SHOW ENGINES may vary according to the MySQL version used and other factors.
The values shown in the Support column indicate the server's level of support for different features, as
shown here:

Value Meaning

YES The feature is supported and is active.

NO The feature is not supported.

DISABLED The feature is supported but has been disabled.

A value of NO means that the server was compiled without support for the feature, so it cannot be activ-
ated at runtime.

A value of DISABLED occurs either because the server was started with an option that disables the fea-
ture, or because not all options required to enable it were given. In the latter case, the error log file
should contain a reason indicating why the option is disabled. See Section 5.12.1, “The Error Log”.

You might also see DISABLED for a storage engine if the server was compiled to support it, but was
started with a --skip-engine option. For example, --skip-innodb disables the InnoDB en-
gine. For the NDB Cluster storage engine, DISABLED means the server was compiled with support
for MySQL Cluster, but was not started with the --ndb-cluster option.

All MySQL servers support MyISAM tables, because MyISAM is the default storage engine.

13.5.4.11. SHOW ERRORS Syntax
SHOW ERRORS [LIMIT [offset,] row_count]
SHOW COUNT(*) ERRORS

This statement is similar to SHOW WARNINGS, except that instead of displaying errors, warnings, and
notes, it displays only errors.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.7, “SELECT
Syntax”.

The SHOW COUNT(*) ERRORS statement displays the number of errors. You can also retrieve this
number from the error_count variable:

SHOW COUNT(*) ERRORS;
SELECT @@error_count;

For more information, see Section 13.5.4.26, “SHOW WARNINGS Syntax”.

13.5.4.12. SHOW GRANTS Syntax
SHOW GRANTS FOR user

This statement lists the GRANT statement or statements that must be issued to duplicate the privileges
that are granted to a MySQL user account. The account is named using the same format as for the
GRANT statement; for example, 'jeffrey'@'localhost'. The user and host parts of the account
name correspond to the User and Host column values of the user table row for the account.

SQL Statement Syntax

858

mysql> SHOW GRANTS FOR 'root'@'localhost';
+---+
| Grants for root@localhost |
+---+
| GRANT ALL PRIVILEGES ON *.* TO 'root'@'localhost' WITH GRANT OPTION |
+---+

To list the privileges granted to the account that you are using to connect to the server, you can use any
of the following statements:

SHOW GRANTS;
SHOW GRANTS FOR CURRENT_USER;
SHOW GRANTS FOR CURRENT_USER();

As of MySQL 5.0.24, if SHOW GRANTS FOR CURRENT_USER (or any of the equivalent syntaxes) is
used in DEFINER context, such as within a stored procedure that is defined with SQL SECURITY
DEFINER), the grants displayed are those of the definer and not the invoker.

SHOW GRANTS displays only the privileges granted explicitly to the named account. Other privileges
might be available to the account, but they are not displayed. For example, if an anonymous account ex-
ists, the named account might be able to use its privileges, but SHOW GRANTS will not display them.

13.5.4.13. SHOW INDEX Syntax
SHOW INDEX FROM tbl_name [FROM db_name]

SHOW INDEX returns table index information. The format resembles that of the SQLStatistics call
in ODBC.

SHOW INDEX returns the following fields:

• Table

The name of the table.

• Non_unique

0 if the index cannot contain duplicates, 1 if it can.

• Key_name

The name of the index.

• Seq_in_index

The column sequence number in the index, starting with 1.

• Column_name

The column name.

• Collation

How the column is sorted in the index. In MySQL, this can have values ‘A’ (Ascending) or NULL
(Not sorted).

• Cardinality

An estimate of the number of unique values in the index. This is updated by running ANALYZE

SQL Statement Syntax

859

TABLE or myisamchk -a. Cardinality is counted based on statistics stored as integers, so the
value is not necessarily exact even for small tables. The higher the cardinality, the greater the chance
that MySQL uses the index when doing joins.

• Sub_part

The number of indexed characters if the column is only partly indexed, NULL if the entire column is
indexed.

• Packed

Indicates how the key is packed. NULL if it is not.

• Null

Contains YES if the column may contain NULL. If not, the column contains NO as of MySQL 5.0.3,
and '' before that.

• Index_type

The index method used (BTREE, FULLTEXT, HASH, RTREE).

• Comment

Various remarks.

You can use db_name.tbl_name as an alternative to the tbl_name FROM db_name syntax.
These two statements are equivalent:

SHOW INDEX FROM mytable FROM mydb;
SHOW INDEX FROM mydb.mytable;

SHOW KEYS is a synonym for SHOW INDEX. You can also list a table's indexes with the mysqlshow
-k db_name tbl_name command.

13.5.4.14. SHOW INNODB STATUS Syntax
SHOW INNODB STATUS

In MySQL 5.0, this is a deprecated synonym for SHOW ENGINE INNODB STATUS. See Sec-
tion 13.5.4.9, “SHOW ENGINE Syntax”.

13.5.4.15. SHOW LOGS Syntax
SHOW [BDB] LOGS

In MySQL 5.0, this is a deprecated synonym for SHOW ENGINE BDB LOGS. See Section 13.5.4.9,
“SHOW ENGINE Syntax”.

13.5.4.16. SHOW MUTEX STATUS Syntax
SHOW MUTEX STATUS

SHOW MUTEX STATUS displays InnoDB mutex statistics. The output fields are:

SQL Statement Syntax

860

• Mutex

The mutex name. The name indicates the mutex purpose. For example, the log_sys mutex is used
by the InnoDB logging subsystem and indicates how intensive logging activity is. The buf_pool
mutex protects the InnoDB buffer pool.

• Module

The source file where the mutex is implemented.

• Count indicates how many times the mutex was requested.

• Spin_waits indicates how many times the spinlock had to run.

• Spin_rounds indicates the number of spinlock rounds. (spin_rounds divided by
spin_waits provides the average round count.)

• OS_waits indicates the number of operating system waits. This occurs when the spinlock did not
work (the mutex was not locked during the spinlock and it was necessary to yield to the operating
system and wait).

• OS_yields indicates the number of times that a thread trying to lock a mutex gave up its timeslice
and yielded to the operating system (on the presumption that allowing other threads to run will free
the mutex so that it can be locked).

• OS_waits_time os_wait_times indicates the amount of time (in ms) spent in operating sys-
tem waits, if the timed_mutexes system variable is 1 (ON). If timed_mutexes is 0 (OFF),
timing is disabled, so OS_waits_time is 0. timed_mutexes is off by default.

Information from this statement can be used to diagnose system problems. For example, large values of
spin_waits and spin_rounds may indicate scalability problems.

SHOW MUTEX STATUS was added in MySQL 5.0.3. In MySQL 5.1, SHOW MUTEX STATUS is re-
named to SHOW ENGINE INNODB MUTEX. The latter statement displays similar information but in a
somewhat different output format.

13.5.4.17. SHOW OPEN TABLES Syntax
SHOW OPEN TABLES [FROM db_name] [LIKE 'pattern']

SHOW OPEN TABLES lists the non-TEMPORARY tables that are currently open in the table cache. See
Section 7.4.8, “How MySQL Opens and Closes Tables”.

SHOW OPEN TABLES returns the following fields:

• Database

The database containing the table.

• Table

The table name.

• In_use

The number of times the table currently is in use by queries. If the count is zero, the table is open,
but not currently being used.

SQL Statement Syntax

861

• Name_locked

Whether the table name is locked. Name locking is used for operations such as dropping or renaming
tables.

The FROM and LIKE clauses may be used as of MySQL 5.0.12.

13.5.4.18. SHOW PRIVILEGES Syntax
SHOW PRIVILEGES

SHOW PRIVILEGES shows the list of system privileges that the MySQL server supports. The exact list
of privileges depends on the version of your server.

mysql> SHOW PRIVILEGES\G
*************************** 1. row ***************************
Privilege: Alter
Context: Tables
Comment: To alter the table
*************************** 2. row ***************************
Privilege: Alter routine
Context: Functions,Procedures
Comment: To alter or drop stored functions/procedures
*************************** 3. row ***************************
Privilege: Create
Context: Databases,Tables,Indexes
Comment: To create new databases and tables
*************************** 4. row ***************************
Privilege: Create routine
Context: Functions,Procedures
Comment: To use CREATE FUNCTION/PROCEDURE
*************************** 5. row ***************************
Privilege: Create temporary tables
Context: Databases
Comment: To use CREATE TEMPORARY TABLE
...

13.5.4.19. SHOW PROCEDURE STATUS and SHOW FUNCTION STATUS
Syntax

SHOW {PROCEDURE | FUNCTION} STATUS [LIKE 'pattern']

This statement is a MySQL extension. It returns characteristics of routines, such as the database, name,
type, creator, and creation and modification dates. If no pattern is specified, the information for all
stored procedures or all stored functions is listed, depending on which statement you use.

mysql> SHOW FUNCTION STATUS LIKE 'hello'\G
*************************** 1. row ***************************

Db: test
Name: hello
Type: FUNCTION

Definer: testuser@localhost
Modified: 2004-08-03 15:29:37
Created: 2004-08-03 15:29:37

Security_type: DEFINER
Comment:

You can also get information about stored routines from the ROUTINES table in INFORMA-
TION_SCHEMA. See Section 20.14, “The INFORMATION_SCHEMA ROUTINES Table”.

13.5.4.20. SHOW PROCESSLIST Syntax
SHOW [FULL] PROCESSLIST

SQL Statement Syntax

862

SHOW PROCESSLIST shows you which threads are running. You can also get this information using
the mysqladmin processlist command. If you have the PROCESS privilege, you can see all
threads. Otherwise, you can see only your own threads (that is, threads associated with the MySQL ac-
count that you are using). See Section 13.5.5.3, “KILL Syntax”. If you do not use the FULL keyword,
only the first 100 characters of each statement are shown in the Info field.

This statement is very useful if you get the “too many connections” error message and want to find out
what is going on. MySQL reserves one extra connection to be used by accounts that have the SUPER
privilege, to ensure that administrators should always be able to connect and check the system (assuming
that you are not giving this privilege to all your users).

The output of SHOW PROCESSLIST may look like this:

mysql> SHOW FULL PROCESSLIST\G
*************************** 1. row ***************************
Id: 1
User: system user
Host:
db: NULL
Command: Connect
Time: 1030455
State: Waiting for master to send event
Info: NULL
*************************** 2. row ***************************
Id: 2
User: system user
Host:
db: NULL
Command: Connect
Time: 1004
State: Has read all relay log; waiting for the slave I/O thread to update it
Info: NULL
*************************** 3. row ***************************
Id: 3112
User: replikator
Host: artemis:2204
db: NULL
Command: Binlog Dump
Time: 2144
State: Has sent all binlog to slave; waiting for binlog to be updated
Info: NULL
*************************** 4. row ***************************
Id: 3113
User: replikator
Host: iconnect2:45781
db: NULL
Command: Binlog Dump
Time: 2086
State: Has sent all binlog to slave; waiting for binlog to be updated
Info: NULL
*************************** 5. row ***************************
Id: 3123
User: stefan
Host: localhost
db: apollon
Command: Query
Time: 0
State: NULL
Info: SHOW FULL PROCESSLIST
5 rows in set (0.00 sec)

The columns have the following meaning:

• Id

The connection identifier.

• User

SQL Statement Syntax

863

The MySQL user who issued the statement. If this is system user, it refers to a non-client thread
spawned by the server to handle tasks internally. This could be the I/O or SQL thread used on replic-
ation slaves or a delayed-row handler. For system user, there is no host specified in the Host
column.

• Host

The hostname of the client issuing the statement (except for system user where there is no host).
SHOW PROCESSLIST reports the hostname for TCP/IP connections in host_name:cli-
ent_port format to make it easier to determine which client is doing what.

• db

The default database, if one is selected, otherwise NULL.

• Command

The value of that column corresponds to the COM_xxx commands of the client/server protocol. See
Section 5.2.5, “Status Variables”

The Command value may be one of the following: Binlog Dump, Change user, Close
stmt, Connect, Connect Out, Create DB, Daemon, Debug, Delayed insert, Drop
DB, Error, Execute, Fetch, Field List, Init DB, Kill, Long Data, Ping,
Prepare, Processlist, Query, Quit, Refresh, Register Slave, Reset stmt, Set
option, Shutdown, Sleep, Statistics, Table Dump, Time

• Time

The time in seconds between the start of the statement or command and now.

• State

An action, event, or state, which can be one of the following: After create, Analyzing,
Changing master, Checking master version, Checking table, Connecting to
master, Copying to group table, Copying to tmp table, Creating delayed
handler, Creating index, Creating sort index, Creating table from mas-
ter dump, Creating tmp table, Execution of init_command, FULLTEXT ini-
tialization, Finished reading one binlog; switching to next binlog,
Flushing tables, Killed, Killing slave, Locked, Making temp file , Open-
ing master dump table, Opening table, Opening tables, Processing re-
quest, Purging old relay logs, Queueing master event to the relay log,
Reading event from the relay log, Reading from net, Reading master
dump table data, Rebuilding the index on master dump table, Recon-
necting after a failed binlog dump request, Reconnecting after a
failed master event read, Registering slave on master, Removing du-
plicates, Reopen tables, Repair by sorting, Repair done, Repair with
keycache, Requesting binlog dump, Rolling back, Saving state, Searching
rows for update, Sending binlog event to slave, Sending data, Sorting
for group, Sorting for order, Sorting index, Sorting result, System
lock, Table lock, Thread initialized, Updating, User lock, Waiting for
INSERT, Waiting for master to send event, Waiting for master update,
Waiting for slave mutex on exit, Waiting for table, Waiting for
tables, Waiting for the next event in relay log, Waiting on cond, Wait-
ing to finalize termination, Waiting to reconnect after a failed
binlog dump request, Waiting to reconnect after a failed master
event read, Writing to net, allocating local table, cleaning up, closing
tables, converting HEAP to MyISAM, copy to tmp table, creating table,
deleting from main table, deleting from reference tables, dis-

SQL Statement Syntax

864

card_or_import_tablespace, end, freeing items, got handler lock, got old
table, info, init, insert, logging slow query, login, preparing, purging
old relay logs, query end, removing tmp table, rename, rename result ta-
ble, reschedule, setup, starting slave, statistics, storing row into
queue, unauthenticated user, update, updating, updating main table, up-
dating reference tables, upgrading lock, waiting for delay_list, wait-
ing for handler insert, waiting for handler lock, waiting for handler
open, Waiting for event from ndbcluster

The most common State values are described in the rest of this section. Most of the other State
values are useful only for finding bugs in the server. See also Section 6.3, “Replication Implementa-
tion Details”, for additional information about process states for replication servers.

For the SHOW PROCESSLIST statement, the value of State is NULL.

• Info

The statement that the thread is executing, or NULL if it is not executing any statement.

Some State values commonly seen in the output from SHOW PROCESSLIST:

• Checking table

The thread is performing a table check operation.

• Closing tables

Means that the thread is flushing the changed table data to disk and closing the used tables. This
should be a fast operation. If not, you should verify that you do not have a full disk and that the disk
is not in very heavy use.

• Connect Out

A replication slave is connecting to its master.

• Copying to group table

If a statement has different ORDER BY and GROUP BY criteria, the rows are sorted by group and
copied to a temporary table.

• Copying to tmp table

The server is copying to a temporary table in memory.

• Copying to tmp table on disk

The server is copying to a temporary table on disk. The temporary result set was larger than
tmp_table_size and the thread is changing the temporary table from in-memory to disk-based
format to save memory.

• Creating tmp table

The thread is creating a temporary table to hold a part of the result for the query.

• deleting from main table

The server is executing the first part of a multiple-table delete. It is deleting only from the first table,
and saving fields and offsets to be used for deleting from the other (reference) tables.

SQL Statement Syntax

865

• deleting from reference tables

The server is executing the second part of a multiple-table delete and deleting the matched rows
from the other tables.

• Flushing tables

The thread is executing FLUSH TABLES and is waiting for all threads to close their tables.

• FULLTEXT initialization

The server is preparing to perform a natural-language full-text search.

• Killed

Someone has sent a KILL statement to the thread and it should abort next time it checks the kill flag.
The flag is checked in each major loop in MySQL, but in some cases it might still take a short time
for the thread to die. If the thread is locked by some other thread, the kill takes effect as soon as the
other thread releases its lock.

• Locked

The query is locked by another query.

• Sending data

The thread is processing rows for a SELECT statement and also is sending data to the client.

• Sorting for group

The thread is doing a sort to satisfy a GROUP BY.

• Sorting for order

The thread is doing a sort to satisfy a ORDER BY.

• Opening tables

The thread is trying to open a table. This is should be very fast procedure, unless something prevents
opening. For example, an ALTER TABLE or a LOCK TABLE statement can prevent opening a table
until the statement is finished.

• Reading from net

The server is reading a packet from the network.

• Removing duplicates

The query was using SELECT DISTINCT in such a way that MySQL could not optimize away the
distinct operation at an early stage. Because of this, MySQL requires an extra stage to remove all du-
plicated rows before sending the result to the client.

• Reopen table

The thread got a lock for the table, but noticed after getting the lock that the underlying table struc-
ture changed. It has freed the lock, closed the table, and is trying to reopen it.

• Repair by sorting

The repair code is using a sort to create indexes.

SQL Statement Syntax

866

• Repair with keycache

The repair code is using creating keys one by one through the key cache. This is much slower than
Repair by sorting.

• Searching rows for update

The thread is doing a first phase to find all matching rows before updating them. This has to be done
if the UPDATE is changing the index that is used to find the involved rows.

• Sleeping

The thread is waiting for the client to send a new statement to it.

• statistics

The server is calculating statistics to develop a query execution plan.

• System lock

The thread is waiting to get an external system lock for the table. If you are not using multiple
mysqld servers that are accessing the same tables, you can disable system locks with the -
-skip-external-locking option.

• unauthenticated user

The state of a thread that has become associated with a client connection but for which authentica-
tion of the client user has not yet been done.

• Upgrading lock

The INSERT DELAYED handler is trying to get a lock for the table to insert rows.

• Updating

The thread is searching for rows to update and is updating them.

• updating main table

The server is executing the first part of a multiple-table update. It is updating only the first table, and
saving fields and offsets to be used for updating the other (reference) tables.

• updating reference tables

The server is executing the second part of a multiple-table update and updating the matched rows
from the other tables.

• User Lock

The thread is waiting on a GET_LOCK().

• Waiting for event from ndbcluster

The server is acting as an SQL node in a MySQL Cluster, and is connected to a cluster management
node.

• Waiting for tables

The thread got a notification that the underlying structure for a table has changed and it needs to re-
open the table to get the new structure. However, to reopen the table, it must wait until all other

SQL Statement Syntax

867

threads have closed the table in question.

This notification takes place if another thread has used FLUSH TABLES or one of the following
statements on the table in question: FLUSH TABLES tbl_name, ALTER TABLE, RENAME
TABLE, REPAIR TABLE, ANALYZE TABLE, or OPTIMIZE TABLE.

• waiting for handler insert

The INSERT DELAYED handler has processed all pending inserts and is waiting for new ones.

• Writing to net

The server is writing a packet to the network.

Most states correspond to very quick operations. If a thread stays in any of these states for many
seconds, there might be a problem that needs to be investigated.

13.5.4.21. SHOW STATUS Syntax
SHOW [GLOBAL | SESSION] STATUS [LIKE 'pattern']

SHOW STATUS provides server status information. This information also can be obtained using the
mysqladmin extended-status command.

Partial output is shown here. The list of names and values may be different for your server. The meaning
of each variable is given in Section 5.2.5, “Status Variables”.

mysql> SHOW STATUS;
+--------------------------+------------+
| Variable_name | Value |
+--------------------------+------------+
Aborted_clients	0
Aborted_connects	0
Bytes_received	155372598
Bytes_sent	1176560426
Connections	30023
Created_tmp_disk_tables	0
Created_tmp_tables	8340
Created_tmp_files	60
...	
Open_tables	1
Open_files	2
Open_streams	0
Opened_tables	44600
Questions	2026873
...	
Table_locks_immediate	1920382
Table_locks_waited	0
Threads_cached	0
Threads_created	30022
Threads_connected	1
Threads_running	1
Uptime	80380
+--------------------------+------------+

With a LIKE clause, the statement displays only rows for those variables with names that match the pat-
tern:

mysql> SHOW STATUS LIKE 'Key%';
+--------------------+----------+
| Variable_name | Value |
+--------------------+----------+
Key_blocks_used	14955
Key_read_requests	96854827
Key_reads	162040

SQL Statement Syntax

868

| Key_write_requests | 7589728 |
| Key_writes | 3813196 |
+--------------------+----------+

The GLOBAL and SESSION options are new in MySQL 5.0.2. With the GLOBAL modifier, SHOW
STATUS displays the status values for all connections to MySQL. With SESSION, it displays the status
values for the current connection. If no modifier is present, the default is SESSION. LOCAL is a syn-
onym for SESSION.

Some status variables have only a global value. For these, you get the same value for both GLOBAL and
SESSION.

Note: Before MySQL 5.0.2, SHOW STATUS returned global status values. Because the default as of
5.0.2 is to return session values, this is incompatible with previous versions. To issue a SHOW STATUS
statement that will retrieve global status values for all versions of MySQL, write it like this:

SHOW /*!50002 GLOBAL */ STATUS;

13.5.4.22. SHOW TABLE STATUS Syntax
SHOW TABLE STATUS [FROM db_name] [LIKE 'pattern']

SHOW TABLE STATUS works likes SHOW TABLE, but provides a lot of information about each table.
You can also get this list using the mysqlshow --status db_name command.

As of MySQL 5.0.1, this statement also displays information about views.

SHOW TABLE STATUS returns the following fields:

• Name

The name of the table.

• Engine

The storage engine for the table. See Chapter 14, Storage Engines and Table Types.

• Version

The version number of the table's .frm file.

• Row_format

The row storage format (Fixed, Dynamic, Compressed, Redundant, Compact). Starting
with MySQL/InnoDB 5.0.3, the format of InnoDB tables is reported as Redundant or Compact.
Prior to 5.0.3, InnoDB tables are always in the Redundant format.

• Rows

The number of rows. Some storage engines, such as MyISAM, store the exact count. For other stor-
age engines, such as InnoDB, this value is an approximation, and may vary from the actual value by
as much as 40 to 50%. In such cases, use SELECT COUNT(*) to obtain an accurate count.

The Rows value is NULL for tables in the INFORMATION_SCHEMA database.

• Avg_row_length

The average row length.

SQL Statement Syntax

869

• Data_length

The length of the data file.

• Max_data_length

The maximum length of the data file. This is the total number of bytes of data that can be stored in
the table, given the data pointer size used.

• Index_length

The length of the index file.

• Data_free

The number of allocated but unused bytes.

• Auto_increment

The next AUTO_INCREMENT value.

• Create_time

When the table was created.

• Update_time

When the data file was last updated. For some storage engines, this value is NULL. For example,
InnoDB stores multiple tables in its tablespace and the data file timestamp does not apply.

• Check_time

When the table was last checked. Not all storage engines update this time, in which case the value is
always NULL.

• Collation

The table's character set and collation.

• Checksum

The live checksum value (if any).

• Create_options

Extra options used with CREATE TABLE.

• Comment

The comment used when creating the table (or information as to why MySQL could not access the
table information).

In the table comment, InnoDB tables report the free space of the tablespace to which the table belongs.
For a table located in the shared tablespace, this is the free space of the shared tablespace. If you are us-
ing multiple tablespaces and the table has its own tablespace, the free space is for only that table.

For MEMORY tables, the Data_length, Max_data_length, and Index_length values approx-
imate the actual amount of allocated memory. The allocation algorithm reserves memory in large
amounts to reduce the number of allocation operations.

SQL Statement Syntax

870

Beginning with MySQL 5.0.3, for NDB Cluster tables, the output of this statement shows appropri-
ate values for the Avg_row_length and Data_length columns, with the exception that BLOB
columns are not taken into account. In addition, the number of replicas is now shown in the Comment
column (as number_of_replicas).

For views, all the fields displayed by SHOW TABLE STATUS are NULL except that Name indicates the
view name and Comment says view.

13.5.4.23. SHOW TABLES Syntax
SHOW [FULL] TABLES [FROM db_name] [LIKE 'pattern']

SHOW TABLES lists the non-TEMPORARY tables in a given database. You can also get this list using
the mysqlshow db_name command.

Before MySQL 5.0.1, the output from SHOW TABLES contains a single column of table names. Begin-
ning with MySQL 5.0.1, this statement also lists any views in the database. As of MySQL 5.0.2, the
FULL modifier is supported such that SHOW FULL TABLES displays a second output column. Values
for the second column are BASE TABLE for a table and VIEW for a view.

Note: If you have no privileges for a table, the table does not show up in the output from SHOW
TABLES or mysqlshow db_name.

13.5.4.24. SHOW TRIGGERS Syntax
SHOW TRIGGERS [FROM db_name] [LIKE expr]

SHOW TRIGGERS lists the triggers currently defined on the MySQL server. This statement requires the
SUPER privilege. It was implemented in MySQL 5.0.10.

For the trigger ins_sum as defined in Section 18.3, “Using Triggers”, the output of this statement is as
shown here:

mysql> SHOW TRIGGERS LIKE 'acc%'\G
*************************** 1. row ***************************

Trigger: ins_sum
Event: INSERT
Table: account

Statement: SET @sum = @sum + NEW.amount
Timing: BEFORE
Created: NULL

sql_mode:
Definer: myname@localhost

Note: When using a LIKE clause with SHOW TRIGGERS, the expression to be matched (expr) is
compared with the name of the table on which the trigger is declared, and not with the name of the trig-
ger:

mysql> SHOW TRIGGERS LIKE 'ins%';
Empty set (0.01 sec)

A brief explanation of the columns in the output of this statement is shown here:

• Trigger

The name of the trigger.

• Event

SQL Statement Syntax

871

The event that causes trigger activation: one of 'INSERT', 'UPDATE', or 'DELETE'.

• Table

The table for which the trigger is defined.

• Statement

The statement to be executed when the trigger is activated. This is the same as the text shown in the
ACTION_STATEMENT column of INFORMATION_SCHEMA.TRIGGERS.

• Timing

One of the two values 'BEFORE' or 'AFTER'.

• Created

Currently, the value of this column is always NULL.

• sql_mode

The SQL mode in effect when the trigger executes. This column was added in MySQL 5.0.11.

• Definer

The account that created the trigger. This column was added in MySQL 5.0.17.

You must have the SUPER privilege to execute SHOW TRIGGERS.

See also Section 20.16, “The INFORMATION_SCHEMA TRIGGERS Table”.

13.5.4.25. SHOW VARIABLES Syntax
SHOW [GLOBAL | SESSION] VARIABLES [LIKE 'pattern']

SHOW VARIABLES shows the values of MySQL system variables. This information also can be ob-
tained using the mysqladmin variables command.

With the GLOBAL modifier, SHOW VARIABLES displays the values that are used for new connections
to MySQL. With SESSION, it displays the values that are in effect for the current connection. If no
modifier is present, the default is SESSION. LOCAL is a synonym for SESSION.

If the default system variable values are unsuitable, you can set them using command options when
mysqld starts, and most can be changed at runtime with the SET statement. See Section 5.2.4, “Using
System Variables”, and Section 13.5.3, “SET Syntax”.

Partial output is shown here. The list of names and values may be different for your server. Sec-
tion 5.2.3, “System Variables”, describes the meaning of each variable, and Section 7.5.2, “Tuning Serv-
er Parameters”, provides information about tuning them.

mysql> SHOW VARIABLES;
+---------------------------------+-------------------------------------+
| Variable_name | Value |
+---------------------------------+-------------------------------------+
auto_increment_increment	1
auto_increment_offset	1
automatic_sp_privileges	ON
back_log	50
basedir	/
bdb_cache_size	8388600

SQL Statement Syntax

872

| bdb_home | /var/lib/mysql/ |
| bdb_log_buffer_size | 32768 |
...
max_connections	100
max_connect_errors	10
max_delayed_threads	20
max_error_count	64
max_heap_table_size	16777216
max_join_size	4294967295
max_relay_log_size	0
max_sort_length	1024
...	
time_zone	SYSTEM
timed_mutexes	OFF
tmp_table_size	33554432
tmpdir	
transaction_alloc_block_size	8192
transaction_prealloc_size	4096
tx_isolation	REPEATABLE-READ
updatable_views_with_limit	YES
version	5.0.19-Max
version_comment	MySQL Community Edition - Max (GPL)
version_compile_machine	i686
version_compile_os	pc-linux-gnu
wait_timeout	28800
+---------------------------------+-------------------------------------+

With a LIKE clause, the statement displays only rows for those variables with names that match the pat-
tern. To obtain the row for a specific variable, use a LIKE clause as shown:

SHOW VARIABLES LIKE 'max_join_size';
SHOW SESSION VARIABLES LIKE 'max_join_size';

To get a list of variables whose name match a pattern, use the ‘%’ wildcard character in a LIKE clause:

SHOW VARIABLES LIKE '%size%';
SHOW GLOBAL VARIABLES LIKE '%size%';

Wildcard characters can be used in any position within the pattern to be matched. Strictly speaking, be-
cause ‘_’ is a wildcard that matches any single character, you should escape it as ‘_’ to match it liter-
ally. In practice, this is rarely necessary.

13.5.4.26. SHOW WARNINGS Syntax
SHOW WARNINGS [LIMIT [offset,] row_count]
SHOW COUNT(*) WARNINGS

SHOW WARNINGS shows the error, warning, and note messages that resulted from the last statement
that generated messages, or nothing if the last statement that used a table generated no messages. A re-
lated statement, SHOW ERRORS, shows only the errors. See Section 13.5.4.11, “SHOW ERRORS Syn-
tax”.

The list of messages is reset for each new statement that uses a table.

The SHOW COUNT(*) WARNINGS statement displays the total number of errors, warnings, and notes.
You can also retrieve this number from the warning_count variable:

SHOW COUNT(*) WARNINGS;
SELECT @@warning_count;

The value of warning_count might be greater than the number of messages displayed by SHOW
WARNINGS if the max_error_count system variable is set so low that not all messages are stored.
An example shown later in this section demonstrates how this can happen.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.7, “SELECT

SQL Statement Syntax

873

Syntax”.

The MySQL server sends back the total number of errors, warnings, and notes resulting from the last
statement. If you are using the C API, this value can be obtained by calling
mysql_warning_count(). See Section 22.2.3.71, “mysql_warning_count()”.

Warnings are generated for statements such as LOAD DATA INFILE and DML statements such as
INSERT, UPDATE, CREATE TABLE, and ALTER TABLE.

The following DROP TABLE statement results in a note:

mysql> DROP TABLE IF EXISTS no_such_table;
mysql> SHOW WARNINGS;
+-------+------+-------------------------------+
| Level | Code | Message |
+-------+------+-------------------------------+
| Note | 1051 | Unknown table 'no_such_table' |
+-------+------+-------------------------------+

Here is a simple example that shows a syntax warning for CREATE TABLE and conversion warnings
for INSERT:

mysql> CREATE TABLE t1 (a TINYINT NOT NULL, b CHAR(4)) TYPE=MyISAM;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> SHOW WARNINGS\G
*************************** 1. row ***************************

Level: Warning
Code: 1287

Message: 'TYPE=storage_engine' is deprecated, use
'ENGINE=storage_engine' instead

1 row in set (0.00 sec)

mysql> INSERT INTO t1 VALUES(10,'mysql'),(NULL,'test'),
-> (300,'Open Source');

Query OK, 3 rows affected, 4 warnings (0.01 sec)
Records: 3 Duplicates: 0 Warnings: 4

mysql> SHOW WARNINGS\G
*************************** 1. row ***************************

Level: Warning
Code: 1265

Message: Data truncated for column 'b' at row 1
*************************** 2. row ***************************

Level: Warning
Code: 1263

Message: Data truncated, NULL supplied to NOT NULL column 'a' at row 2
*************************** 3. row ***************************

Level: Warning
Code: 1264

Message: Data truncated, out of range for column 'a' at row 3
*************************** 4. row ***************************

Level: Warning
Code: 1265

Message: Data truncated for column 'b' at row 3
4 rows in set (0.00 sec)

The maximum number of error, warning, and note messages to store is controlled by the
max_error_count system variable. By default, its value is 64. To change the number of messages
you want stored, change the value of max_error_count. In the following example, the ALTER TA-
BLE statement produces three warning messages, but only one is stored because max_error_count
has been set to 1:

mysql> SHOW VARIABLES LIKE 'max_error_count';
+-----------------+-------+
| Variable_name | Value |
+-----------------+-------+
| max_error_count | 64 |
+-----------------+-------+
1 row in set (0.00 sec)

mysql> SET max_error_count=1;
Query OK, 0 rows affected (0.00 sec)

SQL Statement Syntax

874

mysql> ALTER TABLE t1 MODIFY b CHAR;
Query OK, 3 rows affected, 3 warnings (0.00 sec)
Records: 3 Duplicates: 0 Warnings: 3

mysql> SELECT @@warning_count;
+-----------------+
| @@warning_count |
+-----------------+
| 3 |
+-----------------+
1 row in set (0.01 sec)

mysql> SHOW WARNINGS;
+---------+------+--+
| Level | Code | Message |
+---------+------+--+
| Warning | 1263 | Data truncated for column 'b' at row 1 |
+---------+------+--+
1 row in set (0.00 sec)

To disable warnings, set max_error_count to 0. In this case, warning_count still indicates how
many warnings have occurred, but none of the messages are stored.

As of MySQL 5.0.3, you can set the SQL_NOTES session variable to 0 to cause Note-level warnings
not to be recorded.

13.5.5. Other Administrative Statements

13.5.5.1. CACHE INDEX Syntax
CACHE INDEX

tbl_index_list [, tbl_index_list] ...
IN key_cache_name

tbl_index_list:
tbl_name [[INDEX|KEY] (index_name[, index_name] ...)]

The CACHE INDEX statement assigns table indexes to a specific key cache. It is used only for MyISAM
tables.

The following statement assigns indexes from the tables t1, t2, and t3 to the key cache named
hot_cache:

mysql> CACHE INDEX t1, t2, t3 IN hot_cache;
+---------+--------------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------------+----------+----------+
test.t1	assign_to_keycache	status	OK
test.t2	assign_to_keycache	status	OK
test.t3	assign_to_keycache	status	OK
+---------+--------------------+----------+----------+

The syntax of CACHE INDEX enables you to specify that only particular indexes from a table should be
assigned to the cache. The current implementation assigns all the table's indexes to the cache, so there is
no reason to specify anything other than the table name.

The key cache referred to in a CACHE INDEX statement can be created by setting its size with a para-
meter setting statement or in the server parameter settings. For example:

mysql> SET GLOBAL keycache1.key_buffer_size=128*1024;

Key cache parameters can be accessed as members of a structured system variable. See Section 5.2.4.1,
“Structured System Variables”.

SQL Statement Syntax

875

A key cache must exist before you can assign indexes to it:

mysql> CACHE INDEX t1 IN non_existent_cache;
ERROR 1284 (HY000): Unknown key cache 'non_existent_cache'

By default, table indexes are assigned to the main (default) key cache created at the server startup. When
a key cache is destroyed, all indexes assigned to it become assigned to the default key cache again.

Index assignment affects the server globally: If one client assigns an index to a given cache, this cache is
used for all queries involving the index, no matter which client issues the queries.

13.5.5.2. FLUSH Syntax
FLUSH [LOCAL | NO_WRITE_TO_BINLOG] flush_option [, flush_option] ...

The FLUSH statement clears or reloads various internal caches used by MySQL. To execute FLUSH,
you must have the RELOAD privilege.

The RESET statement is similar to FLUSH. See Section 13.5.5.5, “RESET Syntax”.

flush_option can be any of the following:

• HOSTS

Empties the host cache tables. You should flush the host tables if some of your hosts change IP num-
ber or if you get the error message Host 'host_name' is blocked. When more than
max_connect_errors errors occur successively for a given host while connecting to the
MySQL server, MySQL assumes that something is wrong and blocks the host from further connec-
tion requests. Flushing the host tables allows the host to attempt to connect again. See Section A.2.5,
“Host 'host_name' is blocked”. You can start mysqld with -
-max_connect_errors=999999999 to avoid this error message.

• DES_KEY_FILE

Reloads the DES keys from the file that was specified with the --des-key-file option at server
startup time.

• LOGS

Closes and reopens all log files. If binary logging is enabled, the sequence number of the binary log
file is incremented by one relative to the previous file. On Unix, this is the same thing as sending a
SIGHUP signal to the mysqld server (except on some Mac OS X 10.3 versions where mysqld ig-
nores SIGHUP and SIGQUIT).

If the server was started with the --log-error option, FLUSH LOGS causes the error log is re-
named with a suffix of -old and mysqld creates a new empty log file. No renaming occurs if the
--log-error option was not given.

• MASTER (DEPRECATED). Deletes all binary logs, resets the binary log index file and creates a new
binary log. Deprecated in favor of RESET MASTER, supported for backwards compatibility only
See Section 13.6.1.2, “RESET MASTER Syntax”.

• PRIVILEGES

Reloads the privileges from the grant tables in the mysql database.

• QUERY CACHE

SQL Statement Syntax

876

Defragment the query cache to better utilize its memory. FLUSH QUERY CACHE does not remove
any queries from the cache, unlike RESET QUERY CACHE.

• SLAVE (DEPRECATED). Resets all replication slave parameters, including relay log files and rep-
lication position in the master's binary logs. Deprecated in favor of RESET SLAVE, supported for
backwards compatibility only. See Section 13.6.2.5, “RESET SLAVE Syntax”.

• STATUS

Resets most status variables to zero. This is something you should use only when debugging a query.
See Section 1.8, “How to Report Bugs or Problems”.

• {TABLE | TABLES} [tbl_name [, tbl_name] ...]

When no tables are named, closes all open tables and forces all tables in use to be closed. This also
flushes the query cache. With one or more table names, flushes only the given tables. FLUSH
TABLES also removes all query results from the query cache, like the RESET QUERY CACHE
statement.

• TABLES WITH READ LOCK

Closes all open tables and locks all tables for all databases with a read lock until you execute UN-
LOCK TABLES. This is very convenient way to get backups if you have a filesystem such as Ver-
itas that can take snapshots in time.

• USER_RESOURCES

Resets all per-hour user resources to zero. This enables clients that have reached their hourly connec-
tion, query, or update limits to resume activity immediately. FLUSH USER_RESOURCES does not
apply to the limit on maximum simultaneous connections. See Section 13.5.1.3, “GRANT Syntax”.

FLUSH statements are written to the binary log unless the optional NO_WRITE_TO_BINLOG keyword
(or its alias LOCAL) is used. This is done so that FLUSH statements used on a MySQL server acting as a
replication master will be replicated by default to the replication slave.

Note: FLUSH LOGS, FLUSH MASTER, FLUSH SLAVE, and FLUSH TABLES WITH READ LOCK
are not logged in any case because they would cause problems if replicated to a slave.

You can also access some of these statements with the mysqladmin utility, using the flush-hosts,
flush-logs, flush-privileges, flush-status, or flush-tables commands.

Using FLUSH statements within stored functions or triggers is not supported in MySQL 5.0. However,
you may use FLUSH in stored procedures, so long as these are not called from stored functions or trig-
gers. See Section I.1, “Restrictions on Stored Routines and Triggers”.

See also Section 13.5.5.5, “RESET Syntax”, for information about how the RESET statement is used
with replication.

13.5.5.3. KILL Syntax
KILL [CONNECTION | QUERY] thread_id

Each connection to mysqld runs in a separate thread. You can see which threads are running with the
SHOW PROCESSLIST statement and kill a thread with the KILL thread_id statement.

In MySQL 5.0.0, KILL allows the optional CONNECTION or QUERY modifier:

SQL Statement Syntax

877

• KILL CONNECTION is the same as KILL with no modifier: It terminates the connection associated
with the given thread_id.

• KILL QUERY terminates the statement that the connection is currently executing, but leaves the
connection itself intact.

If you have the PROCESS privilege, you can see all threads. If you have the SUPER privilege, you can
kill all threads and statements. Otherwise, you can see and kill only your own threads and statements.

You can also use the mysqladmin processlist and mysqladmin kill commands to examine
and kill threads.

Note: You cannot use KILL with the Embedded MySQL Server library, because the embedded server
merely runs inside the threads of the host application. It does not create any connection threads of its
own.

When you use KILL, a thread-specific kill flag is set for the thread. In most cases, it might take some
time for the thread to die, because the kill flag is checked only at specific intervals:

• In SELECT, ORDER BY and GROUP BY loops, the flag is checked after reading a block of rows. If
the kill flag is set, the statement is aborted.

• During ALTER TABLE, the kill flag is checked before each block of rows are read from the original
table. If the kill flag was set, the statement is aborted and the temporary table is deleted.

• During UPDATE or DELETE operations, the kill flag is checked after each block read and after each
updated or deleted row. If the kill flag is set, the statement is aborted. Note that if you are not using
transactions, the changes are not rolled back.

• GET_LOCK() aborts and returns NULL.

• An INSERT DELAYED thread quickly flushes (inserts) all rows it has in memory and then termin-
ates.

• If the thread is in the table lock handler (state: Locked), the table lock is quickly aborted.

• If the thread is waiting for free disk space in a write call, the write is aborted with a “disk full” error
message.

• Warning: Killing a REPAIR TABLE or OPTIMIZE TABLE operation on a MyISAM table results
in a table that is corrupted and unusable. Any reads or writes to such a table fail until you optimize
or repair it again (without interruption).

13.5.5.4. LOAD INDEX INTO CACHE Syntax
LOAD INDEX INTO CACHE

tbl_index_list [, tbl_index_list] ...

tbl_index_list:
tbl_name
[[INDEX|KEY] (index_name[, index_name] ...)]
[IGNORE LEAVES]

The LOAD INDEX INTO CACHE statement preloads a table index into the key cache to which it has
been assigned by an explicit CACHE INDEX statement, or into the default key cache otherwise. LOAD
INDEX INTO CACHE is used only for MyISAM tables.

SQL Statement Syntax

878

The IGNORE LEAVES modifier causes only blocks for the non-leaf nodes of the index to be preloaded.

The following statement preloads nodes (index blocks) of indexes for the tables t1 and t2:

mysql> LOAD INDEX INTO CACHE t1, t2 IGNORE LEAVES;
+---------+--------------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------+--------------+----------+----------+
| test.t1 | preload_keys | status | OK |
| test.t2 | preload_keys | status | OK |
+---------+--------------+----------+----------+

This statement preloads all index blocks from t1. It preloads only blocks for the non-leaf nodes from
t2.

The syntax of LOAD INDEX INTO CACHE enables you to specify that only particular indexes from a
table should be preloaded. The current implementation preloads all the table's indexes into the cache, so
there is no reason to specify anything other than the table name.

13.5.5.5. RESET Syntax
RESET reset_option [, reset_option] ...

The RESET statement is used to clear the state of various server operations. You must have the RELOAD
privilege to execute RESET.

RESET acts as a stronger version of the FLUSH statement. See Section 13.5.5.2, “FLUSH Syntax”.

reset_option can be any of the following:

• MASTER

Deletes all binary logs listed in the index file, resets the binary log index file to be empty, and cre-
ates a new binary log file. (Known as FLUSH MASTER in versions of MySQL before 3.23.26.) See
Section 13.6.1, “SQL Statements for Controlling Master Servers”.

• QUERY CACHE

Removes all query results from the query cache.

• SLAVE

Makes the slave forget its replication position in the master binary logs. Also resets the relay log by
deleting any existing relay log files and beginning a new one. (Known as FLUSH SLAVE in ver-
sions of MySQL before 3.23.26.) See Section 13.6.2, “SQL Statements for Controlling Slave Serv-
ers”.

13.6. Replication Statements
This section describes SQL statements related to replication. One group of statements is used for con-
trolling master servers. The other is used for controlling slave servers.

13.6.1. SQL Statements for Controlling Master Servers
Replication can be controlled through the SQL interface. This section discusses statements for managing
master replication servers. Section 13.6.2, “SQL Statements for Controlling Slave Servers”, discusses

SQL Statement Syntax

879

statements for managing slave servers.

13.6.1.1. PURGE MASTER LOGS Syntax
PURGE {MASTER | BINARY} LOGS TO 'log_name'
PURGE {MASTER | BINARY} LOGS BEFORE 'date'

Deletes all the binary logs listed in the log index prior to the specified log or date. The logs also are re-
moved from the list recorded in the log index file, so that the given log becomes the first.

Example:

PURGE MASTER LOGS TO 'mysql-bin.010';
PURGE MASTER LOGS BEFORE '2003-04-02 22:46:26';

The BEFORE variant's date argument can be in 'YYYY-MM-DD hh:mm:ss' format. MASTER and
BINARY are synonyms.

This statement is safe to run while slaves are replicating. You do not need to stop them. If you have an
active slave that currently is reading one of the logs you are trying to delete, this statement does nothing
and fails with an error. However, if a slave is dormant and you happen to purge one of the logs it has yet
to read, the slave will be unable to replicate after it comes up.

To safely purge logs, follow this procedure:

1. On each slave server, use SHOW SLAVE STATUS to check which log it is reading.

2. Obtain a listing of the binary logs on the master server with SHOW BINARY LOGS.

3. Determine the earliest log among all the slaves. This is the target log. If all the slaves are up to date,
this is the last log on the list.

4. Make a backup of all the logs you are about to delete. (This step is optional, but always advisable.)

5. Purge all logs up to but not including the target log.

You can also set the expire_logs_days system variable to expire binary log files automatically
after a given number of days (see Section 5.2.3, “System Variables”). If you are using replication, you
should set the variable no lower than the maximum number of days your slaves might lag behind the
master.

13.6.1.2. RESET MASTER Syntax
RESET MASTER

Deletes all binary logs listed in the index file, resets the binary log index file to be empty, and creates a
new binary log file.

13.6.1.3. SET SQL_LOG_BIN Syntax
SET SQL_LOG_BIN = {0|1}

Disables or enables binary logging for the current connection (SQL_LOG_BIN is a session variable) if
the client has the SUPER privilege. The statement is refused with an error if the client does not have that
privilege.

SQL Statement Syntax

880

13.6.1.4. SHOW BINLOG EVENTS Syntax
SHOW BINLOG EVENTS

[IN 'log_name'] [FROM pos] [LIMIT [offset,] row_count]

Shows the events in the binary log. If you do not specify 'log_name', the first binary log is dis-
played.

The LIMIT clause has the same syntax as for the SELECT statement. See Section 13.2.7, “SELECT
Syntax”.

Note: Issuing a SHOW BINLOG EVENTS with no LIMIT clause could start a very time- and resource-
consuming process because the server returns to the client the complete contents of the binary log
(which includes all statements executed by the server that modify data). As an alternative to SHOW
BINLOG EVENTS, use the mysqlbinlog utility to save the binary log to a text file for later examina-
tion and analysis. See Section 8.10, “mysqlbinlog — Utility for Processing Binary Log Files”.

13.6.1.5. SHOW BINARY LOGS Syntax
SHOW BINARY LOGS
SHOW MASTER LOGS

Lists the binary log files on the server. This statement is used as part of the procedure described in Sec-
tion 13.6.1.1, “PURGE MASTER LOGS Syntax”, that shows how to determine which logs can be
purged.

mysql> SHOW BINARY LOGS;
+---------------+-----------+
| Log_name | File_size |
+---------------+-----------+
| binlog.000015 | 724935 |
| binlog.000016 | 733481 |
+---------------+-----------+

SHOW MASTER LOGS is equivalent to SHOW BINARY LOGS. The File_size column is displayed
as of MySQL 5.0.7.

13.6.1.6. SHOW MASTER STATUS Syntax
SHOW MASTER STATUS

Provides status information about the binary log files of the master. Example:

mysql > SHOW MASTER STATUS;
+---------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+---------------+----------+--------------+------------------+
| mysql-bin.003 | 73 | test | manual,mysql |
+---------------+----------+--------------+------------------+

13.6.1.7. SHOW SLAVE HOSTS Syntax
SHOW SLAVE HOSTS

Displays a list of replication slaves currently registered with the master. Only slaves started with the -
-report-host=slave_name option are visible in this list.

The list is displayed on any server (not just the master server). The output looks like this:

SQL Statement Syntax

881

mysql> SHOW SLAVE HOSTS;
+------------+-----------+------+-----------+
| Server_id | Host | Port | Master_id |
+------------+-----------+------+-----------+
| 192168010 | iconnect2 | 3306 | 192168011 |
| 1921680101 | athena | 3306 | 192168011 |
+------------+-----------+------+-----------+

• Server_id: The unique server ID of the slave server, as configured in the server's option file, or
on the command line with --server-id=value .

• Host: The host name of the slave server, as configured in the server's option file, or on the com-
mand line with --report-host=value. Note that this can differ from the machine name as con-
figured in the operating system.

• Port: The port the slave server is listening on.

• Master_id: The unique server ID of the master server that the slave server is replicating from.

Some MySQL versions report another variable, Rpl_recovery_rank. This variable was never used,
and was eventually removed.

13.6.2. SQL Statements for Controlling Slave Servers
Replication can be controlled through the SQL interface. This section discusses statements for managing
slave replication servers. Section 13.6.1, “SQL Statements for Controlling Master Servers”, discusses
statements for managing master servers.

13.6.2.1. CHANGE MASTER TO Syntax
CHANGE MASTER TO master_def [, master_def] ...

master_def:
MASTER_HOST = 'host_name'

| MASTER_USER = 'user_name'
| MASTER_PASSWORD = 'password'
| MASTER_PORT = port_num
| MASTER_CONNECT_RETRY = count
| MASTER_LOG_FILE = 'master_log_name'
| MASTER_LOG_POS = master_log_pos
| RELAY_LOG_FILE = 'relay_log_name'
| RELAY_LOG_POS = relay_log_pos
| MASTER_SSL = {0|1}
| MASTER_SSL_CA = 'ca_file_name'
| MASTER_SSL_CAPATH = 'ca_directory_name'
| MASTER_SSL_CERT = 'cert_file_name'
| MASTER_SSL_KEY = 'key_file_name'
| MASTER_SSL_CIPHER = 'cipher_list'

CHANGE MASTER TO changes the parameters that the slave server uses for connecting to and commu-
nicating with the master server. It also updates the contents of the master.info and relay-
log.info files.

MASTER_USER, MASTER_PASSWORD, MASTER_SSL, MASTER_SSL_CA, MASTER_SSL_CAPATH,
MASTER_SSL_CERT, MASTER_SSL_KEY, and MASTER_SSL_CIPHER provide information to the
slave about how to connect to its master.

The SSL options (MASTER_SSL, MASTER_SSL_CA, MASTER_SSL_CAPATH,
MASTER_SSL_CERT, MASTER_SSL_KEY, and MASTER_SSL_CIPHER) can be changed even on
slaves that are compiled without SSL support. They are saved to the master.info file, but are ig-
nored unless you use a server that has SSL support enabled.

SQL Statement Syntax

882

If you don't specify a given parameter, it keeps its old value, except as indicated in the following discus-
sion. For example, if the password to connect to your MySQL master has changed, you just need to is-
sue these statements to tell the slave about the new password:

STOP SLAVE; -- if replication was running
CHANGE MASTER TO MASTER_PASSWORD='new3cret';
START SLAVE; -- if you want to restart replication

There is no need to specify the parameters that do not change (host, port, user, and so forth).

MASTER_HOST and MASTER_PORT are the hostname (or IP address) of the master host and its TCP/IP
port. Note that if MASTER_HOST is equal to localhost, then, like in other parts of MySQL, the port
number might be ignored (if Unix socket files can be used, for example).

If you specify MASTER_HOST or MASTER_PORT, the slave assumes that the master server is different
from before (even if you specify a host or port value that is the same as the current value.) In this case,
the old values for the master binary log name and position are considered no longer applicable, so if you
do not specify MASTER_LOG_FILE and MASTER_LOG_POS in the statement, MAS-
TER_LOG_FILE='' and MASTER_LOG_POS=4 are silently appended to it.

MASTER_LOG_FILE and MASTER_LOG_POS are the coordinates at which the slave I/O thread should
begin reading from the master the next time the thread starts. If you specify either of them, you cannot
specify RELAY_LOG_FILE or RELAY_LOG_POS. If neither of MASTER_LOG_FILE or MAS-
TER_LOG_POS are specified, the slave uses the last coordinates of the slave SQL thread before
CHANGE MASTER was issued. This ensures that there is no discontinuity in replication, even if the
slave SQL thread was late compared to the slave I/O thread, when you merely want to change, say, the
password to use.

CHANGE MASTER deletes all relay log files and starts a new one, unless you specify RE-
LAY_LOG_FILE or RELAY_LOG_POS. In that case, relay logs are kept; the relay_log_purge
global variable is set silently to 0.

CHANGE MASTER is useful for setting up a slave when you have the snapshot of the master and have
recorded the log and the offset corresponding to it. After loading the snapshot into the slave, you can run
CHANGE MASTER TO MASTER_LOG_FILE='log_name_on_master',
MASTER_LOG_POS=log_offset_on_master on the slave.

The following example changes the master and master's binary log coordinates. This is used when you
want to set up the slave to replicate the master:

CHANGE MASTER TO
MASTER_HOST='master2.mycompany.com',
MASTER_USER='replication',
MASTER_PASSWORD='bigs3cret',
MASTER_PORT=3306,
MASTER_LOG_FILE='master2-bin.001',
MASTER_LOG_POS=4,
MASTER_CONNECT_RETRY=10;

The next example shows an operation that is less frequently employed. It is used when the slave has re-
lay logs that you want it to execute again for some reason. To do this, the master need not be reachable.
You need only use CHANGE MASTER TO and start the SQL thread (START SLAVE SQL_THREAD):

CHANGE MASTER TO
RELAY_LOG_FILE='slave-relay-bin.006',
RELAY_LOG_POS=4025;

You can even use the second operation in a non-replication setup with a standalone, non-slave server for
recovery following a crash. Suppose that your server has crashed and you have restored a backup. You
want to replay the server's own binary logs (not relay logs, but regular binary logs), named (for example)

SQL Statement Syntax

883

myhost-bin.*. First, make a backup copy of these binary logs in some safe place, in case you don't
exactly follow the procedure below and accidentally have the server purge the binary logs. Use SET
GLOBAL relay_log_purge=0 for additional safety. Then start the server without the --log-bin
option, Instead, use the --replicate-same-server-id, --relay-log=myhost-bin (to
make the server believe that these regular binary logs are relay logs) and --skip-slave-start op-
tions. After the server starts, issue these statements:

CHANGE MASTER TO
RELAY_LOG_FILE='myhost-bin.153',
RELAY_LOG_POS=410,
MASTER_HOST='some_dummy_string';

START SLAVE SQL_THREAD;

The server reads and executes its own binary logs, thus achieving crash recovery. Once the recovery is
finished, run STOP SLAVE, shut down the server, delete the master.info and relay-log.info
files, and restart the server with its original options.

Specifying the MASTER_HOST option (even with a dummy value) is required to make the server think it
is a slave.

13.6.2.2. LOAD DATA FROM MASTER Syntax
LOAD DATA FROM MASTER

This feature is deprecated. We recommend not using it anymore. It is subject to removal in a fu-
ture version of MySQL.

Since the current implementation of LOAD DATA FROM MASTER and LOAD TABLE FROM MAS-
TER is very limited, these statements are deprecated in versions 4.1 of MySQL and above. We will in-
troduce a more advanced technique (called “online backup”) in a future version. That technique will
have the additional advantage of working with more storage engines.

For MySQL 5.1 and earlier, the recommended alternative solution to using LOAD DATA FROM MAS-
TER or LOAD TABLE FROM MASTERis using mysqldump or mysqlhotcopy. The latter requires
Perl and two Perl modules (DBI and DBD:mysql) and works for MyISAM and ARCHIVE tables only.
With mysqldump, you can create SQL dumps on the master and pipe (or copy) these to a mysql client
on the slave. This has the advantage of working for all storage engines, but can be quite slow, since it
works using SELECT.

This statement takes a snapshot of the master and copies it to the slave. It updates the values of MAS-
TER_LOG_FILE and MASTER_LOG_POS so that the slave starts replicating from the correct position.
Any table and database exclusion rules specified with the --replicate-*-do-* and -
-replicate-*-ignore-* options are honored. --replicate-rewrite-db is not taken into
account because a user could use this option to set up a non-unique mapping such as -
-replicate-rewrite-db="db1->db3" and --replicate-rewrite-db="db2->db3",
which would confuse the slave when loading tables from the master.

Use of this statement is subject to the following conditions:

• It works only for MyISAM tables. Attempting to load a non-MyISAM table results in the following
error:

ERROR 1189 (08S01): Net error reading from master

• It acquires a global read lock on the master while taking the snapshot, which prevents updates on the
master during the load operation.

SQL Statement Syntax

884

If you are loading large tables, you might have to increase the values of net_read_timeout and
net_write_timeout on both the master and slave servers. See Section 5.2.3, “System Variables”.

Note that LOAD DATA FROM MASTER does not copy any tables from the mysql database. This
makes it easy to have different users and privileges on the master and the slave.

To use LOAD DATA FROM MASTER, the replication account that is used to connect to the master must
have the RELOAD and SUPER privileges on the master and the SELECT privilege for all master tables
you want to load. All master tables for which the user does not have the SELECT privilege are ignored
by LOAD DATA FROM MASTER. This is because the master hides them from the user: LOAD DATA
FROM MASTER calls SHOW DATABASES to know the master databases to load, but SHOW DATA-
BASES returns only databases for which the user has some privilege. See Section 13.5.4.8, “SHOW
DATABASES Syntax”. On the slave side, the user that issues LOAD DATA FROM MASTER must have
privileges for dropping and creating the databases and tables that are copied.

13.6.2.3. LOAD TABLE tbl_name FROM MASTER Syntax
LOAD TABLE tbl_name FROM MASTER

This feature is deprecated. We recommend not using it anymore. It is subject to removal in a fu-
ture version of MySQL.

Since the current implementation of LOAD DATA FROM MASTER and LOAD TABLE FROM MAS-
TER is very limited, these statements are deprecated in versions 4.1 of MySQL and above. We will in-
troduce a more advanced technique (called “online backup”) in a future version. That technique will
have the additional advantage of working with more storage engines.

For MySQL 5.1 and earlier, the recommended alternative solution to using LOAD DATA FROM MAS-
TER or LOAD TABLE FROM MASTERis using mysqldump or mysqlhotcopy. The latter requires
Perl and two Perl modules (DBI and DBD:mysql) and works for MyISAM and ARCHIVE tables only.
With mysqldump, you can create SQL dumps on the master and pipe (or copy) these to a mysql client
on the slave. This has the advantage of working for all storage engines, but can be quite slow, since it
works using SELECT.

Transfers a copy of the table from the master to the slave. This statement is implemented mainly debug-
ging LOAD DATA FROM MASTER operations. To use LOAD TABLE, the account used for connecting
to the master server must have the RELOAD and SUPER privileges on the master and the SELECT priv-
ilege for the master table to load. On the slave side, the user that issues LOAD TABLE FROM MASTER
must have privileges for dropping and creating the table.

The conditions for LOAD DATA FROM MASTER apply here as well. For example, LOAD TABLE
FROM MASTER works only for MyISAM tables. The timeout notes for LOAD DATA FROM MASTER
apply as well.

13.6.2.4. MASTER_POS_WAIT() Syntax
SELECT MASTER_POS_WAIT('master_log_file', master_log_pos)

This is actually a function, not a statement. It is used to ensure that the slave has read and executed
events up to a given position in the master's binary log. See Section 12.9.4, “Miscellaneous Functions”,
for a full description.

13.6.2.5. RESET SLAVE Syntax
RESET SLAVE

SQL Statement Syntax

885

RESET SLAVE makes the slave forget its replication position in the master's binary logs. This state-
ment is meant to be used for a clean start: It deletes the master.info and relay-log.info files,
all the relay logs, and starts a new relay log.

Note: All relay logs are deleted, even if they have not been completely executed by the slave SQL
thread. (This is a condition likely to exist on a replication slave if you have issued a STOP SLAVE
statement or if the slave is highly loaded.)

Connection information stored in the master.info file is immediately reset using any values spe-
cified in the corresponding startup options. This information includes values such as master host, master
port, master user, and master password. If the slave SQL thread was in the middle of replicating tempor-
ary tables when it was stopped, and RESET SLAVE is issued, these replicated temporary tables are de-
leted on the slave.

13.6.2.6. SET GLOBAL SQL_SLAVE_SKIP_COUNTER Syntax
SET GLOBAL SQL_SLAVE_SKIP_COUNTER = N

This statement skips the next N events from the master. This is useful for recovering from replication
stops caused by a statement.

This statement is valid only when the slave thread is not running. Otherwise, it produces an error.

13.6.2.7. SHOW SLAVE STATUS Syntax
SHOW SLAVE STATUS

This statement provides status information on essential parameters of the slave threads. If you issue this
statement using the mysql client, you can use a \G statement terminator rather than a semicolon to ob-
tain a more readable vertical layout:

mysql> SHOW SLAVE STATUS\G
*************************** 1. row ***************************

Slave_IO_State: Waiting for master to send event
Master_Host: localhost
Master_User: root
Master_Port: 3306

Connect_Retry: 3
Master_Log_File: gbichot-bin.005

Read_Master_Log_Pos: 79
Relay_Log_File: gbichot-relay-bin.005
Relay_Log_Pos: 548

Relay_Master_Log_File: gbichot-bin.005
Slave_IO_Running: Yes

Slave_SQL_Running: Yes
Replicate_Do_DB:

Replicate_Ignore_DB:
Last_Errno: 0
Last_Error:

Skip_Counter: 0
Exec_Master_Log_Pos: 79

Relay_Log_Space: 552
Until_Condition: None
Until_Log_File:
Until_Log_Pos: 0

Master_SSL_Allowed: No
Master_SSL_CA_File:
Master_SSL_CA_Path:

Master_SSL_Cert:
Master_SSL_Cipher:

Master_SSL_Key:
Seconds_Behind_Master: 8

SHOW SLAVE STATUS returns the following fields:

SQL Statement Syntax

886

• Slave_IO_State

A copy of the State field of the output of SHOW PROCESSLIST for the slave I/O thread. This
tells you what the thread is doing: trying to connect to the master, waiting for events from the mas-
ter, reconnecting to the master, and so on. Possible states are listed in Section 6.3, “Replication Im-
plementation Details”. It is necessary to check this field for older versions of MySQL (prior to
5.0.12) because in these versions the thread could be running while unsuccessfully trying to connect
to the master; only this field makes you aware of the connection problem. The state of the SQL
thread is not copied because it is simpler. If it is running, there is no problem; if it is not, you can
find the error in the Last_Error field (described below).

• Master_Host

The current master host.

• Master_User

The current user used to connect to the master.

• Master_Port

The current master port.

• Connect_Retry

The current value of the --master-connect-retry option.

• Master_Log_File

The name of the master binary log file from which the I/O thread is currently reading.

• Read_Master_Log_Pos

The position up to which the I/O thread has read in the current master binary log.

• Relay_Log_File

The name of the relay log file from which the SQL thread is currently reading and executing.

• Relay_Log_Pos

The position up to which the SQL thread has read and executed in the current relay log.

• Relay_Master_Log_File

The name of the master binary log file containing the most recent event executed by the SQL thread.

• Slave_IO_Running

Whether the I/O thread is started and has connected successfully to the master. For older versions of
MySQL (prior to 4.1.14 and 5.0.12) Slave_IO_Running is YES if the I/O thread is started, even
if the slave hasn't connected to the master yet.

• Slave_SQL_Running

Whether the SQL thread is started.

• Replicate_Do_DB, Replicate_Ignore_DB

The lists of databases that were specified with the --replicate-do-db and -

SQL Statement Syntax

887

-replicate-ignore-db options, if any.

• Replicate_Do_Table, Replicate_Ignore_Table, Replicate_Wild_Do_Table,
Replicate_Wild_Ignore_Table

The lists of tables that were specified with the --replicate-do-table, -
-replicate-ignore-table, --replicate-wild-do-table, and -
-replicate-wild-ignore_table options, if any.

• Last_Errno, Last_Error

The error number and error message returned by the most recently executed query. An error number
of 0 and message of the empty string mean “no error.” If the Last_Error value is not empty, it
also appears as a message in the slave's error log. For example:

Last_Errno: 1051
Last_Error: error 'Unknown table 'z'' on query 'drop table z'

The message indicates that the table z existed on the master and was dropped there, but it did not ex-
ist on the slave, so DROP TABLE failed on the slave. (This might occur, for example, if you forget
to copy the table to the slave when setting up replication.)

• Skip_Counter

The most recently used value for SQL_SLAVE_SKIP_COUNTER.

• Exec_Master_Log_Pos

The position of the last event executed by the SQL thread from the master's binary log (Re-
lay_Master_Log_File). (Relay_Master_Log_File, Exec_Master_Log_Pos) in the
master's binary log corresponds to (Relay_Log_File, Relay_Log_Pos) in the relay log.

• Relay_Log_Space

The total combined size of all existing relay logs.

• Until_Condition, Until_Log_File, Until_Log_Pos

The values specified in the UNTIL clause of the START SLAVE statement.

Until_Condition has these values:

• None if no UNTIL clause was specified

• Master if the slave is reading until a given position in the master's binary logs

• Relay if the slave is reading until a given position in its relay logs

Until_Log_File and Until_Log_Pos indicate the log filename and position values that
define the point at which the SQL thread stops executing.

• Master_SSL_Allowed, Master_SSL_CA_File, Master_SSL_CA_Path, Mas-
ter_SSL_Cert, Master_SSL_Cipher, Master_SSL_Key

These fields show the SSL parameters used by the slave to connect to the master, if any.

Master_SSL_Allowed has these values:

• Yes if an SSL connection to the master is permitted

SQL Statement Syntax

888

• No if an SSL connection to the master is not permitted

• Ignored if an SSL connection is permitted but the slave server does not have SSL support en-
abled

The values of the other SSL-related fields correspond to the values of the --master-ca, -
-master-capath, --master-cert, --master-cipher, and --master-key options.

• Seconds_Behind_Master

This field is an indication of how “late” the slave is:

• When the slave SQL thread is actively running (processing updates), this field is the number of
seconds that have elapsed since the timestamp of the most recent event on the master executed
by that thread.

• When the SQL thread thread has caught up to the slave I/O thread and goes idle waiting for more
events from the I/O thread, this field is zero.

In essence, this field measures the time difference in seconds between the slave SQL thread and the
slave I/O thread.

If the network connection between master and slave is fast, the slave I/O thread is very close to the
master, so this field is a good approximation of how late the slave SQL thread is compared to the
master. If the network is slow, this is not a good approximation; the slave SQL thread may quite of-
ten be caught up with the slow-reading slave I/O thread, so Seconds_Behind_Master often
shows a value of 0, even if the I/O thread is late compared to the master. In other words, this column
is useful only for fast networks.

This time difference computation works even though the master and slave do not have identical
clocks (the clock difference is computed when the slave I/O thread starts, and assumed to remain
constant from then on). Seconds_Behind_Master is NULL (which means “unknown”) if the
slave SQL thread is not running, or if the slave I/O thread is not running or not connected to master.
For example if the slave I/O thread is sleeping for the number of seconds given by the -
-master-connect-retry option before reconnecting, NULL is shown, as the slave cannot
know what the master is doing, and so cannot say reliably how late it is.

This field has one limitation. The timestamp is preserved through replication, which means that, if a
master M1 is itself a slave of M0, any event from M1's binlog which originates in replicating an
event from M0's binlog has the timestamp of that event. This enables MySQL to replicate
TIMESTAMP successfully. However, the drawback for Seconds_Behind_Master is that if M1
also receives direct updates from clients, the value randomly deviates, because sometimes the last
M1's event is from M0 and sometimes it is the most recent timestamp from a direct update.

13.6.2.8. START SLAVE Syntax
START SLAVE [thread_type [, thread_type] ...]
START SLAVE [SQL_THREAD] UNTIL

MASTER_LOG_FILE = 'log_name', MASTER_LOG_POS = log_pos
START SLAVE [SQL_THREAD] UNTIL

RELAY_LOG_FILE = 'log_name', RELAY_LOG_POS = log_pos

thread_type: IO_THREAD | SQL_THREAD

START SLAVE with no thread_type options starts both of the slave threads. The I/O thread reads
queries from the master server and stores them in the relay log. The SQL thread reads the relay log and
executes the queries. START SLAVE requires the SUPER privilege.

SQL Statement Syntax

889

If START SLAVE succeeds in starting the slave threads, it returns without any error. However, even in
that case, it might be that the slave threads start and then later stop (for example, because they do not
manage to connect to the master or read its binary logs, or some other problem). START SLAVE does
not warn you about this. You must check the slave's error log for error messages generated by the slave
threads, or check that they are running satisfactorily with SHOW SLAVE STATUS.

You can add IO_THREAD and SQL_THREAD options to the statement to name which of the threads to
start.

An UNTIL clause may be added to specify that the slave should start and run until the SQL thread
reaches a given point in the master binary logs or in the slave relay logs. When the SQL thread reaches
that point, it stops. If the SQL_THREAD option is specified in the statement, it starts only the SQL
thread. Otherwise, it starts both slave threads. If the SQL thread is running, the UNTIL clause is ignored
and a warning is issued.

For an UNTIL clause, you must specify both a log filename and position. Do not mix master and relay
log options.

Any UNTIL condition is reset by a subsequent STOP SLAVE statement, a START SLAVE statement
that includes no UNTIL clause, or a server restart.

The UNTIL clause can be useful for debugging replication, or to cause replication to proceed until just
before the point where you want to avoid having the slave replicate a statement. For example, if an un-
wise DROP TABLE statement was executed on the master, you can use UNTIL to tell the slave to ex-
ecute up to that point but no farther. To find what the event is, use mysqlbinlog with the master logs
or slave relay logs, or by using a SHOW BINLOG EVENTS statement.

If you are using UNTIL to have the slave process replicated queries in sections, it is recommended that
you start the slave with the --skip-slave-start option to prevent the SQL thread from running
when the slave server starts. It is probably best to use this option in an option file rather than on the com-
mand line, so that an unexpected server restart does not cause it to be forgotten.

The SHOW SLAVE STATUS statement includes output fields that display the current values of the UN-
TIL condition.

In old versions of MySQL (before 4.0.5), this statement was called SLAVE START. This usage is still
accepted in MySQL 5.0 for backward compatibility, but is deprecated.

13.6.2.9. STOP SLAVE Syntax
STOP SLAVE [thread_type [, thread_type] ...]

thread_type: IO_THREAD | SQL_THREAD

Stops the slave threads. STOP SLAVE requires the SUPER privilege.

Like START SLAVE, this statement may be used with the IO_THREAD and SQL_THREAD options to
name the thread or threads to be stopped.

In old versions of MySQL (before 4.0.5), this statement was called SLAVE STOP. This usage is still ac-
cepted in MySQL 5.0 for backward compatibility, but is deprecated.

13.7. SQL Syntax for Prepared Statements
MySQL 5.0 provides support for server-side prepared statements. This support takes advantage of the
efficient client/server binary protocol implemented in MySQL 4.1, provided that you use an appropriate
client programming interface. Candidate interfaces include the MySQL C API client library (for C pro-
grams), MySQL Connector/J (for Java programs), and MySQL Connector/NET. For example, the C API

SQL Statement Syntax

890

provides a set of function calls that make up its prepared statement API. See Section 22.2.4, “C API Pre-
pared Statements”. Other language interfaces can provide support for prepared statements that use the
binary protocol by linking in the C client library, one example being the mysqli extension
[http://php.net/mysqli], available in PHP 5.0 and later.

An alternative SQL interface to prepared statements is available. This interface is not as efficient as us-
ing the binary protocol through a prepared statement API, but requires no programming because it is
available directly at the SQL level:

• You can use it when no programming interface is available to you.

• You can use it from any program that allows you to send SQL statements to the server to be ex-
ecuted, such as the mysql client program.

• You can use it even if the client is using an old version of the client library. The only requirement is
that you be able to connect to a server that is recent enough to support SQL syntax for prepared
statements.

SQL syntax for prepared statements is intended to be used for situations such as these:

• You want to test how prepared statements work in your application before coding it.

• An application has problems executing prepared statements and you want to determine interactively
what the problem is.

• You want to create a test case that describes a problem you are having with prepared statements, so
that you can file a bug report.

• You need to use prepared statements but do not have access to a programming API that supports
them.

SQL syntax for prepared statements is based on three SQL statements:

• PREPARE stmt_name FROM preparable_stmt

The PREPARE statement prepares a statement and assigns it a name, stmt_name, by which to
refer to the statement later. Statement names are not case sensitive. preparable_stmt is either a
string literal or a user variable that contains the text of the statement. The text must represent a single
SQL statement, not multiple statements. Within the statement, ‘?’ characters can be used as para-
meter markers to indicate where data values are to be bound to the query later when you execute it.
The ‘?’ characters should not be enclosed within quotes, even if you intend to bind them to string
values. Parameter markers can be used only where data values should appear, not for SQL keywords,
identifiers, and so forth.

If a prepared statement with the given name already exists, it is deallocated implicitly before the new
statement is prepared. This means that if the new statement contains an error and cannot be prepared,
an error is returned and no statement with the given name exists.

The scope of a prepared statement is the client session within which it is created. Other clients can-
not see it.

• EXECUTE stmt_name [USING @var_name [, @var_name] ...]

After preparing a statement, you execute it with an EXECUTE statement that refers to the prepared

SQL Statement Syntax

891

http://php.net/mysqli

statement name. If the prepared statement contains any parameter markers, you must supply a US-
ING clause that lists user variables containing the values to be bound to the parameters. Parameter
values can be supplied only by user variables, and the USING clause must name exactly as many
variables as the number of parameter markers in the statement.

You can execute a given prepared statement multiple times, passing different variables to it or set-
ting the variables to different values before each execution.

• {DEALLOCATE | DROP} PREPARE stmt_name

To deallocate a prepared statement, use the DEALLOCATE PREPARE statement. Attempting to ex-
ecute a prepared statement after deallocating it results in an error.

If you terminate a client session without deallocating a previously prepared statement, the server
deallocates it automatically.

The following SQL statements can be used in prepared statements: CREATE TABLE, DELETE, DO,
INSERT, REPLACE, SELECT, SET, UPDATE, and most SHOW statements. supported. ANALYZE TA-
BLE, OPTIMIZE TABLE, and REPAIR TABLE are supported as of MySQL 5.0.23. Other statements
are not yet supported.

The following examples show two equivalent ways of preparing a statement that computes the hypo-
tenuse of a triangle given the lengths of the two sides.

The first example shows how to create a prepared statement by using a string literal to supply the text of
the statement:

mysql> PREPARE stmt1 FROM 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> SET @a = 3;
mysql> SET @b = 4;
mysql> EXECUTE stmt1 USING @a, @b;
+------------+
| hypotenuse |
+------------+
| 5 |
+------------+
mysql> DEALLOCATE PREPARE stmt1;

The second example is similar, but supplies the text of the statement as a user variable:

mysql> SET @s = 'SELECT SQRT(POW(?,2) + POW(?,2)) AS hypotenuse';
mysql> PREPARE stmt2 FROM @s;
mysql> SET @a = 6;
mysql> SET @b = 8;
mysql> EXECUTE stmt2 USING @a, @b;
+------------+
| hypotenuse |
+------------+
| 10 |
+------------+
mysql> DEALLOCATE PREPARE stmt2;

As of MySQL 5.0.7, placeholders can be used for the arguments of the LIMIT clause when using pre-
pared statements. See Section 13.2.7, “SELECT Syntax”.

SQL syntax for prepared statements cannot be used in nested fashion. That is, a statement passed to
PREPARE cannot itself be a PREPARE, EXECUTE, or DEALLOCATE PREPARE statement.

SQL syntax for prepared statements is distinct from using prepared statement API calls. For example,
you cannot use the mysql_stmt_prepare() C API function to prepare a PREPARE, EXECUTE, or
DEALLOCATE PREPARE statement.

SQL Statement Syntax

892

SQL syntax for prepared statements cannot be used within stored routines (procedures or functions), or
triggers. This restriction is lifted as of MySQL 5.0.13 for stored procedures, but not for stored functions
or triggers.

SQL syntax for prepared statements does not support multi-statements (that is, multiple statements with-
in a single string separated by ‘;’ characters).

SQL Statement Syntax

893

Chapter 14. Storage Engines and Table Types
MySQL supports several storage engines that act as handlers for different table types. MySQL storage
engines include both those that handle transaction-safe tables and those that handle non-transaction-safe
tables:

• MyISAM manages non-transactional tables. It provides high-speed storage and retrieval, as well as
fulltext searching capabilities. MyISAM is supported in all MySQL configurations, and is the default
storage engine unless you have configured MySQL to use a different one by default.

• The MEMORY storage engine provides in-memory tables. The MERGE storage engine allows a collec-
tion of identical MyISAM tables to be handled as a single table. Like MyISAM, the MEMORY and
MERGE storage engines handle non-transactional tables, and both are also included in MySQL by de-
fault.

Note: The MEMORY storage engine formerly was known as the HEAP engine.

• The InnoDB and BDB storage engines provide transaction-safe tables. BDB is included in MySQL-
Max binary distributions on those operating systems that support it. InnoDB is also included by de-
fault in all MySQL 5.0 binary distributions. In source distributions, you can enable or disable either
engine by configuring MySQL as you like.

• The EXAMPLE storage engine is a “stub” engine that does nothing. You can create tables with this
engine, but no data can be stored in them or retrieved from them. The purpose of this engine is to
serve as an example in the MySQL source code that illustrates how to begin writing new storage en-
gines. As such, it is primarily of interest to developers.

• NDB Cluster is the storage engine used by MySQL Cluster to implement tables that are parti-
tioned over many computers. It is available in MySQL-Max 5.0 binary distributions. This storage
engine is currently supported on a number of Unix platforms. We intend to add support for this en-
gine on other platforms, including Windows, in future MySQL releases.

MySQL Cluster is covered in a separate chapter of this Manual. See Chapter 15, MySQL Cluster, for
more information.

• The ARCHIVE storage engine is used for storing large amounts of data without indexes with a very
small footprint.

• The CSV storage engine stores data in text files using comma-separated values format.

• The BLACKHOLE storage engine accepts but does not store data and retrievals always return an
empty set.

• The FEDERATED storage engine was added in MySQL 5.0.3. This engine stores data in a remote
database. Currently, it works with MySQL only, using the MySQL C Client API. In future releases,
we intend to enable it to connect to other data sources using other drivers or client connection meth-
ods.

This chapter describes each of the MySQL storage engines except for NDB Cluster, which is covered
in Chapter 15, MySQL Cluster.

When you create a new table, you can specify which storage engine to use by adding an ENGINE or
TYPE table option to the CREATE TABLE statement:

CREATE TABLE t (i INT) ENGINE = INNODB;
CREATE TABLE t (i INT) TYPE = MEMORY;

894

The older term TYPE is supported as a synonym for ENGINE for backward compatibility, but ENGINE
is the preferred term and TYPE is deprecated.

If you omit the ENGINE or TYPE option, the default storage engine is used. Normally, this is MyISAM,
but you can change it by using the --default-storage-engine or --default-table-type
server startup option, or by setting the default-storage-engine or default-table-type
option in the my.cnf configuration file.

You can set the default storage engine to be used during the current session by setting the stor-
age_engine or table_type variable:

SET storage_engine=MYISAM;
SET table_type=BDB;

When MySQL is installed on Windows using the MySQL Configuration Wizard, the InnoDB storage
engine can be selected as the default instead of MyISAM. See Section 2.3.4.6, “The Database Usage Dia-
log”.

To convert a table from one storage engine to another, use an ALTER TABLE statement that indicates
the new engine:

ALTER TABLE t ENGINE = MYISAM;
ALTER TABLE t TYPE = BDB;

See Section 13.1.5, “CREATE TABLE Syntax”, and Section 13.1.2, “ALTER TABLE Syntax”.

If you try to use a storage engine that is not compiled in or that is compiled in but deactivated, MySQL
instead creates a table using the default storage engine, usually MyISAM. This behavior is convenient
when you want to copy tables between MySQL servers that support different storage engines. (For ex-
ample, in a replication setup, perhaps your master server supports transactional storage engines for in-
creased safety, but the slave servers use only non-transactional storage engines for greater speed.)

This automatic substitution of the default storage engine for unavailable engines can be confusing for
new MySQL users. A warning is generated whenever a storage engine is automatically changed.

For new tables, MySQL always creates an .frm file to hold the table and column definitions. The ta-
ble's index and data may be stored in one or more other files, depending on the storage engine. The serv-
er creates the .frm file above the storage engine level. Individual storage engines create any additional
files required for the tables that they manage.

A database may contain tables of different types. That is, tables need not all be created with the same
storage engine.

Transaction-safe tables (TSTs) have several advantages over non-transaction-safe tables (NTSTs):

• They are safer. Even if MySQL crashes or you get hardware problems, you can get your data back,
either by automatic recovery or from a backup plus the transaction log.

• You can combine many statements and accept them all at the same time with the COMMIT statement
(if autocommit is disabled).

• You can execute ROLLBACK to ignore your changes (if autocommit is disabled).

• If an update fails, all of your changes are reverted. (With non-transaction-safe tables, all changes that
have taken place are permanent.)

• Transaction-safe storage engines can provide better concurrency for tables that get many updates
concurrently with reads.

Storage Engines and Table Types

895

You can combine transaction-safe and non-transaction-safe tables in the same statements to get the best
of both worlds. However, although MySQL supports several transaction-safe storage engines, for best
results, you should not mix different storage engines within a transaction with autocommit disabled. For
example, if you do this, changes to non-transaction-safe tables still are committed immediately and can-
not be rolled back. For information about this and other problems that can occur in transactions that use
mixed storage engines, see Section 13.4.1, “START TRANSACTION, COMMIT, and ROLLBACK Syn-
tax”.

Non-transaction-safe tables have several advantages of their own, all of which occur because there is no
transaction overhead:

• Much faster

• Lower disk space requirements

• Less memory required to perform updates

14.1. The MyISAM Storage Engine
MyISAM is the default storage engine. It is based on the older ISAM code but has many useful exten-
sions. (Note that MySQL 5.0 does not support ISAM.)

Each MyISAM table is stored on disk in three files. The files have names that begin with the table name
and have an extension to indicate the file type. An .frm file stores the table format. The data file has an
.MYD (MYData) extension. The index file has an .MYI (MYIndex) extension.

To specify explicitly that you want a MyISAM table, indicate that with an ENGINE table option:

CREATE TABLE t (i INT) ENGINE = MYISAM;

The older term TYPE is supported as a synonym for ENGINE for backward compatibility, but ENGINE
is the preferred term and TYPE is deprecated.

Normally, it is unnecesary to use ENGINE to specify the MyISAM storage engine. MyISAM is the de-
fault engine unless the default has been changed. To ensure that MyISAM is used in situations where the
default might have been changed, include the ENGINE option explicitly.

You can check or repair MyISAM tables with the mysqlcheck client or myisamchk utility. You can
also compress MyISAM tables with myisampack to take up much less space. See Section 8.11,
“mysqlcheck — A Table Maintenance and Repair Program”, Section 5.10.4.1, “Using myisamchk
for Crash Recovery”, and Section 8.5, “myisampack — Generate Compressed, Read-Only MyISAM
Tables”.

MyISAM tables have the following characteristics:

• All data values are stored with the low byte first. This makes the data machine and operating system
independent. The only requirements for binary portability are that the machine uses
two's-complement signed integers and IEEE floating-point format. These requirements are widely
used among mainstream machines. Binary compatibility might not be applicable to embedded sys-
tems, which sometimes have peculiar processors.

There is no significant speed penalty for storing data low byte first; the bytes in a table row normally
are unaligned and it takes little more processing to read an unaligned byte in order than in reverse or-
der. Also, the code in the server that fetches column values is not time critical compared to other
code.

Storage Engines and Table Types

896

• All numeric key values are stored with the high byte first to allow better index compression.

• Large files (up to 63-bit file length) are supported on filesystems and operating systems that support
large files.

• There is a limit of 232 (~4.295E+09) rows in a MyISAM table. You can increase this limitation if you
build MySQL with the --with-big-tables option then the row limitation is increased to (232)2

(1.844E+19) rows. See Section 2.9.2, “Typical configure Options”. Beginning with MySQL
5.0.4 all standard binaries are built with this option.

• The maximum number of indexes per MyISAM table is 64. This can be changed by recompiling. Be-
ginning with MySQL 5.0.18, you can configure the build by invoking configure with the -
-with-max-indexes=N option, where N is the maximum number of indexes to permit per My-
ISAM table. N must be less thann or equal to 128. Before MySQL 5.0.18, you must change the
source.

The maximum number of columns per index is 16.

• The maximum key length is 1000 bytes. This can also be changed by changing the source and re-
compiling. For the case of a key longer than 250 bytes, a larger key block size than the default of
1024 bytes is used.

• When rows are inserted in sorted order (as when you are using an AUTO_INCREMENT column), the
index tree is split so that the high node only contains one key. This improves space utilization in the
index tree.

• Internal handling of one AUTO_INCREMENT column per table is supported. MyISAM automatically
updates this column for INSERT and UPDATE operations. This makes AUTO_INCREMENT
columns faster (at least 10%). Values at the top of the sequence are not reused after being deleted.
(When an AUTO_INCREMENT column is defined as the last column of a multiple-column index, re-
use of values deleted from the top of a sequence does occur.) The AUTO_INCREMENT value can be
reset with ALTER TABLE or myisamchk.

• Dynamic-sized rows are much less fragmented when mixing deletes with updates and inserts. This is
done by automatically combining adjacent deleted blocks and by extending blocks if the next block
is deleted.

• If a table has no free blocks in the middle of the data file, you can INSERT new rows into it at the
same time that other threads are reading from the table. (These are known as concurrent inserts.) A
free block can occur as a result of deleting rows or an update of a dynamic length row with more
data than its current contents. When all free blocks are used up (filled in), future inserts become con-
current again. See Section 7.3.3, “Concurrent Inserts”.

• You can put the data file and index file on different directories to get more speed with the DATA
DIRECTORY and INDEX DIRECTORY table options to CREATE TABLE. See Section 13.1.5,
“CREATE TABLE Syntax”.

• BLOB and TEXT columns can be indexed.

• NULL values are allowed in indexed columns. This takes 0–1 bytes per key.

• Each character column can have a different character set. See Chapter 10, Character Set Support.

• There is a flag in the MyISAM index file that indicates whether the table was closed correctly. If
mysqld is started with the --myisam-recover option, MyISAM tables are automatically
checked when opened, and are repaired if the table wasn't closed properly.

• myisamchk marks tables as checked if you run it with the --update-state option. myis-
amchk --fast checks only those tables that don't have this mark.

Storage Engines and Table Types

897

• myisamchk --analyze stores statistics for portions of keys, as well as for entire keys.

• myisampack can pack BLOB and VARCHAR columns.

MyISAM also supports the following features:

• Support for a true VARCHAR type; a VARCHAR column starts with a length stored in one or two
bytes.

• Tables with VARCHAR columns may have fixed or dynamic row length.

• The sum of the lengths of the VARCHAR and CHAR columns in a table may be up to 64KB.

• A hashed computed index can be used for UNIQUE. This allows you to have UNIQUE on any com-
bination of columns in a table. (However, you cannot search on a UNIQUE computed index.)

Additional resources

• A forum dedicated to the MyISAM storage engine is available at
http://forums.mysql.com/list.php?21.

14.1.1. MyISAM Startup Options
The following options to mysqld can be used to change the behavior of MyISAM tables. For additional
information, see Section 5.2.2, “Command Options”.

• --myisam-recover=mode

Set the mode for automatic recovery of crashed MyISAM tables.

• --delay-key-write=ALL

Don't flush key buffers between writes for any MyISAM table.

Note: If you do this, you should not access MyISAM tables from another program (such as from an-
other MySQL server or with myisamchk) when the tables are in use. Doing so risks index corrup-
tion. Using --external-locking does not eliminate this risk.

The following system variables affect the behavior of MyISAM tables. For additional information, see
Section 5.2.3, “System Variables”.

• bulk_insert_buffer_size

The size of the tree cache used in bulk insert optimization. Note: This is a limit per thread!

• myisam_max_extra_sort_file_size

Used to help MySQL to decide when to use the slow but safe key cache index creation method.
Note: This parameter was given in bytes before MySQL 5.0.6, when it was removed.

• myisam_max_sort_file_size

Storage Engines and Table Types

898

http://forums.mysql.com/list.php?21

The maximum size of the temporary file that MySQL is allowed to use while re-creating a MyISAM
index (during REPAIR TABLE, ALTER TABLE, or LOAD DATA INFILE). If the file size would
be larger than this value, the index is created using the key cache instead, which is slower. The value
is given in bytes.

• myisam_sort_buffer_size

Set the size of the buffer used when recovering tables.

Automatic recovery is activated if you start mysqld with the --myisam-recover option. In this
case, when the server opens a MyISAM table, it checks whether the table is marked as crashed or wheth-
er the open count variable for the table is not 0 and you are running the server with external locking dis-
abled. If either of these conditions is true, the following happens:

• The server checks the table for errors.

• If the server finds an error, it tries to do a fast table repair (with sorting and without re-creating the
data file).

• If the repair fails because of an error in the data file (for example, a duplicate-key error), the server
tries again, this time re-creating the data file.

• If the repair still fails, the server tries once more with the old repair option method (write row by row
without sorting). This method should be able to repair any type of error and has low disk space re-
quirements.

If the recovery wouldn't be able to recover all rows from previously completed statementas and you
didn't specify FORCE in the value of the --myisam-recover option, automatic repair aborts with an
error message in the error log:

Error: Couldn't repair table: test.g00pages

If you specify FORCE, a warning like this is written instead:

Warning: Found 344 of 354 rows when repairing ./test/g00pages

Note that if the automatic recovery value includes BACKUP, the recovery process creates files with
names of the form tbl_name-datetime.BAK. You should have a cron script that automatically
moves these files from the database directories to backup media.

14.1.2. Space Needed for Keys
MyISAM tables use B-tree indexes. You can roughly calculate the size for the index file as
(key_length+4)/0.67, summed over all keys. This is for the worst case when all keys are inserted
in sorted order and the table doesn't have any compressed keys.

String indexes are space compressed. If the first index part is a string, it is also prefix compressed. Space
compression makes the index file smaller than the worst-case figure if a string column has a lot of trail-
ing space or is a VARCHAR column that is not always used to the full length. Prefix compression is used
on keys that start with a string. Prefix compression helps if there are many strings with an identical pre-
fix.

In MyISAM tables, you can also prefix compress numbers by specifying the PACK_KEYS=1 table op-
tion when you create the table. Numbers are stored with the high byte first, so this helps when you have

Storage Engines and Table Types

899

many integer keys that have an identical prefix.

14.1.3. MyISAM Table Storage Formats
MyISAM supports three different storage formats. Two of them, fixed and dynamic format, are chosen
automatically depending on the type of columns you are using. The third, compressed format, can be
created only with the myisampack utility.

When you use CREATE TABLE or ALTER TABLE for a table that has no BLOB or TEXT columns,
you can force the table format to FIXED or DYNAMIC with the ROW_FORMAT table option. This causes
CHAR and VARCHAR columns to become CHAR for FIXED format, or VARCHAR for DYNAMIC format.

You can decompress tables by specifying ROW_FORMAT=DEFAULT with ALTER TABLE.

See Section 13.1.5, “CREATE TABLE Syntax”, for information about ROW_FORMAT.

14.1.3.1. Static (Fixed-Length) Table Characteristics

Static format is the default for MyISAM tables. It is used when the table contains no variable-length
columns (VARCHAR, VARBINARY, BLOB, or TEXT). Each row is stored using a fixed number of bytes.

Of the three MyISAM storage formats, static format is the simplest and most secure (least subject to cor-
ruption). It is also the fastest of the on-disk formats due to the ease with which rows in the data file can
be found on disk: To look up a row based on a row number in the index, multiply the row number by the
row length to calculate the row position. Also, when scanning a table, it is very easy to read a constant
number of rows with each disk read operation.

The security is evidenced if your computer crashes while the MySQL server is writing to a fixed-format
MyISAM file. In this case, myisamchk can easily determine where each row starts and ends, so it can
usually reclaim all rows except the partially written one. Note that MyISAM table indexes can always be
reconstructed based on the data rows.

Static-format tables have these characteristics:

• CHAR columns are space-padded to the column width. This is also true for NUMERIC and DECIMAL
columns created before MySQL 5.0.3. BINARY columns are space-padded to the column width be-
fore MySQL 5.0.15. As of 5.0.15, BINARY columns are padded with 0x00 bytes.

• Very quick.

• Easy to cache.

• Easy to reconstruct after a crash, because rows are located in fixed positions.

• Reorganization is unnecessary unless you delete a huge number of rows and want to return free disk
space to the operating system. To do this, use OPTIMIZE TABLE or myisamchk -r.

• Usually require more disk space than dynamic-format tables.

14.1.3.2. Dynamic Table Characteristics

Dynamic storage format is used if a MyISAM table contains any variable-length columns (VARCHAR,
VARBINARY, BLOB, or TEXT), or if the table was created with the ROW_FORMAT=DYNAMIC table op-
tion.

Dynamic format is a little more complex than static format because each row has a header that indicates
how long it is. A row can become fragmented (stored in non-contiguous pieces) when it is made longer

Storage Engines and Table Types

900

as a result of an update.

You can use OPTIMIZE TABLE or myisamchk -r to defragment a table. If you have fixed-length
columns that you access or change frequently in a table that also contains some variable-length columns,
it might be a good idea to move the variable-length columns to other tables just to avoid fragmentation.

Dynamic-format tables have these characteristics:

• All string columns are dynamic except those with a length less than four.

• Each row is preceded by a bitmap that indicates which columns contain the empty string (for string
columns) or zero (for numeric columns). Note that this does not include columns that contain NULL
values. If a string column has a length of zero after trailing space removal, or a numeric column has
a value of zero, it is marked in the bitmap and not saved to disk. Non-empty strings are saved as a
length byte plus the string contents.

• Much less disk space usually is required than for fixed-length tables.

• Each row uses only as much space as is required. However, if a row becomes larger, it is split into as
many pieces as are required, resulting in row fragmentation. For example, if you update a row with
information that extends the row length, the row becomes fragmented. In this case, you may have to
run OPTIMIZE TABLE or myisamchk -r from time to time to improve performance. Use my-
isamchk -ei to obtain table statistics.

• More difficult than static-format tables to reconstruct after a crash, because rows may be fragmented
into many pieces and links (fragments) may be missing.

• The expected row length for dynamic-sized rows is calculated using the following expression:

3
+ (number of columns + 7) / 8
+ (number of char columns)
+ (packed size of numeric columns)
+ (length of strings)
+ (number of NULL columns + 7) / 8

There is a penalty of 6 bytes for each link. A dynamic row is linked whenever an update causes an
enlargement of the row. Each new link is at least 20 bytes, so the next enlargement probably goes in
the same link. If not, another link is created. You can find the number of links using myisamchk -
ed. All links may be removed with OPTIMIZE TABLE or myisamchk -r.

14.1.3.3. Compressed Table Characteristics

Compressed storage format is a read-only format that is generated with the myisampack tool. Com-
pressed tables can be uncompressed with myisamchk.

Compressed tables have the following characteristics:

• Compressed tables take very little disk space. This minimizes disk usage, which is helpful when us-
ing slow disks (such as CD-ROMs).

• Each row is compressed separately, so there is very little access overhead. The header for a row
takes up one to three bytes depending on the biggest row in the table. Each column is compressed
differently. There is usually a different Huffman tree for each column. Some of the compression
types are:

• Suffix space compression.

Storage Engines and Table Types

901

• Prefix space compression.

• Numbers with a value of zero are stored using one bit.

• If values in an integer column have a small range, the column is stored using the smallest pos-
sible type. For example, a BIGINT column (eight bytes) can be stored as a TINYINT column
(one byte) if all its values are in the range from -128 to 127.

• If a column has only a small set of possible values, the data type is converted to ENUM.

• A column may use any combination of the preceding compression types.

• Can be used for fixed-length or dynamic-length rows.

Note. While a compressed table is read-only, and you cannot therefore update or add rows in the table,
DDL (Data Definition Language) operations are still valid. For example, you may still use DROP to drop
the table, and TRUNCATE to empty the table.

14.1.4. MyISAM Table Problems
The file format that MySQL uses to store data has been extensively tested, but there are always circum-
stances that may cause database tables to become corrupted. The following discussion describes how
this can happen and how to handle it.

14.1.4.1. Corrupted MyISAM Tables

Even though the MyISAM table format is very reliable (all changes to a table made by an SQL statement
are written before the statement returns), you can still get corrupted tables if any of the following events
occur:

• The mysqld process is killed in the middle of a write.

• An unexpected computer shutdown occurs (for example, the computer is turned off).

• Hardware failures.

• You are using an external program (such as myisamchk) to modify a table that is being modified
by the server at the same time.

• A software bug in the MySQL or MyISAM code.

Typical symptoms of a corrupt table are:

• You get the following error while selecting data from the table:

Incorrect key file for table: '...'. Try to repair it

• Queries don't find rows in the table or return incomplete results.

You can check the health of a MyISAM table using the CHECK TABLE statement, and repair a corrup-
ted MyISAM table with REPAIR TABLE. When mysqld is not running, you can also check or repair a
table with the myisamchk command. See Section 13.5.2.3, “CHECK TABLE Syntax”, Sec-

Storage Engines and Table Types

902

tion 13.5.2.6, “REPAIR TABLE Syntax”, and Section 8.3, “myisamchk — MyISAM Table-
Maintenance Utility”.

If your tables become corrupted frequently, you should try to determine why this is happening. The most
important thing to know is whether the table became corrupted as a result of a server crash. You can
verify this easily by looking for a recent restarted mysqld message in the error log. If there is
such a message, it is likely that table corruption is a result of the server dying. Otherwise, corruption
may have occurred during normal operation. This is a bug. You should try to create a reproducible test
case that demonstrates the problem. See Section A.4.2, “What to Do If MySQL Keeps Crashing”, and
Section E.1.6, “Making a Test Case If You Experience Table Corruption”.

14.1.4.2. Problems from Tables Not Being Closed Properly

Each MyISAM index file (.MYI file) has a counter in the header that can be used to check whether a ta-
ble has been closed properly. If you get the following warning from CHECK TABLE or myisamchk, it
means that this counter has gone out of sync:

clients are using or haven't closed the table properly

This warning doesn't necessarily mean that the table is corrupted, but you should at least check the table.

The counter works as follows:

• The first time a table is updated in MySQL, a counter in the header of the index files is incremented.

• The counter is not changed during further updates.

• When the last instance of a table is closed (because a FLUSH TABLES operation was performed or
because there is no room in the table cache), the counter is decremented if the table has been updated
at any point.

• When you repair the table or check the table and it is found to be okay, the counter is reset to zero.

• To avoid problems with interaction with other processes that might check the table, the counter is
not decremented on close if it was zero.

In other words, the counter can become incorrect only under these conditions:

• A MyISAM table is copied without first issuing LOCK TABLES and FLUSH TABLES.

• MySQL has crashed between an update and the final close. (Note that the table may still be okay, be-
cause MySQL always issues writes for everything between each statement.)

• A table was modified by myisamchk --recover or myisamchk --update-state at the
same time that it was in use by mysqld.

• Multiple mysqld servers are using the table and one server performed a REPAIR TABLE or
CHECK TABLE on the table while it was in use by another server. In this setup, it is safe to use
CHECK TABLE, although you might get the warning from other servers. However, REPAIR TA-
BLE should be avoided because when one server replaces the data file with a new one, this is not
known to the other servers.

In general, it is a bad idea to share a data directory among multiple servers. See Section 5.13,
“Running Multiple MySQL Servers on the Same Machine”, for additional discussion.

Storage Engines and Table Types

903

14.2. The InnoDB Storage Engine

14.2.1. InnoDB Overview
InnoDB provides MySQL with a transaction-safe (ACID compliant) storage engine that has commit,
rollback, and crash recovery capabilities. InnoDB does locking on the row level and also provides an
Oracle-style consistent non-locking read in SELECT statements. These features increase multi-user con-
currency and performance. There is no need for lock escalation in InnoDB because row-level locks fit
in very little space. InnoDB also supports FOREIGN KEY constraints. You can freely mix InnoDB
tables with tables from other MySQL storage engines, even within the same statement.

InnoDB has been designed for maximum performance when processing large data volumes. Its CPU ef-
ficiency is probably not matched by any other disk-based relational database engine.

Fully integrated with MySQL Server, the InnoDB storage engine maintains its own buffer pool for
caching data and indexes in main memory. InnoDB stores its tables and indexes in a tablespace, which
may consist of several files (or raw disk partitions). This is different from, for example, MyISAM tables
where each table is stored using separate files. InnoDB tables can be of any size even on operating sys-
tems where file size is limited to 2GB.

InnoDB is included in binary distributions by default. The Windows Essentials installer makes In-
noDB the MySQL default storage engine on Windows.

InnoDB is used in production at numerous large database sites requiring high performance. The famous
Internet news site Slashdot.org runs on InnoDB. Mytrix, Inc. stores over 1TB of data in InnoDB, and
another site handles an average load of 800 inserts/updates per second in InnoDB.

InnoDB is published under the same GNU GPL License Version 2 (of June 1991) as MySQL. For more
information on MySQL licensing, see http://www.mysql.com/company/legal/licensing/.

Additional resources

• A forum dedicated to the InnoDB storage engine is available at
http://forums.mysql.com/list.php?22.

14.2.2. InnoDB Contact Information
Contact information for Innobase Oy, producer of the InnoDB engine:

Web site: http://www.innodb.com/
Email: <sales@innodb.com>
Phone: +358-9-6969 3250 (office)

+358-40-5617367 (mobile)

Innobase Oy Inc.
World Trade Center Helsinki
Aleksanterinkatu 17
P.O.Box 800
00101 Helsinki
Finland

14.2.3. InnoDB Configuration
The InnoDB storage engine is enabled by default. If you don't want to use InnoDB tables, you can add
the skip-innodb option to your MySQL option file.

Note: InnoDB provides MySQL with a transaction-safe (ACID compliant) storage engine that has com-

Storage Engines and Table Types

904

http://www.mysql.com/company/legal/licensing/
http://forums.mysql.com/list.php?22
http://www.innodb.com/

mit, rollback, and crash recovery capabilities. However, it cannot do so if the underlying operating sys-
tem or hardware does not work as advertised. Many operating systems or disk subsystems may delay or
reorder write operations to improve performance. On some operating systems, the very system call that
should wait until all unwritten data for a file has been flushed — fsync() — might actually return be-
fore the data has been flushed to stable storage. Because of this, an operating system crash or a power
outage may destroy recently committed data, or in the worst case, even corrupt the database because of
write operations having been reordered. If data integrity is important to you, you should perform some
“pull-the-plug” tests before using anything in production. On Mac OS X 10.3 and up, InnoDB uses a
special fcntl() file flush method. Under Linux, it is advisable to disable the write-back cache.

On ATAPI hard disks, a command such hdparm -W0 /dev/hda may work to disable the write-
back cache. Beware that some drives or disk controllers may be unable to disable the write-back
cache.

Two important disk-based resources managed by the InnoDB storage engine are its tablespace data files
and its log files.

Note: If you specify no InnoDB configuration options, MySQL creates an auto-extending 10MB data
file named ibdata1 and two 5MB log files named ib_logfile0 and ib_logfile1 in the
MySQL data directory. To get good performance, you should explicitly provide InnoDB parameters as
discussed in the following examples. Naturally, you should edit the settings to suit your hardware and
requirements.

The examples shown here are representative. See Section 14.2.4, “InnoDB Startup Options and System
Variables” for additional information about InnoDB-related configuration parameters.

To set up the InnoDB tablespace files, use the innodb_data_file_path option in the [mysqld]
section of the my.cnf option file. On Windows, you can use my.ini instead. The value of in-
nodb_data_file_path should be a list of one or more data file specifications. If you name more
than one data file, separate them by semicolon (‘;’) characters:

innodb_data_file_path=datafile_spec1[;datafile_spec2]...

For example, a setting that explicitly creates a tablespace having the same characteristics as the default
is as follows:

[mysqld]
innodb_data_file_path=ibdata1:10M:autoextend

This setting configures a single 10MB data file named ibdata1 that is auto-extending. No location for
the file is given, so by default, InnoDB creates it in the MySQL data directory.

Sizes are specified using M or G suffix letters to indicate units of MB or GB.

A tablespace containing a fixed-size 50MB data file named ibdata1 and a 50MB auto-extending file
named ibdata2 in the data directory can be configured like this:

[mysqld]
innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

The full syntax for a data file specification includes the filename, its size, and several optional attributes:

file_name:file_size[:autoextend[:max:max_file_size]]

The autoextend attribute and those following can be used only for the last data file in the in-
nodb_data_file_path line.

If you specify the autoextend option for the last data file, InnoDB extends the data file if it runs out
of free space in the tablespace. The increment is 8MB at a time by default. It can be modified by chan-

Storage Engines and Table Types

905

ging the innodb_autoextend_increment system variable.

If the disk becomes full, you might want to add another data file on another disk. Instructions for recon-
figuring an existing tablespace are given in Section 14.2.7, “Adding and Removing InnoDB Data and
Log Files”.

InnoDB is not aware of the filesystem maximum file size, so be cautious on filesystems where the max-
imum file size is a small value such as 2GB. To specify a maximum size for an auto-extending data file,
use the max attribute. The following configuration allows ibdata1 to grow up to a limit of 500MB:

[mysqld]
innodb_data_file_path=ibdata1:10M:autoextend:max:500M

InnoDB creates tablespace files in the MySQL data directory by default. To specify a location expli-
citly, use the innodb_data_home_dir option. For example, to use two files named ibdata1 and
ibdata2 but create them in the /ibdata directory, configure InnoDB like this:

[mysqld]
innodb_data_home_dir = /ibdata
innodb_data_file_path=ibdata1:50M;ibdata2:50M:autoextend

Note: InnoDB does not create directories, so make sure that the /ibdata directory exists before you
start the server. This is also true of any log file directories that you configure. Use the Unix or DOS mk-
dir command to create any necessary directories.

InnoDB forms the directory path for each data file by textually concatenating the value of in-
nodb_data_home_dir to the data file name, adding a pathname separator (slash or backslash)
between values if necessary. If the innodb_data_home_dir option is not mentioned in my.cnf at
all, the default value is the “dot” directory ./, which means the MySQL data directory. (The MySQL
server changes its current working directory to its data directory when it begins executing.)

If you specify innodb_data_home_dir as an empty string, you can specify absolute paths for the
data files listed in the innodb_data_file_path value. The following example is equivalent to the
preceding one:

[mysqld]
innodb_data_home_dir =
innodb_data_file_path=/ibdata/ibdata1:50M;/ibdata/ibdata2:50M:autoextend

A simple my.cnf example. Suppose that you have a computer with 128MB RAM and one hard disk.
The following example shows possible configuration parameters in my.cnf or my.ini for InnoDB,
including the autoextend attribute. The example suits most users, both on Unix and Windows, who
do not want to distribute InnoDB data files and log files onto several disks. It creates an auto-extending
data file ibdata1 and two InnoDB log files ib_logfile0 and ib_logfile1 in the MySQL data
directory. Also, the small archived InnoDB log file ib_arch_log_0000000000 that InnoDB cre-
ates automatically ends up in the data directory.

[mysqld]
You can write your other MySQL server options here
...
Data files must be able to hold your data and indexes.
Make sure that you have enough free disk space.
innodb_data_file_path = ibdata1:10M:autoextend
#
Set buffer pool size to 50-80% of your computer's memory
innodb_buffer_pool_size=70M
innodb_additional_mem_pool_size=10M
#
Set the log file size to about 25% of the buffer pool size
innodb_log_file_size=20M
innodb_log_buffer_size=8M
#
innodb_flush_log_at_trx_commit=1

Storage Engines and Table Types

906

Make sure that the MySQL server has the proper access rights to create files in the data directory. More
generally, the server must have access rights in any directory where it needs to create data files or log
files.

Note that data files must be less than 2GB in some filesystems. The combined size of the log files must
be less than 4GB. The combined size of data files must be at least 10MB.

When you create an InnoDB tablespace for the first time, it is best that you start the MySQL server
from the command prompt. InnoDB then prints the information about the database creation to the
screen, so you can see what is happening. For example, on Windows, if mysqld is located in
C:\Program Files\MySQL\MySQL Server 5.0\bin, you can start it like this:

C:\> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqld" --console

If you do not send server output to the screen, check the server's error log to see what InnoDB prints
during the startup process.

See Section 14.2.5, “Creating the InnoDB Tablespace”, for an example of what the information dis-
played by InnoDB should look like.

You can place InnoDB options in the [mysqld] group of any option file that your server reads when
it starts. The locations for option files are described in Section 4.3.2, “Using Option Files”.

If you installed MySQL on Windows using the installation and configuration wizards, the option file
will be the my.ini file located in your MySQL installation directory. See Section 2.3.4.14, “The Loca-
tion of the my.ini File”.

If your PC uses a boot loader where the C: drive is not the boot drive, your only option is to use the
my.ini file in your Windows directory (typically C:\WINDOWS or C:\WINNT). You can use the
SET command at the command prompt in a console window to print the value of WINDIR:

C:\> SET WINDIR
windir=C:\WINDOWS

If you want to make sure that mysqld reads options only from a specific file, you can use the -
-defaults-file option as the first option on the command line when starting the server:

mysqld --defaults-file=your_path_to_my_cnf

An advanced my.cnf example. Suppose that you have a Linux computer with 2GB RAM and three
60GB hard disks at directory paths /, /dr2 and /dr3. The following example shows possible config-
uration parameters in my.cnf for InnoDB.

[mysqld]
You can write your other MySQL server options here
...
innodb_data_home_dir =
#
Data files must be able to hold your data and indexes
innodb_data_file_path = /ibdata/ibdata1:2000M;/dr2/ibdata/ibdata2:2000M:autoextend
#
Set buffer pool size to 50-80% of your computer's memory,
but make sure on Linux x86 total memory usage is < 2GB
innodb_buffer_pool_size=1G
innodb_additional_mem_pool_size=20M
innodb_log_group_home_dir = /dr3/iblogs
#
innodb_log_files_in_group = 2
#
Set the log file size to about 25% of the buffer pool size
innodb_log_file_size=250M
innodb_log_buffer_size=8M
#
innodb_flush_log_at_trx_commit=1

Storage Engines and Table Types

907

innodb_lock_wait_timeout=50
#
Uncomment the next lines if you want to use them
#innodb_thread_concurrency=5

In some cases, database performance improves the if all data is not placed on the same physical disk.
Putting log files on a different disk from data is very often beneficial for performance. The example il-
lustrates how to do this. It places the two data files on different disks and places the log files on the third
disk. InnoDB fills the tablespace beginning with the first data file. You can also use raw disk partitions
(raw devices) as InnoDB data files, which may speed up I/O. See Section 14.2.3.2, “Using Raw
Devices for the Shared Tablespace”.

Warning: On 32-bit GNU/Linux x86, you must be careful not to set memory usage too high. glibc
may allow the process heap to grow over thread stacks, which crashes your server. It is a risk if the value
of the following expression is close to or exceeds 2GB:

innodb_buffer_pool_size
+ key_buffer_size
+ max_connections*(sort_buffer_size+read_buffer_size+binlog_cache_size)
+ max_connections*2MB

Each thread uses a stack (often 2MB, but only 256KB in MySQL AB binaries) and in the worst case
also uses sort_buffer_size + read_buffer_size additional memory.

By compiling MySQL yourself, you can use up to 64GB of physical memory in 32-bit Windows. See
the description for innodb_buffer_pool_awe_mem_mb in Section 14.2.4, “InnoDB Startup Op-
tions and System Variables”.

How to tune other mysqld server parameters? The following values are typical and suit most users:

[mysqld]
skip-external-locking
max_connections=200
read_buffer_size=1M
sort_buffer_size=1M
#
Set key_buffer to 5 - 50% of your RAM depending on how much
you use MyISAM tables, but keep key_buffer_size + InnoDB
buffer pool size < 80% of your RAM
key_buffer_size=value

14.2.3.1. Using Per-Table Tablespaces

You can store each InnoDB table and its indexes in its own file. This feature is called “multiple ta-
blespaces” because in effect each table has its own tablespace.

Using multiple tablespaces can be beneficial to users who want to move specific tables to separate phys-
ical disks or who wish to restore backups of single tables quickly without interrupting the use of the re-
maining InnoDB tables.

You can enable multiple tablespaces by adding this line to the [mysqld] section of my.cnf:

[mysqld]
innodb_file_per_table

After restarting the server, InnoDB stores each newly created table into its own file tbl_name.ibd
in the database directory where the table belongs. This is similar to what the MyISAM storage engine
does, but MyISAM divides the table into a data file tbl_name.MYD and the index file
tbl_name.MYI. For InnoDB, the data and the indexes are stored together in the .ibd file. The
tbl_name.frm file is still created as usual.

Storage Engines and Table Types

908

If you remove the innodb_file_per_table line from my.cnf and restart the server, InnoDB
creates tables inside the shared tablespace files again.

innodb_file_per_table affects only table creation, not access to existing tables. If you start the
server with this option, new tables are created using .ibd files, but you can still access tables that exist
in the shared tablespace. If you remove the option and restart the server, new tables are created in the
shared tablespace, but you can still access any tables that were created using multiple tablespaces.

Note: InnoDB always needs the shared tablespace because it puts its internal data dictionary and undo
logs there. The .ibd files are not sufficient for InnoDB to operate.

Note: You cannot freely move .ibd files between database directories as you can with MyISAM table
files. This is because the table definition that is stored in the InnoDB shared tablespace includes the
database name, and because InnoDB must preserve the consistency of transaction IDs and log sequence
numbers.

To move an .ibd file and the associated table from one database to another, use a RENAME TABLE
statement:

RENAME TABLE db1.tbl_name TO db2.tbl_name;

If you have a “clean” backup of an .ibd file, you can restore it to the MySQL installation from which it
originated as follows:

1. Issue this ALTER TABLE statement:

ALTER TABLE tbl_name DISCARD TABLESPACE;

Caution: This statement deletes the current .ibd file.

2. Put the backup .ibd file back in the proper database directory.

3. Issue this ALTER TABLE statement:

ALTER TABLE tbl_name IMPORT TABLESPACE;

In this context, a “clean” .ibd file backup means:

• There are no uncommitted modifications by transactions in the .ibd file.

• There are no unmerged insert buffer entries in the .ibd file.

• Purge has removed all delete-marked index records from the .ibd file.

• mysqld has flushed all modified pages of the .ibd file from the buffer pool to the file.

You can make a clean backup .ibd file using the following method:

1. Stop all activity from the mysqld server and commit all transactions.

2. Wait until SHOW ENGINE INNODB STATUS shows that there are no active transactions in the
database, and the main thread status of InnoDB is Waiting for server activity. Then
you can make a copy of the .ibd file.

Storage Engines and Table Types

909

Another method for making a clean copy of an .ibd file is to use the commercial InnoDB Hot
Backup tool:

1. Use InnoDB Hot Backup to back up the InnoDB installation.

2. Start a second mysqld server on the backup and let it clean up the .ibd files in the backup.

14.2.3.2. Using Raw Devices for the Shared Tablespace

You can use raw disk partitions as data files in the shared tablespace. By using a raw disk, you can per-
form non-buffered I/O on Windows and on some Unix systems without filesystem overhead, which may
improve performance.

When you create a new data file, you must put the keyword newraw immediately after the data file size
in innodb_data_file_path. The partition must be at least as large as the size that you specify.
Note that 1MB in InnoDB is 1024 × 1024 bytes, whereas 1MB in disk specifications usually means
1,000,000 bytes.

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=/dev/hdd1:3Gnewraw;/dev/hdd2:2Gnewraw

The next time you start the server, InnoDB notices the newraw keyword and initializes the new parti-
tion. However, do not create or change any InnoDB tables yet. Otherwise, when you next restart the
server, InnoDB reinitializes the partition and your changes are lost. (As a safety measure InnoDB pre-
vents users from modifying data when any partition with newraw is specified.)

After InnoDB has initialized the new partition, stop the server, change newraw in the data file spe-
cification to raw:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=/dev/hdd1:5Graw;/dev/hdd2:2Graw

Then restart the server and InnoDB allows changes to be made.

On Windows, you can allocate a disk partition as a data file like this:

[mysqld]
innodb_data_home_dir=
innodb_data_file_path=//./D::10Gnewraw

The //./ corresponds to the Windows syntax of \\.\ for accessing physical drives.

When you use raw disk partitions, be sure that they have permissions that allow read and write access by
the account used for running the MySQL server.

14.2.4. InnoDB Startup Options and System Variables
This section describes the InnoDB-related command options and system variables. System variables
that are true or false can be enabled at server startup by naming them, or disabled by using a skip- pre-
fix. For example, to enable or disable InnoDB checksums, you can use --innodb_checksums or -
-skip-innodb_checksums on the command line, or innodb_checksums or skip-in-
nodb_checksums in an option file. System variables that take a numeric value can be specified as
--var_name=value on the command line or as var_name=value in option files. For more in-
formation on specifying options and system variables, see Section 4.3, “Specifying Program Options”.

Storage Engines and Table Types

910

Many of the system variables can be changed at runtime (see Section 5.2.4.2, “Dynamic System Vari-
ables”).

InnoDB command options:

• --innodb

Enables the InnoDB storage engine, if the server was compiled with InnoDB support. Use -
-skip-innodb to disable InnoDB.

• --innodb_status_file

Causes InnoDB to create a file named <datadir>/innodb_status.<pid> in the MySQL
data directory. InnoDB periodically writes the output of SHOW ENGINE INNODB STATUS to
this file.

InnoDB system variables:

• innodb_additional_mem_pool_size

The size in bytes of a memory pool InnoDB uses to store data dictionary information and other in-
ternal data structures. The more tables you have in your application, the more memory you need to
allocate here. If InnoDB runs out of memory in this pool, it starts to allocate memory from the oper-
ating system and writes warning messages to the MySQL error log. The default value is 1MB.

• innodb_autoextend_increment

The increment size (in MB) for extending the size of an auto-extending tablespace when it becomes
full. The default value is 8.

• innodb_buffer_pool_awe_mem_mb

The size of the buffer pool (in MB), if it is placed in the AWE memory. This is relevant only in
32-bit Windows. If your 32-bit Windows operating system supports more than 4GB memory, using
so-called “Address Windowing Extensions,” you can allocate the InnoDB buffer pool into the AWE
physical memory using this variable. The maximum possible value for this variable is 63000. If it is
greater than 0, innodb_buffer_pool_size is the window in the 32-bit address space of
mysqld where InnoDB maps that AWE memory. A good value for in-
nodb_buffer_pool_size is 500MB.

To take advantage of AWE memory, you will need to recompile MySQL yourself. The current
project settings needed for doing this can be found in the innobase/os/os0proj.c source file.

• innodb_buffer_pool_size

The size in bytes of the memory buffer InnoDB uses to cache data and indexes of its tables. The lar-
ger you set this value, the less disk I/O is needed to access data in tables. On a dedicated database
server, you may set this to up to 80% of the machine physical memory size. However, do not set it
too large because competition for physical memory might cause paging in the operating system.

• innodb_checksums

InnoDB can use checksum validation on all pages read from the disk to ensure extra fault tolerance
against broken hardware or data files. This validation is enabled by default. However, under some
rare circumstances (such as when running benchmarks) this extra safety feature is unneeded and can
be disabled with --skip-innodb_checksums. This variable was added in MySQL 5.0.3.

Storage Engines and Table Types

911

• innodb_commit_concurrency

The number of threads that can commit at the same time. A value of 0 disables concurrency control.
This variable was added in MySQL 5.0.12.

• innodb_concurrency_tickets

The number of threads that can enter InnoDB concurrently is determined by the in-
nodb_thread_concurrency variable. A thread is placed in a queue when it tries to enter In-
noDB if the number of threads has already reached the concurrency limit. When a thread is allowed
to enter InnoDB, it is given a number of “free tickets” equal to the value of in-
nodb_concurrency_tickets, and the thread can enter and leave InnoDB freely until it has
used up its tickets. After that point, the thread again becomes subject to the concurrency check (and
possible queuing) the next time it tries to enter InnoDB. This variable was added in MySQL 5.0.3.

• innodb_data_file_path

The paths to individual data files and their sizes. The full directory path to each data file is formed
by concatenating innodb_data_home_dir to each path specified here. The file sizes are spe-
cified in MB or GB (1024MB) by appending M or G to the size value. The sum of the sizes of the
files must be at least 10MB. If you do not specify innodb_data_file_path, the default beha-
vior is to create a single 10MB auto-extending data file named ibdata1. The size limit of individu-
al files is determined by your operating system. You can set the file size to more than 4GB on those
operating systems that support big files. You can also use raw disk partitions as data files. See Sec-
tion 14.2.3.2, “Using Raw Devices for the Shared Tablespace”.

• innodb_data_home_dir

The common part of the directory path for all InnoDB data files. If you do not set this value, the de-
fault is the MySQL data directory. You can specify the value as an empty string, in which case you
can use absolute file paths in innodb_data_file_path.

• innodb_doublewrite

By default, InnoDB stores all data twice, first to the doublewrite buffer, and then to the actual data
files. This variable is enabled by default. It can be turned off with -
-skip-innodb_doublewrite for benchmarks or cases when top performance is needed rather
than concern for data integrity or possible failures. This variable was added in MySQL 5.0.3.

• innodb_fast_shutdown

If you set this variable to 0, InnoDB does a full purge and an insert buffer merge before a shutdown.
These operations can take minutes, or even hours in extreme cases. If you set this variable to 1, In-
noDB skips these operations at shutdown. The default value is 1. If you set it to 2, InnoDB will just
flush its logs and then shut down cold, as if MySQL had crashed; no committed transaction will be
lost, but crash recovery will be done at the next startup. The value of 2 can be used as of MySQL
5.0.5, except that it cannot be used on NetWare.

• innodb_file_io_threads

The number of file I/O threads in InnoDB. Normally, this should be left at the default value of 4,
but disk I/O on Windows may benefit from a larger number. On Unix, increasing the number has no
effect; InnoDB always uses the default value.

• innodb_file_per_table

If this variable is enabled, InnoDB creates each new table using its own .ibd file for storing data
and indexes, rather than in the shared tablespace. The default is to create tables in the shared ta-
blespace. See Section 14.2.3.1, “Using Per-Table Tablespaces”.

Storage Engines and Table Types

912

• innodb_flush_log_at_trx_commit

When innodb_flush_log_at_trx_commit is set to 0, the log buffer is written out to the log
file once per second and the flush to disk operation is performed on the log file, but nothing is done
at a transaction commit. When this value is 1 (the default), the log buffer is written out to the log file
at each transaction commit and the flush to disk operation is performed on the log file. When set to
2, the log buffer is written out to the file at each commit, but the flush to disk operation is not per-
formed on it. However, the flushing on the log file takes place once per second also when the value
is 2. Note that the once-per-second flushing is not 100% guaranteed to happen every second, due to
process scheduling issues.

The default value of this variable is 1, which is the value that is required for ACID compliance. You
can achieve better performance by setting the value different from 1, but then you can lose at most
one second worth of transactions in a crash. If you set the value to 0, then any mysqld process
crash can erase the last second of transactions. If you set the value to 2, then only an operating sys-
tem crash or a power outage can erase the last second of transactions. However, InnoDB's crash re-
covery is not affected and thus crash recovery does work regardless of the value. Note that many op-
erating systems and some disk hardware fool the flush-to-disk operation. They may tell mysqld
that the flush has taken place, even though it has not. Then the durability of transactions is not guar-
anteed even with the setting 1, and in the worst case a power outage can even corrupt the InnoDB
database. Using a battery-backed disk cache in the SCSI disk controller or in the disk itself speeds up
file flushes, and makes the operation safer. You can also try using the Unix command hdparm to
disable the caching of disk writes in hardware caches, or use some other command specific to the
hardware vendor.

Note: For the greatest possible durability and consistency in a replication setup using InnoDB with
transactions, you should use innodb_flush_log_at_trx_commit=1, sync_binlog=1,
and, before MySQL 5.0.3, innodb_safe_binlog in your master server my.cnf file. (in-
nodb_safe_binlog is not needed from 5.0.3 on.)

• innodb_flush_method

If set to fdatasync (the default), InnoDB uses fsync() to flush both the data and log files. If
set to O_DSYNC, InnoDB uses O_SYNC to open and flush the log files, but uses fsync() to flush
the data files. If O_DIRECT is specified (available on some GNU/Linux versions), InnoDB uses
O_DIRECT to open the data files, and uses fsync() to flush both the data and log files. Note that
InnoDB uses fsync() instead of fdatasync(), and it does not use O_DSYNC by default be-
cause there have been problems with it on many varieties of Unix. This variable is relevant only for
Unix. On Windows, the flush method is always async_unbuffered and cannot be changed.

Different values of this variable can have a marked effect on InnoDB performance. For ex-
ample, on some systems where InnoDB data and log files are located on a SAN, it has been found
that setting innodb_flush_method to O_DIRECT can degrade performance of simple SELECT
statements by a factor of three.

• innodb_force_recovery

The crash recovery mode. Warning: This variable should be set greater than 0 only in an emergency
situation when you want to dump your tables from a corrupt database! Possible values are from 1 to
6. The meanings of these values are described in Section 14.2.8.1, “Forcing InnoDB Recovery”. As
a safety measure, InnoDB prevents any changes to its data when this variable is greater than 0.

• innodb_lock_wait_timeout

The timeout in seconds an InnoDB transaction may wait for a lock before being rolled back. In-
noDB automatically detects transaction deadlocks in its own lock table and rolls back the transac-
tion. InnoDB notices locks set using the LOCK TABLES statement. The default is 50 seconds.

Storage Engines and Table Types

913

• innodb_locks_unsafe_for_binlog

This variable controls next-key locking in InnoDB searches and index scans. By default, this vari-
able is 0 (disabled), which means that next-key locking is enabled.

Normally, InnoDB uses an algorithm called next-key locking. InnoDB performs row-level locking
in such a way that when it searches or scans a table index, it sets shared or exclusive locks on any in-
dex records it encounters. Thus, the row-level locks are actually index record locks. The locks that
InnoDB sets on index records also affect the “gap” preceding that index record. If a user has a
shared or exclusive lock on record R in an index, another user cannot insert a new index record im-
mediately before R in the order of the index. Enabling this variable causes InnoDB not to use next-
key locking in searches or index scans. Next-key locking is still used to ensure foreign key con-
straints and duplicate key checking. Note that enabling this variable may cause phantom problems:
Suppose that you want to read and lock all children from the child table with an identifier value
larger than 100, with the intention of updating some column in the selected rows later:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

Suppose that there is an index on the id column. The query scans that index starting from the first
record where id is greater than 100. If the locks set on the index records do not lock out inserts
made in the gaps, another client can insert a new row into the table. If you execute the same SE-
LECT within the same transaction, you see a new row in the result set returned by the query. This
also means that if new items are added to the database, InnoDB does not guarantee serializability.
Therefore, if this variable is enabled InnoDB guarantees at most isolation level READ COMMIT-
TED. (Conflict serializability is still guaranteed.)

Starting from MySQL 5.0.2, this option is even more unsafe. InnoDB in an UPDATE or a DELETE
only locks rows that it updates or deletes. This greatly reduces the probability of deadlocks, but they
can happen. Note that enabling this variable still does not allow operations such as UPDATE to over-
take other similar operations (such as another UPDATE) even in the case when they affect different
rows. Consider the following example, beginning with this table:

CREATE TABLE A(A INT NOT NULL, B INT) ENGINE = InnoDB;
INSERT INTO A VALUES (1,2),(2,3),(3,2),(4,3),(5,2);
COMMIT;

Suppose that one client executes these statements:

SET AUTOCOMMIT = 0;
UPDATE A SET B = 5 WHERE B = 3;

Then suppose that another client executes these statements following those of the first client:

SET AUTOCOMMIT = 0;
UPDATE A SET B = 4 WHERE B = 2;

In this case, the second UPDATE must wait for a commit or rollback of the first UPDATE. The first
UPDATE has an exclusive lock on row (2,3), and the second UPDATE while scanning rows also tries
to acquire an exclusive lock for the same row, which it cannot have. This is because UPDATE two
first acquires an exclusive lock on a row and then determines whether the row belongs to the result
set. If not, it releases the unnecessary lock, when the innodb_locks_unsafe_for_binlog
variable is enabled.

Therefore, InnoDB executes UPDATE one as follows:

x-lock(1,2)
unlock(1,2)
x-lock(2,3)
update(2,3) to (2,5)

Storage Engines and Table Types

914

x-lock(3,2)
unlock(3,2)
x-lock(4,3)
update(4,3) to (4,5)
x-lock(5,2)
unlock(5,2)

InnoDB executes UPDATE two as follows:

x-lock(1,2)
update(1,2) to (1,4)
x-lock(2,3) - wait for query one to commit or rollback

• innodb_log_arch_dir

The directory where fully written log files would be archived if we used log archiving. If used, the
value of this variable should be set the same as innodb_log_group_home_dir. However, it is
not required.

• innodb_log_archive

Whether to log InnoDB archive files. This variable is present for historical reasons, but is unused.
Recovery from a backup is done by MySQL using its own log files, so there is no need to archive
InnoDB log files. The default for this variable is 0.

• innodb_log_buffer_size

The size in bytes of the buffer that InnoDB uses to write to the log files on disk. Sensible values
range from 1MB to 8MB. The default is 1MB. A large log buffer allows large transactions to run
without a need to write the log to disk before the transactions commit. Thus, if you have big transac-
tions, making the log buffer larger saves disk I/O.

• innodb_log_file_size

The size in bytes of each log file in a log group. The combined size of log files must be less than
4GB on 32-bit computers. The default is 5MB. Sensible values range from 1MB to 1/N-th of the size
of the buffer pool, where N is the number of log files in the group. The larger the value, the less
checkpoint flush activity is needed in the buffer pool, saving disk I/O. But larger log files also mean
that recovery is slower in case of a crash.

• innodb_log_files_in_group

The number of log files in the log group. InnoDB writes to the files in a circular fashion. The de-
fault (and recommended) is 2.

• innodb_log_group_home_dir

The directory path to the InnoDB log files. It must have the same value as in-
nodb_log_arch_dir. If you do not specify any InnoDB log variables, the default is to create
two 5MB files names ib_logfile0 and ib_logfile1 in the MySQL data directory.

• innodb_max_dirty_pages_pct

This is an integer in the range from 0 to 100. The default is 90. The main thread in InnoDB tries to
write pages from the buffer pool so that the percentage of dirty (not yet written) pages will not ex-
ceed this value.

• innodb_max_purge_lag

Storage Engines and Table Types

915

This variable controls how to delay INSERT, UPDATE and DELETE operations when the purge op-
erations are lagging (see Section 14.2.12, “Implementation of Multi-Versioning”). The default value
of this variable is 0, meaning that there are no delays.

The InnoDB transaction system maintains a list of transactions that have delete-marked index re-
cords by UPDATE or DELETE operations. Let the length of this list be purge_lag. When
purge_lag exceeds innodb_max_purge_lag, each INSERT, UPDATE and DELETE opera-
tion is delayed by ((purge_lag/innodb_max_purge_lag)×10)–5 milliseconds. The delay is
computed in the beginning of a purge batch, every ten seconds. The operations are not delayed if
purge cannot run because of an old consistent read view that could see the rows to be purged.

A typical setting for a problematic workload might be 1 million, assuming that our transactions are
small, only 100 bytes in size, and we can allow 100MB of unpurged rows in our tables.

• innodb_mirrored_log_groups

The number of identical copies of log groups to keep for the database. Currently, this should be set
to 1.

• innodb_open_files

This variable is relevant only if you use multiple tablespaces in InnoDB. It specifies the maximum
number of .ibd files that InnoDB can keep open at one time. The minimum value is 10. The de-
fault is 300.

The file descriptors used for .ibd files are for InnoDB only. They are independent of those spe-
cified by the --open-files-limit server option, and do not affect the operation of the table
cache.

• innodb_safe_binlog

Adds consistency guarantees between the content of InnoDB tables and the binary log. See Sec-
tion 5.12.3, “The Binary Log”. This variable was removed in MySQL 5.0.3, having been made ob-
solete by the introduction of XA transaction support.

• innodb_support_xa

When set to ON or 1 (the default), this variable enables InnoDB support for two-phase commit in
XA transactions. Enabling innodb_support_xa causes an extra disk flush for transaction pre-
paration. If you don't care about using XA, you can disable this variable by setting it to OFF or 0 to
reduce the number of disk flushes and get better InnoDB performance. This variable was added in
MySQL 5.0.3.

• innodb_sync_spin_loops

The number of times a thread waits for an InnoDB mutex to be freed before the thread is suspen-
ded. This variable was added in MySQL 5.0.3.

• innodb_table_locks

InnoDB honors LOCK TABLES; MySQL does not return from LOCK TABLE .. WRITE until
all other threads have released all their locks to the table. The default value is 1, which means that
LOCK TABLES causes InnoDB to lock a table internally. In applications using AUTOCOMMIT=1,
InnoDB's internal table locks can cause deadlocks. You can set innodb_table_locks=0 in the
server option file to remove that problem.

• innodb_thread_concurrency

Storage Engines and Table Types

916

InnoDB tries to keep the number of operating system threads concurrently inside InnoDB less than
or equal to the limit given by this variable. If you have performance issues, and SHOW ENGINE
INNODB STATUS reveals many threads waiting for semaphores, you may have thread “thrashing”
and should try setting this variable lower or higher. If you have a computer with many processors
and disks, you can try setting the value higher to make better use of your computer's resources. A re-
commended value is the sum of the number of processors and disks your system has.

The range of this variable is 0 to 1000. A value of 20 or higher is interpreted as infinite concurrency
before MySQL 5.0.19. From 5.0.19 on, 0 is interpreted as infinite. Infinite means that concurrency
checking is disabled and the possibly considerable overhead of acquiring and releasing a mutex is
avoided.

The default value has changed several times: 8 before MySQL 5.0.8, 20 (infinite) from 5.0.8 through
5.0.18, 0 (infinite) from 5.0.19 to 5.0.20, and 8 (finite) from 5.0.21 on.

• innodb_thread_sleep_delay

How long InnoDB threads sleep before joining the InnoDB queue, in microseconds. The default
value is 10,000. A value of 0 disables sleep. This variable was added in MySQL 5.0.3.

• sync_binlog

If the value of this variable is positive, the MySQL server synchronizes its binary log to disk
(fdatasync()) after every sync_binlog writes to this binary log. Note that there is one write
to the binary log per statement if in autocommit mode, and otherwise one write per transaction. The
default value is 0 which does no synchronizing to disk. A value of 1 is the safest choice, because in
the event of a crash you lose at most one statement/transaction from the binary log; however, it is
also the slowest choice (unless the disk has a battery-backed cache, which makes synchronization
very fast).

14.2.5. Creating the InnoDB Tablespace
Suppose that you have installed MySQL and have edited your option file so that it contains the neces-
sary InnoDB configuration parameters. Before starting MySQL, you should verify that the directories
you have specified for InnoDB data files and log files exist and that the MySQL server has access
rights to those directories. InnoDB does not create directories, only files. Check also that you have
enough disk space for the data and log files.

It is best to run the MySQL server mysqld from the command prompt when you first start the server
with InnoDB enabled, not from the mysqld_safe wrapper or as a Windows service. When you run
from a command prompt you see what mysqld prints and what is happening. On Unix, just invoke
mysqld. On Windows, use the --console option.

When you start the MySQL server after initially configuring InnoDB in your option file, InnoDB cre-
ates your data files and log files, and prints something like this:

InnoDB: The first specified datafile /home/heikki/data/ibdata1
did not exist:
InnoDB: a new database to be created!
InnoDB: Setting file /home/heikki/data/ibdata1 size to 134217728
InnoDB: Database physically writes the file full: wait...
InnoDB: datafile /home/heikki/data/ibdata2 did not exist:
new to be created
InnoDB: Setting file /home/heikki/data/ibdata2 size to 262144000
InnoDB: Database physically writes the file full: wait...
InnoDB: Log file /home/heikki/data/logs/ib_logfile0 did not exist:
new to be created
InnoDB: Setting log file /home/heikki/data/logs/ib_logfile0 size
to 5242880
InnoDB: Log file /home/heikki/data/logs/ib_logfile1 did not exist:

Storage Engines and Table Types

917

new to be created
InnoDB: Setting log file /home/heikki/data/logs/ib_logfile1 size
to 5242880
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: Creating foreign key constraint system tables
InnoDB: Foreign key constraint system tables created
InnoDB: Started
mysqld: ready for connections

At this point InnoDB has initialized its tablespace and log files. You can connect to the MySQL server
with the usual MySQL client programs like mysql. When you shut down the MySQL server with
mysqladmin shutdown, the output is like this:

010321 18:33:34 mysqld: Normal shutdown
010321 18:33:34 mysqld: Shutdown Complete
InnoDB: Starting shutdown...
InnoDB: Shutdown completed

You can look at the data file and log directories and you see the files created there. The log directory
also contains a small file named ib_arch_log_0000000000. That file resulted from the database
creation, after which InnoDB switched off log archiving. When MySQL is started again, the data files
and log files have been created already, so the output is much briefer:

InnoDB: Started
mysqld: ready for connections

If you add the innodb_file_per_table option to my.cnf, InnoDB stores each table in its own
.ibd file in the same MySQL database directory where the .frm file is created. See Section 14.2.3.1,
“Using Per-Table Tablespaces”.

14.2.5.1. Dealing with InnoDB Initialization Problems

If InnoDB prints an operating system error during a file operation, usually the problem has one of the
following causes:

• You did not create the InnoDB data file directory or the InnoDB log directory.

• mysqld does not have access rights to create files in those directories.

• mysqld cannot read the proper my.cnf or my.ini option file, and consequently does not see the
options that you specified.

• The disk is full or a disk quota is exceeded.

• You have created a subdirectory whose name is equal to a data file that you specified, so the name
cannot be used as a filename.

• There is a syntax error in the innodb_data_home_dir or innodb_data_file_path value.

If something goes wrong when InnoDB attempts to initialize its tablespace or its log files, you should
delete all files created by InnoDB. This means all ibdata files and all ib_logfile files. In case
you have already created some InnoDB tables, delete the corresponding .frm files for these tables
(and any .ibd files if you are using multiple tablespaces) from the MySQL database directories as well.
Then you can try the InnoDB database creation again. It is best to start the MySQL server from a com-
mand prompt so that you see what is happening.

14.2.6. Creating and Using InnoDB Tables

Storage Engines and Table Types

918

To create an InnoDB table, specify an ENGINE = InnoDB option in the CREATE TABLE statement:

CREATE TABLE customers (a INT, b CHAR (20), INDEX (a)) ENGINE=InnoDB;

The older term TYPE is supported as a synonym for ENGINE for backward compatibility, but ENGINE
is the preferred term and TYPE is deprecated.

The statement creates a table and an index on column a in the InnoDB tablespace that consists of the
data files that you specified in my.cnf. In addition, MySQL creates a file customers.frm in the
test directory under the MySQL database directory. Internally, InnoDB adds an entry for the table to
its own data dictionary. The entry includes the database name. For example, if test is the database in
which the customers table is created, the entry is for 'test/customers'. This means you can
create a table of the same name customers in some other database, and the table names do not collide
inside InnoDB.

You can query the amount of free space in the InnoDB tablespace by issuing a SHOW TABLE
STATUS statement for any InnoDB table. The amount of free space in the tablespace appears in the
Comment section in the output of SHOW TABLE STATUS. For example:

SHOW TABLE STATUS FROM test LIKE 'customers'

Note that the statistics SHOW displays for InnoDB tables are only approximate. They are used in SQL
optimization. Table and index reserved sizes in bytes are accurate, though.

14.2.6.1. How to Use Transactions in InnoDB with Different APIs

By default, each client that connects to the MySQL server begins with autocommit mode enabled, which
automatically commits every SQL statement as you execute it. To use multiple-statement transactions,
you can switch autocommit off with the SQL statement SET AUTOCOMMIT = 0 and use COMMIT
and ROLLBACK to commit or roll back your transaction. If you want to leave autocommit on, you can
enclose your transactions within START TRANSACTION and either COMMIT or ROLLBACK. The fol-
lowing example shows two transactions. The first is committed; the second is rolled back.

shell> mysql test

mysql> CREATE TABLE CUSTOMER (A INT, B CHAR (20), INDEX (A))
-> ENGINE=InnoDB;

Query OK, 0 rows affected (0.00 sec)
mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO CUSTOMER VALUES (10, 'Heikki');
Query OK, 1 row affected (0.00 sec)
mysql> COMMIT;
Query OK, 0 rows affected (0.00 sec)
mysql> SET AUTOCOMMIT=0;
Query OK, 0 rows affected (0.00 sec)
mysql> INSERT INTO CUSTOMER VALUES (15, 'John');
Query OK, 1 row affected (0.00 sec)
mysql> ROLLBACK;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT * FROM CUSTOMER;
+------+--------+
| A | B |
+------+--------+
| 10 | Heikki |
+------+--------+
1 row in set (0.00 sec)
mysql>

In APIs such as PHP, Perl DBI, JDBC, ODBC, or the standard C call interface of MySQL, you can send
transaction control statements such as COMMIT to the MySQL server as strings just like any other SQL
statements such as SELECT or INSERT. Some APIs also offer separate special transaction commit and
rollback functions or methods.

Storage Engines and Table Types

919

14.2.6.2. Converting MyISAM Tables to InnoDB

Important: Do not convert MySQL system tables in the mysql database (such as user or host) to the
InnoDB type. This is an unsupported operation. The system tables must always be of the MyISAM type.

If you want all your (non-system) tables to be created as InnoDB tables, you can simply add the line
default-storage-engine=innodb to the [mysqld] section of your server option file.

InnoDB does not have a special optimization for separate index creation the way the MyISAM storage
engine does. Therefore, it does not pay to export and import the table and create indexes afterward. The
fastest way to alter a table to InnoDB is to do the inserts directly to an InnoDB table. That is, use AL-
TER TABLE ... ENGINE=INNODB, or create an empty InnoDB table with identical definitions
and insert the rows with INSERT INTO ... SELECT * FROM

If you have UNIQUE constraints on secondary keys, you can speed up a table import by turning off the
uniqueness checks temporarily during the import operation:

SET UNIQUE_CHECKS=0;
... import operation ...
SET UNIQUE_CHECKS=1;

For big tables, this saves a lot of disk I/O because InnoDB can then use its insert buffer to write second-
ary index records as a batch. Be certain that the data contains no duplicate keys. UNIQUE_CHECKS al-
lows but does not require storage engines to ignore duplicate keys.

To get better control over the insertion process, it might be good to insert big tables in pieces:

INSERT INTO newtable SELECT * FROM oldtable
WHERE yourkey > something AND yourkey <= somethingelse;

After all records have been inserted, you can rename the tables.

During the conversion of big tables, you should increase the size of the InnoDB buffer pool to reduce
disk I/O. Do not use more than 80% of the physical memory, though. You can also increase the sizes of
the InnoDB log files.

Make sure that you do not fill up the tablespace: InnoDB tables require a lot more disk space than My-
ISAM tables. If an ALTER TABLE operation runs out of space, it starts a rollback, and that can take
hours if it is disk-bound. For inserts, InnoDB uses the insert buffer to merge secondary index records to
indexes in batches. That saves a lot of disk I/O. For rollback, no such mechanism is used, and the roll-
back can take 30 times longer than the insertion.

In the case of a runaway rollback, if you do not have valuable data in your database, it may be advisable
to kill the database process rather than wait for millions of disk I/O operations to complete. For the com-
plete procedure, see Section 14.2.8.1, “Forcing InnoDB Recovery”.

14.2.6.3. How AUTO_INCREMENT Columns Work in InnoDB

If you specify an AUTO_INCREMENT column for an InnoDB table, the table handle in the InnoDB
data dictionary contains a special counter called the auto-increment counter that is used in assigning new
values for the column. This counter is stored only in main memory, not on disk.

InnoDB uses the following algorithm to initialize the auto-increment counter for a table T that contains
an AUTO_INCREMENT column named ai_col: After a server startup, for the first insert into a table T,
InnoDB executes the equivalent of this statement:

SELECT MAX(ai_col) FROM T FOR UPDATE;

Storage Engines and Table Types

920

InnoDB increments by one the value retrieved by the statement and assigns it to the column and to the
auto-increment counter for the table. If the table is empty, InnoDB uses the value 1. If a user invokes a
SHOW TABLE STATUS statement that displays output for the table T and the auto-increment counter
has not been initialized, InnoDB initializes but does not increment the value and stores it for use by
later inserts. Note that this initialization uses a normal exclusive-locking read on the table and the lock
lasts to the end of the transaction.

InnoDB follows the same procedure for initializing the auto-increment counter for a freshly created ta-
ble.

After the auto-increment counter has been initialized, if a user does not explicitly specify a value for an
AUTO_INCREMENT column, InnoDB increments the counter by one and assigns the new value to the
column. If the user inserts a row that explicitly specifies the column value, and the value is bigger than
the current counter value, the counter is set to the specified column value.

You may see gaps in the sequence of values assigned to the AUTO_INCREMENT column if you roll
back transactions that have generated numbers using the counter.

If a user specifies NULL or 0 for the AUTO_INCREMENT column in an INSERT, InnoDB treats the
row as if the value had not been specified and generates a new value for it.

The behavior of the auto-increment mechanism is not defined if a user assigns a negative value to the
column or if the value becomes bigger than the maximum integer that can be stored in the specified in-
teger type.

When accessing the auto-increment counter, InnoDB uses a special table-level AUTO-INC lock that it
keeps to the end of the current SQL statement, not to the end of the transaction. The special lock release
strategy was introduced to improve concurrency for inserts into a table containing an
AUTO_INCREMENT column. Nevertheless, two transactions cannot have the AUTO-INC lock on the
same table simultaneously, which can have a performance impact if the AUTO-INC lock is held for a
long time. That might be the case for a statement such as INSERT INTO t1 ... SELECT ...
FROM t2 that inserts all rows from one table into another.

InnoDB uses the in-memory auto-increment counter as long as he server runs. When the server is
stopped and restarted, InnoDB reinitializes the counter for each table for the first INSERT to the table,
as described earlier.

Beginning with MySQL 5.0.3, InnoDB supports the AUTO_INCREMENT = N table option in CRE-
ATE TABLE and ALTER TABLE statements, to set the initial counter value or alter the current counter
value. The effect of this option is canceled by a server restart, for reasons discussed earlier in this sec-
tion.

14.2.6.4. FOREIGN KEY Constraints

InnoDB also supports foreign key constraints. The syntax for a foreign key constraint definition in In-
noDB looks like this:

[CONSTRAINT symbol] FOREIGN KEY [id] (index_col_name, ...)
REFERENCES tbl_name (index_col_name, ...)
[ON DELETE {RESTRICT | CASCADE | SET NULL | NO ACTION}]
[ON UPDATE {RESTRICT | CASCADE | SET NULL | NO ACTION}]

Foreign keys definitions are subject to the following conditions:

• Both tables must be InnoDB tables and they must not be TEMPORARY tables.

• In the referencing table, there must be an index where the foreign key columns are listed as the first
columns in the same order. Such an index is created on the referencing table automatically if it does

Storage Engines and Table Types

921

not exist.

• In the referenced table, there must be an index where the referenced columns are listed as the first
columns in the same order.

• Index prefixes on foreign key columns are not supported. One consequence of this is that BLOB and
TEXT columns cannot be included in a foreign key, because indexes on those columns must always
include a prefix length.

• If the CONSTRAINT symbol clause is given, the symbol value must be unique in the database. If
the clause is not given, InnoDB creates the name automatically.

InnoDB rejects any INSERT or UPDATE operation that attempts to create a foreign key value in a child
table if there is no a matching candidate key value in the parent table. The action InnoDB takes for any
UPDATE or DELETE operation that attempts to update or delete a candidate key value in the parent table
that has some matching rows in the child table is dependent on the referential action specified using ON
UPDATE and ON DELETE subclauses of the FOREIGN KEY clause. When the user attempts to delete
or update a row from a parent table, and there are one or more matching rows in the child table, In-
noDB supports five options regarding the action to be taken:

• CASCADE: Delete or update the row from the parent table and automatically delete or update the
matching rows in the child table. Both ON DELETE CASCADE and ON UPDATE CASCADE are
supported. Between two tables, you should not define several ON UPDATE CASCADE clauses that
act on the same column in the parent table or in the child table.

• SET NULL: Delete or update the row from the parent table and set the foreign key column or
columns in the child table to NULL. This is valid only if the foreign key columns do not have the
NOT NULL qualifier specified. Both ON DELETE SET NULL and ON UPDATE SET NULL
clauses are supported.

• NO ACTION: In standard SQL, NO ACTION means no action in the sense that an attempt to delete
or update a primary key value is not allowed to proceed if there is a related foreign key value in the
referenced table. InnoDB rejects the delete or update operation for the parent table.

• RESTRICT: Rejects the delete or update operation for the parent table. NO ACTION and RE-
STRICT are the same as omitting the ON DELETE or ON UPDATE clause. (Some database systems
have deferred checks, and NO ACTION is a deferred check. In MySQL, foreign key constraints are
checked immediately, so NO ACTION and RESTRICT are the same.)

• SET DEFAULT: This action is recognized by the parser, but InnoDB rejects table definitions con-
taining ON DELETE SET DEFAULT or ON UPDATE SET DEFAULT clauses.

Note that InnoDB supports foreign key references within a table. In these cases, “child table records”
really refers to dependent records within the same table.

InnoDB requires indexes on foreign keys and referenced keys so that foreign key checks can be fast
and not require a table scan. The index on the foreign key is created automatically. This is in contrast to
some older versions, in which indexes had to be created explicitly or the creation of foreign key con-
straints would fail.

Corresponding columns in the foreign key and the referenced key must have similar internal data types
inside InnoDB so that they can be compared without a type conversion. The size and sign of integer
types must be the same. The length of string types need not be the same. If you specify a SET NULL ac-
tion, make sure that you have not declared the columns in the child table as NOT NULL.

If MySQL reports an error number 1005 from a CREATE TABLE statement, and the error message

Storage Engines and Table Types

922

refers to errno 150, table creation failed because a foreign key constraint was not correctly formed. Sim-
ilarly, if an ALTER TABLE fails and it refers to errno 150, that means a foreign key definition would be
incorrectly formed for the altered table. You can use SHOW ENGINE INNODB STATUS to display a
detailed explanation of the most recent InnoDB foreign key error in the server.

Note: InnoDB does not check foreign key constraints on those foreign key or referenced key values that
contain a NULL column.

Note: Currently, triggers are not activated by cascaded foreign key actions.

Deviation from SQL standards: If there are several rows in the parent table that have the same refer-
enced key value, InnoDB acts in foreign key checks as if the other parent rows with the same key value
do not exist. For example, if you have defined a RESTRICT type constraint, and there is a child row
with several parent rows, InnoDB does not allow the deletion of any of those parent rows.

InnoDB performs cascading operations through a depth-first algorithm, based on records in the indexes
corresponding to the foreign key constraints.

Deviation from SQL standards: A FOREIGN KEY constraint that references a non-UNIQUE key is
not standard SQL. It is an InnoDB extension to standard SQL.

Deviation from SQL standards: If ON UPDATE CASCADE or ON UPDATE SET NULL recurses to
update the same table it has previously updated during the cascade, it acts like RESTRICT. This means
that you cannot use self-referential ON UPDATE CASCADE or ON UPDATE SET NULL operations.
This is to prevent infinite loops resulting from cascaded updates. A self-referential ON DELETE SET
NULL, on the other hand, is possible, as is a self-referential ON DELETE CASCADE. Cascading opera-
tions may not be nested more than 15 levels deep.

Deviation from SQL standards: Like MySQL in general, in an SQL statement that inserts, deletes, or
updates many rows, InnoDB checks UNIQUE and FOREIGN KEY constraints row-by-row. According
to the SQL standard, the default behavior should be deferred checking. That is, constraints are only
checked after the entire SQL statement has been processed. Until InnoDB implements deferred con-
straint checking, some things will be impossible, such as deleting a record that refers to itself via a for-
eign key.

Here is a simple example that relates parent and child tables through a single-column foreign key:

CREATE TABLE parent (id INT NOT NULL,
PRIMARY KEY (id)

) ENGINE=INNODB;
CREATE TABLE child (id INT, parent_id INT,

INDEX par_ind (parent_id),
FOREIGN KEY (parent_id) REFERENCES parent(id)

ON DELETE CASCADE
) ENGINE=INNODB;

A more complex example in which a product_order table has foreign keys for two other tables.
One foreign key references a two-column index in the product table. The other references a single-
column index in the customer table:

CREATE TABLE product (category INT NOT NULL, id INT NOT NULL,
price DECIMAL,
PRIMARY KEY(category, id)) ENGINE=INNODB;

CREATE TABLE customer (id INT NOT NULL,
PRIMARY KEY (id)) ENGINE=INNODB;

CREATE TABLE product_order (no INT NOT NULL AUTO_INCREMENT,
product_category INT NOT NULL,
product_id INT NOT NULL,
customer_id INT NOT NULL,
PRIMARY KEY(no),
INDEX (product_category, product_id),
FOREIGN KEY (product_category, product_id)

REFERENCES product(category, id)
ON UPDATE CASCADE ON DELETE RESTRICT,

INDEX (customer_id),

Storage Engines and Table Types

923

FOREIGN KEY (customer_id)
REFERENCES customer(id)) ENGINE=INNODB;

InnoDB allows you to add a new foreign key constraint to a table by using ALTER TABLE:

ALTER TABLE tbl_name
ADD [CONSTRAINT symbol] FOREIGN KEY [id] (index_col_name, ...)
REFERENCES tbl_name (index_col_name, ...)
[ON DELETE {RESTRICT | CASCADE | SET NULL | NO ACTION}]
[ON UPDATE {RESTRICT | CASCADE | SET NULL | NO ACTION}]

Remember to create the required indexes first. You can also add a self-referential foreign key con-
straint to a table using ALTER TABLE.

InnoDB also supports the use of ALTER TABLE to drop foreign keys:

ALTER TABLE tbl_name DROP FOREIGN KEY fk_symbol;

If the FOREIGN KEY clause included a CONSTRAINT name when you created the foreign key, you
can refer to that name to drop the foreign key. Otherwise, the fk_symbol value is internally generated
by InnoDB when the foreign key is created. To find out the symbol value when you want to drop a for-
eign key, use the SHOW CREATE TABLE statement. For example:

mysql> SHOW CREATE TABLE ibtest11c\G
*************************** 1. row ***************************

Table: ibtest11c
Create Table: CREATE TABLE `ibtest11c` (

`A` int(11) NOT NULL auto_increment,
`D` int(11) NOT NULL default '0',
`B` varchar(200) NOT NULL default '',
`C` varchar(175) default NULL,
PRIMARY KEY (`A`,`D`,`B`),
KEY `B` (`B`,`C`),
KEY `C` (`C`),
CONSTRAINT `0_38775` FOREIGN KEY (`A`, `D`)

REFERENCES `ibtest11a` (`A`, `D`)
ON DELETE CASCADE ON UPDATE CASCADE,

CONSTRAINT `0_38776` FOREIGN KEY (`B`, `C`)
REFERENCES `ibtest11a` (`B`, `C`)
ON DELETE CASCADE ON UPDATE CASCADE
) ENGINE=INNODB CHARSET=latin1
1 row in set (0.01 sec)

mysql> ALTER TABLE ibtest11c DROP FOREIGN KEY `0_38775`;

You cannot add a foreign key and drop a foreign key in separate clauses of a single ALTER TABLE
statement. Separate statements are required.

The InnoDB parser allows table and column identifiers in a FOREIGN KEY ... REFERENCES
... clause to be quoted within backticks. (Alternatively, double quotes can be used if the AN-
SI_QUOTES SQL mode is enabled.) The InnoDB parser also takes into account the setting of the
lower_case_table_names system variable.

InnoDB returns a table's foreign key definitions as part of the output of the SHOW CREATE TABLE
statement:

SHOW CREATE TABLE tbl_name;

mysqldump also produces correct definitions of tables to the dump file, and does not forget about the
foreign keys.

You can also display the foreign key constraints for a table like this:

SHOW TABLE STATUS FROM db_name LIKE 'tbl_name';

Storage Engines and Table Types

924

The foreign key constraints are listed in the Comment column of the output.

When performing foreign key checks, InnoDB sets shared row-level locks on child or parent records it
has to look at. InnoDB checks foreign key constraints immediately; the check is not deferred to transac-
tion commit.

To make it easier to reload dump files for tables that have foreign key relationships, mysqldump auto-
matically includes a statement in the dump output to set FOREIGN_KEY_CHECKS to 0. This avoids
problems with tables having to be reloaded in a particular order when the dump is reloaded. It is also
possible to set this variable manually:

mysql> SET FOREIGN_KEY_CHECKS = 0;
mysql> SOURCE dump_file_name;
mysql> SET FOREIGN_KEY_CHECKS = 1;

This allows you to import the tables in any order if the dump file contains tables that are not correctly
ordered for foreign keys. It also speeds up the import operation. Setting FOREIGN_KEY_CHECKS to 0
can also be useful for ignoring foreign key constraints during LOAD DATA and ALTER TABLE opera-
tions. However, even if FOREIGN_KEY_CHECKS=0, InnoDB does not allow the creation of a foreign
key constraint where a column references a non-matching column type.

InnoDB does not allow you to drop a table that is referenced by a FOREIGN KEY constraint, unless
you do SET FOREIGN_KEY_CHECKS=0. When you drop a table, the constraints that were defined in
its create statement are also dropped.

If you re-create a table that was dropped, it must have a definition that conforms to the foreign key con-
straints referencing it. It must have the right column names and types, and it must have indexes on the
referenced keys, as stated earlier. If these are not satisfied, MySQL returns error number 1005 and refers
to errno 150 in the error message.

14.2.6.5. InnoDB and MySQL Replication

MySQL replication works for InnoDB tables as it does for MyISAM tables. It is also possible to use
replication in a way where the storage engine on the slave is not the same as the original storage engine
on the master. For example, you can replicate modifications to an InnoDB table on the master to a My-
ISAM table on the slave.

To set up a new slave for a master, you have to make a copy of the InnoDB tablespace and the log files,
as well as the .frm files of the InnoDB tables, and move the copies to the slave. If the in-
nodb_file_per_table variable is enabled, you must also copy the .ibd files as well. For the
proper procedure to do this, see Section 14.2.8, “Backing Up and Recovering an InnoDB Database”.

If you can shut down the master or an existing slave, you can take a cold backup of the InnoDB ta-
blespace and log files and use that to set up a slave. To make a new slave without taking down any serv-
er you can also use the non-free (commercial) InnoDB Hot Backup tool
[http://www.innodb.com/order.html].

You cannot set up replication for InnoDB using the LOAD TABLE FROM MASTER statement, which
works only for MyISAM tables. There are two possible workarounds:

• Dump the table on the master and import the dump file into the slave.

• Use ALTER TABLE tbl_name ENGINE=MyISAM on the master before setting up replication
with LOAD TABLE tbl_name FROM MASTER, and then use ALTER TABLE to convert the
master table back to InnoDB afterward. However, this should not be done for tables that have for-
eign key definitions because the definitions will be lost.

Storage Engines and Table Types

925

http://www.innodb.com/order.html

Transactions that fail on the master do not affect replication at all. MySQL replication is based on the
binary log where MySQL writes SQL statements that modify data. A transaction that fails (for example,
because of a foreign key violation, or because it is is rolled back) is not written to the binary log, so it is
not sent to slaves. See Section 13.4.1, “START TRANSACTION, COMMIT, and ROLLBACK Syntax”.

14.2.7. Adding and Removing InnoDB Data and Log Files
This section describes what you can do when your InnoDB tablespace runs out of room or when you
want to change the size of the log files.

The easiest way to increase the size of the InnoDB tablespace is to configure it from the beginning to
be auto-extending. Specify the autoextend attribute for the last data file in the tablespace definition.
Then InnoDB increases the size of that file automatically in 8MB increments when it runs out of space.
The increment size can be changed by setting the value of the innodb_autoextend_increment
system variable, which is measured in MB.

Alternatively, you can increase the size of your tablespace by adding another data file. To do this, you
have to shut down the MySQL server, change the tablespace configuration to add a new data file to the
end of innodb_data_file_path, and start the server again.

If your last data file was defined with the keyword autoextend, the procedure for reconfiguring the
tablespace must take into account the size to which the last data file has grown. Obtain the size of the
data file, round it down to the closest multiple of 1024 × 1024 bytes (= 1MB), and specify the rounded
size explicitly in innodb_data_file_path. Then you can add another data file. Remember that
only the last data file in the innodb_data_file_path can be specified as auto-extending.

As an example, assume that the tablespace has just one auto-extending data file ibdata1:

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:10M:autoextend

Suppose that this data file, over time, has grown to 988MB. Here is the configuration line after modify-
ing the original data file to not be auto-extending and adding another auto-extending data file:

innodb_data_home_dir =
innodb_data_file_path = /ibdata/ibdata1:988M;/disk2/ibdata2:50M:autoextend

When you add a new file to the tablespace configuration, make sure that it does not exist. InnoDB will
create and initialize the file when you restart the server.

Currently, you cannot remove a data file from the tablespace. To decrease the size of your tablespace,
use this procedure:

1. Use mysqldump to dump all your InnoDB tables.

2. Stop the server.

3. Remove all the existing tablespace files.

4. Configure a new tablespace.

5. Restart the server.

6. Import the dump files.

If you want to change the number or the size of your InnoDB log files, use the following instructions.

Storage Engines and Table Types

926

The procedure to use depends on the value of innodb_fast_shutdown:

• If innodb_fast_shutdown is not set to 2: You must stop the MySQL server and make sure that
it shuts down without errors (to ensure that there is no information for outstanding transactions in the
logs). Then copy the old log files into a safe place just in case something went wrong in the shut-
down and you need them to recover the tablespace. Delete the old log files from the log file direct-
ory, edit my.cnf to change the log file configuration, and start the MySQL server again. mysqld
sees that no log files exist at startup and tells you that it is creating new ones.

• If innodb_fast_shutdown is set to 2: You should shut down the server, set in-
nodb_fast_shutdown to 1, and restart the server. The server should be allowed to recover.
Then you should shut down the server again and follow the procedure described in the preceding
item to change InnoDB log file size. Set innodb_fast_shutdown back to 2 and restart the
server.

14.2.8. Backing Up and Recovering an InnoDB Database
The key to safe database management is making regular backups.

InnoDB Hot Backup is an online backup tool you can use to backup your InnoDB database while
it is running. InnoDB Hot Backup does not require you to shut down your database and it does not
set any locks or disturb your normal database processing. InnoDB Hot Backup is a non-free
(commercial) add-on tool with an annual license fee of 390 per computer on which the MySQL server
is run. See the InnoDB Hot Backup home page [http://www.innodb.com/order.html] for detailed in-
formation and screenshots.

If you are able to shut down your MySQL server, you can make a binary backup that consists of all files
used by InnoDB to manage its tables. Use the following procedure:

1. Shut down your MySQL server and make sure that it shuts down without errors.

2. Copy all your data files (ibdata files and .ibd files) into a safe place.

3. Copy all your ib_logfile files to a safe place.

4. Copy your my.cnf configuration file or files to a safe place.

5. Copy all the .frm files for your InnoDB tables to a safe place.

Replication works with InnoDB tables, so you can use MySQL replication capabilities to keep a copy
of your database at database sites requiring high availability.

In addition to making binary backups as just described, you should also regularly make dumps of your
tables with mysqldump. The reason for this is that a binary file might be corrupted without you noti-
cing it. Dumped tables are stored into text files that are human-readable, so spotting table corruption be-
comes easier. Also, because the format is simpler, the chance for serious data corruption is smaller.
mysqldump also has a --single-transaction option that you can use to make a consistent
snapshot without locking out other clients.

To be able to recover your InnoDB database to the present from the binary backup just described, you
have to run your MySQL server with binary logging turned on. Then you can apply the binary log to the
backup database to achieve point-in-time recovery:

mysqlbinlog yourhostname-bin.123 | mysql

Storage Engines and Table Types

927

http://www.innodb.com/order.html

To recover from a crash of your MySQL server, the only requirement is to restart it. InnoDB automatic-
ally checks the logs and performs a roll-forward of the database to the present. InnoDB automatically
rolls back uncommitted transactions that were present at the time of the crash. During recovery,
mysqld displays output something like this:

InnoDB: Database was not shut down normally.
InnoDB: Starting recovery from log files...
InnoDB: Starting log scan based on checkpoint at
InnoDB: log sequence number 0 13674004
InnoDB: Doing recovery: scanned up to log sequence number 0 13739520
InnoDB: Doing recovery: scanned up to log sequence number 0 13805056
InnoDB: Doing recovery: scanned up to log sequence number 0 13870592
InnoDB: Doing recovery: scanned up to log sequence number 0 13936128
...
InnoDB: Doing recovery: scanned up to log sequence number 0 20555264
InnoDB: Doing recovery: scanned up to log sequence number 0 20620800
InnoDB: Doing recovery: scanned up to log sequence number 0 20664692
InnoDB: 1 uncommitted transaction(s) which must be rolled back
InnoDB: Starting rollback of uncommitted transactions
InnoDB: Rolling back trx no 16745
InnoDB: Rolling back of trx no 16745 completed
InnoDB: Rollback of uncommitted transactions completed
InnoDB: Starting an apply batch of log records to the database...
InnoDB: Apply batch completed
InnoDB: Started
mysqld: ready for connections

If your database gets corrupted or your disk fails, you have to do the recovery from a backup. In the case
of corruption, you should first find a backup that is not corrupted. After restoring the base backup, do
the recovery from the binary log files using mysqlbinlog and mysql to restore the changes per-
formed after the backup was made.

In some cases of database corruption it is enough just to dump, drop, and re-create one or a few corrupt
tables. You can use the CHECK TABLE SQL statement to check whether a table is corrupt, although
CHECK TABLE naturally cannot detect every possible kind of corruption. You can use in-
nodb_tablespace_monitor to check the integrity of the file space management inside the ta-
blespace files.

In some cases, apparent database page corruption is actually due to the operating system corrupting its
own file cache, and the data on disk may be okay. It is best first to try restarting your computer. Doing
so may eliminate errors that appeared to be database page corruption.

14.2.8.1. Forcing InnoDB Recovery

If there is database page corruption, you may want to dump your tables from the database with SELECT
INTO OUTFILE. Usually, most of the data obtained in this way is intact. Even so, the corruption may
cause SELECT * FROM tbl_name statements or InnoDB background operations to crash or assert,
or even to cause InnoDB roll-forward recovery to crash. However, you can force the InnoDB storage
engine to start up while preventing background operations from running, so that you are able to dump
your tables. For example, you can add the following line to the [mysqld] section of your option file
before restarting the server:

[mysqld]
innodb_force_recovery = 4

The allowable non-zero values for innodb_force_recovery follow. A larger number includes all
precautions of smaller numbers. If you are able to dump your tables with an option value of at most 4,
then you are relatively safe that only some data on corrupt individual pages is lost. A value of 6 is more
drastic because database pages are left in an obsolete state, which in turn may introduce more corruption
into B-trees and other database structures.

• 1 (SRV_FORCE_IGNORE_CORRUPT)

Storage Engines and Table Types

928

Let the server run even if it detects a corrupt page. Try to make SELECT * FROM tbl_name
jump over corrupt index records and pages, which helps in dumping tables.

• 2 (SRV_FORCE_NO_BACKGROUND)

Prevent the main thread from running. If a crash would occur during the purge operation, this recov-
ery value prevents it.

• 3 (SRV_FORCE_NO_TRX_UNDO)

Do not run transaction rollbacks after recovery.

• 4 (SRV_FORCE_NO_IBUF_MERGE)

Prevent also insert buffer merge operations. If they would cause a crash, do not do them. Do not cal-
culate table statistics.

• 5 (SRV_FORCE_NO_UNDO_LOG_SCAN)

Do not look at undo logs when starting the database: InnoDB treats even incomplete transactions as
committed.

• 6 (SRV_FORCE_NO_LOG_REDO)

Do not do the log roll-forward in connection with recovery.

You can SELECT from tables to dump them, or DROP or CREATE tables even if forced recovery is
used. If you know that a given table is causing a crash on rollback, you can drop it. You can also use this
to stop a runaway rollback caused by a failing mass import or ALTER TABLE. You can kill the
mysqld process and set innodb_force_recovery to 3 to bring the database up without the roll-
back, then DROP the table that is causing the runaway rollback.

The database must not otherwise be used with any non-zero value of innodb_force_recovery. As
a safety measure, InnoDB prevents users from performing INSERT, UPDATE, or DELETE operations
when innodb_force_recovery is greater than 0.

14.2.8.2. Checkpoints

InnoDB implements a checkpoint mechanism known as “fuzzy” checkpointing. InnoDB flushes modi-
fied database pages from the buffer pool in small batches. There is no need to flush the buffer pool in
one single batch, which would in practice stop processing of user SQL statements during the checkpoint-
ing process.

During crash recovery, InnoDB looks for a checkpoint label written to the log files. It knows that all
modifications to the database before the label are present in the disk image of the database. Then In-
noDB scans the log files forward from the checkpoint, applying the logged modifications to the data-
base.

InnoDB writes to its log files on a rotating basis. All committed modifications that make the database
pages in the buffer pool different from the images on disk must be available in the log files in case In-
noDB has to do a recovery. This means that when InnoDB starts to reuse a log file, it has to make sure
that the database page images on disk contain the modifications logged in the log file that InnoDB is
going to reuse. In other words, InnoDB must create a checkpoint and this often involves flushing of
modified database pages to disk.

The preceding description explains why making your log files very large may save disk I/O in check-
pointing. It often makes sense to set the total size of the log files as big as the buffer pool or even bigger.

Storage Engines and Table Types

929

The drawback of using large log files is that crash recovery can take longer because there is more logged
information to apply to the database.

14.2.9. Moving an InnoDB Database to Another Machine
On Windows, InnoDB always stores database and table names internally in lowercase. To move data-
bases in a binary format from Unix to Windows or from Windows to Unix, you should have all table and
database names in lowercase. A convenient way to accomplish this is to add the following line to the
[mysqld] section of your my.cnf or my.ini file before creating any databases or tables:

[mysqld]
lower_case_table_names=1

Like MyISAM data files, InnoDB data and log files are binary-compatible on all platforms having the
same floating-point number format. You can move an InnoDB database simply by copying all the rel-
evant files listed in Section 14.2.8, “Backing Up and Recovering an InnoDB Database”. If the floating-
point formats differ but you have not used FLOAT or DOUBLE data types in your tables, then the pro-
cedure is the same: simply copy the relevant files. If the formats differ and your tables contain floating-
point data, you must use mysqldump to dump your tables on one machine and then import the dump
files on the other machine.

One way to increase performance is to switch off autocommit mode when importing data, assuming that
the tablespace has enough space for the big rollback segment that the import transactions generate. Do
the commit only after importing a whole table or a segment of a table.

14.2.10. InnoDB Transaction Model and Locking
In the InnoDB transaction model, the goal is to combine the best properties of a multi-versioning data-
base with traditional two-phase locking. InnoDB does locking on the row level and runs queries as non-
locking consistent reads by default, in the style of Oracle. The lock table in InnoDB is stored so space-
efficiently that lock escalation is not needed: Typically several users are allowed to lock every row in
the database, or any random subset of the rows, without InnoDB running out of memory.

14.2.10.1. InnoDB Lock Modes

InnoDB implements standard row-level locking where there are two types of locks:

• A shared (S) lock allows a transaction to read a row (tuple).

• An exclusive (X) lock allows a transaction to update or delete a row.

If transaction T1 holds a shared (S) lock on tuple t, then

• A request from some distinct transaction T2 for an S lock on t can be granted immediately. As a
result, both T1 and T2 hold an S lock on t.

• A request from some distinct transaction T2 for an X lock on t cannot be granted immediately.

If a transaction T1 holds an exclusive (X) lock on tuple t, then a request from some distinct transaction
T2 for a lock of either type on t cannot be granted immediately. Instead, transaction T2 has to wait for
transaction T1 to release its lock on tuple t.

Additionally, InnoDB supports multiple granularity locking which allows coexistence of record locks

Storage Engines and Table Types

930

and locks on entire tables. To make locking at multiple granularity levels practical, additional types of
locks called intention locks are used. Intention locks are table locks in InnoDB. The idea behind inten-
tion locks is for a transaction to indicate which type of lock (shared or exclusive) it will require later for
a row in that table. There are two types of intention locks used in InnoDB (assume that transaction T
has requested a lock of the indicated type on table R):

• Intention shared (IS): Transaction T intends to set S locks on individual rows in table R.

• Intention exclusive (IX): Transaction T intends to set X locks on those rows.

The intention locking protocol is as follows:

• Before a given transaction can acquire an S lock on a given row, it must first acquire an IS or
stronger lock on the table containing that row.

• Before a given transaction can acquire an X lock on a given row, it must first acquire an IX lock on
the table containing that row.

These rules can be conveniently summarized by means of a lock type compatibility matrix:

X IX S IS

X Conflict Conflict Conflict Conflict

IX Conflict Compatible Conflict Compatible

S Conflict Conflict Compatible Compatible

IS Conflict Compatible Compatible Compatible

A lock is granted to a requesting transaction if it is compatible with existing locks. A lock is not granted
to a requesting transaction if it conflicts with existing locks. A transaction waits until the conflicting ex-
isting lock is released. If a lock request conflicts with an existing lock and cannot be granted because it
would cause deadlock, an error occurs.

Thus, intention locks do not block anything except full table requests (for example, LOCK TABLES
... WRITE). The main purpose of IX and IS locks is to show that someone is locking a row, or going
to lock a row in the table.

The following example illustrates how an error can occur when a lock request would cause a deadlock.
The example involves two clients, A and B.

First, client A creates a table containing one row, and then begins a transaction. Within the transaction,
A obtains an S lock on the row by selecting it in share mode:

mysql> CREATE TABLE t (i INT) ENGINE = InnoDB;
Query OK, 0 rows affected (1.07 sec)

mysql> INSERT INTO t (i) VALUES(1);
Query OK, 1 row affected (0.09 sec)

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM t WHERE i = 1 LOCK IN SHARE MODE;
+------+
| i |
+------+
| 1 |
+------+
1 row in set (0.10 sec)

Storage Engines and Table Types

931

Next, client B begins a transaction and attempts to delete the row from the table:

mysql> START TRANSACTION;
Query OK, 0 rows affected (0.00 sec)

mysql> DELETE FROM t WHERE i = 1;

The delete operation requires an X lock. The lock cannot be granted because it is incompatible with the
S lock that client A holds, so the request goes on the queue of lock requests for the row and client B
blocks.

Finally, client A also attempts to delete the row from the table:

mysql> DELETE FROM t WHERE i = 1;
ERROR 1213 (40001): Deadlock found when trying to get lock;
try restarting transaction

Deadlock occurs here because client A needs an X lock to delete the row. However, that lock request
cannot be granted because client B is already has a request for an X lock and is waiting for client A to re-
lease its S lock. Nor can the S lock held by A be upgraded to an X lock because of the prior request by B
for an X lock. As a result, InnoDB generates an error for client A and releases its locks. At that point,
the lock request for client B can be granted and B deletes the row from the table.

14.2.10.2. InnoDB and AUTOCOMMIT

In InnoDB, all user activity occurs inside a transaction. If the autocommit mode is enabled, each SQL
statement forms a single transaction on its own. By default, MySQL starts new connections with auto-
commit enabled.

If the autocommit mode is switched off with SET AUTOCOMMIT = 0, then we can consider that a
user always has a transaction open. An SQL COMMIT or ROLLBACK statement ends the current transac-
tion and a new one starts. A COMMIT means that the changes made in the current transaction are made
permanent and become visible to other users. A ROLLBACK statement, on the other hand, cancels all
modifications made by the current transaction. Both statements release all InnoDB locks that were set
during the current transaction.

If the connection has autocommit enabled, the user can still perform a multiple-statement transaction by
starting it with an explicit START TRANSACTION or BEGIN statement and ending it with COMMIT or
ROLLBACK.

14.2.10.3. InnoDB and TRANSACTION ISOLATION LEVEL

In terms of the SQL:1992 transaction isolation levels, the InnoDB default is REPEATABLE READ.
InnoDB offers all four transaction isolation levels described by the SQL standard. You can set the de-
fault isolation level for all connections by using the --transaction-isolation option on the
command line or in an option file. For example, you can set the option in the [mysqld] section of an
option file like this:

[mysqld]
transaction-isolation = {READ-UNCOMMITTED | READ-COMMITTED

| REPEATABLE-READ | SERIALIZABLE}

A user can change the isolation level for a single session or for all new incoming connections with the
SET TRANSACTION statement. Its syntax is as follows:

SET [SESSION | GLOBAL] TRANSACTION ISOLATION LEVEL
{READ UNCOMMITTED | READ COMMITTED
| REPEATABLE READ | SERIALIZABLE}

Storage Engines and Table Types

932

Note that there are hyphens in the level names for the --transaction-isolation option, but not
for the SET TRANSACTION statement.

The default behavior is to set the isolation level for the next (not started) transaction. If you use the
GLOBAL keyword, the statement sets the default transaction level globally for all new connections cre-
ated from that point on (but not for existing connections). You need the SUPER privilege to do this. Us-
ing the SESSION keyword sets the default transaction level for all future transactions performed on the
current connection.

Any client is free to change the session isolation level (even in the middle of a transaction), or the isola-
tion level for the next transaction.

You can determine the global and session transaction isolation levels by checking the value of the
tx_isolation system variable with these statements:

SELECT @@global.tx_isolation;
SELECT @@tx_isolation;

In row-level locking, InnoDB uses next-key locking. That means that besides index records, InnoDB
can also lock the “gap” preceding an index record to block insertions by other users immediately before
the index record. A next-key lock refers to a lock that locks an index record and the gap before it. A gap
lock refers to a lock that only locks a gap before some index record.

A detailed description of each isolation level in InnoDB follows:

• READ UNCOMMITTED

SELECT statements are performed in a non-locking fashion, but a possible earlier version of a re-
cord might be used. Thus, using this isolation level, such reads are not consistent. This is also called
a “dirty read.” Otherwise, this isolation level works like READ COMMITTED.

• READ COMMITTED

A somewhat Oracle-like isolation level. All SELECT ... FOR UPDATE and SELECT ...
LOCK IN SHARE MODE statements lock only the index records, not the gaps before them, and
thus allow the free insertion of new records next to locked records. UPDATE and DELETE state-
ments using a unique index with a unique search condition lock only the index record found, not the
gap before it. In range-type UPDATE and DELETE statements, InnoDB must set next-key or gap
locks and block insertions by other users to the gaps covered by the range. This is necessary because
“phantom rows” must be blocked for MySQL replication and recovery to work.

Consistent reads behave as in Oracle: Each consistent read, even within the same transaction, sets
and reads its own fresh snapshot. See Section 14.2.10.4, “Consistent Non-Locking Read”.

• REPEATABLE READ

This is the default isolation level of InnoDB. SELECT ... FOR UPDATE, SELECT ...
LOCK IN SHARE MODE, UPDATE, and DELETE statements that use a unique index with a unique
search condition lock only the index record found, not the gap before it. With other search condi-
tions, these operations employ next-key locking, locking the index range scanned with next-key or
gap locks, and block new insertions by other users.

In consistent reads, there is an important difference from the READ COMMITTED isolation level:
All consistent reads within the same transaction read the same snapshot established by the first read.
This convention means that if you issue several plain SELECT statements within the same transac-
tion, these SELECT statements are consistent also with respect to each other. See Section 14.2.10.4,
“Consistent Non-Locking Read”.

Storage Engines and Table Types

933

• SERIALIZABLE

This level is like REPEATABLE READ, but InnoDB implicitly commits all plain SELECT state-
ments to SELECT ... LOCK IN SHARE MODE.

14.2.10.4. Consistent Non-Locking Read

A consistent read means that InnoDB uses multi-versioning to present to a query a snapshot of the data-
base at a point in time. The query see the changes made by those transactions that committed before that
point of time, and no changes made by later or uncommitted transactions. The exception to this rule is
that the query sees the changes made by earlier statements within the same transaction. Note that the ex-
ception to the rule causes the following anomaly: if you update some rows in a table, a SELECT will see
the latest version of the updated rows, while it sees the old version of other rows. If other users simultan-
eously update the same table, the anomaly means that you may see the table in a state that never existed
in the database.

If you are running with the default REPEATABLE READ isolation level, all consistent reads within the
same transaction read the snapshot established by the first such read in that transaction. You can get a
fresher snapshot for your queries by committing the current transaction and after that issuing new quer-
ies.

Consistent read is the default mode in which InnoDB processes SELECT statements in READ COM-
MITTED and REPEATABLE READ isolation levels. A consistent read does not set any locks on the
tables it accesses, and therefore other users are free to modify those tables at the same time a consistent
read is being performed on the table.

Note that consistent read does not work over DROP TABLE and over ALTER TABLE. Consistent read
does not work over DROP TABLE because MySQL can't use a table that has been dropped and InnoDB
destroys the table. Consistent read does not work over ALTER TABLE because ALTER TABLE works
by making a temporary copy of the original table and deleting the original table when the temporary
copy is built. When you reissue a consistent read within a transaction, rows in the new table are not vis-
ible because those rows did not exist when the transaction's snapshot was taken.

14.2.10.5. SELECT ... FOR UPDATE and SELECT ... LOCK IN
SHARE MODE Locking Reads

In some circumstances, a consistent read is not convenient. For example, you might want to add a new
row into your table child, and make sure that the child has a parent in table parent. The following
example shows how to implement referential integrity in your application code.

Suppose that you use a consistent read to read the table parent and indeed see the parent of the child
in the table. Can you safely add the child row to table child? No, because it may happen that mean-
while some other user deletes the parent row from the table parent without you being aware of it.

The solution is to perform the SELECT in a locking mode using LOCK IN SHARE MODE:

SELECT * FROM parent WHERE NAME = 'Jones' LOCK IN SHARE MODE;

Performing a read in share mode means that we read the latest available data, and set a shared mode lock
on the rows we read. A shared mode lock prevents others from updating or deleting the row we have
read. Also, if the latest data belongs to a yet uncommitted transaction of another client connection, we
wait until that transaction commits. After we see that the preceding query returns the parent 'Jones',
we can safely add the child record to the child table and commit our transaction.

Let us look at another example: We have an integer counter field in a table child_codes that we use
to assign a unique identifier to each child added to table child. Obviously, using a consistent read or a

Storage Engines and Table Types

934

shared mode read to read the present value of the counter is not a good idea because two users of the
database may then see the same value for the counter, and a duplicate-key error occurs if two users at-
tempt to add children with the same identifier to the table.

Here, LOCK IN SHARE MODE is not a good solution because if two users read the counter at the same
time, at least one of them ends up in deadlock when attempting to update the counter.

In this case, there are two good ways to implement the reading and incrementing of the counter: (1) up-
date the counter first by incrementing it by 1 and only after that read it, or (2) read the counter first with
a lock mode FOR UPDATE, and increment after that. The latter approach can be implemented as fol-
lows:

SELECT counter_field FROM child_codes FOR UPDATE;
UPDATE child_codes SET counter_field = counter_field + 1;

A SELECT ... FOR UPDATE reads the latest available data, setting exclusive locks on each row it
reads. Thus, it sets the same locks a searched SQL UPDATE would set on the rows.

The preceding description is merely an example of how SELECT ... FOR UPDATE works. In
MySQL, the specific task of generating a unique identifier actually can be accomplished using only a
single access to the table:

UPDATE child_codes SET counter_field = LAST_INSERT_ID(counter_field + 1);
SELECT LAST_INSERT_ID();

The SELECT statement merely retrieves the identifier information (specific to the current connection). It
does not access any table.

Locks set by IN SHARE MODE and FOR UPDATE reads are released when the transaction is commit-
ted or rolled back.

14.2.10.6. Next-Key Locking: Avoiding the Phantom Problem

In row-level locking, InnoDB uses an algorithm called next-key locking. InnoDB performs the row-
level locking in such a way that when it searches or scans an index of a table, it sets shared or exclusive
locks on the index records it encounters. Thus, the row-level locks are actually index record locks.

The locks InnoDB sets on index records also affect the “gap” before that index record. If a user has a
shared or exclusive lock on record R in an index, another user cannot insert a new index record immedi-
ately before R in the index order. This locking of gaps is done to prevent the so-called “phantom prob-
lem.” Suppose that you want to read and lock all children from the child table having an identifier
value greater than 100, with the intention of updating some column in the selected rows later:

SELECT * FROM child WHERE id > 100 FOR UPDATE;

Suppose that there is an index on the id column. The query scans that index starting from the first re-
cord where id is bigger than 100. If the locks set on the index records would not lock out inserts made
in the gaps, a new row might meanwhile be inserted to the table. If you execute the same SELECT with-
in the same transaction, you would see a new row in the result set returned by the query. This is contrary
to the isolation principle of transactions: A transaction should be able to run so that the data it has read
does not change during the transaction. If we regard a set of rows as a data item, the new “phantom”
child would violate this isolation principle.

When InnoDB scans an index, it can also lock the gap after the last record in the index. Just that hap-
pens in the previous example: The locks set by InnoDB prevent any insert to the table where id would
be bigger than 100.

You can use next-key locking to implement a uniqueness check in your application: If you read your

Storage Engines and Table Types

935

data in share mode and do not see a duplicate for a row you are going to insert, then you can safely in-
sert your row and know that the next-key lock set on the successor of your row during the read prevents
anyone meanwhile inserting a duplicate for your row. Thus, the next-key locking allows you to “lock”
the non-existence of something in your table.

14.2.10.7. An Example of Consistent Read in InnoDB

Suppose that you are running in the default REPEATABLE READ isolation level. When you issue a con-
sistent read (that is, an ordinary SELECT statement), InnoDB gives your transaction a timepoint ac-
cording to which your query sees the database. If another transaction deletes a row and commits after
your timepoint was assigned, you do not see the row as having been deleted. Inserts and updates are
treated similarly.

You can advance your timepoint by committing your transaction and then doing another SELECT.

This is called multi-versioned concurrency control.

User A User B

SET AUTOCOMMIT=0; SET AUTOCOMMIT=0;
time
| SELECT * FROM t;
| empty set
| INSERT INTO t VALUES (1, 2);
|
v SELECT * FROM t;

empty set
COMMIT;

SELECT * FROM t;
empty set

COMMIT;

SELECT * FROM t;

| 1 | 2 |

1 row in set

In this example, user A sees the row inserted by B only when B has committed the insert and A has
committed as well, so that the timepoint is advanced past the commit of B.

If you want to see the “freshest” state of the database, you should use either the READ COMMITTED
isolation level or a locking read:

SELECT * FROM t LOCK IN SHARE MODE;

14.2.10.8. Locks Set by Different SQL Statements in InnoDB

A locking read, an UPDATE, or a DELETE generally set record locks on every index record that is
scanned in the processing of the SQL statement. It does not matter if there are WHERE conditions in the
statement that would exclude the row. InnoDB does not remember the exact WHERE condition, but only
knows which index ranges were scanned. The record locks are normally next-key locks that also block
inserts to the “gap” immediately before the record.

If the locks to be set are exclusive, InnoDB always retrieves also the clustered index record and sets a
lock on it.

If you do not have indexes suitable for your statement and MySQL has to scan the whole table to pro-
cess the statement, every row of the table becomes locked, which in turn blocks all inserts by other users
to the table. It is important to create good indexes so that your queries do not unnecessarily need to scan
many rows.

Storage Engines and Table Types

936

InnoDB sets specific types of locks as follows:

• SELECT ... FROM is a consistent read, reading a snapshot of the database and setting no locks
unless the transaction isolation level is set to SERIALIZABLE. For SERIALIZABLE level, this sets
shared next-key locks on the index records it encounters.

• SELECT ... FROM ... LOCK IN SHARE MODE sets shared next-key locks on all index re-
cords the read encounters.

• SELECT ... FROM ... FOR UPDATE sets exclusive next-key locks on all index records the
read encounters.

• INSERT INTO ... VALUES (...) sets an exclusive lock on the inserted row. Note that this
lock is not a next-key lock and does not prevent other users from inserting to the gap before the in-
serted row. If a duplicate-key error occurs, a shared lock on the duplicate index record is set.

• While initializing a previously specified AUTO_INCREMENT column on a table, InnoDB sets an
exclusive lock on the end of the index associated with the AUTO_INCREMENT column. In accessing
the auto-increment counter, InnoDB uses a specific table lock mode AUTO-INC where the lock
lasts only to the end of the current SQL statement, not to the end of the entire transaction. Note that
other clients cannot insert into the table while the AUTO-INC table lock is held; see Sec-
tion 14.2.10.2, “InnoDB and AUTOCOMMIT”.

InnoDB fetches the value of a previously initialized AUTO_INCREMENT column without setting
any locks.

• INSERT INTO T SELECT ... FROM S WHERE ... sets an exclusive (non-next-key) lock
on each row inserted into T. InnoDB sets shared next-key locks locks on S, unless in-
nodb_locks_unsafe_for_binlog is enabled, in which case it does the search on S as a con-
sistent read. InnoDB has to set locks in the latter case: In roll-forward recovery from a backup,
every SQL statement has to be executed in exactly the same way it was done originally.

• CREATE TABLE ... SELECT ... performs the SELECT as a consistent read or with shared
locks, as in the previous item.

• REPLACE is done like an insert if there is no collision on a unique key. Otherwise, an exclusive
next-key lock is placed on the row that has to be updated.

• UPDATE ... WHERE ... sets an exclusive next-key lock on every record the search encounters.

• DELETE FROM ... WHERE ... sets an exclusive next-key lock on every record the search en-
counters.

• If a FOREIGN KEY constraint is defined on a table, any insert, update, or delete that requires the
constraint condition to be checked sets shared record-level locks on the records that it looks at to
check the constraint. InnoDB also sets these locks in the case where the constraint fails.

• LOCK TABLES sets table locks, but it is the higher MySQL layer above the InnoDB layer that sets
these locks. InnoDB is aware of table locks if innodb_table_locks=1 (the default) and
AUTOCOMMIT=0, and the MySQL layer above InnoDB knows about row-level locks. Otherwise,
InnoDB's automatic deadlock detection cannot detect deadlocks where such table locks are in-
volved. Also, because the higher MySQL layer does not know about row-level locks, it is possible to
get a table lock on a table where another user currently has row-level locks. However, this does not
endanger transaction integrity, as discussed in Section 14.2.10.10, “Deadlock Detection and Roll-
back”. See also Section 14.2.16, “Restrictions on InnoDB Tables”.

Storage Engines and Table Types

937

14.2.10.9. Implicit Transaction Commit and Rollback

By default, MySQL begins each client connection with autocommit mode enabled. When autocommit is
enabled, MySQL does a commit after each SQL statement if that statement did not return an error. If an
SQL statement returns an error, the commit or rollback behavior depends on the error. See Sec-
tion 14.2.15, “InnoDB Error Handling”.

If you have the autocommit mode off and close a connection without explicitly committing the final
transaction, MySQL rolls back that transaction.

Each of the following statements (and any synonyms for them) implicitly end a transaction, as if you had
done a COMMIT before executing the statement:

• ALTER FUNCTION, ALTER PROCEDURE, ALTER TABLE, BEGIN, CREATE DATABASE,
CREATE FUNCTION, CREATE INDEX, CREATE PROCEDURE, CREATE TABLE, DROP
DATABASE, DROP FUNCTION, DROP INDEX, DROP PROCEDURE, DROP TABLE, LOAD
MASTER DATA, LOCK TABLES, RENAME TABLE, SET AUTOCOMMIT=1, START TRANSAC-
TION, TRUNCATE, UNLOCK TABLES.

• UNLOCK TABLES commits a transaction only if any tables are currently locked.

• The CREATE TABLE, CREATE DATABASE DROP DATABASE, and TRUNCATE TABLE state-
ments cause an implicit commit beginning with MySQL 5.0.8. The ALTER FUNCTION, ALTER
PROCEDURE, CREATE FUNCTION, CREATE PROCEDURE, DROP FUNCTION, and DROP
PROCEDURE statements cause an implicit commit beginning with MySQL MySQL 5.0.13.

• The CREATE TABLE statement in InnoDB is processed as a single transaction. This means that a
ROLLBACK from the user does not undo CREATE TABLE statements the user made during that
transaction.

Transactions cannot be nested. This is a consequence of the implicit COMMIT performed for any current
transaction when you issue a START TRANSACTION statement or one of its synonyms.

Statements that cause implicit cannot be used in an XA transaction while the transaction is in an ACT-
IVE state.

14.2.10.10. Deadlock Detection and Rollback

InnoDB automatically detects a deadlock of transactions and rolls back a transaction or transactions to
break the deadlock. InnoDB tries to pick small transactions to roll back, where the size of a transaction
is determined by the number of rows inserted, updated, or deleted.

InnoDB is aware of table locks if innodb_table_locks=1 (the default) and AUTOCOMMIT=0,
and the MySQL layer above it knows about row-level locks. Otherwise, InnoDB cannot detect dead-
locks where a table lock set by a MySQL LOCK TABLES statement or a lock set by a storage engine
other than InnoDB is involved. You must resolve these situations by setting the value of the in-
nodb_lock_wait_timeout system variable.

When InnoDB performs a complete rollback of a transaction, all locks set by the transaction are re-
leased. However, if just a single SQL statement is rolled back as a result of an error, some of the locks
set by the statement may be preserved. This happens because InnoDB stores row locks in a format such
that it cannot know afterward which lock was set by which statement.

14.2.10.11. How to Cope with Deadlocks

Deadlocks are a classic problem in transactional databases, but they are not dangerous unless they are so

Storage Engines and Table Types

938

frequent that you cannot run certain transactions at all. Normally, you must write your applications so
that they are always prepared to re-issue a transaction if it gets rolled back because of a deadlock.

InnoDB uses automatic row-level locking. You can get deadlocks even in the case of transactions that
just insert or delete a single row. That is because these operations are not really “atomic”; they automat-
ically set locks on the (possibly several) index records of the row inserted or deleted.

You can cope with deadlocks and reduce the likelihood of their occurrence with the following tech-
niques:

• Use SHOW ENGINE INNODB STATUS to determine the cause of the latest deadlock. That can
help you to tune your application to avoid deadlocks.

• Always be prepared to re-issue a transaction if it fails due to deadlock. Deadlocks are not dangerous.
Just try again.

• Commit your transactions often. Small transactions are less prone to collision.

• If you are using locking reads (SELECT ... FOR UPDATE or ... LOCK IN SHARE MODE),
try using a lower isolation level such as READ COMMITTED.

• Access your tables and rows in a fixed order. Then transactions form well-defined queues and do not
deadlock.

• Add well-chosen indexes to your tables. Then your queries need to scan fewer index records and
consequently set fewer locks. Use EXPLAIN SELECT to determine which indexes the MySQL
server regards as the most appropriate for your queries.

• Use less locking. If you can afford to allow a SELECT to return data from an old snapshot, do not
add the clause FOR UPDATE or LOCK IN SHARE MODE to it. Using the READ COMMITTED
isolation level is good here, because each consistent read within the same transaction reads from its
own fresh snapshot.

• If nothing else helps, serialize your transactions with table-level locks. The correct way to use LOCK
TABLES with transactional tables, such as InnoDB tables, is to set AUTOCOMMIT = 0 and not to
call UNLOCK TABLES until after you commit the transaction explicitly. For example, if you need to
write to table t1 and read from table t2, you can do this:

SET AUTOCOMMIT=0;
LOCK TABLES t1 WRITE, t2 READ, ...;
... do something with tables t1 and t2 here ...
COMMIT;
UNLOCK TABLES;

Table-level locks make your transactions queue nicely, and deadlocks are avoided.

• Another way to serialize transactions is to create an auxiliary “semaphore” table that contains just a
single row. Have each transaction update that row before accessing other tables. In that way, all
transactions happen in a serial fashion. Note that the InnoDB instant deadlock detection algorithm
also works in this case, because the serializing lock is a row-level lock. With MySQL table-level
locks, the timeout method must be used to resolve deadlocks.

• In applications that use the LOCK TABLES command, MySQL does not set InnoDB table locks if
AUTOCOMMIT=1.

14.2.11. InnoDB Performance Tuning Tips

Storage Engines and Table Types

939

• In InnoDB, having a long PRIMARY KEY wastes a lot of disk space because its value must be
stored with every secondary index record. (See Section 14.2.13, “InnoDB Table and Index Struc-
tures”.) Create an AUTO_INCREMENT column as the primary key if your primary key is long.

• If the Unix top tool or the Windows Task Manager shows that the CPU usage percentage with your
workload is less than 70%, your workload is probably disk-bound. Maybe you are making too many
transaction commits, or the buffer pool is too small. Making the buffer pool bigger can help, but do
not set it equal to more than 80% of physical memory.

• Wrap several modifications into one transaction. InnoDB must flush the log to disk at each transac-
tion commit if that transaction made modifications to the database. The rotation speed of a disk is
typically at most 167 revolutions/second, which constrains the number of commits to the same 167th

of a second if the disk does not “fool” the operating system.

• If you can afford the loss of some of the latest committed transactions if a crash occurs, you can set
the innodb_flush_log_at_trx_commit parameter to 0. InnoDB tries to flush the log once
per second anyway, although the flush is not guaranteed.

• Make your log files big, even as big as the buffer pool. When InnoDB has written the log files full,
it has to write the modified contents of the buffer pool to disk in a checkpoint. Small log files cause
many unnecessary disk writes. The drawback of big log files is that the recovery time is longer.

• Make the log buffer quite large as well (on the order of 8MB).

• Use the VARCHAR data type instead of CHAR if you are storing variable-length strings or if the
column may contain many NULL values. A CHAR(N) column always takes N characters to store
data, even if the string is shorter or its value is NULL. Smaller tables fit better in the buffer pool and
reduce disk I/O.

When using row_format=compact (the default InnoDB record format in MySQL 5.0) and vari-
able-length character sets, such as utf8 or sjis, CHAR(N) will occupy a variable amount of
space, at least N bytes.

• In some versions of GNU/Linux and Unix, flushing files to disk with the Unix fsync() call
(which InnoDB uses by default) and other similar methods is surprisingly slow. If you are dissatis-
fied with database write performance, you might try setting the innodb_flush_method para-
meter to O_DSYNC. Although O_DSYNC seems to be slower on most systems, yours might not be
one of them.

• When using the InnoDB storage engine on Solaris 10 for x86_64 architecture (AMD Opteron), it is
important to mount any filesystems used for storing InnoDB-related files using the forcedirec-
tio option. (The default on Solaris 10/x86_64 is not to use this option.) Failure to use forcedir-
ectio causes a serious degradation of InnoDB's speed and performance on this platform.

When using the InnoDB storage engine with a large innodb_buffer_pool_size value on
any release of Solaris 2.6 and up and any platform (sparc/x86/x64/amd64), a significant performance
gain can be achieved by placing InnoDB data files and log files on raw devices or on a separate dir-
ect I/O UFS filesystem (using mount option forcedirectio; see mount_ufs(1M)). Users of
the Veritas filesystem VxFS should use the mount option convosync=direct.

Other MySQL data files, such as those for MyISAM tables, should not be placed on a direct I/O
filesystem. Executables or libraries must not be placed on a direct I/O filesystem.

• When importing data into InnoDB, make sure that MySQL does not have autocommit mode en-
abled because that requires a log flush to disk for every insert. To disable autocommit during your
import operation, surround it with SET AUTOCOMMIT and COMMIT statements:

SET AUTOCOMMIT=0;
... SQL import statements ...
COMMIT;

Storage Engines and Table Types

940

If you use the mysqldump option --opt, you get dump files that are fast to import into an In-
noDB table, even without wrapping them with the SET AUTOCOMMIT and COMMIT statements.

• Beware of big rollbacks of mass inserts: InnoDB uses the insert buffer to save disk I/O in inserts,
but no such mechanism is used in a corresponding rollback. A disk-bound rollback can take 30 times
as long to perform as the corresponding insert. Killing the database process does not help because
the rollback starts again on server startup. The only way to get rid of a runaway rollback is to in-
crease the buffer pool so that the rollback becomes CPU-bound and runs fast, or to use a special pro-
cedure. See Section 14.2.8.1, “Forcing InnoDB Recovery”.

• Beware also of other big disk-bound operations. Use DROP TABLE and CREATE TABLE to empty
a table, not DELETE FROM tbl_name.

• Use the multiple-row INSERT syntax to reduce communication overhead between the client and the
server if you need to insert many rows:

INSERT INTO yourtable VALUES (1,2), (5,5), ...;

This tip is valid for inserts into any table, not just InnoDB tables.

• If you have UNIQUE constraints on secondary keys, you can speed up table imports by temporarily
turning off the uniqueness checks during the import session:

SET UNIQUE_CHECKS=0;
... import operation ...
SET UNIQUE_CHECKS=1;

For big tables, this saves a lot of disk I/O because InnoDB can use its insert buffer to write second-
ary index records in a batch. Be certain that the data contains no duplicate keys. UNIQUE_CHECKS
allows but does not require storage engines to ignore duplicate keys.

• If you have FOREIGN KEY constraints in your tables, you can speed up table imports by turning the
foreign key checks off for the duration of the import session:

SET FOREIGN_KEY_CHECKS=0;
... import operation ...
SET FOREIGN_KEY_CHECKS=1;

For big tables, this can save a lot of disk I/O.

• If you often have recurring queries for tables that are not updated frequently, use the query cache:

[mysqld]
query_cache_type = ON
query_cache_size = 10M

• Unlike MyISAM, InnoDB does not store an index cardinality value in its tables. Instead, InnoDB
computes a cardinality for a table the first time it accesses it after startup. With a large number of
tables, this might take significant time. It is the initial table open operation that is important, so to
“warm up” a table for later use, you might want to use it immediately after start up by issuing a
statement such as SELECT 1 FROM tbl_name LIMIT 1.

14.2.11.1. SHOW ENGINE INNODB STATUS and the InnoDB Monitors

InnoDB includes InnoDB Monitors that print information about the InnoDB internal state. You can
use the SHOW ENGINE INNODB STATUS SQL statement at any time to fetch the output of the stand-

Storage Engines and Table Types

941

ard InnoDB Monitor to your SQL client. This information is useful in performance tuning. (If you are
using the mysql interactive SQL client, the output is more readable if you replace the usual semicolon
statement terminator with \G.) For a discussion of InnoDB lock modes, see Section 14.2.10.1, “In-
noDB Lock Modes”.

mysql> SHOW ENGINE INNODB STATUS\G

Another way to use InnoDB Monitors is to let them periodically write data to the standard output of the
mysqld server. In this case, no output is sent to clients. When switched on, InnoDB Monitors print
data about every 15 seconds. Server output usually is directed to the .err log in the MySQL data dir-
ectory. This data is useful in performance tuning. On Windows, you must start the server from a com-
mand prompt in a console window with the --console option if you want to direct the output to the
window rather than to the error log.

Monitor output includes the following types of information:

• Table and record locks held by each active transaction

• Lock waits of a transactions

• Semaphore waits of threads

• Pending file I/O requests

• Buffer pool statistics

• Purge and insert buffer merge activity of the main InnoDB thread

To cause the standard InnoDB Monitor to write to the standard output of mysqld, use the following
SQL statement:

CREATE TABLE innodb_monitor (a INT) ENGINE=INNODB;

The monitor can be stopped by issuing the following statement:

DROP TABLE innodb_monitor;

The CREATE TABLE syntax is just a way to pass a command to the InnoDB engine through MySQL's
SQL parser: The only things that matter are the table name innodb_monitor and that it be an In-
noDB table. The structure of the table is not relevant at all for the InnoDB Monitor. If you shut down
the server, the monitor does not restart automatically when you restart the server. You must drop the
monitor table and issue a new CREATE TABLE statement to start the monitor. (This syntax may change
in a future release.)

You can use innodb_lock_monitor in a similar fashion. This is the same as innodb_monitor,
except that it also provides a great deal of lock information. A separate in-
nodb_tablespace_monitor prints a list of created file segments existing in the tablespace and
validates the tablespace allocation data structures. In addition, there is innodb_table_monitor
with which you can print the contents of the InnoDB internal data dictionary.

A sample of InnoDB Monitor output:

mysql> SHOW ENGINE INNODB STATUS\G
*************************** 1. row ***************************
Status:
=====================================
030709 13:00:59 INNODB MONITOR OUTPUT
=====================================
Per second averages calculated from the last 18 seconds

Storage Engines and Table Types

942

SEMAPHORES

OS WAIT ARRAY INFO: reservation count 413452, signal count 378357
--Thread 32782 has waited at btr0sea.c line 1477 for 0.00 seconds the
semaphore: X-lock on RW-latch at 41a28668 created in file btr0sea.c line 135
a writer (thread id 32782) has reserved it in mode wait exclusive
number of readers 1, waiters flag 1
Last time read locked in file btr0sea.c line 731
Last time write locked in file btr0sea.c line 1347
Mutex spin waits 0, rounds 0, OS waits 0
RW-shared spins 108462, OS waits 37964; RW-excl spins 681824, OS waits
375485

LATEST FOREIGN KEY ERROR

030709 13:00:59 Transaction:
TRANSACTION 0 290328284, ACTIVE 0 sec, process no 3195, OS thread id 34831
inserting
15 lock struct(s), heap size 2496, undo log entries 9
MySQL thread id 25, query id 4668733 localhost heikki update
insert into ibtest11a (D, B, C) values (5, 'khDk' ,'khDk')
Foreign key constraint fails for table test/ibtest11a:
,

CONSTRAINT `0_219242` FOREIGN KEY (`A`, `D`) REFERENCES `ibtest11b` (`A`,
`D`) ON DELETE CASCADE ON UPDATE CASCADE

Trying to add in child table, in index PRIMARY tuple:
0: len 4; hex 80000101; asc;; 1: len 4; hex 80000005; asc;; 2:
len 4; hex 6b68446b; asc khDk;; 3: len 6; hex 0000114e0edc; asc ...N..;; 4:
len 7; hex 00000000c3e0a7; asc;; 5: len 4; hex 6b68446b; asc khDk;;

But in parent table test/ibtest11b, in index PRIMARY,
the closest match we can find is record:
RECORD: info bits 0 0: len 4; hex 8000015b; asc ...[;; 1: len 4; hex
80000005; asc;; 2: len 3; hex 6b6864; asc khd;; 3: len 6; hex
0000111ef3eb; asc;; 4: len 7; hex 800001001e0084; asc;; 5:
len 3; hex 6b6864; asc khd;;

LATEST DETECTED DEADLOCK

030709 12:59:58
*** (1) TRANSACTION:
TRANSACTION 0 290252780, ACTIVE 1 sec, process no 3185, OS thread id 30733
inserting
LOCK WAIT 3 lock struct(s), heap size 320, undo log entries 146
MySQL thread id 21, query id 4553379 localhost heikki update
INSERT INTO alex1 VALUES(86, 86, 794,'aA35818','bb','c79166','d4766t',
'e187358f','g84586','h794',date_format('2001-04-03 12:54:22','%Y-%m-%d
%H:%i'),7
*** (1) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 48310 n bits 568 table test/alex1 index
symbole trx id 0 290252780 lock mode S waiting
Record lock, heap no 324 RECORD: info bits 0 0: len 7; hex 61613335383138;
asc aa35818;; 1:
*** (2) TRANSACTION:
TRANSACTION 0 290251546, ACTIVE 2 sec, process no 3190, OS thread id 32782
inserting
130 lock struct(s), heap size 11584, undo log entries 437
MySQL thread id 23, query id 4554396 localhost heikki update
REPLACE INTO alex1 VALUES(NULL, 32, NULL,'aa3572','','c3572','d6012t','',
NULL,'h396', NULL, NULL, 7.31,7.31,7.31,200)
*** (2) HOLDS THE LOCK(S):
RECORD LOCKS space id 0 page no 48310 n bits 568 table test/alex1 index
symbole trx id 0 290251546 lock_mode X locks rec but not gap
Record lock, heap no 324 RECORD: info bits 0 0: len 7; hex 61613335383138;
asc aa35818;; 1:
*** (2) WAITING FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 48310 n bits 568 table test/alex1 index
symbole trx id 0 290251546 lock_mode X locks gap before rec insert intention
waiting
Record lock, heap no 82 RECORD: info bits 0 0: len 7; hex 61613335373230;
asc aa35720;; 1:
*** WE ROLL BACK TRANSACTION (1)

TRANSACTIONS

Trx id counter 0 290328385
Purge done for trx's n:o < 0 290315608 undo n:o < 0 17
Total number of lock structs in row lock hash table 70
LIST OF TRANSACTIONS FOR EACH SESSION:
---TRANSACTION 0 0, not started, process no 3491, OS thread id 42002
MySQL thread id 32, query id 4668737 localhost heikki

Storage Engines and Table Types

943

show innodb status
---TRANSACTION 0 290328384, ACTIVE 0 sec, process no 3205, OS thread id
38929 inserting
1 lock struct(s), heap size 320
MySQL thread id 29, query id 4668736 localhost heikki update
insert into speedc values (1519229,1, 'hgjhjgghggjgjgjgjgjggjgjgjgjgjgggjgjg
jlhhgghggggghhjhghgggggghjhghghghghghhhhghghghjhhjghjghjkghjghjghjghjfhjfh
---TRANSACTION 0 290328383, ACTIVE 0 sec, process no 3180, OS thread id
28684 committing
1 lock struct(s), heap size 320, undo log entries 1
MySQL thread id 19, query id 4668734 localhost heikki update
insert into speedcm values (1603393,1, 'hgjhjgghggjgjgjgjgjggjgjgjgjgjgggjgj
gjlhhgghggggghhjhghgggggghjhghghghghghhhhghghghjhhjghjghjkghjghjghjghjfhjf
---TRANSACTION 0 290328327, ACTIVE 0 sec, process no 3200, OS thread id
36880 starting index read
LOCK WAIT 2 lock struct(s), heap size 320
MySQL thread id 27, query id 4668644 localhost heikki Searching rows for
update
update ibtest11a set B = 'kHdkkkk' where A = 89572
------- TRX HAS BEEN WAITING 0 SEC FOR THIS LOCK TO BE GRANTED:
RECORD LOCKS space id 0 page no 65556 n bits 232 table test/ibtest11a index
PRIMARY trx id 0 290328327 lock_mode X waiting
Record lock, heap no 1 RECORD: info bits 0 0: len 9; hex 73757072656d756d00;
asc supremum.;;

---TRANSACTION 0 290328284, ACTIVE 0 sec, process no 3195, OS thread id
34831 rollback of SQL statement
ROLLING BACK 14 lock struct(s), heap size 2496, undo log entries 9
MySQL thread id 25, query id 4668733 localhost heikki update
insert into ibtest11a (D, B, C) values (5, 'khDk' ,'khDk')
---TRANSACTION 0 290327208, ACTIVE 1 sec, process no 3190, OS thread id
32782
58 lock struct(s), heap size 5504, undo log entries 159
MySQL thread id 23, query id 4668732 localhost heikki update
REPLACE INTO alex1 VALUES(86, 46, 538,'aa95666','bb','c95666','d9486t',
'e200498f','g86814','h538',date_format('2001-04-03 12:54:22','%Y-%m-%d
%H:%i'),
---TRANSACTION 0 290323325, ACTIVE 3 sec, process no 3185, OS thread id
30733 inserting
4 lock struct(s), heap size 1024, undo log entries 165
MySQL thread id 21, query id 4668735 localhost heikki update
INSERT INTO alex1 VALUES(NULL, 49, NULL,'aa42837','','c56319','d1719t','',
NULL,'h321', NULL, NULL, 7.31,7.31,7.31,200)

FILE I/O

I/O thread 0 state: waiting for i/o request (insert buffer thread)
I/O thread 1 state: waiting for i/o request (log thread)
I/O thread 2 state: waiting for i/o request (read thread)
I/O thread 3 state: waiting for i/o request (write thread)
Pending normal aio reads: 0, aio writes: 0,
ibuf aio reads: 0, log i/o's: 0, sync i/o's: 0

Pending flushes (fsync) log: 0; buffer pool: 0
151671 OS file reads, 94747 OS file writes, 8750 OS fsyncs
25.44 reads/s, 18494 avg bytes/read, 17.55 writes/s, 2.33 fsyncs/s

INSERT BUFFER AND ADAPTIVE HASH INDEX

Ibuf for space 0: size 1, free list len 19, seg size 21,
85004 inserts, 85004 merged recs, 26669 merges
Hash table size 207619, used cells 14461, node heap has 16 buffer(s)
1877.67 hash searches/s, 5121.10 non-hash searches/s

LOG

Log sequence number 18 1212842764
Log flushed up to 18 1212665295
Last checkpoint at 18 1135877290
0 pending log writes, 0 pending chkp writes
4341 log i/o's done, 1.22 log i/o's/second

BUFFER POOL AND MEMORY

Total memory allocated 84966343; in additional pool allocated 1402624
Buffer pool size 3200
Free buffers 110
Database pages 3074
Modified db pages 2674
Pending reads 0
Pending writes: LRU 0, flush list 0, single page 0
Pages read 171380, created 51968, written 194688

Storage Engines and Table Types

944

28.72 reads/s, 20.72 creates/s, 47.55 writes/s
Buffer pool hit rate 999 / 1000

ROW OPERATIONS

0 queries inside InnoDB, 0 queries in queue
Main thread process no. 3004, id 7176, state: purging
Number of rows inserted 3738558, updated 127415, deleted 33707, read 755779
1586.13 inserts/s, 50.89 updates/s, 28.44 deletes/s, 107.88 reads/s

END OF INNODB MONITOR OUTPUT
============================

Some notes on the output:

• If the TRANSACTIONS section reports lock waits, your applications may have lock contention. The
output can also help to trace the reasons for transaction deadlocks.

• The SEMAPHORES section reports threads waiting for a semaphore and statistics on how many times
threads have needed a spin or a wait on a mutex or a rw-lock semaphore. A large number of threads
waiting for semaphores may be a result of disk I/O, or contention problems inside InnoDB. Conten-
tion can be due to heavy parallelism of queries or problems in operating system thread scheduling.
Setting innodb_thread_concurrency smaller than the default value can help in such situ-
ations.

• The BUFFER POOL AND MEMORY section gives you statistics on pages read and written. You can
calculate from these numbers how many data file I/O operations your queries currently are doing.

• The ROW OPERATIONS section shows what the main thread is doing.

InnoDB sends diagnostic output to stderr or to files rather than to stdout or fixed-size memory
buffers, to avoid potential buffer overflows. As a side effect, the output of SHOW ENGINE INNODB
STATUS is written to a status file in the MySQL data directory every fifteen seconds. The name of the
file is innodb_status.pid, where pid is the server process ID. InnoDB removes the file for a
normal shutdown. If abnormal shutdowns have occurred, instances of these status files may be present
and must be removed manually. Before removing them, you might want to examine them to see whether
they contain useful information about the cause of abnormal shutdowns. The innodb_status.pid
file is created only if the configuration option innodb_status_file=1 is set.

14.2.12. Implementation of Multi-Versioning
Because InnoDB is a multi-versioned storage engine, it must keep information about old versions of
rows in the tablespace. This information is stored in a data structure called a rollback segment (after an
analogous data structure in Oracle).

Internally, InnoDB adds two fields to each row stored in the database. A 6-byte field indicates the
transaction identifier for the last transaction that inserted or updated the row. Also, a deletion is treated
internally as an update where a special bit in the row is set to mark it as deleted. Each row also contains
a 7-byte field called the roll pointer. The roll pointer points to an undo log record written to the rollback
segment. If the row was updated, the undo log record contains the information necessary to rebuild the
content of the row before it was updated.

InnoDB uses the information in the rollback segment to perform the undo operations needed in a trans-
action rollback. It also uses the information to build earlier versions of a row for a consistent read.

Undo logs in the rollback segment are divided into insert and update undo logs. Insert undo logs are
needed only in transaction rollback and can be discarded as soon as the transaction commits. Update
undo logs are used also in consistent reads, but they can be discarded only after there is no transaction
present for which InnoDB has assigned a snapshot that in a consistent read could need the information

Storage Engines and Table Types

945

in the update undo log to build an earlier version of a database row.

You must remember to commit your transactions regularly, including those transactions that issue only
consistent reads. Otherwise, InnoDB cannot discard data from the update undo logs, and the rollback
segment may grow too big, filling up your tablespace.

The physical size of an undo log record in the rollback segment is typically smaller than the correspond-
ing inserted or updated row. You can use this information to calculate the space need for your rollback
segment.

In the InnoDB multi-versioning scheme, a row is not physically removed from the database immedi-
ately when you delete it with an SQL statement. Only when InnoDB can discard the update undo log
record written for the deletion can it also physically remove the corresponding row and its index records
from the database. This removal operation is called a purge, and it is quite fast, usually taking the same
order of time as the SQL statement that did the deletion.

In a scenario where the user inserts and deletes rows in smallish batches at about the same rate in the ta-
ble, it is possible that the purge thread starts to lag behind, and the table grows bigger and bigger, mak-
ing everything disk-bound and very slow. Even if the table carries just 10MB of useful data, it may grow
to occupy 10GB with all the “dead” rows. In such a case, it would be good to throttle new row opera-
tions, and allocate more resources to the purge thread. The innodb_max_purge_lag system vari-
able exists for exactly this purpose. See Section 14.2.4, “InnoDB Startup Options and System Vari-
ables”, for more information.

14.2.13. InnoDB Table and Index Structures
MySQL stores its data dictionary information for tables in .frm files in database directories. This is
true for all MySQL storage engines. But every InnoDB table also has its own entry in the InnoDB in-
ternal data dictionary inside the tablespace. When MySQL drops a table or a database, it has to delete
both an .frm file or files, and the corresponding entries inside the InnoDB data dictionary. This is the
reason why you cannot move InnoDB tables between databases simply by moving the .frm files.

Every InnoDB table has a special index called the clustered index where the data for the rows is stored.
If you define a PRIMARY KEY on your table, the index of the primary key is the clustered index.

If you do not define a PRIMARY KEY for your table, MySQL picks the first UNIQUE index that has
only NOT NULL columns as the primary key and InnoDB uses it as the clustered index. If there is no
such index in the table, InnoDB internally generates a clustered index where the rows are ordered by
the row ID that InnoDB assigns to the rows in such a table. The row ID is a 6-byte field that increases
monotonically as new rows are inserted. Thus, the rows ordered by the row ID are physically in inser-
tion order.

Accessing a row through the clustered index is fast because the row data is on the same page where the
index search leads. If a table is large, the clustered index architecture often saves a disk I/O when com-
pared to the traditional solution. (In many database systems, data storage uses a different page from the
index record.)

In InnoDB, the records in non-clustered indexes (also called secondary indexes) contain the primary
key value for the row. InnoDB uses this primary key value to search for the row from the clustered in-
dex. Note that if the primary key is long, the secondary indexes use more space.

InnoDB compares CHAR and VARCHAR strings of different lengths such that the remaining length in
the shorter string is treated as if padded with spaces.

14.2.13.1. Physical Structure of an Index

All InnoDB indexes are B-trees where the index records are stored in the leaf pages of the tree. The de-
fault size of an index page is 16KB. When new records are inserted, InnoDB tries to leave 1/16 of the

Storage Engines and Table Types

946

page free for future insertions and updates of the index records.

If index records are inserted in a sequential order (ascending or descending), the resulting index pages
are about 15/16 full. If records are inserted in a random order, the pages are from 1/2 to 15/16 full. If the
fill factor of an index page drops below 1/2, InnoDB tries to contract the index tree to free the page.

14.2.13.2. Insert Buffering

It is a common situation in database applications that the primary key is a unique identifier and new
rows are inserted in the ascending order of the primary key. Thus, the insertions to the clustered index
do not require random reads from a disk.

On the other hand, secondary indexes are usually non-unique, and insertions into secondary indexes hap-
pen in a relatively random order. This would cause a lot of random disk I/O operations without a special
mechanism used in InnoDB.

If an index record should be inserted to a non-unique secondary index, InnoDB checks whether the sec-
ondary index page is in the buffer pool. If that is the case, InnoDB does the insertion directly to the in-
dex page. If the index page is not found in the buffer pool, InnoDB inserts the record to a special insert
buffer structure. The insert buffer is kept so small that it fits entirely in the buffer pool, and insertions
can be done very fast.

Periodically, the insert buffer is merged into the secondary index trees in the database. Often it is pos-
sible to merge several insertions to the same page of the index tree, saving disk I/O operations. It has
been measured that the insert buffer can speed up insertions into a table up to 15 times.

The insert buffer merging may continue to happen after the inserting transaction has been committed. In
fact, it may continue to happen after a server shutdown and restart (see Section 14.2.8.1, “Forcing In-
noDB Recovery”).

The insert buffer merging may take many hours, when many secondary indexes must be updated, and
many rows have been inserted. During this time, disk I/O will be increased, which can cause significant
slowdown on disk-bound queries. Another significant background I/O operation is the purge thread (see
Section 14.2.12, “Implementation of Multi-Versioning”).

14.2.13.3. Adaptive Hash Indexes

If a table fits almost entirely in main memory, the fastest way to perform queries on it is to use hash in-
dexes. InnoDB has a mechanism that monitors index searches made to the indexes defined for a table.
If InnoDB notices that queries could benefit from building a hash index, it does so automatically.

Note that the hash index is always built based on an existing B-tree index on the table. InnoDB can
build a hash index on a prefix of any length of the key defined for the B-tree, depending on the pattern
of searches that InnoDB observes for the B-tree index. A hash index can be partial: It is not required
that the whole B-tree index is cached in the buffer pool. InnoDB builds hash indexes on demand for
those pages of the index that are often accessed.

In a sense, InnoDB tailors itself through the adaptive hash index mechanism to ample main memory,
coming closer to the architecture of main-memory databases.

14.2.13.4. Physical Row Structure

The physical record structure for InnoDB tables is dependent on the MySQL version and the optional
ROW_FORMAT option used when the table was created. For InnoDB tables in MySQL earlier than 5.0.3,
only the REDUNDANT row format was available. For MySQL 5.0.3 and later, the default is to use the
COMPACT row format, but you can use the REDUNDANT format to retain compatibility with older ver-
sions of InnoDB tables.

Storage Engines and Table Types

947

Records in InnoDB ROW_FORMAT=REDUNDANT tables have the following characteristics:

• Each index record contains a six-byte header. The header is used to link together consecutive re-
cords, and also in row-level locking.

• Records in the clustered index contain fields for all user-defined columns. In addition, there is a six-
byte field for the transaction ID and a seven-byte field for the roll pointer.

• If no primary key was defined for a table, each clustered index record also contains a six-byte row
ID field.

• Each secondary index record contains also all the fields defined for the clustered index key.

• A record contains also a pointer to each field of the record. If the total length of the fields in a record
is less than 128 bytes, the pointer is one byte; otherwise, two bytes. The array of these pointers is
called the record directory. The area where these pointers point is called the data part of the record.

• Internally, InnoDB stores fixed-length character columns such as CHAR(10) in a fixed-length
format. InnoDB truncates trailing spaces from VARCHAR columns.

• An SQL NULL value reserves 1 or 2 bytes in the record directory. Besides that, an SQL NULL value
reserves zero bytes in the data part of the record if stored in a variable length column. In a fixed-
length column, it reserves the fixed length of the column in the data part of the record. The motiva-
tion behind reserving the fixed space for NULL values is that it enables an update of the column from
NULL to a non-NULL value to be done in place without causing fragmentation of the index page.

Records in InnoDB ROW_FORMAT=COMPACT tables have the following characteristics:

• Each index record contains a five-byte header that may be preceded by a variable-length header. The
header is used to link together consecutive records, and also in row-level locking.

• The record header contains a bit vector for indicating NULL columns. The bit vector occupies
(n_nullable+7)/8 bytes. Columns that are NULL will not occupy other space than the bit in this
vector.

• For each non-NULL variable-length field, the record header contains the length of the column in one
or two bytes. Two bytes will only be needed if part of the column is stored externally or the maxim-
um length exceeds 255 bytes and the actual length exceeds 127 bytes.

• The record header is followed by the data contents of the columns. Columns that are NULL are omit-
ted.

• Records in the clustered index contain fields for all user-defined columns. In addition, there is a six-
byte field for the transaction ID and a seven-byte field for the roll pointer.

• If no primary key was defined for a table, each clustered index record also contains a six-byte row
ID field.

• Each secondary index record contains also all the fields defined for the clustered index key.

• Internally, InnoDB stores fixed-length, fixed-width character columns such as CHAR(10) in a
fixed-length format. InnoDB truncates trailing spaces from VARCHAR columns.

• Internally, InnoDB attempts to store UTF-8 CHAR(n) columns in n bytes by trimming trailing
spaces. In ROW_FORMAT=REDUNDANT, such columns occupy 3*n bytes. The motivation behind re-
serving the minimum space n is that it in many cases enables an update of the column to be done in

Storage Engines and Table Types

948

place without causing fragmentation of the index page.

14.2.14. InnoDB File Space Management and Disk I/O

14.2.14.1. InnoDB Disk I/O

InnoDB uses simulated asynchronous disk I/O: InnoDB creates a number of threads to take care of I/O
operations, such as read-ahead.

There are two read-ahead heuristics in InnoDB:

• In sequential read-ahead, if InnoDB notices that the access pattern to a segment in the tablespace is
sequential, it posts in advance a batch of reads of database pages to the I/O system.

• In random read-ahead, if InnoDB notices that some area in a tablespace seems to be in the process
of being fully read into the buffer pool, it posts the remaining reads to the I/O system.

InnoDB uses a novel file flush technique called doublewrite. It adds safety to recovery following an op-
erating system crash or a power outage, and improves performance on most varieties of Unix by redu-
cing the need for fsync() operations.

Doublewrite means that before writing pages to a data file, InnoDB first writes them to a contiguous ta-
blespace area called the doublewrite buffer. Only after the write and the flush to the doublewrite buffer
has completed does InnoDB write the pages to their proper positions in the data file. If the operating
system crashes in the middle of a page write, InnoDB can later find a good copy of the page from the
doublewrite buffer during recovery.

14.2.14.2. File Space Management

The data files that you define in the configuration file form the tablespace of InnoDB. The files are
simply concatenated to form the tablespace. There is no striping in use. Currently, you cannot define
where within the tablespace your tables are allocated. However, in a newly created tablespace, InnoDB
allocates space starting from the first data file.

The tablespace consists of database pages with a default size of 16KB. The pages are grouped into ex-
tents of 64 consecutive pages. The “files” inside a tablespace are called segments in InnoDB. The term
“rollback segment” is somewhat confusing because it actually contains many tablespace segments.

Two segments are allocated for each index in InnoDB. One is for non-leaf nodes of the B-tree, the other
is for the leaf nodes. The idea here is to achieve better sequentiality for the leaf nodes, which contain the
data.

When a segment grows inside the tablespace, InnoDB allocates the first 32 pages to it individually.
After that InnoDB starts to allocate whole extents to the segment. InnoDB can add to a large segment
up to 4 extents at a time to ensure good sequentiality of data.

Some pages in the tablespace contain bitmaps of other pages, and therefore a few extents in an InnoDB
tablespace cannot be allocated to segments as a whole, but only as individual pages.

When you ask for available free space in the tablespace by issuing a SHOW TABLE STATUS statement,
InnoDB reports the extents that are definitely free in the tablespace. InnoDB always reserves some ex-
tents for cleanup and other internal purposes; these reserved extents are not included in the free space.

When you delete data from a table, InnoDB contracts the corresponding B-tree indexes. Whether the
freed space becomes available for other users depends on whether the pattern of deletes frees individual

Storage Engines and Table Types

949

pages or extents to the tablespace. Dropping a table or deleting all rows from it is guaranteed to release
the space to other users, but remember that deleted rows are physically removed only in an (automatic)
purge operation after they are no longer needed for transaction rollbacks or consistent reads. (See Sec-
tion 14.2.12, “Implementation of Multi-Versioning”.)

14.2.14.3. Defragmenting a Table

If there are random insertions into or deletions from the indexes of a table, the indexes may become
fragmented. Fragmentation means that the physical ordering of the index pages on the disk is not close
to the index ordering of the records on the pages, or that there are many unused pages in the 64-page
blocks that were allocated to the index.

A symptom of fragmentation is that a table takes more space than it “should” take. How much that is ex-
actly, is difficult to determine. All InnoDB data and indexes are stored in B-trees, and their fill factor
may vary from 50% to 100%. Another symptom of fragmentation is that a table scan such as this takes
more time than it “should” take:

SELECT COUNT(*) FROM t WHERE a_non_indexed_column <> 12345;

(In the preceding query, we are “fooling” the SQL optimizer into scanning the clustered index, rather
than a secondary index.) Most disks can read 10 to 50MB/s, which can be used to estimate how fast a ta-
ble scan should run.

It can speed up index scans if you periodically perform a “null” ALTER TABLE operation:

ALTER TABLE tbl_name ENGINE=INNODB

That causes MySQL to rebuild the table. Another way to perform a defragmentation operation is to use
mysqldump to dump the table to a text file, drop the table, and reload it from the dump file.

If the insertions to an index are always ascending and records are deleted only from the end, the In-
noDB filespace management algorithm guarantees that fragmentation in the index does not occur.

14.2.15. InnoDB Error Handling
Error handling in InnoDB is not always the same as specified in the SQL standard. According to the
standard, any error during an SQL statement should cause the rollback of that statement. InnoDB some-
times rolls back only part of the statement, or the whole transaction. The following items describe how
InnoDB performs error handling:

• If you run out of file space in the tablespace, a MySQL Table is full error occurs and In-
noDB rolls back the SQL statement.

• A transaction deadlock causes InnoDB to roll back the entire transaction. In the case of a lock wait
timeout, InnoDB also rolls back the entire transaction before MySQL 5.0.13; as of 5.0.13, InnoDB
rolls back only the most recent SQL statement.

When a transaction rollback occurs due to a deadlock or lock wait timeout, it cancels the effect of
the statements within the transaction. But if the start-transaction statement was START TRANSAC-
TION or BEGIN statement, rollback does not cancel that statement. Further SQL statements become
part of the transaction until the occurrence of COMMIT, ROLLBACK, or some SQL statement that
causes an implicit commit.

• A duplicate-key error rolls back the SQL statement, if you have not specified the IGNORE option in
your statement.

• A row too long error rolls back the SQL statement.

Storage Engines and Table Types

950

• Other errors are mostly detected by the MySQL layer of code (above the InnoDB storage engine
level), and they roll back the corresponding SQL statement. Locks are not released in a rollback of a
single SQL statement.

During implicit rollbacks, as well as during the execution of an explicit ROLLBACK SQL command,
SHOW PROCESSLIST displays Rolling back in the State column for the relevant connection.

14.2.15.1. InnoDB Error Codes

The following is a non-exhaustive list of common InnoDB-specific errors that you may encounter, with
information about why each occurs and how to resolve the problem.

• 1005 (ER_CANT_CREATE_TABLE)

Cannot create table. If the error message refers to errno 150, table creation failed because a foreign
key constraint was not correctly formed. If the error message refers to errno -1, table creation
probably failed because the table included a column name that matched the name of an internal In-
noDB table.

• 1016 (ER_CANT_OPEN_FILE)

Cannot find the InnoDB table from the InnoDB data files, although the .frm file for the table ex-
ists. See Section 14.2.17.1, “Troubleshooting InnoDB Data Dictionary Operations”.

• 1114 (ER_RECORD_FILE_FULL)

InnoDB has run out of free space in the tablespace. You should reconfigure the tablespace to add a
new data file.

• 1205 (ER_LOCK_WAIT_TIMEOUT)

Lock wait timeout expired. Transaction was rolled back.

• 1213 (ER_LOCK_DEADLOCK)

Transaction deadlock. You should rerun the transaction.

• 1216 (ER_NO_REFERENCED_ROW)

You are trying to add a row but there is no parent row, and a foreign key constraint fails. You should
add the parent row first.

• 1217 (ER_ROW_IS_REFERENCED)

You are trying to delete a parent row that has children, and a foreign key constraint fails. You should
delete the children first.

14.2.15.2. Operating System Error Codes

To print the meaning of an operating system error number, use the perror program that comes with
the MySQL distribution.

The following table provides a list of some common Linux system error codes. For a more complete list,
see Linux source code [http://www.iglu.org.il/lxr/source/include/asm-i386/errno.h].

Storage Engines and Table Types

951

http://www.iglu.org.il/lxr/source/include/asm-i386/errno.h

• 1 (EPERM)

Operation not permitted

• 2 (ENOENT)

No such file or directory

• 3 (ESRCH)

No such process

• 4 (EINTR)

Interrupted system call

• 5 (EIO)

I/O error

• 6 (ENXIO)

No such device or address

• 7 (E2BIG)

Arg list too long

• 8 (ENOEXEC)

Exec format error

• 9 (EBADF)

Bad file number

• 10 (ECHILD)

No child processes

• 11 (EAGAIN)

Try again

• 12 (ENOMEM)

Out of memory

• 13 (EACCES)

Permission denied

• 14 (EFAULT)

Bad address

• 15 (ENOTBLK)

Block device required

Storage Engines and Table Types

952

• 16 (EBUSY)

Device or resource busy

• 17 (EEXIST)

File exists

• 18 (EXDEV)

Cross-device link

• 19 (ENODEV)

No such device

• 20 (ENOTDIR)

Not a directory

• 21 (EISDIR)

Is a directory

• 22 (EINVAL)

Invalid argument

• 23 (ENFILE)

File table overflow

• 24 (EMFILE)

Too many open files

• 25 (ENOTTY)

Inappropriate ioctl for device

• 26 (ETXTBSY)

Text file busy

• 27 (EFBIG)

File too large

• 28 (ENOSPC)

No space left on device

• 29 (ESPIPE)

Illegal seek

• 30 (EROFS)

Read-only file system

Storage Engines and Table Types

953

• 31 (EMLINK)

Too many links

The following table provides a list of some common Windows system error codes. For a complete list
see the Microsoft Web site
[http://msdn.microsoft.com/library/default.asp?url=/library/en-us/debug/base/system_error_codes.asp].

• 1 (ERROR_INVALID_FUNCTION)

Incorrect function.

• 2 (ERROR_FILE_NOT_FOUND)

The system cannot find the file specified.

• 3 (ERROR_PATH_NOT_FOUND)

The system cannot find the path specified.

• 4 (ERROR_TOO_MANY_OPEN_FILES)

The system cannot open the file.

• 5 (ERROR_ACCESS_DENIED)

Access is denied.

• 6 (ERROR_INVALID_HANDLE)

The handle is invalid.

• 7 (ERROR_ARENA_TRASHED)

The storage control blocks were destroyed.

• 8 (ERROR_NOT_ENOUGH_MEMORY)

Not enough storage is available to process this command.

• 9 (ERROR_INVALID_BLOCK)

The storage control block address is invalid.

• 10 (ERROR_BAD_ENVIRONMENT)

The environment is incorrect.

• 11 (ERROR_BAD_FORMAT)

An attempt was made to load a program with an incorrect format.

• 12 (ERROR_INVALID_ACCESS)

The access code is invalid.

• 13 (ERROR_INVALID_DATA)

Storage Engines and Table Types

954

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/debug/base/system_error_codes.asp

The data is invalid.

• 14 (ERROR_OUTOFMEMORY)

Not enough storage is available to complete this operation.

• 15 (ERROR_INVALID_DRIVE)

The system cannot find the drive specified.

• 16 (ERROR_CURRENT_DIRECTORY)

The directory cannot be removed.

• 17 (ERROR_NOT_SAME_DEVICE)

The system cannot move the file to a different disk drive.

• 18 (ERROR_NO_MORE_FILES)

There are no more files.

• 19 (ERROR_WRITE_PROTECT)

The media is write protected.

• 20 (ERROR_BAD_UNIT)

The system cannot find the device specified.

• 21 (ERROR_NOT_READY)

The device is not ready.

• 22 (ERROR_BAD_COMMAND)

The device does not recognize the command.

• 23 (ERROR_CRC)

Data error (cyclic redundancy check).

• 24 (ERROR_BAD_LENGTH)

The program issued a command but the command length is incorrect.

• 25 (ERROR_SEEK)

The drive cannot locate a specific area or track on the disk.

• 26 (ERROR_NOT_DOS_DISK)

The specified disk or diskette cannot be accessed.

• 27 (ERROR_SECTOR_NOT_FOUND)

The drive cannot find the sector requested.

• 28 (ERROR_OUT_OF_PAPER)

Storage Engines and Table Types

955

The printer is out of paper.

• 29 (ERROR_WRITE_FAULT)

The system cannot write to the specified device.

• 30 (ERROR_READ_FAULT)

The system cannot read from the specified device.

• 31 (ERROR_GEN_FAILURE)

A device attached to the system is not functioning.

• 32 (ERROR_SHARING_VIOLATION)

The process cannot access the file because it is being used by another process.

• 33 (ERROR_LOCK_VIOLATION)

The process cannot access the file because another process has locked a portion of the file.

• 34 (ERROR_WRONG_DISK)

The wrong diskette is in the drive. Insert %2 (Volume Serial Number: %3) into drive %1.

• 36 (ERROR_SHARING_BUFFER_EXCEEDED)

Too many files opened for sharing.

• 38 (ERROR_HANDLE_EOF)

Reached the end of the file.

• 39 (ERROR_HANDLE_DISK_FULL)

The disk is full.

• 87 (ERROR_INVALID_PARAMETER)

The parameter is incorrect. (If this error occurs on Windows and you have enabled in-
nodb_file_per_table in a server option file, add the line in-
nodb_flush_method=unbuffered to the file as well.)

• 112 (ERROR_DISK_FULL)

The disk is full.

• 123 (ERROR_INVALID_NAME)

The filename, directory name, or volume label syntax is incorrect.

• 1450 (ERROR_NO_SYSTEM_RESOURCES)

Insufficient system resources exist to complete the requested service.

14.2.16. Restrictions on InnoDB Tables

Storage Engines and Table Types

956

• Warning: Do not convert MySQL system tables in the mysql database from MyISAM to InnoDB
tables! This is an unsupported operation. If you do this, MySQL does not restart until you restore the
old system tables from a backup or re-generate them with the mysql_install_db script.

• A table cannot contain more than 1000 columns.

• The internal maximum key length is 3500 bytes, but MySQL itself restricts this to 1024 bytes.

• The maximum row length, except for VARCHAR, BLOB and TEXT columns, is slightly less than half
of a database page. That is, the maximum row length is about 8000 bytes. LONGBLOB and LONG-
TEXT columns must be less than 4GB, and the total row length, including also BLOB and TEXT
columns, must be less than 4GB. InnoDB stores the first 768 bytes of a VARCHAR, BLOB, or TEXT
column in the row, and the rest into separate pages.

• Although InnoDB supports row sizes larger than 65535 internally, you cannot define a row contain-
ing VARCHAR columns with a combined size larger than 65535:

mysql> CREATE TABLE t (a VARCHAR(8000), b VARCHAR(10000),
-> c VARCHAR(10000), d VARCHAR(10000), e VARCHAR(10000),
-> f VARCHAR(10000), g VARCHAR(10000)) ENGINE=InnoDB;

ERROR 1118 (42000): Row size too large. The maximum row size for the
used table type, not counting BLOBs, is 65535. You have to change some
columns to TEXT or BLOBs

• On some older operating systems, files must be less than 2GB. This is not a limitation of InnoDB it-
self, but if you require a large tablespace, you will need to configure it using several smaller data
files rather than one or a file large data files.

• The combined size of the InnoDB log files must be less than 4GB.

• The minimum tablespace size is 10MB. The maximum tablespace size is four billion database pages
(64TB). This is also the maximum size for a table.

• InnoDB tables do not support FULLTEXT indexes.

• InnoDB tables do not support spatial data types before MySQL 5.0.16.

• ANALYZE TABLE determines index cardinality (as displayed in the Cardinality column of
SHOW INDEX output) by doing ten random dives to each of the index trees and updating index car-
dinality estimates accordingly. Note that because these are only estimates, repeated runs of ANA-
LYZE TABLE may produce different numbers. This makes ANALYZE TABLE fast on InnoDB
tables but not 100% accurate as it doesn't take all rows into account.

MySQL uses index cardinality estimates only in join optimization. If some join is not optimized in
the right way, you can try using ANALYZE TABLE. In the few cases that ANALYZE TABLE doesn't
produce values good enough for your particular tables, you can use FORCE INDEX with your quer-
ies to force the use of a particular index, or set the max_seeks_for_key system variable to en-
sure that MySQL prefers index lookups over table scans. See Section 5.2.3, “System Variables”, and
Section A.6, “Optimizer-Related Issues”.

• SHOW TABLE STATUS does not give accurate statistics on InnoDB tables, except for the physical
size reserved by the table. The row count is only a rough estimate used in SQL optimization.

• InnoDB does not keep an internal count of rows in a table. (In practice, this would be somewhat
complicated due to multi-versioning.) To process a SELECT COUNT(*) FROM t statement, In-
noDB must scan an index of the table, which takes some time if the index is not entirely in the buffer
pool. To get a fast count, you have to use a counter table you create yourself and let your application
update it according to the inserts and deletes it does. If your table does not change often, using the
MySQL query cache is a good solution. SHOW TABLE STATUS also can be used if an approximate
row count is sufficient. See Section 14.2.11, “InnoDB Performance Tuning Tips”.

Storage Engines and Table Types

957

• On Windows, InnoDB always stores database and table names internally in lowercase. To move
databases in binary format from Unix to Windows or from Windows to Unix, you should always use
explicitly lowercase names when creating databases and tables.

• For an AUTO_INCREMENT column, you must always define an index for the table, and that index
must contain just the AUTO_INCREMENT column. In MyISAM tables, the AUTO_INCREMENT
column may be part of a multi-column index.

• In MySQL 5.0 before MySQL 5.0.3, InnoDB does not support the AUTO_INCREMENT table op-
tion for setting the initial sequence value in a CREATE TABLE or ALTER TABLE statement. To set
the value with InnoDB, insert a dummy row with a value one less and delete that dummy row, or
insert the first row with an explicit value specified.

• While initializing a previously specified AUTO_INCREMENT column on a table, InnoDB sets an
exclusive lock on the end of the index associated with the AUTO_INCREMENT column. In accessing
the auto-increment counter, InnoDB uses a specific table lock mode AUTO-INC where the lock
lasts only to the end of the current SQL statement, not to the end of the entire transaction. Note that
other clients cannot insert into the table while the AUTO-INC table lock is held; see Sec-
tion 14.2.10.2, “InnoDB and AUTOCOMMIT”.

• When you restart the MySQL server, InnoDB may reuse an old value that was generated for an
AUTO_INCREMENT column but never stored (that is, a value that was generated during an old
transaction that was rolled back).

• When an AUTO_INCREMENT column runs out of values, InnoDB wraps a BIGINT to -
9223372036854775808 and BIGINT UNSIGNED to 1. However, BIGINT values have 64
bits, so do note that if you were to insert one million rows per second, it would still take nearly three
hundred thousand years before BIGINT reached its upper bound. With all other integer type
columns, a duplicate-key error results. This is similar to how MyISAM works, because it is mostly
general MySQL behavior and not about any storage engine in particular.

• DELETE FROM tbl_name does not regenerate the table but instead deletes all rows, one by one.

• Under some conditions, TRUNCATE tbl_name for an InnoDB table is mapped to DELETE
FROM tbl_name and doesn't reset the AUTO_INCREMENT counter. See Section 13.2.9, “TRUN-
CATE Syntax”.

• In MySQL 5.0, the MySQL LOCK TABLES operation acquires two locks on each table if in-
nodb_table_locks=1 (the default). In addition to a table lock on the MySQL layer, it also ac-
quires an InnoDB table lock. Older versions of MySQL did not acquire InnoDB table locks; the
old behavior can be selected by setting innodb_table_locks=0. If no InnoDB table lock is
acquired, LOCK TABLES completes even if some records of the tables are being locked by other
transactions.

• All InnoDB locks held by a transaction are released when the transaction is committed or aborted.
Thus, it does not make much sense to invoke LOCK TABLES on InnoDB tables in AUTOCOM-
MIT=1 mode, because the acquired InnoDB table locks would be released immediately.

• Sometimes it would be useful to lock further tables in the course of a transaction. Unfortunately,
LOCK TABLES in MySQL performs an implicit COMMIT and UNLOCK TABLES. An InnoDB
variant of LOCK TABLES has been planned that can be executed in the middle of a transaction.

• The LOAD TABLE FROM MASTER statement for setting up replication slave servers does not
work for InnoDB tables. A workaround is to alter the table to MyISAM on the master, do then the
load, and after that alter the master table back to InnoDB. Do not do this if the tables use InnoDB-
specific features such as foreign keys.

• The default database page size in InnoDB is 16KB. By recompiling the code, you can set it to val-
ues ranging from 8KB to 64KB. You must update the values of UNIV_PAGE_SIZE and

Storage Engines and Table Types

958

UNIV_PAGE_SIZE_SHIFT in the univ.i source file.

• Currently, triggers are not activated by cascaded foreign key actions.

• You cannot create a table with a column name that matches the name of an internal InnoDB column
(including DB_ROW_ID, DB_TRX_ID, DB_ROLL_PTR and DB_MIX_ID). In versions of MySQL
before 5.0.21 this would cause a crash, since 5.0.21 the server will report error 1005 and refers to
errno -1 in the error message.

• As of MySQL 5.0.19, InnoDB does not ignore trailing spaces when comparing BINARY or VAR-
BINARY column values. See Section 11.4.2, “The BINARY and VARBINARY Types” and Sec-
tion D.1.10, “Changes in release 5.0.19 (04 March 2006)”.

14.2.17. InnoDB Troubleshooting
The following general guidelines apply to troubleshooting InnoDB problems:

• When an operation fails or you suspect a bug, you should look at the MySQL server error log, which
is the file in the data directory that has a suffix of .err.

• When troubleshooting, it is usually best to run the MySQL server from the command prompt, rather
than through the mysqld_safe wrapper or as a Windows service. You can then see what mysqld
prints to the console, and so have a better grasp of what is going on. On Windows, you must start the
server with the --console option to direct the output to the console window.

• Use the InnoDB Monitors to obtain information about a problem (see Section 14.2.11.1, “SHOW
ENGINE INNODB STATUS and the InnoDB Monitors”). If the problem is performance-related,
or your server appears to be hung, you should use innodb_monitor to print information about
the internal state of InnoDB. If the problem is with locks, use innodb_lock_monitor. If the
problem is in creation of tables or other data dictionary operations, use in-
nodb_table_monitor to print the contents of the InnoDB internal data dictionary.

• If you suspect that a table is corrupt, run CHECK TABLE on that table.

14.2.17.1. Troubleshooting InnoDB Data Dictionary Operations

A specific issue with tables is that the MySQL server keeps data dictionary information in .frm files it
stores in the database directories, whereas InnoDB also stores the information into its own data diction-
ary inside the tablespace files. If you move .frm files around, or if the server crashes in the middle of a
data dictionary operation, the locations of the .frm files may end up out of synchrony with the loca-
tions recorded in the InnoDB internal data dictionary.

A symptom of an out-of-sync data dictionary is that a CREATE TABLE statement fails. If this occurs,
you should look in the server's error log. If the log says that the table already exists inside the InnoDB
internal data dictionary, you have an orphaned table inside the InnoDB tablespace files that has no cor-
responding .frm file. The error message looks like this:

InnoDB: Error: table test/parent already exists in InnoDB internal
InnoDB: data dictionary. Have you deleted the .frm file
InnoDB: and not used DROP TABLE? Have you used DROP DATABASE
InnoDB: for InnoDB tables in MySQL version <= 3.23.43?
InnoDB: See the Restrictions section of the InnoDB manual.
InnoDB: You can drop the orphaned table inside InnoDB by
InnoDB: creating an InnoDB table with the same name in another
InnoDB: database and moving the .frm file to the current database.
InnoDB: Then MySQL thinks the table exists, and DROP TABLE will
InnoDB: succeed.

Storage Engines and Table Types

959

You can drop the orphaned table by following the instructions given in the error message. If you are still
unable to use DROP TABLE successfully, the problem may be due to name completion in the mysql
client. To work around this problem, start the mysql client with the --skip-auto-rehash option
and try DROP TABLE again. (With name completion on, mysql tries to construct a list of table names,
which fails when a problem such as just described exists.)

Another symptom of an out-of-sync data dictionary is that MySQL prints an error that it cannot open a
.InnoDB file:

ERROR 1016: Can't open file: 'child2.InnoDB'. (errno: 1)

In the error log you can find a message like this:

InnoDB: Cannot find table test/child2 from the internal data dictionary
InnoDB: of InnoDB though the .frm file for the table exists. Maybe you
InnoDB: have deleted and recreated InnoDB data files but have forgotten
InnoDB: to delete the corresponding .frm files of InnoDB tables?

This means that there is an orphaned .frm file without a corresponding table inside InnoDB. You can
drop the orphaned .frm file by deleting it manually.

If MySQL crashes in the middle of an ALTER TABLE operation, you may end up with an orphaned
temporary table inside the InnoDB tablespace. Using innodb_table_monitor you can see listed a
table whose name is #sql-.... You can perform SQL statements on tables whose name contains the
character ‘#’ if you enclose the name within backticks. Thus, you can drop such an orphaned table like
any other orphaned table using the method described earlier. Note that to copy or rename a file in the
Unix shell, you need to put the file name in double quotes if the file name contains ‘#’.

14.3. The MERGE Storage Engine
The MERGE storage engine, also known as the MRG_MyISAM engine, is a collection of identical MyIS-
AM tables that can be used as one. “Identical” means that all tables have identical column and index in-
formation. You cannot merge MyISAM tables in which the columns are listed in a different order, do not
have exactly the same columns, or have the indexes in different order. However, any or all of the My-
ISAM tables can be compressed with myisampack. See Section 8.5, “myisampack — Generate
Compressed, Read-Only MyISAM Tables”. Differences in table options such as AVG_ROW_LENGTH,
MAX_ROWS, or PACK_KEYS do not matter.

When you create a MERGE table, MySQL creates two files on disk. The files have names that begin with
the table name and have an extension to indicate the file type. An .frm file stores the table format, and
an .MRG file contains the names of the tables that should be used as one. The tables do not have to be in
the same database as the MERGE table itself.

You can use SELECT, DELETE, UPDATE, and INSERT on MERGE tables. You must have SELECT,
UPDATE, and DELETE privileges on the MyISAM tables that you map to a MERGE table.

Note: The use of MERGE tables entails the following security issue: If a user has access to MyISAM table
t, that user can create a MERGE table m that accesses t. However, if the user's privileges on t are sub-
sequently revoked, the user can continue to access t by doing so through m. If this behavior is undesir-
able, you can start the server with the new --skip-merge option to disable the MERGE storage en-
gine. This option is available as of MySQL 5.0.24.

If you DROP the MERGE table, you are dropping only the MERGE specification. The underlying tables
are not affected.

To create a MERGE table, you must specify a UNION=(list-of-tables) clause that indicates
which MyISAM tables you want to use as one. You can optionally specify an INSERT_METHOD option
if you want inserts for the MERGE table to take place in the first or last table of the UNION list. Use a

Storage Engines and Table Types

960

value of FIRST or LAST to cause inserts to be made in the first or last table, respectively. If you do not
specify an INSERT_METHOD option or if you specify it with a value of NO, attempts to insert rows into
the MERGE table result in an error.

The following example shows how to create a MERGE table:

mysql> CREATE TABLE t1 (
-> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
-> message CHAR(20)) ENGINE=MyISAM;

mysql> CREATE TABLE t2 (
-> a INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
-> message CHAR(20)) ENGINE=MyISAM;

mysql> INSERT INTO t1 (message) VALUES ('Testing'),('table'),('t1');
mysql> INSERT INTO t2 (message) VALUES ('Testing'),('table'),('t2');
mysql> CREATE TABLE total (

-> a INT NOT NULL AUTO_INCREMENT,
-> message CHAR(20), INDEX(a))
-> ENGINE=MERGE UNION=(t1,t2) INSERT_METHOD=LAST;

The older term TYPE is supported as a synonym for ENGINE for backward compatibility, but ENGINE
is the preferred term and TYPE is deprecated.

Note that the a column is indexed as a PRIMARY KEY in the underlying MyISAM tables, but not in the
MERGE table. There it is indexed but not as a PRIMARY KEY because a MERGE table cannot enforce
uniqueness over the set of underlying tables.

After creating the MERGE table, you can issue queries that operate on the group of tables as a whole:

mysql> SELECT * FROM total;
+---+---------+
| a | message |
+---+---------+
1	Testing
2	table
3	t1
1	Testing
2	table
3	t2
+---+---------+

To remap a MERGE table to a different collection of MyISAM tables, you can use one of the following
methods:

• DROP the MERGE table and re-create it.

• Use ALTER TABLE tbl_name UNION=(...) to change the list of underlying tables.

MERGE tables can help you solve the following problems:

• Easily manage a set of log tables. For example, you can put data from different months into separate
tables, compress some of them with myisampack, and then create a MERGE table to use them as
one.

• Obtain more speed. You can split a big read-only table based on some criteria, and then put individu-
al tables on different disks. A MERGE table on this could be much faster than using the big table.

• Perform more efficient searches. If you know exactly what you are looking for, you can search in
just one of the split tables for some queries and use a MERGE table for others. You can even have
many different MERGE tables that use overlapping sets of tables.

• Perform more efficient repairs. It is easier to repair individual tables that are mapped to a MERGE ta-
ble than to repair a single large table.

Storage Engines and Table Types

961

• Instantly map many tables as one. A MERGE table need not maintain an index of its own because it
uses the indexes of the individual tables. As a result, MERGE table collections are very fast to create
or remap. (Note that you must still specify the index definitions when you create a MERGE table,
even though no indexes are created.)

• If you have a set of tables from which you create a large table on demand, you should instead create
a MERGE table on them on demand. This is much faster and saves a lot of disk space.

• Exceed the file size limit for the operating system. Each MyISAM table is bound by this limit, but a
collection of MyISAM tables is not.

• You can create an alias or synonym for a MyISAM table by defining a MERGE table that maps to that
single table. There should be no really notable performance impact from doing this (only a couple of
indirect calls and memcpy() calls for each read).

The disadvantages of MERGE tables are:

• You can use only identical MyISAM tables for a MERGE table.

• You cannot use a number of MyISAM features in MERGE tables. For example, you cannot create
FULLTEXT indexes on MERGE tables. (You can, of course, create FULLTEXT indexes on the under-
lying MyISAM tables, but you cannot search the MERGE table with a full-text search.)

• If the MERGE table is non-temporary, all underlying MyISAM tables must be non-temporary, too. If
the MERGE table is temporary, the MyISAM tables can be any mix of temporary and non-temporary.

• MERGE tables use more file descriptors. If 10 clients are using a MERGE table that maps to 10 tables,
the server uses (10 × 10) + 10 file descriptors. (10 data file descriptors for each of the 10 clients, and
10 index file descriptors shared among the clients.)

• Key reads are slower. When you read a key, the MERGE storage engine needs to issue a read on all
underlying tables to check which one most closely matches the given key. To read the next key, the
MERGE storage engine needs to search the read buffers to find the next key. Only when one key buf-
fer is used up does the storage engine need to read the next key block. This makes MERGE keys
much slower on eq_ref searches, but not much slower on ref searches. See Section 7.2.1,
“Optimizing Queries with EXPLAIN”, for more information about eq_ref and ref.

Additional resources

• A forum dedicated to the MERGE storage engine is available at http://forums.mysql.com/list.php?93.

14.3.1. MERGE Table Problems
The following are known problems with MERGE tables:

• If you use ALTER TABLE to change a MERGE table to another storage engine, the mapping to the
underlying tables is lost. Instead, the rows from the underlying MyISAM tables are copied into the
altered table, which then uses the specified storage engine.

• REPLACE does not work.

• You cannot use DROP TABLE, ALTER TABLE, DELETE without a WHERE clause, REPAIR TA-
BLE, TRUNCATE TABLE, OPTIMIZE TABLE, or ANALYZE TABLE on any of the tables that are

Storage Engines and Table Types

962

http://forums.mysql.com/list.php?93

mapped into an open MERGE table. If you do so, the MERGE table may still refer to the original table,
which yields unexpected results. The easiest way to work around this deficiency is to ensure that no
MERGE tables remain open by issuing a FLUSH TABLES statement prior to performing any of those
operations.

• DROP TABLE on a table that is in use by a MERGE table does not work on Windows because the
MERGE storage engine's table mapping is hidden from the upper layer of MySQL. Windows does not
allow open files to be deleted, so you first must flush all MERGE tables (with FLUSH TABLES) or
drop the MERGE table before dropping the table.

• A MERGE table cannot maintain uniqueness constraints over the entire table. When you perform an
INSERT, the data goes into the first or last MyISAM table (depending on the value of the IN-
SERT_METHOD option). MySQL ensures that unique key values remain unique within that MyISAM
table, but not across all the tables in the collection.

• When you create or alter MERGE table, there is no check to ensure that the underlying tables are ex-
isting MyISAM tables and have identical structures. When the MERGE table is used, MySQL checks
that the row length for all mapped tables is equal, but this is not foolproof. If you create a MERGE ta-
ble from dissimilar MyISAM tables, you are very likely to run into strange problems.

Similarly, if you create a MERGE table from non-MyISAM tables, or if you drop an underlying table
or alter it to be a non-MyISAM table, no error for the MERGE table occurs until later when you at-
tempt to use it.

• The order of indexes in the MERGE table and its underlying tables should be the same. If you use
ALTER TABLE to add a UNIQUE index to a table used in a MERGE table, and then use ALTER
TABLE to add a non-unique index on the MERGE table, the index ordering is different for the tables
if there was already a non-unique index in the underlying table. (This happens because ALTER TA-
BLE puts UNIQUE indexes before non-unique indexes to facilitate rapid detection of duplicate keys.)
Consequently, queries on tables with such indexes may return unexpected results.

• If you encounter an error message similar to ERROR 1017 (HY000): Can't find file:
'mm.MRG' (errno: 2) it generally indicates that some of the base tables are not using the My-
ISAM storage engine. Confirm that all tables are MyISAM.

• There is a limit of 232 (~4.295E+09)) rows to a MERGE table, just as there is with a MyISAM, it is
therefore not possible to merge multiple MyISAM tables that exceed this limitation. However, you
build MySQL with the --with-big-tables option then the row limitation is increased to (232)2

(1.844E+19) rows. See Section 2.9.2, “Typical configure Options”. Beginning with MySQL
5.0.4 all standard binaries are built with this option.

14.4. The MEMORY (HEAP) Storage Engine
The MEMORY storage engine creates tables with contents that are stored in memory. Formerly, these
were known as HEAP tables. MEMORY is the preferred term, although HEAP remains supported for back-
ward compatibility.

Each MEMORY table is associated with one disk file. The filename begins with the table name and has an
extension of .frm to indicate that it stores the table definition.

To specify explicitly that you want to create a MEMORY table, indicate that with an ENGINE table op-
tion:

CREATE TABLE t (i INT) ENGINE = MEMORY;

The older term TYPE is supported as a synonym for ENGINE for backward compatibility, but ENGINE

Storage Engines and Table Types

963

is the preferred term and TYPE is deprecated.

As indicated by the name, MEMORY tables are stored in memory. They use hash indexes by default,
which makes them very fast, and very useful for creating temporary tables. However, when the server
shuts down, all rows stored in MEMORY tables are lost. The tables themselves continue to exist because
their definitions are stored in .frm files on disk, but they are empty when the server restarts.

This example shows how you might create, use, and remove a MEMORY table:

mysql> CREATE TABLE test ENGINE=MEMORY
-> SELECT ip,SUM(downloads) AS down
-> FROM log_table GROUP BY ip;

mysql> SELECT COUNT(ip),AVG(down) FROM test;
mysql> DROP TABLE test;

MEMORY tables have the following characteristics:

• Space for MEMORY tables is allocated in small blocks. Tables use 100% dynamic hashing for inserts.
No overflow area or extra key space is needed. No extra space is needed for free lists. Deleted rows
are put in a linked list and are reused when you insert new data into the table. MEMORY tables also
have none of the problems commonly associated with deletes plus inserts in hashed tables.

• MEMORY tables can have up to 32 indexes per table, 16 columns per index and a maximum key
length of 500 bytes.

• The MEMORY storage engine implements both HASH and BTREE indexes. You can specify one or
the other for a given index by adding a USING clause as shown here:

CREATE TABLE lookup
(id INT, INDEX USING HASH (id))
ENGINE = MEMORY;

CREATE TABLE lookup
(id INT, INDEX USING BTREE (id))
ENGINE = MEMORY;

General characteristics of B-tree and hash indexes are described in Section 7.4.5, “How MySQL
Uses Indexes”.

• You can have non-unique keys in a MEMORY table. (This is an uncommon feature for implementa-
tions of hash indexes.)

• If you have a hash index on a MEMORY table that has a high degree of key duplication (many index
entries containing the same value), updates to the table that affect key values and all deletes are sig-
nificantly slower. The degree of this slowdown is proportional to the degree of duplication (or, in-
versely proportional to the index cardinality). You can use a BTREE index to avoid this problem.

• Columns that are indexed can contain NULL values.

• MEMORY tables use a fixed-length row storage format.

• MEMORY tables cannot contain BLOB or TEXT columns.

• MEMORY includes support for AUTO_INCREMENT columns.

• You can use INSERT DELAYED with MEMORY tables. See Section 13.2.4.2, “INSERT DELAYED
Syntax”.

• MEMORY tables are shared among all clients (just like any other non-TEMPORARY table).

• MEMORY table contents are stored in memory, which is a property that MEMORY tables share with in-
ternal tables that the server creates on the fly while processing queries. However, the two types of

Storage Engines and Table Types

964

tables differ in that MEMORY tables are not subject to storage conversion, whereas internal tables are:

• If an internal table becomes too large, the server automatically converts it to an on-disk table.
The size limit is determined by the value of the tmp_table_size system variable.

• MEMORY tables are never converted to disk tables. To ensure that you don't accidentally do any-
thing foolish, you can set the max_heap_table_size system variable to impose a maximum
size on MEMORY tables. For individual tables, you can also specify a MAX_ROWS table option in
the CREATE TABLE statement.

• The server needs sufficient memory to maintain all MEMORY tables that are in use at the same time.

• To free memory used by a MEMORY table when you no longer require its contents, you should ex-
ecute DELETE or TRUNCATE TABLE, or remove the table altogether using DROP TABLE.

• If you want to populate a MEMORY table when the MySQL server starts, you can use the -
-init-file option. For example, you can put statements such as INSERT INTO ... SE-
LECT or LOAD DATA INFILE into this file to load the table from a persistent data source. See
Section 5.2.2, “Command Options”, and Section 13.2.5, “LOAD DATA INFILE Syntax”.

• If you are using replication, the master server's MEMORY tables become empty when it is shut down
and restarted. However, a slave is not aware that these tables have become empty, so it returns out-
of-date content if you select data from them. When a MEMORY table is used on the master for the
first time since the master was started, a DELETE statement is written to the master's binary log
automatically, thus synchronizing the slave to the master again. Note that even with this strategy, the
slave still has outdated data in the table during the interval between the master's restart and its first
use of the table. However, if you use the --init-file option to populate the MEMORY table on
the master at startup, it ensures that this time interval is zero.

• The memory needed for one row in a MEMORY table is calculated using the following expression:

SUM_OVER_ALL_BTREE_KEYS(max_length_of_key + sizeof(char*) × 4)
+ SUM_OVER_ALL_HASH_KEYS(sizeof(char*) × 2)
+ ALIGN(length_of_row+1, sizeof(char*))

ALIGN() represents a round-up factor to cause the row length to be an exact multiple of the char
pointer size. sizeof(char*) is 4 on 32-bit machines and 8 on 64-bit machines.

Additional resources

• A forum dedicated to the MEMORY storage engine is available at
http://forums.mysql.com/list.php?92.

14.5. The BDB (BerkeleyDB) Storage Engine
Sleepycat Software has provided MySQL with the Berkeley DB transactional storage engine. This stor-
age engine typically is called BDB for short. BDB tables may have a greater chance of surviving crashes
and are also capable of COMMIT and ROLLBACK operations on transactions.

Support for the BDB storage engine is included in MySQL source distributions is activated in MySQL-
Max binary distributions. The MySQL source distribution comes with a BDB distribution that is patched
to make it work with MySQL. You cannot use a non-patched version of BDB with MySQL.

We at MySQL AB work in close cooperation with Sleepycat to keep the quality of the MySQL/BDB in-
terface high. (Even though Berkeley DB is in itself very tested and reliable, the MySQL interface is still

Storage Engines and Table Types

965

http://forums.mysql.com/list.php?92

considered gamma quality. We continue to improve and optimize it.)

When it comes to support for any problems involving BDB tables, we are committed to helping our users
locate the problem and create reproducible test cases. Any such test case is forwarded to Sleepycat,
which in turn helps us find and fix the problem. As this is a two-stage operation, any problems with BDB
tables may take a little longer for us to fix than for other storage engines. However, we anticipate no sig-
nificant difficulties with this procedure because the Berkeley DB code itself is used in many applications
other than MySQL.

For general information about Berkeley DB, please visit the Sleepycat Web site, ht-
tp://www.sleepycat.com/.

14.5.1. Operating Systems Supported by BDB

Currently, we know that the BDB storage engine works with the following operating systems:

• Linux 2.x Intel

• Sun Solaris (SPARC and x86)

• FreeBSD 4.x/5.x (x86, sparc64)

• IBM AIX 4.3.x

• SCO OpenServer

• SCO UnixWare 7.1.x

• Windows NT/2000/XP

The BDB storage engine does not work with the following operating systems:

• Linux 2.x Alpha

• Linux 2.x AMD64

• Linux 2.x IA-64

• Linux 2.x s390

• Mac OS X

Note: The preceding lists are not complete. We update them as we receive more information.

If you build MySQL from source with support for BDB tables, but the following error occurs when you
start mysqld, it means that the BDB storage engine is not supported for your architecture:

bdb: architecture lacks fast mutexes: applications cannot be threaded
Can't init databases

In this case, you must rebuild MySQL without BDB support or start the server with the --skip-bdb
option.

14.5.2. Installing BDB

Storage Engines and Table Types

966

http://www.sleepycat.com/
http://www.sleepycat.com/

If you have downloaded a binary version of MySQL that includes support for Berkeley DB, simply fol-
low the usual binary distribution installation instructions. (MySQL-Max distributions include BDB sup-
port.)

If you build MySQL from source, you can enable BDB support by invoking configure with the -
-with-berkeley-db option in addition to any other options that you normally use. Download a
MySQL 5.0 distribution, change location into its top-level directory, and run this command:

shell> ./configure --with-berkeley-db [other-options]

For more information, see Section 5.3, “The mysqld-max Extended MySQL Server”, Section 2.8,
“Installing MySQL on Other Unix-Like Systems”, and Section 2.9, “MySQL Installation Using a Source
Distribution”.

14.5.3. BDB Startup Options
The following options to mysqld can be used to change the behavior of the BDB storage engine. For
more information, see Section 5.2.2, “Command Options”.

• --bdb-home=path

The base directory for BDB tables. This should be the same directory that you use for --datadir.

• --bdb-lock-detect=method

The BDB lock detection method. The option value should be DEFAULT, OLDEST, RANDOM, or
YOUNGEST.

• --bdb-logdir=file_name

The BDB log file directory.

• --bdb-no-recover

Do not start Berkeley DB in recover mode.

• --bdb-no-sync

Don't synchronously flush the BDB logs. This option is deprecated; use -
-skip-sync-bdb-logs instead (see the description for --sync-bdb-logs).

• --bdb-shared-data

Start Berkeley DB in multi-process mode. (Do not use DB_PRIVATE when initializing Berkeley
DB.)

• --bdb-tmpdir=path

The BDB temporary file directory.

• --skip-bdb

Disable the BDB storage engine.

• --sync-bdb-logs

Synchronously flush the BDB logs. This option is enabled by default. Use -
-skip-sync-bdb-logs to disable it.

Storage Engines and Table Types

967

If you use the --skip-bdb option, MySQL does not initialize the Berkeley DB library and this saves
a lot of memory. However, if you use this option, you cannot use BDB tables. If you try to create a BDB
table, MySQL uses the default storage engine instead.

Normally, you should start mysqld without the --bdb-no-recover option if you intend to use
BDB tables. However, this may cause problems when you try to start mysqld if the BDB log files are
corrupted. See Section 2.10.2.3, “Starting and Troubleshooting the MySQL Server”.

With the bdb_max_lock variable, you can specify the maximum number of locks that can be active
on a BDB table. The default is 10,000. You should increase this if errors such as the following occur
when you perform long transactions or when mysqld has to examine many rows to execute a query:

bdb: Lock table is out of available locks
Got error 12 from ...

You may also want to change the binlog_cache_size and max_binlog_cache_size vari-
ables if you are using large multiple-statement transactions. See Section 5.12.3, “The Binary Log”.

See also Section 5.2.3, “System Variables”.

14.5.4. Characteristics of BDB Tables
Each BDB table is stored on disk in two files. The files have names that begin with the table name and
have an extension to indicate the file type. An .frm file stores the table format, and a .db file contains
the table data and indexes.

To specify explicitly that you want a BDB table, indicate that with an ENGINE table option:

CREATE TABLE t (i INT) ENGINE = BDB;

The older term TYPE is supported as a synonym for ENGINE for backward compatibility, but ENGINE
is the preferred term and TYPE is deprecated.

BerkeleyDB is a synonym for BDB in the ENGINE table option.

The BDB storage engine provides transactional tables. The way you use these tables depends on the
autocommit mode:

• If you are running with autocommit enabled (which is the default), changes to BDB tables are com-
mitted immediately and cannot be rolled back.

• If you are running with autocommit disabled, changes do not become permanent until you execute a
COMMIT statement. Instead of committing, you can execute ROLLBACK to forget the changes.

You can start a transaction with the START TRANSACTION or BEGIN statement to suspend auto-
commit, or with SET AUTOCOMMIT=0 to disable autocommit explicitly.

For more information about transactions, see Section 13.4.1, “START TRANSACTION, COMMIT, and
ROLLBACK Syntax”.

The BDB storage engine has the following characteristics:

• BDB tables can have up to 31 indexes per table, 16 columns per index, and a maximum key size of
1024 bytes.

Storage Engines and Table Types

968

• MySQL requires a primary key in each BDB table so that each row can be uniquely identified. If you
don't create one explicitly by declaring a PRIMARY KEY, MySQL creates and maintains a hidden
primary key for you. The hidden key has a length of five bytes and is incremented for each insert at-
tempt. This key does not appear in the output of SHOW CREATE TABLE or DESCRIBE.

• The primary key is faster than any other index, because it is stored together with the row data. The
other indexes are stored as the key data plus the primary key, so it's important to keep the primary
key as short as possible to save disk space and get better speed.

This behavior is similar to that of InnoDB, where shorter primary keys save space not only in the
primary index but in secondary indexes as well.

• If all columns that you access in a BDB table are part of the same index or part of the primary key,
MySQL can execute the query without having to access the actual row. In a MyISAM table, this can
be done only if the columns are part of the same index.

• Sequential scanning is slower for BDB tables than for MyISAM tables because the data in BDB tables
is stored in B-trees and not in a separate data file.

• Key values are not prefix- or suffix-compressed like key values in MyISAM tables. In other words,
key information takes a little more space in BDB tables compared to MyISAM tables.

• There are often holes in the BDB table to allow you to insert new rows in the middle of the index
tree. This makes BDB tables somewhat larger than MyISAM tables.

• SELECT COUNT(*) FROM tbl_name is slow for BDB tables, because no row count is main-
tained in the table.

• The optimizer needs to know the approximate number of rows in the table. MySQL solves this by
counting inserts and maintaining this in a separate segment in each BDB table. If you don't issue a lot
of DELETE or ROLLBACK statements, this number should be accurate enough for the MySQL op-
timizer. However, MySQL stores the number only on close, so it may be incorrect if the server ter-
minates unexpectedly. It should not be fatal even if this number is not 100% correct. You can update
the row count by using ANALYZE TABLE or OPTIMIZE TABLE. See Section 13.5.2.1, “ANA-
LYZE TABLE Syntax”, and Section 13.5.2.5, “OPTIMIZE TABLE Syntax”.

• Internal locking in BDB tables is done at the page level.

• LOCK TABLES works on BDB tables as with other tables. If you do not use LOCK TABLES,
MySQL issues an internal multiple-write lock on the table (a lock that does not block other writers)
to ensure that the table is properly locked if another thread issues a table lock.

• To support transaction rollback, the BDB storage engine maintains log files. For maximum perform-
ance, you can use the --bdb-logdir option to place the BDB logs on a different disk than the one
where your databases are located.

• MySQL performs a checkpoint each time a new BDB log file is started, and removes any BDB log
files that are not needed for current transactions. You can also use FLUSH LOGS at any time to
checkpoint the Berkeley DB tables.

For disaster recovery, you should use table backups plus MySQL's binary log. See Section 5.10.1,
“Database Backups”.

Warning: If you delete old log files that are still in use, BDB is not able to do recovery at all and you
may lose data if something goes wrong.

• Applications must always be prepared to handle cases where any change of a BDB table may cause
an automatic rollback and any read may fail with a deadlock error.

Storage Engines and Table Types

969

• If you get a full disk with a BDB table, you get an error (probably error 28) and the transaction
should roll back. This contrasts with MyISAM tables, for which mysqld waits for sufficient free
disk space before continuing.

14.5.5. Restrictions on BDB Tables
The following list indicates restrictions that you must observe when using BDB tables:

• Each BDB table stores in its .db file the path to the file as it was created. This is done to enable de-
tection of locks in a multi-user environment that supports symlinks. As a consequence of this, it is
not possible to move BDB table files from one database directory to another.

• When making backups of BDB tables, you must either use mysqldump or else make a backup that
includes the files for each BDB table (the .frm and .db files) as well as the BDB log files. The BDB
storage engine stores unfinished transactions in its log files and requires them to be present when
mysqld starts. The BDB logs are the files in the data directory with names of the form
log.NNNNNNNNNN (ten digits).

• If a column that allows NULL values has a unique index, only a single NULL value is allowed. This
differs from other storage engines, which allow multiple NULL values in unique indexes.

14.5.6. Errors That May Occur When Using BDB Tables

• If the following error occurs when you start mysqld after upgrading, it means that the current ver-
sion of BDB doesn't support the old log file format:

bdb: Ignoring log file: .../log.NNNNNNNNNN:
unsupported log version #

In this case, you must delete all BDB logs from your data directory (the files that have names of the
form log.NNNNNNNNNN) and restart mysqld. We also recommend that you then use mysql-
dump --opt to dump your BDB tables, drop the tables, and restore them from the dump file.

• If autocommit mode is disabled and you drop a BDB table that is referenced in another transaction,
you may get error messages of the following form in your MySQL error log:

001119 23:43:56 bdb: Missing log fileid entry
001119 23:43:56 bdb: txn_abort: Log undo failed for LSN:

1 3644744: Invalid

This is not fatal, but the fix is not trivial. Until the problem is fixed, we recommend that you not
drop BDB tables except while autocommit mode is enabled.

14.6. The EXAMPLE Storage Engine
The EXAMPLE storage engine is a stub engine that does nothing. Its purpose is to serve as an example in
the MySQL source code that illustrates how to begin writing new storage engines. As such, it is primar-
ily of interest to developers.

The EXAMPLE storage engine is included in MySQL-Max binary distributions. To enable this storage
engine if you build MySQL from source, invoke configure with the -
-with-example-storage-engine option.

Storage Engines and Table Types

970

To examine the source for the EXAMPLE engine, look in the sql/examples directory of a MySQL
source distribution.

When you create an EXAMPLE table, the server creates a table format file in the database directory. The
file begins with the table name and has an .frm extension. No other files are created. No data can be
stored into the table. Retrievals return an empty result.

mysql> CREATE TABLE test (i INT) ENGINE = EXAMPLE;
Query OK, 0 rows affected (0.78 sec)

mysql> INSERT INTO test VALUES(1),(2),(3);
ERROR 1031 (HY000): Table storage engine for 'test' doesn't have this option

mysql> SELECT * FROM test;
Empty set (0.31 sec)

The EXAMPLE storage engine does not support indexing.

14.7. The FEDERATED Storage Engine
The FEDERATED storage engine is available beginning with MySQL 5.0.3. It is a storage engine that
accesses data in tables of remote databases rather than in local tables.

The FEDERATED storage engine is included in MySQL-Max binary distributions. To enable this storage
engine if you build MySQL from source, invoke configure with the -
-with-federated-storage-engine option.

To examine the source for the FEDERATED engine, look in the sql directory of a source distribution
for MySQL 5.0.3 or newer.

Additional resources

• A forum dedicated to the FEDERATED storage engine is available at ht-
tp://forums.mysql.com/list.php?105.

14.7.1. Description of the FEDERATED Storage Engine
When you create a FEDERATED table, the server creates a table format file in the database directory.
The file begins with the table name and has an .frm extension. No other files are created, because the
actual data is in a remote table. This differs from the way that storage engines for local tables work.

For local database tables, data files are local. For example, if you create a MyISAM table named users,
the MyISAM handler creates a data file named users.MYD. A handler for local tables reads, inserts,
deletes, and updates data in local data files, and rows are stored in a format particular to the handler. To
read rows, the handler must parse data into columns. To write rows, column values must be converted to
the row format used by the handler and written to the local data file.

With the MySQL FEDERATED storage engine, there are no local data files for a table (for example,
there is no .MYD file). Instead, a remote database stores the data that normally would be in the table.
The local server connects to a remote server, and uses the MySQL client API to read, delete, update, and
insert data in the remote table. Data retrieval is initiated via a SELECT * FROM tbl_name SQL
statement. To read the result, rows are fetched one at a time by using the mysql_fetch_row() C
API function, and then converting the columns in the SELECT result set to the format that the FEDER-
ATED handler expects.

The flow of information is as follows:

Storage Engines and Table Types

971

http://forums.mysql.com/list.php?105
http://forums.mysql.com/list.php?105

1. SQL calls issued locally

2. MySQL handler API (data in handler format)

3. MySQL client API (data converted to SQL calls)

4. Remote database -> MySQL client API

5. Convert result sets (if any) to handler format

6. Handler API -> Result rows or rows-affected count to local

14.7.2. How to use FEDERATED Tables
The procedure for using FEDERATED tables is very simple. Normally, you have two servers running,
either both on the same host or on different hosts. (It is possible for a FEDERATED table to use another
table that is managed by the same server, although there is little point in doing so.)

First, you must have a table on the remote server that you want to access by using a FEDERATED table.
Suppose that the remote table is in the federated database and is defined like this:

CREATE TABLE test_table (
id INT(20) NOT NULL AUTO_INCREMENT,
name VARCHAR(32) NOT NULL DEFAULT '',
other INT(20) NOT NULL DEFAULT '0',
PRIMARY KEY (id),
INDEX name (name),
INDEX other_key (other)

)
ENGINE=MyISAM
DEFAULT CHARSET=latin1;

The example uses a MyISAM table, but the table could use any storage engine.

Next, create a FEDERATED table on the local server for accessing the remote table:

CREATE TABLE federated_table (
id INT(20) NOT NULL AUTO_INCREMENT,
name VARCHAR(32) NOT NULL DEFAULT '',
other INT(20) NOT NULL DEFAULT '0',
PRIMARY KEY (id),
INDEX name (name),
INDEX other_key (other)

)
ENGINE=FEDERATED
DEFAULT CHARSET=latin1
CONNECTION='mysql://root@remote_host:9306/federated/test_table';

(Before MySQL 5.0.13, use COMMENT rather than CONNECTION.)

The structure of this table must be exactly the same as that of the remote table, except that the ENGINE
table option should be FEDERATED and the CONNECTION table option is a connection string that in-
dicates to the FEDERATED engine how to connect to the remote server.

The FEDERATED engine creates only the test_table.frm file in the federated database.

The remote host information indicates the remote server to which your local server connects, and the
database and table information indicates which remote table to use as the data source. In this example,
the remote server is indicated to be running as remote_host on port 9306, so there must be a MySQL
server running on the remote host and listening to port 9306.

The general form of the connection string in the CONNECTION option is as follows:

Storage Engines and Table Types

972

scheme://user_name[:password]@host_name[:port_num]/db_name/tbl_name

Only mysql is supported as the scheme value at this point; the password and port number are option-
al.

Here are some example connection strings:

CONNECTION='mysql://username:password@hostname:port/database/tablename'
CONNECTION='mysql://username@hostname/database/tablename'
CONNECTION='mysql://username:password@hostname/database/tablename'

The use of CONNECTION for specifying the connection string is non-optimal and is likely to change in
future. Keep this in mind for applications that use FEDERATED tables. Such applications are likely to
need modification if the format for specifying connection information changes.

Because any password given in the connection string is stored as plain text, it can be seen by any user
who can use SHOW CREATE TABLE or SHOW TABLE STATUS for the FEDERATED table, or query
the TABLES table in the INFORMATION_SCHEMA database.

14.7.3. Limitations of the FEDERATED Storage Engine
The following items indicate features that the FEDERATED storage engine does and does not support:

• In the first version, the remote server must be a MySQL server. Support by FEDERATED for other
database engines may be added in the future.

• The remote table that a FEDERATED table points to must exist before you try to access the table
through the FEDERATED table.

• It is possible for one FEDERATED table to point to another, but you must be careful not to create a
loop.

• There is no support for transactions.

• There is no way for the FEDERATED engine to know if the remote table has changed. The reason for
this is that this table must work like a data file that would never be written to by anything other than
the database. The integrity of the data in the local table could be breached if there was any change to
the remote database.

• The FEDERATED storage engine supports SELECT, INSERT, UPDATE, DELETE, and indexes. It
does not support ALTER TABLE, or any Data Definition Language statements other than DROP
TABLE. The current implementation does not use Prepared statements.

• Any DROP TABLE statement issued against a FEDERATED table will only drop the local table, not
the remote table.

• The implementation uses SELECT, INSERT, UPDATE, and DELETE, but not HANDLER.

• FEDERATED tables do not work with the query cache.

Some of these limitations may be lifted in future versions of the FEDERATED handler.

14.8. The ARCHIVE Storage Engine
The ARCHIVE storage engine is used for storing large amounts of data without indexes in a very small
footprint.

Storage Engines and Table Types

973

The ARCHIVE storage engine is included in MySQL binary distributions. To enable this storage engine
if you build MySQL from source, invoke configure with the -
-with-archive-storage-engine option.

To examine the source for the ARCHIVE engine, look in the sql directory of a MySQL source distribu-
tion.

You can check whether the ARCHIVE storage engine is available with this statement:

mysql> SHOW VARIABLES LIKE 'have_archive';

When you create an ARCHIVE table, the server creates a table format file in the database directory. The
file begins with the table name and has an .frm extension. The storage engine creates other files, all
having names beginning with the table name. The data and metadata files have extensions of .ARZ and
.ARM, respectively. An .ARN file may appear during optimization operations.

The ARCHIVE engine supports INSERT and SELECT, but not DELETE, REPLACE, or UPDATE. It
does support ORDER BY operations, BLOB columns, and basically all but spatial data types (see Sec-
tion 16.4.1, “MySQL Spatial Data Types”). The ARCHIVE engine uses row-level locking.

Storage: Rows are compressed as they are inserted. The ARCHIVE engine uses zlib lossless data
compression (see http://www.zlib.net/). You can use OPTIMIZE TABLE to analyze the table and pack
it into a smaller format (for a reason to use OPTIMIZE TABLE, see later in this section). Beginning
with MySQL 5.0.15, the engine also supports CHECK TABLE. There are several types of insertions that
are used:

• An INSERT statement just pushes rows into a compression buffer, and that buffer flushes as neces-
sary. The insertion into the buffer is protected by a lock. A SELECT forces a flush to occur, unless
the only insertions that have come in were INSERT DELAYED (those flush as necessary). See Sec-
tion 13.2.4.2, “INSERT DELAYED Syntax”.

• A bulk insert is visible only after it completes, unless other inserts occur at the same time, in which
case it can be seen partially. A SELECT never causes a flush of a bulk insert unless a normal insert
occurs while it is loading.

Retrieval: On retrieval, rows are uncompressed on demand; there is no row cache. A SELECT operation
performs a complete table scan: When a SELECT occurs, it finds out how many rows are currently
available and reads that number of rows. SELECT is performed as a consistent read. Note that lots of
SELECT statements during insertion can deteriorate the compression, unless only bulk or delayed inserts
are used. To achieve better compression, you can use OPTIMIZE TABLE or REPAIR TABLE. The
number of rows in ARCHIVE tables reported by SHOW TABLE STATUS is always accurate. See Sec-
tion 13.5.2.5, “OPTIMIZE TABLE Syntax”, Section 13.5.2.6, “REPAIR TABLE Syntax”, and Sec-
tion 13.5.4.22, “SHOW TABLE STATUS Syntax”.

Additional resources

• A forum dedicated to the ARCHIVE storage engine is available at ht-
tp://forums.mysql.com/list.php?112.

14.9. The CSV Storage Engine
The CSV storage engine stores data in text files using comma-separated values format.

To enable this storage engine, use the --with-csv-storage-engine option to configure

Storage Engines and Table Types

974

http://www.zlib.net/
http://forums.mysql.com/list.php?112
http://forums.mysql.com/list.php?112

when you build MySQL.

The CSV storage engine is included in MySQL-Max binary distributions. To enable this storage engine
if you build MySQL from source, invoke configure with the --with-csv-storage-engine
option.

To examine the source for the CSV engine, look in the sql/examples directory of a MySQL source
distribution.

When you create a CSV table, the server creates a table format file in the database directory. The file be-
gins with the table name and has an .frm extension. The storage engine also creates a data file. Its
name begins with the table name and has a .CSV extension. The data file is a plain text file. When you
store data into the table, the storage engine saves it into the data file in comma-separated values format.

mysql> CREATE TABLE test(i INT, c CHAR(10)) ENGINE = CSV;
Query OK, 0 rows affected (0.12 sec)

mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM test;
+------+------------+
| i | c |
+------+------------+
| 1 | record one |
| 2 | record two |
+------+------------+
2 rows in set (0.00 sec)

If you examine the test.CSV file in the database directory created by executing the preceding state-
ments, its contents should look like this:

"1","record one"
"2","record two"

This format can be read, and even written, by spreadsheet applications such as Microsoft Excel or
StarOffice Calc.

The CSV storage engine does not support indexing.

14.10. The BLACKHOLE Storage Engine
The BLACKHOLE storage engine acts as a “black hole” that accepts data but throws it away and does not
store it. Retrievals always return an empty result:

mysql> CREATE TABLE test(i INT, c CHAR(10)) ENGINE = BLACKHOLE;
Query OK, 0 rows affected (0.03 sec)

mysql> INSERT INTO test VALUES(1,'record one'),(2,'record two');
Query OK, 2 rows affected (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 0

mysql> SELECT * FROM test;
Empty set (0.00 sec)

The BLACKHOLE storage engine is included in MySQL-Max binary distributions. To enable this storage
engine if you build MySQL from source, invoke configure with the -
-with-blackhole-storage-engine option.

To examine the source for the BLACKHOLE engine, look in the sql directory of a MySQL source dis-
tribution.

When you create a BLACKHOLE table, the server creates a table format file in the database directory.

Storage Engines and Table Types

975

The file begins with the table name and has an .frm extension. There are no other files associated with
the table.

The BLACKHOLE storage engine supports all kinds of indexes. That is, you can include index declara-
tions in the table definition.

You can check whether the BLACKHOLE storage engine is available with this statement:

mysql> SHOW VARIABLES LIKE 'have_blackhole_engine';

Inserts into a BLACKHOLE table do not store any data, but if the binary log is enabled, the SQL state-
ments are logged (and replicated to slave servers). This can be useful as a repeater or filter mechanism.
For example, suppose that your application requires slave-side filtering rules, but transferring all binary
log data to the slave first results in too much traffic. In such a case, it is possible to set up on the master
host a “dummy” slave process whose default storage engine is BLACKHOLE, depicted as follows:

The master writes to its binary log. The “dummy” mysqld process acts as a slave, applying the desired
combination of replicate-do-* and replicate-ignore-* rules, and writes a new, filtered
binary log of its own. (See Section 6.8, “Replication Startup Options”.) This filtered log is provided to
the slave.

The dummy process does not actually store any data, so there is little processing overhead incurred by
running the additional mysqld process on the replication master host. This type of setup can be re-
peated with additional replication slaves.

Other possible uses for the BLACKHOLE storage engine include:

• Verification of dump file syntax.

• Measurement of the overhead from binary logging, by comparing performance using BLACKHOLE
with and without binary logging enabled.

• BLACKHOLE is essentially a “no-op” storage engine, so it could be used for finding performance
bottlenecks not related to the storage engine itself.

Storage Engines and Table Types

976

Chapter 15. MySQL Cluster
MySQL Cluster is a high-availability, high-redundancy version of MySQL adapted for the distributed
computing environment. It uses the NDB Cluster storage engine to enable running several MySQL
servers in a cluster. This storage engine is available in MySQL 5.0 binary releases and in RPMs compat-
ible with most modern Linux distributions. (If you install using RPM files, note that both the mysql-
server and mysql-max RPMs must be installed to have MySQL Cluster capability.)

MySQL Cluster is currently available and supported on the following platforms:

• Linux: x86, AMD64, EMT64, s/390, PPC, Alpha, SPARC, UltraSparc

• Solaris: SPARC, UltraSparc, x86, AMD64, EMT64

• BSD (FreeBSD, NetBSD, OpenBSD): x86, AMD64, EMT64, PPC

• Mac OS X: PPC

• HP-UX: PA-RISC

• Tru64: Alpha

• OpenVMS: Alpha

• IRIX: MIPS

• Novell Netware: x86

• QNX Neutrino: x86

• SCO OpenServer, OpenUnix, UnixWare: x86

For exact levels of support available for MySQL Cluster on specific combinations of operating system
versions, operating system distributions, and hardware platforms, please refer to the Cluster Supported
Platforms list [http://www.mysql.com/support/clusterplatforms.html] maintained by the MySQL Sup-
port Team on the MySQL AB website.

MySQL Cluster is not currently supported on Microsoft Windows. We are working to make Cluster
available on all operating systems supported by MySQL, including Windows, and will update the in-
formation provided here as this work continues.

This chapter represents a work in progress, and its contents are subject to revision as MySQL Cluster
continues to evolve. Additional information regarding MySQL Cluster can be found on the MySQL AB
Web site at http://www.mysql.com/products/cluster/.

Additional resources

• Answers to some commonly asked questions about Cluster may be found in the Section 15.13,
“MySQL Cluster FAQ”.

• The MySQL Cluster mailing list: http://lists.mysql.com/cluster.

• The MySQL Cluster Forum: http://forums.mysql.com/list.php?25.

• Many MySQL Cluster users and some of the MySQL Cluster developers blog about their experi-

977

http://www.mysql.com/support/clusterplatforms.html
http://www.mysql.com/support/clusterplatforms.html
http://www.mysql.com/products/cluster/
http://lists.mysql.com/cluster
http://forums.mysql.com/list.php?25

ences with Cluster, and make feeds of these available through PlanetMySQL
[http://www.planetmysql.org/].

• If you are new to MySQL Cluster, you may find our Developer Zone article How to set up a MySQL
Cluster for two servers
[http://dev.mysql.com/tech-resources/articles/mysql-cluster-for-two-servers.html] to be helpful.

15.1. MySQL Cluster Overview
MySQL Cluster is a technology that enables clustering of in-memory databases in a shared-nothing sys-
tem. The shared-nothing architecture allows the system to work with very inexpensive hardware, and
without any specific requirements on hardware or software. It also does not have any single point of fail-
ure because each component has its own memory and disk.

MySQL Cluster integrates the standard MySQL server with an in-memory clustered storage engine
called NDB. In our documentation, the term NDB refers to the part of the setup that is specific to the stor-
age engine, whereas “MySQL Cluster” refers to the combination of MySQL and the NDB storage en-
gine.

A MySQL Cluster consists of a set of computers, each running a one or more processes which may in-
clude a MySQL server, a data node, a management server, and (possibly) a specialized data access pro-
grams. The relationship of these components in a cluster is shown here:

All these programs work together to form a MySQL Cluster. When data is stored in the NDB Cluster
storage engine, the tables are stored in the data nodes. Such tables are directly accessible from all other
MySQL servers in the cluster. Thus, in a payroll application storing data in a cluster, if one application
updates the salary of an employee, all other MySQL servers that query this data can see this change im-
mediately.

The data stored in the data nodes for MySQL Cluster can be mirrored; the cluster can handle failures of
individual data nodes with no other impact than that a small number of transactions are aborted due to
losing the transaction state. Because transactional applications are expected to handle transaction failure,

MySQL Cluster

978

http://www.planetmysql.org/
http://dev.mysql.com/tech-resources/articles/mysql-cluster-for-two-servers.html
http://dev.mysql.com/tech-resources/articles/mysql-cluster-for-two-servers.html

this should not be a source of problems.

15.2. Basic MySQL Cluster Concepts
NDB is an in-memory storage engine offering high-availability and data-persistence features.

The NDB storage engine can be configured with a range of failover and load-balancing options, but it is
easiest to start with the storage engine at the cluster level. MySQL Cluster's NDB storage engine contains
a complete set of data, dependent only on other data within the cluster itself.

The cluster portion of MySQL Cluster is currently configured independently of the MySQL servers. In a
MySQL Cluster, each part of the cluster is considered to be a node.

Note: In many contexts, the term “node” is used to indicate a computer, but when discussing MySQL
Cluster it means a process. It is posible to run any number of nodes on a single computer, for which we
use the term cluster host.

(However, it should be noted MySQL does not currently support the use of multiple data nodes on a
single computer in a production setting. See Issues exclusive to MySQL Cluster.)

There are three types of cluster nodes, and in a minimal MySQL Cluster configuration, there will be at
least three nodes, one of each of these types:

• Management node (MGM node): The role of this type of node is to manage the other nodes within
the MySQL Cluster, performing such functions as providing configuration data, starting and stop-
ping nodes, running backup, and so forth. Because this node type manages the configuration of the
other nodes, a node of this type should be started first, before any other node. An MGM node is star-
ted with the command ndb_mgmd.

• Data node: This type of node stores cluster data. There are as many data nodes as there are replicas,
times the number of fragments. For example, with two replicas, each having two fragments, you will
need four data nodes. It is not necessary to have more than one replica. A data node is started with
the command ndbd.

• SQL node: This is a node that accesses the cluster data. In the case of MySQL Cluster, an SQL node
is a traditional MySQL server that uses the NDB Cluster storage engine. An SQL node is typic-
ally started with the command mysqld --ndbcluster or by using mysqld with the ndb-
cluster option added to my.cnf.

An SQL node is actually just a specialised type of API node, which designates any application which
accesses Cluster data. One example of an API node is the ndb_restore utility that is used to re-
store a cluster backup. It is possible to write such applications using the NDB API
[http://dev.mysql.com/doc//en/ndbapi/].

Important: It is not realistic to expect to employ a three-node setup in a production environment. Such a
configuration provides no redundancy; in order to benefit from MySQL Cluster's high-availability fea-
tures, you must use multiple data and SQL nodes. The use of multiple management nodes is also highly
recommended.

For a brief introduction to the relationships between nodes, node groups, replicas, and partitions in
MySQL Cluster, see Section 15.2.1, “MySQL Cluster Nodes, Node Groups, Replicas, and Partitions”.

Configuration of a cluster involves configuring each individual node in the cluster and setting up indi-
vidual communication links between nodes. MySQL Cluster is currently designed with the intention that
data nodes are homogeneous in terms of processor power, memory space, and bandwidth. In addition, to
provide a single point of configuration, all configuration data for the cluster as a whole is located in one

MySQL Cluster

979

http://dev.mysql.com/doc//en/ndbapi/

configuration file.

The management server (MGM node) manages the cluster configuration file and the cluster log. Each
node in the cluster retrieves the configuration data from the management server, and so requires a way to
determine where the management server resides. When interesting events occur in the data nodes, the
nodes transfer information about these events to the management server, which then writes the informa-
tion to the cluster log.

In addition, there can be any number of cluster client processes or applications. These are of two types:

• Standard MySQL clients: These are no different for MySQL Cluster than they are for standard
(non-Cluster) MySQL. In other words, MySQL Cluster can be accessed from existing MySQL ap-
plications written in PHP, Perl, C, C++, Java, Python, Ruby, and so on.

• Management clients: These clients connect to the management server and provide commands for
starting and stopping nodes gracefully, starting and stopping message tracing (debug versions only),
showing node versions and status, starting and stopping backups, and so on.

15.2.1. MySQL Cluster Nodes, Node Groups, Replicas, and
Partitions

This section discusses the manner in which MySQL Cluster divides and duplicates data for storage.

Central to an understanding of this topic are the following concepts, listed here with brief definitions:

• (Data) Node: An ndbd process, which stores a replica —that is, a copy of the partition (see below)
assigned to the node group of which the node is a member.

Each data node should be located on a separate computer. While it is also possible to host multiple
ndbd processes on a single computer, such a configuration is not supported.

It is common for the terms “node” and “data node” to be used interchangeably when referring to an
ndbd process; where mentioned, management (MGM) nodes (ndb_mgmd processes) and SQL
nodes (mysqld processes) are specified as such in this discussion.

• Node Group: A node group consists of one or more nodes, and stores partitions, or sets of replicas
(see next item).

Note: Currently, all node groups in a cluster must have the same number of nodes.

• Partition: This is a portion of the data stored by the cluster. There are as many cluster partitions as
nodes participating in the cluster. Each node is responsible for keeping at least one copy of any parti-
tions assigned to it (that is, at least one replica) available to the cluster.

A replica belongs entirely to a single node; a node can (and usually does) store several replicas.

• Replica: This is a copy of a cluster partition. Each node in a node group stores a replica. Also some-
times known as a partition replica. The number of replicas is equal to the number of nodes per node
group.

The following diagram illustrates a MySQL Cluster with four data nodes, arranged in two node groups
of two nodes each; nodes 1 and 2 belong to node group 0, and nodes 3 and 4 belong to node group 1.
Note that only data (ndbd) nodes are shown here; although a working cluster requires an ndb_mgm
process for cluster management and at least one SQL node to access the data stored by the cluster, these

MySQL Cluster

980

have been omitted in the figure for clarity.

The data stored by the cluster is divided into four partitions, numbered 0, 1, 2, and 3. Each partition is
stored — in multiple copies — on the same node group. Partitions are stored on alternate node groups:

• Partition 0 is stored on node group 0; a primary replica (primary copy) is stored on node 1, and a
backup replica (backup copy of the partition) is stored on node 2.

• Partition 1 is stored on the other node group (node group 1); this partition's primary replica is on
node 3, and its backup replica is on node 4.

• Partition 2 is stored on node group 0. However, the placing of its two replicas is reversed from that
of Partition 0; for Partition 2, the primary replica is stored on node 2, and the backup on node 1.

• Partition 3 is stored on node group 1, and the placement of its two replicas are reversed from those of
partition 1. That is, its primary replica is located on node 4, with the backup on node 3.

What this means regarding the continued operation of a MySQL Cluster is this: so long as each node

MySQL Cluster

981

group participating in the cluster has at least one node operating, the cluster has a complete copy of all
data and remains viable. This is illustrated in the next diagram.

In this example, where the cluster consists of two node groups of two nodes each, any combination of at
least one node in node group 0 and at least one node in node group 1 is sufficient to keep the cluster
“alive” (indicated by arrows in the diagram). However, if both nodes from either node group fail, the re-
maining two nodes are not sufficient (shown by the arrows marked out with an X); in either case, the
cluster has lost an entire partition and so can no longer provide access to a complete set of all cluster
data.

15.3. Simple Multi-Computer How-To
This section is a “How-To” that describes the basics for how to plan, install, configure, and run a
MySQL Cluster. Whereas the examples in Section 15.4, “MySQL Cluster Configuration” provide more
in-depth information on a variety of clustering options and configuration, the result of following the
guidelines and procedures outlined here should be a usable MySQL Cluster which meets the minimum
requirements for availability and safeguarding of data.

This section covers hardware and software requirements; networking issues; installation of MySQL
Cluster; configuration issues; starting, stopping, and restarting the cluster; loading of a sample database;
and performing queries.

Basic Assumptions

This How-To makes the following assumptions:

MySQL Cluster

982

1. The cluster setup has four nodes, each on a separate host, and each with a fixed network address on
a typical Ethernet as shown here:

Node IP Address

Management (MGM) node 192.168.0.10

MySQL server (SQL) node 192.168.0.20

Data (NDBD) node "A" 192.168.0.30

Data (NDBD) node "B" 192.168.0.40

This may be made clearer in the following diagram:

Note: In the interest of simplicity (and reliability), this How-To uses only numeric IP addresses.
However, if DNS resolution is available on your network, it is possible to use hostnames in lieu of
IP addresses in configuring Cluster. Alternatively, you can use the /etc/hosts file or your oper-
ating system's equivalent for providing a means to do host lookup if such is available.

2. Each host in our scenario is an Intel-based desktop PC running a common, generic Linux distribu-
tion installed to disk in a standard configuration, and running no unnecessary services. The core OS
with standard TCP/IP networking capabilities should be sufficient. Also for the sake of simplicity,
we also assume that the filesystems on all hosts are set up identically. In the event that they are not,
you will need to adapt these instructions accordingly.

3. Standard 100 Mbps or 1 gigabit Ethernet cards are installed on each machine, along with the proper
drivers for the cards, and that all four hosts are connected via a standard-issue Ethernet networking
appliance such as a switch. (All machines should use network cards with the same throughout. That
is, all four machines in the cluster should have 100 Mbps cards or all four machines should have 1

MySQL Cluster

983

Gbps cards.) MySQL Cluster will work in a 100 Mbps network; however, gigabit Ethernet will
provide better performance.

Note that MySQL Cluster is not intended for use in a network for which throughput is less than 100
Mbps. For this reason (among others), attempting to run a MySQL Cluster over a public network
such as the Internet is not likely to be successful, and is not recommended.

4. For our sample data, we will use the world database which is available for download from the
MySQL AB Web site. As this database takes up a relatively small amount of space, we assume that
each machine has 256MB RAM, which should be sufficient for running the operating system, host
NDB process, and (for the data nodes) for storing the database.

Although we refer to a Linux operating system in this How-To, the instructions and procedures that we
provide here should be easily adaptable to other supported operating systems. We also assume that you
already know how to perform a minimal installation and configuration of the operating system with net-
working capability, or that you are able to obtain assistance in this elsewhere if needed.

We discuss MySQL Cluster hardware, software, and networking requirements in somewhat greater de-
tail in the next section. (See Section 15.3.1, “Hardware, Software, and Networking”.)

15.3.1. Hardware, Software, and Networking
One of the strengths of MySQL Cluster is that it can be run on commodity hardware and has no unusual
requirements in this regard, other than for large amounts of RAM, due to the fact that all live data stor-
age is done in memory. (Note that this is subject to change, and that we intend to implement disk-based
storage in a future MySQL Cluster release.) Naturally, multiple and faster CPUs will enhance perform-
ance. Memory requirements for Cluster processes are relatively small.

The software requirements for Cluster are also modest. Host operating systems do not require any un-
usual modules, services, applications, or configuration to support MySQL Cluster. For supported operat-
ing systems, a standard installation should be sufficient. The MySQL software requirements are simple:
all that is needed is a production release of MySQL-max 5.0; you must use the -max version of MySQL
to have Cluster support. (See Section 5.3, “The mysqld-max Extended MySQL Server”.) It is not ne-
cessary to compile MySQL yourself merely to be able to use Cluster. In this How-To, we assume that
you are using the -max binary appropriate to your operating system, available via the MySQL software
downloads page at http://dev.mysql.com/downloads/.

For inter-node communication, Cluster supports TCP/IP networking in any standard topology, and the
minimum expected for each host is a standard 100 Mbps Ethernet card, plus a switch, hub, or router to
provide network connectivity for the cluster as a whole. We strongly recommend that a MySQL Cluster
be run on its own subnet which is not shared with non-Cluster machines for the following reasons:

• Security: Communications between Cluster nodes are not encrypted or shielded in any way. The
only means of protecting transmissions within a MySQL Cluster is to run your Cluster on a protected
network. If you intend to use MySQL Cluster for Web applications, the cluster should definitely
reside behind your firewall and not in your network's De-Militarized Zone (DMZ
[http://compnetworking.about.com/cs/networksecurity/g/bldef_dmz.htm]) or elsewhere.

• Efficiency: Setting up a MySQL Cluster on a private or protected network allows the cluster to make
exclusive use of bandwidth between cluster hosts. Using a separate switch for your MySQL Cluster
not only helps protect against unauthorized access to Cluster data, it also ensures that Cluster nodes
are shielded from interference caused by transmissions between other computers on the network. For
enhanced reliability, you can use dual switches and dual cards to remove the network as a single
point of failure; many device drivers support failover for such communication links.

MySQL Cluster

984

http://dev.mysql.com/downloads/
http://compnetworking.about.com/cs/networksecurity/g/bldef_dmz.htm

It is also possible to use the high-speed Scalable Coherent Interface (SCI) with MySQL Cluster, but this
is not a requirement. See Section 15.10, “Using High-Speed Interconnects with MySQL Cluster”, for
more about this protocol and its use with MySQL Cluster.

15.3.2. Multi-Computer Installation
Each MySQL Cluster host computer running data or SQL nodes must have installed on it a MySQL-max
binary. For management nodes, it is not necessary to install the MySQL server binary, but you do have
to install the MGM server daemon and client binaries (ndb_mgmd and ndb_mgm, respectively). This
section covers the steps necessary to install the correct binaries for each type of Cluster node.

MySQL AB provides precompiled binaries that support Cluster, and there is generally no need to com-
pile these yourself. Therefore, the first step in the installation process for each cluster host is to down-
load the file mysql-max-5.0.25-pc-linux-gnu-i686.tar.gz from the MySQL downloads
area [http://dev.mysql.com/downloads/]. We assume that you have placed it in each machine's /
var/tmp directory. (If you do require a custom binary, see Section 2.9.3, “Installing from the Develop-
ment Source Tree”.)

RPMs are also available for both 32-bit and 64-bit Linux platforms. (See Section 2.4, “Installing
MySQL on Linux”, for more information about installing MySQL using the RPMs.) After installing
from RPM, you will still need to configure the cluster as discussed in Section 15.3.3, “Multi-Computer
Configuration”.

Note: After completing the installation, do not yet start any of the binaries. We will show you how to do
so following the configuration of all nodes.

Storage and SQL Node Installation

On each of the three machines designated to host storage or SQL nodes, perform the following steps as
the system root user:

1. Check your /etc/passwd and /etc/group files (or use whatever tools are provided by your
operating system for manging users and groups) to see whether there is already a mysql group and
mysql user on the system. Some OS distributions create these as part of the operating system in-
stallation process. If they are not already present, create a new mysql user group, and then add a
mysql user to this group:

shell> groupadd mysql
shell> useradd -g mysql mysql

The syntax for useradd and groupadd may differ slightly on different versions of Unix, or they
may have different names such as adduser and addgroup.

2. Change location to the directory containing the downloaded file, unpack the archive, and create a
symlink to the mysql-max directory named mysql. Note that the actual file and directory names
will vary according to the MySQL version number.

shell> cd /var/tmp
shell> tar -xzvf -C /usr/local mysql-max-5.0.25-pc-linux-gnu-i686.tar.gz
shell> ln -s /usr/local/mysql-max-5.0.25-pc-linux-gnu-i686 /usr/local/mysql

3. Change location to the mysql directory and run the supplied script for creating the system data-
bases:

shell> cd mysql
shell> scripts/mysql_install_db --user=mysql

MySQL Cluster

985

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/

4. Set the necessary permissions for the MySQL server and data directories:

shell> chown -R root .
shell> chown -R mysql data
shell> chgrp -R mysql .

Note that the data directory on each machine hosting a data node is /usr/local/mysql/data.
We will use this piece of information when we configure the management node. (See Sec-
tion 15.3.3, “Multi-Computer Configuration”.)

5. Copy the MySQL startup script to the appropriate directory, make it executable, and set it to start
when the operating system is booted up:

shell> cp support-files/mysql.server /etc/rc.d/init.d/
shell> chmod +x /etc/rc.d/init.d/mysql.server
shell> chkconfig --add mysql.server

(The startup scripts directory may vary depending on your operating system and version — for ex-
ample, in some Linux distributions, it is /etc/init.d.)

Here we use Red Hat's chkconfig for creating links to the startup scripts; use whatever means is
appropriate for this purpose on your operating system and distribution, such as update-rc.d on
Debian.

Remember that the preceding steps must be performed separately for each machine on which a storage
or SQL node is to reside.

Management Node Installation

Installation for the management (MGM) node does not require installation of the mysqld binary. Only
the binaries for the MGM server and client are required, which can be found in the downloaded archive.
Again, we assume that you have placed this file in /var/tmp.

As system root (that is, after using sudo, su root, or your system's equivalent for temporarily as-
suming the system administrator account's privileges), perform the following steps to install ndb_mgmd
and ndb_mgm on the Cluster management node host:

1. Change location to the /var/tmp directory, and extract the ndb_mgm and ndb_mgmd from the
archive into a suitable directory such as /usr/local/bin:

shell> cd /var/tmp
shell> tar -zxvf mysql-5.0.25-pc-linux-gnu-i686.tar.gz
shell> cd mysql-5.0.25-pc-linux-gnu-i686
shell> cp /bin/ndb_mgm* /usr/local/bin

(You can safely delete the directory created by unpacking the downloaded archive, and the files it
contains, from /var/tmp once ndb_mgm and ndb_mgmd have been copied to the executables
directory.)

2. Change location to the directory into which you copied the files, and then make both of them ex-
ecutable:

shell> cd /usr/local/bin
shell> chmod +x ndb_mgm*

In Section 15.3.3, “Multi-Computer Configuration”, we will create and write configuration files for all
of the nodes in our example Cluster.

MySQL Cluster

986

15.3.3. Multi-Computer Configuration
For our four-node, four-host MySQL Cluster, we will need to write four configuration files, one per
node/host.

• Each data node or SQL node requires a my.cnf file that provides two pieces of information: a con-
nectstring telling the node where to find the MGM node, and a line telling the MySQL server on
this host (the machine hosting the data node) to run in NDB mode.

For more information on connectstrings, see Section 15.4.4.2, “The Cluster connectstring”.

• The management node needs a config.ini file telling it how many replicas to maintain, how
much memory to allocate for data and indexes on each data node, where to find the data nodes,
where to save data to disk on each data node, and where to find any SQL nodes.

Configuring the Storage and SQL Nodes

The my.cnf file needed for the data nodes is fairly simple. The configuration file should be located in
the /etc directory and can be edited using any text editor. (Create the file if it does not exist.) For ex-
ample:

shell> vi /etc/my.cnf

We show vi being used here to create the file, but any text editor should work just as well.

For each data node and SQL node in our example setup, my.cnf should look like this:

Options for mysqld process:
[MYSQLD]
ndbcluster # run NDB engine
ndb-connectstring=192.168.0.10 # location of MGM node

Options for ndbd process:
[MYSQL_CLUSTER]
ndb-connectstring=192.168.0.10 # location of MGM node

After entering the preceding information, save this file and exit the text editor. Do this for the machines
hosting data node “A”, data node “B”, and the SQL node.

Important: Once you have started a mysqld process with the ndbcluster and ndb-
connectstring parameters in the [MYSQLD] in the my.cnf file as shown previously, you cannot
execute any CREATE TABLE or ALTER TABLE statements without having actually started the cluster.
Otherwise, these statements will fail with an error. This is by design.

Configuring the Management Node

The first step in configuring the MGM node is to create the directory in which the configuration file can
be found and then to create the file itself. For example (running as root):

shell> mkdir /var/lib/mysql-cluster
shell> cd /var/lib/mysql-cluster
shell> vi config.ini

For our representative setup, the config.ini file should read as follows:

Options affecting ndbd processes on all data nodes:
[NDBD DEFAULT]
NoOfReplicas=2 # Number of replicas
DataMemory=80M # How much memory to allocate for data storage
IndexMemory=18M # How much memory to allocate for index storage

MySQL Cluster

987

For DataMemory and IndexMemory, we have used the
default values. Since the "world" database takes up
only about 500KB, this should be more than enough for
this example Cluster setup.

TCP/IP options:
[TCP DEFAULT]
portnumber=2202 # This the default; however, you can use any

port that is free for all the hosts in cluster
Note: It is recommended beginning with MySQL 5.0 that
you do not specify the portnumber at all and simply allow
the default value to be used instead

Management process options:
[NDB_MGMD]
hostname=192.168.0.10 # Hostname or IP address of MGM node
datadir=/var/lib/mysql-cluster # Directory for MGM node logfiles

Options for data node "A":
[NDBD]

(one [NDBD] section per data node)
hostname=192.168.0.30 # Hostname or IP address
datadir=/usr/local/mysql/data # Directory for this data node's datafiles

Options for data node "B":
[NDBD]
hostname=192.168.0.40 # Hostname or IP address
datadir=/usr/local/mysql/data # Directory for this data node's datafiles

SQL node options:
[MYSQLD]
hostname=192.168.0.20 # Hostname or IP address

(additional mysqld connections can be
specified for this node for various
purposes such as running ndb_restore)

(Note: The world database can be downloaded from http://dev.mysql.com/doc/, where it can be found
listed under “Examples.”)

After all the configuration files have been created and these minimal options have been specified, you
are ready to proceed with starting the cluster and verifying that all processes are running. We discuss
how this is done in Section 15.3.4, “Initial Startup”.

For more detailed information about the available MySQL Cluster configuration parameters and their
uses, see Section 15.4.4, “Configuration File”, and Section 15.4, “MySQL Cluster Configuration”. For
configuration of MySQL Cluster as relates to making backups, see Section 15.8.4, “Configuration for
Cluster Backup”.

Note: The default port for Cluster management nodes is 1186; the default port for data nodes is 2202.
Beginning with MySQL 5.0.3, this restriction is lifted, and the cluster automatically allocates ports for
data nodes from those that are already free.

15.3.4. Initial Startup
Starting the cluster is not very difficult after it has been configured. Each cluster node process must be
started separately, and on the host where it resides. Although it is possible to start the nodes in any order,
it is recommended that the management node be started first, followed by the storage nodes, and then fi-
nally by any SQL nodes:

1. On the management host, issue the following command from the system shell to start the MGM
node process:

shell> ndb_mgmd -f /var/lib/mysql-cluster/config.ini

Note that ndb_mgmd must be told where to find its configuration file, using the -f or -

MySQL Cluster

988

http://dev.mysql.com/doc/

-config-file option. (See Section 15.6.3, “ndb_mgmd, the Management Server Process”, for
details.)

2. On each of the data node hosts, run this command to start the ndbd process for the first time:

shell> ndbd --initial

Note that it is very important to use the --initial parameter only when starting ndbd for the
first time, or when restarting after a backup/restore operation or a configuration change. This is be-
cause the --initial option causes the node to delete any files created by earlier ndbd instances
that are needed for recovery, including the recovery log files.

3. If you used RPM files to install MySQL on the cluster host where the SQL node is to reside, you
can (and should) use the startup script installed in /etc/init.d to start the MySQL server pro-
cess on the SQL node. Note that you need to install the -max server RPM in addition to the Stand-
ard server RPM to run the -max server binary.

If all has gone well, and the cluster has been set up correctly, the cluster should now be operational. You
can test this by invoking the ndb_mgm management node client. The output should look like that shown
here, although you might see some slight differences in the output depending upon the exact version of
MySQL that you are using:

shell> ndb_mgm
-- NDB Cluster -- Management Client --
ndb_mgm> SHOW
Connected to Management Server at: localhost:1186
Cluster Configuration

[ndbd(NDB)] 2 node(s)
id=2 @192.168.0.30 (Version: 5.0.25, Nodegroup: 0, Master)
id=3 @192.168.0.40 (Version: 5.0.25, Nodegroup: 0)

[ndb_mgmd(MGM)] 1 node(s)
id=1 @192.168.0.10 (Version: 5.0.25)

[mysqld(SQL)] 1 node(s)
id=4 (Version: 5.0.25)

Note: The SQL node is referenced here as [mysqld(API)]. This is perfectly normal, and reflects the
fact that the mysqld process is acting as a cluster API node.

You should now be ready to work with databases, tables, and data in MySQL Cluster. See Sec-
tion 15.3.5, “Loading Sample Data and Performing Queries”, for a brief discussion.

15.3.5. Loading Sample Data and Performing Queries
Working with data in MySQL Cluster is not much different from doing so in MySQL without Cluster.
There are two points to keep in mind:

• For a table to be replicated in the cluster, it must use the NDB Cluster storage engine. To specify
this, use the ENGINE=NDB or ENGINE=NDBCLUSTER table option. You can add this option when
creating the table:

CREATE TABLE tbl_name (...) ENGINE=NDBCLUSTER;

Alternatively, for an existing table that uses a different storage engine, use ALTER TABLE to
change the table to use NDB Cluster:

ALTER TABLE tbl_name ENGINE=NDBCLUSTER;

MySQL Cluster

989

• Each NDB table must have a primary key. If no primary key is defined by the user when a table is
created, the NDB Cluster storage engine automatically generates a hidden one. (Note: This hid-
den key takes up space just as does any other table index. It is not uncommon to encounter problems
due to insufficient memory for accommodating these automatically created indexes.)

If you are importing tables from an existing database using the output of mysqldump, you can open the
SQL script in a text editor and add the ENGINE option to any table creation statements, or replace any
existing ENGINE (or TYPE) options. Suppose that you have the world sample database on another
MySQL server that does not support MySQL Cluster, and you want to export the City table:

shell> mysqldump --add-drop-table world City > city_table.sql

The resulting city_table.sql file will contain this table creation statement (and the INSERT state-
ments necessary to import the table data):

DROP TABLE IF EXISTS `City`;
CREATE TABLE `City` (

`ID` int(11) NOT NULL auto_increment,
`Name` char(35) NOT NULL default '',
`CountryCode` char(3) NOT NULL default '',
`District` char(20) NOT NULL default '',
`Population` int(11) NOT NULL default '0',
PRIMARY KEY (`ID`)

) ENGINE=MyISAM DEFAULT CHARSET=latin1;

INSERT INTO `City` VALUES (1,'Kabul','AFG','Kabol',1780000);
INSERT INTO `City` VALUES (2,'Qandahar','AFG','Qandahar',237500);
INSERT INTO `City` VALUES (3,'Herat','AFG','Herat',186800);
(remaining INSERT statements omitted)

You will need to make sure that MySQL uses the NDB storage engine for this table. There are two ways
that this can be accomplished. One of these is to modify the table definition before importing it into the
Cluster database. Using the City table as an example, modify the ENGINE option of the definition as
follows:

DROP TABLE IF EXISTS `City`;
CREATE TABLE `City` (

`ID` int(11) NOT NULL auto_increment,
`Name` char(35) NOT NULL default '',
`CountryCode` char(3) NOT NULL default '',
`District` char(20) NOT NULL default '',
`Population` int(11) NOT NULL default '0',
PRIMARY KEY (`ID`)

) ENGINE=NDBCLUSTER DEFAULT CHARSET=latin1;

INSERT INTO `City` VALUES (1,'Kabul','AFG','Kabol',1780000);
INSERT INTO `City` VALUES (2,'Qandahar','AFG','Qandahar',237500);
INSERT INTO `City` VALUES (3,'Herat','AFG','Herat',186800);
(remaining INSERT statements omitted)

This must be done for the definition of each table that is to be part of the clustered database. The easiest
way to accomplish this is to do a search-and-replace on the file that contains the definitions and replace
all instances of TYPE=engine_name or ENGINE=engine_name with ENGINE=NDBCLUSTER. If
you do not want to modify the file, you can use the unmodified file to create the tables, and then use
ALTER TABLE to change their storage engine. The particulars are given later in this section.

Assuming that you have already created a database named world on the SQL node of the cluster, you
can then use the mysql command-line client to read city_table.sql, and create and populate the
corresponding table in the usual manner:

shell> mysql world < city_table.sql

It is very important to keep in mind that the preceding command must be executed on the host where the

MySQL Cluster

990

SQL node is running (in this case, on the machine with the IP address 192.168.0.20).

To create a copy of the entire world database on the SQL node, use mysqldump on the non-cluster
server to export the database to a file named world.sql; for example, in the /tmp directory. Then
modify the table definitions as just described and import the file into the SQL node of the cluster like
this:

shell> mysql world < /tmp/world.sql

If you save the file to a different location, adjust the preceding instructions accordingly.

It is important to note that NDB Cluster in MySQL 5.0 does not support autodiscovery of databases.
(See Section 15.11, “Known Limitations of MySQL Cluster”.) This means that, once the world data-
base and its tables have been created on one data node, you need to issue the CREATE SCHEMA
world statement (beginning with MySQL 5.0.2, you may use CREATE SCHEMA world instead),
followed by FLUSH TABLES on each SQL node in the cluster. This causes the node to recognize the
database and read its table definitions.

Running SELECT queries on the SQL node is no different from running them on any other instance of a
MySQL server. To run queries from the command line, you first need to log in to the MySQL Monitor
in the usual way (specify the root password at the Enter password: prompt):

shell> mysql -u root -p
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.0.25

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql>

We simply use the MySQL server's root account and assume that you have followed the standard se-
curity precautions for installing a MySQL server, including setting a strong root password. For more
information, see Section 2.10.3, “Securing the Initial MySQL Accounts”.

It is worth taking into account that Cluster nodes do not make use of the MySQL privilege system when
accessing one another. Setting or changing MySQL user accounts (including the root account) effects
only applications that access the SQL node, not interaction between nodes.

If you did not modify the ENGINE clauses in the table definitions prior to importing the SQL script, you
should run the following statements at this point:

mysql> USE world;
mysql> ALTER TABLE City ENGINE=NDBCLUSTER;
mysql> ALTER TABLE Country ENGINE=NDBCLUSTER;
mysql> ALTER TABLE CountryLanguage ENGINE=NDBCLUSTER;

Selecting a database and running a SELECT query against a table in that database is also accomplished
in the usual manner, as is exiting the MySQL Monitor:

mysql> USE world;
mysql> SELECT Name, Population FROM City ORDER BY Population DESC LIMIT 5;
+-----------+------------+
| Name | Population |
+-----------+------------+
Bombay	10500000
Seoul	9981619
São Paulo	9968485
Shanghai	9696300
Jakarta	9604900
+-----------+------------+
5 rows in set (0.34 sec)

mysql> \q

MySQL Cluster

991

Bye

shell>

Applications that use MySQL can employ standard APIs to access NDB tables. It is important to re-
member that your application must access the SQL node, and not the MGM or data nodes. This brief ex-
ample shows how we might execute the SELECT statement just shown by using PHP 5's mysqli ex-
tension running on a Web server elsewhere on the network:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html>
<head>

<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">

<title>SIMPLE mysqli SELECT</title>
</head>
<body>
<?php

connect to SQL node:
$link = new mysqli('192.168.0.20', 'root', 'root_password', 'world');
parameters for mysqli constructor are:
host, user, password, database

if(mysqli_connect_errno())
die("Connect failed: " . mysqli_connect_error());

$query = "SELECT Name, Population
FROM City
ORDER BY Population DESC
LIMIT 5";

if no errors...
if($result = $link->query($query))
{

?>
<table border="1" width="40%" cellpadding="4" cellspacing ="1">

<tbody>
<tr>
<th width="10%">City</th>
<th>Population</th>

</tr>
<?

then display the results...
while($row = $result->fetch_object())

printf(<tr>\n <td align=\"center\">%s</td><td>%d</td>\n</tr>\n",
$row->Name, $row->Population);

?>
</tbody

</table>
<?

...and verify the number of rows that were retrieved
printf("<p>Affected rows: %d</p>\n", $link->affected_rows);

}
else
otherwise, tell us what went wrong
echo mysqli_error();

free the result set and the mysqli connection object
$result->close();
$link->close();

?>
</body>
</html>

We assume that the process running on the Web server can reach the IP address of the SQL node.

In a similar fashion, you can use the MySQL C API, Perl-DBI, Python-mysql, or MySQL AB's own
Connectors to perform the tasks of data definition and manipulation just as you would normally with
MySQL.

15.3.6. Safe Shutdown and Restart

MySQL Cluster

992

To shut down the cluster, enter the following command in a shell on the machine hosting the MGM
node:

shell> ndb_mgm -e shutdown

The -e option here is used to pass a command to the ndb_mgm client from the shell. See Section 4.3.1,
“Using Options on the Command Line”. The command causes the ndb_mgm, ndb_mgmd, and any nd-
bd processes to terminate gracefully. Any SQL nodes can be terminated using mysqladmin shut-
down and other means.

To restart the cluster, run these commands:

• On the management host (192.168.0.10 in our example setup):

shell> ndb_mgmd -f /var/lib/mysql-cluster/config.ini

• On each of the data node hosts (192.168.0.30 and 192.168.0.40):

shell> ndbd

Remember not to invoke this command with the --initial option when restarting an NDBD
node normally.

• On the SQL host (192.168.0.20):

shell> mysqld &

For information on making Cluster backups, see Section 15.8.2, “Using The Management Client to Cre-
ate a Backup”.

To restore the cluster from backup requires the use of the ndb_restore command. This is covered in
Section 15.8.3, “How to Restore a Cluster Backup”.

More information on configuring MySQL Cluster can be found in Section 15.4, “MySQL Cluster Con-
figuration”.

15.4. MySQL Cluster Configuration
A MySQL server that is part of a MySQL Cluster differs in only one respect from a normal
(non-clustered) MySQL server, in that it employs the NDB Cluster storage engine. This engine is
also referred to simply as NDB, and the two forms of the name are synonymous.

To avoid unnecessary allocation of resources, the server is configured by default with the NDB storage
engine disabled. To enable NDB, you must modify the server's my.cnf configuration file, or start the
server with the --ndbcluster option.

The MySQL server is a part of the cluster, so it also must know how to access an MGM node to obtain
the cluster configuration data. The default behavior is to look for the MGM node on localhost.
However, should you need to specify that its location is elsewhere, this can be done in my.cnf or on
the MySQL server command line. Before the NDB storage engine can be used, at least one MGM node
must be operational, as well as any desired data nodes.

15.4.1. Building MySQL Cluster from Source Code

MySQL Cluster

993

NDB, the Cluster storage engine, is available in binary distributions for Linux, Mac OS X, and Solaris.
We are working to make Cluster run on all operating systems supported by MySQL, including Win-
dows.

If you choose to build from a source tarball or the MySQL 5.0 BitKeeper tree, be sure to use the -
-with-ndbcluster option when running configure. You can also use the BUILD/com-
pile-pentium-max build script. Note that this script includes OpenSSL, so you must either have or
obtain OpenSSL to build successfully, or else modify compile-pentium-max to exclude this re-
quirement. Of course, you can also just follow the standard instructions for compiling your own binaries,
and then perform the usual tests and installation procedure. See Section 2.9.3, “Installing from the De-
velopment Source Tree”.

15.4.2. Installing the Software
In the next few sections, we assume that you are already familiar with installing MySQL, and here we
cover only the differences between configuring MySQL Cluster and configuring MySQL without clus-
tering. (See Chapter 2, Installing and Upgrading MySQL, if you require more information about the lat-
ter.)

You will find Cluster configuration easiest if you have already have all management and data nodes run-
ning first; this is likely to be the most time-consuming part of the configuration. Editing the my.cnf
file is fairly straightforward, and this section will cover only any differences from configuring MySQL
without clustering.

15.4.3. Quick Test Setup of MySQL Cluster
To familiarize you with the basics, we will describe the simplest possible configuration for a functional
MySQL Cluster. After this, you should be able to design your desired setup from the information
provided in the other relevant sections of this chapter.

First, you need to create a configuration directory such as /var/lib/mysql-cluster, by execut-
ing the following command as the system root user:

shell> mkdir /var/lib/mysql-cluster

In this directory, create a file named config.ini that contains the following information. Substitute
appropriate values for HostName and DataDir as necessary for your system.

file "config.ini" - showing minimal setup consisting of 1 data node,
1 management server, and 3 MySQL servers.
The empty default sections are not required, and are shown only for
the sake of completeness.
Data nodes must provide a hostname but MySQL Servers are not required
to do so.
If you don't know the hostname for your machine, use localhost.
The DataDir parameter also has a default value, but it is recommended to
set it explicitly.
Note: DB, API, and MGM are aliases for NDBD, MYSQLD, and NDB_MGMD
respectively. DB and API are deprecated and should not be used in new
installations.
[NDBD DEFAULT]
NoOfReplicas= 1

[MYSQLD DEFAULT]
[NDB_MGMD DEFAULT]
[TCP DEFAULT]

[NDB_MGMD]
HostName= myhost.example.com

[NDBD]
HostName= myhost.example.com
DataDir= /var/lib/mysql-cluster

MySQL Cluster

994

[MYSQLD]
[MYSQLD]
[MYSQLD]

You can now start the ndb_mgmd management server. By default, it atttempts to read the con-
fig.ini file in its current working directory, so change location into the directory where the file is
located and then invoke ndb_mgmd:

shell> cd /var/lib/mysql-cluster
shell> ndb_mgmd

Then start a single data node by running ndbd. When starting ndbd for a given data node for the very
first time, you should use the --initial option as shown here:

shell> ndbd --initial

For subsequent ndbd starts, you will generally want to omit the --initial option:

shell> ndbd

The reason for omitting --initial on subsequent restarts is that this option causes ndbd to delete
and re-create all existing data and log files (as well as all table metadata) for this data node. One excep-
tion to this rule about not using --initial except for the first ndbd invocation is that you use it
when restarting the cluster and restoring from backup after adding new data nodes.

By default, ndbd looks for the management server at localhost on port 1186.

Note: If you have installed MySQL from a binary tarball, you will need to specify the path of the
ndb_mgmd and ndbd servers explicitly. (Normally, these will be found in /
usr/local/mysql/bin.)

Finally, change location to the MySQL data directory (usually /var/lib/mysql or /
usr/local/mysql/data), and make sure that the my.cnf file contains the option necessary to en-
able the NDB storage engine:

[mysqld]
ndbcluster

You can now start the MySQL server as usual:

shell> mysqld_safe --user=mysql &

Wait a moment to make sure the MySQL server is running properly. If you see the notice mysql
ended, check the server's .err file to find out what went wrong.

If all has gone well so far, you now can start using the cluster. Connect to the server and verify that the
NDBCLUSTER storage engine is enabled:

shell> mysql
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.0.25-Max

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SHOW ENGINES\G
...
*************************** 12. row ***************************
Engine: NDBCLUSTER
Support: YES
Comment: Clustered, fault-tolerant, memory-based tables
*************************** 13. row ***************************

MySQL Cluster

995

Engine: NDB
Support: YES
Comment: Alias for NDBCLUSTER
...

The row numbers shown in the preceding example output may be different from those shown on your
system, depending upon how your server is configured.

Try to create an NDBCLUSTER table:

shell> mysql
mysql> USE test;
Database changed

mysql> CREATE TABLE ctest (i INT) ENGINE=NDBCLUSTER;
Query OK, 0 rows affected (0.09 sec)

mysql> SHOW CREATE TABLE ctest \G
*************************** 1. row ***************************

Table: ctest
Create Table: CREATE TABLE `ctest` (

`i` int(11) default NULL
) ENGINE=ndbcluster DEFAULT CHARSET=latin1
1 row in set (0.00 sec)

To check that your nodes were set up properly, start the management client:

shell> ndb_mgm

Use the SHOW command from within the management client to obtain a report on the cluster's status:

NDB> SHOW
Cluster Configuration

[ndbd(NDB)] 1 node(s)
id=2 @127.0.0.1 (Version: 3.5.3, Nodegroup: 0, Master)

[ndb_mgmd(MGM)] 1 node(s)
id=1 @127.0.0.1 (Version: 3.5.3)

[mysqld(API)] 3 node(s)
id=3 @127.0.0.1 (Version: 3.5.3)
id=4 (not connected, accepting connect from any host)
id=5 (not connected, accepting connect from any host)

At this point, you have successfully set up a working MySQL Cluster. You can now store data in the
cluster by using any table created with ENGINE=NDBCLUSTER or its alias ENGINE=NDB.

15.4.4. Configuration File
Configuring MySQL Cluster requires working with two files:

• my.cnf: Specifies options for all MySQL Cluster executables. This file, with which you should be
familiar with from previous work with MySQL, must be accessible by each executable running in
the cluster.

• config.ini: This file is read only by the MySQL Cluster management server, which then distrib-
utes the information contained therein to all processes participating in the cluster. config.ini
contains a description of each node involved in the cluster. This includes configuration parameters
for data nodes and configuration parameters for connections between all nodes in the cluster. For a
quick reference to the sections that can appear in this file, and what sorts of configuration parameters
may be placed in each section, see Sections of the config.ini File.

MySQL Cluster

996

We are continuously making improvements in Cluster configuration and attempting to simplify this pro-
cess. Although we strive to maintain backward compatibility, there may be times when introduce an in-
compatible change. In such cases we will try to let Cluster users know in advance if a change is not
backward compatible. If you find such a change and we have not documented it, please report it in the
MySQL bugs database using the instructions given in Section 1.8, “How to Report Bugs or Problems”.

15.4.4.1. Basic Example Configuration

To support MySQL Cluster, you will need to update my.cnf as shown in the following example. Note
that the options shown here should not be confused with those that are used in config.ini files. You
may also specify these parameters on the command line when invoking the executables.

my.cnf
example additions to my.cnf for MySQL Cluster
(valid in MySQL 5.0)

enable ndbcluster storage engine, and provide connectstring for
management server host (default port is 1186)
[mysqld]
ndbcluster
ndb-connectstring=ndb_mgmd.mysql.com

provide connectstring for management server host (default port: 1186)
[ndbd]
connect-string=ndb_mgmd.mysql.com

provide connectstring for management server host (default port: 1186)
[ndb_mgm]
connect-string=ndb_mgmd.mysql.com

provide location of cluster configuration file
[ndb_mgmd]
config-file=/etc/config.ini

(For more information on connectstrings, see Section 15.4.4.2, “The Cluster connectstring”.)

my.cnf
example additions to my.cnf for MySQL Cluster
(will work on all versions)

enable ndbcluster storage engine, and provide connectstring for management
server host to the default port 1186
[mysqld]
ndbcluster
ndb-connectstring=ndb_mgmd.mysql.com:1186

Important: Once you have started a mysqld process with the ndbcluster and ndb-
connectstring parameters in the [MYSQLD] in the my.cnf file as shown previously, you cannot
execute any CREATE TABLE or ALTER TABLE statements without having actually started the cluster.
Otherwise, these statements will fail with an error. This is by design.

You may also use a separate [mysql_cluster] section in the cluster my.cnf file for settings to be
read and used by all executables:

cluster-specific settings
[mysql_cluster]
ndb-connectstring=ndb_mgmd.mysql.com:1186

For additional NDB variables that can be set in the my.cnf file, see Section 5.2.3, “System Variables”.

The configuration file is named config.ini by default. It is read by ndb_mgmd at startup and can be
placed anywhere. Its location and name are specified by using --config-file=path_name on the
ndb_mgmd command line. If the configuration file is not specified, ndb_mgmd by default tries to read
a file named config.ini located in the current working directory.

MySQL Cluster

997

Currently, the configuration file is in INI format, which consists of sections preceded by section head-
ings (surrounded by square brackets), followed by the appropriate parameter names and values. One de-
viation from the standard INI format is that the parameter name and value can be separated by a colon
(‘:’) as well as the equals sign (‘=’). Another deviation is that sections are not uniquely identified by
section name. Instead, unique sections (such as two different nodes of the same type) are identified by a
unique ID specified as a parameter within the section.

Default values are defined for most parameters, and can also be specified in config.ini. To create a
default value section, simply add the word DEFAULT to the section name. For example, an [NDBD]
section contains parameters that apply to a particular data node, whereas an [NDBD DEFAULT] section
contains parameters that apply to all data nodes. Suppose that all data nodes should use the same data
memory size. To configure them all, create an [NDBD DEFAULT] section that contains a
DataMemory line to specify the data memory size.

At a minimum, the configuration file must define the computers and nodes involved in the cluster and on
which computers these nodes are located. An example of a simple configuration file for a cluster con-
sisting of one management server, two data nodes and two MySQL servers is shown here:

file "config.ini" - 2 data nodes and 2 SQL nodes
This file is placed in the startup directory of ndb_mgmd (the
management server)
The first MySQL Server can be started from any host. The second
can be started only on the host mysqld_5.mysql.com

[NDBD DEFAULT]
NoOfReplicas= 2
DataDir= /var/lib/mysql-cluster

[NDB_MGMD]
Hostname= ndb_mgmd.mysql.com
DataDir= /var/lib/mysql-cluster

[NDBD]
HostName= ndbd_2.mysql.com

[NDBD]
HostName= ndbd_3.mysql.com

[MYSQLD]
[MYSQLD]
HostName= mysqld_5.mysql.com

Note that each node has its own section in the config.ini. For instance, this cluster has two data
nodes, so the preceding configuration file contains two [NDBD] sections defining these nodes.

Sections of the config.ini File

There are six different sections that you can use in the config.ini configuration file, as described in
the following list:

• [COMPUTER]: Defines cluster hosts. This is not required to configure a viable MySQL Cluster, but
be may used as a convenience when setting up a large cluster. See Section 15.4.4.3, “Defining
Cluster Computers”, for more information.

• [NDBD]: Defines a cluster data node (ndbd process). See Section 15.4.4.5, “Defining Data Nodes”,
for details.

• [MYSQLD]: Defines the cluster's MySQL server nodes (also called SQL or API nodes). For a dis-
cussion of SQL node configuration, see Section 15.4.4.6, “Defining SQL and Other API Nodes”.

• [MGM] or [NDB_MGMD]: Defines a cluster management server (MGM) node. For information con-
cerning the configuration of MGM nodes, see Section 15.4.4.4, “Defining the Management Server”.

MySQL Cluster

998

• [TCP]: Defines a TCP/IP connection between cluster nodes, with TCP/IP being the default connec-
tion protocol. Normally, [TCP] or [TCP DEFAULT] sections are not required to set up a MySQL
Cluster, as the cluster handles this automatically; however, it may be necessary in some situations to
override the defaults provided by the cluster. See Section 15.4.4.7, “Cluster TCP/IP Connections”,
for information about available TCP/IP configuration parameters and how to use them. (You may
also find Section 15.4.4.8, “TCP/IP Connections Using Direct Connections” to be of interest in some
cases.)

• [SHM]: Defines shared-memory connections between nodes. In MySQL 5.0-max, it is enabled by
default, but should still be considered experimental. For a discussion of SHM interconnects, see Sec-
tion 15.4.4.9, “Shared-Memory Connections”.

• [SCI]:Defines Scalable Coherent Interface connections between cluster data nodes. Such connec-
tions require software which, while freely available, is not part of the MySQL Cluster distribution, as
well as specialised hardware. See Section 15.4.4.10, “SCI Transport Connections” for detailed in-
formation about SCI interconnects.

You can define DEFAULT values for each section. All Cluster parameter names are case-insensitive,
which differs from parameters specified in my.cnf or my.ini files.

15.4.4.2. The Cluster connectstring

With the exception of the MySQL Cluster management server (ndb_mgmd), each node that is part of a
MySQL Cluster requires a connectstring that points to the management server's location. This connect-
string is used in establishing a connection to the management server as well as in performing other tasks
depending on the node's role in the cluster. The syntax for a connectstring is as follows:

<connectstring> :=
[<nodeid-specification>,]<host-specification>[,<host-specification>]

<nodeid-specification> := node_id

<host-specification> := host_name[:port_num]

node_id is an integer larger than 1 which identifies a node in config.ini. host_name is a string
representing a valid Internet host name or IP address. port_num is an integer referring to a TCP/IP
port number.

example 1 (long): "nodeid=2,myhost1:1100,myhost2:1100,192.168.0.3:1200"
example 2 (short): "myhost1"

All nodes will use localhost:1186 as the default connectstring value if none is provided. If
port_num is omitted from the connectstring, the default port is 1186. This port should always be avail-
able on the network because it has been assigned by IANA for this purpose (see ht-
tp://www.iana.org/assignments/port-numbers for details).

By listing multiple <host-specification> values, it is possible to designate several redundant
management servers. A cluster node will attempt to contact successive management servers on each host
in the order specified, until a successful connection has been established.

There are a number of different ways to specify the connectstring:

• Each executable has its own command-line option which enables specifying the management server
at startup. (See the documentation for the respective executable.)

• It is also possible to set the connectstring for all nodes in the cluster at once by placing it in a
[mysql_cluster] section in the management server's my.cnf file.

MySQL Cluster

999

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

• For backward compatibility, two other options are available, using the same syntax:

1. Set the NDB_CONNECTSTRING environment variable to contain the connectstring.

2. Write the connectstring for each executable into a text file named Ndb.cfg and place this file
in the executable's startup directory.

However, these are now deprecated and should not be used for new installations.

The recommended method for specifying the connectstring is to set it on the command line or in the
my.cnf file for each executable.

15.4.4.3. Defining Cluster Computers

The [COMPUTER] section has no real significance other than serving as a way to avoid the need of de-
fining host names for each node in the system. All parameters mentioned here are required.

• Id

This is an integer value, used to refer to the host computer elsewhere in the configuration file. This is
not the same as the node ID.

• HostName

This is the computer's hostname or IP address.

15.4.4.4. Defining the Management Server

The [NDB_MGMD] section is used to configure the behavior of the management server. [MGM] can be
used as an alias; the two section names are equivalent. All parameters in the following list are optional
and assume their default values if omitted. Note: If neither the ExecuteOnComputer nor the Host-
Name parameter is present, the default value localhost will be assumed for both.

•
Id

Each node in the cluster has a unique identity, which is represented by an integer value in the range 1
to 63 inclusive. This ID is used by all internal cluster messages for addressing the node.

•
ExecuteOnComputer

This refers to the Id set for one of the computers defined in a [COMPUTER] section of the con-
fig.ini file.

•
PortNumber

This is the port number on which the management server listens for configuration requests and man-
agement commands.

•
HostName

Specifying this parameter defines the hostname of the computer on which the management node is to

MySQL Cluster

1000

reside. To specify a hostname other than localhost, either this parameter or ExecuteOnCom-
puter is required.

•
LogDestination

This parameter specifies where to send cluster logging information. There are three options in this
regard: CONSOLE, SYSLOG, and FILE:

• CONSOLE outputs the log to stdout:

CONSOLE

• SYSLOG sends the log to a syslog facility, possible values being one of auth, authpriv,
cron, daemon, ftp, kern, lpr, mail, news, syslog, user, uucp, local0, local1,
local2, local3, local4, local5, local6, or local7.

Note: Not every facility is necessarily supported by every operating system.

SYSLOG:facility=syslog

• FILE pipes the cluster log output to a regular file on the same machine. The following values
can be specified:

• filename: The name of the logfile.

• maxsize: The maximum size (in bytes) to which the file can grow before logging rolls over
to a new file. When this occurs, the old logfile is renamed by appending .N to the filename,
where N is the next number not yet used with this name.

• maxfiles: The maximum number of logfiles.

FILE:filename=cluster.log,maxsize=1000000,maxfiles=6

It is possible to specify multiple log destinations separated by semicolons as shown here:

CONSOLE;SYSLOG:facility=local0;FILE:filename=/var/log/mgmd

The default value for the FILE parameter is
FILE:filename=ndb_node_id_cluster.log,maxsize=1000000,maxfiles=6,
where node_id is the ID of the node.

•
ArbitrationRank

This parameter is used to define which nodes can act as arbitrators. Only MGM nodes and SQL
nodes can be arbitrators. ArbitrationRank can take one of the following values:

• 0: The node will never be used as an arbitrator.

• 1: The node has high priority; that is, it will be preferred as an arbitrator over low-priority nodes.

• 2: Indicates a low-priority node which be used as an arbitrator only if a node with a higher prior-
ity is not available for that purpose.

Normally, the management server should be configured as an arbitrator by setting its Arbitra-
tionRank to 1 (the default value) and that of all SQL nodes to 0.

MySQL Cluster

1001

•
ArbitrationDelay

An integer value which causes the management server's responses to arbitration requests to be
delayed by that number of milliseconds. By default, this value is 0; it is normally not necessary to
change it.

•
DataDir

This specifies the directory where output files from the management server will be placed. These
files include cluster log files, process output files, and the daemon's process ID (PID) file. (For log
files, this location can be overridden by setting the FILE parameter for LogDestination as dis-
cussed previously in this section.)

15.4.4.5. Defining Data Nodes

The [NDBD] and [NDBD DEFAULT] sections are used to configure the behavior of the cluster's data
nodes. There are many parameters which control buffer sizes, pool sizes, timeouts, and so forth. The
only mandatory parameters are:

• Either ExecuteOnComputer or HostName, which must be defined in the local [NDBD] section.

• The parameter NoOfReplicas, which must be defined in the [NDBD DEFAULT] section, as it is
common to all Cluster data nodes.

Most data node parameters are set in the [NDBD DEFAULT] section. Only those parameters explicitly
stated as being able to set local values are allowed to be changed in the [NDBD] section. Where present,
HostName, Id and ExecuteOnComputer must be defined in the local [NDBD] section, and not in
any other section of config.ini. In other words, settings for these parameters are specific to one data
node.

For those parameters affecting memory usage or buffer sizes, it is possible to use K, M, or G as a suffix to
indicate units of 1024, 1024×1024, or 1024×1024×1024. (For example, 100K means 100 × 1024 =
102400.) Parameter names and values are currently case-sensitive.

Identifying Data Nodes

The Id value (that is, the data node identifier) can be allocated on the command line when the node is
started or in the configuration file.

•
Id

This is the node ID used as the address of the node for all cluster internal messages. This is an in-
teger in the range 1 to 63 inclusive. Each node in the cluster must have a unique identity.

•
ExecuteOnComputer

This refers to the Id set for one of the computers defined in a [COMPUTER] section.

•
HostName

MySQL Cluster

1002

Specifying this parameter defines the hostname of the computer on which the data node is to reside.
To specify a hostname other than localhost, either this parameter or ExecuteOnComputer is
required.

•
ServerPort (OBSOLETE)

Each node in the cluster uses a port to connect to other nodes. This port is used also for non-TCP
transporters in the connection setup phase. The default port is allocated dynamically in such a way as
to ensure that no two nodes on the same computer receive the same port number, so it should not
normally be necessary to specify a value for this parameter.

•
NoOfReplicas

This global parameter can be set only in the [NDBD DEFAULT] section, and defines the number of
replicas for each table stored in the cluster. This parameter also specifies the size of node groups. A
node group is a set of nodes all storing the same information.

Node groups are formed implicitly. The first node group is formed by the set of data nodes with the
lowest node IDs, the next node group by the set of the next lowest node identities, and so on. By way
of example, assume that we have 4 data nodes and that NoOfReplicas is set to 2. The four data
nodes have node IDs 2, 3, 4 and 5. Then the first node group is formed from nodes 2 and 3, and the
second node group by nodes 4 and 5. It is important to configure the cluster in such a manner that
nodes in the same node groups are not placed on the same computer because a single hardware fail-
ure would cause the entire cluster to crash.

If no node IDs are provided, the order of the data nodes will be the determining factor for the node
group. Whether or not explicit assignments are made, they can be viewed in the output of the man-
agement client's SHOW statement.

There is no default value for NoOfReplicas; the maximum possible value is 4.

•
DataDir

This parameter specifies the directory where trace files, log files, pid files and error logs are placed.

•
FileSystemPath

This parameter specifies the directory where all files created for metadata, REDO logs, UNDO logs
and data files are placed. The default is the directory specified by DataDir. Note: This directory
must exist before the ndbd process is initiated.

The recommended directory hierarchy for MySQL Cluster includes
/var/lib/mysql-cluster, under which a directory for the node's filesystem is created. The
name of this subdirectory contains the node ID. For example, if the node ID is 2, this subdirectory is
named ndb_2_fs.

•
BackupDataDir

This parameter specifies the directory in which backups are placed. If omitted, the default backup
location is the directory named BACKUP under the location specified by the FileSystemPath
parameter. (See above.)

MySQL Cluster

1003

Data Memory, Index Memory, and String Memory

DataMemory and IndexMemory are [NDBD] parameters specifying the size of memory segments
used to store the actual records and their indexes. In setting values for these, it is important to understand
how DataMemory and IndexMemory are used, as they usually need to be updated to reflect actual
usage by the cluster:

•
DataMemory

This parameter defines the amount of space (in bytes) available for storing database records. The en-
tire amount specified by this value is allocated in memory, so it is extremely important that the ma-
chine has sufficient physical memory to accommodate it.

The memory allocated by DataMemory is used to store both the actual records and indexes. Each
record is currently of fixed size. (Even VARCHAR columns are stored as fixed-width columns.) There
is a 16-byte overhead on each record; an additional amount for each record is incurred because it is
stored in a 32KB page with 128 byte page overhead (see below). There is also a small amount
wasted per page due to the fact that each record is stored in only one page. The maximum record size
is currently 8052 bytes.

The memory space defined by DataMemory is also used to store ordered indexes, which use about
10 bytes per record. Each table row is represented in the ordered index. A common error among
users is to assume that all indexes are stored in the memory allocated by IndexMemory, but this is
not the case: Only primary key and unique hash indexes use this memory; ordered indexes use the
memory allocated by DataMemory. However, creating a primary key or unique hash index also
creates an ordered index on the same keys, unless you specify USING HASH in the index creation
statement. This can be verified by running ndb_desc -d db_name table_name in the man-
agement client.

The memory space allocated by DataMemory consists of 32KB pages, which are allocated to table
fragments. Each table is normally partitioned into the same number of fragments as there are data
nodes in the cluster. Thus, for each node, there are the same number of fragments as are set in NoO-
fReplicas.

Once a page has been allocated, it is currently not possible to return it to the pool of free pages, ex-
cept by deleting the table. (This also means that DataMemory pages, once allocated to a given ta-
ble, cannot be used by other tables.) Performing a node recovery also compresses the partition be-
cause all records are inserted into empty partitions from other live nodes.

The DataMemory memory space also contains UNDO information: For each update, a copy of the
unaltered record is allocated in the DataMemory. There is also a reference to each copy in the
ordered table indexes. Unique hash indexes are updated only when the unique index columns are up-
dated, in which case a new entry in the index table is inserted and the old entry is deleted upon com-
mit. For this reason, it is also necessary to allocate enough memory to handle the largest transactions
performed by applications using the cluster. In any case, performing a few large transactions holds
no advantage over using many smaller ones, for the following reasons:

• Large transactions are not any faster than smaller ones

• Large transactions increase the number of operations that are lost and must be repeated in event
of transaction failure

• Large transactions use more memory

The default value for DataMemory is 80MB; the minimum is 1MB. There is no maximum size, but
in reality the maximum size has to be adapted so that the process does not start swapping when the
limit is reached. This limit is determined by the amount of physical RAM available on the machine

MySQL Cluster

1004

and by the amount of memory that the operating system may commit to any one process. 32-bit op-
erating systems are generally limited to 2–4GB per process; 64-bit operating systems can use more.
For large databases, it may be preferable to use a 64-bit operating system for this reason. In addition,
it is also possible to run more than one ndbd process per machine, and this may prove advantageous
on machines with multiple CPUs.

•
IndexMemory

This parameter controls the amount of storage used for hash indexes in MySQL Cluster. Hash in-
dexes are always used for primary key indexes, unique indexes, and unique constraints. Note that
when defining a primary key and a unique index, two indexes will be created, one of which is a hash
index used for all tuple accesses as well as lock handling. It is also used to enforce unique con-
straints.

The size of the hash index is 25 bytes per record, plus the size of the primary key. For primary keys
larger than 32 bytes another 8 bytes is added.

The default value for IndexMemory is 18MB. The minimum is 1MB.

•
StringMemory

This parameter determines how much memory is allocated for strings such as table names, and is
specified in an [NDBD] or [NDBD DEFAULT] section of the config.ini file. A value between
0 and 100 inclusive is interpreted as a percent of the maxmimum default value, which is calculated
based on a number of factors including the number of tables, maximum table name size, maximum
size of .FRM files, MaxNoOfTriggers, maximum column name size, and maximum default
column value. In general it is safe to assume that the maximum default value is approximately 5 MB
for a MySQL Cluster having 1000 tables.

A value greater than 100 is interpreted as a number of bytes.

In MySQL 5.0, the default value is 100 — that is, 100 percent of the default maximum, or roughly 5
MB. It is possible to reduce this value safely, but it should never be less than 5 percent. If you en-
counter Error 773 Out of string memory, please modify StringMemory config parameter: Permanent
error: Schema error, this means that means that you have set the StringMemory value too low. 25
(25 percent) is not excessive, and should prevent this error from recurring in all but the most extreme
conditions, as when there are hundreds or thousands of NDB tables with names whose lengths and
columns whose number approach their permitted maximums.

The following example illustrates how memory is used for a table. Consider this table definition:

CREATE TABLE example (
a INT NOT NULL,
b INT NOT NULL,
c INT NOT NULL,
PRIMARY KEY(a),
UNIQUE(b)

) ENGINE=NDBCLUSTER;

For each record, there are 12 bytes of data plus 12 bytes overhead. Having no nullable columns saves 4
bytes of overhead. In addition, we have two ordered indexes on columns a and b consuming roughly 10
bytes each per record. There is a primary key hash index on the base table using roughly 29 bytes per re-
cord. The unique constraint is implemented by a separate table with b as primary key and a as a column.
This other table consumes an additional 29 bytes of index memory per record in the example table as
well 8 bytes of record data plus 12 bytes of overhead.

Thus, for one million records, we need 58MB for index memory to handle the hash indexes for the

MySQL Cluster

1005

primary key and the unique constraint. We also need 64MB for the records of the base table and the
unique index table, plus the two ordered index tables.

You can see that hash indexes takes up a fair amount of memory space; however, they provide very fast
access to the data in return. They are also used in MySQL Cluster to handle uniqueness constraints.

Currently, the only partitioning algorithm is hashing and ordered indexes are local to each node. Thus,
ordered indexes cannot be used to handle uniqueness constraints in the general case.

An important point for both IndexMemory and DataMemory is that the total database size is the sum
of all data memory and all index memory for each node group. Each node group is used to store replic-
ated information, so if there are four nodes with two replicas, there will be two node groups. Thus, the
total data memory available is 2 × DataMemory for each data node.

It is highly recommended that DataMemory and IndexMemory be set to the same values for all
nodes. Data distribution is even over all nodes in the cluster, so the maximum amount of space available
for any node can be no greater than that of the smallest node in the cluster.

DataMemory and IndexMemory can be changed, but decreasing either of these can be risky; doing
so can easily lead to a node or even an entire MySQL Cluster that is unable to restart due to there being
insufficient memory space. Increasing these values should be acceptable, but it is recommended that
such upgrades are performed in the same manner as a software upgrade, beginning with an update of the
configuration file, and then restarting the management server followed by restarting each data node in
turn.

Updates do not increase the amount of index memory used. Inserts take effect immediately; however,
rows are not actually deleted until the transaction is committed.

Transaction Parameters

The next three [NDBD] parameters that we discuss are important because they affect the number of par-
allel transactions and the sizes of transactions that can be handled by the system. MaxNoOfConcur-
rentTransactions sets the number of parallel transactions possible in a node. MaxNoOfConcur-
rentOperations sets the number of records that can be in update phase or locked simultaneously.

Both of these parameters (especially MaxNoOfConcurrentOperations) are likely targets for users
setting specific values and not using the default value. The default value is set for systems using small
transactions, to ensure that these do not use excessive memory.

•
MaxNoOfConcurrentTransactions

For each active transaction in the cluster there must be a record in one of the cluster nodes. The task
of coordinating transactions is spread among the nodes. The total number of transaction records in
the cluster is the number of transactions in any given node times the number of nodes in the cluster.

Transaction records are allocated to individual MySQL servers. Normally, there is at least one trans-
action record allocated per connection that using any table in the cluster. For this reason, one should
ensure that there are more transaction records in the cluster than there are concurrent connections to
all MySQL servers in the cluster.

This parameter must be set to the same value for all cluster nodes.

Changing this parameter is never safe and doing so can cause a cluster to crash. When a node
crashes, one of the nodes (actually the oldest surviving node) will build up the transaction state of all
transactions ongoing in the crashed node at the time of the crash. It is thus important that this node
has as many transaction records as the failed node.

MySQL Cluster

1006

The default value is 4096.

•
MaxNoOfConcurrentOperations

It is a good idea to adjust the value of this parameter according to the size and number of transac-
tions. When performing transactions of only a few operations each and not involving a great many
records, there is no need to set this parameter very high. When performing large transactions in-
volving many records need to set this parameter higher.

Records are kept for each transaction updating cluster data, both in the transaction coordinator and in
the nodes where the actual updates are performed. These records contain state information needed to
find UNDO records for rollback, lock queues, and other purposes.

This parameter should be set to the number of records to be updated simultaneously in transactions,
divided by the number of cluster data nodes. For example, in a cluster which has four data nodes and
which is expected to handle 1,000,000 concurrent updates using transactions, you should set this
value to 1000000 / 4 = 250000.

Read queries which set locks also cause operation records to be created. Some extra space is alloc-
ated within individual nodes to accommodate cases where the distribution is not perfect over the
nodes.

When queries make use of the unique hash index, there are actually two operation records used per
record in the transaction. The first record represents the read in the index table and the second
handles the operation on the base table.

The default value is 32768.

This parameter actually handles two values that can be configured separately. The first of these spe-
cifies how many operation records are to be placed with the transaction coordinator. The second part
specifies how many operation records are to be local to the database.

A very large transaction performed on an eight-node cluster requires as many operation records in
the transaction coordinator as there are reads, updates, and deletes involved in the transaction.
However, the operation records of the are spread over all eight nodes. Thus, if it is necessary to con-
figure the system for one very large transaction, it is a good idea to configure the two parts separ-
ately. MaxNoOfConcurrentOperations will always be used to calculate the number of opera-
tion records in the transaction coordinator portion of the node.

It is also important to have an idea of the memory requirements for operation records. These con-
sume about 1KB per record.

•
MaxNoOfLocalOperations

By default, this parameter is calculated as 1.1 × MaxNoOfConcurrentOperations. This fits
systems with many simultaneous transactions, none of them being very large. If there is a need to
handle one very large transaction at a time and there are many nodes, it is a good idea to override the
default value by explicitly specifying this parameter.

Transaction Temporary Storage

The next set of [NDBD] parameters is used to determine temporary storage when executing a statement
that is part of a Cluster transaction. All records are released when the statement is completed and the
cluster is waiting for the commit or rollback.

MySQL Cluster

1007

The default values for these parameters are adequate for most situations. However, users with a need to
support transactions involving large numbers of rows or operations may need to increase these values to
enable better parallelism in the system, whereas users whose applications require relatively small trans-
actions can decrease the values to save memory.

•
MaxNoOfConcurrentIndexOperations

For queries using a unique hash index, another temporary set of operation records is used during a
query's execution phase. This parameter sets the size of that pool of records. Thus, this record is al-
located only while executing a part of a query. As soon as this part has been executed, the record is
released. The state needed to handle aborts and commits is handled by the normal operation records,
where the pool size is set by the parameter MaxNoOfConcurrentOperations.

The default value of this parameter is 8192. Only in rare cases of extremely high parallelism using
unique hash indexes should it be necessary to increase this value. Using a smaller value is possible
and can save memory if the DBA is certain that a high degree of parallelism is not required for the
cluster.

•
MaxNoOfFiredTriggers

The default value of MaxNoOfFiredTriggers is 4000, which is sufficient for most situations. In
some cases it can even be decreased if the DBA feels certain the need for parallelism in the cluster is
not high.

A record is created when an operation is performed that affects a unique hash index. Inserting or de-
leting a record in a table with unique hash indexes or updating a column that is part of a unique hash
index fires an insert or a delete in the index table. The resulting record is used to represent this index
table operation while waiting for the original operation that fired it to complete. This operation is
short-lived but can still require a large number of records in its pool for situations with many parallel
write operations on a base table containing a set of unique hash indexes.

•
TransactionBufferMemory

The memory affected by this parameter is used for tracking operations fired when updating index
tables and reading unique indexes. This memory is used to store the key and column information for
these operations. It is only very rarely that the value for this parameter needs to be altered from the
default.

The default value for TransactionBufferMemory is 1MB.

Normal read and write operations use a similar buffer, whose usage is even more short-lived. The
compile-time parameter ZATTRBUF_FILESIZE (found in ndb/
src/kernel/blocks/Dbtc/Dbtc.hpp) set to 4000 × 128 bytes (500KB). A similar buffer
for key information, ZDATABUF_FILESIZE (also in Dbtc.hpp) contains 4000 × 16 = 62.5KB of
buffer space. Dbtc is the module that handles transaction coordination.

Scans and Buffering

There are additional [NDBD] parameters in the Dblqh module (in ndb/
src/kernel/blocks/Dblqh/Dblqh.hpp) that affect reads and updates. These include ZAT-
TRINBUF_FILESIZE, set by default to 10000 × 128 bytes (1250KB) and ZDATABUF_FILE_SIZE,
set by default to 10000*16 bytes (roughly 156KB) of buffer space. To date, there have been neither any
reports from users nor any results from our own extensive tests suggesting that either of these compile-
time limits should be increased.

MySQL Cluster

1008

•
MaxNoOfConcurrentScans

This parameter is used to control the number of parallel scans that can be performed in the cluster.
Each transaction coordinator can handle the number of parallel scans defined for this parameter.
Each scan query is performed by scanning all partitions in parallel. Each partition scan uses a scan
record in the node where the partition is located, the number of records being the value of this para-
meter times the number of nodes. The cluster should be able to sustain MaxNoOfConcurrentS-
cans scans concurrently from all nodes in the cluster.

Scans are actually performed in two cases. The first of these cases occurs when no hash or ordered
indexes exists to handle the query, in which case the query is executed by performing a full table
scan. The second case is encountered when there is no hash index to support the query but there is an
ordered index. Using the ordered index means executing a parallel range scan. The order is kept on
the local partitions only, so it is necessary to perform the index scan on all partitions.

The default value of MaxNoOfConcurrentScans is 256. The maximum value is 500.

This parameter specifies the number of scans possible in the transaction coordinator. If the number
of local scan records is not provided, it is calculated as the product of MaxNoOfConcurrentS-
cans and the number of data nodes in the system.

•
MaxNoOfLocalScans

Specifies the number of local scan records if many scans are not fully parallelized.

•
BatchSizePerLocalScan

This parameter is used to calculate the number of lock records which must be there to handle many
concurrent scan operations.

The default value is 64; this value has a strong connection to the ScanBatchSize defined in the
SQL nodes.

•
LongMessageBuffer

This is an internal buffer used for passing messages within individual nodes and between nodes. Al-
though it is highly unlikely that this would need to be changed, it is configurable. By default, it is set
to 1MB.

Logging and Checkpointing

These [NDBD] parameters control log and checkpoint behavior.

•
NoOfFragmentLogFiles

This parameter sets the size of the node's REDO log files. REDO log files are organized in a ring. It
is extremely important that the first and last log files (sometimes referred to as the “head” and “tail”
log files, respectively) do not meet. When these approach one another too closely, the node begins
aborting all transactions encompassing updates due to a lack of room for new log records.

A REDO log record is not removed until three local checkpoints have been completed since that log
record was inserted. Checkpointing frequency is determined by its own set of configuration paramet-
ers discussed elsewhere in this chapter.

MySQL Cluster

1009

How these parameters interact and proposals for how to configure them are discussed in Sec-
tion 15.4.6, “Configuring Parameters for Local Checkpoints”.

The default parameter value is 8, which means 8 sets of 4 16MB files for a total of 512MB. In other
words, REDO log space must be allocated in blocks of 64MB. In scenarios requiring a great many
updates, the value for NoOfFragmentLogFiles may need to be set as high as 300 or even high-
er to provide sufficient space for REDO logs.

If the checkpointing is slow and there are so many writes to the database that the log files are full
and the log tail cannot be cut without jeopardizing recovery, all updating transactions are aborted
with internal error code 410 (Out of log file space temporarily). This condition pre-
vails until a checkpoint has completed and the log tail can be moved forward.

Important: This parameter cannot be changed “on the fly”; you must restart the node using -
-initial. If you wish to change this value for a running cluster, you can do so via a rolling node
restart.

•
MaxNoOfOpenFiles

This parameter sets a ceiling on how many internal threads to allocate for open files. Any situation
requiring a change in this parameter should be reported as a bug.

The default value is 40.

•
MaxNoOfSavedMessages

This parameter sets the maximum number of trace files that are kept before overwriting old ones.
Trace files are generated when, for whatever reason, the node crashes.

The default is 25 trace files.

Metadata Objects

The next set of [NDBD] parameters defines pool sizes for metadata objects, used to define the maxim-
um number of attributes, tables, indexes, and trigger objects used by indexes, events, and replication
between clusters. Note that these act merely as “suggestions” to the cluster, and any that are not spe-
cified revert to the default values shown.

•
MaxNoOfAttributes

Defines the number of attributes that can be defined in the cluster.

The default value is 1000, with the minimum possible value being 32. The maximum is 4294967039.
Each attribute consumes around 200 bytes of storage per node due to the fact that all metadata is
fully replicated on the servers.

When setting MaxNoOfAttributes, it is important to prepare in advance for any ALTER TA-
BLE statements that you might want to perform in the future. This is due to the fact, during the exe-
cution of ALTER TABLE on a Cluster table, 3 times the number of attributes as in the original table
are used. For example, if a table requires 100 attributes, and you want to be able to alter it later, you
need to set the value of MaxNoOfAttributes to 300. Assuming that you can create all desired
tables without any problems, a good rule of thumb is to add two times the number of attributes in the
largest table to MaxNoOfAttributes to be sure. You should also verify that this number is suffi-

MySQL Cluster

1010

cient by trying an actual ALTER TABLE after configuring the parameter. If this is not successful,
increase MaxNoOfAttributes by another multiple of the original value and test it again.

•
MaxNoOfTables

A table object is allocated for each table, unique hash index, and ordered index. This parameter sets
the maximum number of table objects for the cluster as a whole.

For each attribute that has a BLOB data type an extra table is used to store most of the BLOB data.
These tables also must be taken into account when defining the total number of tables.

The default value of this parameter is 128. The minimum is 8 and the maximum is 1600. Each table
object consumes approximately 20KB per node.

•
MaxNoOfOrderedIndexes

For each ordered index in the cluster, an object is allocated describing what is being indexed and its
storage segments. By default, each index so defined also defines an ordered index. Each unique in-
dex and primary key has both an ordered index and a hash index.

The default value of this parameter is 128. Each object consumes approximately 10KB of data per
node.

•
MaxNoOfUniqueHashIndexes

For each unique index that is not a primary key, a special table is allocated that maps the unique key
to the primary key of the indexed table. By default, an ordered index is also defined for each unique
index. To prevent this, you must specify the USING HASH option when defining the unique index.

The default value is 64. Each index consumes approximately 15KB per node.

•
MaxNoOfTriggers

Internal update, insert, and delete triggers are allocated for each unique hash index. (This means that
three triggers are created for each unique hash index.) However, an ordered index requires only a
single trigger object. Backups also use three trigger objects for each normal table in the cluster.

This parameter sets the maximum number of trigger objects in the cluster.

The default value is 768.

•
MaxNoOfIndexes

This parameter is deprecated in MySQL 5.0; you should use MaxNoOfOrderedIndexes and
MaxNoOfUniqueHashIndexes instead.

This parameter is used only by unique hash indexes. There needs to be one record in this pool for
each unique hash index defined in the cluster.

The default value of this parameter is 128.

Boolean Parameters

The behavior of data nodes is also affected by a set of [NDBD] parameters taking on boolean values.

MySQL Cluster

1011

These parameters can each be specified as TRUE by setting them equal to 1 or Y, and as FALSE by set-
ting them equal to 0 or N.

•
LockPagesInMainMemory

For a number of operating systems, including Solaris and Linux, it is possible to lock a process into
memory and so avoid any swapping to disk. This can be used to help guarantee the cluster's real-
time characteristics.

This feature is disabled by default.

•
StopOnError

This parameter specifies whether an ndbd process should exit or perform an automatic restart when
an error condition is encountered.

This feature is enabled by default.

•
Diskless

It is possible to specify MySQL Cluster tables as diskless, meaning that tables are not checkpointed
to disk and that no logging occurs. Such tables exist only in main memory. A consequence of using
diskless tables is that neither the tables nor the records in those tables survive a crash. However,
when operating in diskless mode, it is possible to run ndbd on a diskless computer.

Important: This feature causes the entire cluster to operate in diskless mode.

When this feature is enabled, Cluster online backup is disabled. In addition, a partial start of the
cluster is not possible.

Diskless is disabled by default.

•
RestartOnErrorInsert

This feature is accessible only when building the debug version where it is possible to insert errors in
the execution of individual blocks of code as part of testing.

This feature is disabled by default.

Controlling Timeouts, Intervals, and Disk Paging

There are a number of [NDBD] parameters specifying timeouts and intervals between various actions in
Cluster data nodes. Most of the timeout values are specified in milliseconds. Any exceptions to this are
mentioned where applicable.

•
TimeBetweenWatchDogCheck

To prevent the main thread from getting stuck in an endless loop at some point, a “watchdog” thread
checks the main thread. This parameter specifies the number of milliseconds between checks. If the
process remains in the same state after three checks, the watchdog thread terminates it.

This parameter can easily be changed for purposes of experimentation or to adapt to local conditions.
It can be specified on a per-node basis although there seems to be little reason for doing so.

MySQL Cluster

1012

The default timeout is 4000 milliseconds (4 seconds).

•
StartPartialTimeout

This parameter specifies how long the Cluster waits for all data nodes to come up before the cluster
initialization routine is invoked. This timeout is used to avoid a partial Cluster startup whenever pos-
sible.

The default value is 30000 milliseconds (30 seconds). 0 disables the timeout. In other words, the
cluster may start only if all nodes are available.

•
StartPartitionedTimeout

If the cluster is ready to start after waiting for StartPartialTimeout milliseconds but is still
possibly in a partitioned state, the cluster waits until this timeout has also passed.

The default timeout is 60000 milliseconds (60 seconds).

•
StartFailureTimeout

If a data node has not completed its startup sequence within the time specified by this parameter, the
node startup fails. Setting this parameter to 0 (the default value) means that no data node timeout is
applied.

For nonzero values, this parameter is measured in milliseconds. For data nodes containing extremely
large amounts of data, this parameter should be increased. For example, in the case of a data node
containing several gigabytes of data, a period as long as 10–15 minutes (that is, 600000 to 1000000
milliseconds) might be required to to perform a node restart.

•
HeartbeatIntervalDbDb

One of the primary methods of discovering failed nodes is by the use of heartbeats. This parameter
states how often heartbeat signals are sent and how often to expect to receive them. After missing
three heartbeat intervals in a row, the node is declared dead. Thus, the maximum time for discover-
ing a failure through the heartbeat mechanism is four times the heartbeat interval.

The default heartbeat interval is 1500 milliseconds (1.5 seconds). This parameter must not be
changed drastically and should not vary widely between nodes. If one node uses 5000 milliseconds
and the node watching it uses 1000 milliseconds, obviously the node will be declared dead very
quickly. This parameter can be changed during an online software upgrade, but only in small incre-
ments.

•
HeartbeatIntervalDbApi

Each data node sends heartbeat signals to each MySQL server (SQL node) to ensure that it remains
in contact. If a MySQL server fails to send a heartbeat in time it is declared “dead,” in which case all
ongoing transactions are completed and all resources released. The SQL node cannot reconnect until
all activities initiated by the previous MySQL instance have been completed. The three-heartbeat cri-
teria for this determination are the same as described for HeartbeatIntervalDbDb.

The default interval is 1500 milliseconds (1.5 seconds). This interval can vary between individual
data nodes because each data node watches the MySQL servers connected to it, independently of all
other data nodes.

MySQL Cluster

1013

•
TimeBetweenLocalCheckpoints

This parameter is an exception in that it does not specify a time to wait before starting a new local
checkpoint; rather, it is used to ensure that local checkpoints are not performed in a cluster where re-
latively few updates are taking place. In most clusters with high update rates, it is likely that a new
local checkpoint is started immediately after the previous one has been completed.

The size of all write operations executed since the start of the previous local checkpoints is added.
This parameter is also exceptional in that it is specified as the base-2 logarithm of the number of
4-byte words, so that the default value 20 means 4MB (4 × 220) of write operations, 21 would mean
8MB, and so on up to a maximum value of 31, which equates to 8GB of write operations.

All the write operations in the cluster are added together. Setting TimeBetweenLocalCheck-
points to 6 or less means that local checkpoints will be executed continuously without pause, in-
dependent of the cluster's workload.

•
TimeBetweenGlobalCheckpoints

When a transaction is committed, it is committed in main memory in all nodes on which the data is
mirrored. However, transaction log records are not flushed to disk as part of the commit. The reason-
ing behind this behavior is that having the transaction safely committed on at least two autonomous
host machines should meet reasonable standards for durability.

It is also important to ensure that even the worst of cases — a complete crash of the cluster — is
handled properly. To guarantee that this happens, all transactions taking place within a given interval
are put into a global checkpoint, which can be thought of as a set of committed transactions that has
been flushed to disk. In other words, as part of the commit process, a transaction is placed in a global
checkpoint group. Later, this group's log records are flushed to disk, and then the entire group of
transactions is safely committed to disk on all computers in the cluster.

This parameter defines the interval between global checkpoints. The default is 2000 milliseconds.

•
TimeBetweenInactiveTransactionAbortCheck

Timeout handling is performed by checking a timer on each transaction once for every interval spe-
cified by this parameter. Thus, if this parameter is set to 1000 milliseconds, every transaction will be
checked for timing out once per second.

The default value is 1000 milliseconds (1 second).

•
TransactionInactiveTimeout

This parameter states the maximum time that is permitted to lapse between operations in the same
transaction before the transaction is aborted.

The default for this parameter is zero (no timeout). For a real-time database that needs to ensure that
no transaction keeps locks for too long, this parameter should be set to a much smaller value. The
unit is milliseconds.

•
TransactionDeadlockDetectionTimeout

When a node executes a query involving a transaction, the node waits for the other nodes in the
cluster to respond before continuing. A failure to respond can occur for any of the following reasons:

MySQL Cluster

1014

• The node is “dead”

• The operation has entered a lock queue

• The node requested to perform the action could be heavily overloaded.

This timeout parameter states how long the transaction coordinator waits for query execution by an-
other node before aborting the transaction, and is important for both node failure handling and dead-
lock detection. Setting it too high can cause a undesirable behavior in situations involving deadlocks
and node failure.

The default timeout value is 1200 milliseconds (1.2 seconds).

•
NoOfDiskPagesToDiskAfterRestartTUP

When executing a local checkpoint, the algorithm flushes all data pages to disk. Merely doing so as
quickly as possible without any moderation is likely to impose excessive loads on processors, net-
works, and disks. To control the write speed, this parameter specifies how many pages per 100 milli-
seconds are to be written. In this context, a “page” is defined as 8KB. This parameter is specified in
units of 80KB per second, so , setting NoOfDiskPagesToDiskAfterRestartTUP to a value
of 20 entails writing 1.6MB in data pages to disk each second during a local checkpoint. This value
includes the writing of UNDO log records for data pages. That is, this parameter handles the limita-
tion of writes from data memory. UNDO log records for index pages are handled by the parameter
NoOfDiskPagesToDiskAfterRestartACC. (See the entry for IndexMemory for informa-
tion about index pages.)

In short, this parameter specifies how quickly to execute local checkpoints. It operates in conjunction
with NoOfFragmentLogFiles, DataMemory, and IndexMemory.

For more information about the interaction between these parameters and possible strategies for
choosing appropriate values for them, see Section 15.4.6, “Configuring Parameters for Local Check-
points”.

The default value is 40 (3.2MB of data pages per second).

•
NoOfDiskPagesToDiskAfterRestartACC

This parameter uses the same units as NoOfDiskPagesToDiskAfterRestartTUP and acts in
a similar fashion, but limits the speed of writing index pages from index memory.

The default value of this parameter is 20 (1.6MB of index memory pages per second).

•
NoOfDiskPagesToDiskDuringRestartTUP

This parameter is used in a fashion similar to NoOfDiskPagesToDiskAfterRestartTUP and
NoOfDiskPagesToDiskAfterRestartACC, only it does so with regard to local checkpoints
executed in the node when a node is restarting. A local checkpoint is always performed as part of all
node restarts. During a node restart it is possible to write to disk at a higher speed than at other times,
because fewer activities are being performed in the node.

This parameter covers pages written from data memory.

The default value is 40 (3.2MB per second).

•

MySQL Cluster

1015

NoOfDiskPagesToDiskDuringRestartACC

Controls the number of index memory pages that can be written to disk during the local checkpoint
phase of a node restart.

As with NoOfDiskPagesToDiskAfterRestartTUP and NoOfDiskPagesToDiskAf-
terRestartACC, values for this parameter are expressed in terms of 8KB pages written per 100
milliseconds (80KB/second).

The default value is 20 (1.6MB per second).

•
ArbitrationTimeout

This parameter specifies how long data nodes wait for a response from the arbitrator to an arbitration
message. If this is exceeded, the network is assumed to have split.

The default value is 1000 milliseconds (1 second).

Buffering and Logging

Several [NDBD] configuration parameters corresponding to former compile-time parameters are also
available. These enable the advanced user to have more control over the resources used by node pro-
cesses and to adjust various buffer sizes at need.

These buffers are used as front ends to the file system when writing log records to disk. If the node is
running in diskless mode, these parameters can be set to their minimum values without penalty due to
the fact that disk writes are “faked” by the NDB storage engine's filesystem abstraction layer.

•
UndoIndexBuffer

The UNDO index buffer, whose size is set by this parameter, is used during local checkpoints. The
NDB storage engine uses a recovery scheme based on checkpoint consistency in conjunction with an
operational REDO log. To produce a consistent checkpoint without blocking the entire system for
writes, UNDO logging is done while performing the local checkpoint. UNDO logging is activated on
a single table fragment at a time. This optimization is possible because tables are stored entirely in
main memory.

The UNDO index buffer is used for the updates on the primary key hash index. Inserts and deletes
rearrange the hash index; the NDB storage engine writes UNDO log records that map all physical
changes to an index page so that they can be undone at system restart. It also logs all active insert
operations for each fragment at the start of a local checkpoint.

Reads and updates set lock bits and update a header in the hash index entry. These changes are
handled by the page-writing algorithm to ensure that these operations need no UNDO logging.

This buffer is 2MB by default. The minimum value is 1MB, which is sufficient for most applica-
tions. For applications doing extremely large or numerous inserts and deletes together with large
transactions and large primary keys, it may be necessary to increase the size of this buffer. If this
buffer is too small, the NDB storage engine issues internal error code 677 (Index UNDO buf-
fers overloaded).

Important: It is not safe to decrease the value of this parameter during a rolling restart.

•

MySQL Cluster

1016

UndoDataBuffer

This parameter sets the size of the UNDO data buffer, which performs a function similar to that of
the UNDO index buffer, except the UNDO data buffer is used with regard to data memory rather
than index memory. This buffer is used during the local checkpoint phase of a fragment for inserts,
deletes, and updates.

Because UNDO log entries tend to grow larger as more operations are logged, this buffer is also lar-
ger than its index memory counterpart, with a default value of 16MB.

This amount of memory may be unnecessarily large for some applications. In such cases, it is pos-
sible to decrease this size to a minimum of 1MB.

It is rarely necessary to increase the size of this buffer. If there is such a need, it is a good idea to
check whether the disks can actually handle the load caused by database update activity. A lack of
sufficient disk space cannot be overcome by increasing the size of this buffer.

If this buffer is too small and gets congested, the NDB storage engine issues internal error code 891
(Data UNDO buffers overloaded).

Important: It is not safe to decrease the value of this parameter during a rolling restart.

•
RedoBuffer

All update activities also need to be logged. The REDO log makes it possible to replay these updates
whenever the system is restarted. The NDB recovery algorithm uses a “fuzzy” checkpoint of the data
together with the UNDO log, and then applies the REDO log to play back all changes up to the res-
toration point.

RedoBuffer sets the size of the buffer inwhich the REDO log is written, and is 8MB by default.
The minimum value is 1MB.

If this buffer is too small, the NDB storage engine issues error code 1221 (REDO log buffers
overloaded).

Important: It is not safe to decrease the value of this parameter during a rolling restart.

Controlling Log Messages

In managing the cluster, it is very important to be able to control the number of log messages sent for
various event types to stdout. For each event category, there are 16 possible event levels (numbered 0
through 15). Setting event reporting for a given event category to level 15 means all event reports in that
category are sent to stdout; setting it to 0 means that there will be no event reports made in that cat-
egory.

By default, only the startup message is sent to stdout, with the remaining event reporting level de-
faults being set to 0. The reason for this is that these messages are also sent to the management server's
cluster log.

An analogous set of levels can be set for the management client to determine which event levels to re-
cord in the cluster log.

•
LogLevelStartup

MySQL Cluster

1017

The reporting level for events generated during startup of the process.

The default level is 1.

•
LogLevelShutdown

The reporting level for events generated as part of graceful shutdown of a node.

The default level is 0.

•
LogLevelStatistic

The reporting level for statistical events such as number of primary key reads, number of updates,
number of inserts, information relating to buffer usage, and so on.

The default level is 0.

•
LogLevelCheckpoint

The reporting level for events generated by local and global checkpoints.

The default level is 0.

•
LogLevelNodeRestart

The reporting level for events generated during node restart.

The default level is 0.

•
LogLevelConnection

The reporting level for events generated by connections between cluster nodes.

The default level is 0.

•
LogLevelError

The reporting level for events generated by errors and warnings by the cluster as a whole. These er-
rors do not cause any node failure but are still considered worth reporting.

The default level is 0.

•
LogLevelInfo

The reporting level for events generated for information about the general state of the cluster.

The default level is 0.

Backup Parameters

The [NDBD] parameters discussed in this section define memory buffers set aside for execution of on-

MySQL Cluster

1018

line backups.

•
BackupDataBufferSize

In creating a backup, there are two buffers used for sending data to the disk. The backup data buffer
is used to fill in data recorded by scanning a node's tables. Once this buffer has been filled to the
level specified as BackupWriteSize (see below), the pages are sent to disk. While flushing data
to disk, the backup process can continue filling this buffer until it runs out of space. When this hap-
pens, the backup process pauses the scan and waits until some disk writes have completed freed up
memory so that scanning may continue.

The default value is 2MB.

•
BackupLogBufferSize

The backup log buffer fulfills a role similar to that played by the backup data buffer, except that it is
used for generating a log of all table writes made during execution of the backup. The same prin-
ciples apply for writing these pages as with the backup data buffer, except that when there is no
more space in the backup log buffer, the backup fails. For that reason, the size of the backup log buf-
fer must be large enough to handle the load caused by write activities while the backup is being
made. See Section 15.8.4, “Configuration for Cluster Backup”.

The default value for this parameter should be sufficient for most applications. In fact, it is more
likely for a backup failure to be caused by insufficient disk write speed than it is for the backup log
buffer to become full. If the disk subsystem is not configured for the write load caused by applica-
tions, the cluster is unlikely to be able to perform the desired operations.

It is preferable to configure cluster nodes in such a manner that the processor becomes the bottleneck
rather than the disks or the network connections.

The default value is 2MB.

•
BackupMemory

This parameter is simply the sum of BackupDataBufferSize and BackupLogBufferSize.

The default value is 2MB + 2MB = 4MB.

Important: If BackupDataBufferSize and BackupLogBufferSize taken together exceed
4MB, then this parameter must be set explicitly in the config.ini file to their sum.

•
BackupWriteSize

This parameter specifies the default size of messages written to disk by the backup log and backup
data buffers.

The default value is 32KB.

•
BackupMaxWriteSize

This parameter specifies the maximum size of messages written to disk by the backup log and
backup data buffers.

The default value is 256KB.

MySQL Cluster

1019

Important: When specifying these parameters, the following relationships must hold true. Otherwise,
the data node will be unable to start.

• BackupDataBufferSize >= BackupWriteSize + 188KB

• BackupLogBufferSize >= BackupWriteSize + 16KB

• BackupMaxWriteSize >= BackupWriteSize

15.4.4.6. Defining SQL and Other API Nodes

The [MYSQLD] and [API] sections in the config.ini file define the behavior of the MySQL serv-
ers (SQL nodes) and other applications (API nodes) used to access cluster data. None of the parameters
shown is required. If no computer or host name is provided, any host can use this SQL or API node.

Generally speaking, a [MYSQLD] section is used to indicate a MySQL server providing an SQL inter-
face to the cluster, and an [API] section is used for applications other than mysqld processes access-
ing cluster data, but the two designations are actually synonomous; you can, for instance, list parameters
for a MySQL server acting as an SQL node in an [API] section.

•
Id

The Id value is used to identify the node in all cluster internal messages. It must be an integer in the
range 1 to 63 inclusive, and must be unique among all node IDs within the cluster.

•
ExecuteOnComputer

This refers to the Id set for one of the computers (hosts) defined in a [COMPUTER] section of the
configuration file.

•
HostName

Specifying this parameter defines the hostname of the computer on which the SQL node (API node)
is to reside. To specify a hostname other than localhost, either this parameter or ExecuteOn-
Computer is required.

•
ArbitrationRank

This parameter defines which nodes can act as arbitrators. Both MGM nodes and SQL nodes can be
arbitrators. A value of 0 means that the given node is never used as an arbitrator, a value of 1 gives
the node high priority as an arbitrator, and a value of 2 gives it low priority. A normal configuration
uses the management server as arbitrator, setting its ArbitrationRank to 1 (the default) and
those for all SQL nodes to 0.

•
ArbitrationDelay

Setting this parameter to any other value than 0 (the default) means that responses by the arbitrator
to arbitration requests will be delayed by the stated number of milliseconds. It is usually not neces-
sary to change this value.

•

MySQL Cluster

1020

BatchByteSize

For queries that are translated into full table scans or range scans on indexes, it is important for best
performance to fetch records in properly sized batches. It is possible to set the proper size both in
terms of number of records (BatchSize) and in terms of bytes (BatchByteSize). The actual
batch size is limited by both parameters.

The speed at which queries are performed can vary by more than 40% depending upon how this
parameter is set. In future releases, MySQL Server will make educated guesses on how to set para-
meters relating to batch size, based on the query type.

This parameter is measured in bytes and by default is equal to 32KB.

•
BatchSize

This parameter is measured in number of records and is by default set to 64. The maximum size is
992.

•
MaxScanBatchSize

The batch size is the size of each batch sent from each data node. Most scans are performed in paral-
lel to protect the MySQL Server from receiving too much data from many nodes in parallel; this
parameter sets a limit to the total batch size over all nodes.

The default value of this parameter is set to 256KB. Its maximum size is 16MB.

You can obtain some information from a MySQL server running as a Cluster SQL node using SHOW
STATUS in the mysql client, as shown here:

mysql> SHOW STATUS LIKE 'ndb%';
+-----------------------------+---------------+
| Variable_name | Value |
+-----------------------------+---------------+
Ndb_cluster_node_id	5
Ndb_config_from_host	192.168.0.112
Ndb_config_from_port	1186
Ndb_number_of_storage_nodes	4
+-----------------------------+---------------+
4 rows in set (0.02 sec)

For information about these Cluster system status variables, see Section 5.2.5, “Status Variables”.

15.4.4.7. Cluster TCP/IP Connections

TCP/IP is the default transport mechanism for establishing connections in MySQL Cluster. It is nor-
mally not necessary to define connections because Cluster automatically set ups a connection between
each of the data nodes, between each data node and all MySQL server nodes, and between each data
node and the management server. (For one exception to this rule, see Section 15.4.4.8, “TCP/IP Connec-
tions Using Direct Connections”.) [TCP] sections in the config.ini file explicitly define TCP/IP
connections between nodes in the cluster.

It is only necessary to define a connection to override the default connection parameters. In that case, it
is necessary to define at least NodeId1, NodeId2, and the parameters to change.

It is also possible to change the default values for these parameters by setting them in the [TCP DE-
FAULT] section.

MySQL Cluster

1021

• NodeId1, NodeId2

To identify a connection between two nodes it is necessary to provide their node IDs in the [TCP]
section of the configuration file. These are the same unique Id values for each of these nodes as de-
scribed in Section 15.4.4.6, “Defining SQL and Other API Nodes”.

•
SendBufferMemory

TCP transporters use a buffer to store all messages before performing the send call to the operating
system. When this buffer reaches 64KB its contents are sent; these are also sent when a round of
messages have been executed. To handle temporary overload situations it is also possible to define a
bigger send buffer. The default size of the send buffer is 256KB.

•
SendSignalId

To be able to retrace a distributed message datagram, it is necessary to identify each message. When
this parameter is set to Y, message IDs are transported over the network. This feature is disabled by
default.

•
Checksum

This parameter is a boolean parameter (enabled by setting it to Y or 1, disabled by setting it to N or
0). It is disabled by default. When it is enabled, checksums for all messages are calculated before
they placed in the send buffer. This feature ensures that messages are not corrupted while waiting in
the send buffer, or by the transport mechanism.

•
PortNumber (OBSOLETE)

This formerly specified the port number to be used for listening for connections from other nodes.
This parameter should no longer be used.

•
ReceiveBufferMemory

Specifies the size of the buffer used when receiving data from the TCP/IP socket. There is seldom
any need to change this parameter from its default value of 64KB, except possibly to save memory.

15.4.4.8. TCP/IP Connections Using Direct Connections

Setting up a cluster using direct connections between data nodes requires specifying explicitly the cros-
sover IP addresses of the data nodes so connected in the [TCP] section of the cluster config.ini
file.

In the following example, we envision a cluster with at least four hosts, one each for a management
server, an SQL node, and two data nodes. The cluster as a whole resides on the 172.23.72.* subnet
of a LAN. In addition to the usual network connections, the two data nodes are connected directly using
a standard crossover cable, and communicate with one another directly using IP addresses in the
1.1.0.* address range as shown:

Management Server
[NDB_MGMD]
Id=1
HostName=172.23.72.20

SQL Node
[MYSQLD]

MySQL Cluster

1022

Id=2
HostName=172.23.72.21

Data Nodes
[NDBD]
Id=3
HostName=172.23.72.22

[NDBD]
Id=4
HostName=172.23.72.23

TCP/IP Connections
[TCP]
NodeId1=3
NodeId2=4
HostName1=1.1.0.1
HostName2=1.1.0.2

The HostNameN parameter, where N is an integer, is used only when specifying direct TCP/IP connec-
tions.

The use of direct connections between data nodes can improve the cluster's overall efficiency by allow-
ing the data nodes to bypass an Ethernet device such as a switch, hub, or router, thus cutting down on
the cluster's latency. It is important to note that to take the best advantage of direct connections in this
fashion with more than two data nodes, you must have a direct connection between each data node and
every other data node in the same node group.

15.4.4.9. Shared-Memory Connections

MySQL Cluster attempts to use the shared memory transporter and configure it automatically where
possible. (In very early versions of MySQL Cluster, shared memory segments functioned only when the
server binary was built using --with-ndb-shm.) [SHM] sections in the config.ini file explicitly
define shared-memory connections between nodes in the cluster. When explicitly defining shared
memory as the connection method, it is necessary to define at least NodeId1, NodeId2 and ShmKey.
All other parameters have default values that should work well in most cases.

Important: SHM functionality is considered experimental only. It is not officially supported in any
MySQL release series up to and including 5.0. This means that you must determine for yourself or by
using our free resources (forums, mailing lists) whether it can be made to work correctly in your specific
case.

•
NodeId1, NodeId2

To identify a connection between two nodes it is necessary to provide node identifiers for each of
them, as NodeId1 and NodeId2.

•
ShmKey

When setting up shared memory segments, a node ID, expressed as an integer, is used to identify
uniquely the shared memory segment to use for the communication. There is no default value.

•
ShmSize

Each SHM connection has a shared memory segment where messages between nodes are placed by
the sender and read by the reader. The size of this segment is defined by ShmSize. The default
value is 1MB.

•

MySQL Cluster

1023

SendSignalId

To retrace the path of a distributed message, it is necessary to provide each message with a unique
identifier. Setting this parameter to Y causes these message IDs to be transported over the network as
well. This feature is disabled by default.

•
Checksum

This parameter is a boolean (Y/N) parameter which is disabled by default. When it is enabled, check-
sums for all messages are calculated before being placed in the send buffer.

This feature prevents messages from being corrupted while waiting in the send buffer. It also serves
as a check against data being corrupted during transport.

15.4.4.10. SCI Transport Connections

[SCI] sections in the config.ini file explicitly define SCI (Scalable Coherent Interface) connec-
tions between cluster nodes. Using SCI transporters in MySQL Cluster is supported only when the
MySQL-Max binaries are built using --with-ndb-sci=/your/path/to/SCI. The path should
point to a directory that contains at a minimum lib and include directories containing SISCI librar-
ies and header files. (See Section 15.10, “Using High-Speed Interconnects with MySQL Cluster” for
more information about SCI.)

In addition, SCI requires specialized hardware.

It is strongly recommended to use SCI Transporters only for communication between ndbd processes.
Note also that using SCI Transporters means that the ndbd processes never sleep. For this reason, SCI
Transporters should be used only on machines having at least two CPUs dedicated for use by ndbd pro-
cesses. There should be at least one CPU per ndbd process, with at least one CPU left in reserve to
handle operating system activities.

•
NodeId1, NodeId2

To identify a connection between two nodes it is necessary to provide node identifiers for each of
them, as NodeId1 and NodeId2.

•
Host1SciId0

This identifies the SCI node ID on the first Cluster node (identified by NodeId1).

• Host1SciId1

It is possible to set up SCI Transporters for failover between two SCI cards which then should use
separate networks between the nodes. This identifies the node ID and the second SCI card to be used
on the first node.

• Host2SciId0

This identifies the SCI node ID on the second Cluster node (identified by NodeId2).

• Host2SciId1

When using two SCI cards to provide failover, this parameter identifies the second SCI card to be

MySQL Cluster

1024

used on the second node.

•
SharedBufferSize

Each SCI transporter has a shared memory segment used for communication between the two nodes.
Setting the size of this segment to the default value of 1MB should be sufficient for most applica-
tions. Using a smaller value can lead to problems when performing many parallel inserts; if the
shared buffer is too small, this can also result in a crash of the ndbd process.

•
SendLimit

A small buffer in front of the SCI media stores messages before transmitting them over the SCI net-
work. By default, this is set to 8KB. Our benchmarks show that performance is best at 64KB but
16KB reaches within a few percent of this, and there was little if any advantage to increasing it bey-
ond 8KB.

•
SendSignalId

To trace a distributed message it is necessary to identify each message uniquely. When this paramet-
er is set to Y, message IDs are transported over the network. This feature is disabled by default.

•
Checksum

This parameter is a boolean value, and is disabled by default. When Checksum is enabled, check-
sums are calculated for all messages before they are placed in the send buffer. This feature prevents
messages from being corrupted while waiting in the send buffer. It also serves as a check against
data being corrupted during transport.

15.4.5. Overview of Cluster Configuration Parameters
The next three sections provide summary tables of MySQL Cluster configuration parameters used in the
config.ini file to govern the cluster's functioning. Each table lists the parameters for one of the
Cluster node process types (ndbd, ndb_mgmd, and mysqld), and includes the parameter's type as well
as its default, mimimum, and maximum values as applicable.

It is also stated what type of restart is required (node restart or system restart) — and whether the restart
must be done with --initial — to change the value of a given configuration parameter. This inform-
ation is provided in each table's Restart Type column, which contains one of the values shown in this
list:

• N: Node Restart

• IN: Initial Node Restart

• S: System Restart

• IS: Initial System Restart

When performing a node restart or an initial node restart, all of the cluster's data nodes must be restarted
in turn (also referred to as a rolling restart). It is possible to update cluster configuration parameters
marked N or IN online — that is, without shutting down the cluster — in this fashion. An initial node re-

MySQL Cluster

1025

start requires restarting each ndbd process with the --initial option.

A system restart requires a complete shutdown and restart of the entire cluster. An initial system restart
requires taking a backup of the cluster, wiping the cluster filesystem after shutdown, and then restoring
from the backup following the restart.

In any cluster restart, all of the cluster's management servers must be restarted in order for them to read
the updated configuration parameter values.

Important: Values for numeric cluster parameters can generally be increased without any problems, al-
though it is advisable to do so progressively, making such adjustments in relatively small increments.
However, decreasing the values of such parameters — particularly those relating to memory usage and
disk space — is not to be undertaken lightly, and it is recommended that you do so only following care-
ful planning and testing. In addition, it is the generally the case that parameters relating to memory and
disk usage which can be raised using a simple node restart require an initial node restart to be lowered.

Because some of these parameters can be used for configuring more than one type of cluster node, they
may appear in more than one of the tables.

(Note that 4294967039 — which often appears as a maximum value in these tables — is equal to 232

– 28 – 1.)

15.4.5.1. Data Node Configuration Parameters

The following table provides information about parameters used in the [NDBD] or [NDB_DEFAULT]
sections of a config.ini file for configuring MySQL Cluster data nodes. For detailed descriptions
and other additional information about each of these parameters, see Section 15.4.4.5, “Defining Data
Nodes”.

Restart Type Column Values

• N: Node Restart

• IN: Initial Node Restart

• S: System Restart

• IS: Initial System Restart

See Section 15.4.5, “Overview of Cluster Configuration Parameters”, for additional explanations of
these abbreviations.

Parameter Name Ty
pe/
Uni
ts

Default Value Minimum Value Maximum Value Re-
star
t
Ty
pe

ArbitrationTimeout mil-
li-
sec
ond
s

1000 10 4294967039 N

BackupDataBufferSize byt
es

2M 0 4294967039 N

BackupDataDir stri
ng

FileSystem-
Path/BACKUP

N/A N/A IN

MySQL Cluster

1026

BackupLogBufferSize byt
es

2M 0 4294967039 N

BackupMemory byt
es

4M 0 4294967039 N

BackupWriteSize byt
es

32K 2K 4294967039 N

BackupMaxWriteSize byt
es

256K 2K 4294967039 N

BatchSizePerLocalS-
can

in-
tege
r

64 1 992 N

DataDir stri
ng

/
var/
lib/
mysql-cluster

N/A N/A IN

DataMemory byt
es

80M 1M 1024G (subject to
available system
RAM and size of
IndexMemory)

N

Diskless true
|fals
e

0 0 1 IS

MySQL Cluster

1027

0)

ExecuteOnComputer in-
tege
r

FileSystemPath stri
ng

value specified for
DataDir

N/A N/A IN

HeartbeatIntervalD-
bApi

mil-
li-
sec
ond
s

1500 100 4294967039 N

HeartbeatIntervalDb-
Db

mil-
li-
sec
ond
s

1500 10 4294967039 N

HostName stri
ng

localhost N/A N/A S

Id in-
tege
r

None 1 63 N

IndexMemory byt
es

18M 1M 1024G (subject to
available system
RAM and size of
DataMemory)

N

LockPagesInMain-
Memory

true
|fals
e

0 0 1 N

MySQL Cluster

1028

0)

LogLevelCheckpoint in-
tege
r

0 0 15 IN

LogLevelConnection in-
tege
r

0 0 15 N

LogLevelError in-
tege
r

0 0 15 N

LogLevelInfo in-
tege
r

0 0 15 N

LogLevelNodeRestart in-
tege
r

0 0 15 N

LogLevelShutdown in-
tege
r

0 0 15 N

LogLevelStartup in-
tege
r

1 0 15 N

LogLevelStatistic in-
tege
r

0 0 15 N

LongMessageBuffer byt
es

1M 512K 4294967039 N

MaxNoOfAttributes in-
tege
r

1000 32 4294967039 N

MaxNoOfConcurrentIn-
dexOperations

in-
tege
r

8K 0 4294967039 N

MaxNoOfConcurrent-
Operations

in-
tege
r

32768 32 4294967039 N

MaxNoOfConcurrentS-
cans

in-
tege
r

256 2 500 N

MaxNoOfConcurrent-
Transactions

in-
tege
r

4096 32 4294967039 N

MaxNoOfFiredTriggers in-
tege
r

4000 0 4294967039 N

MaxNoOfIndexes (DE-
PRECATED — use
MaxNoOfOrderedIn-
dexes or MaxNoOfU-
niqueHashIndexes in-
stead)

in-
tege
r

128 0 4294967039 N

MySQL Cluster

1029

MaxNoOfLocalOpera-
tions

in-
tege
r

UNDEFINED 32 4294967039 N

MaxNoOfLocalScans in-
tege
r

UNDEFINED 32 4294967039 N

MaxNoOfOrderedIn-
dexes

in-
tege
r

128 0 4294967039 N

MaxNoOfSavedMessages in-
tege
r

25 0 4294967039 N

MaxNoOfTables in-
tege
r

128 8 4294967039 N

MaxNoOfTriggers in-
tege
r

768 0 4294967039 N

MaxNoOfUnique-
HashIndexes

in-
tege
r

64 0 4294967039 N

NoOf-
DiskPagesToDiskAf-
terRestartACC

in-
tege
r
(nu
mb
er
of
8K
B
pag
es
per
100
mil-
li-
sec
ond
s)

20 (= 20 * 80KB =
1.6MB/second)

1 4294967039 N

NoOf-
DiskPagesToDiskAf-
terRestartTUP

in-
tege
r
(nu
mb
er
of
8K
B
pag
es
per
100
mil-
li-

40 (= 40 * 80KB =
3.2MB/second)

1 4294967039 N

MySQL Cluster

1030

sec
ond
s)

NoOfDiskPagesToDisk-
DuringRestartACC

in-
tege
r
(nu
mb
er
of
8K
B
pag
es
per
100
mil-
li-
sec
ond
s)

20 (= 20 * 80KB =
1.6MB/second)

1 4294967039 N

NoOfDiskPagesToDisk-
DuringRestartTUP

in-
tege
r
(nu
mb
er
of
8K
B
pag
es
per
100
mil-
li-
sec
ond
s)

40 (= 40 * 80KB =
3.2MB/second)

1 4294967039 N

NoOfFragmentLogFiles in-
tege
r

8 1 4294967039 IN

NoOfReplicas in-
tege
r

None 1 4 IS

RedoBuffer byt
es

8M 1M 4294967039 N

RestartOnErrorInsert
(DEBUG BUILDS ONLY)

true
|fals
e

0 0 1 N

MySQL Cluster

1031

0)

ServerPort (OBSOLETE) in-
tege
r

1186 0 4294967039 N

StartFailureTimeout mil-
li-
sec
ond
s

0 0 4294967039 N

StartPartialTimeout mil-
li-
sec
ond
s

30000 0 4294967039 N

StartPartitioned-
Timeout

mil-
li-
sec
ond
s

60000 0 4294967039 N

StopOnError true
|fals
e

1 0 1 N

MySQL Cluster

1032

0)

TimeBetweenGlobal-
Checkpoints

mil-
li-
sec
ond
s

2000 10 32000 N

TimeBetweenInactiv-
eTransactionAbort-
Check

mil-
li-
sec
ond
s

1000 1000 4294967039 N

TimeBetweenLocal-
Checkpoints

in-
tege
r
(nu
mb
er
of
4-b
yte
wor
ds
as a
bas
e-2
log-
arit
hm)

20 (= 4 * 220 =
4MB write opera-
tions)

0 31 N

TimeBetweenWatchDo-
gCheck

mil-
li-
sec
ond
s

4000 70 4294967039 N

TransactionBuffer-
Memory

byt
es

1M 1K 4294967039 N

TransactionDeadlock-
DetectionTimeout

mil-
li-
sec
ond
s

1200 50 4294967039 N

TransactionInactive-
Timeout

mil-
li-
sec
ond
s

0 0 4294967039 N

UndoDataBuffer byt
es

16M 1M 4294967039 N

UndoIndexBuffer byt
es

2M 1M 4294967039 N

15.4.5.2. Management Node Configuration Parameters

MySQL Cluster

1033

The following table provides information about parameters used in the [NDB_MGMD] or [MGM] sec-
tions of a config.ini file for configuring MySQL Cluster management nodes. For detailed descrip-
tions and other additional information about each of these parameters, see Section 15.4.4.4, “Defining
the Management Server”.

Restart Type Column Values

• N: Node Restart

• IN: Initial Node Restart

• S: System Restart

• IS: Initial System Restart

See Section 15.4.5, “Overview of Cluster Configuration Parameters”, for additional explanations of
these abbreviations.

Parameter Name Ty
pe/
Uni
ts

Default Value Minimum Value Maximum Value Re-
star
t
Ty
pe

ArbitrationDelay mil-
li-
sec
ond
s

0 0 4294967039 N

ArbitrationRank in-
tege
r

1 0 2 N

DataDir stri
ng

N/A N/A N/A IN

ExecuteOnComputer in-
tege
r

HostName stri
ng

localhost N/A N/A IN

Id in-
tege
r

None 1 63 IN

LogDestination CO
NS
OL
E,
SY
SL
OG,
or
FI
LE

CONSOLE N/A N/A N

MySQL Cluster

1034

15.4.5.3. SQL Node and API Node Configuration Parameters

The following table provides information about parameters used in the [SQL] and [API] sections of a
config.ini file for configuring MySQL Cluster SQL nodes and API nodes. For detailed descriptions
and other additional information about each of these parameters, see Section 15.4.4.6, “Defining SQL
and Other API Nodes”.

Restart Type Column Values

• N: Node Restart

• IN: Initial Node Restart

• S: System Restart

• IS: Initial System Restart

See Section 15.4.5, “Overview of Cluster Configuration Parameters”, for additional explanations of
these abbreviations.

Parameter Name Ty
pe/
Uni
ts

Default Value Minimum Value Maximum Value Re-
star
t
Ty
pe

ArbitrationDelay mil-
li-
sec
ond
s

0 0 4294967039 N

ArbitrationRank in-
tege
r

1 0 2 N

BatchByteSize byt
es

32K 1K 1M N

BatchSize in-
tege
r

64 1 992 N

ExecuteOnComputer in-
tege
r

HostName stri
ng

localhost N/A N/A IN

Id in-
tege
r

None 1 63 IN

MaxScanBatchSize byt
es

256K 32K 16M N

15.4.6. Configuring Parameters for Local Checkpoints

MySQL Cluster

1035

The parameters discussed in Logging and Checkpointing and in Data Memory, Index Memory, and
String Memory that are used to configure local checkpoints for a MySQL Cluster do not exist in isola-
tion, but rather are very much interdepedent on each other. In this section, we illustrate how these para-
meters — including DataMemory, IndexMemory, NoOfDiskPagesToDiskAfterRe-
startTUP, NoOfDiskPagesToDiskAfterRestartACC, and NoOfFragmentLogFiles —
relate to one another in a working Cluster.

In this example, we assume that our application performs the following numbers of types of operations
per hour:

• 50000 selects

• 15000 inserts

• 15000 updates

• 15000 deletes

We also make the following assumptions about the data used in the application:

• We are working with a single table having 40 columns.

• Each column can hold up to 32 bytes of data.

• A typical UPDATE run by the application affects the values of 5 columns.

• No NULL values are inserted by the application.

A good starting point is to determine the amount of time that should elapse between local checkpoints
(LCPs). It worth noting that, in the event of a system restart, it takes 40-60 percent of this interval to ex-
ecute the REDO log — for example, if the time between LCPs is 5 minutes (300 seconds), then it should
take 2 to 3 minutes (120 to 180 seconds) for the REDO log to be read.

The maximum amount of data per node can be assumed to be the size of the DataMemory parameter.
In this example, we assume that this is 2 GB. The NoOfDiskPagesToDiskAfterRestartTUP
parameter represents the amount of data to be checkpointed per unit time — however, this parameter is
actually expressed as the number of 8K memory pages to be checkpointed per 100 milliseconds. 2 GB
per 300 seconds is approximately 6.8 MB per second, or 700 KB per 100 milliseconds, which works out
to roughly 85 pages per 100 milliseconds.

Similarly, we can calculate NoOfDiskPagesToDiskAfterRestartACC in terms of the time for
local checkpoints and the amount of memory required for indexes — that is, the IndexMemory. As-
suming that we allow 512 MB for indexes, this works out to approximately 20 8-KB pages per 100 mil-
liseconds for this parameter.

Next, we need to determine the number of REDO logfiles required — that is, fragment log files — the
corresponding parameter being NoOfFragmentLogFiles. We need to make sure that there are suffi-
cient REDO logfiles for keeping records for at least 3 local checkpoints. In a production setting, there
are always uncertainties — for instance, we cannot be sure that disks always operate at top speed or with
maximum throughput. For this reason, it is best to err on the side of caution, so we double our require-
ment and calculate a number of fragment logfiles which should be enough to keep records covering 6
local checkpoints.

It is also important to remember that the disk also handles writes to the REDO log and UNDO log, so if
you find that the amount of data being written to disk as detemined by the values of NoOf-

MySQL Cluster

1036

DiskPagesToDiskAfterRestartACC and NoOfDiskPagesToDiskAfterRestartTUP is
approaching the amount of disk bandwidth available, you may wish to increase the time between local
checkpoints.

Given 5 minutes (300 seconds) per local checkpoint, this means that we need to support writing log re-
cords at maximum speed for 6 * 300 = 1800 seconds. The size of a REDO log record is 72 bytes plus 4
bytes per updated column value plus the maximum size of the updated column, and there is one REDO
log record for each table record updated in a transaction, on each node where the data reside. Using the
numbers of operations set out previously in this section, we derive the following:

• 50000 select operations per hour yields 0 log records (and thus 0 bytes), since SELECT statements
are not recorded in the REDO log.

• 15000 DELETE statements per hour is approximately 5 delete operations per second. (Since we wish
to be conservative in our estimate, we round up here and in the following calculations.) No columns
are updated by deletes, so these statements consume only 5 operations * 72 bytes per operation =
360 bytes per second.

• 15000 UPDATE statements per hour is roughly the same as 5 updates per second. Each update uses
72 bytes, plus 4 bytes per column * 5 columns updated, plus 32 bytes per column * 5 columns —
this works out to 72 + 20 + 160 = 252 bytes per operation, and multiplying this by 5 operation per
second yields 1260 bytes per second.

• 15000 INSERT statements per hour is equivalent to 5 insert operations per second. Each insert re-
quires REDO log space of 72 bytes, plus 4 bytes per record * 40 columns, plus 32 bytes per column
* 40 columns, which is 72 + 160 + 1280 = 1512 bytes per operation. This times 5 operations per
second yields 7560 bytes per second.

So the total number of REDO log bytes being written per second is approximately 0 + 360 + 1260 +
7560 = 9180 bytes. Mutiplied by 1800 seconds, this yields 16524000 bytes required for REDO logging,
or approximately 15.75 MB. The unit used for NoOfFragmentLogFiles represents a set of 4
16-MB logfiles — that is, 64 MB. Thus, the minimum value (3) for this parameter is sufficient for the
scenario envisioned in this example, since 3 times 64 = 192 MB, or about 12 times what is required; the
default value of 8 (or 512 MB) is more than ample in this case.

A copy of each altered table record is kept in the UNDO log. In the scenario discussed above, the
UNDO log would not require any more space than what is provided by the default seetings. However,
given the size of disks, it is sensible to allocate at least 1 GB for it.

15.5. Upgrading and Downgrading MySQL Cluster
This portion of the MySQL Cluster chapter covers upgrading and downgrading a MySQL Cluster from
one MySQL release to another. It discusses different types of Cluster upgrades and downgrades, and
provides a Cluster upgrade/downgrade compatibility matrix (see Section 15.5.2, “Cluster Upgrade and
Downgrade Compatibility”).

Important: You are expected already to be familiar with installing and configuring a MySQL Cluster
prior to attempting an upgrade or downgrade. See Section 15.4, “MySQL Cluster Configuration”.

This section remains in development, and continues to be updated and expanded.

15.5.1. Performing a Rolling Restart of the Cluster
This section discusses how to perform a rolling restart of a MySQL Cluster installation, so called be-
cause it involves stopping and starting (or restarting) each node in turn, so that the cluster itself remains
operational. This is often done as part of a rolling upgrade or rolling downgrade, where high availability

MySQL Cluster

1037

of the cluster is mandatory and no downtime of the cluster as a whole is permissible. Where we refer to
upgrades, the information provided here also generally applies to downgrades as well.

There are a number of reasons why a rolling restart might be desirable:

•
Cluster Configuration Change: To make a change in the cluster's configuration, such as adding an
SQL node to the cluster, or setting a configuration parameter to a new value.

• Cluster Software Upgrade/Downgrade: To upgrade the cluster to a newer version of the MySQL
Cluster software (or to downgrade it to an older version). This is usually referred to as a “rolling up-
grade” (or “rolling downgrade”, when reverting to an older version of MySQL Cluster).

• Change on Node Host: To make changes in the hardware or operating system on which one or more
cluster nodes are running

•
Cluster Reset: To reset the cluster because it has reached an undesirable state

The process for performing a rolling restart may be generalised as follows:

1. Stop, reconfigure, then restart each cluster management node (ndb_mgmd process) in turn

2. Stop, reconfigure, then restart each cluster data node (ndbd process) in turn

3. Stop, reconfigure, then restart each cluster SQL node (mysqld process) in turn

The specifics for implementing a particular rolling upgrade depend upon the actual changes being made.
A more detailed view of the process is presented in the table shown here:

In the previous table, Stop and Start steps indicate that the process must be stopped completely using a
shell command (such as kill on most Unix systems) or the management client STOP command, then
started again from a system shell by invoking the ndbd or ndb_mgmd executable as appropriate. Re-
start indicates the process may be restarted using the ndb_mgm management client RESTART com-
mand.

15.5.2. Cluster Upgrade and Downgrade Compatibility
This section provides information regarding Cluster software and table file compatibility between differ-
ing versions of the MySQL Server for purposes of performing upgrades and downgrades.

Important: Only compatibility between MySQL versions with regard to NDB Cluster is taken into
account in this section, and there are likely other issues to be considered. As with any other MySQL soft-
ware upgrade or downgrade, you are strongly encouraged to review the relevant portions of the MySQL
Manual for the MySQL versions from which and to which you intend to migrate, before attempting an
upgrade or downgrade of the MySQL Cluster software. See Section 2.11, “Upgrading MySQL”.

The following table shows Cluster upgrade and downgrade compatibility between different versions of
the MySQL Server.

MySQL Cluster

1038

MySQL Cluster

1039

Notes:

• 4.1 Series:

You cannot upgrade directly from 4.1.8 to 4.1.10 (or newer); you must first upgrade from 4.1.8 to
4.1.9, then upgrade to 4.1.10. Similarly, you cannot downgrade directly from 4.1.10 (or newer) to
4.1.8; you must first downgrade from 4.1.10 to 4.1.9, then downgrade from 4.1.9 to 4.1.8.

If you wish to upgrade a MySQL Cluster to 4.1.15, you must upgrade to 4.1.14 first, and you must
upgrade to 4.1.15 before upgrading to 4.1.16 or newer.

Cluster downgrades from 4.1.15 to 4.1.14 (or earlier versions) are not supported.

Cluster upgrades from MySQL Server versions previous to 4.1.8 are not supported; when upgrading
from these, you must dump all NDB tables, install the new version of the software, and then reload
the tables from the dump.

• 5.0 Series:

MySQL 5.0.2 was the first public release in this series.

Cluster downgrades from MySQL 5.0 to MySQL 4.1 are not supported.

Cluster downgrades from 5.0.12 to 5.0.11 (or earlier) are not supported.

You cannot restore with ndb_restore to a MySQL 5.0 Cluster using a backup made from a
Cluster running MySQL 5.1. You must use mysqldump in such cases.

There was no public release for MySQL 5.0.23.

• 5.1 Series:

MySQL 5.1.3 was the first public release in this series.

You cannot downgrade a MySQL 5.1.6 or later Cluster using Disk Data tables to MySQL 5.1.5 or
earlier unless you convert all such tables to in-memory Cluster tables first.

MySQL 5.1.8 and MySQL 5.1.10 were not released.

Online cluster upgrades and downgrades between MySQL 5.1.11 (or an earlier version) and 5.1.12
(or a later version) are not possible due to major changes in the cluster filesystem. In such cases, you
must perform a backup or dump, upgrade (or downgrade) the software, start each data node with -
-initial, and then restore from the backup or dump. You can use NDB backup/restore or
mysqldump for this purpose.

15.6. Process Management in MySQL Cluster
Understanding how to manage MySQL Cluster requires a knowledge of four essential processes. In the
next few sections of this chapter, we cover the roles played by these processes in a cluster, how to use
them, and what startup options are available for each of them:

• Section 15.6.1, “MySQL Server Process Usage for MySQL Cluster”

• Section 15.6.2, “ndbd, the Storage Engine Node Process”

• Section 15.6.3, “ndb_mgmd, the Management Server Process”

MySQL Cluster

1040

• Section 15.6.4, “ndb_mgm, the Management Client Process”

15.6.1. MySQL Server Process Usage for MySQL Cluster
mysqld is the traditional MySQL server process. To be used with MySQL Cluster, mysqld needs to
be built with support for the NDB Cluster storage engine, as it is in the precompiled -max binaries
available from http://dev.mysql.com/downloads/. If you build MySQL from source, you must invoke
configure with the --with-ndbcluster option to enable NDB Cluster storage engine sup-
port.

If the mysqld binary has been built with Cluster support, the NDB Cluster storage engine is still
disabled by default. You can use either of two possible options to enable this engine:

• Use --ndbcluster as a startup option on the command line when starting mysqld.

• Insert a line containing ndbcluster in the [mysqld] section of your my.cnf file.

An easy way to verify that your server is running with the NDB Cluster storage engine enabled is to
issue the SHOW ENGINES statement in the MySQL Monitor (mysql). You should see the value YES
as the Support value in the row for NDBCLUSTER. If you see NO in this row or if there is no such row
displayed in the output, you are not running an NDB-enabled version of MySQL. If you see DISABLED
in this row, you need to enable it in either one of the two ways just described.

To read cluster configuration data, the MySQL server requires at a minimum three pieces of informa-
tion:

• The MySQL server's own cluster node ID

• The hostname or IP address for the management server (MGM node)

• The number of the TCP/IP port on which it can connect to the management server

Node IDs can be allocated dynamically, so it is not strictly necessary to specify them explicitly.

The mysqld parameter ndb-connectstring is used to specify the connectstring either on the com-
mand line when starting mysqld or in my.cnf. The connectstring contains the hostname or IP address
where the management server can be found, as well as the TCP/IP port it uses.

In the following example, ndb_mgmd.mysql.com is the host where the management server resides,
and the management server listens for cluster messages on port 1186:

shell> mysqld --ndb-connectstring=ndb_mgmd.mysql.com:1186

See Section 15.4.4.2, “The Cluster connectstring”, for more information on connectstrings.

Given this information, the MySQL server will be a full participant in the cluster. (We sometimes refer
to a mysqld process running in this manner as an SQL node.) It will be fully aware of all cluster data
nodes as well as their status, and will establish connections to all data nodes. In this case, it is able to use
any data node as a transaction coordinator and to read and update node data.

You can see in the mysql client whether a MySQL server is connected to the cluster using SHOW
PROCESSLIST. If the MySQL server is connected to the cluster, and you have the PROCESS privilege,
then the first row of the output is as shown here:

MySQL Cluster

1041

http://dev.mysql.com/downloads/

mysql> SHOW PROCESSLIST \G
*************************** 1. row ***************************

Id: 1
User: system user
Host:

db:
Command: Daemon

Time: 1
State: Waiting for event from ndbcluster
Info: NULL

15.6.2. ndbd, the Storage Engine Node Process
ndbd is the process that is used to handle all the data in tables using the NDB Cluster storage engine.
This is the process that empowers a data node to accomplish distributed transaction handling, node re-
covery, checkpointing to disk, online backup, and related tasks.

In a MySQL Cluster, a set of ndbd processes cooperate in handling data. These processes can execute
on the same computer (host) or on different computers. The correspondences between data nodes and
Cluster hosts is completely configurable.

ndbd generates a set of log files which are placed in the directory specified by DataDir in the con-
fig.ini configuration file. These log files are listed below. Note that node_id represents the node's
unique identifier. For example, ndb_2_error.log is the error log generated by the data node whose
node ID is 2.

•
ndb_node_id_error.log is a file containing records of all crashes which the referenced ndbd
process has encountered. Each record in this file contains a brief error string and a reference to a
trace file for this crash. A typical entry in this file might appear as shown here:

Date/Time: Saturday 30 July 2004 - 00:20:01
Type of error: error
Message: Internal program error (failed ndbrequire)
Fault ID: 2341
Problem data: DbtupFixAlloc.cpp
Object of reference: DBTUP (Line: 173)
ProgramName: NDB Kernel
ProcessID: 14909
TraceFile: ndb_2_trace.log.2
EOM

Note: It is very important to be aware that the last entry in the error log file is not necessarily the
newest one (nor is it likely to be). Entries in the error log are not listed in chronological order; rather,
they correspond to the order of the trace files as determined in the
ndb_node_id_trace.log.next file (see below). Error log entries are thus overwritten in a
cyclical and not sequential fashion.

•
ndb_node_id_trace.log.trace_id is a trace file describing exactly what happened just be-
fore the error occurred. This information is useful for analysis by the MySQL Cluster development
team.

It is possible to configure the number of these trace files that will be created before old files are
overwritten. trace_id is a number which is incremented for each successive trace file.

• ndb_node_id_trace.log.next is the file that keeps track of the next trace file number to be
assigned.

• ndb_node_id_out.log is a file containing any data output by the ndbd process. This file is
created only if ndbd is started as a daemon, which is the default behavior.

MySQL Cluster

1042

• ndb_node_id.pid is a file containing the process ID of the ndbd process when started as a dae-
mon. It also functions as a lock file to avoid the starting of nodes with the same identifier.

• ndb_node_id_signal.log is a file used only in debug versions of ndbd, where it is possible
to trace all incoming, outgoing, and internal messages with their data in the ndbd process.

It is recommended not to use a directory mounted through NFS because in some environments this can
cause problems whereby the lock on the .pid file remains in effect even after the process has termin-
ated.

To start ndbd, it may also be necessary to specify the hostname of the management server and the port
on which it is listening. Optionally, one may also specify the node ID that the process is to use.

shell> ndbd --connect-string="nodeid=2;host=ndb_mgmd.mysql.com:1186"

See Section 15.4.4.2, “The Cluster connectstring”, for additional information about this issue. Sec-
tion 15.6.5, “Command Options for MySQL Cluster Processes”, describes other options for ndbd.

When ndbd starts, it actually initiates two processes. The first of these is called the “angel process”; its
only job is to discover when the execution process has been completed, and then to restart the ndbd
process if it is configured to do so. Thus, if you attempt to kill ndbd via the Unix kill command, it is
necessary to kill both processes, beginning with the angel process. The preferred method of terminating
an ndbd process is to use the management client and stop the process from there.

The execution process uses one thread for reading, writing, and scanning data, as well as all other activ-
ities. This thread is implemented asynchronously so that it can easily handle thousands of concurrent
activites. In addition, a watch-dog thread supervises the execution thread to make sure that it does not
hang in an endless loop. A pool of threads handles file I/O, with each thread able to handle one open
file. Threads can also be used for transporter connections by the transporters in the ndbd process. In a
multi-processor system performing a large number of operations (including updates), the ndbd process
can consume up to 2 CPUs if permitted to do so.

For a machine with many CPUs it is possible to use several ndbd processes which belong to different
node groups; however, such a configuration is still considered experimental and is not supported for
MySQL 5.0 in a production setting. See Section 15.11, “Known Limitations of MySQL Cluster”.

15.6.3. ndb_mgmd, the Management Server Process
The management server is the process that reads the cluster configuration file and distributes this in-
formation to all nodes in the cluster that request it. It also maintains a log of cluster activities. Manage-
ment clients can connect to the management server and check the cluster's status.

It is not strictly necessary to specify a connectstring when starting the management server. However, if
you are using more than one management server, a connectstring should be provided and each node in
the cluster should specify its node ID explicitly.

See Section 15.4.4.2, “The Cluster connectstring”, for information about using connectstrings.
Section 15.6.5, “Command Options for MySQL Cluster Processes”, describes other options for
ndb_mgmd.

The following files are created or used by ndb_mgmd in its starting directory, and are placed in the
DataDir as specified in the config.ini configuration file. In the list that follows, node_id is the
unique node identifier.

•
config.ini is the configuration file for the cluster as a whole. This file is created by the user and

MySQL Cluster

1043

read by the management server. Section 15.4, “MySQL Cluster Configuration”, discusses how to set
up this file.

• ndb_node_id_cluster.log is the cluster events log file. Examples of such events include
checkpoint startup and completion, node startup events, node failures, and levels of memory usage.
A complete listing of cluster events with descriptions may be found in Section 15.7, “Management
of MySQL Cluster”.

When the size of the cluster log reaches one million bytes, the file is renamed to
ndb_node_id_cluster.log.seq_id, where seq_id is the sequence number of the cluster
log file. (For example: If files with the sequence numbers 1, 2, and 3 already exist, the next log file is
named using the number 4.)

• ndb_node_id_out.log is the file used for stdout and stderr when running the manage-
ment server as a daemon.

• ndb_node_id.pid is the process ID file used when running the management server as a daemon.

15.6.4. ndb_mgm, the Management Client Process
The management client process is actually not needed to run the cluster. Its value lies in providing a set
of commands for checking the cluster's status, starting backups, and performing other administrative
functions. The management client accesses the management server using a C API. Advanced users can
also employ this API for programming dedicated management processes to perform tasks similar to
those performed by ndb_mgm.

To start the management client, it is necessary to supply the hostname and port number of the manage-
ment server:

shell> ndb_mgm [host_name [port_num]]

For example:

shell> ndb_mgm ndb_mgmd.mysql.com 1186

The default hostname and port number are localhost and 1186, respectively.

Additional information about using ndb_mgm can be found in Section 15.6.5.4, “Command Options for
ndb_mgm”, and Section 15.7.2, “Commands in the Management Client”.

15.6.5. Command Options for MySQL Cluster Processes
All MySQL Cluster executables (except for mysqld) take the options described in this section. Users of
earlier MySQL Cluster versions should note that some of these options have been changed from those in
MySQL 4.1 Cluster to make them consistent with one another as well as with mysqld. You can use the
--help option with any MySQL Cluster executable to view a list of the options which it supports.

The following options are common to all MySQL Cluster executables:

• --help --usage, -?

Prints a short list with descriptions of the available command options.

• --connect-string=connect_string, -c connect_string

MySQL Cluster

1044

connect_string sets the connectstring to the management server as a command option.

shell> ndbd --connect-string="nodeid=2;host=ndb_mgmd.mysql.com:1186"

• --debug[=options]

This option can be used only for versions compiled with debugging enabled. It is used to enable out-
put from debug calls in the same manner as for the mysqld process.

• --execute=command, -e command

Can be used to send a command to a Cluster executable from the system shell. For example, either of
the following:

shell> ndb_mgm -e "SHOW"

or

shell> ndb_mgm --execute="SHOW"

is equivalent to

ndb_mgm> SHOW

This is analogous to how the --execute or -e option works with the mysql command-line cli-
ent. See Section 4.3.1, “Using Options on the Command Line”.

• --version, -V

Prints the MySQL Cluster version number of the executable. The version number is relevant because
not all versions can be used together, and the MySQL Cluster startup process verifies that the ver-
sions of the binaries being used can co-exist in the same cluster. This is also important when per-
forming an online (rolling) software upgrade or downgrade of MySQL Cluster. (See Section 15.5.1,
“Performing a Rolling Restart of the Cluster”).

The next few sections describe options specific to individual NDB programs.

15.6.5.1. MySQL Cluster-Related Command Options for mysqld

• --ndb-connectstring=connect_string

When using the NDB Cluster storage engine, this option specifies the management server that
distributes cluster configuration data.

• --ndbcluster

The NDB Cluster storage engine is necessary for using MySQL Cluster. If a mysqld binary in-
cludes support for the NDB Cluster storage engine, the engine is disabled by default. Use the -
-ndbcluster option to enable it. Use --skip-ndbcluster to explicitly disable the engine.

15.6.5.2. Command Options for ndbd

For options common to all NDB programs, see Section 15.6.5, “Command Options for MySQL Cluster

MySQL Cluster

1045

Processes”.

• --daemon, -d

Instructs ndbd to execute as a daemon process. This is the default behavior. --nodaemon can be
used to prevent the process from running as a daemon.

• --initial

Instructs ndbd to perform an initial start. An initial start erases any files created for recovery pur-
poses by earlier instances of ndbd. It also re-creates recovery log files. Note that on some operating
systems this process can take a substantial amount of time.

An --initial start is to be used only the very first time that the ndbd process is started because
it removes all files from the Cluster filesystem and re-creates all REDO log files. The exceptions to
this rule are:

• When performing a software upgrade which has changed the contents of any files.

• When restarting the node with a new version of ndbd.

• As a measure of last resort when for some reason the node restart or system restart repeatedly
fails. In this case, be aware that this node can no longer be used to restore data due to the destruc-
tion of the datafiles.

This option does not affect any backup files that have already been created by the affected node.

It is possible to achieve the same effect by deleting by other means (such as using rm -r -f) all
files and directories in the data node's DataDir — with the possible exception of the BACKUP dir-
ectory in DataDir, should you wish to retain any backups that have been created on that data node
— and then starting ndbd without having to use the --initial option. This may be useful when
scripting Cluster administrative tasks.

• --initial-start

This option is used when performing a partial initial start of the cluster. Each node should be started
with this option, as well as --no-wait-nodes.

For example, suppose you have a 4-node cluster whose data nodes have the IDs 2, 3, 4, and 5, and
you wish to perform a partial initial start using only nodes 2, 4, and 5 — that is, omitting node 3:

ndbd --ndbd-nodeid=2 --no-wait-nodes=3 --initial-start
ndbd --ndbd-nodeid=4 --no-wait-nodes=3 --initial-start
ndbd --ndbd-nodeid=5 --no-wait-nodes=3 --initial-start

This option was added in MySQL 5.0.21.

• --nowait-nodes=node_id_1[, node_id_2[, ...]]

This option takes a list of data nodes which for which the cluster will not wait for before starting.

This can be used to start the cluster in a partitioned state. For example, to start the cluster with only
half of the data nodes (nodes 2, 3, 4, and 5) running in a 4-node cluster, you can start each ndbd
process with --nowait-nodes=3,5. In this case, the cluster starts as soon as nodes 2 and 4 con-
nect, and does not wait StartPartitionedTimeout milliseconds for nodes 3 and 5 to connect
as it would otherwise.

If you wanted to start up the same cluster as in the previous example without one ndbd — say, for
example, that the host machine for node 3 has suffered a hardware failure — then start nodes 2, 4,

MySQL Cluster

1046

and 5 with --no-wait-nodes=3. Then the cluster will start as soon as nodes 2, 4, and 5 connect
and will not wait for node 3 to start.

This option was added in MySQL 5.0.21.

• --nodaemon

Instructs ndbd not to start as a daemon process. This is useful when ndbd is being debugged and
you want output to be redirected to the screen.

• --nostart, -n

Instructs ndbd not to start automatically. When this option is used, ndbd connects to the manage-
ment server, obtains configuration data from it, and initializes communication objects. However, it
does not actually start the execution engine until specifically requested to do so by the management
server. This can be accomplished by issuing the proper START command in the management client
(see Section 15.7.2, “Commands in the Management Client”).

15.6.5.3. Command Options for ndb_mgmd

For options common to NDB programs, see Section 15.6.5, “Command Options for MySQL Cluster
Processes”.

• --config-file=filename, -f filename

Instructs the management server as to which file it should use for its configuration file. This option
must be specified. The filename defaults to config.ini.

Note: This option also can be given as -c file_name, but this shortcut is obsolete and should not
be used in new installations.

• --daemon, -d

Instructs ndb_mgmd to start as a daemon process. This is the default behavior.

• --nodaemon

Instructs ndb_mgmd not to start as a daemon process.

15.6.5.4. Command Options for ndb_mgm

For options common to NDB programs, see Section 15.6.5, “Command Options for MySQL Cluster
Processes”.

• --try-reconnect=number

If the connection to the management server is broken, the node tries to reconnect to it every 5
seconds until it succeeds. By using this option, it is possible to limit the number of attempts to num-
ber before giving up and reporting an error instead.

15.7. Management of MySQL Cluster
Managing a MySQL Cluster involves a number of tasks, the first of which is to configure and start

MySQL Cluster

1047

MySQL Cluster. This is covered in Section 15.4, “MySQL Cluster Configuration”, and Section 15.6,
“Process Management in MySQL Cluster”.

The following sections cover the management of a running MySQL Cluster.

There are essentially two methods of actively managing a running MySQL Cluster. The first of these is
through the use of commands entered into the management client whereby cluster status can be checked,
log levels changed, backups started and stopped, and nodes stopped and started. The second method in-
volves studying the contents of the cluster log ndb_node_id_cluster.log; this is usually found
in the management server's DataDir directory, but this location can be overridden using the LogDes-
tination option — see Section 15.4.4.4, “Defining the Management Server”, for details. (Recall that
node_id represents the unique identifier of the node whose activity is being logged.) The cluster log
contains event reports generated by ndbd. It is also possible to send cluster log entries to a Unix system
log.

15.7.1. MySQL Cluster Startup Phases
This section describes the steps involved when the cluster is started.

There are several different startup types and modes, as shown here:

• Initial Start: The cluster starts with a clean filesystem on all data nodes. This occurs either when the
cluster started for the very first time, or when it is restarted using the --initial option.

• System Restart: The cluster starts and reads data stored in the data nodes. This occurs when the
cluster has been shut down after having been in use, when it is desired for the cluster to resume oper-
ations from the point where it left off.

• Node Restart: This is the online restart of a cluster node while the cluster itself is running.

• Initial Node Restart: This is the same as a node restart, except that the node is reinitialized and star-
ted with a clean filesystem.

Prior to startup, each data node (ndbd process) must be initialized. Initialization consists of the follow-
ing steps:

1. Obtain a Node ID.

2. Fetch configuration data.

3. Allocate ports to be used for inter-node communications.

4. Allocate memory according to settings obtained from the configuration file.

When a data node or SQL node first connects to the management node, it reserves a cluster node ID. To
make sure that no other node allocates the same node ID, this ID is retained until the node has managed
to connect to the cluster and at least one ndbd reports that this node is connected. This retention of the
node ID is guarded by the connection between the node in question and ndb_mgmd.

Normally, in the event of a problem with the node, the node disconnects from the management server,
the socket used for the connection is closed, and the reserved node ID is freed. However, if a node is dis-
connected abruptly — for example, due to a hardware failure in one of the cluster hosts, or because of
network issues — the normal closing of the socket by the operating system may not take place. In this
case, the node ID continues to be reserved and not released until a TCP timeout occurs 10 or so minutes
later.

MySQL Cluster

1048

To take care of this problem, you can use PURGE STALE SESSIONS. Running this statement forces
all reserved node IDs to be checked; any that are not being used by nodes actually connected to the
cluster are then freed.

Beginning with MySQL 5.0.22, timeout handling of node ID assignments is implemented. This per-
forms the ID usage checks automatically after approximately 20 seconds, so that PURGE STALE
SESSIONS should no longer be necessary in a normal Cluster start.

After each data node has been initialized, the cluster startup process can proceed. The stages which the
cluster goes through during this process are listed here:

• Stage 0

Clear the cluster filesystem. This stage occurs only if the cluster was started with the --initial
option.

• Stage 1

This stage sets up Cluster connections, establishes inter-node communications, and starts Cluster
heartbeats.

Note: When one or more nodes hang in Phase 1 while the remaining node or nodes hang in Pahse 2,
this often indicates network problems. One possible cause of such issues is one or more cluster hosts
having multiple network interfaces. Another common source of problems causing this condition is
the blocking of TCP/IP ports needed for communications between cluster nodes. In the latter case,
this is often due to a misconfigured firewall.

• Stage 2

The arbitrator node is elected. If this is a system restart, the cluster determines the latest restorable
global checkpoint.

• Stage 3

This stage initializes a number of internal cluster variables.

• Stage 4

For an initial start or initial node restart, the redo log files are created. The number of these files is
equal to NoOfFragmentLogFiles.

For a system restart:

• Read schema or schemas.

• Read data from the local checkpoint and undo logs.

• Apply all redo information until the latest restorable global checkpoint has been reached.

For a node restart, find the tail of the redo log.

• Stage 5

If this is an initial start, create the SYSTAB_0 and NDB$EVENTS internal system tables.

For a node restart or an initial node restart:

1. The node is included in transaction handling operations.

MySQL Cluster

1049

2. The node schema is compared with that of the master and synchronized with it.

3. Synchronize data received in the form of INSERT from the other data nodes in this node's node
group.

4. In all cases, wait for complete local checkpoint as determined by the arbitrator.

• Stage 6

Update internal variables.

• Stage 7

Update internal variables.

• Stage 8

In a system restart, rebuild all indexes.

• Stage 9

Update internal variables.

• Stage 10

At this point in a node restart or initial node restart, APIs may connect to the node and begin to re-
ceive events.

• Stage 11

At this point in a node restart or initial node restart, event delivery is handed over to the node joining
the cluster. The newly-joined node takes over responsibility for delivering its primary data to sub-
scribers.

After this process is completed for an initial start or system restart, transaction handling is enabled. For a
node restart or initial node restart, completion of the startup process means that the node may now act as
a transaction coordinator.

15.7.2. Commands in the Management Client
In addition to the central configuration file, a cluster may also be controlled through a command-line in-
terface available through the management client ndb_mgm. This is the primary administrative interface
to a running cluster.

Commands for the event logs are given in Section 15.7.3, “Event Reports Generated in MySQL
Cluster”; commands for creating backups and restoring from backup are provided in Section 15.8,
“On-line Backup of MySQL Cluster”.

The management client has the following basic commands. In the listing that follows, node_id de-
notes either a database node ID or the keyword ALL, which indicates that the command should be ap-
plied to all of the cluster's data nodes.

•
HELP

Displays information on all available commands.

MySQL Cluster

1050

•
SHOW

Displays information on the cluster's status.

Note: In a cluster where multiple management nodes are in use, this command displays information
only for data nodes that are actually connected to the current management server.

•
node_id START

Brings online the data node identified by node_id (or all data nodes).

Beginning with MySQL 5.0.19, this command can also be used to individual management nodes on-
line. Note: ALL START continues to affect data nodes only.

Important: To use this command to bring a data node online, the data node must have been started
using ndbd --nostart or ndbd -n.

•
node_id STOP

Stops the data node identified by node_id (or all data nodes).

Beginning with MySQL 5.0.19, this command can also be used to stop individual management
nodes. Note: ALL STOP continues to affect data nodes only.

A node affected by this command disconnects from the cluster, and its associated ndbd or
ndb_mgmd process terminates.

•
node_id RESTART [-n] [-i]

Restarts the data node identified by node_id (or all data nodes).

Using the -i option with RESTART causes the data node to perform an initial restart; that is, the
node's filesystem is deleted and recreated. The effect is the same as that obtained from stopping the
data node process and then starting it again using ndbd --initial from the system shell.

Using the -n option causes the data node process to be restarted, but the data node is not actually
brought online until the appropriate START command is issued. The effect of this option is the same
as that obtained from stopping the data node and then starting it again using ndbd --nostart or
ndbd -n from the system shell.

•
node_id STATUS

Displays status information for the data node identified by node_id (or for all data nodes).

•
ENTER SINGLE USER MODE node_id

Enters single-user mode, whereby only the MySQL server identified by the node ID node_id is al-
lowed to access the database.

•
EXIT SINGLE USER MODE

Exits single-user mode, allowing all SQL nodes (that is, all running mysqld processes) to access
the database.

MySQL Cluster

1051

•
QUIT, EXIT

Terminates the management client.

This command does not affect any nodes connected to the cluster.

•
SHUTDOWN

Shuts down all cluster data nodes and management nodes. To exit the management client after this
has been done, use EXIT or QUIT.

This command does not shut down any SQL nodes or API nodes that are connected to the cluster.

15.7.3. Event Reports Generated in MySQL Cluster
In this section, we discuss the types of event logs provided by MySQL Cluster, and the types of events
that are logged.

MySQL Cluster provides two types of event log. These are the cluster log, which includes events gener-
ated by all cluster nodes, and the node logs, which are local to each data node.

Output generated by cluster event logging can have multiple destinations including a file, the manage-
ment server console window, or syslog. Output generated by node event logging is written to the data
node's console window.

Both types of event logs can be set to log different subsets of events.

Note: The cluster log is the log recommended for most uses because it provides logging information for
an entire cluster in a single file. Node logs are intended to be used only during application development,
or for debugging application code.

Each reportable event can be distinguished according to three different criteria:

• Category: This can be any one of the following values: STARTUP, SHUTDOWN, STATISTICS,
CHECKPOINT, NODERESTART, CONNECTION, ERROR, or INFO.

• Priority: This is represented by one of the numbers from 1 to 15 inclusive, where 1 indicates “most
important” and 15 “least important.”

• Severity Level: This can be any one of the following values: ALERT, CRITICAL, ERROR, WARN-
ING, INFO, or DEBUG.

Both the cluster log and the node log can be filtered on these properties.

15.7.3.1. Logging Management Commands

The following management commands are related to the cluster log:

• CLUSTERLOG ON

Turns the cluster log on.

• CLUSTERLOG OFF

MySQL Cluster

1052

Turns the cluster log off.

• CLUSTERLOG INFO

Provides information about cluster log settings.

• node_id CLUSTERLOG category=threshold

Logs category events with priority less than or equal to threshold in the cluster log.

• CLUSTERLOG FILTER severity_level

Toggles cluster logging of events of the specified severity_level.

The following table describes the default setting (for all data nodes) of the cluster log category
threshold. If an event has a priority with a value lower than or equal to the priority threshold, it is repor-
ted in the cluster log.

Note that events are reported per data node, and that the threshold can be set to different values on dif-
ferent nodes.

Category Default threshold (All data nodes)

STARTUP 7

SHUTDOWN 7

STATISTICS 7

CHECKPOINT 7

NODERESTART 7

CONNECTION 7

ERROR 15

INFO 7

Thresholds are used to filter events within each category. For example, a STARTUP event with a priority
of 3 is not logged unless the threshold for STARTUP is changed to 3 or lower. Only events with priority
3 or lower are sent if the threshold is 3.

The following table shows the event severity levels. (Note: These correspond to Unix syslog levels,
except for LOG_EMERG and LOG_NOTICE, which are not used or mapped.)

1 ALERT A condition that should be corrected immediately, such as a corrupted
system database

2 CRITICAL Critical conditions, such as device errors or insufficient resources

3 ERROR Conditions that should be corrected, such as configuration errors

4 WARNING Conditions that are not errors, but that might require special handling

5 INFO Informational messages

6 DEBUG Debugging messages used for NDB Cluster development

Event severity levels can be turned on or off (using CLUSTERLOG FILTER — see above). If a severity
level is turned on, then all events with a priority less than or equal to the category thresholds are logged.
If the severity level is turned off then no events belonging to that severity level are logged.

MySQL Cluster

1053

15.7.3.2. Log Events

An event report reported in the event logs has the following format:

datetime [string] severity -- message

For example:

09:19:30 2005-07-24 [NDB] INFO -- Node 4 Start phase 4 completed

This section discusses all reportable events, ordered by category and severity level within each category.

In the event descriptions, GCP and LCP mean “Global Checkpoint” and “Local Checkpoint,” respect-
ively.

CONNECTION Events

These events are associated with connections between Cluster nodes.

Event Priority Severity
Level

Description

data nodes connected 8 INFO Data nodes connected

data nodes disconnected 8 INFO Data nodes disconnected

Communication closed 8 INFO SQL node or data node connection closed

Communication opened 8 INFO SQL node or data node connection opened

CHECKPOINT Events

The logging messages shown here are associated with checkpoints.

Event Priority Severity
Level

Description

LCP stopped in calc keep GCI 0 ALERT LCP stopped

Local checkpoint fragment com-
pleted

11 INFO LCP on a fragment has been completed

Global checkpoint completed 10 INFO GCP finished

Global checkpoint started 9 INFO Start of GCP: REDO log is written to disk

Local checkpoint completed 8 INFO LCP completed normally

Local checkpoint started 7 INFO Start of LCP: data written to disk

Report undo log blocked 7 INFO UNDO logging blocked; buffer near overflow

STARTUP Events

The following events are generated in response to the startup of a node or of the cluster and of its suc-
cess or failure. They also provide information relating to the progress of the startup process, including
information concerning logging activities.

Event Priority Severity
Level

Description

Internal start signal received ST- 15 INFO Blocks received after completion of restart

MySQL Cluster

1054

TORRY

Undo records executed 15 INFO

New REDO log started 10 INFO GCI keep X, newest restorable GCI Y

New log started 10 INFO Log part X, start MB Y, stop MB Z

Node has been refused for inclu-
sion in the cluster

8 INFO Node cannot be included in cluster due to
misconfiguration, inability to establish com-
munication, or other problem

data node neighbors 8 INFO Shows neighboring data nodes

data node start phase X completed 4 INFO A data node start phase has been completed

Node has been successfully in-
cluded into the cluster

3 INFO Displays the node, managing node, and dy-
namic ID

data node start phases initiated 1 INFO NDB Cluster nodes starting

data node all start phases com-
pleted

1 INFO NDB Cluster nodes started

data node shutdown initiated 1 INFO Shutdown of data node has commenced

data node shutdown aborted 1 INFO Unable to shut down data node normally

NODERESTART Events

The following events are generated when restarting a node and relate to the success or failure of the
node restart process.

Event Priority Severity
Level

Description

Node failure phase completed 8 ALERT Reports completion of node failure phases

Node has failed, node state was X 8 ALERT Reports that a node has failed

Report arbitrator results 2 ALERT There are eight different possible results for
arbitration attempts:

• Arbitration check failed — less than 1/2
nodes left

• Arbitration check succeeded — node
group majority

• Arbitration check failed — missing node
group

• Network partitioning — arbitration re-
quired

• Arbitration succeeded — affirmative re-
sponse from node X

• Arbitration failed - negative response
from node X

• Network partitioning - no arbitrator avail-
able

• Network partitioning - no arbitrator con-

MySQL Cluster

1055

figured

Completed copying a fragment 10 INFO

Completed copying of dictionary
information

8 INFO

Completed copying distribution in-
formation

8 INFO

Starting to copy fragments 8 INFO

Completed copying all fragments 8 INFO

GCP takeover started 7 INFO

GCP takeover completed 7 INFO

LCP takeover started 7 INFO

LCP takeover completed (state =
X)

7 INFO

Report whether an arbitrator is
found or not

6 INFO There are seven different possible outcomes
when seeking an arbitrator:

• Management server restarts arbitration
thread [state=X]

• Prepare arbitrator node X [ticket=Y]

• Receive arbitrator node X [ticket=Y]

• Started arbitrator node X [ticket=Y]

• Lost arbitrator node X - process failure
[state=Y]

• Lost arbitrator node X - process exit
[state=Y]

• Lost arbitrator node X <error msg>
[state=Y]

STATISTICS Events

The following events are of a statistical nature. They provide information such as numbers of transac-
tions and other operations, amount of data sent or received by individual nodes, and memory usage.

Event Priority Severity
Level

Description

Report job scheduling statistics 9 INFO Mean internal job scheduling statistics

Sent number of bytes 9 INFO Mean number of bytes sent to node X

Received # of bytes 9 INFO Mean number of bytes received from node X

Report transaction statistics 8 INFO Numbers of: transactions, commits, reads,
simple reads, writes, concurrent operations,
attribute information, and aborts

Report operations 8 INFO Number of operations

MySQL Cluster

1056

Report table create 7 INFO

Memory usage 5 INFO Data and index memory usage (80%, 90%,
and 100%)

ERROR Events

These events relate to Cluster errors and warnings. The presence of one or more of these generally indic-
ates that a major malfunction or failure has occurred.

Event Priority Severity Description

Dead due to missed heartbeat 8 ALERT Node X declared “dead” due to missed heart-
beat

Transporter errors 2 ERROR

Transporter warnings 8 WARN-
ING

Missed heartbeats 8 WARN-
ING

Node X missed heartbeat #Y

General warning events 2 WARN-
ING

INFO Events

These events provide general information about the state of the cluster and activities associated with
Cluster maintenance, such as logging and heartbeat transmission.

Event Priority Severity Description

Sent heartbeat 12 INFO Heartbeat sent to node X

Create log bytes 11 INFO Log part, log file, MB

General information events 2 INFO

15.7.3.3. Using CLUSTERLOG STATISTICS

The NDB management client's CLUSTERLOG STATISTICS command can provide a number of useful
statistics in its output. The following statistics are reported by the transaction coordinator:

Statistic Description (Number of...)

Trans. Count Transactions attempted with this node as coordinator

Commit Count Transactions committed with this node as coordinator

Read Count Primary key reads (all)

Simple Read Count Primary key reads reading the latest committed value

Write Count Primary key writes (includes all INSERT, UPDATE, and DELETE oper-
ations)

AttrInfoCount Data words used to describe all reads and writes received

Concurrent Opera-
tions

All concurrent operations ongoing at the moment the report is taken

Abort Count Transactions with this node as coordinator that were aborted

Scans Scans (all)

MySQL Cluster

1057

Range Scans Index scans

The ndbd process has a scheduler that runs in an infinite loop. During each loop scheduler performs the
following tasks:

1. Read any incoming messages from sockets into a job buffer.

2. Check whether there are any timed messages to be executed; if so, put these into the job buffer as
well.

3. Execute (in a loop) any messages in the job buffer.

4. Send any distributed messages that were generated by executing the messages in the job buffer.

5. Wait for any new incoming messages.

The number of loops executed in the third step is reported as the Mean Loop Counter. This statistic
increases in size as the utilisation of the TCP/IP buffer improves. You can use this to monitor perform-
ance as you add new processes to the cluster.

The Mean send size and Mean receive size statistics allow you to gauge the efficiency of
writes and reads (respectively) between nodes. These values are given in bytes. Higher values mean a
lower cost per byte sent or received; the maximum is 64k.

To generate a report of all cluster log statistics, you can use the following command in the NDB manage-
ment client:

ndb_mgm> ALL CLUSTERLOG STATISTICS=15

15.7.4. Single-User Mode
Single-user mode allows the database administrator to restrict access to the database system to a single
MySQL server (SQL node). When entering single-user mode, all connections to all other MySQL serv-
ers are closed gracefully and all running transactions are aborted. No new transactions are allowed to be
started.

Once the cluster has entered single-user mode, only the designated SQL node is granted access to the
database.

You can use the ALL STATUS command to see when the cluster has entered single-user mode.

Example:

NDB> ENTER SINGLE USER MODE 5

After this command has executed and the cluster has entered single-user mode, the SQL node whose
node ID is 5 becomes the cluster's only permitted user.

The node specified in the preceding command must be a MySQL Server node; An attempt to specify
any other type of node will be rejected.

Note: When the preceding commmand is invoked, all transactions running on the designated node are
aborted, the connection is closed, and the server must be restarted.

The command EXIT SINGLE USER MODE changes the state of the cluster's data nodes from single-

MySQL Cluster

1058

user mode to normal mode. MySQL Servers waiting for a connection (that is, for the cluster to become
ready and available), are again permitted to connect. The MySQL Server denoted as the single-user SQL
node continues to run (if still connected) during and after the state change.

Example:

NDB> EXIT SINGLE USER MODE

There are two recommended ways to handle a node failure when running in single-user mode:

• Method 1:

1. Finish all single-user mode transactions

2. Issue the EXIT SINGLE USER MODE command

3. Restart the cluster's data nodes

• Method 2:

Restart database nodes prior to entering single-user mode.

15.8. On-line Backup of MySQL Cluster
This section describes how to create a backup and how to restore the database from a backup at a later
time.

15.8.1. Cluster Backup Concepts
A backup is a snapshot of the database at a given time. The backup consists of three main parts:

• Metadata: the names and definitions of all database tables

• Table records: the data actually stored in the database tables at the time that the backup was made

• Transaction log: a sequential record telling how and when data was stored in the database

Each of these parts is saved on all nodes participating in the backup. During backup, each node saves
these three parts into three files on disk:

• BACKUP-backup_id.node_id.ctl

A control file containing control information and metadata. Each node saves the same table defini-
tions (for all tables in the cluster) to its own version of this file.

• BACKUP-backup_id-0.node_id.data

A data file containing the table records, which are saved on a per-fragment basis. That is, different
nodes save different fragments during the backup. The file saved by each node starts with a header
that states the tables to which the records belong. Following the list of records there is a footer con-
taining a checksum for all records.

• BACKUP-backup_id.node_id.log

MySQL Cluster

1059

A log file containing records of committed transactions. Only transactions on tables stored in the
backup are stored in the log. Nodes involved in the backup save different records because different
nodes host different database fragments.

In the listing above, backup_id stands for the backup identifier and node_id is the unique identifier
for the node creating the file.

15.8.2. Using The Management Client to Create a Backup
Before starting a backup, make sure that the cluster is properly configured for performing one. (See Sec-
tion 15.8.4, “Configuration for Cluster Backup”.)

Creating a backup using the management client involves the following steps:

1. Start the management client (ndb_mgm).

2.
Execute the command START BACKUP.

3. The management client will reply with the message Start of backup ordered. This means
that the management client has submitted the request to the cluster, but has not yet received any re-
sponse.

4. The management client will reply Backup backup_id started, where backup_id is the
unique identifier for this particular backup. (This identifier will also be saved in the cluster log, if it
has not been configured otherwise.) This means that the cluster has received and processed the
backup request. It does not mean that the backup has finished.

5. The management client will signal that the backup is finished with the message Backup
backup_id completed.

Cluster backups are created by default in the BACKUP subdirectory of the DataDir on each data node.
This can be overridden for one or more data nodes individually, or for all cluster data nodes in the con-
fig.ini file using the BackupDataDir configuration parameter as discussed in Identifying Data Nodes.
The backup files created for a backup with a given backup_id are stored in a subdirectory named
BACKUP-backup_id in the backup directory.

To abort a backup that is already in progress:

1. Start the management client.

2. Execute the command ABORT BACKUP backup_id. The number backup_id is the identifier
of the backup that was included in the response of the management client when the backup was
started (in the message Backup backup_id started).

3. The management client will acknowledge the abort request with Abort of backup
backup_id ordered; note that it has received no actual response to this request yet.

4. After the backup has been aborted, the management client will report Backup backup_id has
been aborted for reason XYZ. This means that the cluster has terminated the backup and
that all files related to this backup have been removed from the cluster filesystem.

It is also possible to abort a backup in progress from the system shell using this command:

MySQL Cluster

1060

shell> ndb_mgm -e "ABORT BACKUP backup_id"

Note: If there is no backup with ID backup_id running when it is aborted, the management client
makes no explicit response. However, the fact that an invalid abort command was sent is indicated in the
cluster log.

15.8.3. How to Restore a Cluster Backup
The cluster restoration program is implemented as a separate command-line utility ndb_restore,
which can normally be found in the MySQL bin directory. This program reads the files created as a
result of the backup and inserts the stored information into the database. ndb_restore must be ex-
ecuted once for each set of backup files — that is, once for each data node in the cluster at the time that
the backup was created.

Important: In order to use ndb_restore, the cluster must be running in single user mode. See Sec-
tion 15.7.4, “Single-User Mode”.

Typical options for this utility are shown here:

ndb_restore [-c connectstring] -n node_id [-m] -b backup_id -r /path/to/backup/files

The -c option is used to specify a connectstring which tells ndb_restore where to locate the cluster
management server. (See Section 15.4.4.2, “The Cluster connectstring”, for information on con-
nectstrings.) If this option is not used, then ndb_restore attempts to connect to a management server
on localhost:1186. This utility acts as a cluster API node, and so requires a free connection “slot”
to connect to the cluster management server. This means that there must be at least one [API] section
that can be used by it in the cluster config.ini file. It is a good idea to keep at least one empty
[API] section in config.ini that is not being used for a MySQL server or for an application for this
reason (see Section 15.4.4.6, “Defining SQL and Other API Nodes”). ndb_restore can also employ
an unused [MYSQLD] section in the config.ini file for this purpose.

You can verify that ndb_restore is connected to the cluster by using the SHOW command in the
ndb_mgm management client. You can also accomplish this from a system shell, as shown here:

shell> ndb_mgm -e "SHOW"

-n is used to specify the node ID of the data node on which the backups were taken.

The first time you run the ndb_restore restoration program, you also need to restore the metadata. In
other words, you must re-create the database tables — this can be done by running it with the -m option.
Note that the cluster should have an empty database when starting to restore a backup. (In other words,
you should start ndbd with --initial prior to performing the restore.)

The -b option is used to specify the ID or sequence number of the backup, and is the same number
shown by the management client in the Backup backup_id completed message displayed upon
completion of a backup. (See Section 15.8.2, “Using The Management Client to Create a Backup”.)

The -r option is required, and is used to tell ndb_restore the directory where it can find the backup
files. Important: When restoring cluster backups, you must be sure to restore all data nodes from
backups having the same backup ID.

It is possible to restore a backup to a database with a different configuration than it was created from.
For example, suppose that a backup with backup ID 12, created in a cluster with two database nodes
having the node IDs 2 and 3, is to be restored to a cluster with four nodes. Then ndb_restore must
be run twice — once for each database node in the cluster where the backup was taken. However,
ndb_restore cannot always restore backups made from a cluster running one version of MySQL to a
cluster running a different MySQL version. See Section 15.5.2, “Cluster Upgrade and Downgrade Com-

MySQL Cluster

1061

patibility”, for more information.

Note: For rapid restoration, the data may be restored in parallel, provided that there is a sufficient num-
ber of cluster connections available. However, the data files must always be applied before the logs.

A complete listing of options available for this program is shown in the following table:

Long Form Short Form Description Default Value

--backup-id -b Backup sequence ID 0

--backup_path None Path to backup files ./

-
-char-
acter-sets-dir

None Specify the directory where character set
information can be found

None

--connect, -
-connectstring, or
-
-
ndb-
connectstring

-c or -C Set the connectstring in
hos

None

MySQL Cluster

1062

port] format

--core-file None Write a core file in the event of an error TRUE

--debug -# Output debug log d:t:O,/
tmp/
ndb_restore.t
race

--help or --usage -? Display help message with available op-
tions and current values, then exit

[N/A]

--ndb-mgmd-host None Set the host and port in host[:port]
format for the management server to
connect to; this is the same as -
-connect, --connectstring, or
--ndb-connectstring, but
without a way to specify the nodeid

None

-
-
ndb-node-
group-map

-z Specifies a nodegroup map — Syntax:
list of (source_nodegroup, des-
tination_nodegroup)

None

--ndb-nodeid None Specify a node ID for the
ndb_restore process

0

-
-
ndb-optim-
ized-
node-selection

None Optimize selection of nodes for transac-
tions

TRUE

--ndb-shm None Use shared memory connections when
available

FALSE

--nodeid -n Use backup files from node with the
specified ID

0

--parallelism -p Set from 1 to 1024 parallel transactions
to be used during the restoration process

128

--print None Print data and log to stdout FALSE

--print_data None Print data to stdout FALSE

--print_log None Print log to stdout FALSE

--print_meta None Print metadata to stdout FALSE

--restore_data -r Restore data and logs FALSE

--restore_meta -m Restore table metadata FALSE

--version -V Output version information and exit [N/A]

15.8.4. Configuration for Cluster Backup
Four configuration parameters are essential for backup:

•
BackupDataBufferSize

The amount of memory used to buffer data before it is written to disk.

MySQL Cluster

1063

•
BackupLogBufferSize

The amount of memory used to buffer log records before these are written to disk.

•
BackupMemory

The total memory allocated in a database node for backups. This should be the sum of the memory
allocated for the backup data buffer and the backup log buffer.

•
BackupWriteSize

The default size of blocks written to disk. This applies for both the backup data buffer and the
backup log buffer.

•
BackupMaxWriteSize

The maximum size of blocks written to disk. This applies for both the backup data buffer and the
backup log buffer.

More detailed information about these parameters can be found in Backup Parameters.

15.8.5. Backup Troubleshooting
If an error code is returned when issuing a backup request, the most likely cause is insufficient memory
or disk space. You should check that there is enough memory allocated for the backup. Important: If
you have set BackupDataBufferSize and BackupLogBufferSize and their sum is greater
than 4MB, then you must also set BackupMemory as well. See BackupMemory.

You should also make sure that there is sufficient space on the hard drive partition of the backup target.

NDB does not support repeatable reads, which can cause problems with the restoration process. Although
the backup process is “hot”, restoring a MySQL Cluster from backup is not a 100% “hot” process. This
is due to the fact that, for the duration of the restore process, running transactions get non-repeatable
reads from the restored data. This means that the state of the data is inconsistent while the restore is in
progress.

15.9. Cluster Utility Programs
This section discusses the MySQL Cluster utility programs that can be found in the mysql/bin direct-
ory. Each of these — except for ndb_size.pl and ndb_error_reporter — is a standalone bin-
ary that can be used from a system shell, and that does not need to connect to a MySQL server (nor even
requires that a MySQL server be connected to the cluster).

These utilities can also serve as examples for writing your own applications using the NDB API. The
source code for most of these programs may be found in the ndb/tools directory of the MySQL 5.0
tree (see Section 2.9, “MySQL Installation Using a Source Distribution”). The NDB API is not covered
in this manual; please refer to the NDB API Guide [http://dev.mysql.com/doc//ndbapi/en/] for informa-
tion about this API.

All of the NDB utilities are listed here with brief descriptions:

• ndb_delete_all: Deletes all rows from a given table.

MySQL Cluster

1064

http://dev.mysql.com/doc//ndbapi/en/

• ndb_desc: Lists all properties of an NDB table.

• ndb_drop_index: Drops the specified index from an NDB table.

• ndb_drop_table: Drops an NDB table.

• ndb_error_reporter: Can be used to gather information useful for diagnosing problems with
the cluster.

• ndb_mgm: This is the MySQL Cluster management client, which is discussed in Section 15.7.2,
“Commands in the Management Client”.

• ndb_print_backup_file: Prints diagnostic information obtained from cluster backup files.

• ndb_print_schema_file: Prints diagnostic information obtained from cluster schema files.

• ndb_print_sys_file: Prints diagnostic information obtained from cluster system files.

• ndb_restore: This utility is used to restore a cluster from backup. See Section 15.8.3, “How to
Restore a Cluster Backup”, for more information.

• ndb_select_all: Prints all rows from an NDB table.

• ndb_select_count: Gets the number of rows in one or more NDB tables.

• ndb_show_tables: Shows all NDB tables anywhere in the cluster.

• ndb_size.pl: Examines all the tables in a given non-Cluster database and calculates the amount
of storage each would require if it were converted to use the NDB storage engine.

• ndb_waiter: Reports on the status of cluster data nodes in a manner similar to that of the manage-
ment client command ALL STATUS.

Most of these utilities need to connect to a Cluster management server in order to function. The excep-
tions are ndb_size.pl (see below), and the following utilities which access a cluster data node
filesystem and so need to be run on a data node host:

• ndb_print_backup_file

• ndb_print_schema_file

• ndb_print_sys_file

ndb_size.pl is a Perl script which is also intended to be used from the shell; however it is a MySQL
application and must be able to connect to a MySQL server. See Section 15.9.12, “ndb_size.pl”, for
additional requirements for using this script.

ndb_error_reporter is also a Perl script. It is used to gather cluster data node and management
node logs together into a tarball to submit along with a bug report. It can use ssh or scp to access the
node filesystems remotely.

Additional information about each of these utilities (except for ndb_mgm and ndb_restore) can be
found in the sections that follow.

Note: All of these utilities (except for ndb_size.pl) can use the options discussed in Section 15.6.5,
“Command Options for MySQL Cluster Processes”. Additional options specific to each utility program
are discussed in the individual program listings.

MySQL Cluster

1065

The order in which these options are used is generally not important. For example, all of these com-
mands produce exactly the same output:

• ndb_desc -c localhost fish -d test

• ndb_desc fish -c localhost -d test

• ndb_desc -d test fish -c localhost

15.9.1. ndb_delete_all
Description: Deletes all rows from the given NDB table. In some cases, this can be much faster than
DELETE or even TRUNCATE.

Usage:

ndb_delete_all -c connect_string tbl_name -d db_name

This deletes all rows from the table named tbl_name in the database named db_name. It is exactly
equivalent to executing TRUNCATE db_name.tbl_name in MySQL.

Additional Options:

• -t, --transactional

Use of this option causes the delete operation to be performed as a single transaction.

Warning: With very large tables, this using this option may cause the number of operations avail-
able to the cluster to be exceeded.

15.9.2. ndb_desc
Description: Provides a detailed description of one or more NDB tables.

Usage:

ndb_desc -c connect_string tbl_name -d db_name

Sample Output:

MySQL table creation and population statements:

USE test;

CREATE TABLE fish (
id INT(11) NOT NULL AUTO_INCREMENT,
name VARCHAR(20),

PRIMARY KEY pk (id),
UNIQUE KEY uk (name)

) ENGINE=NDBCLUSTER;

INSERT INTO fish VALUES
('','guppy'), ('','tuna'), ('','shark'),
('','manta ray'), ('','grouper'), ('','puffer');

MySQL Cluster

1066

Output from ndb_desc:

shell> ./ndb_desc -c localhost fish -d test -p
-- fish --
Version: 16777221
Fragment type: 5
K Value: 6
Min load factor: 78
Max load factor: 80
Temporary table: no
Number of attributes: 2
Number of primary keys: 1
Length of frm data: 268
Row Checksum: 1
Row GCI: 1
TableStatus: Retrieved
-- Attributes --
id Int PRIMARY KEY DISTRIBUTION KEY AT=FIXED ST=MEMORY
name Varchar(20;latin1_swedish_ci) NULL AT=SHORT_VAR ST=MEMORY

-- Indexes --
PRIMARY KEY(id) - UniqueHashIndex
uk(name) - OrderedIndex
PRIMARY(id) - OrderedIndex
uk$unique(name) - UniqueHashIndex

-- Per partition info --
Partition Row count Commit count Frag fixed memory Frag varsized memory
2 2 2 65536 327680
1 2 2 65536 327680
3 2 2 65536 327680

NDBT_ProgramExit: 0 - OK

Additional Options:

• -p, --extra-partition-info

Prints additional information about the table's partitions.

• Information about multiple tables can be obtained in a single invocation of ndb_desc by using
their names, separated by spaces. All of the tables must be in the same database.

15.9.3. ndb_drop_index
Description: Drops the specified index from an NDB table. It is recommended that you use this utility
only as an example for writing NDB API applications — see the Warning later in this section for details.

Usage:

ndb_drop_index -c connect_string table_name index -d db_name

The statement shown above drops the index named index from the table in the database.

Additional Options: None that are specific to this application.

Warning: Operations performed on Cluster table indexes using the NDB API are not visible to MySQL
and make the table unusable by a MySQL server. If you use this program to drop an index, then try to
access the table from an SQL node, an error results, as shown here:

shell> ./ndb_drop_index -c localhost dogs ix -d ctest1
Dropping index dogs/idx...OK

NDBT_ProgramExit: 0 - OK

shell> ./mysql -u jon -p ctest1

MySQL Cluster

1067

Enter password: *******
Reading table information for completion of table and column names
You can turn off this feature to get a quicker startup with -A

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 7 to server version: 5.1.12-beta-20060817

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> SHOW TABLES;
+------------------+
| Tables_in_ctest1 |
+------------------+
| a |
| bt1 |
| bt2 |
| dogs |
| employees |
| fish |
+------------------+
6 rows in set (0.00 sec)

mysql> SELECT * FROM dogs;
ERROR 1296 (HY000): Got error 4243 'Index not found' from NDBCLUSTER

In such a case, your only option for making the table available to MySQL again is to drop the table and
re-create it. You can use either the SQL statementDROP TABLE or the ndb_drop_table utility (see
Section 15.9.4, “ndb_drop_table”) to drop the table.

15.9.4. ndb_drop_table
Description: Drops the specified NDB table. (If you try to use this on a table created with a storage en-
gine other than NDB, it fails with the error 723: No such table exists.) This operation is extremely fast
— in some cases, it can be an order of magnitude faster than using DROP TABLE on an NDB table from
MySQL.

Usage:

ndb_drop_table -c connect_string tbl_name -d db_name

Additional Options: None.

15.9.5. ndb_error_reporter
Description: Creates an archive from data node and management node logfiles that can be used to help
diagnose bugs or other problems with a cluster. It is highly recommended that you make use of this util-
ity when filing reports of bugs in MySQL Cluster.

Usage:

ndb_error_reporter path/to/config-file [username] [--fs]

This utility is intended for use on a management node host, and requires the path to the management
host configuration file (config.ini). Optionally, you can supply the name of a user that is able to ac-
cess the cluster's data nodes via SSH, in order to copy the data node logfiles. ndb_error_reporter then in-
cludes all of these files in archive that is created in the same directory in which it is run. The archive is
named ndb_error_report_YYYYMMDDHHMMSS.tar.bz2, where YYYYMMDDHHMMSS is a date-
time string.

If the --fs is used, then the data node filesystems are also copied to the management host and included
in the archive that is produced by this script. As data node filesystems can be extremely large even after
being compressed, we ask that you please do not send archives created using this option to MySQL AB
unless you are specifically requested to do so.

MySQL Cluster

1068

15.9.6. ndb_print_backup_file
Description: Obtains diagnostic information from a cluster backup file.

Usage:

ndb_print_backup_file file_name

file_name is the name of a cluster backup file. This can be any of the files (.Data, .ctl, or .log
file) found in a cluster backup directory. These files are found in the data node's backup directory under
the subdirectory BACKUP-#, where # is the sequence number for the backup. For more information
about cluster backup files and their contents, see Section 15.8.1, “Cluster Backup Concepts”.

Like ndb_print_schema_file and ndb_print_sys_file (and unlike most of the other NDB
utilities that are intended to be run on a management server host or to connect to a management server)
ndb_print_backup_file must be run on a cluster data node, since it accesses the data node
filesystem directly. Because it does not make use of the management server, this utility can be used
when the management server is not running, and even when the cluster has been completely shut down.

Additional Options: None.

15.9.7. ndb_print_schema_file
Description: Obtains diagnostic information from a cluster schema file.

Usage:

ndb_print_schema_file file_name

file_name is the name of a cluster schema file.

Like ndb_print_backup_file and ndb_print_sys_file (and unlike most of the other NDB
utilities that are intended to be run on a management server host or to connect to a management server)
ndb_print_backup_file must be run on a cluster data node, since it accesses the data node
filesystem directly. Because it does not make use of the management server, this utility can be used
when the management server is not running, and even when the cluster has been completely shut down.

Additional Options: None.

15.9.8. ndb_print_sys_file
Description: Obtains diagnostic information from a cluster system file.

Usage:

ndb_print_sys_file file_name

file_name is the name of a cluster system file (sysfile). Cluster system files are located in a data
node's data directory (DataDir); the path under this directory to system files matches the pattern
ndb_#_fs/D#/DBDIH/P#.sysfile. In each case, the # represents a number (not necessarily the
same number).

Like ndb_print_backup_file and ndb_print_schema_file (and unlike most of the other
NDB utilities that are intended to be run on a management server host or to connect to a management
server) ndb_print_backup_file must be run on a cluster data node, since it accesses the data
node filesystem directly. Because it does not make use of the management server, this utility can be used
when the management server is not running, and even when the cluster has been completely shut down.

MySQL Cluster

1069

Additional Options: None.

15.9.9. ndb_select_all
Description: Prints all rows from an NDB table to stdout.

Usage:

ndb_select_all -c connect_string tbl_name -d db_name [> file_name]

Additional Options:

• -l lock_type, --lock=lock_type

Employs a lock when reading the table. Possible values for lock_type are:

• 0: Read lock

• 1: Read lock with hold

• 2: Exclusive read lock

There is no default value for this option.

• -o index_name, --order=index_name

Orders the output according to the index named index_name. Note that this is the name of an in-
dex, not of a column, and that the index must have been explicitly named when created.

• -z, --descending

Sorts the output in descending order. This option can be used only in conjunction with the -o (-
-order) option.

• --header=FALSE

Excludes column headers from the output.

• -x, --useHexFormat

Causes all numeric values to be displayed in hexadecimal format. This does not affect the output of
numerals contained in strings or datetime values.

-D character, --delimiter=character

Causes the character to be used as a column delimiter. Only table data columns are separated by
this delimiter.

The default delimiter is the tab character.

• --rowid

Adds a ROWID column providing information about the fragments in which rows are stored.

• --gci

Adds a column to the output showing the global checkpoint at which each row was last updated. See
Section 15.14, “MySQL Cluster Glossary”, and Section 15.7.3.2, “Log Events”, for more informa-

MySQL Cluster

1070

tion about checkpoints.

• -t, --tupscan

Scan the table in the order of the tuples.

• --nodata

Causes any table data to be omitted.

Sample Output:

Output from a MySQL SELECT statement:

mysql> SELECT * FROM ctest1.fish;
+----+-----------+
| id | name |
+----+-----------+
3	shark
6	puffer
2	tuna
4	manta ray
5	grouper
1	guppy
+----+-----------+
6 rows in set (0.04 sec)

Output from the equivalent invocation of ndb_select_all:

shell> ./ndb_select_all -c localhost fish -d ctest1
id name
3 [shark]
6 [puffer]
2 [tuna]
4 [manta ray]
5 [grouper]
1 [guppy]
6 rows returned

NDBT_ProgramExit: 0 - OK

Note that all string values are enclosed by square brackets (“[...]”) in the output of
ndb_select_all. For a further example, consider the table created and populated as shown here:

CREATE TABLE dogs (
id INT(11) NOT NULL AUTO_INCREMENT,
name VARCHAR(25) NOT NULL,
breed VARCHAR(50) NOT NULL,
PRIMARY KEY pk (id),
KEY ix (name)

)
ENGINE=NDB;

INSERT INTO dogs VALUES
('', 'Lassie', 'collie'),
('', 'Scooby-Doo', 'Great Dane'),
('', 'Rin-Tin-Tin', 'German Shepherd'),
('', 'Rosscoe', 'Mutt');

This demonstrates the use of several additional ndb_select_all options:

shell> ./ndb_select_all -d ctest1 dogs -o ix -z --gci
GCI id name breed
834461 2 [Scooby-Doo] [Great Dane]
834878 4 [Rosscoe] [Mutt]
834463 3 [Rin-Tin-Tin] [German Shepherd]
835657 1 [Lassie] [Collie]
4 rows returned

MySQL Cluster

1071

NDBT_ProgramExit: 0 - OK

15.9.10. ndb_select_count
Description: Prints the number of rows in one or more NDB table. With a single table, the result is equi-
valent to that obtained by using the MySQL statement SELECT COUNT(*) FROM tbl_name.

Usage:

ndb_select_count [-c connect_string] -ddb_name tbl_name[, tbl_name2[, ...]]

Additional Options: None that are specific to this application. However, you can obtain row counts
from multiple tables in the same database by listing the table names separated by spaces when invoking
this command, as shown under Sample Output.

Sample Output:

shell> ./ndb_select_count -c localhost -d ctest1 fish dogs
6 records in table fish
4 records in table dogs

NDBT_ProgramExit: 0 - OK

15.9.11. ndb_show_tables
Description: Displays a list of all NDB database objects in the cluster. By default, this includes not only
both user-created tables and NDB system tables, but NDB-specific indexes, and internal triggers, as well.

Usage:

ndb_show_tables [-c connect_string]

Additional Options:

• -l, --loops

Specifies the number of times the utility should execute. This is 1 when this option is not specified,
but if you do use the option, you must supply an integer argument for it.

• -p, --parsable

Using this option causes the output to be in a format suitable for use with LOAD DATA INFILE.

• -t, --type

Can be used to restrict the output to one type of object, specified by an integer type code as shown
here:

• 1: System table

• 2: User-created table

• 3: Unique hash index

Any other value causes all NDB database objects to be listed (the default).

• -u, --unqualified

MySQL Cluster

1072

If specified, this causes unqualified object names to be displayed.

Note: Only user-created Cluster tables may be accessed from MySQL; system tables such as
SYSTAB_0 are not visible to mysqld. However, you can examine the contents of system tables using
NDB API applications such as ndb_select_all (see Section 15.9.9, “ndb_select_all”).

15.9.12. ndb_size.pl
Description: This is a Perl script that can be used to estimate the amount of space that would be re-
quired by a MySQL database if it were converted to use the NDBCluster storage engine. Unlike the
other utilities discussed in this section, it does not require access to a MySQL Cluster (in fact, there is no
reason for it to do so). However, it does need to access the MySQL server on which the database to be
tested resides.

Requirements:

• A running MySQL server. The server instance does not have to provide support for MySQL Cluster.

• A working installation of Perl.

• The DBI and HTML::Template modules, both of which can be obtained from CPAN if they are
not already part of your Perl installation. (Many Linux and other operating system distribution
provide their own packages for one or both of these libraries.)

• The ndb_size.tmpl template file, which you should be able to find in the share/mysql dir-
ectory of your MySQL installation. This file should be copied or moved into the same directory as
ndb_size.pl — if it is not there already — before running the script.

• A MySQL user account having the necessary privileges. If you do not wish to use an existing ac-
count, then creating one using GRANT USAGE ON db_name.* — where db_name is the name
of the database to be examined — is sufficient for this purpose.

ndb_size.pl and ndb_size.tmpl can also be found in the MySQL sources in storage/
ndb/tools. If these files are not present in your MySQL installation, you can obtain them from the
MySQLForge project page [http://forge.mysql.com/projects/view.php?id=88].

Usage:

perl ndb_size.pl db_name hostname username password > file_name.html

The command shown connects to the MySQL server at hostname using the account of the user
username having the password password, analyses all of the tables in database db_name, and gen-
erates a report in HTML format which is directed to the file file_name.html. (Without the redirec-
tion, the output is sent to stdout.) This figure shows partial sample output as viewed in a Web
browser:

MySQL Cluster

1073

http://forge.mysql.com/projects/view.php?id=88

MySQL Cluster

1074

The output from this script includes:

• Minimum values for the DataMemory, IndexMemory, MaxNoOfTables, MaxNoOfAttrib-
utes, MaxNoOfOrderedIndexes, MaxNoOfUniqueHashIndexes, and MaxNoOfTrig-
gers configuration parameters required to accommodate the tables analysed.

• Memory requirements for all of the tables, attributes, ordered indexes, and unique hash indexes
defined in the database.

• The IndexMemory and DataMemory required per table and table row.

15.9.13. ndb_waiter
Description: Repeatedly (each 100 milliseconds) prints out the status of all cluster data nodes until
either the cluster reaches a given status or the --timeout limit is exceeded, then exits. By default, it
waits for the cluster to achieve STARTED status, in which all nodes have started and connected to the
cluster. This can be overridden using the --no-contact and --not-started options (see Addi-
tional Options).

The node states reported by this utility are as follows:

• NO_CONTACT: The node cannot be contacted.

• UNKNOWN: The node can be contacted, but its status is not yet known. Usually, this means that the
node has received a START or RESTART command from the management server, but has not yet ac-
ted on it.

• NOT_STARTED: The node has stopped, but remains in contact with the cluster. This is seen when
restarting the node using the management client's RESTART command.

• STARTING: The node's ndbd process has started, but the node has not yet joined the cluster.

• STARTED: The node is operational, and has joined the cluster.

• SHUTTING_DOWN: The node is shutting down.

• SINGLE USER MODE: This is shown for all cluster data nodes when the cluster is in single user
mode.

Usage:

ndb_waiter [-c connect_string]

Additional Options:

• -n, --no-contact

Instead of waiting for the STARTED state, ndb_waiter continues running until the cluster reaches
NO_CONTACT status before exiting.

• --not-started

Instead of waiting for the STARTED state, ndb_waiter continues running until the cluster reaches
NOT_STARTED status before exiting.

MySQL Cluster

1075

• -t, --timeout=#

Time to wait. The program exits if the desired state is not achieved within this number of seconds.
The default is 120 seconds (1200 reporting cycles).

Sample Output:

Shown here is the output from ndb_waiter when run against a 4-node cluster in which two nodes
have been shut down and then started again manually. Duplicate reports (indicated by “...”) are omit-
ted.

shell> ./ndb_waiter -c localhost

Connecting to mgmsrv at (localhost)
State node 1 STARTED
State node 2 NO_CONTACT
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 UNKNOWN
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 NO_CONTACT
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 UNKNOWN
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTING
State node 3 STARTED
State node 4 STARTING
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTED
State node 3 STARTED
State node 4 STARTING
Waiting for cluster enter state STARTED

...

State node 1 STARTED
State node 2 STARTED
State node 3 STARTED
State node 4 STARTED
Waiting for cluster enter state STARTED

NDBT_ProgramExit: 0 - OK

Note: If no connectstring is specified, then ndb_waiter tries to connect to a management on local-
host, and reports Connecting to mgmsrv at (null).

MySQL Cluster

1076

15.10. Using High-Speed Interconnects with MySQL
Cluster

Even before design of NDB Cluster began in 1996, it was evident that one of the major problems to
be encountered in building parallel databases would be communication between the nodes in the net-
work. For this reason, NDB Cluster was designed from the very beginning to allow for the use of a
number of different data transport mechanisms. In this Manual, we use the term transporter for these.

The MySQL Cluster codebase includes support for four different transporters:

• TCP/IP using 100 Mbps or gigabit Ethernet, as discussed in Section 15.4.4.7, “Cluster TCP/IP Con-
nections”.

• Direct (machine-to-machine) TCP/IP; although this transporter uses the same TCP/IP protocol as
mentioned in the previous item, it requires setting up the hardware differently and is configured dif-
ferently as well. For this reason, it is considered a separate transport mechanism for MySQL Cluster.
See Section 15.4.4.8, “TCP/IP Connections Using Direct Connections”, for details.

• Shared memory (SHM). For more information about SHM, see Section 15.4.4.9, “Shared-Memory
Connections”.

• Scalable Coherent Interface (SCI), as described in the next section of this chapter, Section 15.4.4.10,
“SCI Transport Connections”.

Most users today employ TCP/IP over Ethernet because it is ubiquitous. TCP/IP is also by far the best-
tested transporter for use with MySQL Cluster.

We are working to make sure that communication with the ndbd process is made in “chunks” that are
as large as possible because this benefits all types of data transmission.

For users who desire it, it is also possible to use cluster interconnects to enhance performance even fur-
ther. There are two ways to achieve this: Either a custom transporter can be designed to handle this case,
or you can use socket implementations that bypass the TCP/IP stack to one extent or another. We have
experimented with both of these techniques using the SCI (Scalable Coherent Interface) technology de-
veloped by Dolphin [http://www.dolphinics.com/].

15.10.1. Configuring MySQL Cluster to use SCI Sockets
In this section, we show how to adapt a cluster configured for normal TCP/IP communication to use SCI
Sockets instead. This documentation is based on SCI Sockets version 2.3.0 as of 01 October 2004.

Prerequisites

Any machines with which you wish to use SCI Sockets must be equipped with SCI cards.

It is possible to use SCI Sockets with any version of MySQL Cluster. No special builds are needed be-
cause it uses normal socket calls which are already available in MySQL Cluster. However, SCI Sockets
are currently supported only on the Linux 2.4 and 2.6 kernels. SCI Transporters have been tested suc-
cessfully on additional operating systems although we have verified these only with Linux 2.4 to date.

There are essentially four requirements for SCI Sockets:

• Building the SCI Socket libraries.

• Installation of the SCI Socket kernel libraries.

MySQL Cluster

1077

http://www.dolphinics.com/

• Installation of one or two configuration files.

• The SCI Socket kernel library must enabled either for the entire machine or for the shell where the
MySQL Cluster processes are started.

This process needs to be repeated for each machine in the cluster where you plan to use SCI Sockets for
inter-node communication.

Two packages need to be retrieved to get SCI Sockets working:

• The source code package containing the DIS support libraries for the SCI Sockets libraries.

• The source code package for the SCI Socket libraries themselves.

Currently, these are available only in source code format. The latest versions of these packages at the
time of this writing were available as (respectively) DIS_GPL_2_5_0_SEP_10_2004.tar.gz and
SCI_SOCKET_2_3_0_OKT_01_2004.tar.gz. You should be able to find these (or possibly new-
er versions) at http://www.dolphinics.no/support/downloads.html.

Package Installation

Once you have obtained the library packages, the next step is to unpack them into appropriate director-
ies, with the SCI Sockets library unpacked into a directory below the DIS code. Next, you need to build
the libraries. This example shows the commands used on Linux/x86 to perform this task:

shell> tar xzf DIS_GPL_2_5_0_SEP_10_2004.tar.gz
shell> cd DIS_GPL_2_5_0_SEP_10_2004/src/
shell> tar xzf ../../SCI_SOCKET_2_3_0_OKT_01_2004.tar.gz
shell> cd ../adm/bin/Linux_pkgs
shell> ./make_PSB_66_release

It is possible to build these libraries for some 64-bit procesors. To build the libraries for Opteron CPUs
using the 64-bit extensions, run make_PSB_66_X86_64_release rather than
make_PSB_66_release. If the build is made on an Itanium machine, you should use
make_PSB_66_IA64_release. The X86-64 variant should work for Intel EM64T architectures but
this has not yet (to our knowledge) been tested.

Once the build process is complete, the compiled libraries will be found in a zipped tar file with a name
along the lines of DIS-<operating-system>-time-date. It is now time to install the package
in the proper place. In this example we will place the installation in /opt/DIS. (Note: You will most
likely need to run the following as the system root user.)

shell> cp DIS_Linux_2.4.20-8_181004.tar.gz /opt/
shell> cd /opt
shell> tar xzf DIS_Linux_2.4.20-8_181004.tar.gz
shell> mv DIS_Linux_2.4.20-8_181004 DIS

Network Configuration

Now that all the libraries and binaries are in their proper place, we need to ensure that the SCI cards
have proper node IDs within the SCI address space.

It is also necessary to decide on the network structure before proceeding. There are three types of net-
work structures which can be used in this context:

• A simple one-dimensional ring

MySQL Cluster

1078

http://www.dolphinics.no/support/downloads.html

• One or more SCI switches with one ring per switch port

• A two- or three-dimensional torus.

Each of these topologies has its own method for providing node IDs. We discuss each of them in brief.

A simple ring uses node IDs which are non-zero multiples of 4: 4, 8, 12,...

The next possibility uses SCI switches. An SCI switch has 8 ports, each of which can support a ring. It is
necessary to make sure that different rings use different node ID spaces. In a typical configuration, the
first port uses node IDs below 64 (4 – 60), the next 64 node IDs (68 – 124) are assigned to the next port,
and so on, with node IDs 452 – 508 being assigned to the eighth port.

Two- and three-dimensional torus network structures take into account where each node is located in
each dimension, incrementing by 4 for each node in the first dimension, by 64 in the second dimension,
and (where applicable) by 1024 in the third dimension. See Dolphin's Web site
[http://www.dolphinics.com/support/index.html] for more thorough documentation.

In our testing we have used switches, although most large cluster installations use 2- or 3-dimensional
torus structures. The advantage provided by switches is that, with dual SCI cards and dual switches, it is
possible to build with relative ease a redundant network where the average failover time on the SCI net-
work is on the order of 100 microseconds. This is supported by the SCI transporter in MySQL Cluster
and is also under development for the SCI Socket implementation.

Failover for the 2D/3D torus is also possible but requires sending out new routing indexes to all nodes.
However, this requires only 100 milliseconds or so to complete and should be acceptable for most high-
availability cases.

By placing cluster data nodes properly within the switched architecture, it is possible to use 2 switches
to build a structure whereby 16 computers can be interconnected and no single failure can hinder more
than one of them. With 32 computers and 2 switches it is possible to configure the cluster in such a man-
ner that no single failure can cause the loss of more than two nodes; in this case, it is also possible to
know which pair of nodes is affected. Thus, by placing the two nodes in separate node groups, it is pos-
sible to build a “safe” MySQL Cluster installation.

To set the node ID for an SCI card use the following command in the /opt/DIS/sbin directory. In
this example, -c 1 refers to the number of the SCI card (this is always 1 if there is only 1 card in the
machine); -a 0 refers to adapter 0; and 68 is the node ID:

shell> ./sciconfig -c 1 -a 0 -n 68

If you have multiple SCI cards in the same machine, you can determine which card has which slot by is-
suing the following command (again we assume that the current working directory is /
opt/DIS/sbin):

shell> ./sciconfig -c 1 -gsn

This will give you the SCI card's serial number. Then repeat this procedure with -c 2, and so on, for
each card in the machine. Once you have matched each card with a slot, you can set node IDs for all
cards.

After the necessary libraries and binaries are installed, and the SCI node IDs are set, the next step is to
set up the mapping from hostnames (or IP addresses) to SCI node IDs. This is done in the SCI sockets
configuration file, which should be saved as /etc/sci/scisock.conf. In this file, each SCI node
ID is mapped through the proper SCI card to the hostname or IP address that it is to communicate with.
Here is a very simple example of such a configuration file:

MySQL Cluster

1079

http://www.dolphinics.com/support/index.html

#host #nodeId
alpha 8
beta 12
192.168.10.20 16

It is also possible to limit the configuration so that it applies only to a subset of the available ports for
these hosts. An additional configuration file /etc/sci/scisock_opt.conf can be used to accom-
plish this, as shown here:

#-key -type -values
EnablePortsByDefault yes
EnablePort tcp 2200
DisablePort tcp 2201
EnablePortRange tcp 2202 2219
DisablePortRange tcp 2220 2231

Driver Installation

With the configuration files in place, the drivers can be installed.

First, the low-level drivers and then the SCI socket driver need to be installed:

shell> cd DIS/sbin/
shell> ./drv-install add PSB66
shell> ./scisocket-install add

If desired, the installation can be checked by invoking a script which verifies that all nodes in the SCI
socket configuration files are accessible:

shell> cd /opt/DIS/sbin/
shell> ./status.sh

If you discover an error and need to change the SCI socket configuration, it is necessary to use ksock-
etconfig to accomplish this task:

shell> cd /opt/DIS/util
shell> ./ksocketconfig -f

Testing the Setup

To ensure that SCI sockets are actually being used, you can employ the latency_bench test pro-
gram. Using this utility's server component, clients can connect to the server to test the latency of the
connection. Determining whether SCI is enabled should be fairly simple from observing the latency.
(Note: Before using latency_bench, it is necessary to set the LD_PRELOAD environment variable
as shown later in this section.)

To set up a server, use the following:

shell> cd /opt/DIS/bin/socket
shell> ./latency_bench -server

To run a client, use latency_bench again, except this time with the -client option:

shell> cd /opt/DIS/bin/socket
shell> ./latency_bench -client server_hostname

SCI socket configuration should now be complete and MySQL Cluster ready to use both SCI Sockets
and the SCI transporter (see Section 15.4.4.10, “SCI Transport Connections”).

Starting the Cluster

MySQL Cluster

1080

The next step in the process is to start MySQL Cluster. To enable usage of SCI Sockets it is necessary to
set the environment variable LD_PRELOAD before starting ndbd, mysqld, and ndb_mgmd. This vari-
able should point to the kernel library for SCI Sockets.

To start ndbd in a bash shell, do the following:

bash-shell> export LD_PRELOAD=/opt/DIS/lib/libkscisock.so
bash-shell> ndbd

In a tcsh environment the same thing can be accomplished with:

tcsh-shell> setenv LD_PRELOAD=/opt/DIS/lib/libkscisock.so
tcsh-shell> ndbd

Note: MySQL Cluster can use only the kernel variant of SCI Sockets.

15.10.2. Understanding the Impact of Cluster Interconnects
The ndbd process has a number of simple constructs which are used to access the data in a MySQL
Cluster. We have created a very simple benchmark to check the performance of each of these and the ef-
fects which various interconnects have on their performance.

There are four access methods:

• Primary key access

This is access of a record through its primary key. In the simplest case, only one record is accessed
at a time, which means that the full cost of setting up a number of TCP/IP messages and a number of
costs for context switching are borne by this single request. In the case where multiple primary key
accesses are sent in one batch, those accesses share the cost of setting up the necessary TCP/IP mes-
sages and context switches. If the TCP/IP messages are for different destinations, additional TCP/IP
messages need to be set up.

• Unique key access

Unique key accesses are similar to primary key accesses, except that a unique key access is executed
as a read on an index table followed by a primary key access on the table. However, only one request
is sent from the MySQL Server, and the read of the index table is handled by ndbd. Such requests
also benefit from batching.

• Full table scan

When no indexes exist for a lookup on a table, a full table scan is performed. This is sent as a single
request to the ndbd process, which then divides the table scan into a set of parallel scans on all
cluster ndbd processes. In future versions of MySQL Cluster, an SQL node will be able to filter
some of these scans.

• Range scan using ordered index

When an ordered index is used, it performs a scan in the same manner as the full table scan, except
that it scans only those records which are in the range used by the query transmitted by the MySQL
server (SQL node). All partitions are scanned in parallel when all bound index attributes include all
attributes in the partitioning key.

To check the base performance of these access methods, we have developed a set of benchmarks. One
such benchmark, testReadPerf, tests simple and batched primary and unique key accesses. This

MySQL Cluster

1081

benchmark also measures the setup cost of range scans by issuing scans returning a single record. There
is also a variant of this benchmark which uses a range scan to fetch a batch of records.

In this way, we can determine the cost of both a single key access and a single record scan access, as
well as measure the impact of the communication media used, on base access methods.

In our tests, we ran the base benchmarks for both a normal transporter using TCP/IP sockets and a simil-
ar setup using SCI sockets. The figures reported in the following table are for small accesses of 20 re-
cords per access. The difference between serial and batched access decreases by a factor of 3 to 4 when
using 2KB records instead. SCI Sockets were not tested with 2KB records. Tests were performed on a
cluster with 2 data nodes running on 2 dual-CPU machines equipped with AMD MP1900+ processors.

Access Type TCP/IP Sockets SCI Socket

Serial pk access 400 microseconds 160 microseconds

Batched pk access 28 microseconds 22 microseconds

Serial uk access 500 microseconds 250 microseconds

Batched uk access 70 microseconds 36 microseconds

Indexed eq-bound 1250 microseconds 750 microseconds

Index range 24 microseconds 12 microseconds

We also performed another set of tests to check the performance of SCI Sockets vis-à-vis that of the SCI
transporter, and both of these as compared with the TCP/IP transporter. All these tests used primary key
accesses either serially and multi-threaded, or multi-threaded and batched.

The tests showed that SCI sockets were about 100% faster than TCP/IP. The SCI transporter was faster
in most cases compared to SCI sockets. One notable case occurred with many threads in the test pro-
gram, which showed that the SCI transporter did not perform very well when used for the mysqld pro-
cess.

Our overall conclusion was that, for most benchmarks, using SCI sockets improves performance by ap-
proximately 100% over TCP/IP, except in rare instances when communication performance is not an is-
sue. This can occur when scan filters make up most of processing time or when very large batches of
primary key accesses are achieved. In that case, the CPU processing in the ndbd processes becomes a
fairly large part of the overhead.

Using the SCI transporter instead of SCI Sockets is only of interest in communicating between ndbd
processes. Using the SCI transporter is also only of interest if a CPU can be dedicated to the ndbd pro-
cess because the SCI transporter ensures that this process will never go to sleep. It is also important to
ensure that the ndbd process priority is set in such a way that the process does not lose priority due to
running for an extended period of time, as can be done by locking processes to CPUs in Linux 2.6. If
such a configuration is possible, the ndbd process will benefit by 10–70% as compared with using SCI
sockets. (The larger figures will be seen when performing updates and probably on parallel scan opera-
tions as well.)

There are several other optimized socket implementations for computer clusters, including Myrinet, Gig-
abit Ethernet, Infiniband and the VIA interface. We have tested MySQL Cluster so far only with SCI
sockets. See Section 15.10.1, “Configuring MySQL Cluster to use SCI Sockets” for information on how
to set up SCI sockets using ordinary TCP/IP for MySQL Cluster.

15.11. Known Limitations of MySQL Cluster
In this section, we provide a list of known limitations in MySQL Cluster releases in the 5.0.x series
compared to features available when using the MyISAM and InnoDB storage engines. Currently, there
are no plans to address these in coming releases of MySQL 5.0; however, we will attempt to supply
fixes for these issues in subsequent release series. If you check the “Cluster” category in the MySQL

MySQL Cluster

1082

bugs database at http://bugs.mysql.com, you can find known bugs which (if marked “5.0”) we intend to
correct in upcoming releases of MySQL 5.0.

The list here is intended to be complete with respect to the conditions just set forth. You can report any
discrepancies that you encounter to the MySQL bugs database using the instructions given in Sec-
tion 1.8, “How to Report Bugs or Problems”. If we do not plan to fix the problem in MySQL 5.0, we
will add it to the list.

(Note: See the end of this section for a list of issues in MySQL 4.1 Cluster that have been resolved in the
current version.)

•
Noncompliance in syntax (resulting in errors when running existing applications):

• Temporary tables are not supported.

• Text indexes are not supported. That is, you cannot create indexes on columns of any of the
TEXT datatypes, nor does the NDB storage engine support FULLTEXT indexes (these are suppor-
ted by MyISAM only). However, you can index CHAR or VARCHAR columns of NDB tables.

• A BIT column cannot be a primary key, unique key, or index, nor can it be part of a composite
primary key, unique key, or index.

•
Geometry datatypes (WKT and WKB) are not supported by the NDB storage engine prior to
MySQL 5.0.16. (Note that spatial indexes are still not supported for Cluster tables in MySQL
5.0.16 and newer.)

• In MySQL 5.0.19 and earlier, INSERT IGNORE, UPDATE IGNORE, and REPLACE are sup-
ported only for primary keys, but not for unique keys. One possible workaround is to remove the
constraint by dropping the unique index, perform any inserts, and then add the unique index
again.

This limitation is removed for INSERT IGNORE and REPLACE in MySQL 5.0.20. (Bug#17431
[http://bugs.mysql.com/17431])

•
Non-compliance in limits or behavior (may result in errors when running existing applications):

• Error Reporting:

• A duplicate key error returns the error message ERROR 23000: Can't write; duplicate key in
table 'tbl_name'.

• Like other MySQL storage engines, the NDB storage engine can handle a maximum of one
AUTO_INCREMENT column per table. However, in the case of a Cluster table with no expli-
cit primary key, an AUTO_INCREMENT column is automatically defined and used as a
“hidden” primary key. For this reason, you cannot define a table that has an explicit
AUTO_INCREMENT column unless that column is also declared using the PRIMARY KEY
option.

Attempting to create a table with an AUTO_INCREMENT column that is not the table's
primary key, and using the NDB storage engine, fails with an error.

•
Transaction Handling:

• NDB Cluster supports only the READ COMMITTED transaction isolation level.

MySQL Cluster

1083

http://bugs.mysql.com
http://bugs.mysql.com/17431

• There is no partial rollback of transactions. A duplicate key or similar error results in a roll-
back of the entire transaction.

• Important: If a SELECT from a Cluster table includes a BLOB, TEXT, or VARCHAR
column, the READ COMMITTED transaction isolation level is converted to a read with read
lock. This is done to guarantee consistency, due to the fact that parts of the values stored in
columns of these types are actually read from a separate table.

• As noted elsewhere in this chapter, MySQL Cluster does not handle large transactions well;
it is better to perform a number of small transactions with a few operations each than to at-
tempt a single large transaction containing a great many operations.

Among other considerations, large transactions require very large amounts of memory. Be-
cause of this, the transactional behaviour of a number of MySQL statements is effected as de-
scribed in the following list:

• TRUNCATE is not transactional when used on NDB tables. If a TRUNCATE fails to empty
the table, then it must be re-run until it is successful.

• DELETE FROM (even with no WHERE clause) is transactional. For tables containing a
great many rows, you may find that performance is improved by using several DELETE
FROM ... LIMIT ... statements to “chunk” the delete operation. If the objective is
to empty the table, then you may wish to use TRUNCATE instead.

• LOAD DATA INFILE is not transactional. During such an operation the NDB engine
can and does commit at will.

LOAD DATA FROM MASTER is not supported in MySQL Cluster.

• When copying a table as part of an ALTER TABLE, the creation of the copy is non-
transactional. (In any case, this operation is rolled back when the copy is deleted.)

• Node Start, Stop, or Restart:: Starting, stopping, or restarting a node may give rise to tem-
porary errors causing some transactions to fail. These include the following cases:

• When first starting a node, it is possible that you may see Error 1204 Temporary failure,
distribution changed and similar temporary errors.

• The stopping or failure of any data node can result in a number of different node failure
errors. (However, there should be no aborted transactions when performing a planned
shutdown of the cluster.)

In either of these cases, any errors that are generated must be handled within the application.
This should be done by retrying the transaction.

•
A number of hard limits exist which are configurable, but available main memory in the cluster
sets limits. See the complete list of configuration parameters in Section 15.4.4, “Configuration
File”. Most configuration parameters can be upgraded online. These hard limits include:

• Database memory size and index memory size (DataMemory and IndexMemory, respect-
ively).

DataMemory is allocated as 32KB pages. As each DataMemory page is used, it is as-
signed to a specific table; once allocated, this memory cannot be freed except by dropping
the table.

MySQL Cluster

1084

See Section 15.4.4.5, “Defining Data Nodes”, for further information about DataMemory
and IndexMemory.

• The maximum number of operations that can be performed per transaction is set using the
configuration parameters MaxNoOfConcurrentOperations and MaxNoOfLocal-
Operations. Note that bulk loading, TRUNCATE TABLE, and ALTER TABLE are
handled as special cases by running multiple transactions, and so are not subject to this limit-
ation.

• Different limits related to tables and indexes. For example, the maximum number of ordered
indexes per table is determined by MaxNoOfOrderedIndexes.

•
Database names, table names and attribute names cannot be as long in NDB tables as with other
table handlers. Attribute names are truncated to 31 characters, and if not unique after truncation
give rise to errors. Database names and table names can total a maximum of 122 characters.
(That is, the maximum length for an NDB Cluster table name is 122 characters less the num-
ber of characters in the name of the database of which that table is a part.)

• All Cluster table rows are of fixed length. This means (for example) that if a table has one or
more VARCHAR fields containing only relatively small values, more memory and disk space is
required when using the NDB storage engine than would be the case for the same table and data
using the MyISAM engine. (In other words, in the case of a VARCHAR column, the column re-
quires the same amount of storage as a CHAR column of the same size.)

• The maximum number of tables in a Cluster database is limited to 1792.

• The maximum number of ordered indexes per cluster, including AUTO_INCREMENT columns
and hidden primary keys, is 2048.

This limitation was lifted in MySQL 5.0.23.

• The maximum number of attributes per table is limited to 128.

• The maximum permitted size of any one row is 8KB. Note that each BLOB or TEXT column
contributes a maximum of 256 bytes towards this total.

• The maximum number of attributes per key is 32.

•
Unsupported features (do not cause errors, but are not supported or enforced):

• The foreign key construct is ignored, just as it is in MyISAM tables.

• Savepoints and rollbacks to savepoints are ignored as in MyISAM.

• OPTIMIZE operations are not supported.

• LOAD TABLE ... FROM MASTER is not supported.

•
Performance and limitation-related issues:

• There are query performance issues due to sequential access to the NDB storage engine; it is also
relatively more expensive to do many range scans than it is with either MyISAM or InnoDB.

• The Records in range statistic is not supported, resulting in non-optimal query plans in

MySQL Cluster

1085

some cases. Employ USE INDEX or FORCE INDEX as a workaround.

• Unique hash indexes created with USING HASH cannot be used for accessing a table if NULL is
given as part of the key.

• MySQL Cluster does not support durable commits on disk. Commits are replicated, but there is
no guarantee that logs are flushed to disk on commit.

• SQL_LOG_BIN has no effect on data operations; however, it is supported for schema opera-
tions.

MySQL Cluster cannot produce a binlog for tables having BLOB columns but no primary key.

Only the following schema operations are logged in a cluster binlog which is not on the mysqld
executing the statement:

• CREATE TABLE

• ALTER TABLE

• DROP TABLE

• CREATE DATABASE / CREATE SCHEMA

• DROP DATABASE / DROP SCHEMA

•
Missing features:

• The only supported isolation level is READ COMMITTED. (InnoDB supports READ COMMIT-
TED, READ UNCOMMITTED, REPEATABLE READ, and SERIALIZABLE.) See Sec-
tion 15.8.5, “Backup Troubleshooting”, for information on how this can affect backup and re-
store of Cluster databases.

• No durable commits on disk. Commits are replicated, but there is no guarantee that logs are
flushed to disk on commit.

•
Problems relating to multiple MySQL servers (not relating to MyISAM or InnoDB):

• ALTER TABLE is not fully locking when running multiple MySQL servers (no distributed table
lock).

• MySQL replication will not work correctly if updates are done on multiple MySQL servers.
However, if the database partitioning scheme is done at the application level and no transactions
take place across these partitions, replication can be made to work.

• Autodiscovery of databases is not supported for multiple MySQL servers accessing the same
MySQL Cluster. However, autodiscovery of tables is supported in such cases. What this means
is that after a database named db_name is created or imported using one MySQL server, you
should issue a CREATE DATABASE db_name statement on each additional MySQL server
that accesses the same MySQL Cluster. (As of MySQL 5.0.2, you may also use CREATE
SCHEMA db_name.) Once this has been done for a given MySQL server, that server should be
able to detect the database tables without error.

• DDL operations are not node failure safe. If a node fails while trying to peform one of these
(such as CREATE TABLE or ALTER TABLE), the data dictionary is locked and no further DDL
statements can be executed without restarting the cluster.

MySQL Cluster

1086

•
Issues exclusive to MySQL Cluster (not related to MyISAM or InnoDB):

• All machines used in the cluster must have the same architecture. That is, all machines hosting
nodes must be either big-endian or little-endian, and you cannot use a mixture of both. For ex-
ample, you cannot have a management node running on a PowerPC which directs a data node
that is running on an x86 machine. This restriction does not apply to machines simply running
mysql or other clients that may be accessing the cluster's SQL nodes.

• It is also not possible to perform a Cluster backup and restore between different architectures.
For example, you cannot back up a cluster running on a big-endian platform and then restore
from that backup to a cluster running on a little-endian system. (Bug#19255
[http://bugs.mysql.com/19255])

• It is not possible to make online schema changes such as those accomplished using ALTER TA-
BLE or CREATE INDEX, as the NDB Cluster engine does not support autodiscovery of such
changes. (However, you can import or create a table that uses a different storage engine, and then
convert it to NDB using ALTER TABLE tbl_name ENGINE=NDBCLUSTER. In such a case,
you must issue a FLUSH TABLES statement to force the cluster to pick up the change.)

• Online adding or dropping of nodes is not possible (the cluster must be restarted in such cases).

• While it is possible to run multiple cluster processes concurrently on a single host, it is not al-
ways advisable to do so for reasons of performance and high availability, as well as other consid-
erations. In particular, we do not in MySQL 5.0 support for production use any MySQL Cluster
deployment in which more than one ndbd process is run on a single physical machine.

We may support multiple data nodes per host in a future MySQL release, following additional
testing. However, in MySQL 5.0, such configurations can be considered experimental only.

•
When using multiple management servers:

• You must give nodes explicit IDs in connectstrings because automatic allocation of node IDs
does not work across multiple management servers.

• You must take extreme care to have the same configurations for all management servers. No
special checks for this are performed by the cluster.

• Prior to MySQL 5.0.14, all data nodes had to be restarted after bringing up the cluster in or-
der for the management nodes to be able to see one another.

(See Bug#12307 [http://bugs.mysql.com/12307] and Bug#13070
[http://bugs.mysql.com/13070] for more information.)

• Multiple network addresses per data node are not supported. Use of these is liable to cause prob-
lems: In the event of a data node failure, an SQL node waits for confirmation that the data node
went down but never receives it because another route to that data node remains open. This can
effectively make the cluster inoperable.

It is possible to use multiple network hardware interfaces (such as Ethernet cards) for a single
data node, but these must be bound to the same address. This also means that it not possible to
use more than one [TCP] section per connection in the config.ini file. See Sec-
tion 15.4.4.7, “Cluster TCP/IP Connections”, for more information.

• The maximum number of data nodes is 48.

• The total maximum number of nodes in a MySQL Cluster is 63. This number includes all SQL
nodes (MySQL Servers), API nodes (applications accessing the cluster other than MySQL serv-

MySQL Cluster

1087

http://bugs.mysql.com/19255
http://bugs.mysql.com/12307
http://bugs.mysql.com/13070

ers), data nodes, and management servers.

The following Cluster limitations in MySQL 4.1 have been resolved in MySQL 5.0 as shown below:

•
The NDB Cluster storage engine supports all character sets and collations available in MySQL
5.0.

• Prior to MySQL 5.0.6, the maximum number of metadata objects possible was 1600. Beginning with
5.0.6, this limit is increased to 20320.

• Cluster in MySQL 5.0 supports column indexes that make use of prefixes.

• Unlike the case in MySQL 4.1, the Cluster storage engine in MySQL 5.0 supports MySQL' query
cache. See Section 5.14, “The MySQL Query Cache”.

• Beginning with MySQL 5.0.21, it is possible to install MySQL with Cluster support to a non-default
location and change the search path for font description files using either the --basedir or -
-character-sets-dir options. (Previously, ndbd in MySQL 5.0 searched only the default
path — typically /usr/local/mysql/share/mysql/charsets — for character sets.)

15.12. MySQL Cluster Development Roadmap
In this section, we discuss changes in the implementation of MySQL Cluster in MySQL 5.0 as compared
to MySQL 4.1. We will also discuss our roadmap for further improvements to MySQL Cluster as cur-
rently planned for MySQL 5.1.

There are relatively few changes between the NDB Cluster storage engine implementations in MySQL
4.1 and in 5.0, so the upgrade path should be relatively quick and painless.

All significantly new features being developed for MySQL Cluster are going into the MySQL 5.1 and
5.2 trees. For information on changes in the Cluster implementations in MySQL versions 5.1 and later,
see http://dev.mysql.com/doc/refman/5.1/en/ndbcluster.html.

15.12.1. MySQL Cluster Changes in MySQL 5.0
MySQL Cluster in versions 5.0.3-beta and later contains a number of new features that are likely to be
of interest:

• Push-Down Conditions: Consider the following query:

SELECT * FROM t1 WHERE non_indexed_attribute = 1;

This query will use a full table scan and the condition will be evaluated in the cluster's data nodes.
Thus, it is not necessary to send the records across the network for evaluation. (That is, function
transport is used, rather than data transport.) Please note that this feature is currently disabled by de-
fault (pending more thorough testing), but it should work in most cases. This feature can be enabled
through the use of the SET engine_condition_pushdown = On statement. Alternatively,
you can run mysqld with the this feature enabled by starting the MySQL server with the -
-engine-condition-pushdown option.

A major benefit of this change is that queries can be executed in parallel. This means that queries

MySQL Cluster

1088

http://dev.mysql.com/doc/refman/5.1/en/ndbcluster.html

against non-indexed columns can run faster than previously by a factor of as much as 5 to 10 times,
times the number of data nodes, because multiple CPUs can work on the query in parallel.

You can use EXPLAIN to determine when condition pushdown is being used. See Section 7.2.1,
“Optimizing Queries with EXPLAIN”.

• Decreased IndexMemory Usage: In MySQL 5.0, each record consumes approximately 25 bytes of
index memory, and every unique index uses 25 bytes per record of index memory (in addition to
some data memory because these are stored in a separate table). This is because the primary key is
not stored in the index memory anymore.

• Query Cache Enabled for MySQL Cluster: See Section 5.14, “The MySQL Query Cache”, for in-
formation on configuring and using the query cache.

• New Optimizations: One optimization that merits particular attention is that a batched read interface
is now used in some queries. For example, consider the following query:

SELECT * FROM t1 WHERE primary_key IN (1,2,3,4,5,6,7,8,9,10);

This query will be executed 2 to 3 times more quickly than in previous MySQL Cluster versions due
to the fact that all 10 key lookups are sent in a single batch rather than one at a time.

• Limit On Number of Metadata Objects: Beginning with MySQL 5.0.6, each Cluster database may
contain a maximum of 20320 metadata objects — this includes database tables, system tables, in-
dexes and BLOB values. (Previously, this number was 1600.)

15.12.2. MySQL 5.1 Development Roadmap for MySQL
Cluster

What is said here is a status report based on recent commits to the MySQL 5.1 source tree. It should be
noted all 5.1 development is subject to change.

There are currently 4 major new features being developed for MySQL 5.1:

1. Integration of MySQL Cluster into MySQL replication: This will make it possible to update
from any MySQL Server in the cluster and still have the MySQL Replication handled by one of the
MySQL Servers in the cluster, with the state of the slave side remaining consistent with the cluster
acting as the master.

2. Support for disk-based records: Records on disk will be supported. Indexed fields including the
primary key hash index must still be stored in RAM but all other fields can be on disk.

3. Variable-sized records: A column defined as VARCHAR(255) currently uses 260 bytes of stor-
age independent of what is stored in any particular record. In MySQL 5.1 Cluster tables, only the
portion of the column actually taken up by the record will be stored. This will make possible a re-
duction in space requirements for such columns by a factor of 5 in many cases.

4. User-defined partitioning: Users will be able to define partitions based on columns that are part of
the primary key. The MySQL Server will be able to discover whether it is possible to prune away
some of the partitions from the WHERE clause. Partitioning based on KEY, HASH, RANGE, and
LIST handlers will be possible, as well as subpartitioning. This feature should also be available for
many other handlers, and not only NDB Cluster.

MySQL Cluster

1089

In addition, we are working to increase the 8KB size limit for rows containing columns of types other
than BLOB or TEXT in Cluster tables. This is due to the fact that rows are currently fixed in size and the
page size is 32,768 bytes (minus 128 bytes for the row header). Currently, this means that if we allowed
more than 8KB per record, any remaining space (up to approximately 14,000 bytes) would be left
empty. In MySQL 5.1, we plan to fix this limitation so that using more than 8KB in a given row does
not result in the remainder of the page being wasted.

15.13. MySQL Cluster FAQ
This section answers questions that are often asked about MySQL Cluster.

•
What does “NDB” mean?

This stands for “Network Database.”

•
What's the difference in using Cluster vs using replication?

In a replication setup, a master MySQL server updates one or more slaves. Transactions are commit-
ted sequentially, and a slow transaction can cause the slave to lag behind the master. This means that
if the master fails, it is possible that the slave might not have recorded the last few transactions. If a
transaction-safe engine such as InnoDB is being used, a transaction will either be complete on the
slave or not applied at all, but replication does not guarantee that all data on the master and the slave
will be consistent at all times. In MySQL Cluster, all data nodes are kept in synchrony, and a trans-
action committed by any one data node is committed for all data nodes. In the event of a data node
failure, all remaining data nodes remain in a consistent state.

In short, whereas standard MySQL replication is asynchronous, MySQL Cluster is synchronous.

We have implemented (asynchronous) replication for Cluster in MySQL 5.1. This includes the cap-
ability to replicate both between two clusters, and from a MySQL cluster to a non-Cluster MySQL
server. However, we do not plan to backport this functionality to MySQL 5.0.

•
Do I need to do any special networking to run Cluster? (How do computers in a cluster communic-
ate?)

MySQL Cluster is intended to be used in a high-bandwidth environment, with computers connecting
via TCP/IP. Its performance depends directly upon the connection speed between the cluster's com-
puters. The minimum connectivity requirements for Cluster include a typical 100-megabit Ethernet
network or the equivalent. We recommend you use gigabit Ethernet whenever available.

The faster SCI protocol is also supported, but requires special hardware. See Section 15.10, “Using
High-Speed Interconnects with MySQL Cluster”, for more information about SCI.

•
How many computers do I need to run a cluster, and why?

A minimum of three computers is required to run a viable cluster. However, the minimum recom-
mended number of computers in a MySQL Cluster is four: one each to run the management and
SQL nodes, and two computers to serve as data nodes. The purpose of the two data nodes is to
provide redundancy; the management node must run on a separate machine to guarantee continued
arbitration services in the event that one of the data nodes fails.

•
What do the different computers do in a cluster?

MySQL Cluster

1090

A MySQL Cluster has both a physical and logical organization, with computers being the physical
elements. The logical or functional elements of a cluster are referred to as nodes, and a computer
housing a cluster node is sometimes referred to as a cluster host. There are three types of nodes, each
corresponding to a specific role within the cluster. These are:

• Management node (MGM node): Provides management services for the cluster as a whole, in-
cluding startup, shutdown, backups, and configuration data for the other nodes. The management
node server is implemented as the application ndb_mgmd; the management client used to con-
trol MySQL Cluster via the MGM node is ndb_mgm.

• Data node: Stores and replicates data. Data node functionality is handled by an instance of the
NDB data node process ndbd.

• SQL node: This is simply an instance of MySQL Server (mysqld) that is built with support for
the NDB Cluster storage engine and started with the --ndb-cluster option to enable the
engine.

•
With which operating systems can I use Cluster?

MySQL Cluster is supported on most Unix-like operating systems, including Linux, Mac OS X, Sol-
aris, BSD, HP-UX, AIX, and IRIX, among others, as well as Novell Netware. Cluster is not suppor-
ted for Windows at this time. However, we are working to add Cluster support for other platforms,
including Windows, and our goal is to offer MySQL Cluster on all platforms for which MySQL it-
self is supported.

For more detailed information concerning the level of support which is offered for MySQL Cluster
on various operating system versions, OS distributions, and hardware platforms, please refer to ht-
tp://www.mysql.com/support/supportedplatforms.html.

•
What are the hardware requirements for running MySQL Cluster?

Cluster should run on any platform for which NDB-enabled binaries are available. Naturally, faster
CPUs and more memory will improve performance, and 64-bit CPUs will likely be more effective
than 32-bit processors. There must be sufficient memory on machines used for data nodes to hold
each node's share of the database (see How much RAM do I Need? for more information). Nodes can
communicate via a standard TCP/IP network and hardware. For SCI support, special networking
hardware is required.

•
How much RAM do I need? Is it possible to use disk memory at all?

In MySQL-5.0, Cluster is in-memory only. This means that all table data (including indexes) is
stored in RAM. Therefore, if your data takes up 1GB of space and you want to replicate it once in
the cluster, you need 2GB of memory to do so (1 GB per replica). This is in addition to the memory
required by the operating system and any applications running on the cluster computers.

If a data node's memory usage exceeds what is available in RAM, then the system will attempt to use
swap space up to the limit set for DataMemory. However, this will at best result in severely de-
graded performance, and may cuase the node to be dropped due to slow response time (missed hear-
beats). We do not recommend on relying on disk swapping in a production environment for this
reason. In any case, once the DataMemory limit is reached, any operations requiring additional
memory (such as inserts) will fail.

(We have implemented disk data storage for MySQL Cluster in MySQL 5.1, but we have no plans to
add this capability in MySQL 5.0.)

MySQL Cluster

1091

http://www.mysql.com/support/supportedplatforms.html
http://www.mysql.com/support/supportedplatforms.html

You can use the following formula for obtaining a rough estimate of how much RAM is needed for
each data node in the cluster:

(SizeofDatabase × NumberOfReplicas × 1.1) / NumberOfDataNodes

To calculate the memory requirements more exactly requires determining, for each table in the
cluster database, the storage space required per row (see Section 11.5, “Data Type Storage Require-
ments”, for details), and multiplying this by the number of rows. You must also remember to ac-
count for any column indexes as follows:

• Each primary key or hash index created for an NDBCluster table requires 21–25 bytes per re-
cord. These indexes use IndexMemory.

• Each ordered index requires 10 bytes storage per record, using DataMemory.

• Creating a primary key or unique index also creates an ordered index, unless this index is created
with USING HASH. In other words:

• A primary key or unique index on a Cluster table normally takes up 31 to 35 bytes per re-
cord.

• However, if the primary key or unique index is created with USING HASH, then it requires
only 21 to 25 bytes per record.

Note that creating MySQL Cluster tables with USING HASH for all primary keys and unique in-
dexes will generally cause table updates to run more quickly — in some cases by a much as 20 to
30 percent faster than updates on tables where USING HASH was not used in creating primary
and unique keys. This is due to the fact that less memory is required (because no ordered indexes
are created), and that less CPU must be utilized (because fewer indexes must be read and pos-
sibly updated). However, it also means that queries that could otherwise use range scans must be
satisfied by other means, which can result in slower selects.

When calculating Cluster memory requirements, you may find useful the ndb_size.pl utility
which is available on MySQLForge [http://forge.mysql.com/projects/view.php?id=88]. This Perl
script connects to a current MySQL (non-Cluster) database and creates a report on how much space
that database would require if it used the NDBCluster storage engine. For more information, see
Section 15.9.12, “ndb_size.pl”.

It is especially important to keep in mind that every MySQL Cluster table must have a primary key.
The NDB storage engine creates a primary key automatically if none is defined, and this primary key
is created without USING HASH.

There is no easy way to determine exactly how much memory is being used for storage of Cluster in-
dexes at any given time; however, warnings are written to the Cluster log when 80% of available
DataMemory or IndexMemory is in use, and again when use reaches 85%, 90%, and so on.

We often see questions from users who report that, when they are trying to populate a Cluster data-
base, the loading process terminates prematurely and an error message like this one is observed:

ERROR 1114: The table 'my_cluster_table' is full

When this occurs, the cause is very likely to be that your setup does not provide sufficient RAM for
all table data and all indexes, including the primary key required by the NDB storage engine and
automatically created in the event that the table definition does not include the definition of a
primary key.

It is also worth noting that all data nodes should have the same amount of RAM, as no data node in a

MySQL Cluster

1092

http://forge.mysql.com/projects/view.php?id=88

cluster can use more memory than the least amount available to any individual data node. In other
words, if there are three computers hosting Cluster data nodes, with two of these having 3GB of
RAM available to store Cluster data, and one having only 1GB RAM, then each data node can de-
vote only 1GB to clustering.

•
Because MySQL Cluster uses TCP/IP, does that mean I can run it over the Internet, with one or
more nodes in a remote location?

It is very doubtful in any case that a cluster would perform reliably under such conditions, as
MySQL Cluster was designed and implemented with the assumption that it would be run under con-
ditions guaranteeing dedicated high-speed connectivity such as that found in a LAN setting using
100 Mbps or gigabit Ethernet (preferably the latter). We neither test nor warrant its performance us-
ing anything slower than this.

Also, it is extremely important to keep in mind that communications between the nodes in a MySQL
Cluster are not secure; they are neither encrypted nor safeguarded by any other protective mechan-
ism. The most secure configuration for a cluster is in a private network behind a firewall, with no
direct access to any Cluster data or management nodes from outside. (For SQL nodes, you should
take the same precautions as you would with any other instance of the MySQL server.)

•
Do I have to learn a new programming or query language to use Cluster?

No. Although some specialized commands are used to manage and configure the cluster itself, only
standard (My)SQL queries and commands are required for the following operations:

• Creating, altering, and dropping tables

• Inserting, updating, and deleting table data

• Creating, changing, and dropping primary and unique indexes

• Configuring and managing SQL nodes (MySQL servers)

•
How do I find out what an error or warning message means when using Cluster?

There are two ways in which this can be done:

• From within the mysql client, use SHOW ERRORS or SHOW WARNINGS immediately upon
being notified of the error or warning condition. Errors and warnings also be displayed in
MySQL Query Browser.

• From a system shell prompt, use perror --ndb error_code.

•
Is MySQL Cluster transaction-safe? What isolation levels are supported?

Yes: For tables created with the NDB storage engine, transactions are supported. In MySQL 5.0,
Cluster supports only the READ COMMITTED transaction isolation level.

• What storage engines are supported by MySQL Cluster?

Clustering in MySQL is supported only by the NDB storage engine. That is, in order for a table to be
shared between nodes in a cluster, it must be created using ENGINE=NDB (or EN-
GINE=NDBCLUSTER, which is equivalent).

It is possible to create tables using other storage engines (such as MyISAM or InnoDB) on a

MySQL Cluster

1093

MySQL server being used for clustering, but these non-NDB tables will not participate in the cluster;
they are local to the individual MySQL server instance on which they are created.

•
Which versions of the MySQL software support Cluster? Do I have to compile from source?

Cluster is supported in all MySQL-max binaries in the 5.0 release series, except as noted in the fol-
lowing paragraph. You can determine whether your server has NDB support using either the SHOW
VARIABLES LIKE 'have_%' or SHOW ENGINES statement. (See Section 5.3, “The mysqld-
max Extended MySQL Server”, for more information.)

Linux users, please note that NDB is not included in the standard MySQL server RPMs. Beginning
with MySQL 5.0.4, there are separate RPM packages for the NDB storage engine and accompanying
management and other tools; see the NDB RPM Downloads section of the MySQL 5.0 Downloads
page for these. (Prior to 5.0.4, you had to use the -max binaries supplied as .tar.gz archives.
This is still possible, but is not required, so you can use your Linux distribution's RPM manager if
you prefer.) You can also obtain NDB support by compiling the -max binaries from source, but it is
not necessary to do so simply to use MySQL Cluster. To download the latest binary, RPM, or source
distribution in the MySQL 5.0 series, visit http://dev.mysql.com/downloads/mysql/5.0.html.

• In the event of a catastrophic failure — say, for instance, the whole city loses power and my UPS
fails — would I lose all my data?

All committed transactions are logged. Therefore, although it is possible that some data could be lost
in the event of a catastrophe, this should be quite limited. Data loss can be further reduced by minim-
izing the number of operations per transaction. (It is not a good idea to perform large numbers of op-
erations per transaction in any case.)

• Is it possible to use FULLTEXT indexes with Cluster?

FULLTEXT indexing is not currently supported by the NDB storage engine, or by any storage engine
other than MyISAM. We are working to add this capability in a future release.

• Can I run multiple nodes on a single computer?

It is possible but not advisable. One of the chief reasons to run a cluster is to provide redundancy. To
enjoy the full benefits of this redundancy, each node should reside on a separate machine. If you
place multiple nodes on a single machine and that machine fails, you lose all of those nodes. Given
that MySQL Cluster can be run on commodity hardware loaded with a low-cost (or even no-cost)
operating system, the expense of an extra machine or two is well worth it to safeguard mission-critic-
al data. It also worth noting that the requirements for a cluster host running a management node are
minimal. This task can be accomplished with a 200 MHz Pentium CPU and sufficient RAM for the
operating system plus a small amount of overhead for the ndb_mgmd and ndb_mgm processes.

It is acceptable to run multiple cluster data nodes on a single host for learning about MySQL Cluster,
or for testing purposes; howver, this is not supported for production use.

• Can I add nodes to a cluster without restarting it?

Not at present. A simple restart is all that is required for adding new MGM or SQL nodes to a
Cluster. When adding data nodes the process is more complex, and requires the following steps:

1. Make a complete backup of all Cluster data.

2. Completely shut down the cluster and all cluster node processes.

3. Restart the cluster, using the --initial startup option.

4. Restore all cluster data from the backup.

MySQL Cluster

1094

http://dev.mysql.com/downloads/mysql/5.0.html

In a future MySQL Cluster release series, we hope to implement a “hot” reconfiguration capability
for MySQL Cluster to minimize (if not eliminate) the requirement for restarting the cluster when
adding new nodes. However, this is not planned for the MySQL 5.0 release series.

• Are there any limitations that I should be aware of when using Cluster?

NDB tables in MySQL 5.0 are subject to the following limitations:

• Temporary tables are not supported; a CREATE TEMPORARY TABLE statement using EN-
GINE=NDB or ENGINE=NDBCLUSTER fails with an error.

• FULLTEXT indexes and index prefixes are not supported. Only complete columns may be in-
dexed.

• Spatial data types are not supported. See Chapter 16, Spatial Extensions.

• Only complete rollbacks for transactions are supported. Partial rollbacks and rollbacks to save-
points are not supported.

• The maximum number of attributes allowed per table is 128, and attribute names cannot be any
longer than 31 characters. For each table, the maximum combined length of the table and data-
base names is 122 characters.

• The maximum size for a table row is 8 kilobytes, not counting BLOB values. There is no set limit
for the number of rows per table. Table size limits depend on a number of factors, in particular
on the amount of RAM available to each data node.

• The NDB engine does not support foreign key constraints. As with MyISAM tables, these are ig-
nored.

• Query caching is not supported.

For additional information on Cluster limitations, see Section 15.11, “Known Limitations of MySQL
Cluster”.

•
How do I import an existing MySQL database into a cluster?

You can import databases into MySQL Cluster much as you would with any other version of
MySQL. Other than the limitation mentioned in the previous question, the only other special require-
ment is that any tables to be included in the cluster must use the NDB storage engine. This means that
the tables must be created with ENGINE=NDB or ENGINE=NDBCLUSTER. It is also possible to
convert existing tables using other storage engines to NDB Cluster using ALTER TABLE, but re-
quires an additional workaround. See Section 15.11, “Known Limitations of MySQL Cluster”, for
details.

• How do cluster nodes communicate with one another?

Cluster nodes can communicate via any of three different protocols: TCP/IP, SHM (shared memory),
and SCI (Scalable Coherent Interface). Where available, SHM is used by default between nodes
residing on the same cluster host. SCI is a high-speed (1 gigabit per second and higher), high-
availability protocol used in building scalable multi-processor systems; it requires special hardware
and drivers. See Section 15.10, “Using High-Speed Interconnects with MySQL Cluster”, for more
about using SCI as a transport mechanism in MySQL Cluster.

•
What is an “arbitrator”?

MySQL Cluster

1095

If one or more nodes in a cluster fail, it is possible that not all cluster nodes will be able to “see” one
another. In fact, it is possible that two sets of nodes might become isolated from one another in a net-
work partitioning, also known as a “split brain” scenario. This type of situation is undesirable be-
cause each set of nodes tries to behave as though it is the entire cluster.

When cluster nodes go down, there are two possibilities. If more than 50% of the remaining nodes
can communicate with each other, we have what is sometimes called a “majority rules” situation,
and this set of nodes is considered to be the cluster. The arbitrator comes into play when there is an
even number of nodes: in such cases, the set of nodes to which the arbitrator belongs is considered to
be the cluster, and nodes not belonging to this set are shut down.

The preceding information is somewhat simplified. A more complete explanation taking into ac-
count node groups follows:

When all nodes in at least one node group are alive, network partitioning is not an issue, because no
one portion of the cluster can form a functional cluster. The real problem arises when no single node
group has all its nodes alive, in which case network partitioning (the “split-brain” scenario) becomes
possible. Then an arbitrator is required. All cluster nodes recognize the same node as the arbitrator,
which is normally the management server; however, it is possible to configure any of the MySQL
Servers in the cluster to act as the arbitrator instead. The arbitrator accepts the first set of cluster
nodes to contact it, and tells the remaining set to shut down. Arbitrator selection is controlled by the
ArbitrationRank configuration parameter for MySQL Server and management server nodes.
(See Section 15.4.4.4, “Defining the Management Server”, for details.) It should also be noted that
the role of arbitrator does not in and of itself impose any heavy demands upon the host so desig-
nated, and thus the arbitrator host does not need to be particularly fast or to have extra memory espe-
cially for this purpose.

•
What data types are supported by MySQL Cluster?

MySQL Cluster supports all of the usual MySQL data types, with the exception of those associated
with MySQL's spatial extensions. (See Chapter 16, Spatial Extensions.) In addition, there are some
differences with regard to indexes when used with NDB tables. Note: MySQL Cluster tables (that is,
tables created with ENGINE=NDBCLUSTER) have only fixed-width rows. This means that (for ex-
ample) each record containing a VARCHAR(255) column will require space for 255 characters (as
required for the character set and collation being used for the table), regardless of the actual number
of characters stored therein. This issue is expected to be fixed in a future MySQL release series.

See Section 15.11, “Known Limitations of MySQL Cluster”, for more information about these is-
sues.

•
How do I start and stop MySQL Cluster?

It is necessary to start each node in the cluster separately, in the following order:

1. Start the management node with the ndb_mgmd command.

2. Start each data node with the ndbd command.

3. Start each MySQL server (SQL node) using mysqld_safe --user=mysql &.

Each of these commands must be run from a system shell on the machine housing the affected node.
You can verify the cluster is running by starting the MGM management client ndb_mgm on the ma-
chine housing the MGM node.

• What happens to cluster data when the cluster is shut down?

MySQL Cluster

1096

The data held in memory by the cluster's data nodes is written to disk, and is reloaded in memory the
next time that the cluster is started.

To shut down the cluster, enter the following command in a shell on the machine hosting the MGM
node:

shell> ndb_mgm -e shutdown

This causes the ndb_mgm, ndb_mgm, and any ndbd processes to terminate gracefully. MySQL
servers running as Cluster SQL nodes can be stopped using mysqladmin shutdown.

For more information, see Section 15.7.2, “Commands in the Management Client”, and Sec-
tion 15.3.6, “Safe Shutdown and Restart”.

• Is it helpful to have more than one management node for a cluster?

It can be helpful as a fail-safe. Only one MGM node controls the cluster at any given time, but it is
possible to configure one MGM as primary, and one or more additional management nodes to take
over in the event that the primary MGM node fails.

• Can I mix different kinds of hardware and operating systems in a Cluster?

Yes, so long as all machines and operating systems have the same endianness (all big-endian or all
little-endian). It is also possible to use different MySQL Cluster releases on different nodes.
However, we recommend this be done only as part of a rolling upgrade procedure.

• Can I run two data nodes on a single host? Two SQL nodes?

Yes, it is possible to do this. In the case of multiple data nodes, each node must use a different data
directory. If you want to run multiple SQL nodes on one machine, each instance of mysqld must
use a different TCP/IP port. However, running more than one node of a given type per machine is
not supported for production use.

• Can I use hostnames with MySQL Cluster?

Yes, it is possible to use DNS and DHCP for cluster hosts. However, if your application requires
“five nines” availability, we recommend using fixed IP addresses. Making communication between
Cluster hosts dependent on services such as DNS and DHCP introduces additional points of failure,
and the fewer of these, the better.

15.14. MySQL Cluster Glossary
The following terms are useful to an understanding of MySQL Cluster or have specialized meanings
when used in relation to it.

• Cluster:

In its generic sense, a cluster is a set of computers functioning as a unit and working together to ac-
complish a single task.

NDB Cluster:

This is the storage engine used in MySQL to implement data storage, retrieval, and management dis-
tributed among several computers.

MySQL Cluster

1097

MySQL Cluster:

This refers to a group of computers working together using the NDB storage engine to support a dis-
tributed MySQL database in a shared-nothing architecture using in-memory storage.

• Configuration files:

Text files containing directives and information regarding the cluster, its hosts, and its nodes. These
are read by the cluster's management nodes when the cluster is started. See Section 15.4.4,
“Configuration File”, for details.

• Backup:

A complete copy of all cluster data, transactions and logs, saved to disk or other long-term storage.

• Restore:

Returning the cluster to a previous state, as stored in a backup.

• Checkpoint:

Generally speaking, when data is saved to disk, it is said that a checkpoint has been reached. More
specific to Cluster, it is a point in time where all committed transactions are stored on disk. With re-
gard to the NDB storage engine, there are two types of checkpoints which work together to ensure
that a consistent view of the cluster's data is maintained:

• Local Checkpoint (LCP):

This is a checkpoint that is specific to a single node; however, LCP's take place for all nodes in
the cluster more or less concurrently. An LCP involves saving all of a node's data to disk, and so
usually occurs every few minutes. The precise interval varies, and depends upon the amount of
data stored by the node, the level of cluster activity, and other factors.

• Global Checkpoint (GCP):

A GCP occurs every few seconds, when transactions for all nodes are synchronized and the redo-
log is flushed to disk.

• Cluster host:

A computer making up part of a MySQL Cluster. A cluster has both a physical structure and a logic-
al structure. Physically, the cluster consists of a number of computers, known as cluster hosts (or
more simply as hosts. See also Node and Node group below.

• Node:

This refers to a logical or functional unit of MySQL Cluster, and is sometimes also referred to as a
cluster node. In the context of MySQL Cluster, we use the term “node” to indicate a process rather
than a physical component of the cluster. There are three node types required to implement a work-
ing MySQL Cluster:

• Management (MGM) nodes:

Manages the other nodes within the MySQL Cluster. It provides configuration data to the other
nodes; starts and stops nodes; handles network partitioning; creates backups and restores from
them, and so forth.

• SQL (MySQL server) nodes:

MySQL Cluster

1098

Instances of MySQL Server which serve as front ends to data kept in the cluster's data nodes.
Clients desiring to store, retrieve, or update data can access an SQL node just as they would any
other MySQL Server, employing the usual authentication methods and API's; the underlying dis-
tribution of data between node groups is transparent to users and applications. SQL nodes access
the cluster's databases as a whole without regard to the data's distribution across different data
nodes or cluster hosts.

• Data nodes:

These nodes store the actual data. Table data fragments are stored in a set of node groups; each
node group stores a different subset of the table data. Each of the nodes making up a node group
stores a replica of the fragment for which that node group is responsible. Currently, a single
cluster can support up to 48 data nodes total.

It is possible for more than one node to co-exist on a single machine. (In fact, it is even possible to
set up a complete cluster on one machine, although one would almost certainly not want to do this in
a production environment.) It may be helpful to remember that, when working with MySQL Cluster,
the term host refers to a physical component of the cluster whereas a node is a logical or functional
component (that is, a process).

Note Regarding Terms: In older versions of the MySQL Cluster documentation, data nodes were
sometimes referred to as “database nodes”. The term “storage nodes” has also been used. In addition,
SQL nodes were sometimes known as “client nodes”. This older terminology has been deprecated to
minimize confusion, and for this reason should be avoided. They are also often referred to as “API
nodes” — an SQL node is actually an API node that provides an SQL interface to the cluster.

• Node group:

A set of data nodes. All data nodes in a node group contain the same data (fragments), and all nodes
in a single group should reside on different hosts. It is possible to control which nodes belong to
which node groups.

For more information, see Section 15.2.1, “MySQL Cluster Nodes, Node Groups, Replicas, and Par-
titions”.

• Node failure:

MySQL Cluster is not solely dependent upon the functioning of any single node making up the
cluster; the cluster can continue to run if one or more nodes fail. The precise number of node failures
that a given cluster can tolerate depends upon the number of nodes and the cluster's configuration.

• Node restart:

The process of restarting a failed cluster node.

• Initial node restart:

The process of starting a cluster node with its filesystem removed. This is sometimes used in the
course of software upgrades and in other special circumstances.

• System crash (or system failure):

This can occur when so many cluster nodes have failed that the cluster's state can no longer be guar-
anteed.

• System restart:

MySQL Cluster

1099

The process of restarting the cluster and reinitializing its state from disk logs and checkpoints. This
is required after either a planned or an unplanned shutdown of the cluster.

• Fragment:

A portion of a database table; in the NDB storage engine, a table is broken up into and stored as a
number of fragments. A fragment is sometimes also called a “partition”; however, “fragment” is the
preferred term. Tables are fragmented in MySQL Cluster in order to facilitate load balancing
between machines and nodes.

• Replica:

Under the NDB storage engine, each table fragment has number of replicas stored on other data
nodes in order to provide redundancy. Currently, there may be up four replicas per fragment.

• Transporter:

A protocol providing data transfer between nodes. MySQL Cluster currently supports four different
types of transporter connections:

• TCP/IP

This is, of course, the familiar network protocol that underlies HTTP, FTP (and so on) on the In-
ternet. TCP/IP can be used for both local and remote connections.

• SCI

Scalable Coherent Interface is a high-speed protocol used in building multiprocessor systems
and parallel-processing applications. Use of SCI with MySQL Cluster requires specialized hard-
ware, as discussed in Section 15.10.1, “Configuring MySQL Cluster to use SCI Sockets”. For a
basic introduction to SCI, see this essay at dolphinics.com
[http://www.dolphinics.com/corporate/scitech.html].

• SHM

Unix-style shared memory segments. Where supported, SHM is used automatically to connect
nodes running on the same host. The Unix man page for shmop(2)
[http://www.scit.wlv.ac.uk/cgi-bin/mansec?2+shmop] is a good place to begin obtaining addi-
tional information about this topic.

Note: The cluster transporter is internal to the cluster. Applications using MySQL Cluster commu-
nicate with SQL nodes just as they do with any other version of MySQL Server (via TCP/IP, or
through the use of Unix socket files or Windows named pipes). Queries can be sent and results re-
trieved using the standard MySQL client APIs.

• NDB:

This stands for Network Database, and refers to the storage engine used to enable MySQL Cluster.
The NDB storage engine supports all the usual MySQL data types and SQL statements, and is ACID-
compliant. This engine also provides full support for transactions (commits and rollbacks).

• shared-nothing architecture:

The ideal architecture for a MySQL Cluster. In a true shared-nothing setup, each node runs on a sep-
arate host. The advantage such an arrangement is that there no single host or node can act as single
point of failure or as a performance bottle neck for the system as a whole.

• In-memory storage:

MySQL Cluster

1100

http://www.dolphinics.com/corporate/scitech.html
http://www.scit.wlv.ac.uk/cgi-bin/mansec?2+shmop

All data stored in each data node is kept in memory on the node's host computer. For each data node
in the cluster, you must have available an amount of RAM equal to the size of the database times the
number of replicas, divided by the number of data nodes. Thus, if the database takes up 1GB of
memory, and you want to set up the cluster with four replicas and eight data nodes, a minimum of
500MB memory will be required per node. Note that this is in addition to any requirements for the
operating system and any other applications that might be running on the host.

• Table:

As is usual in the context of a relational database, the term “table” denotes a set of identically struc-
tured records. In MySQL Cluster, a database table is stored in a data node as a set of fragments, each
of which is replicated on additional data nodes. The set of data nodes replicating the same fragment
or set of fragments is referred to as a node group.

• Cluster programs:

These are command-line programs used in running, configuring, and administering MySQL Cluster.
They include both server daemons:

• ndbd:

The data node daemon (runs a data node process)

• ndb_mgmd:

The management server daemon (runs a management server process)

and client programs:

• ndb_mgm:

The management client (provides an interface for executing management commands)

• ndb_waiter:

Used to verify status of all nodes in a cluster

• ndb_restore:

Restores cluster data from backup

For more about these programs and their uses, see Section 15.6, “Process Management in MySQL
Cluster”.

• Event log:

MySQL Cluster logs events by category (startup, shutdown, errors, checkpoints, and so on), priority,
and severity. A complete listing of all reportable events may be found in Section 15.7.3, “Event Re-
ports Generated in MySQL Cluster”. Event logs are of two types:

• Cluster log:

Keeps a record of all desired reportable events for the cluster as a whole.

• Node log:

A separate log which is also kept for each individual node.

Under normal circumstances, it is necessary and sufficient to keep and examine only the cluster log.

MySQL Cluster

1101

The node logs need be consulted only for application development and debugging purposes.

MySQL Cluster

1102

Chapter 16. Spatial Extensions
MySQL supports spatial extensions to allow the generation, storage, and analysis of geographic features.
Before MySQL 5.0.16, these features are available for MyISAM tables only. As of MySQL 5.0.16, In-
noDB, NDB, BDB, and ARCHIVE also support spatial features. (However, the ARCHIVE engine does not
support indexing, so spatial columns in ARCHIVE columns cannot be indexed. MySQL Cluster also
does not support indexing of spatial columns.)

Although spatial extensions are supported in InnoDB tables, use of spatial indexes may cause a crash.
(Bug#15860 [http://bugs.mysql.com/15860])

This chapter covers the following topics:

• The basis of these spatial extensions in the OpenGIS geometry model

• Data formats for representing spatial data

• How to use spatial data in MySQL

• Use of indexing for spatial data

• MySQL differences from the OpenGIS specification

Additional resources

• The Open Geospatial Consortium publishes the OpenGIS® Simple Features Specifications For SQL,
a document that proposes several conceptual ways for extending an SQL RDBMS to support spatial
data. This specification is available from the OGC Web site at ht-
tp://www.opengis.org/docs/99-049.pdf.

• If you have questions or concerns about the use of the spatial extensions to MySQL, you can discuss
them in the GIS forum: http://forums.mysql.com/list.php?23.

16.1. Introduction to MySQL Spatial Support
MySQL implements spatial extensions following the specification of the Open Geospatial Consortium
(OGC). This is an international consortium of more than 250 companies, agencies, and universities par-
ticipating in the development of publicly available conceptual solutions that can be useful with all kinds
of applications that manage spatial data. The OGC maintains a Web site at http://www.opengis.org/.

In 1997, the Open Geospatial Consortium published the OpenGIS® Simple Features Specifications For
SQL, a document that proposes several conceptual ways for extending an SQL RDBMS to support spa-
tial data. This specification is available from the OGC Web site at ht-
tp://www.opengis.org/docs/99-049.pdf. It contains additional information relevant to this chapter.

MySQL implements a subset of the SQL with Geometry Types environment proposed by OGC. This
term refers to an SQL environment that has been extended with a set of geometry types. A geometry-val-
ued SQL column is implemented as a column that has a geometry type. The specification describe a set
of SQL geometry types, as well as functions on those types to create and analyze geometry values.

A geographic feature is anything in the world that has a location. A feature can be:

1103

http://bugs.mysql.com/15860
http://forums.mysql.com/list.php?23
http://www.opengis.org/

• An entity. For example, a mountain, a pond, a city.

• A space. For example, a postcode area, the tropics.

• A definable location. For example, a crossroad, as a particular place where two streets intersect.

Some documents use the term geospatial feature to refer to geographic features.

Geometry is another word that denotes a geographic feature. Originally the word geometry meant
measurement of the earth. Another meaning comes from cartography, referring to the geometric features
that cartographers use to map the world.

This chapter uses all of these terms synonymously: geographic feature, geospatial feature, feature, or
geometry. Here, the term most commonly used is geometry, defined as a point or an aggregate of
points representing anything in the world that has a location.

16.2. The OpenGIS Geometry Model
The set of geometry types proposed by OGC's SQL with Geometry Types environment is based on the
OpenGIS Geometry Model. In this model, each geometric object has the following general properties:

• It is associated with a Spatial Reference System, which describes the coordinate space in which the
object is defined.

• It belongs to some geometry class.

16.2.1. The Geometry Class Hierarchy
The geometry classes define a hierarchy as follows:

• Geometry (non-instantiable)

• Point (instantiable)

• Curve (non-instantiable)

• LineString (instantiable)

• Line

• LinearRing

• Surface (non-instantiable)

• Polygon (instantiable)

• GeometryCollection (instantiable)

• MultiPoint (instantiable)

• MultiCurve (non-instantiable)

• MultiLineString (instantiable)

Spatial Extensions

1104

• MultiSurface (non-instantiable)

• MultiPolygon (instantiable)

It is not possible to create objects in non-instantiable classes. It is possible to create objects in instanti-
able classes. All classes have properties, and instantiable classes may also have assertions (rules that
define valid class instances).

Geometry is the base class. It is an abstract class. The instantiable subclasses of Geometry are re-
stricted to zero-, one-, and two-dimensional geometric objects that exist in two-dimensional coordinate
space. All instantiable geometry classes are defined so that valid instances of a geometry class are topo-
logically closed (that is, all defined geometries include their boundary).

The base Geometry class has subclasses for Point, Curve, Surface, and GeometryCollec-
tion:

• Point represents zero-dimensional objects.

• Curve represents one-dimensional objects, and has subclass LineString, with sub-subclasses
Line and LinearRing.

• Surface is designed for two-dimensional objects and has subclass Polygon.

• GeometryCollection has specialized zero-, one-, and two-dimensional collection classes
named MultiPoint, MultiLineString, and MultiPolygon for modeling geometries cor-
responding to collections of Points, LineStrings, and Polygons, respectively. MultiC-
urve and MultiSurface are introduced as abstract superclasses that generalize the collection in-
terfaces to handle Curves and Surfaces.

Geometry, Curve, Surface, MultiCurve, and MultiSurface are defined as non-instantiable
classes. They define a common set of methods for their subclasses and are included for extensibility.

Point, LineString, Polygon, GeometryCollection, MultiPoint, MultiLineString,
and MultiPolygon are instantiable classes.

16.2.2. Class Geometry

Geometry is the root class of the hierarchy. It is a non-instantiable class but has a number of properties
that are common to all geometry values created from any of the Geometry subclasses. These proper-
ties are described in the following list. Particular subclasses have their own specific properties, described
later.

Geometry Properties

A geometry value has the following properties:

• Its type. Each geometry belongs to one of the instantiable classes in the hierarchy.

• Its SRID, or Spatial Reference Identifier. This value identifies the geometry's associated Spatial Ref-
erence System that describes the coordinate space in which the geometry object is defined.

In MySQL, the SRID value is just an integer associated with the geometry value. All calculations are
done assuming Euclidean (planar) geometry.

Spatial Extensions

1105

• Its coordinates in its Spatial Reference System, represented as double-precision (eight-byte) num-
bers. All non-empty geometries include at least one pair of (X,Y) coordinates. Empty geometries
contain no coordinates.

Coordinates are related to the SRID. For example, in different coordinate systems, the distance
between two objects may differ even when objects have the same coordinates, because the distance
on the planar coordinate system and the distance on the geocentric system (coordinates on the
Earth's surface) are different things.

• Its interior, boundary, and exterior.

Every geometry occupies some position in space. The exterior of a geometry is all space not occu-
pied by the geometry. The interior is the space occupied by the geometry. The boundary is the inter-
face between the geometry's interior and exterior.

• Its MBR (Minimum Bounding Rectangle), or Envelope. This is the bounding geometry, formed by
the minimum and maximum (X,Y) coordinates:

((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

• Whether the value is simple or non-simple. Geometry values of types (LineString, Multi-
Point, MultiLineString) are either simple or non-simple. Each type determines its own asser-
tions for being simple or non-simple.

• Whether the value is closed or not closed. Geometry values of types (LineString,
MultiString) are either closed or not closed. Each type determines its own assertions for being
closed or not closed.

• Whether the value is empty or non-empty A geometry is empty if it does not have any points. Ex-
terior, interior, and boundary of an empty geometry are not defined (that is, they are represented by a
NULL value). An empty geometry is defined to be always simple and has an area of 0.

• Its dimension. A geometry can have a dimension of –1, 0, 1, or 2:

• –1 for an empty geometry.

• 0 for a geometry with no length and no area.

• 1 for a geometry with non-zero length and zero area.

• 2 for a geometry with non-zero area.

Point objects have a dimension of zero. LineString objects have a dimension of 1. Polygon
objects have a dimension of 2. The dimensions of MultiPoint, MultiLineString, and Mul-
tiPolygon objects are the same as the dimensions of the elements they consist of.

16.2.3. Class Point

A Point is a geometry that represents a single location in coordinate space.

Point Examples

• Imagine a large-scale map of the world with many cities. A Point object could represent each city.

• On a city map, a Point object could represent a bus stop.

Spatial Extensions

1106

Point Properties

• X-coordinate value.

• Y-coordinate value.

• Point is defined as a zero-dimensional geometry.

• The boundary of a Point is the empty set.

16.2.4. Class Curve

A Curve is a one-dimensional geometry, usually represented by a sequence of points. Particular sub-
classes of Curve define the type of interpolation between points. Curve is a non-instantiable class.

Curve Properties

• A Curve has the coordinates of its points.

• A Curve is defined as a one-dimensional geometry.

• A Curve is simple if it does not pass through the same point twice.

• A Curve is closed if its start point is equal to its endpoint.

• The boundary of a closed Curve is empty.

• The boundary of a non-closed Curve consists of its two endpoints.

• A Curve that is simple and closed is a LinearRing.

16.2.5. Class LineString

A LineString is a Curve with linear interpolation between points.

LineString Examples

• On a world map, LineString objects could represent rivers.

• In a city map, LineString objects could represent streets.

LineString Properties

• A LineString has coordinates of segments, defined by each consecutive pair of points.

• A LineString is a Line if it consists of exactly two points.

• A LineString is a LinearRing if it is both closed and simple.

16.2.6. Class Surface

Spatial Extensions

1107

A Surface is a two-dimensional geometry. It is a non-instantiable class. Its only instantiable subclass
is Polygon.

Surface Properties

• A Surface is defined as a two-dimensional geometry.

• The OpenGIS specification defines a simple Surface as a geometry that consists of a single
“patch” that is associated with a single exterior boundary and zero or more interior boundaries.

• The boundary of a simple Surface is the set of closed curves corresponding to its exterior and in-
terior boundaries.

16.2.7. Class Polygon

A Polygon is a planar Surface representing a multisided geometry. It is defined by a single exterior
boundary and zero or more interior boundaries, where each interior boundary defines a hole in the
Polygon.

Polygon Examples

• On a region map, Polygon objects could represent forests, districts, and so on.

Polygon Assertions

• The boundary of a Polygon consists of a set of LinearRing objects (that is, LineString ob-
jects that are both simple and closed) that make up its exterior and interior boundaries.

• A Polygon has no rings that cross. The rings in the boundary of a Polygon may intersect at a
Point, but only as a tangent.

• A Polygon has no lines, spikes, or punctures.

• A Polygon has an interior that is a connected point set.

• A Polygon may have holes. The exterior of a Polygon with holes is not connected. Each hole
defines a connected component of the exterior.

The preceding assertions make a Polygon a simple geometry.

16.2.8. Class GeometryCollection

A GeometryCollection is a geometry that is a collection of one or more geometries of any class.

All the elements in a GeometryCollection must be in the same Spatial Reference System (that is,
in the same coordinate system). There are no other constraints on the elements of a GeometryCol-
lection, although the subclasses of GeometryCollection described in the following sections
may restrict membership. Restrictions may be based on:

• Element type (for example, a MultiPoint may contain only Point elements)

• Dimension

Spatial Extensions

1108

• Constraints on the degree of spatial overlap between elements

16.2.9. Class MultiPoint

A MultiPoint is a geometry collection composed of Point elements. The points are not connected
or ordered in any way.

MultiPoint Examples

• On a world map, a MultiPoint could represent a chain of small islands.

• On a city map, a MultiPoint could represent the outlets for a ticket office.

MultiPoint Properties

• A MultiPoint is a zero-dimensional geometry.

• A MultiPoint is simple if no two of its Point values are equal (have identical coordinate val-
ues).

• The boundary of a MultiPoint is the empty set.

16.2.10. Class MultiCurve

A MultiCurve is a geometry collection composed of Curve elements. MultiCurve is a non-
instantiable class.

MultiCurve Properties

• A MultiCurve is a one-dimensional geometry.

• A MultiCurve is simple if and only if all of its elements are simple; the only intersections
between any two elements occur at points that are on the boundaries of both elements.

• A MultiCurve boundary is obtained by applying the “mod 2 union rule” (also known as the
“odd-even rule”): A point is in the boundary of a MultiCurve if it is in the boundaries of an odd
number of MultiCurve elements.

• A MultiCurve is closed if all of its elements are closed.

• The boundary of a closed MultiCurve is always empty.

16.2.11. Class MultiLineString

A MultiLineString is a MultiCurve geometry collection composed of LineString elements.

MultiLineString Examples

• On a region map, a MultiLineString could represent a river system or a highway system.

Spatial Extensions

1109

16.2.12. Class MultiSurface

A MultiSurface is a geometry collection composed of surface elements. MultiSurface is a non-
instantiable class. Its only instantiable subclass is MultiPolygon.

MultiSurface Assertions

• Two MultiSurface surfaces have no interiors that intersect.

• Two MultiSurface elements have boundaries that intersect at most at a finite number of points.

16.2.13. Class MultiPolygon

A MultiPolygon is a MultiSurface object composed of Polygon elements.

MultiPolygon Examples

• On a region map, a MultiPolygon could represent a system of lakes.

MultiPolygon Assertions

• A MultiPolygon has no two Polygon elements with interiors that intersect.

• A MultiPolygon has no two Polygon elements that cross (crossing is also forbidden by the pre-
vious assertion), or that touch at an infinite number of points.

• A MultiPolygon may not have cut lines, spikes, or punctures. A MultiPolygon is a regular,
closed point set.

• A MultiPolygon that has more than one Polygon has an interior that is not connected. The
number of connected components of the interior of a MultiPolygon is equal to the number of
Polygon values in the MultiPolygon.

MultiPolygon Properties

• A MultiPolygon is a two-dimensional geometry.

• A MultiPolygon boundary is a set of closed curves (LineString values) corresponding to the
boundaries of its Polygon elements.

• Each Curve in the boundary of the MultiPolygon is in the boundary of exactly one Polygon
element.

• Every Curve in the boundary of an Polygon element is in the boundary of the MultiPolygon.

16.3. Supported Spatial Data Formats
This section describes the standard spatial data formats that are used to represent geometry objects in
queries. They are:

Spatial Extensions

1110

• Well-Known Text (WKT) format

• Well-Known Binary (WKB) format

Internally, MySQL stores geometry values in a format that is not identical to either WKT or WKB
format.

16.3.1. Well-Known Text (WKT) Format
The Well-Known Text (WKT) representation of Geometry is designed to exchange geometry data in
ASCII form.

Examples of WKT representations of geometry objects:

• A Point:

POINT(15 20)

Note that point coordinates are specified with no separating comma.

• A LineString with four points:

LINESTRING(0 0, 10 10, 20 25, 50 60)

Note that point coordinate pairs are separated by commas.

• A Polygon with one exterior ring and one interior ring:

POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))

• A MultiPoint with three Point values:

MULTIPOINT(0 0, 20 20, 60 60)

• A MultiLineString with two LineString values:

MULTILINESTRING((10 10, 20 20), (15 15, 30 15))

• A MultiPolygon with two Polygon values:

MULTIPOLYGON(((0 0,10 0,10 10,0 10,0 0)),((5 5,7 5,7 7,5 7, 5 5)))

• A GeometryCollection consisting of two Point values and one LineString:

GEOMETRYCOLLECTION(POINT(10 10), POINT(30 30), LINESTRING(15 15, 20 20))

A Backus-Naur grammar that specifies the formal production rules for writing WKT values can be
found in the OpenGIS specification document referenced near the beginning of this chapter.

16.3.2. Well-Known Binary (WKB) Format
The Well-Known Binary (WKB) representation for geometric values is defined by the OpenGIS spe-

Spatial Extensions

1111

cification. It is also defined in the ISO SQL/MM Part 3: Spatial standard.

WKB is used to exchange geometry data as binary streams represented by BLOB values containing geo-
metric WKB information.

WKB uses one-byte unsigned integers, four-byte unsigned integers, and eight-byte double-precision
numbers (IEEE 754 format). A byte is eight bits.

For example, a WKB value that corresponds to POINT(1 1) consists of this sequence of 21 bytes
(each represented here by two hex digits):

0101000000000000000000F03F000000000000F03F

The sequence may be broken down into these components:

Byte order : 01
WKB type : 01000000
X : 000000000000F03F
Y : 000000000000F03F

Component representation is as follows:

• The byte order may be either 0 or 1 to indicate little-endian or big-endian storage. The little-endian
and big-endian byte orders are also known as Network Data Representation (NDR) and External
Data Representation (XDR), respectively.

• The WKB type is a code that indicates the geometry type. Values from 1 through 7 indicate Point,
LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, and Geo-
metryCollection.

• A Point value has X and Y coordinates, each represented as a double-precision value.

WKB values for more complex geometry values are represented by more complex data structures, as de-
tailed in the OpenGIS specification.

16.4. Creating a Spatially Enabled MySQL Database
This section describes the data types you can use for representing spatial data in MySQL, and the func-
tions available for creating and retrieving spatial values.

16.4.1. MySQL Spatial Data Types
MySQL has data types that correspond to OpenGIS classes. Some of these types hold single geometry
values:

• GEOMETRY

• POINT

• LINESTRING

• POLYGON

GEOMETRY can store geometry values of any type. The other single-value types (POINT, LINES-

Spatial Extensions

1112

TRING, and POLYGON) restrict their values to a particular geometry type.

The other data types hold collections of values:

• MULTIPOINT

• MULTILINESTRING

• MULTIPOLYGON

• GEOMETRYCOLLECTION

GEOMETRYCOLLECTION can store a collection of objects of any type. The other collection types
(MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, and GEOMETRYCOLLECTION) restrict col-
lection members to those having a particular geometry type.

16.4.2. Creating Spatial Values
This section describes how to create spatial values using Well-Known Text and Well-Known Binary
functions that are defined in the OpenGIS standard, and using MySQL-specific functions.

16.4.2.1. Creating Geometry Values Using WKT Functions

MySQL provides a number of functions that take as input parameters a Well-Known Text representation
and, optionally, a spatial reference system identifier (SRID). They return the corresponding geometry.

GeomFromText() accepts a WKT of any geometry type as its first argument. An implementation also
provides type-specific construction functions for construction of geometry values of each geometry type.

• GeomCollFromText(wkt[,srid]), GeometryCollectionFromText(wkt[,srid])

Constructs a GEOMETRYCOLLECTION value using its WKT representation and SRID.

• GeomFromText(wkt[,srid]), GeometryFromText(wkt[,srid])

Constructs a geometry value of any type using its WKT representation and SRID.

• LineFromText(wkt[,srid]), LineStringFromText(wkt[,srid])

Constructs a LINESTRING value using its WKT representation and SRID.

• MLineFromText(wkt[,srid]), MultiLineStringFromText(wkt[,srid])

Constructs a MULTILINESTRING value using its WKT representation and SRID.

• MPointFromText(wkt[,srid]), MultiPointFromText(wkt[,srid])

Constructs a MULTIPOINT value using its WKT representation and SRID.

• MPolyFromText(wkt[,srid]), MultiPolygonFromText(wkt[,srid])

Constructs a MULTIPOLYGON value using its WKT representation and SRID.

• PointFromText(wkt[,srid])

Constructs a POINT value using its WKT representation and SRID.

Spatial Extensions

1113

• PolyFromText(wkt[,srid]), PolygonFromText(wkt[,srid])

Constructs a POLYGON value using its WKT representation and SRID.

The OpenGIS specification also defines the following optional functions, which MySQL does not imple-
ment. These functions construct Polygon or MultiPolygon values based on the WKT representa-
tion of a collection of rings or closed LineString values. These values may intersect.

• BdMPolyFromText(wkt,srid)

Constructs a MultiPolygon value from a MultiLineString value in WKT format containing
an arbitrary collection of closed LineString values.

• BdPolyFromText(wkt,srid)

Constructs a Polygon value from a MultiLineString value in WKT format containing an ar-
bitrary collection of closed LineString values.

16.4.2.2. Creating Geometry Values Using WKB Functions

MySQL provides a number of functions that take as input parameters a BLOB containing a Well-Known
Binary representation and, optionally, a spatial reference system identifier (SRID). They return the cor-
responding geometry.

GeomFromWKB() accepts a WKB of any geometry type as its first argument. An implementation also
provides type-specific construction functions for construction of geometry values of each geometry type.

• GeomCollFromWKB(wkb[,srid]), GeometryCollectionFromWKB(wkb[,srid])

Constructs a GEOMETRYCOLLECTION value using its WKB representation and SRID.

• GeomFromWKB(wkb[,srid]), GeometryFromWKB(wkb[,srid])

Constructs a geometry value of any type using its WKB representation and SRID.

• LineFromWKB(wkb[,srid]), LineStringFromWKB(wkb[,srid])

Constructs a LINESTRING value using its WKB representation and SRID.

• MLineFromWKB(wkb[,srid]), MultiLineStringFromWKB(wkb[,srid])

Constructs a MULTILINESTRING value using its WKB representation and SRID.

• MPointFromWKB(wkb[,srid]), MultiPointFromWKB(wkb[,srid])

Constructs a MULTIPOINT value using its WKB representation and SRID.

• MPolyFromWKB(wkb[,srid]), MultiPolygonFromWKB(wkb[,srid])

Constructs a MULTIPOLYGON value using its WKB representation and SRID.

• PointFromWKB(wkb[,srid])

Constructs a POINT value using its WKB representation and SRID.

• PolyFromWKB(wkb[,srid]), PolygonFromWKB(wkb[,srid])

Spatial Extensions

1114

Constructs a POLYGON value using its WKB representation and SRID.

The OpenGIS specification also describes optional functions for constructing Polygon or Multi-
Polygon values based on the WKB representation of a collection of rings or closed LineString val-
ues. These values may intersect. MySQL does not implement these functions:

• BdMPolyFromWKB(wkb,srid)

Constructs a MultiPolygon value from a MultiLineString value in WKB format containing
an arbitrary collection of closed LineString values.

• BdPolyFromWKB(wkb,srid)

Constructs a Polygon value from a MultiLineString value in WKB format containing an ar-
bitrary collection of closed LineString values.

16.4.2.3. Creating Geometry Values Using MySQL-Specific Functions

MySQL provides a set of useful non-standard functions for creating geometry WKB representations.
The functions described in this section are MySQL extensions to the OpenGIS specification. The results
of these functions are BLOB values containing WKB representations of geometry values with no SRID.
The results of these functions can be substituted as the first argument for any function in the Geom-
FromWKB() function family.

• GeometryCollection(g1,g2,...)

Constructs a WKB GeometryCollection. If any argument is not a well-formed WKB repres-
entation of a geometry, the return value is NULL.

• LineString(pt1,pt2,...)

Constructs a WKB LineString value from a number of WKB Point arguments. If any argu-
ment is not a WKB Point, the return value is NULL. If the number of Point arguments is less
than two, the return value is NULL.

• MultiLineString(ls1,ls2,...)

Constructs a WKB MultiLineString value using WKB LineString arguments. If any argu-
ment is not a WKB LineString, the return value is NULL.

• MultiPoint(pt1,pt2,...)

Constructs a WKB MultiPoint value using WKB Point arguments. If any argument is not a
WKB Point, the return value is NULL.

• MultiPolygon(poly1,poly2,...)

Constructs a WKB MultiPolygon value from a set of WKB Polygon arguments. If any argu-
ment is not a WKB Polygon, the return value is NULL.

• Point(x,y)

Constructs a WKB Point using its coordinates.

Spatial Extensions

1115

• Polygon(ls1,ls2,...)

Constructs a WKB Polygon value from a number of WKB LineString arguments. If any argu-
ment does not represent the WKB of a LinearRing (that is, not a closed and simple LineS-
tring) the return value is NULL.

16.4.3. Creating Spatial Columns
MySQL provides a standard way of creating spatial columns for geometry types, for example, with
CREATE TABLE or ALTER TABLE. Currently, spatial columns are supported for MyISAM, InnoDB,
NDB, BDB, and ARCHIVE tables. (Support for storage engines other than MyISAM was added in
MySQL 5.0.16.) See also the annotations about spatial indexes under Section 16.6.1, “Creating Spatial
Indexes”.

• Use the CREATE TABLE statement to create a table with a spatial column:

CREATE TABLE geom (g GEOMETRY);

• Use the ALTER TABLE statement to add or drop a spatial column to or from an existing table:

ALTER TABLE geom ADD pt POINT;
ALTER TABLE geom DROP pt;

16.4.4. Populating Spatial Columns
After you have created spatial columns, you can populate them with spatial data.

Values should be stored in internal geometry format, but you can convert them to that format from either
Well-Known Text (WKT) or Well-Known Binary (WKB) format. The following examples demonstrate
how to insert geometry values into a table by converting WKT values into internal geometry format:

• Perform the conversion directly in the INSERT statement:

INSERT INTO geom VALUES (GeomFromText('POINT(1 1)'));

SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (GeomFromText(@g));

• Perform the conversion prior to the INSERT:

SET @g = GeomFromText('POINT(1 1)');
INSERT INTO geom VALUES (@g);

The following examples insert more complex geometries into the table:

SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (GeomFromText(@g));

SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (GeomFromText(@g));

SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (GeomFromText(@g));

Spatial Extensions

1116

The preceding examples all use GeomFromText() to create geometry values. You can also use type-
specific functions:

SET @g = 'POINT(1 1)';
INSERT INTO geom VALUES (PointFromText(@g));

SET @g = 'LINESTRING(0 0,1 1,2 2)';
INSERT INTO geom VALUES (LineStringFromText(@g));

SET @g = 'POLYGON((0 0,10 0,10 10,0 10,0 0),(5 5,7 5,7 7,5 7, 5 5))';
INSERT INTO geom VALUES (PolygonFromText(@g));

SET @g =
'GEOMETRYCOLLECTION(POINT(1 1),LINESTRING(0 0,1 1,2 2,3 3,4 4))';
INSERT INTO geom VALUES (GeomCollFromText(@g));

Note that if a client application program wants to use WKB representations of geometry values, it is re-
sponsible for sending correctly formed WKB in queries to the server. However, there are several ways
of satisfying this requirement. For example:

• Inserting a POINT(1 1) value with hex literal syntax:

mysql> INSERT INTO geom VALUES
-> (GeomFromWKB(0x0101000000000000000000F03F000000000000F03F));

• An ODBC application can send a WKB representation, binding it to a placeholder using an argument
of BLOB type:

INSERT INTO geom VALUES (GeomFromWKB(?))

Other programming interfaces may support a similar placeholder mechanism.

• In a C program, you can escape a binary value using mysql_real_escape_string() and in-
clude the result in a query string that is sent to the server. See Section 22.2.3.52,
“mysql_real_escape_string()”.

16.4.5. Fetching Spatial Data
Geometry values stored in a table can be fetched in internal format. You can also convert them into
WKT or WKB format.

• Fetching spatial data in internal format:

Fetching geometry values using internal format can be useful in table-to-table transfers:

CREATE TABLE geom2 (g GEOMETRY) SELECT g FROM geom;

• Fetching spatial data in WKT format:

The AsText() function converts a geometry from internal format into a WKT string.

SELECT AsText(g) FROM geom;

• Fetching spatial data in WKB format:

The AsBinary() function converts a geometry from internal format into a BLOB containing the
WKB value.

Spatial Extensions

1117

SELECT AsBinary(g) FROM geom;

16.5. Analyzing Spatial Information
After populating spatial columns with values, you are ready to query and analyze them. MySQL
provides a set of functions to perform various operations on spatial data. These functions can be grouped
into four major categories according to the type of operation they perform:

• Functions that convert geometries between various formats

• Functions that provide access to qualitative or quantitative properties of a geometry

• Functions that describe relations between two geometries

• Functions that create new geometries from existing ones

Spatial analysis functions can be used in many contexts, such as:

• Any interactive SQL program, such as mysql or MySQL Query Browser

• Application programs written in any language that supports a MySQL client API

16.5.1. Geometry Format Conversion Functions
MySQL supports the following functions for converting geometry values between internal format and
either WKT or WKB format:

• AsBinary(g)

Converts a value in internal geometry format to its WKB representation and returns the binary result.

SELECT AsBinary(g) FROM geom;

• AsText(g)

Converts a value in internal geometry format to its WKT representation and returns the string result.

mysql> SET @g = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(GeomFromText(@g));
+--------------------------+
| AsText(GeomFromText(@g)) |
+--------------------------+
| LINESTRING(1 1,2 2,3 3) |
+--------------------------+

• GeomFromText(wkt[,srid])

Converts a string value from its WKT representation into internal geometry format and returns the
result. A number of type-specific functions are also supported, such as PointFromText() and
LineFromText(). See Section 16.4.2.1, “Creating Geometry Values Using WKT Functions”.

• GeomFromWKB(wkb[,srid])

Spatial Extensions

1118

Converts a binary value from its WKB representation into internal geometry format and returns the
result. A number of type-specific functions are also supported, such as PointFromWKB() and
LineFromWKB(). See Section 16.4.2.2, “Creating Geometry Values Using WKB Functions”.

16.5.2. Geometry Functions
Each function that belongs to this group takes a geometry value as its argument and returns some quant-
itative or qualitative property of the geometry. Some functions restrict their argument type. Such func-
tions return NULL if the argument is of an incorrect geometry type. For example, Area() returns NULL
if the object type is neither Polygon nor MultiPolygon.

16.5.2.1. General Geometry Functions

The functions listed in this section do not restrict their argument and accept a geometry value of any
type.

• Dimension(g)

Returns the inherent dimension of the geometry value g. The result can be –1, 0, 1, or 2. The mean-
ing of these values is given in Section 16.2.2, “Class Geometry”.

mysql> SELECT Dimension(GeomFromText('LineString(1 1,2 2)'));
+--+
| Dimension(GeomFromText('LineString(1 1,2 2)')) |
+--+
| 1 |
+--+

• Envelope(g)

Returns the Minimum Bounding Rectangle (MBR) for the geometry value g. The result is returned
as a Polygon value.

The polygon is defined by the corner points of the bounding box:

POLYGON((MINX MINY, MAXX MINY, MAXX MAXY, MINX MAXY, MINX MINY))

mysql> SELECT AsText(Envelope(GeomFromText('LineString(1 1,2 2)')));
+---+
| AsText(Envelope(GeomFromText('LineString(1 1,2 2)'))) |
+---+
| POLYGON((1 1,2 1,2 2,1 2,1 1)) |
+---+

• GeometryType(g)

Returns as a string the name of the geometry type of which the geometry instance g is a member.
The name corresponds to one of the instantiable Geometry subclasses.

mysql> SELECT GeometryType(GeomFromText('POINT(1 1)'));
+--+
| GeometryType(GeomFromText('POINT(1 1)')) |
+--+
| POINT |
+--+

• SRID(g)

Spatial Extensions

1119

Returns an integer indicating the Spatial Reference System ID for the geometry value g.

In MySQL, the SRID value is just an integer associated with the geometry value. All calculations are
done assuming Euclidean (planar) geometry.

mysql> SELECT SRID(GeomFromText('LineString(1 1,2 2)',101));
+---+
| SRID(GeomFromText('LineString(1 1,2 2)',101)) |
+---+
| 101 |
+---+

The OpenGIS specification also defines the following functions, which MySQL does not implement:

• Boundary(g)

Returns a geometry that is the closure of the combinatorial boundary of the geometry value g.

• IsEmpty(g)

Returns 1 if the geometry value g is the empty geometry, 0 if it is not empty, and –1 if the argument
is NULL. If the geometry is empty, it represents the empty point set.

• IsSimple(g)

Currently, this function is a placeholder and should not be used. If implemented, its behavior will be
as described in the next paragraph.

Returns 1 if the geometry value g has no anomalous geometric points, such as self-intersection or
self-tangency. IsSimple() returns 0 if the argument is not simple, and –1 if it is NULL.

The description of each instantiable geometric class given earlier in the chapter includes the specific
conditions that cause an instance of that class to be classified as not simple. (See Section 16.2.1,
“The Geometry Class Hierarchy”.)

16.5.2.2. Point Functions

A Point consists of X and Y coordinates, which may be obtained using the following functions:

• X(p)

Returns the X-coordinate value for the point p as a double-precision number.

mysql> SET @pt = 'Point(56.7 53.34)';
mysql> SELECT X(GeomFromText(@pt));
+----------------------+
| X(GeomFromText(@pt)) |
+----------------------+
| 56.7 |
+----------------------+

• Y(p)

Returns the Y-coordinate value for the point p as a double-precision number.

mysql> SET @pt = 'Point(56.7 53.34)';
mysql> SELECT Y(GeomFromText(@pt));

Spatial Extensions

1120

+----------------------+
| Y(GeomFromText(@pt)) |
+----------------------+
| 53.34 |
+----------------------+

16.5.2.3. LineString Functions

A LineString consists of Point values. You can extract particular points of a LineString, count
the number of points that it contains, or obtain its length.

• EndPoint(ls)

Returns the Point that is the endpoint of the LineString value ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(EndPoint(GeomFromText(@ls)));
+-------------------------------------+
| AsText(EndPoint(GeomFromText(@ls))) |
+-------------------------------------+
| POINT(3 3) |
+-------------------------------------+

• GLength(ls)

Returns as a double-precision number the length of the LineString value ls in its associated
spatial reference.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT GLength(GeomFromText(@ls));
+----------------------------+
| GLength(GeomFromText(@ls)) |
+----------------------------+
| 2.8284271247462 |
+----------------------------+

GLength() is a non-standard name. It corresponds to the OpenGIS Length() function.

• NumPoints(ls)

Returns the number of Point objects in the LineString value ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT NumPoints(GeomFromText(@ls));
+------------------------------+
| NumPoints(GeomFromText(@ls)) |
+------------------------------+
| 3 |
+------------------------------+

• PointN(ls,N)

Returns the N-th Point in the Linestring value ls. Points are numbered beginning with 1.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(PointN(GeomFromText(@ls),2));
+-------------------------------------+
| AsText(PointN(GeomFromText(@ls),2)) |
+-------------------------------------+
| POINT(2 2) |
+-------------------------------------+

Spatial Extensions

1121

• StartPoint(ls)

Returns the Point that is the start point of the LineString value ls.

mysql> SET @ls = 'LineString(1 1,2 2,3 3)';
mysql> SELECT AsText(StartPoint(GeomFromText(@ls)));
+---------------------------------------+
| AsText(StartPoint(GeomFromText(@ls))) |
+---------------------------------------+
| POINT(1 1) |
+---------------------------------------+

The OpenGIS specification also defines the following function, which MySQL does not implement:

• IsRing(ls)

Returns 1 if the LineString value ls is closed (that is, its StartPoint() and EndPoint()
values are the same) and is simple (does not pass through the same point more than once). Returns 0
if ls is not a ring, and –1 if it is NULL.

16.5.2.4. MultiLineString Functions

• GLength(mls)

Returns as a double-precision number the length of the MultiLineString value mls. The length
of mls is equal to the sum of the lengths of its elements.

mysql> SET @mls = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';
mysql> SELECT GLength(GeomFromText(@mls));
+-----------------------------+
| GLength(GeomFromText(@mls)) |
+-----------------------------+
| 4.2426406871193 |
+-----------------------------+

GLength() is a non-standard name. It corresponds to the OpenGIS Length() function.

• IsClosed(mls)

Returns 1 if the MultiLineString value mls is closed (that is, the StartPoint() and End-
Point() values are the same for each LineString in mls). Returns 0 if mls is not closed, and
–1 if it is NULL.

mysql> SET @mls = 'MultiLineString((1 1,2 2,3 3),(4 4,5 5))';
mysql> SELECT IsClosed(GeomFromText(@mls));
+------------------------------+
| IsClosed(GeomFromText(@mls)) |
+------------------------------+
| 0 |
+------------------------------+

16.5.2.5. Polygon Functions

• Area(poly)

Returns as a double-precision number the area of the Polygon value poly, as measured in its spa-

Spatial Extensions

1122

tial reference system.

mysql> SET @poly = 'Polygon((0 0,0 3,3 0,0 0),(1 1,1 2,2 1,1 1))';
mysql> SELECT Area(GeomFromText(@poly));
+---------------------------+
| Area(GeomFromText(@poly)) |
+---------------------------+
| 4 |
+---------------------------+

• ExteriorRing(poly)

Returns the exterior ring of the Polygon value poly as a LineString.

mysql> SET @poly =
-> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';

mysql> SELECT AsText(ExteriorRing(GeomFromText(@poly)));
+---+
| AsText(ExteriorRing(GeomFromText(@poly))) |
+---+
| LINESTRING(0 0,0 3,3 3,3 0,0 0) |
+---+

• InteriorRingN(poly,N)

Returns the N-th interior ring for the Polygon value poly as a LineString. Rings are
numbered beginning with 1.

mysql> SET @poly =
-> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';

mysql> SELECT AsText(InteriorRingN(GeomFromText(@poly),1));
+--+
| AsText(InteriorRingN(GeomFromText(@poly),1)) |
+--+
| LINESTRING(1 1,1 2,2 2,2 1,1 1) |
+--+

• NumInteriorRings(poly)

Returns the number of interior rings in the Polygon value poly.

mysql> SET @poly =
-> 'Polygon((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1))';

mysql> SELECT NumInteriorRings(GeomFromText(@poly));
+---------------------------------------+
| NumInteriorRings(GeomFromText(@poly)) |
+---------------------------------------+
| 1 |
+---------------------------------------+

16.5.2.6. MultiPolygon Functions

• Area(mpoly)

Returns as a double-precision number the area of the MultiPolygon value mpoly, as measured
in its spatial reference system.

mysql> SET @mpoly =
-> 'MultiPolygon(((0 0,0 3,3 3,3 0,0 0),(1 1,1 2,2 2,2 1,1 1)))';

mysql> SELECT Area(GeomFromText(@mpoly));
+----------------------------+
| Area(GeomFromText(@mpoly)) |
+----------------------------+
| 8 |
+----------------------------+

Spatial Extensions

1123

The OpenGIS specification also defines the following functions, which MySQL does not implement:

• Centroid(mpoly)

Returns the mathematical centroid for the MultiPolygon value mpoly as a Point. The result is
not guaranteed to be on the MultiPolygon.

• PointOnSurface(mpoly)

Returns a Point value that is guaranteed to be on the MultiPolygon value mpoly.

16.5.2.7. GeometryCollection Functions

• GeometryN(gc,N)

Returns the N-th geometry in the GeometryCollection value gc. Geometries are numbered be-
ginning with 1.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT AsText(GeometryN(GeomFromText(@gc),1));
+--+
| AsText(GeometryN(GeomFromText(@gc),1)) |
+--+
| POINT(1 1) |
+--+

• NumGeometries(gc)

Returns the number of geometries in the GeometryCollection value gc.

mysql> SET @gc = 'GeometryCollection(Point(1 1),LineString(2 2, 3 3))';
mysql> SELECT NumGeometries(GeomFromText(@gc));
+----------------------------------+
| NumGeometries(GeomFromText(@gc)) |
+----------------------------------+
| 2 |
+----------------------------------+

16.5.3. Functions That Create New Geometries from Existing
Ones

16.5.3.1. Geometry Functions That Produce New Geometries

Section 16.5.2, “Geometry Functions”, discusses several functions that construct new geometries from
existing ones. See that section for descriptions of these functions:

• Envelope(g)

• StartPoint(ls)

• EndPoint(ls)

Spatial Extensions

1124

• PointN(ls,N)

• ExteriorRing(poly)

• InteriorRingN(poly,N)

• GeometryN(gc,N)

16.5.3.2. Spatial Operators

OpenGIS proposes a number of other functions that can produce geometries. They are designed to im-
plement spatial operators.

These functions are not implemented in MySQL. They may appear in future releases.

• Buffer(g,d)

Returns a geometry that represents all points whose distance from the geometry value g is less than
or equal to a distance of d.

• ConvexHull(g)

Returns a geometry that represents the convex hull of the geometry value g.

• Difference(g1,g2)

Returns a geometry that represents the point set difference of the geometry value g1 with g2.

• Intersection(g1,g2)

Returns a geometry that represents the point set intersection of the geometry values g1 with g2.

• SymDifference(g1,g2)

Returns a geometry that represents the point set symmetric difference of the geometry value g1 with
g2.

• Union(g1,g2)

Returns a geometry that represents the point set union of the geometry values g1 and g2.

16.5.4. Functions for Testing Spatial Relations Between Geo-
metric Objects

The functions described in these sections take two geometries as input parameters and return a qualitat-
ive or quantitative relation between them.

16.5.5. Relations on Geometry Minimal Bounding Rectangles
(MBRs)

MySQL provides several functions that test relations between minimal bounding rectangles of two geo-
metries g1 and g2. The return values 1 and 0 indicate true and false, respectively.

Spatial Extensions

1125

• MBRContains(g1,g2)

Returns 1 or 0 to indicate whether the Minimum Bounding Rectangle of g1 contains the Minimum
Bounding Rectangle of g2.

mysql> SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = GeomFromText('Point(1 1)');
mysql> SELECT MBRContains(@g1,@g2), MBRContains(@g2,@g1);
----------------------+----------------------+
| MBRContains(@g1,@g2) | MBRContains(@g2,@g1) |
+----------------------+----------------------+
| 1 | 0 |
+----------------------+----------------------+

• MBRDisjoint(g1,g2)

Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and
g2 are disjoint (do not intersect).

• MBREqual(g1,g2)

Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and
g2 are the same.

• MBRIntersects(g1,g2)

Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and
g2 intersect.

• MBROverlaps(g1,g2)

Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and
g2 overlap.

• MBRTouches(g1,g2)

Returns 1 or 0 to indicate whether the Minimum Bounding Rectangles of the two geometries g1 and
g2 touch.

• MBRWithin(g1,g2)

Returns 1 or 0 to indicate whether the Minimum Bounding Rectangle of g1 is within the Minimum
Bounding Rectangle of g2.

mysql> SET @g1 = GeomFromText('Polygon((0 0,0 3,3 3,3 0,0 0))');
mysql> SET @g2 = GeomFromText('Polygon((0 0,0 5,5 5,5 0,0 0))');
mysql> SELECT MBRWithin(@g1,@g2), MBRWithin(@g2,@g1);
+--------------------+--------------------+
| MBRWithin(@g1,@g2) | MBRWithin(@g2,@g1) |
+--------------------+--------------------+
| 1 | 0 |
+--------------------+--------------------+

16.5.6. Functions That Test Spatial Relationships Between
Geometries

The OpenGIS specification defines the following functions. They test the relationship between two geo-
metry values g1 and g2.

Currently, MySQL does not implement these functions according to the specification. Those that are im-

Spatial Extensions

1126

plemented return the same result as the corresponding MBR-based functions. This includes functions in
the following list other than Distance() and Related().

These functions may be implemented in future releases with full support for spatial analysis, not just
MBR-based support.

The return values 1 and 0 indicate true and false, respectively.

• Contains(g1,g2)

Returns 1 or 0 to indicate whether g1 completely contains g2.

• Crosses(g1,g2)

Returns 1 if g1 spatially crosses g2. Returns NULL if g1 is a Polygon or a MultiPolygon, or if
g2 is a Point or a MultiPoint. Otherwise, returns 0.

The term spatially crosses denotes a spatial relation between two given geometries that has the fol-
lowing properties:

• The two geometries intersect

• Their intersection results in a geometry that has a dimension that is one less than the maximum
dimension of the two given geometries

• Their intersection is not equal to either of the two given geometries

• Disjoint(g1,g2)

Returns 1 or 0 to indicate whether g1 is spatially disjoint from (does not intersect) g2.

• Distance(g1,g2)

Returns as a double-precision number the shortest distance between any two points in the two geo-
metries.

• Equals(g1,g2)

Returns 1 or 0 to indicate whether g1 is spatially equal to g2.

• Intersects(g1,g2)

Returns 1 or 0 to indicate whether g1 spatially intersects g2.

• Overlaps(g1,g2)

Returns 1 or 0 to indicate whether g1 spatially overlaps g2. The term spatially overlaps is used if
two geometries intersect and their intersection results in a geometry of the same dimension but not
equal to either of the given geometries.

• Related(g1,g2,pattern_matrix)

Returns 1 or 0 to indicate whether the spatial relationship specified by pattern_matrix exists
between g1 and g2. Returns –1 if the arguments are NULL. The pattern matrix is a string. Its spe-
cification will be noted here if this function is implemented.

• Touches(g1,g2)

Returns 1 or 0 to indicate whether g1 spatially touches g2. Two geometries spatially touch if the in-

Spatial Extensions

1127

teriors of the geometries do not intersect, but the boundary of one of the geometries intersects either
the boundary or the interior of the other.

• Within(g1,g2)

Returns 1 or 0 to indicate whether g1 is spatially within g2.

16.6. Optimizing Spatial Analysis
Search operations in non-spatial databases can be optimized using indexes. This is true for spatial data-
bases as well. With the help of a great variety of multi-dimensional indexing methods that have previ-
ously been designed, it is possible to optimize spatial searches. The most typical of these are:

• Point queries that search for all objects that contain a given point

• Region queries that search for all objects that overlap a given region

MySQL uses R-Trees with quadratic splitting to index spatial columns. A spatial index is built using
the MBR of a geometry. For most geometries, the MBR is a minimum rectangle that surrounds the geo-
metries. For a horizontal or a vertical linestring, the MBR is a rectangle degenerated into the linestring.
For a point, the MBR is a rectangle degenerated into the point.

It is also possible to create normal indexes on spatial columns. Beginning with MySQL 5.0.16, you must
declare a prefix for any (non-spatial) index on a spatial column except for POINT columns.

16.6.1. Creating Spatial Indexes
MySQL can create spatial indexes using syntax similar to that for creating regular indexes, but extended
with the SPATIAL keyword. Currently, spatial columns that are indexed must be declared NOT NULL.
The following examples demonstrate how to create spatial indexes:

• With CREATE TABLE:

CREATE TABLE geom (g GEOMETRY NOT NULL, SPATIAL INDEX(g));

• With ALTER TABLE:

ALTER TABLE geom ADD SPATIAL INDEX(g);

• With CREATE INDEX:

CREATE SPATIAL INDEX sp_index ON geom (g);

For MyISAM tables, SPATIAL INDEX creates an R-tree index. For other storage engines that support
spatial indexing, SPATIAL INDEX creates a B-tree index. A B-tree index on spatial values will be use-
ful for exact-value lookups, but not for range scans.

To drop spatial indexes, use ALTER TABLE or DROP INDEX:

• With ALTER TABLE:

Spatial Extensions

1128

ALTER TABLE geom DROP INDEX g;

• With DROP INDEX:

DROP INDEX sp_index ON geom;

Example: Suppose that a table geom contains more than 32,000 geometries, which are stored in the
column g of type GEOMETRY. The table also has an AUTO_INCREMENT column fid for storing object
ID values.

mysql> DESCRIBE geom;
+-------+----------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+-------+----------+------+-----+---------+----------------+
| fid | int(11) | | PRI | NULL | auto_increment |
| g | geometry | | | | |
+-------+----------+------+-----+---------+----------------+
2 rows in set (0.00 sec)

mysql> SELECT COUNT(*) FROM geom;
+----------+
| count(*) |
+----------+
| 32376 |
+----------+
1 row in set (0.00 sec)

To add a spatial index on the column g, use this statement:

mysql> ALTER TABLE geom ADD SPATIAL INDEX(g);
Query OK, 32376 rows affected (4.05 sec)
Records: 32376 Duplicates: 0 Warnings: 0

16.6.2. Using a Spatial Index
The optimizer investigates whether available spatial indexes can be involved in the search for queries
that use a function such as MBRContains() or MBRWithin() in the WHERE clause. The following
query finds all objects that are in the given rectangle:

mysql> SET @poly =
-> 'Polygon((30000 15000,31000 15000,31000 16000,30000 16000,30000 15000))';

mysql> SELECT fid,AsText(g) FROM geom WHERE
-> MBRContains(GeomFromText(@poly),g);

+-----+---+
| fid | AsText(g) |
+-----+---+
21	LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ...
22	LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ...
23	LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ...
24	LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ...
25	LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ...
26	LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ...
249	LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ...
1	LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ...
2	LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ...
3	LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ...
4	LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ...
5	LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ...
6	LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ...
7	LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ...
10	LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ...
11	LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ...
13	LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ...
154	LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ...
155	LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ...
157	LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ...
+-----+---+

Spatial Extensions

1129

20 rows in set (0.00 sec)

Use EXPLAIN to check the way this query is executed:

mysql> SET @poly =
-> 'Polygon((30000 15000,31000 15000,31000 16000,30000 16000,30000 15000))';

mysql> EXPLAIN SELECT fid,AsText(g) FROM geom WHERE
-> MBRContains(GeomFromText(@poly),g)\G

*************************** 1. row ***************************
id: 1

select_type: SIMPLE
table: geom
type: range

possible_keys: g
key: g

key_len: 32
ref: NULL

rows: 50
Extra: Using where

1 row in set (0.00 sec)

Check what would happen without a spatial index:

mysql> SET @poly =
-> 'Polygon((30000 15000,31000 15000,31000 16000,30000 16000,30000 15000))';

mysql> EXPLAIN SELECT fid,AsText(g) FROM g IGNORE INDEX (g) WHERE
-> MBRContains(GeomFromText(@poly),g)\G

*************************** 1. row ***************************
id: 1

select_type: SIMPLE
table: geom
type: ALL

possible_keys: NULL
key: NULL

key_len: NULL
ref: NULL

rows: 32376
Extra: Using where

1 row in set (0.00 sec)

Executing the SELECT statement without the spatial index yields the same result but causes the execu-
tion time to rise from 0.00 seconds to 0.46 seconds:

mysql> SET @poly =
-> 'Polygon((30000 15000,31000 15000,31000 16000,30000 16000,30000 15000))';

mysql> SELECT fid,AsText(g) FROM geom IGNORE INDEX (g) WHERE
-> MBRContains(GeomFromText(@poly),g);

+-----+---+
| fid | AsText(g) |
+-----+---+
1	LINESTRING(30250.4 15129.2,30248.8 15138.4,30238.2 15136. ...
2	LINESTRING(30220.2 15122.8,30217.2 15137.8,30207.6 15136, ...
3	LINESTRING(30179 15114.4,30176.6 15129.4,30167 15128,3016 ...
4	LINESTRING(30155.2 15121.4,30140.4 15118.6,30142 15109,30 ...
5	LINESTRING(30192.4 15085,30177.6 15082.2,30179.2 15072.4, ...
6	LINESTRING(30244 15087,30229 15086.2,30229.4 15076.4,3024 ...
7	LINESTRING(30200.6 15059.4,30185.6 15058.6,30186 15048.8, ...
10	LINESTRING(30179.6 15017.8,30181 15002.8,30190.8 15003.6, ...
11	LINESTRING(30154.2 15000.4,30168.6 15004.8,30166 15014.2, ...
13	LINESTRING(30105 15065.8,30108.4 15050.8,30118 15053,3011 ...
21	LINESTRING(30350.4 15828.8,30350.6 15845,30333.8 15845,30 ...
22	LINESTRING(30350.6 15871.4,30350.6 15887.8,30334 15887.8, ...
23	LINESTRING(30350.6 15914.2,30350.6 15930.4,30334 15930.4, ...
24	LINESTRING(30290.2 15823,30290.2 15839.4,30273.4 15839.4, ...
25	LINESTRING(30291.4 15866.2,30291.6 15882.4,30274.8 15882. ...
26	LINESTRING(30291.6 15918.2,30291.6 15934.4,30275 15934.4, ...
154	LINESTRING(30276.2 15143.8,30261.4 15141,30263 15131.4,30 ...
155	LINESTRING(30269.8 15084,30269.4 15093.4,30258.6 15093,30 ...
157	LINESTRING(30128.2 15011,30113.2 15010.2,30113.6 15000.4, ...
249	LINESTRING(30337.8 15938.6,30337.8 15946.8,30320.4 15946. ...
+-----+---+
20 rows in set (0.46 sec)

Spatial Extensions

1130

In future releases, spatial indexes may also be used for optimizing other functions. See Section 16.5.4,
“Functions for Testing Spatial Relations Between Geometric Objects”.

16.7. MySQL Conformance and Compatibility
MySQL does not yet implement the following GIS features:

• Additional Metadata Views

OpenGIS specifications propose several additional metadata views. For example, a system view
named GEOMETRY_COLUMNS contains a description of geometry columns, one row for each geo-
metry column in the database.

• The OpenGIS function Length() on LineString and MultiLineString currently should
be called in MySQL as GLength()

The problem is that there is an existing SQL function Length() that calculates the length of string
values, and sometimes it is not possible to distinguish whether the function is called in a textual or
spatial context. We need either to solve this somehow, or decide on another function name.

Spatial Extensions

1131

Chapter 17. Stored Procedures and Functions
Stored routines (procedures and functions) are supported in MySQL 5.0. A stored procedure is a set of
SQL statements that can be stored in the server. Once this has been done, clients don't need to keep reis-
suing the individual statements but can refer to the stored procedure instead.

Some situations where stored routines can be particularly useful:

• When multiple client applications are written in different languages or work on different platforms,
but need to perform the same database operations.

• When security is paramount. Banks, for example, use stored procedures and functions for all com-
mon operations. This provides a consistent and secure environment, and routines can ensure that
each operation is properly logged. In such a setup, applications and users would have no access to
the database tables directly, but can only execute specific stored routines.

Stored routines can provide improved performance because less information needs to be sent between
the server and the client. The tradeoff is that this does increase the load on the database server because
more of the work is done on the server side and less is done on the client (application) side. Consider
this if many client machines (such as Web servers) are serviced by only one or a few database servers.

Stored routines also allow you to have libraries of functions in the database server. This is a feature
shared by modern application languages that allow such design internally (for example, by using
classes). Using these client application language features is beneficial for the programmer even outside
the scope of database use.

MySQL follows the SQL:2003 syntax for stored routines, which is also used by IBM's DB2.

The MySQL implementation of stored routines is still in progress. All syntax described in this chapter is
supported and any limitations and extensions are documented where appropriate. Further discussion of
restrictions on use of stored routines is given in Section I.1, “Restrictions on Stored Routines and Trig-
gers”.

Binary logging for stored routines takes place as described in Section 17.5, “Binary Logging of Stored
Routines and Triggers”.

Recursive stored procedures are disabled by default, but can be enabled on the server by setting the
max_sp_recursion_depth server system variable to a nonzero value. See Section 5.2.3, “System
Variables”, for more information.

Stored functions cannot be recursive. See Section I.1, “Restrictions on Stored Routines and Triggers”.

17.1. Stored Routines and the Grant Tables
Stored routines require the proc table in the mysql database. This table is created during the MySQL
5.0 installation procedure. If you are upgrading to MySQL 5.0 from an earlier version, be sure to update
your grant tables to make sure that the proc table exists. See Section 5.6.2, “mysql_upgrade —
Check Tables for MySQL Upgrade”.

The server manipulates the mysql.proc table in response to statements that create, alter, or drop
stored routines. It is not supported that the server will notice manual manipulation of this table.

Beginning with MySQL 5.0.3, the grant system takes stored routines into account as follows:

1132

• The CREATE ROUTINE privilege is needed to create stored routines.

• The ALTER ROUTINE privilege is needed to alter or drop stored routines. This privilege is granted
automatically to the creator of a routine.

• The EXECUTE privilege is required to execute stored routines. However, this privilege is granted
automatically to the creator of a routine. Also, the default SQL SECURITY characteristic for a
routine is DEFINER, which enables users who have access to the database with which the routine is
associated to execute the routine.

17.2. Stored Routine Syntax
A stored routine is either a procedure or a function. Stored routines are created with CREATE PRO-
CEDURE and CREATE FUNCTION statements. A procedure is invoked using a CALL statement, and
can only pass back values using output variables. A function can be called from inside a statement just
like any other function (that is, by invoking the function's name), and can return a scalar value. Stored
routines may call other stored routines.

As of MySQL 5.0.1, a stored procedure or function is associated with a particular database. This has
several implications:

• When the routine is invoked, an implicit USE db_name is performed (and undone when the
routine terminates). USE statements within stored routines are disallowed.

• You can qualify routine names with the database name. This can be used to refer to a routine that is
not in the current database. For example, to invoke a stored procedure p or function f that is associ-
ated with the test database, you can say CALL test.p() or test.f().

• When a database is dropped, all stored routines associated with it are dropped as well.

(In MySQL 5.0.0, stored routines are global and not associated with a database. They inherit the default
database from the caller. If a USE db_name is executed within the routine, the original default data-
base is restored upon routine exit.)

MySQL supports the very useful extension that allows the use of regular SELECT statements (that is,
without using cursors or local variables) inside a stored procedure. The result set of such a query is
simply sent directly to the client. Multiple SELECT statements generate multiple result sets, so the client
must use a MySQL client library that supports multiple result sets. This means the client must use a cli-
ent library from a version of MySQL at least as recent as 4.1. The client should also specify the CLI-
ENT_MULTI_STATEMENTS option when it connects. For C programs, this can be done with the
mysql_real_connect() C API function (see Section 22.2.3.51, “mysql_real_connect()”).

The following sections describe the syntax used to create, alter, drop, and invoke stored procedures and
functions.

17.2.1. CREATE PROCEDURE and CREATE FUNCTION Syntax
CREATE

[DEFINER = { user | CURRENT_USER }]
PROCEDURE sp_name ([proc_parameter[,...]])
[characteristic ...] routine_body

CREATE
[DEFINER = { user | CURRENT_USER }]
FUNCTION sp_name ([func_parameter[,...]])
RETURNS type
[characteristic ...] routine_body

Stored Procedures and Functions

1133

proc_parameter:
[IN | OUT | INOUT] param_name type

func_parameter:
param_name type

type:
Any valid MySQL data type

characteristic:
LANGUAGE SQL

| [NOT] DETERMINISTIC
| { CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }
| SQL SECURITY { DEFINER | INVOKER }
| COMMENT 'string'

routine_body:
Valid SQL procedure statement

These statements create stored routines. As of MySQL 5.0.3, to use them, it is necessary to have the
CREATE ROUTINE privilege. If binary logging is enabled, these statements might may also require the
SUPER privilege, as described in Section 17.5, “Binary Logging of Stored Routines and Triggers”.
MySQL automatically grants the ALTER ROUTINE and EXECUTE privileges to the routine creator.

By default, the routine is associated with the default database. To associate the routine explicitly with a
given database, specify the name as db_name.sp_name when you create it.

If the routine name is the same as the name of a built-in SQL function, you must use a space between the
name and the following parenthesis when defining the routine, or a syntax error occurs. This is also true
when you invoke the routine later. For this reason, we suggest that it is better to avoid re-using the
names of existing SQL functions for your own stored routines.

The IGNORE_SPACE SQL mode applies to built-in functions, not to stored routines. it is always allow-
able to have spaces after a routine name, regardless of whether IGNORE_SPACE is enabled.

The parameter list enclosed within parentheses must always be present. If there are no parameters, an
empty parameter list of () should be used.

Each parameter can be declared to use any valid data type, except that the COLLATE attribute cannot be
used.

Each parameter is an IN parameter by default. To specify otherwise for a parameter, use the keyword
OUT or INOUT before the parameter name.

Note: Specifying a parameter as IN, OUT, or INOUT is valid only for a PROCEDURE. (FUNCTION
parameters are always regarded as IN parameters.)

An IN parameter passes a value into a procedure. The procedure might modify the value, but the modi-
fication is not visible to the caller when the procedure returns. An OUT parameter passes a value from
the procedure back to the caller. Its initial value is NULL within the procedure, and its value is visible to
the caller when the procedure returns. An INOUT parameter is initialized by the caller, can be modified
by the procedure, and any change made by the procedure is visible to the caller when the procedure re-
turns.

For each OUT or INOUT parameter, pass a user-defined variable so that you can obtain its value when
the procedure returns. (For an example, see Section 17.2.4, “CALL Statement Syntax”.) If you are call-
ing the procedure from within another stored procedure or function, you can also pass a routine paramet-
er or local routine variable as an IN or INOUT parameter.

The RETURNS clause may be specified only for a FUNCTION, for which it is mandatory. It indicates the
return type of the function, and the function body must contain a RETURN value statement.

The routine_body consists of a valid SQL procedure statement. This can be a simple statement such
as SELECT or INSERT, or it can be a compound statement written using BEGIN and END. Compound

Stored Procedures and Functions

1134

statement syntax is described in Section 17.2.5, “BEGIN ... END Compound Statement Syntax”.
Compound statements can contain declarations, loops, and other control structure statements. The syntax
for these statements is described later in this chapter. See, for example, Section 17.2.6, “DECLARE
Statement Syntax”, and Section 17.2.10, “Flow Control Constructs”. Some statements are not allowed in
stored routines; see Section I.1, “Restrictions on Stored Routines and Triggers”.

The CREATE FUNCTION statement was used in earlier versions of MySQL to support UDFs
(user-defined functions). See Section 24.2, “Adding New Functions to MySQL”. UDFs continue to be
supported, even with the existence of stored functions. A UDF can be regarded as an external stored
function. However, do note that stored functions share their namespace with UDFs.

A procedure or function is considered “deterministic” if it always produces the same result for the same
input parameters, and “not deterministic” otherwise. If neither DETERMINISTIC nor NOT DETERM-
INISTIC is given in the routine definition, the default is NOT DETERMINISTIC.

A routine that contains the NOW() function (or its synonyms) or RAND() is non-deterministic, but it
might still be replication-safe. For NOW(), the binary log includes the timestamp and replicates cor-
rectly. RAND() also replicates correctly as long as it is invoked only once within a routine. (You can
consider the routine execution timestamp and random number seed as implicit inputs that are identical
on the master and slave.)

Currently, the DETERMINISTIC characteristic is accepted, but not yet used by the optimizer. However,
if binary logging is enabled, this characteristic affects which routine definitions MySQL accepts. See
Section 17.5, “Binary Logging of Stored Routines and Triggers”.

Several characteristics provide information about the nature of data use by the routine. CONTAINS
SQL indicates that the routine does not contain statements that read or write data. NO SQL indicates that
the routine contains no SQL statements. READS SQL DATA indicates that the routine contains state-
ments that read data, but not statements that write data. MODIFIES SQL DATA indicates that the
routine contains statements that may write data. CONTAINS SQL is the default if none of these charac-
teristics is given explicitly. These characteristics are advisory only. The server does not use them to con-
strain what kinds of statements a routine will be allowed to execute.

The SQL SECURITY characteristic can be used to specify whether the routine should be executed us-
ing the permissions of the user who creates the routine or the user who invokes it. The default value is
DEFINER. This feature is new in SQL:2003. The creator or invoker must have permission to access the
database with which the routine is associated. As of MySQL 5.0.3, it is necessary to have the EXECUTE
privilege to be able to execute the routine. The user that must have this privilege is either the definer or
invoker, depending on how the SQL SECURITY characteristic is set.

The optional DEFINER clause specifies the MySQL account to be used when checking access privileges
at routine execution time for routines that have the SQL SECURITY DEFINER characteristic. The
DEFINER clause was added in MySQL 5.0.20.

If a user value is given, it should be a MySQL account in 'user_name'@'host_name' format
(the same format used in the GRANT statement). The user_name and host_name values both are re-
quired. CURRENT_USER also can be given as CURRENT_USER(). The default DEFINER value is the
user who executes the CREATE PROCEDURE or CREATE FUNCTION or statement. (This is the same
as DEFINER = CURRENT_USER.)

If you specify the DEFINER clause, you cannot set the value to any account but your own unless you
have the SUPER privilege. These rules determine the legal DEFINER user values:

• If you do not have the SUPER privilege, the only legal user value is your own account, either spe-
cified literally or by using CURRENT_USER. You cannot set the definer to some other account.

• If you have the SUPER privilege, you can specify any syntactically legal account name. If the ac-
count does not actually exist, a warning is generated.

Stored Procedures and Functions

1135

Although it is possible to create routines with a non-existent DEFINER value, an error occurs if the
routine executes with definer privileges but the definer does not exist at execution time.

MySQL stores the sql_mode system variable setting that is in effect at the time a routine is created,
and always executes the routine with this setting in force.

When the routine is invoked, an implicit USE db_name is performed (and undone when the routine
terminates). USE statements within stored routines are disallowed.

As of MySQL 5.0.18, the server uses the data type of a routine parameter or function return value as fol-
lows. These rules also apply to local routine variables created with the DECLARE statement (Sec-
tion 17.2.7.1, “DECLARE Local Variables”).

• Assignments are checked for data type mismatches and overflow. Conversion and overflow prob-
lems result in warnings, or errors in strict mode.

• For character data types, if there is a CHARACTER SET clause in the declaration, the specified char-
acter set and its default collation are used. If there is no such clause, the database character set and
collation are used. (These are given by the values of the character_set_database and col-
lation_database system variables.) The COLLATE attribute is not supported. (This includes
use of BINARY, because in this context BINARY specifies the binary collation of the character set.)

• Only scalar values can be assigned to parameters or variables. For example, a statement such as SET
x = (SELECT 1, 2) is invalid.

Before MySQL 5.0.18, parameters, return values, and local variables are treated as items in expressions,
and are subject to automatic (silent) conversion and truncation. Stored functions ignore the sql_mode
setting.

The COMMENT clause is a MySQL extension, and may be used to describe the stored routine. This in-
formation is displayed by the SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION state-
ments.

MySQL allows routines to contain DDL statements, such as CREATE and DROP. MySQL also allows
stored procedures (but not stored functions) to contain SQL transaction statements such as COMMIT.
Stored functions may not contain statements that do explicit or implicit commit or rollback. Support for
these statements is not required by the SQL standard, which states that each DBMS vendor may decide
whether to allow them.

Stored routines cannot use LOAD DATA INFILE.

Statements that return a result set cannot be used within a stored function. This includes SELECT state-
ments that do not use INTO to fetch column values into variables, SHOW statements, and other state-
ments such as EXPLAIN. For statements that can be determined at function definition time to return a
result set, a Not allowed to return a result set from a function error occurs
(ER_SP_NO_RETSET_IN_FUNC). For statements that can be determined only at runtime to return a
result set, a PROCEDURE %s can't return a result set in the given context er-
ror occurs (ER_SP_BADSELECT).

Note: Before MySQL 5.0.10, stored functions created with CREATE FUNCTION must not contain ref-
erences to tables, with limited exceptions. They may include some SET statements that contain table ref-
erences, for example SET a:= (SELECT MAX(id) FROM t), and SELECT statements that fetch
values directly into variables, for example SELECT i INTO var1 FROM t.

The following is an example of a simple stored procedure that uses an OUT parameter. The example uses

Stored Procedures and Functions

1136

the mysql client delimiter command to change the statement delimiter from ; to // while the pro-
cedure is being defined. This allows the ; delimiter used in the procedure body to be passed through to
the server rather than being interpreted by mysql itself.

mysql> delimiter //

mysql> CREATE PROCEDURE simpleproc (OUT param1 INT)
-> BEGIN
-> SELECT COUNT(*) INTO param1 FROM t;
-> END;
-> //

Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

mysql> CALL simpleproc(@a);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @a;
+------+
| @a |
+------+
| 3 |
+------+
1 row in set (0.00 sec)

When using the delimiter command, you should avoid the use of the backslash (‘\’) character be-
cause that is the escape character for MySQL.

The following is an example of a function that takes a parameter, performs an operation using an SQL
function, and returns the result. In this case, it is unnecessary to use delimiter because the function
definition contains no internal ; statement delimiters:

mysql> CREATE FUNCTION hello (s CHAR(20)) RETURNS CHAR(50)
-> RETURN CONCAT('Hello, ',s,'!');

Query OK, 0 rows affected (0.00 sec)

mysql> SELECT hello('world');
+----------------+
| hello('world') |
+----------------+
| Hello, world! |
+----------------+
1 row in set (0.00 sec)

A stored function returns a value of the data type specified in its RETURNS clause. If the RETURN state-
ment returns a value of a different type, the value is coerced to the proper type. For example, if a func-
tion returns an ENUM or SET value, but the RETURN statement returns an integer, the value returned
from the function is the string for the corresponding ENUM member of set of SET members.

17.2.2. ALTER PROCEDURE and ALTER FUNCTION Syntax
ALTER {PROCEDURE | FUNCTION} sp_name [characteristic ...]

characteristic:
{ CONTAINS SQL | NO SQL | READS SQL DATA | MODIFIES SQL DATA }

| SQL SECURITY { DEFINER | INVOKER }
| COMMENT 'string'

This statement can be used to change the characteristics of a stored procedure or function. As of MySQL
5.0.3, you must have the ALTER ROUTINE privilege for the routine. (That privilege is granted auto-
matically to the routine creator.) If binary logging is enabled, this statement might also require the SU-
PER privilege, as described in Section 17.5, “Binary Logging of Stored Routines and Triggers”.

More than one change may be specified in an ALTER PROCEDURE or ALTER FUNCTION statement.

17.2.3. DROP PROCEDURE and DROP FUNCTION Syntax

Stored Procedures and Functions

1137

DROP {PROCEDURE | FUNCTION} [IF EXISTS] sp_name

This statement is used to drop a stored procedure or function. That is, the specified routine is removed
from the server. As of MySQL 5.0.3, you must have the ALTER ROUTINE privilege for the routine.
(That privilege is granted automatically to the routine creator.)

The IF EXISTS clause is a MySQL extension. It prevents an error from occurring if the procedure or
function does not exist. A warning is produced that can be viewed with SHOW WARNINGS.

17.2.4. CALL Statement Syntax
CALL sp_name([parameter[,...]])

The CALL statement invokes a procedure that was defined previously with CREATE PROCEDURE.

CALL can pass back values to its caller using parameters that are declared as OUT or INOUT parameters.
It also “returns” the number of rows affected, which a client program can obtain at the SQL level by
calling the ROW_COUNT() function and from C by calling the mysql_affected_rows() C API
function.

To get back a value from a procedure using an OUT or INOUT parameter, pass the parameter by means
of a user variable, and then check the value of the variable after the procedure returns. (If you are calling
the procedure from within another stored procedure or function, you can also pass a routine parameter or
local routine variable as an IN or INOUT parameter.) For an INOUT parameter, initialize its value be-
fore passing it to the procedure. The following procedure has an OUT parameter that the procedure sets
to the current server version, and an INOUT value that the procedure increments by one from its current
value:

CREATE PROCEDURE p (OUT ver_param VARCHAR(25), INOUT incr_param INT)
BEGIN

Set value of OUT parameter
SELECT VERSION() INTO ver_param;
Increment value of INOUT parameter
SET incr_param = incr_param + 1;

END;

Before calling the procedure, initialize the variable to be passed as the INOUT parameter. After calling
the procedure, the values of the two variables will have been set or modified:

mysql> SET @increment = 10;
mysql> CALL p(@version, @increment);
mysql> SELECT @version, @increment;
+------------+------------+
| @version | @increment |
+------------+------------+
| 5.0.25-log | 11 |
+------------+------------+

If you write C programs that execute stored procedures with the CALL SQL statement, you must set the
CLIENT_MULTI_RESULTS flag when you call mysql_real_connect(), either explicitly, or im-
plicitly by setting CLIENT_MULTI_STATEMENTS. This is because each CALL returns a result to in-
dicate the call status, in addition to any results sets that might be returned by statements executed within
the procedure. To process the result of a CALL statement, use a loop that calls
mysql_next_result() to determine whether there are more results. For an example, see Sec-
tion 22.2.9, “C API Handling of Multiple Statement Execution”.

17.2.5. BEGIN ... END Compound Statement Syntax
[begin_label:] BEGIN

[statement_list]

Stored Procedures and Functions

1138

END [end_label]

BEGIN ... END syntax is used for writing compound statements, which can appear within stored
routines and triggers. A compound statement can contain multiple statements, enclosed by the BEGIN
and END keywords. statement_list represents a list of one or more statements. Each statement
within statement_list must be terminated by a semicolon (;) statement delimiter. Note that
statement_list is optional, which means that the empty compound statement (BEGIN END) is
legal.

Use of multiple statements requires that a client is able to send statement strings containing the ; state-
ment delimiter. This is handled in the mysql command-line client with the delimiter command.
Changing the ; end-of-statement delimiter (for example, to //) allows ; to be used in a routine body.
For an example, see Section 17.2.1, “CREATE PROCEDURE and CREATE FUNCTION Syntax”.

A compound statement can be labeled. end_label cannot be given unless begin_label also is
present. If both are present, they must be the same.

The optional [NOT] ATOMIC clause is not yet supported. This means that no transactional savepoint is
set at the start of the instruction block and the BEGIN clause used in this context has no effect on the
current transaction.

17.2.6. DECLARE Statement Syntax
The DECLARE statement is used to define various items local to a routine:

• Local variables. See Section 17.2.7, “Variables in Stored Routines”.

• Conditions and handlers. See Section 17.2.8, “Conditions and Handlers”.

• Cursors. See Section 17.2.9, “Cursors”.

The SIGNAL and RESIGNAL statements are not currently supported.

DECLARE is allowed only inside a BEGIN ... END compound statement and must be at its start, be-
fore any other statements.

Declarations must follow a certain order. Cursors must be declared before declaring handlers, and vari-
ables and conditions must be declared before declaring either cursors or handlers.

17.2.7. Variables in Stored Routines
You may declare and use variables within a routine.

17.2.7.1. DECLARE Local Variables
DECLARE var_name[,...] type [DEFAULT value]

This statement is used to declare local variables. To provide a default value for the variable, include a
DEFAULT clause. The value can be specified as an expression; it need not be a constant. If the DE-
FAULT clause is missing, the initial value is NULL.

Local variables are treated like routine parameters with respect to data type and overflow checking. See
Section 17.2.1, “CREATE PROCEDURE and CREATE FUNCTION Syntax”.

The scope of a local variable is within the BEGIN ... END block where it is declared. The variable

Stored Procedures and Functions

1139

can be referred to in blocks nested within the declaring block, except those blocks that declare a variable
with the same name.

17.2.7.2. Variable SET Statement
SET var_name = expr [, var_name = expr] ...

The SET statement in stored routines is an extended version of the general SET statement. Referenced
variables may be ones declared inside a routine, or global system variables.

The SET statement in stored routines is implemented as part of the pre-existing SET syntax. This allows
an extended syntax of SET a=x, b=y, ... where different variable types (locally declared vari-
ables and global and session server variables) can be mixed. This also allows combinations of local vari-
ables and some options that make sense only for system variables; in that case, the options are recog-
nized but ignored.

17.2.7.3. SELECT ... INTO Statement
SELECT col_name[,...] INTO var_name[,...] table_expr

This SELECT syntax stores selected columns directly into variables. Therefore, only a single row may
be retrieved.

SELECT id,data INTO x,y FROM test.t1 LIMIT 1;

User variable names are not case sensitive. See Section 9.3, “User-Defined Variables”.

Important: SQL variable names should not be the same as column names. If an SQL statement, such as
a SELECT ... INTO statement, contains a reference to a column and a declared local variable with
the same name, MySQL currently interprets the reference as the name of a variable. For example, in the
following statement, xname is interpreted as a reference to the xname variable rather than the xname
column:

CREATE PROCEDURE sp1 (x VARCHAR(5))
BEGIN
DECLARE xname VARCHAR(5) DEFAULT 'bob';
DECLARE newname VARCHAR(5);
DECLARE xid INT;

SELECT xname,id INTO newname,xid
FROM table1 WHERE xname = xname;

SELECT newname;
END;

When this procedure is called, the newname variable returns the value 'bob' regardless of the value
of the table1.xname column.

See also Section I.1, “Restrictions on Stored Routines and Triggers”.

17.2.8. Conditions and Handlers
Certain conditions may require specific handling. These conditions can relate to errors, as well as to gen-
eral flow control inside a routine.

17.2.8.1. DECLARE Conditions
DECLARE condition_name CONDITION FOR condition_value

condition_value:
SQLSTATE [VALUE] sqlstate_value

Stored Procedures and Functions

1140

| mysql_error_code

This statement specifies conditions that need specific handling. It associates a name with a specified er-
ror condition. The name can subsequently be used in a DECLARE HANDLER statement. See Sec-
tion 17.2.8.2, “DECLARE Handlers”.

A condition_value can be an SQLSTATE value or a MySQL error code.

17.2.8.2. DECLARE Handlers
DECLARE handler_type HANDLER FOR condition_value[,...] statement

handler_type:
CONTINUE

| EXIT
| UNDO

condition_value:
SQLSTATE [VALUE] sqlstate_value

| condition_name
| SQLWARNING
| NOT FOUND
| SQLEXCEPTION
| mysql_error_code

The DECLARE ... HANDLER statement specifies handlers that each may deal with one or more con-
ditions. If one of these conditions occurs, the specified statement is executed. statement can be a
simple statement (for example, SET var_name = value), or it can be a compound statement writ-
ten using BEGIN and END (see Section 17.2.5, “BEGIN ... END Compound Statement Syntax”).

For a CONTINUE handler, execution of the current routine continues after execution of the handler
statement. For an EXIT handler, execution terminates for the BEGIN ... END compound statement
in which the handler is declared. (This is true even if the condition occurs in an inner block.) The UNDO
handler type statement is not yet supported.

If a condition occurs for which no handler has been declared, the default action is EXIT.

A condition_value can be any of the following values:

• An SQLSTATE value or a MySQL error code.

• A condition name previously specified with DECLARE ... CONDITION. See Section 17.2.8.1,
“DECLARE Conditions”.

• SQLWARNING is shorthand for all SQLSTATE codes that begin with 01.

• NOT FOUND is shorthand for all SQLSTATE codes that begin with 02.

• SQLEXCEPTION is shorthand for all SQLSTATE codes not caught by SQLWARNING or NOT
FOUND.

Example:

mysql> CREATE TABLE test.t (s1 int,primary key (s1));
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter //

mysql> CREATE PROCEDURE handlerdemo ()
-> BEGIN
-> DECLARE CONTINUE HANDLER FOR SQLSTATE '23000' SET @x2 = 1;
-> SET @x = 1;
-> INSERT INTO test.t VALUES (1);

Stored Procedures and Functions

1141

-> SET @x = 2;
-> INSERT INTO test.t VALUES (1);
-> SET @x = 3;
-> END;
-> //

Query OK, 0 rows affected (0.00 sec)

mysql> CALL handlerdemo()//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x//
+------+
| @x |
+------+
| 3 |
+------+
1 row in set (0.00 sec)

The example associates a handler with SQLSTATE 23000, which occurs for a duplicate-key error. No-
tice that @x is 3, which shows that MySQL executed to the end of the procedure. If the line DECLARE
CONTINUE HANDLER FOR SQLSTATE '23000' SET @x2 = 1; had not been present,
MySQL would have taken the default path (EXIT) after the second INSERT failed due to the PRIMARY
KEY constraint, and SELECT @x would have returned 2.

If you want to ignore a condition, you can declare a CONTINUE handler for it and associate it with an
empty block. For example:

DECLARE CONTINUE HANDLER FOR SQLWARNING BEGIN END;

17.2.9. Cursors
Simple cursors are supported inside stored procedures and functions. The syntax is as in embedded SQL.
Cursors are currently asensitive, read-only, and non-scrolling. Asensitive means that the server may or
may not make a copy of its result table.

Cursors must be declared before declaring handlers, and variables and conditions must be declared be-
fore declaring either cursors or handlers.

Example:

CREATE PROCEDURE curdemo()
BEGIN

DECLARE done INT DEFAULT 0;
DECLARE a CHAR(16);
DECLARE b,c INT;
DECLARE cur1 CURSOR FOR SELECT id,data FROM test.t1;
DECLARE cur2 CURSOR FOR SELECT i FROM test.t2;
DECLARE CONTINUE HANDLER FOR SQLSTATE '02000' SET done = 1;

OPEN cur1;
OPEN cur2;

REPEAT
FETCH cur1 INTO a, b;
FETCH cur2 INTO c;
IF NOT done THEN

IF b < c THEN
INSERT INTO test.t3 VALUES (a,b);

ELSE
INSERT INTO test.t3 VALUES (a,c);

END IF;
END IF;

UNTIL done END REPEAT;

CLOSE cur1;
CLOSE cur2;

END

Stored Procedures and Functions

1142

17.2.9.1. Declaring Cursors
DECLARE cursor_name CURSOR FOR select_statement

This statement declares a cursor. Multiple cursors may be declared in a routine, but each cursor in a giv-
en block must have a unique name.

The SELECT statement cannot have an INTO clause.

17.2.9.2. Cursor OPEN Statement
OPEN cursor_name

This statement opens a previously declared cursor.

17.2.9.3. Cursor FETCH Statement
FETCH cursor_name INTO var_name [, var_name] ...

This statement fetches the next row (if a row exists) using the specified open cursor, and advances the
cursor pointer.

If no more rows are available, a No Data condition occurs with SQLSTATE value 02000. To detect this
condition, you can set up a handler for it. An example is shown in Section 17.2.9, “Cursors”.

17.2.9.4. Cursor CLOSE Statement
CLOSE cursor_name

This statement closes a previously opened cursor.

If not closed explicitly, a cursor is closed at the end of the compound statement in which it was declared.

17.2.10. Flow Control Constructs
The IF, CASE, LOOP, WHILE, REPLACE ITERATE, and LEAVE constructs are fully implemented.

Many of these constructs contain other statements, as indicated by the grammar specifications in the fol-
lowing sections. Such constructs may be nested. For example, an IF statement might contain a WHILE
loop, which itself contains a CASE statement.

FOR loops are not currently supported.

17.2.10.1. IF Statement
IF search_condition THEN statement_list

[ELSEIF search_condition THEN statement_list] ...
[ELSE statement_list]

END IF

IF implements a basic conditional construct. If the search_condition evaluates to true, the corres-
ponding SQL statement list is executed. If no search_condition matches, the statement list in the
ELSE clause is executed. Each statement_list consists of one or more statements.

Note: There is also an IF() function, which differs from the IF statement described here. See Sec-

Stored Procedures and Functions

1143

tion 12.2, “Control Flow Functions”.

17.2.10.2. CASE Statement
CASE case_value

WHEN when_value THEN statement_list
[WHEN when_value THEN statement_list] ...
[ELSE statement_list]

END CASE

Or:

CASE
WHEN search_condition THEN statement_list
[WHEN search_condition THEN statement_list] ...
[ELSE statement_list]

END CASE

The CASE statement for stored routines implements a complex conditional construct. If a
search_condition evaluates to true, the corresponding SQL statement list is executed. If no search
condition matches, the statement list in the ELSE clause is executed. Each statement_list consists
of one or more statements.

Note: The syntax of the CASE statement shown here for use inside stored routines differs slightly from
that of the SQL CASE expression described in Section 12.2, “Control Flow Functions”. The CASE state-
ment cannot have an ELSE NULL clause, and it is terminated with END CASE instead of END.

17.2.10.3. LOOP Statement
[begin_label:] LOOP

statement_list
END LOOP [end_label]

LOOP implements a simple loop construct, enabling repeated execution of the statement list, which con-
sists of one or more statements. The statements within the loop are repeated until the loop is exited; usu-
ally this is accomplished with a LEAVE statement.

A LOOP statement can be labeled. end_label cannot be given unless begin_label also is present.
If both are present, they must be the same.

17.2.10.4. LEAVE Statement
LEAVE label

This statement is used to exit any labeled flow control construct. It can be used within BEGIN ...
END or loop constructs (LOOP, REPEAT, WHILE).

17.2.10.5. ITERATE Statement
ITERATE label

ITERATE can appear only within LOOP, REPEAT, and WHILE statements. ITERATE means “do the
loop again.”

Example:

CREATE PROCEDURE doiterate(p1 INT)
BEGIN

label1: LOOP
SET p1 = p1 + 1;

Stored Procedures and Functions

1144

IF p1 < 10 THEN ITERATE label1; END IF;
LEAVE label1;

END LOOP label1;
SET @x = p1;

END

17.2.10.6. REPEAT Statement
[begin_label:] REPEAT

statement_list
UNTIL search_condition
END REPEAT [end_label]

The statement list within a REPEAT statement is repeated until the search_condition is true. Thus,
a REPEAT always enters the loop at least once. statement_list consists of one or more statements.

A REPEAT statement can be labeled. end_label cannot be given unless begin_label also is
present. If both are present, they must be the same.

Example:

mysql> delimiter //

mysql> CREATE PROCEDURE dorepeat(p1 INT)
-> BEGIN
-> SET @x = 0;
-> REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;
-> END
-> //

Query OK, 0 rows affected (0.00 sec)

mysql> CALL dorepeat(1000)//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x//
+------+
| @x |
+------+
| 1001 |
+------+
1 row in set (0.00 sec)

17.2.10.7. WHILE Statement
[begin_label:] WHILE search_condition DO

statement_list
END WHILE [end_label]

The statement list within a WHILE statement is repeated as long as the search_condition is true.
statement_list consists of one or more statements.

A WHILE statement can be labeled. end_label cannot be given unless begin_label also is
present. If both are present, they must be the same.

Example:

CREATE PROCEDURE dowhile()
BEGIN

DECLARE v1 INT DEFAULT 5;

WHILE v1 > 0 DO
...
SET v1 = v1 - 1;

END WHILE;
END

Stored Procedures and Functions

1145

17.3. Stored Procedures, Functions, Triggers, and
LAST_INSERT_ID()

Within the body of a stored routine (procedure or function) or a trigger, the value of
LAST_INSERT_ID() changes the same way as for statements executed outside the body of these
kinds of objects (see Section 12.9.3, “Information Functions”). The effect of a stored routine or trigger
upon the value of LAST_INSERT_ID() that is seen by following statements depends on the kind of
routine:

• If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the
changed value will be seen by statements that follow the procedure call.

• For stored functions and triggers that change the value, the value is restored when the function or
trigger ends, so following statements will not see a changed value.

17.4. Stored Procedures, Functions, Triggers, and
Replication: Frequently Asked Questions

• Do MySQL 5.0 stored procedures and functions work with replication?

Yes, standard actions carried out in stored procedures and functions are replicated from a master
MySQL server to a slave server. There are a few limitations that are described in detail in Sec-
tion 17.5, “Binary Logging of Stored Routines and Triggers”.

• Are stored procedures and functions created on a master server replicated to a slave?

Yes, creation of stored procedures and functions carried out through normal DDL statements on a
master server are replicated to a slave, so the objects will exist on both servers. ALTER and DROP
statements for stored procedures and functions are also replicated.

• How are actions that take place inside stored procedures and functions replicated?

MySQL records each DML event that occurs in a stored procedure and replicates those individual
actions to a slave server. The actual calls made to execute stored procedures are not replicated.

Stored functions that change data are logged as function invocations, not as the DML events that oc-
cur inside each function.

• Are there special security requirements for using stored procedures and functions together with rep-
lication?

Yes. Because a slave server has authority to execute any statement read from a master's binary log,
special security constraints exist for using stored functions with replication. If replication or binary
logging in general (for the purpose of point-in-time recovery) is active, then MySQL DBAs have
two security options open to them:

• Any user wishing to create stored functions must be granted the SUPER privilege.

• Alternatively, a DBA can set the log_bin_trust_function_creators system variable
to 1, which enables anyone with the standard CREATE ROUTINE privilege to create stored
functions.

Note: Before MySQL 5.0.16, these restrictions also apply to stored procedures and the system vari-
able is named log_bin_trust_routine_creators.

Stored Procedures and Functions

1146

• What limitations exist for replicating stored procedure and function actions?

Non-deterministic (random) or time-based actions embedded in stored procedures may not replicate
properly. By their very nature, randomly produced results are not predictable and cannot be exactly
reproduced, and therefore, random actions replicated to a slave will not mirror those performed on a
master. Note that declaring stored functions to be DETERMINISTIC or setting the
log_bin_trust_function_creators system variable to 0 will not allow random-valued
operations to be invoked.

In addition, time-based actions cannot be reproduced on a slave because the timing of such actions in
a stored procedure is not reproducible through the binary log used for replication. It records only
DML events and does not factor in timing constraints.

Finally, non-transactional tables for which errors occur during large DML actions (such as bulk in-
serts) may experience replication issues in that a master may be partially updated from DML activ-
ity, but no updates are done to the slave because of the errors that occurred. A workaround is for a
function's DML actions to be carried out with the IGNORE keyword so that updates on the master
that cause errors are ignored and updates that do not cause errors are replicated to the slave.

• Do the preceding limitations affect MySQL's ability to do point-in-time recovery?

The same limitations that affect replication do affect point-in-time recovery.

• What will MySQL do to correct the aforementioned limitations?

A future release of MySQL is expected to feature a choice in how replication should be handled:

• Statement-based replication (current implementation).

• Row-level replication (that will solve all the limitations described earlier).

• Do triggers work with replication?

Triggers and replication in MySQL 5.0 work the same as in most other database engines: Actions
carried out through triggers on a master are not replicated to a slave server. Instead, triggers that ex-
ist on tables that reside on a MySQL master server need to be created on the corresponding tables on
any MySQL slave servers so that the triggers activate on the slaves as well as the master.

• How are actions carried out through triggers on a master replicated to a slave?

First, the triggers that exist on a master must be re-created on the slave server. Once this is done, the
replication flow works as any other standard DML statement that participates in replication. For ex-
ample, consider a table EMP that has an AFTER insert trigger, which exists on a master MySQL
server. The same EMP table and AFTER insert trigger exist on the slave server as well. The replica-
tion flow would be:

1. An INSERT statement is made to EMP.

2. The AFTER trigger on EMP activates.

3. The INSERT statement is written to the binary log.

4. The replication slave picks up the INSERT statement to EMP and executes it.

5. The AFTER trigger on EMP that exists on the slave activates.

17.5. Binary Logging of Stored Routines and Triggers

Stored Procedures and Functions

1147

The binary log contains information about SQL statements that modify database contents. This informa-
tion is stored in the form of “events” that describe the modifications. The binary log has two important
purposes:

• For replication, the master server sends the events contained in its binary log to its slaves, which ex-
ecute those events to make the same data changes that were made on the master. See Section 6.2,
“Replication Implementation Overview”.

• Certain data recovery operations require use of the binary log. After a backup file has been restored,
the events in the binary log that were recorded after the backup was made are re-executed. These
events bring databases up to date from the point of the backup. See Section 5.10.2.2, “Using
Backups for Recovery”.

This section describes the development of binary logging in MySQL 5.0 with respect to stored routines
(procedures and functions) and triggers. The discussion first summarizes the changes that have taken
place in the logging implementation, and then states the current conditions that the implementation
places on the use of stored routines. Finally, implementation details are given that provide information
about when and why various changes were made. These details show how several aspects of the current
logging behavior were implemented in response to shortcomings identified in earlier versions.

In general, the issues described here result from the fact that binary logging occurs at the SQL statement
level. A future MySQL release is expected to implement row-level binary logging, which specifies the
changes to make to individual rows as a result of executing SQL statements.

Unless noted otherwise, the remarks here assume that you have enabled binary logging by starting the
server with the --log-bin option. (See Section 5.12.3, “The Binary Log”.) If the binary log is not en-
abled, replication is not possible, nor is the binary log available for data recovery.

The development of stored routine logging in MySQL 5.0 can be summarized as follows:

• Before MySQL 5.0.6: In the initial implementation of stored routine logging, statements that create
stored routines and CALL statements are not logged. These omissions can cause problems for replic-
ation and data recovery.

• MySQL 5.0.6: Statements that create stored routines and CALL statements are logged. Stored func-
tion invocations are logged when they occur in statements that update data (because those statements
are logged). However, function invocations are not logged when they occur in statements such as
SELECT that do not change data, even if a data change occurs within a function itself; this can cause
problems. Under some circumstances, functions and procedures can have different effects if ex-
ecuted at different times or on different (master and slave) machines, and thus can be unsafe for data
recovery or replication. To handle this, measures are implemented to allow identification of safe
routines and to prevent creation of unsafe routines except by users with sufficient privileges.

• MySQL 5.0.12: For stored functions, when a function invocation that changes data occurs within a
non-logged statement such as SELECT, the server logs a DO func_name() statement that in-
vokes the function so that the function gets executed during data recovery or replication to slave
servers. For stored procedures, the server does not log CALL statements. Instead, it logs individual
statements within a procedure that are executed as a result of a CALL. This eliminates problems that
may occur when a procedure would follow a different execution path on a slave than on the master.

• MySQL 5.0.16: The procedure logging changes made in 5.0.12 allow the conditions on unsafe
routines to be relaxed for stored procedures. Consequently, the user interface for controlling these
conditions is revised to apply only to functions. Procedure creators are no longer bound by them.

• MySQL 5.0.17: Logging of stored functions as DO func_name() statements (per the changes
made in 5.0.12) are logged as SELECT func_name() statements instead for better control over

Stored Procedures and Functions

1148

error checking.

As a consequence of the preceding changes, the following conditions currently apply to stored function
creation when binary logging is enabled. These conditions do not apply to stored procedure creation.

• To create or alter a stored function, you must have the SUPER privilege, in addition to the CREATE
ROUTINE or ALTER ROUTINE privilege that is normally required.

• When you create a stored function, you must declare either that it is deterministic or that it does not
modify data. Otherwise, it may be unsafe for data recovery or replication. Two sets of function char-
acteristics apply here:

• The DETERMINISTIC and NOT DETERMINISTIC characteristics indicate whether a function
always produces the same result for given inputs. The default is NOT DETERMINISTIC if
neither characteristic is given, so you must specify DETERMINISTIC explicitly to declare that a
function is deterministic.

Use of the NOW() function (or its synonyms) or RAND() does not necessarily make a function
non-deterministic. For NOW(), the binary log includes the timestamp and replicates correctly.
RAND() also replicates correctly as long as it is invoked only once within a function. (You can
consider the function execution timestamp and random number seed as implicit inputs that are
identical on the master and slave.)

SYSDATE() is not affected by the timestamps in the binary log, so it causes stored routines to
be non-deterministic if statement-based logging is used. This does not occur if the server is star-
ted with the --sysdate-is-now option to cause SYSDATE() to be an alias for NOW().

• The CONTAINS SQL, NO SQL, READS SQL DATA, and MODIFIES SQL DATA character-
istics provide information about whether the function reads or writes data. Either NO SQL or
READS SQL DATA indicates that a function does not change data, but you must specify one of
these explicitly because the default is CONTAINS SQL if no characteristic is given.

By default, for a CREATE FUNCTION statement to be accepted, DETERMINISTIC or one of NO
SQL and READS SQL DATA must be specified explicitly. Otherwise an error occurs:

ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL,
or READS SQL DATA in its declaration and binary logging is enabled
(you *might* want to use the less safe log_bin_trust_function_creators
variable)

Assessment of the nature of a function is based on the “honesty” of the creator: MySQL does not
check that a function declared DETERMINISTIC contains no statements that produce non-
deterministic results.

• To relax the preceding conditions on function creation (that you must have the SUPER privilege and
that a function must be declared deterministic or to not modify data), set the global
log_bin_trust_function_creators system variable to 1. By default, this variable has a
value of 0, but you can change it like this:

mysql> SET GLOBAL log_bin_trust_function_creators = 1;

You can also set this variable by using the --log-bin-trust-function-creators option
when starting the server.

If binary logging is not enabled, log_bin_trust_function_creators does not apply and
SUPER is not required for routine creation.

Stored Procedures and Functions

1149

Triggers are similar to stored functions, so the preceding remarks regarding functions also apply to trig-
gers with the following exception: CREATE TRIGGER does not have an optional DETERMINISTIC
characteristic, so triggers are assumed to be always deterministic. However, this assumption might in
some cases be invalid. For example, the UUID() function is non-deterministic (and does not replicate).
You should be careful about using such functions in triggers.

Triggers can update tables (as of MySQL 5.0.10), so error messages similar to those for stored functions
occur with CREATE TRIGGER if you do not have the SUPER privilege and
log_bin_trust_function_creators is 0.

The rest of this section provides details on the development of stored routine logging. Some of these de-
tails give additional background on the rationale for the current logging-related conditions on stored
routine use.

Routine logging before MySQL 5.0.6: Statements that create and use stored routines are not written to
the binary log, but statements invoked within stored routines are logged. Suppose that you issue the fol-
lowing statements:

CREATE PROCEDURE mysp INSERT INTO t VALUES(1);
CALL mysp();

For this example, only the INSERT statement appears in the binary log. The CREATE PROCEDURE
and CALL statements do not appear. The absence of routine-related statements in the binary log means
that stored routines are not replicated correctly. It also means that for a data recovery operation, re-
executing events in the binary log does not recover stored routines.

Routine logging changes in MySQL 5.0.6: To address the absence of logging for stored routine cre-
ation and CALL statements (and the consequent replication and data recovery concerns), the characterist-
ics of binary logging for stored routines were changed as described here. (Some of the items in the fol-
lowing list point out issues that are dealt with in later versions.)

• The server writes CREATE PROCEDURE, CREATE FUNCTION, ALTER PROCEDURE, ALTER
FUNCTION, DROP PROCEDURE, and DROP FUNCTION statements to the binary log. Also, the
server logs CALL statements, not the statements executed within procedures. Suppose that you issue
the following statements:

CREATE PROCEDURE mysp INSERT INTO t VALUES(1);
CALL mysp();

For this example, the CREATE PROCEDURE and CALL statements appear in the binary log, but the
INSERT statement does not appear. This corrects the problem that occurred before MySQL 5.0.6
such that only the INSERT was logged.

• Logging CALL statements has a security implication for replication, which arises from two factors:

• It is possible for a procedure to follow different execution paths on master and slave servers.

• Statements executed on a slave are processed by the slave SQL thread which has full privileges.

The implication is that although a user must have the CREATE ROUTINE privilege to create a
routine, the user can write a routine containing a dangerous statement that will execute only on the
slave where the statement is processed by the SQL thread that has full privileges. For example, if the
master and slave servers have server ID values of 1 and 2, respectively, a user on the master server
could create and invoke an unsafe procedure unsafe_sp() as follows:

mysql> delimiter //
mysql> CREATE PROCEDURE unsafe_sp ()

-> BEGIN
-> IF @@server_id=2 THEN DROP DATABASE accounting; END IF;

Stored Procedures and Functions

1150

-> END;
-> //

mysql> delimiter ;
mysql> CALL unsafe_sp();

The CREATE PROCEDURE and CALL statements are written to the binary log, so the slave will ex-
ecute them. Because the slave SQL thread has full privileges, it will execute the DROP DATABASE
statement that drops the accounting database. Thus, the CALL statement has different effects on
the master and slave and is not replication-safe.

The preceding example uses a stored procedure, but similar problems can occur for stored functions
that are invoked within statements that are written to the binary log: Function invocation has differ-
ent effects on the master and slave.

To guard against this danger for servers that have binary logging enabled, MySQL 5.0.6 introduces
the requirement that stored procedure and function creators must have the SUPER privilege, in addi-
tion to the usual CREATE ROUTINE privilege that is required. Similarly, to use ALTER PROCED-
URE or ALTER FUNCTION, you must have the SUPER privilege in addition to the ALTER
ROUTINE privilege. Without the SUPER privilege, an error will occur:

ERROR 1419 (HY000): You do not have the SUPER privilege and
binary logging is enabled (you *might* want to use the less safe
log_bin_trust_routine_creators variable)

If you do not want to require routine creators to have the SUPER privilege (for example, if all users
with the CREATE ROUTINE privilege on your system are experienced application developers), set
the global log_bin_trust_routine_creators system variable to 1. You can also set this
variable by using the --log-bin-trust-routine-creators option when starting the serv-
er. If binary logging is not enabled, log_bin_trust_routine_creators does not apply and
SUPER is not required for routine creation.

• If a routine that performs updates is non-deterministic, it is not repeatable. This can have two un-
desirable effects:

• It will make a slave different from the master.

• Restored data will be different from the original data.

To deal with these problems, MySQL enforces the following requirement: On a master server, cre-
ation and alteration of a routine is refused unless you declare the routine to be deterministic or to not
modify data. Two sets of routine characteristics apply here:

• The DETERMINISTIC and NOT DETERMINISTIC characteristics indicate whether a routine
always produces the same result for given inputs. The default is NOT DETERMINISTIC if
neither characteristic is given, so you must specify DETERMINISTIC explicitly to declare that a
routine is deterministic.

• The CONTAINS SQL, NO SQL, READS SQL DATA, and MODIFIES SQL DATA character-
istics provide information about whether the routine reads or writes data. Either NO SQL or
READS SQL DATA indicates that a routine does not change data, but you must specify one of
these explicitly because the default is CONTAINS SQL if no characteristic is given.

By default, for a CREATE PROCEDURE or CREATE FUNCTION statement to be accepted, DE-
TERMINISTIC or one of NO SQL and READS SQL DATA must be specified explicitly. Other-
wise an error occurs:

ERROR 1418 (HY000): This routine has none of DETERMINISTIC, NO SQL,
or READS SQL DATA in its declaration and binary logging is enabled
(you *might* want to use the less safe log_bin_trust_routine_creators
variable)

Stored Procedures and Functions

1151

If you set log_bin_trust_routine_creators to 1, the requirement that routines be determ-
inistic or not modify data is dropped.

• A CALL statement is written to the binary log if the routine returns no error, but not otherwise.
When a routine that modifies data fails, you get this warning:

ERROR 1417 (HY000): A routine failed and has neither NO SQL nor
READS SQL DATA in its declaration and binary logging is enabled; if
non-transactional tables were updated, the binary log will miss their
changes

This logging behavior has the potential to cause problems. If a routine partly modifies a non-
transactional table (such as a MyISAM table) and returns an error, the binary log will not reflect these
changes. To protect against this, you should use transactional tables in the routine and modify the
tables within transactions.

If you use the IGNORE keyword with INSERT, DELETE, or UPDATE to ignore errors within a
routine, a partial update might occur but no error will result. Such statements are logged and they
replicate normally.

• Although statements normally are not written to the binary log if they are rolled back, CALL state-
ments are logged even when they occur within a rolled-back transaction. This can result in a CALL
being rolled back on the master but executed on slaves.

• If a stored function is invoked within a statement such as SELECT that does not modify data, execu-
tion of the function is not written to the binary log, even if the function itself modifies data. This log-
ging behavior has the potential to cause problems. Suppose that a function myfunc() is defined as
follows:

CREATE FUNCTION myfunc () RETURNS INT DETERMINISTIC
BEGIN

INSERT INTO t (i) VALUES(1);
RETURN 0;

END;

Given that definition, the following statement is not written to the binary log because it is a
SELECT. Nevertheless, it modifies the table t because myfunc() modifies t:

SELECT myfunc();

A workaround for this problem is to invoke functions that do updates only within statements that do
updates (and which therefore are written to the binary log). Note that although the DO statement
sometimes is executed for the side effect of evaluating an expression, DO is not a workaround here
because it is not written to the binary log.

• On slave servers, --replicate-*-table rules do not apply to CALL statements or to state-
ments within stored routines. These statements are always replicated. If such statements contain ref-
erences to tables that do not exist on the slave, they could have undesirable effects when executed on
the slave.

Routine logging changes in MySQL 5.0.12: The changes in 5.0.12 address several problems that were
present in earlier versions:

• Stored function invocations in non-logged statements such as SELECT were not being logged, even
when a function itself changed data.

Stored Procedures and Functions

1152

• Stored procedure logging at the CALL level could cause different effects on a master and slave if a
procedure took different execution paths on the two machines.

• CALL statements were logged even when they occurred within a rolled-back transaction.

To deal with these issues, MySQL 5.0.12 implements the following changes to function and procedure
logging:

• A stored function invocation is logged as a DO statement if the function changes data and occurs
within a statement that would not otherwise be logged. This corrects the problem of non-replication
of data changes that result from use of stored functions in non-logged statements. For example, SE-
LECT statements are not written to the binary log, but a SELECT might invoke a stored function that
makes changes. To handle this, a DO func_name() statement is written to the binary log when
the given function makes a change. Suppose that the following statements are executed on the mas-
ter:

CREATE FUNCTION f1(a INT) RETURNS INT
BEGIN

IF (a < 3) THEN
INSERT INTO t2 VALUES (a);

END IF;
END;

CREATE TABLE t1 (a INT);
INSERT INTO t1 VALUES (1),(2),(3);

SELECT f1(a) FROM t1;

When the SELECT statement executes, the function f1() is invoked three times. Two of those in-
vocations insert a row, and MySQL logs a DO statement for each of them. That is, MySQL writes the
following statements to the binary log:

DO f1(1);
DO f1(2);

The server also logs a DO statement for a stored function invocation when the function invokes a
stored procedure that causes an error. In this case, the server writes the DO statement to the log along
with the expected error code. On the slave, if the same error occurs, that is the expected result and
replication continues. Otherwise, replication stops.

Note: See later in this section for changes made in MySQL 5.0.19: These logged DO
func_name() statements are logged as SELECT func_name() statements instead.

• Stored procedure calls are logged at the statement level rather than at the CALL level. That is, the
server does not log the CALL statement, it logs those statements within the procedure that actually
execute. As a result, the same changes that occur on the master will be observed on slave servers.
This eliminates the problems that could result from a procedure having different execution paths on
different machines. For example, the DROP DATABASE problem shown earlier for the un-
safe_sp() procedure does not occur and the routine is no longer replication-unsafe because it has
the same effect on master and slave servers.

In general, statements executed within a stored procedure are written to the binary log using the
same rules that would apply were the statements to be executed in standalone fashion. Some special
care is taken when logging procedure statements because statement execution within procedures is
not quite the same as in non-procedure context:

• A statement to be logged might contain references to local procedure variables. These variables
do not exist outside of stored procedure context, so a statement that refers to such a variable can-
not be logged literally. Instead, each reference to a local variable is replaced by this construct for

Stored Procedures and Functions

1153

logging purposes:

NAME_CONST(var_name, var_value)

var_name is the local variable name, and var_value is a constant indicating the value that
the variable has at the time the statement is logged. NAME_CONST() has a value of
var_value, and a “name” of var_name. Thus, if you invoke this function directly, you get a
result like this:

mysql> SELECT NAME_CONST('myname', 14);
+--------+
| myname |
+--------+
| 14 |
+--------+

NAME_CONST() allows a logged standalone statement to be executed on a slave with the same
effect as the original statement that was executed on the master within a stored procedure.

• A statement to be logged might contain references to user-defined variables. To handle this,
MySQL writes a SET statement to the binary log to make sure that the variable exists on the
slave with the same value as on the master. For example, if a statement refers to a variable
@my_var, that statement will be preceded in the binary log by the following statement, where
value is the value of @my_var on the master:

SET @my_var = value;

• Procedure calls can occur within a committed or rolled-back transaction. Previously, CALL state-
ments were logged even if they occurred within a rolled-back transaction. As of MySQL 5.0.12,
transactional context is accounted for so that the transactional aspects of procedure execution are
replicated correctly. That is, the server logs those statements within the procedure that actually
execute and modify data, and also logs BEGIN, COMMIT, and ROLLBACK statements as neces-
sary. For example, if a procedure updates only transactional tables and is executed within a trans-
action that is rolled back, those updates are not logged. If the procedure occurs within a commit-
ted transaction, BEGIN and COMMIT statements are logged with the updates. For a procedure
that executes within a rolled-back transaction, its statements are logged using the same rules that
would apply if the statements were executed in standalone fashion:

• Updates to transactional tables are not logged.

• Updates to non-transactional tables are logged because rollback does not cancel them.

• Updates to a mix of transactional and non-transactional tables are logged surrounded by BE-
GIN and ROLLBACK so that slaves will make the same changes and rollbacks as on the mas-
ter.

• A stored procedure call is not written to the binary log at the statement level if the procedure is in-
voked from within a stored function. In that case, the only thing logged is the statement that invokes
the function (if it occurs within a statement that is logged) or a DO statement (if it occurs within a
statement that is not logged). For this reason, care still should be exercised in the use of stored func-
tions that invoke a procedure, even if the procedure is otherwise safe in itself.

• Because procedure logging occurs at the statement level rather than at the CALL level, interpretation
of the --replicate-*-table options is revised to apply only to stored functions. They no
longer apply to stored procedures, except those procedures that are invoked from within functions.

Routine logging changes in MySQL 5.0.16: In 5.0.12, a change was introduced to log stored procedure

Stored Procedures and Functions

1154

calls at the statement level rather than at the CALL level. This change eliminates the requirement that
procedures be identified as safe. The requirement now exists only for stored functions, because they still
appear in the binary log as function invocations rather than as the statements executed within the func-
tion. To reflect the lifting of the restriction on stored procedures, the
log_bin_trust_routine_creators system variable is renamed to
log_bin_trust_function_creators and the --log-bin-trust-routine-creators
server option is renamed to --log-bin-trust-function-creators. (For backward compatib-
ility, the old names are recognized but result in a warning.) Error messages that now apply only to func-
tions and not to routines in general are re-worded.

Routine logging changes in MySQL 5.0.19: In 5.0.12, a change was introduced to log a stored function
invocation as DO func_name() if the invocation changes data and occurs within a non-logged state-
ment, or if the function invokes a stored procedure that produces an error. In 5.0.19, these invocations
are logged as SELECT func_name() instead. The change to SELECT was made because use of DO
was found to yield insufficient control over error code checking.

Stored Procedures and Functions

1155

Chapter 18. Triggers
Support for triggers is included beginning with MySQL 5.0.2. A trigger is a named database object that
is associated with a table and that is activated when a particular event occurs for the table. For example,
the following statements create a table and an INSERT trigger. The trigger sums the values inserted into
one of the table's columns:

mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
Query OK, 0 rows affected (0.03 sec)

mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account
-> FOR EACH ROW SET @sum = @sum + NEW.amount;

Query OK, 0 rows affected (0.06 sec)

This chapter describes the syntax for creating and dropping triggers, and shows some examples of how
to use them. Discussion of restrictions on use of triggers is given in Section I.1, “Restrictions on Stored
Routines and Triggers”. Remarks regarding binary logging as it applies to triggers are given in Sec-
tion 17.5, “Binary Logging of Stored Routines and Triggers”.

18.1. CREATE TRIGGER Syntax
CREATE

[DEFINER = { user | CURRENT_USER }]
TRIGGER trigger_name trigger_time trigger_event
ON tbl_name FOR EACH ROW trigger_stmt

This statement creates a new trigger. A trigger is a named database object that is associated with a table,
and that activates when a particular event occurs for the table. CREATE TRIGGER was added in
MySQL 5.0.2. Currently, its use requires the SUPER privilege.

The trigger becomes associated with the table named tbl_name, which must refer to a permanent ta-
ble. You cannot associate a trigger with a TEMPORARY table or a view.

When the trigger is activated, the DEFINER clause determines the privileges that apply, as described
later in this section.

trigger_time is the trigger action time. It can be BEFORE or AFTER to indicate that the trigger ac-
tivates before or after the statement that activated it.

trigger_event indicates the kind of statement that activates the trigger. The trigger_event can
be one of the following:

• INSERT: The trigger is activated whenever a new row is inserted into the table; for example,
through INSERT, LOAD DATA, and REPLACE statements.

• UPDATE: The trigger is activated whenever a row is modified; for example, through UPDATE state-
ments.

• DELETE: The trigger is activated whenever a row is deleted from the table; for example, through
DELETE and REPLACE statements. However, DROP TABLE and TRUNCATE statements on the ta-
ble do not activate this trigger, because they do not use DELETE. See Section 13.2.9, “TRUNCATE
Syntax”.

It is important to understand that the trigger_event does not represent a literal type of SQL state-
ment that activates the trigger so much as it represents a type of table operation. For example, an IN-
SERT trigger is activated by not only INSERT statements but also LOAD DATA statements because

1156

both statements insert rows into a table.

A potentially confusing example of this is the INSERT INTO ... ON DUPLICATE KEY UPDATE
... syntax: a BEFORE INSERT trigger will activate for every row, followed by either an AFTER
INSERT trigger or both the BEFORE UPDATE and AFTER UPDATE triggers, depending on whether
there was a duplicate key for the row.

There cannot be two triggers for a given table that have the same trigger action time and event. For ex-
ample, you cannot have two BEFORE UPDATE triggers for a table. But you can have a BEFORE UP-
DATE and a BEFORE INSERT trigger, or a BEFORE UPDATE and an AFTER UPDATE trigger.

trigger_stmt is the statement to execute when the trigger activates. If you want to execute multiple
statements, use the BEGIN ... END compound statement construct. This also enables you to use the
same statements that are allowable within stored routines. See Section 17.2.5, “BEGIN ... END
Compound Statement Syntax”. Some statements are not allowed in triggers; see Section I.1,
“Restrictions on Stored Routines and Triggers”.

Note: Currently, triggers are not activated by cascaded foreign key actions. This limitation will be lifted
as soon as possible.

Note: Before MySQL 5.0.10, triggers cannot contain direct references to tables by name. Beginning
with MySQL 5.0.10, you can write triggers such as the one named testref shown in this example:

CREATE TABLE test1(a1 INT);
CREATE TABLE test2(a2 INT);
CREATE TABLE test3(a3 INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
CREATE TABLE test4(

a4 INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
b4 INT DEFAULT 0

);

DELIMITER |

CREATE TRIGGER testref BEFORE INSERT ON test1
FOR EACH ROW BEGIN
INSERT INTO test2 SET a2 = NEW.a1;
DELETE FROM test3 WHERE a3 = NEW.a1;
UPDATE test4 SET b4 = b4 + 1 WHERE a4 = NEW.a1;

END;
|

DELIMITER ;

INSERT INTO test3 (a3) VALUES
(NULL), (NULL), (NULL), (NULL), (NULL),
(NULL), (NULL), (NULL), (NULL), (NULL);

INSERT INTO test4 (a4) VALUES
(0), (0), (0), (0), (0), (0), (0), (0), (0), (0);

Suppose that you insert the following values into table test1 as shown here:

mysql> INSERT INTO test1 VALUES
-> (1), (3), (1), (7), (1), (8), (4), (4);

Query OK, 8 rows affected (0.01 sec)
Records: 8 Duplicates: 0 Warnings: 0

As a result, the data in the four tables will be as follows:

mysql> SELECT * FROM test1;
+------+
| a1 |
+------+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 8 |

Triggers

1157

| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test2;
+------+
| a2 |
+------+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 8 |
| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test3;
+----+
| a3 |
+----+
| 2 |
| 5 |
| 6 |
| 9 |
| 10 |
+----+
5 rows in set (0.00 sec)

mysql> SELECT * FROM test4;
+----+------+
| a4 | b4 |
+----+------+
1	3
2	0
3	1
4	2
5	0
6	0
7	1
8	1
9	0
10	0
+----+------+
10 rows in set (0.00 sec)

You can refer to columns in the subject table (the table associated with the trigger) by using the aliases
OLD and NEW. OLD.col_name refers to a column of an existing row before it is updated or deleted.
NEW.col_name refers to the column of a new row to be inserted or an existing row after it is updated.

The DEFINER clause specifies the MySQL account to be used when checking access privileges at trig-
ger activation time. It was added in MySQL 5.0.17. If a user value is given, it should be a MySQL ac-
count in 'user_name'@'host_name' format (the same format used in the GRANT statement). The
user_name and host_name values both are required. CURRENT_USER also can be given as CUR-
RENT_USER(). The default DEFINER value is the user who executes the CREATE TRIGGER state-
ment. (This is the same as DEFINER = CURRENT_USER.)

If you specify the DEFINER clause, you cannot set the value to any account but your own unless you
have the SUPER privilege. These rules determine the legal DEFINER user values:

• If you do not have the SUPER privilege, the only legal user value is your own account, either spe-
cified literally or by using CURRENT_USER. You cannot set the definer to some other account.

• If you have the SUPER privilege, you can specify any syntactically legal account name. If the ac-
count does not actually exist, a warning is generated.

Although it is possible to create triggers with a non-existent DEFINER value, it is not a good idea
for such triggers to be activated until the definer actually does exist. Otherwise, the behavior with re-

Triggers

1158

spect to privilege checking is undefined.

Note: Because MySQL currently requires the SUPER privilege for the use of CREATE TRIGGER, only
the second of the preceding rules applies. (MySQL 5.1.6 implements the TRIGGER privilege and re-
quires that privilege for trigger creation, so at that point both rules come into play and SUPER is re-
quired only for specifying a DEFINER value other than your own account.)

From MySQL 5.0.17 on, MySQL checks trigger privileges like this:

• At CREATE TRIGGER time, the user that issues the statement must have the SUPER privilege.

• At trigger activation time, privileges are checked against the DEFINER user. This user must have
these privileges:

• The SUPER privilege.

• The SELECT privilege for the subject table if references to table columns occur via
OLD.col_name or NEW.col_name in the trigger definition.

• The UPDATE privilege for the subject table if table columns are targets of SET
NEW.col_name = value assignments in the trigger definition.

• Whatever other privileges normally are required for the statements executed by the trigger.

Before MySQL 5.0.17, MySQL checks trigger privileges like this:

• At CREATE TRIGGER time, the user that issues the statement must have the SUPER privilege.

• At trigger activation time, privileges are checked against the user whose actions cause the trigger to
be activated. This user must have whatever privileges normally are required for the statements ex-
ecuted by the trigger.

Note that the introduction of the DEFINER clause changes the meaning of CURRENT_USER() within
trigger definitions: The CURRENT_USER() function evaluates to the trigger DEFINER value as of
MySQL 5.0.17 and to the user whose actions caused the trigger to be activated before 5.0.17.

18.2. DROP TRIGGER Syntax
DROP TRIGGER [schema_name.]trigger_name

This statement drops a trigger. The schema (database) name is optional. If the schema is omitted, the
trigger is dropped from the default schema. DROP TRIGGER was added in MySQL 5.0.2. Its use re-
quires the SUPER privilege.

Note: Prior to MySQL 5.0.10, the table name was required instead of the schema name
(table_name.trigger_name). When upgrading from a previous version of MySQL 5.0 to
MySQL 5.0.10 or newer, you must drop all triggers before upgrading and re-create them afterwards, or
else DROP TRIGGER does not work after the upgrade. See Section 2.11.2, “Upgrading from MySQL
4.1 to 5.0”, for a suggested upgrade procedure.

In addition, triggers created in MySQL 5.0.16 or later cannot be dropped following a downgrade to
MySQL 5.0.15 or earlier. If you wish to perform such a downgrade, you must also in this case drop all
triggers prior to the downgrade, and then re-create them afterwards.

Triggers

1159

(For more information about these two issues, see Bug#15921 [http://bugs.mysql.com/15921] and
Bug#18588 [http://bugs.mysql.com/18588].)

18.3. Using Triggers
Support for triggers is included beginning with MySQL 5.0.2. This section discusses how to use triggers
and some limitations regarding their use. Additional information about trigger limitations is given in
Section I.1, “Restrictions on Stored Routines and Triggers”.

A trigger is a named database object that is associated with a table, and that activates when a particular
event occurs for the table. Some uses for triggers are to perform checks of values to be inserted into a ta-
ble or to perform calculations on values involved in an update.

A trigger is associated with a table and is defined to activate when an INSERT, DELETE, or UPDATE
statement for the table executes. A trigger can be set to activate either before or after the triggering state-
ment. For example, you can have a trigger activate before each row that is deleted from a table or after
each row that is updated.

To create a trigger or drop a trigger, use the CREATE TRIGGER or DROP TRIGGER statement. The
syntax for these statements is described in Section 18.1, “CREATE TRIGGER Syntax”, and Sec-
tion 18.2, “DROP TRIGGER Syntax”.

Here is a simple example that associates a trigger with a table for INSERT statements. It acts as an accu-
mulator to sum the values inserted into one of the columns of the table.

The following statements create a table and a trigger for it:

mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account

-> FOR EACH ROW SET @sum = @sum + NEW.amount;

The CREATE TRIGGER statement creates a trigger named ins_sum that is associated with the ac-
count table. It also includes clauses that specify the trigger activation time, the triggering event, and
what to do with the trigger activates:

• The keyword BEFORE indicates the trigger action time. In this case, the trigger should activate be-
fore each row inserted into the table. The other allowable keyword here is AFTER.

• The keyword INSERT indicates the event that activates the trigger. In the example, INSERT state-
ments cause trigger activation. You can also create triggers for DELETE and UPDATE statements.

• The statement following FOR EACH ROW defines the statement to execute each time the trigger ac-
tivates, which occurs once for each row affected by the triggering statement In the example, the
triggered statement is a simple SET that accumulates the values inserted into the amount column.
The statement refers to the column as NEW.amount which means “the value of the amount
column to be inserted into the new row.”

To use the trigger, set the accumulator variable to zero, execute an INSERT statement, and then see
what value the variable has afterward:

mysql> SET @sum = 0;
mysql> INSERT INTO account VALUES(137,14.98),(141,1937.50),(97,-100.00);
mysql> SELECT @sum AS 'Total amount inserted';
+-----------------------+
| Total amount inserted |
+-----------------------+
| 1852.48 |
+-----------------------+

Triggers

1160

http://bugs.mysql.com/15921
http://bugs.mysql.com/18588

In this case, the value of @sum after the INSERT statement has executed is 14.98 + 1937.50 -
100, or 1852.48.

To destroy the trigger, use a DROP TRIGGER statement. You must specify the schema name if the trig-
ger is not in the default schema:

mysql> DROP TRIGGER test.ins_sum;

Trigger names exist in the schema namespace, meaning that all triggers must have unique names within
a schema. Triggers in different schemas can have the same name.

In addition to the requirement that trigger names be unique for a schema, there are other limitations on
the types of triggers you can create. In particular, you cannot have two triggers for a table that have the
same activation time and activation event. For example, you cannot define two BEFORE INSERT trig-
gers or two AFTER UPDATE triggers for a table. This should rarely be a significant limitation, because
it is possible to define a trigger that executes multiple statements by using the BEGIN ... END com-
pound statement construct after FOR EACH ROW. (An example appears later in this section.)

The OLD and NEW keywords enable you to access columns in the rows affected by a trigger. (OLD and
NEW are not case sensitive.) In an INSERT trigger, only NEW.col_name can be used; there is no old
row. In a DELETE trigger, only OLD.col_name can be used; there is no new row. In an UPDATE trig-
ger, you can use OLD.col_name to refer to the columns of a row before it is updated and
NEW.col_name to refer to the columns of the row after it is updated.

A column named with OLD is read-only. You can refer to it (if you have the SELECT privilege), but not
modify it. A column named with NEW can be referred to if you have the SELECT privilege for it. In a
BEFORE trigger, you can also change its value with SET NEW.col_name = value if you have the
UPDATE privilege for it. This means you can use a trigger to modify the values to be inserted into a new
row or that are used to update a row.

In a BEFORE trigger, the NEW value for an AUTO_INCREMENT column is 0, not the automatically gen-
erated sequence number that will be generated when the new record actually is inserted.

OLD and NEW are MySQL extensions to triggers.

By using the BEGIN ... END construct, you can define a trigger that executes multiple statements.
Within the BEGIN block, you also can use other syntax that is allowed within stored routines such as
conditionals and loops. However, just as for stored routines, if you use the mysql program to define a
trigger that executes multiple statements, it is necessary to redefine the mysql statement delimiter so
that you can use the ; statement delimiter within the trigger definition. The following example illus-
trates these points. It defines an UPDATE trigger that checks the new value to be used for updating each
row, and modifies the value to be within the range from 0 to 100. This must be a BEFORE trigger be-
cause the value needs to be checked before it is used to update the row:

mysql> delimiter //
mysql> CREATE TRIGGER upd_check BEFORE UPDATE ON account

-> FOR EACH ROW
-> BEGIN
-> IF NEW.amount < 0 THEN
-> SET NEW.amount = 0;
-> ELSEIF NEW.amount > 100 THEN
-> SET NEW.amount = 100;
-> END IF;
-> END;//

mysql> delimiter ;

It can be easier to define a stored procedure separately and then invoke it from the trigger using a simple
CALL statement. This is also advantageous if you want to invoke the same routine from within several
triggers.

Triggers

1161

There are some limitations on what can appear in statements that a trigger executes when activated:

• The trigger cannot use the CALL statement to invoke stored procedures that return data to the client
or that use dynamic SQL. (Stored procedures are allowed to return data to the trigger through OUT or
INOUT parameters.)

• The trigger cannot use statements that explicitly or implicitly begin or end a transaction such as
START TRANSACTION, COMMIT, or ROLLBACK.

• Prior to MySQL 5.0.10, triggers cannot contain direct references to tables by name.

MySQL handles errors during trigger execution as follows:

• If a BEFORE trigger fails, the operation on the corresponding row is not performed.

• A BEFORE trigger is activated by the attempt to insert or modify the row, regardless of whether the
attempt subsequently succeeds.

• An AFTER trigger is executed only if the BEFORE trigger (if any) and the row operation both ex-
ecute successfully.

• An error during either a BEFORE or AFTER trigger results in failure of the entire statement that
caused trigger invocation.

• For transactional tables, failure of a statement should cause rollback of all changes performed by the
statement. Failure of a trigger causes the statement to fail, so trigger failure also causes rollback. For
non-transactional tables, such rollback cannot be done, so although the statement fails, any changes
performed prior to the point of the error remain in effect.

Triggers

1162

Chapter 19. Views
Views (including updatable views) are implemented in MySQL Server 5.0. Views are available in bin-
ary releases from 5.0.1 and up.

This chapter discusses the following topics:

• Creating or altering views with CREATE VIEW or ALTER VIEW

• Destroying views with DROP VIEW

Discussion of restrictions on use of views is given in Section I.4, “Restrictions on Views”.

To use views if you have upgraded to MySQL 5.0.1 from an older release, you should upgrade your
grant tables so that they contain the view-related privileges. See Section 5.6.2, “mysql_upgrade —
Check Tables for MySQL Upgrade”.

Metadata about views can be obtained from the INFORMATION_SCHEMA.VIEWS table and by using
the SHOW CREATE VIEW statement. See Section 20.15, “The INFORMATION_SCHEMA VIEWS Ta-
ble”, and Section 13.5.4.7, “SHOW CREATE VIEW Syntax”.

19.1. ALTER VIEW Syntax
ALTER

[ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
[DEFINER = { user | CURRENT_USER }]
[SQL SECURITY { DEFINER | INVOKER }]
VIEW view_name [(column_list)]
AS select_statement
[WITH [CASCADED | LOCAL] CHECK OPTION]

This statement changes the definition of an existing view. The syntax is similar to that for CREATE
VIEW. See Section 19.2, “CREATE VIEW Syntax”. This statement requires the CREATE VIEW and
DROP privileges for the view, and some privilege for each column referred to in the SELECT statement.

This statement was added in MySQL 5.0.1. The DEFINER and SQL SECURITY clauses may be used
as of MySQL 5.0.16 to specify the security context to be used when checking access privileges at view
invocation time. For details, see Section 19.2, “CREATE VIEW Syntax”.

19.2. CREATE VIEW Syntax
CREATE

[OR REPLACE]
[ALGORITHM = {UNDEFINED | MERGE | TEMPTABLE}]
[DEFINER = { user | CURRENT_USER }]
[SQL SECURITY { DEFINER | INVOKER }]
VIEW view_name [(column_list)]
AS select_statement
[WITH [CASCADED | LOCAL] CHECK OPTION]

This statement creates a new view, or replaces an existing one if the OR REPLACE clause is given. The
select_statement is a SELECT statement that provides the definition of the view. The statement
can select from base tables or other views.

This statement requires the CREATE VIEW privilege for the view, and some privilege for each column
selected by the SELECT statement. For columns used elsewhere in the SELECT statement you must
have the SELECT privilege. If the OR REPLACE clause is present, you must also have the DROP priv-

1163

ilege for the view.

A view belongs to a database. By default, a new view is created in the default database. To create the
view explicitly in a given database, specify the name as db_name.view_name when you create it.

mysql> CREATE VIEW test.v AS SELECT * FROM t;

Base tables and views share the same namespace within a database, so a database cannot contain a base
table and a view that have the same name.

Views must have unique column names with no duplicates, just like base tables. By default, the names
of the columns retrieved by the SELECT statement are used for the view column names. To define ex-
plicit names for the view columns, the optional column_list clause can be given as a list of comma-
separated identifiers. The number of names in column_list must be the same as the number of
columns retrieved by the SELECT statement.

Columns retrieved by the SELECT statement can be simple references to table columns. They can also
be expressions that use functions, constant values, operators, and so forth.

Unqualified table or view names in the SELECT statement are interpreted with respect to the default
database. A view can refer to tables or views in other databases by qualifying the table or view name
with the proper database name.

A view can be created from many kinds of SELECT statements. It can refer to base tables or other
views. It can use joins, UNION, and subqueries. The SELECT need not even refer to any tables. The fol-
lowing example defines a view that selects two columns from another table, as well as an expression cal-
culated from those columns:

mysql> CREATE TABLE t (qty INT, price INT);
mysql> INSERT INTO t VALUES(3, 50);
mysql> CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;
mysql> SELECT * FROM v;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 3 | 50 | 150 |
+------+-------+-------+

A view definition is subject to the following restrictions:

• The SELECT statement cannot contain a subquery in the FROM clause.

• The SELECT statement cannot refer to system or user variables.

• The SELECT statement cannot refer to prepared statement parameters.

• Within a stored routine, the definition cannot refer to routine parameters or local variables.

• Any table or view referred to in the definition must exist. However, after a view has been created, it
is possible to drop a table or view that the definition refers to. In this case, use of the view results in
an error. To check a view definition for problems of this kind, use the CHECK TABLE statement.

• The definition cannot refer to a TEMPORARY table, and you cannot create a TEMPORARY view.

• The tables named in the view definition must already exist.

• You cannot associate a trigger with a view.

ORDER BY is allowed in a view definition, but it is ignored if you select from a view using a statement
that has its own ORDER BY.

Views

1164

For other options or clauses in the definition, they are added to the options or clauses of the statement
that references the view, but the effect is undefined. For example, if a view definition includes a LIMIT
clause, and you select from the view using a statement that has its own LIMIT clause, it is undefined
which limit applies. This same principle applies to options such as ALL, DISTINCT, or
SQL_SMALL_RESULT that follow the SELECT keyword, and to clauses such as INTO, FOR UPDATE,
LOCK IN SHARE MODE, and PROCEDURE.

If you create a view and then change the query processing environment by changing system variables,
that may affect the results that you get from the view:

mysql> CREATE VIEW v AS SELECT CHARSET(CHAR(65)), COLLATION(CHAR(65));
Query OK, 0 rows affected (0.00 sec)

mysql> SET NAMES 'latin1';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM v;
+-------------------+---------------------+
| CHARSET(CHAR(65)) | COLLATION(CHAR(65)) |
+-------------------+---------------------+
| latin1 | latin1_swedish_ci |
+-------------------+---------------------+
1 row in set (0.00 sec)

mysql> SET NAMES 'utf8';
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT * FROM v;
+-------------------+---------------------+
| CHARSET(CHAR(65)) | COLLATION(CHAR(65)) |
+-------------------+---------------------+
| utf8 | utf8_general_ci |
+-------------------+---------------------+
1 row in set (0.00 sec)

The DEFINER and SQL SECURITY clauses specify the security context to be used when checking ac-
cess privileges at view invocation time. They were addded in MySQL 5.0.13, but have no effect until
MySQL 5.0.16.

CURRENT_USER also can be given as CURRENT_USER().

Within a stored routine that is defined with the SQL SECURITY DEFINER characteristic, CUR-
RENT_USER returns the routine creator. This also affects a view defined within such a routine, if the
view definition contains a DEFINER value of CURRENT_USER.

The default DEFINER value is the user who executes the CREATE VIEW statement. (This is the same
as DEFINER = CURRENT_USER.) If a user value is given, it should be a MySQL account in
'user_name'@'host_name' format (the same format used in the GRANT statement). The
user_name and host_name values both are required.

If you specify the DEFINER clause, you cannot set the value to any user but your own unless you have
the SUPER privilege. These rules determine the legal DEFINER user values:

• If you do not have the SUPER privilege, the only legal user value is your own account, either spe-
cified literally or by using CURRENT_USER. You cannot set the definer to some other account.

• If you have the SUPER privilege, you can specify any syntactically legal account name. If the ac-
count does not actually exist, a warning is generated.

The SQL SECURITY characteristic determines which MySQL account to use when checking access
privileges for the view when the view is executed. The legal characteristic values are DEFINER and
INVOKER. These indicate that the view must be executable by the user who defined it or invoked it, re-
spectively. The default SQL SECURITY value is DEFINER.

Views

1165

As of MySQL 5.0.16 (when the DEFINER and SQL SECURITY clauses were implemented), view
privileges are checked like this:

• At view definition time, the view creator must have the privileges needed to use the top-level objects
accessed by the view. For example, if the view definition refers to a stored function, only the priv-
ileges needed to invoke the function can be checked. The privileges required when the function runs
can be checked only as it executes: For different invocations of the function, different execution
paths within the function might be taken.

• At view execution time, privileges for objects accessed by the view are checked against the priv-
ileges held by the view creator or invoker, depending on whether the SQL SECURITY characterist-
ic is DEFINER or INVOKER, respectively.

• If view execution causes execution of a stored function, privilege checking for statements executed
within the function depend on whether the function is defined with a SQL SECURITY characteristic
of DEFINER or INVOKER. If the security characteristic is DEFINER, the function runs with the
privileges of its creator. If the characteristic is INVOKER, the function runs with the privileges de-
termined by the view's SQL SECURITY characteristic.

Prior to MySQL 5.0.16 (before the DEFINER and SQL SECURITY clauses were implemented), priv-
ileges required for objects used in a view are checked at view creation time.

Example: A view might depend on a stored function, and that function might invoke other stored
routines. For example, the following view invokes a stored function f():

CREATE VIEW v AS SELECT * FROM t WHERE t.id = f(t.name);

Suppose that f() contains a statement such as this:

IF name IS NULL then
CALL p1();

ELSE
CALL p2();

END IF;

The privileges required for executing statements within f() need to be checked when f() executes.
This might mean that privileges are needed for p1() or p2(), depending on the execution path within
f(). Those privileges need to be checked at runtime, and the user who must possess the privileges is
determined by the SQL SECURITY values of the function f() and the view v.

The DEFINER and SQL SECURITY clauses for views are extensions to standard SQL. In standard
SQL, views are handled using the rules for SQL SECURITY INVOKER.

If you invoke a view that was created before MySQL 5.0.13, it is treated as though it was created with a
SQL SECURITY DEFINER clause and with a DEFINER value that is the same as your account.
However, because the actual definer is unknown, MySQL issues a warning. To make the warning go
away, it is sufficient to re-create the view so that the view definition includes a DEFINER clause.

The optional ALGORITHM clause is a MySQL extension to standard SQL. ALGORITHM takes three val-
ues: MERGE, TEMPTABLE, or UNDEFINED. The default algorithm is UNDEFINED if no ALGORITHM
clause is present. The algorithm affects how MySQL processes the view.

For MERGE, the text of a statement that refers to the view and the view definition are merged such that
parts of the view definition replace corresponding parts of the statement.

For TEMPTABLE, the results from the view are retrieved into a temporary table, which then is used to
execute the statement.

Views

1166

For UNDEFINED, MySQL chooses which algorithm to use. It prefers MERGE over TEMPTABLE if pos-
sible, because MERGE is usually more efficient and because a view cannot be updatable if a temporary
table is used.

A reason to choose TEMPTABLE explicitly is that locks can be released on underlying tables after the
temporary table has been created and before it is used to finish processing the statement. This might res-
ult in quicker lock release than the MERGE algorithm so that other clients that use the view are not
blocked as long.

A view algorithm can be UNDEFINED for three reasons:

• No ALGORITHM clause is present in the CREATE VIEW statement.

• The CREATE VIEW statement has an explicit ALGORITHM = UNDEFINED clause.

• ALGORITHM = MERGE is specified for a view that can be processed only with a temporary table.
In this case, MySQL generates a warning and sets the algorithm to UNDEFINED.

As mentioned earlier, MERGE is handled by merging corresponding parts of a view definition into the
statement that refers to the view. The following examples briefly illustrate how the MERGE algorithm
works. The examples assume that there is a view v_merge that has this definition:

CREATE ALGORITHM = MERGE VIEW v_merge (vc1, vc2) AS
SELECT c1, c2 FROM t WHERE c3 > 100;

Example 1: Suppose that we issue this statement:

SELECT * FROM v_merge;

MySQL handles the statement as follows:

• v_merge becomes t

• * becomes vc1, vc2, which corresponds to c1, c2

• The view WHERE clause is added

The resulting statement to be executed becomes:

SELECT c1, c2 FROM t WHERE c3 > 100;

Example 2: Suppose that we issue this statement:

SELECT * FROM v_merge WHERE vc1 < 100;

This statement is handled similarly to the previous one, except that vc1 < 100 becomes c1 < 100
and the view WHERE clause is added to the statement WHERE clause using an AND connective (and par-
entheses are added to make sure the parts of the clause are executed with correct precedence). The res-
ulting statement to be executed becomes:

SELECT c1, c2 FROM t WHERE (c3 > 100) AND (c1 < 100);

Effectively, the statement to be executed has a WHERE clause of this form:

Views

1167

WHERE (select WHERE) AND (view WHERE)

The MERGE algorithm requires a one-to-one relationship between the rows in the view and the rows in
the underlying table. If this relationship does not hold, a temporary table must be used instead. Lack of a
one-to-one relationship occurs if the view contains any of a number of constructs:

• Aggregate functions (SUM(), MIN(), MAX(), COUNT(), and so forth)

• DISTINCT

• GROUP BY

• HAVING

• UNION or UNION ALL

• Refers only to literal values (in this case, there is no underlying table)

Some views are updatable. That is, you can use them in statements such as UPDATE, DELETE, or IN-
SERT to update the contents of the underlying table. For a view to be updatable, there must be a one-
to-one relationship between the rows in the view and the rows in the underlying table. There are also
certain other constructs that make a view non-updatable. To be more specific, a view is not updatable if
it contains any of the following:

• Aggregate functions (SUM(), MIN(), MAX(), COUNT(), and so forth)

• DISTINCT

• GROUP BY

• HAVING

• UNION or UNION ALL

• Subquery in the select list

• Join

• Non-updatable view in the FROM clause

• A subquery in the WHERE clause that refers to a table in the FROM clause

• Refers only to literal values (in this case, there is no underlying table to update)

• ALGORITHM = TEMPTABLE (use of a temporary table always makes a view non-updatable)

With respect to insertability (being updatable with INSERT statements), an updatable view is insertable
if it also satisfies these additional requirements for the view columns:

• There must be no duplicate view column names.

• The view must contain all columns in the base table that do not have a default value.

• The view columns must be simple column references and not derived columns. A derived column is
one that is not a simple column reference but is derived from an expression. These are examples of

Views

1168

derived columns:

3.14159
col1 + 3
UPPER(col2)
col3 / col4
(subquery)

A view that has a mix of simple column references and derived columns is not insertable, but it can be
updatable if you update only those columns that are not derived. Consider this view:

CREATE VIEW v AS SELECT col1, 1 AS col2 FROM t;

This view is not insertable because col2 is derived from an expression. But it is updatable if the update
does not try to update col2. This update is allowable:

UPDATE v SET col1 = 0;

This update is not allowable because it attempts to update a derived column:

UPDATE v SET col2 = 0;

It is sometimes possible for a multiple-table view to be updatable, assuming that it can be processed with
the MERGE algorithm. For this to work, the view must use an inner join (not an outer join or a UNION).
Also, only a single table in the view definition can be updated, so the SET clause must name only
columns from one of the tables in the view. Views that use UNION ALL are disallowed even though
they might be theoretically updatable, because the implementation uses temporary tables to process
them.

For a multiple-table updatable view, INSERT can work if it inserts into a single table. DELETE is not
supported.

The WITH CHECK OPTION clause can be given for an updatable view to prevent inserts or updates to
rows except those for which the WHERE clause in the select_statement is true.

In a WITH CHECK OPTION clause for an updatable view, the LOCAL and CASCADED keywords de-
termine the scope of check testing when the view is defined in terms of another view. The LOCAL
keyword restricts the CHECK OPTION only to the view being defined. CASCADED causes the checks
for underlying views to be evaluated as well. When neither keyword is given, the default is CASCADED.
Consider the definitions for the following table and set of views:

mysql> CREATE TABLE t1 (a INT);
mysql> CREATE VIEW v1 AS SELECT * FROM t1 WHERE a < 2

-> WITH CHECK OPTION;
mysql> CREATE VIEW v2 AS SELECT * FROM v1 WHERE a > 0

-> WITH LOCAL CHECK OPTION;
mysql> CREATE VIEW v3 AS SELECT * FROM v1 WHERE a > 0

-> WITH CASCADED CHECK OPTION;

Here the v2 and v3 views are defined in terms of another view, v1. v2 has a LOCAL check option, so
inserts are tested only against the v2 check. v3 has a CASCADED check option, so inserts are tested not
only against its own check, but against those of underlying views. The following statements illustrate
these differences:

mysql> INSERT INTO v2 VALUES (2);
Query OK, 1 row affected (0.00 sec)
mysql> INSERT INTO v3 VALUES (2);
ERROR 1369 (HY000): CHECK OPTION failed 'test.v3'

Views

1169

The updatability of views may be affected by the value of the updatable_views_with_limit
system variable. See Section 5.2.3, “System Variables”.

The CREATE VIEW statement was added in MySQL 5.0.1. The WITH CHECK OPTION clause was
implemented in MySQL 5.0.2.

19.3. DROP VIEW Syntax
DROP VIEW [IF EXISTS]

view_name [, view_name] ...
[RESTRICT | CASCADE]

DROP VIEW removes one or more views. You must have the DROP privilege for each view. If any of
the views named in the argument list do not exist, MySQL returns an error indicating by name which
non-existing views it was unable to drop, but it also drops all of the views in the list that do exist.

The IF EXISTS clause prevents an error from occurring for views that don't exist. When this clause is
given, a NOTE is generated for each non-existent view. See Section 13.5.4.26, “SHOW WARNINGS Syn-
tax”.

RESTRICT and CASCADE, if given, are parsed and ignored.

This statement was added in MySQL 5.0.1.

Views

1170

Chapter 20. The INFORMATION_SCHEMA
Database

INFORMATION_SCHEMA provides access to database metadata.

Metadata is data about the data, such as the name of a database or table, the data type of a column, or
access privileges. Other terms that sometimes are used for this information are data dictionary and sys-
tem catalog.

INFORMATION_SCHEMA is the information database, the place that stores information about all the
other databases that the MySQL server maintains. Inside INFORMATION_SCHEMA there are several
read-only tables. They are actually views, not base tables, so there are no files associated with them.

In effect, we have a database named INFORMATION_SCHEMA, although the server does not create a
database directory with that name. It is possible to select INFORMATION_SCHEMA as the default data-
base with a USE statement, but it is possible only to read the contents of tables. You cannot insert into
them, update them, or delete from them.

Here is an example of a statement that retrieves information from INFORMATION_SCHEMA:

mysql> SELECT table_name, table_type, engine
-> FROM information_schema.tables
-> WHERE table_schema = 'db5'
-> ORDER BY table_name DESC;

+------------+------------+--------+
| table_name | table_type | engine |
+------------+------------+--------+
v56	VIEW	NULL
v3	VIEW	NULL
v2	VIEW	NULL
v	VIEW	NULL
tables	BASE TABLE	MyISAM
t7	BASE TABLE	MyISAM
t3	BASE TABLE	MyISAM
t2	BASE TABLE	MyISAM
t	BASE TABLE	MyISAM
pk	BASE TABLE	InnoDB
loop	BASE TABLE	MyISAM
kurs	BASE TABLE	MyISAM
k	BASE TABLE	MyISAM
into	BASE TABLE	MyISAM
goto	BASE TABLE	MyISAM
fk2	BASE TABLE	InnoDB
fk	BASE TABLE	InnoDB
+------------+------------+--------+
17 rows in set (0.01 sec)

Explanation: The statement requests a list of all the tables in database db5, in reverse alphabetical order,
showing just three pieces of information: the name of the table, its type, and its storage engine.

Each MySQL user has the right to access these tables, but can see only the rows in the tables that corres-
pond to objects for which the user has the proper access privileges. In some cases (for example, the
ROUTINE_DEFINITION column in the INFORMATION_SCHEMA.ROUTINES table), users who
have insufficient privileges will see NULL.

The SELECT ... FROM INFORMATION_SCHEMA statement is intended as a more consistent way
to provide access to the information provided by the various SHOW statements that MySQL supports
(SHOW DATABASES, SHOW TABLES, and so forth). Using SELECT has these advantages, compared
to SHOW:

• It conforms to Codd's rules. That is, all access is done on tables.

1171

• Nobody needs to learn a new statement syntax. Because they already know how SELECT works,
they only need to learn the object names.

• The implementor need not worry about adding keywords.

• There are millions of possible output variations, instead of just one. This provides more flexibility
for applications that have varying requirements about what metadata they need.

• Migration is easier because every other DBMS does it this way.

However, because SHOW is popular with MySQL employees and users, and because it might be confus-
ing were it to disappear, the advantages of conventional syntax are not a sufficient reason to eliminate
SHOW. In fact, along with the implementation of INFORMATION_SCHEMA, there are enhancements to
SHOW as well. These are described in Section 20.18, “Extensions to SHOW Statements”.

There is no difference between the privileges required for SHOW statements and those required to select
information from INFORMATION_SCHEMA. In either case, you have to have some privilege on an ob-
ject in order to see information about it.

The implementation for the INFORMATION_SCHEMA table structures in MySQL follows the ANSI/
ISO SQL:2003 standard Part 11 Schemata. Our intent is approximate compliance with SQL:2003 core
feature F021 Basic information schema.

Users of SQL Server 2000 (which also follows the standard) may notice a strong similarity. However,
MySQL has omitted many columns that are not relevant for our implementation, and added columns that
are MySQL-specific. One such column is the ENGINE column in the INFORMA-
TION_SCHEMA.TABLES table.

Although other DBMSs use a variety of names, like syscat or system, the standard name is IN-
FORMATION_SCHEMA.

The following sections describe each of the tables and columns that are in INFORMATION_SCHEMA.
For each column, there are three pieces of information:

• “INFORMATION_SCHEMA Name” indicates the name for the column in the INFORMA-
TION_SCHEMA table. This corresponds to the standard SQL name unless the “Remarks” field says
“MySQL extension.”

• “SHOW Name” indicates the equivalent field name in the closest SHOW statement, if there is one.

• “Remarks” provides additional information where applicable. If this field is NULL, it means that the
value of the column is always NULL. If this field says “MySQL extension,” the column is a MySQL
extension to standard SQL.

To avoid using any name that is reserved in the standard or in DB2, SQL Server, or Oracle, we changed
the names of some columns marked “MySQL extension”. (For example, we changed COLLATION to
TABLE_COLLATION in the TABLES table.) See the list of reserved words near the end of this article:
http://www.dbazine.com/gulutzan5.shtml.

The definition for character columns (for example, TABLES.TABLE_NAME) is generally
VARCHAR(N) CHARACTER SET utf8 where N is at least 64.

Each section indicates what SHOW statement is equivalent to a SELECT that retrieves information from
INFORMATION_SCHEMA, if there is such a statement.

Note: At present, there are some missing columns and some columns out of order. We are working on

The INFORMATION_SCHEMA Database

1172

http://www.dbazine.com/gulutzan5.shtml

this and update the documentation as changes are made.

20.1. The INFORMATION_SCHEMA SCHEMATA Table
A schema is a database, so the SCHEMATA table provides information about databases.

INFORMATION_SCHEMA Name SHOW Name Remarks

CATALOG_NAME NULL

SCHEMA_NAME Database

DEFAULT_CHARACTER_SET_NAME

DEFAULT_COLLATION_NAME

SQL_PATH NULL

Notes:

• DEFAULT_COLLATION_NAME was added in MySQL 5.0.6.

The following statements are equivalent:

SELECT SCHEMA_NAME AS `Database`
FROM INFORMATION_SCHEMA.SCHEMATA
[WHERE SCHEMA_NAME LIKE 'wild']

SHOW DATABASES
[LIKE 'wild']

20.2. The INFORMATION_SCHEMA TABLES Table
The TABLES table provides information about tables in databases.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG NULL

TABLE_SCHEMA Table_...

TABLE_NAME Table_...

TABLE_TYPE

ENGINE Engine MySQL extension

VERSION Version MySQL extension

ROW_FORMAT Row_format MySQL extension

TABLE_ROWS Rows MySQL extension

AVG_ROW_LENGTH Avg_row_length MySQL extension

DATA_LENGTH Data_length MySQL extension

MAX_DATA_LENGTH Max_data_length MySQL extension

INDEX_LENGTH Index_length MySQL extension

DATA_FREE Data_free MySQL extension

AUTO_INCREMENT Auto_increment MySQL extension

CREATE_TIME Create_time MySQL extension

UPDATE_TIME Update_time MySQL extension

The INFORMATION_SCHEMA Database

1173

CHECK_TIME Check_time MySQL extension

TABLE_COLLATION Collation MySQL extension

CHECKSUM Checksum MySQL extension

CREATE_OPTIONS Create_options MySQL extension

TABLE_COMMENT Comment MySQL extension

Notes:

• TABLE_SCHEMA and TABLE_NAME are a single field in a SHOW display, for example Ta-
ble_in_db1.

• TABLE_TYPE should be BASE TABLE or VIEW. If table is temporary, then TABLE_TYPE =
TEMPORARY. (There are no temporary views, so this is not ambiguous.)

• The TABLE_ROWS column is NULL if the table is in the INFORMATION_SCHEMA database. For
InnoDB tables, the row count is only a rough estimate used in SQL optimization.

• We have nothing for the table's default character set. TABLE_COLLATION is close, because colla-
tion names begin with a character set name.

The following statements are equivalent:

SELECT table_name FROM INFORMATION_SCHEMA.TABLES
[WHERE table_schema = 'db_name']
[WHERE|AND table_name LIKE 'wild']

SHOW TABLES
[FROM db_name]
[LIKE 'wild']

20.3. The INFORMATION_SCHEMA COLUMNS Table
The COLUMNS table provides information about columns in tables.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG NULL

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME Field

ORDINAL_POSITION see notes

COLUMN_DEFAULT Default

IS_NULLABLE Null

DATA_TYPE Type

CHARACTER_MAXIMUM_LENGTH Type

CHARACTER_OCTET_LENGTH

NUMERIC_PRECISION Type

NUMERIC_SCALE Type

CHARACTER_SET_NAME

COLLATION_NAME Collation

The INFORMATION_SCHEMA Database

1174

COLUMN_TYPE Type MySQL extension

COLUMN_KEY Key MySQL extension

EXTRA Extra MySQL extension

COLUMN_COMMENT Comment MySQL extension

Notes:

• In SHOW, the Type display includes values from several different COLUMNS columns.

• ORDINAL_POSITION is necessary because you might want to say ORDER BY ORDIN-
AL_POSITION. Unlike SHOW, SELECT does not have automatic ordering.

• CHARACTER_OCTET_LENGTH should be the same as CHARACTER_MAXIMUM_LENGTH, except
for multi-byte character sets.

• CHARACTER_SET_NAME can be derived from Collation. For example, if you say SHOW FULL
COLUMNS FROM t, and you see in the Collation column a value of latin1_swedish_ci,
the character set is what's before the first underscore: latin1.

The following statements are nearly equivalent:

SELECT COLUMN_NAME, DATA_TYPE, IS_NULLABLE, COLUMN_DEFAULT
FROM INFORMATION_SCHEMA.COLUMNS
WHERE table_name = 'tbl_name'
[AND table_schema = 'db_name']
[AND column_name LIKE 'wild']

SHOW COLUMNS
FROM tbl_name
[FROM db_name]
[LIKE 'wild']

20.4. The INFORMATION_SCHEMA STATISTICS Table
The STATISTICS table provides information about table indexes.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG NULL

TABLE_SCHEMA = Database

TABLE_NAME Table

NON_UNIQUE Non_unique

INDEX_SCHEMA = Database

INDEX_NAME Key_name

SEQ_IN_INDEX Seq_in_index

COLUMN_NAME Column_name

COLLATION Collation

CARDINALITY Cardinality

SUB_PART Sub_part MySQL extension

PACKED Packed MySQL extension

NULLABLE Null MySQL extension

The INFORMATION_SCHEMA Database

1175

INDEX_TYPE Index_type MySQL extension

COMMENT Comment MySQL extension

Notes:

• There is no standard table for indexes. The preceding list is similar to what SQL Server 2000 returns
for sp_statistics, except that we replaced the name QUALIFIER with CATALOG and we re-
placed the name OWNER with SCHEMA.

Clearly, the preceding table and the output from SHOW INDEX are derived from the same parent. So
the correlation is already close.

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.STATISTICS
WHERE table_name = 'tbl_name'
[AND table_schema = 'db_name']

SHOW INDEX
FROM tbl_name
[FROM db_name]

20.5. The INFORMATION_SCHEMA USER_PRIVILEGES
Table

The USER_PRIVILEGES table provides information about global privileges. This information comes
from the mysql.user grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE host_na
'user_name'@'me'
value, MySQL extension

TABLE_CATALOG NULL, MySQL extension

PRIVILEGE_TYPE MySQL extension

IS_GRANTABLE MySQL extension

Notes:

• This is a non-standard table. It takes its values from the mysql.user table.

20.6. The INFORMATION_SCHEMA
SCHEMA_PRIVILEGES Table

The SCHEMA_PRIVILEGES table provides information about schema (database) privileges. This in-
formation comes from the mysql.db grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE host_na

The INFORMATION_SCHEMA Database

1176

me' value, MySQL extension

TABLE_CATALOG NULL, MySQL extension

TABLE_SCHEMA MySQL extension

PRIVILEGE_TYPE MySQL extension

IS_GRANTABLE MySQL extension

Notes:

• This is a non-standard table. It takes its values from the mysql.db table.

20.7. The INFORMATION_SCHEMA TABLE_PRIVILEGES
Table

The TABLE_PRIVILEGES table provides information about table privileges. This information comes
from the mysql.tables_priv grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE host_na
'user_name'@'me' value

TABLE_CATALOG NULL

TABLE_SCHEMA

TABLE_NAME

PRIVILEGE_TYPE

IS_GRANTABLE

Notes:

• PRIVILEGE_TYPE can contain one (and only one) of these values: SELECT, INSERT, UPDATE,
REFERENCES, ALTER, INDEX, DROP, CREATE VIEW.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES

SHOW GRANTS ...

20.8. The INFORMATION_SCHEMA
COLUMN_PRIVILEGES Table

The COLUMN_PRIVILEGES table provides information about column privileges. This information
comes from the mysql.columns_priv grant table.

INFORMATION_SCHEMA Name SHOW Name Remarks

GRANTEE host_na
'user_name'@'me' value

The INFORMATION_SCHEMA Database

1177

TABLE_CATALOG NULL

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

PRIVILEGE_TYPE

IS_GRANTABLE

Notes:

• In the output from SHOW FULL COLUMNS, the privileges are all in one field and in lowercase, for
example, select,insert,update,references. In COLUMN_PRIVILEGES, there is one
privilege per row, in uppercase.

• PRIVILEGE_TYPE can contain one (and only one) of these values: SELECT, INSERT, UPDATE,
REFERENCES.

• If the user has GRANT OPTION privilege, IS_GRANTABLE should be YES. Otherwise,
IS_GRANTABLE should be NO. The output does not list GRANT OPTION as a separate privilege.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.COLUMN_PRIVILEGES

SHOW GRANTS ...

20.9. The INFORMATION_SCHEMA CHARACTER_SETS
Table

The CHARACTER_SETS table provides information about available character sets.

INFORMATION_SCHEMA Name SHOW Name Remarks

CHARACTER_SET_NAME Charset

DEFAULT_COLLATE_NAME Default collation

DESCRIPION Description MySQL extension

MAXLEN Maxlen MySQL extension

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.CHARACTER_SETS
[WHERE name LIKE 'wild']

SHOW CHARACTER SET
[LIKE 'wild']

20.10. The INFORMATION_SCHEMA COLLATIONS Table
The COLLATIONS table provides information about collations for each character set.

INFORMATION_SCHEMA Name SHOW Name Remarks

The INFORMATION_SCHEMA Database

1178

COLLATION_NAME Collation

CHARACTER_SET_NAME Charset MySQL extension

ID Id MySQL extension

IS_DEFAULT Default MySQL extension

IS_COMPILED Compiled MySQL extension

SORTLEN Sortlen MySQL extension

The following statements are equivalent:

SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLLATIONS
[WHERE collation_name LIKE 'wild']

SHOW COLLATION
[LIKE 'wild']

20.11. The INFORMATION_SCHEMA COLLA-
TION_CHARACTER_SET_APPLICABILITY Table

The COLLATION_CHARACTER_SET_APPLICABILITY table indicates what character set is applic-
able for what collation. The columns are equivalent to the first two display fields that we get from SHOW
COLLATION.

INFORMATION_SCHEMA Name SHOW Name Remarks

COLLATION_NAME Collation

CHARACTER_SET_NAME Charset

20.12. The INFORMATION_SCHEMA TA-
BLE_CONSTRAINTS Table

The TABLE_CONSTRAINTS table describes which tables have constraints.

INFORMATION_SCHEMA Name SHOW Name Remarks

CONSTRAINT_CATALOG NULL

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

TABLE_SCHEMA

TABLE_NAME

CONSTRAINT_TYPE

Notes:

• The CONSTRAINT_TYPE value can be UNIQUE, PRIMARY KEY, or FOREIGN KEY.

• The UNIQUE and PRIMARY KEY information is about the same as what you get from the
Key_name field in the output from SHOW INDEX when the Non_unique field is 0.

The INFORMATION_SCHEMA Database

1179

• The CONSTRAINT_TYPE column can contain one of these values: UNIQUE, PRIMARY KEY,
FOREIGN KEY, CHECK. This is a CHAR (not ENUM) column. The CHECK value is not available un-
til we support CHECK.

20.13. The INFORMATION_SCHEMA
KEY_COLUMN_USAGE Table

The KEY_COLUMN_USAGE table describes which key columns have constraints.

INFORMATION_SCHEMA Name SHOW Name Remarks

CONSTRAINT_CATALOG NULL

CONSTRAINT_SCHEMA

CONSTRAINT_NAME

TABLE_CATALOG

TABLE_SCHEMA

TABLE_NAME

COLUMN_NAME

ORDINAL_POSITION

POSI-
TION_IN_UNIQUE_CONSTRAINT

REFERENCED_TABLE_SCHEMA

REFERENCED_TABLE_NAME

REFERENCED_COLUMN_NAME

Notes:

• If the constraint is a foreign key, then this is the column of the foreign key, not the column that the
foreign key references.

• The value of ORDINAL_POSITION is the column's position within the constraint, not the column's
position within the table. Column positions are numbered beginning with 1.

• The value of POSITION_IN_UNIQUE_CONSTRAINT is NULL for unique and primary-key con-
straints. For foreign-key constraints, it is the ordinal position in key of the table that is being refer-
enced.

For example, suppose that there are two tables name t1 and t3 that have the following definitions:

CREATE TABLE t1
(

s1 INT,
s2 INT,
s3 INT,
PRIMARY KEY(s3)

) ENGINE=InnoDB;

CREATE TABLE t3
(

s1 INT,
s2 INT,
s3 INT,
KEY(s1),
CONSTRAINT CO FOREIGN KEY (s2) REFERENCES t1(s3)

The INFORMATION_SCHEMA Database

1180

) ENGINE=InnoDB;

For those two tables, the KEY_COLUMN_USAGE table has two rows:

• One row with CONSTRAINT_NAME = 'PRIMARY', TABLE_NAME = 't1', COLUMN_NAME
= 's3', ORDINAL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = NULL.

• One row with CONSTRAINT_NAME = 'CO', TABLE_NAME = 't3', COLUMN_NAME = 's2',
ORDINAL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = 1.

• REFERENCED_TABLE_SCHEMA, REFERENCED_TABLE_NAME, and REFER-
ENCED_COLUMN_NAME were added in MySQL 5.0.6.

20.14. The INFORMATION_SCHEMA ROUTINES Table
The ROUTINES table provides information about stored routines (both procedures and functions). The
ROUTINES table does not include user-defined functions (UDFs) at this time.

The column named “mysql.proc name” indicates the mysql.proc table column that corresponds
to the INFORMATION_SCHEMA.ROUTINES table column, if any.

INFORMATION_SCHEMA Name mysql.proc Name Remarks

SPECIFIC_NAME specific_name

ROUTINE_CATALOG NULL

ROUTINE_SCHEMA db

ROUTINE_NAME name

ROUTINE_TYPE type {PROCEDURE|FUNCTION}

DTD_IDENTIFIER (data type descriptor)

ROUTINE_BODY SQL

ROUTINE_DEFINITION body

EXTERNAL_NAME NULL

EXTERNAL_LANGUAGE language NULL

PARAMETER_STYLE SQL

IS_DETERMINISTIC is_deterministic

SQL_DATA_ACCESS sql_data_access

SQL_PATH NULL

SECURITY_TYPE security_type

CREATED created

LAST_ALTERED modified

SQL_MODE sql_mode MySQL extension

ROUTINE_COMMENT comment MySQL extension

DEFINER definer MySQL extension

Notes:

The INFORMATION_SCHEMA Database

1181

• MySQL calculates EXTERNAL_LANGUAGE thus:

• If mysql.proc.language='SQL', EXTERNAL_LANGUAGE is NULL

• Otherwise, EXTERNAL_LANGUAGE is what is in mysql.proc.language. However, we do
not have external languages yet, so it is always NULL.

20.15. The INFORMATION_SCHEMA VIEWS Table
The VIEWS table provides information about views in databases. You must have the SHOW VIEW priv-
ilege to access this table.

INFORMATION_SCHEMA Name SHOW Name Remarks

TABLE_CATALOG NULL

TABLE_SCHEMA

TABLE_NAME

VIEW_DEFINITION

CHECK_OPTION

IS_UPDATABLE

DEFINER

SECURITY_TYPE

Notes:

• The VIEW_DEFINITION column has most of what you see in the Create Table field that
SHOW CREATE VIEW produces. Skip the words before SELECT and skip the words WITH
CHECK OPTION. Suppose that the original statement was:

CREATE VIEW v AS
SELECT s2,s1 FROM t
WHERE s1 > 5
ORDER BY s1
WITH CHECK OPTION;

Then the view definition looks like this:

SELECT s2,s1 FROM t WHERE s1 > 5 ORDER BY s1

• The CHECK_OPTION column always has a value of NONE.

• The IS_UPDATABLE column is YES if the view is updatable, NO if the view is not updatable.

• The DEFINER and SECURITY_TYPE columns were added in MySQL 5.0.14. DEFINER indicates
who defined the view. SECURITY_TYPE has a value of DEFINER or INVOKER.

20.16. The INFORMATION_SCHEMA TRIGGERS Table
The TRIGGERS table provides information about triggers. You must have the SUPER privilege to ac-
cess this table.

The INFORMATION_SCHEMA Database

1182

INFORMATION_SCHEMA Name SHOW Name Remarks

TRIGGER_CATALOG NULL

TRIGGER_SCHEMA

TRIGGER_NAME Trigger

EVENT_MANIPULATION Event

EVENT_OBJECT_CATALOG NULL

EVENT_OBJECT_SCHEMA

EVENT_OBJECT_TABLE Table

ACTION_ORDER 0

ACTION_CONDITION NULL

ACTION_STATEMENT Statement

ACTION_ORIENTATION ROW

ACTION_TIMING Timing

ACTION_REFERENCE_OLD_TABLE NULL

ACTION_REFERENCE_NEW_TABLE NULL

ACTION_REFERENCE_OLD_ROW OLD

ACTION_REFERENCE_NEW_ROW NEW

CREATED NULL (0)

SQL_MODE MySQL extension

DEFINER MySQL extension

Notes:

• The TRIGGERS table was added in MySQL 5.0.10.

• The TRIGGER_SCHEMA and TRIGGER_NAME columns contain the name of the database in which
the trigger occurs and the trigger name, respectively.

• The EVENT_MANIPULATION column contains one of the values 'INSERT', 'DELETE', or 'UP-
DATE'.

• As noted in Chapter 18, Triggers, every trigger is associated with exactly one table. The
EVENT_OBJECT_SCHEMA and EVENT_OBJECT_TABLE columns contain the database in which
this table occurs, and the table's name.

• The ACTION_ORDER statement contains the ordinal position of the trigger's action within the list of
all similar triggers on the same table. Currently, this value is always 0, because it is not possible to
have more than one trigger with the same EVENT_MANIPULATION and ACTION_TIMING on the
same table.

• The ACTION_STATEMENT column contains the statement to be executed when the trigger is in-
voked. This is the same as the text displayed in the Statement column of the output from SHOW
TRIGGERS. Note that this text uses UTF-8 encoding.

• The ACTION_ORIENTATION column always contains the value 'ROW'.

• The ACTION_TIMING column contains one of the two values 'BEFORE' or 'AFTER'.

• The columns ACTION_REFERENCE_OLD_ROW and ACTION_REFERENCE_NEW_ROW contain

The INFORMATION_SCHEMA Database

1183

the old and new column identifiers, respectively. This means that AC-
TION_REFERENCE_OLD_ROW always contains the value 'OLD' and AC-
TION_REFERENCE_NEW_ROW always contains the value 'NEW'.

• The SQL_MODE column shows the server SQL mode that was in effect at the time when the trigger
was created (and thus which remains in effect for this trigger whenever it is invoked, regardless of
the current server SQL mode). The possible range of values for this column is the same as that of the
sql_mode system variable. See Section 5.2.6, “SQL Modes”.

• The DEFINER column was added in MySQL 5.0.17. DEFINER indicates who defined the trigger.

• The following columns currently always contain NULL: TRIGGER_CATALOG,
EVENT_OBJECT_CATALOG, ACTION_CONDITION, ACTION_REFERENCE_OLD_TABLE, AC-
TION_REFERENCE_NEW_TABLE, and CREATED.

Example, using the ins_sum trigger defined in Section 18.3, “Using Triggers”:

mysql> SELECT * FROM INFORMATION_SCHEMA.TRIGGERS\G
*************************** 1. row ***************************

TRIGGER_CATALOG: NULL
TRIGGER_SCHEMA: test
TRIGGER_NAME: ins_sum

EVENT_MANIPULATION: INSERT
EVENT_OBJECT_CATALOG: NULL
EVENT_OBJECT_SCHEMA: test
EVENT_OBJECT_TABLE: account

ACTION_ORDER: 0
ACTION_CONDITION: NULL
ACTION_STATEMENT: SET @sum = @sum + NEW.amount

ACTION_ORIENTATION: ROW
ACTION_TIMING: BEFORE

ACTION_REFERENCE_OLD_TABLE: NULL
ACTION_REFERENCE_NEW_TABLE: NULL

ACTION_REFERENCE_OLD_ROW: OLD
ACTION_REFERENCE_NEW_ROW: NEW

CREATED: NULL
SQL_MODE:
DEFINER: me@localhost

See also Section 13.5.4.24, “SHOW TRIGGERS Syntax”.

20.17. Other INFORMATION_SCHEMA Tables
We intend to implement additional INFORMATION_SCHEMA tables. In particular, we acknowledge the
need for the PARAMETERS and REFERENTIAL_CONSTRAINTS tables. (REFEREN-
TIAL_CONSTRAINTS is implemented in MySQL 5.1.)

20.18. Extensions to SHOW Statements
Some extensions to SHOW statements accompany the implementation of INFORMATION_SCHEMA:

• SHOW can be used to get information about the structure of INFORMATION_SCHEMA itself.

• Several SHOW statements accept a WHERE clause that provides more flexibility in specifying which
rows to display.

These extensions are available beginning with MySQL 5.0.3.

INFORMATION_SCHEMA is an information database, so its name is included in the output from SHOW

The INFORMATION_SCHEMA Database

1184

DATABASES. Similarly, SHOW TABLES can be used with INFORMATION_SCHEMA to obtain a list of
its tables:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA;
+---------------------------------------+
| Tables_in_information_schema |
+---------------------------------------+
| CHARACTER_SETS |
| COLLATIONS |
| COLLATION_CHARACTER_SET_APPLICABILITY |
| COLUMNS |
| COLUMN_PRIVILEGES |
| KEY_COLUMN_USAGE |
| ROUTINES |
| SCHEMATA |
| SCHEMA_PRIVILEGES |
| STATISTICS |
| TABLES |
| TABLE_CONSTRAINTS |
| TABLE_PRIVILEGES |
| TRIGGERS |
| USER_PRIVILEGES |
| VIEWS |
+---------------------------------------+
16 rows in set (0.00 sec)

SHOW COLUMNS and DESCRIBE can display information about the columns in individual INFORMA-
TION_SCHEMA tables.

Several SHOW statement have been extended to allow a WHERE clause:

SHOW CHARACTER SET
SHOW COLLATION
SHOW COLUMNS
SHOW DATABASES
SHOW FUNCTION STATUS
SHOW KEYS
SHOW OPEN TABLES
SHOW PROCEDURE STATUS
SHOW STATUS
SHOW TABLE STATUS
SHOW TABLES
SHOW VARIABLES

The WHERE clause, if present, is evaluated against the column names displayed by the SHOW statement.
For example, the SHOW CHARACTER SET statement produces these output columns:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+----------+-----------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
cp850	DOS West European	cp850_general_ci	1
hp8	HP West European	hp8_english_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
...

To use a WHERE clause with SHOW CHARACTER SET, you would refer to those column names. As an
example, the following statement displays information about character sets for which the default colla-
tion contains the string 'japanese':

mysql> SHOW CHARACTER SET WHERE `Default collation` LIKE '%japanese%';
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------+---------------------+--------+
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
+---------+---------------------------+---------------------+--------+

The INFORMATION_SCHEMA Database

1185

This statement displays the multi-byte character sets:

mysql> SHOW CHARACTER SET WHERE Maxlen > 1;
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
euckr	EUC-KR Korean	euckr_korean_ci	2
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
utf8	UTF-8 Unicode	utf8_general_ci	3
ucs2	UCS-2 Unicode	ucs2_general_ci	2
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
+---------+---------------------------+---------------------+--------+

The INFORMATION_SCHEMA Database

1186

Chapter 21. Precision Math
MySQL 5.0 introduces precision math: numeric value handling that results in more accurate results and
more control over invalid values than in earlier versions of MySQL. Precision math is based on two im-
plementation changes:

• The introduction of SQL modes in MySQL 5.0 that control how strict the server is about accepting
or rejecting invalid data.

• The introduction in MySQL 5.0.3 of a library for fixed-point arithmetic.

These changes have several implications for numeric operations:

• More precise calculations: For exact-value numbers, calculations do not introduce floating-point
errors. Instead, exact precision is used. For example, a number such as .0001 is treated as an exact
value rather than as an approximation, and summing it 10,000 times produces a result of exactly 1,
not a value that merely “close” to 1.

• Well-defined rounding behavior: For exact-value numbers, the result of ROUND() depends on its
argument, not on environmental factors such as how the underlying C library works.

• Improved platform independence: Operations on exact numeric values are the same across differ-
ent platforms such as Windows and Unix.

• Control over handling of invalid values: Overflow and division by zero are detectable and can be
treated as errors. For example, you can treat a value that is too large for a column as an error rather
than having the value truncated to lie within the range of the column's data type. Similarly, you can
treat division by zero as an error rather than as an operation that produces a result of NULL. The
choice of which approach to take is determined by the setting of the sql_mode system variable.

An important result of these changes is that MySQL provides improved compliance with standard SQL.

The following discussion covers several aspects of how precision math works (including possible in-
compatibilities with older applications). At the end, some examples are given that demonstrate how
MySQL 5.0 handles numeric operations precisely. For information about using the sql_mode system
variable to control the SQL mode, see Section 5.2.6, “SQL Modes”.

21.1. Types of Numeric Values
The scope of precision math for exact-value operations includes the exact-value data types (DECIMAL
and integer types) and exact-value numeric literals. Approximate-value data types and numeric literals
still are handled as floating-point numbers.

Exact-value numeric literals have an integer part or fractional part, or both. They may be signed. Ex-
amples: 1, .2, 3.4, -5, -6.78, +9.10.

Approximate-value numeric literals are represented in scientific notation with a mantissa and exponent.
Either or both parts may be signed. Examples: 1.2E3, 1.2E-3, -1.2E3, -1.2E-3.

Two numbers that look similar need not be both exact-value or both approximate-value. For example,
2.34 is an exact-value (fixed-point) number, whereas 2.34E0 is an approximate-value (floating-point)
number.

1187

The DECIMAL data type is a fixed-point type and calculations are exact. In MySQL, the DECIMAL type
has several synonyms: NUMERIC, DEC, FIXED. The integer types also are exact-value types.

The FLOAT and DOUBLE data types are floating-point types and calculations are approximate. In
MySQL, types that are synonymous with FLOAT or DOUBLE are DOUBLE PRECISION and REAL.

21.2. DECIMAL Data Type Changes
This section discusses the characteristics of the DECIMAL data type (and its synonyms) as of MySQL
5.0.3, with particular regard to the following topics:

• Maximum number of digits

• Storage format

• Storage requirements

• The non-standard MySQL extension to the upper range of DECIMAL columns

Some of these changes result in possible incompatibilities for applications that are written for older ver-
sions of MySQL. These incompatibilities are noted throughout this section.

The declaration syntax for a DECIMAL column remains DECIMAL(M,D), although the range of values
for the arguments has changed somewhat:

• M is the maximum number of digits (the precision). It has a range of 1 to 65. This introduces a pos-
sible incompatibility for older applications, because previous versions of MySQL allow a range of 1
to 254.

The precision of 65 digits actually applies as of MySQL 5.0.6. From 5.0.3 to 5.0.5, the precision is
64 digits.

• D is the number of digits to the right of the decimal point (the scale). It has a range of 0 to 30 and
must be no larger than M.

The maximum value of 65 for M means that calculations on DECIMAL values are accurate up to 65 di-
gits. This limit of 65 digits of precision also applies to exact-value numeric literals, so the maximum
range of such literals is different from before. (Prior to MySQL 5.0.3, decimal values could have up to
254 digits. However, calculations were done using floating-point and thus were approximate, not exact.)
This change in the range of literal values is another possible source of incompatibility for older applica-
tions.

Values for DECIMAL columns no longer are represented as strings that require one byte per digit or sign
character. Instead, a binary format is used that packs nine decimal digits into four bytes. This change to
DECIMAL storage format changes the storage requirements as well. The storage requirements for the in-
teger and fractional parts of each value are determined separately. Each multiple of nine digits requires
four bytes, and any digits left over require some fraction of four bytes. For example, a DECIM-
AL(18,9) column has nine digits on either side of the decimal point, so the integer part and the frac-
tional part each require four bytes. A DECIMAL(20,10) column has ten digits on either side of the
decimal point. Each part requires four bytes for nine of the digits, and one byte for the remaining digit.

The storage required for leftover digits is given by the following table:

Leftover Digits Number of Bytes

Precision Math

1188

0 0

1 1

2 1

3 2

4 2

5 3

6 3

7 4

8 4

9 4

As a result of the change from string to numeric format for DECIMAL storage, DECIMAL columns no
longer store a leading + character or leading 0 digits. Before MySQL 5.0.3, if you inserted +0003.1
into a DECIMAL(5,1) column, it was stored as +0003.1. As of MySQL 5.0.3, it is stored as 3.1.
Applications that rely on the older behavior must be modified to account for this change.

The change of storage format also means that DECIMAL columns no longer support the non-standard
extension that allowed values larger than the range implied by the column definition. Formerly, one byte
was allocated for storing the sign character. For positive values that needed no sign byte, MySQL al-
lowed an extra digit to be stored instead. For example, a DECIMAL(3,0) column must support a range
of at least –999 to 999, but MySQL would allow storing values from 1000 to 9999 as well, by using
the sign byte to store an extra digit. This extension to the upper range of DECIMAL columns no longer is
allowed. In MySQL 5.0.3 and up, a DECIMAL(M,D) column allows at most M D digits to the left of
the decimal point. This can result in an incompatibility if an application has a reliance on MySQL allow-
ing “too-large” values.

The SQL standard requires that the precision of NUMERIC(M,D) be exactly M digits. For
DECIMAL(M,D), the standard requires a precision of at least M digits but allows more. In MySQL,
DECIMAL(M,D) and NUMERIC(M,D) are the same, and both have a precision of exactly M digits.

Summary of incompatibilities:

The following list summarizes the incompatibilities that result from changes to DECIMAL column and
value handling. You can use it as guide when porting older applications for use with MySQL 5.0.3 and
up.

• For DECIMAL(M,D), the maximum M is 65, not 254.

• Calculations involving exact-value decimal numbers are accurate to 65 digits. This is fewer than the
maximum number of digits allowed before MySQL 5.0.3 (254 digits), but the exact-value precision
is greater. Calculations formerly were done with double-precision floating-point, which has a preci-
sion of 52 bits (about 15 decimal digits).

• The non-standard MySQL extension to the upper range of DECIMAL columns no longer is suppor-
ted.

• Leading ‘+’ and ‘0’ characters are not stored.

The behavior used by the server for DECIMAL columns in a table depends on the version of MySQL
used to create the table. If your server is from MySQL 5.0.3 or higher, but you have DECIMAL columns
in tables that were created before 5.0.3, the old behavior still applies to those columns. To convert the
tables to the newer DECIMAL format, dump them with mysqldump and reload them.

Precision Math

1189

21.3. Expression Handling
With precision math, exact-value numbers are used as given whenever possible. For example, numbers
in comparisons are used exactly as given without a change in value. In strict SQL mode, for INSERT in-
to a column with an exact data type (DECIMAL or integer), a number is inserted with its exact value if it
is within the column range. When retrieved, the value should be the same as what was inserted. (Without
strict mode, truncation for INSERT is allowable.)

Handling of a numeric expression depends on what kind of values the expression contains:

• If any approximate values are present, the expression is approximate and is evaluated using floating-
point arithmetic.

• If no approximate values are present, the expression contains only exact values. If any exact value
contains a fractional part (a value following the decimal point), the expression is evaluated using
DECIMAL exact arithmetic and has a precision of 65 digits. (The term “exact” is subject to the limits
of what can be represented in binary. For example, 1.0/3.0 can be approximated in decimal nota-
tion as .333..., but not written as an exact number, so (1.0/3.0)*3.0 does not evaluate to
exactly 1.0.)

• Otherwise, the expression contains only integer values. The expression is exact and is evaluated us-
ing integer arithmetic and has a precision the same as BIGINT (64 bits).

If a numeric expression contains any strings, they are converted to double-precision floating-point val-
ues and the expression is approximate.

Inserts into numeric columns are affected by the SQL mode, which is controlled by the sql_mode sys-
tem variable. (See Section 5.2.6, “SQL Modes”.) The following discussion mentions strict mode
(selected by the STRICT_ALL_TABLES or STRICT_TRANS_TABLES mode values) and ER-
ROR_FOR_DIVISION_BY_ZERO. To turn on all restrictions, you can simply use TRADITIONAL
mode, which includes both strict mode values and ERROR_FOR_DIVISION_BY_ZERO:

mysql> SET sql_mode='TRADITIONAL';

If a number is inserted into an exact type column (DECIMAL or integer), it is inserted with its exact
value if it is within the column range.

If the value has too many digits in the fractional part, rounding occurs and a warning is generated.
Rounding is done as described in Section 21.4, “Rounding Behavior”.

If the value has too many digits in the integer part, it is too large and is handled as follows:

• If strict mode is not enabled, the value is truncated to the nearest legal value and a warning is gener-
ated.

• If strict mode is enabled, an overflow error occurs.

Underflow is not detected, so underflow handing is undefined.

By default, division by zero produces a result of NULL and no warning. With the ER-
ROR_FOR_DIVISION_BY_ZERO SQL mode enabled, MySQL handles division by zero differently:

• If strict mode is not enabled, a warning occurs.

Precision Math

1190

• If strict mode is enabled, inserts and updates involving division by zero are prohibited, and an error
occurs.

In other words, inserts and updates involving expressions that perform division by zero can be treated as
errors, but this requires ERROR_FOR_DIVISION_BY_ZERO in addition to strict mode.

Suppose that we have this statement:

INSERT INTO t SET i = 1/0;

This is what happens for combinations of strict and ERROR_FOR_DIVISION_BY_ZERO modes:

sql_mode Value Result

'' (Default) No warning, no error; i is set to NULL.

strict No warning, no error; i is set to NULL.

ERROR_FOR_DIVISION_BY_ZERO Warning, no error; i is set to NULL.

strict,ERROR_FOR_DIVISION_BY_ZERO Error condition; no row is inserted.

For inserts of strings into numeric columns, conversion from string to number is handled as follows if
the string has non-numeric contents:

• A string that does not begin with a number cannot be used as a number and produces an error in
strict mode, or a warning otherwise. This includes the empty string.

• A string that begins with a number can be converted, but the trailing non-numeric portion is trun-
cated. If the truncated portion contains anything other than spaces, this produces an error in strict
mode, or a warning otherwise.

21.4. Rounding Behavior
This section discusses precision math rounding for the ROUND() function and for inserts into columns
with exact-value types (DECIMAL and integer).

The ROUND() function rounds differently depending on whether its argument is exact or approximate:

• For exact-value numbers, ROUND() uses the “round half up” rule: A value with a fractional part of
.5 or greater is rounded up to the next integer if positive or down to the next integer if negative. (In
other words, it is rounded away from zero.) A value with a fractional part less than .5 is rounded
down to the next integer if positive or up to the next integer if negative.

• For approximate-value numbers, the result depends on the C library. On many systems, this means
that ROUND() uses the “round to nearest even” rule: A value with any fractional part is rounded to
the nearest even integer.

The following example shows how rounding differs for exact and approximate values:

mysql> SELECT ROUND(2.5), ROUND(25E-1);
+------------+--------------+
| ROUND(2.5) | ROUND(25E-1) |
+------------+--------------+
| 3 | 2 |
+------------+--------------+

Precision Math

1191

For inserts into a DECIMAL or integer column, the target is an exact data type, so rounding uses “round
half up,” regardless of whether the value to be inserted is exact or approximate:

mysql> CREATE TABLE t (d DECIMAL(10,0));
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t VALUES(2.5),(2.5E0);
Query OK, 2 rows affected, 2 warnings (0.00 sec)
Records: 2 Duplicates: 0 Warnings: 2

mysql> SELECT d FROM t;
+------+
| d |
+------+
| 3 |
| 3 |
+------+

21.5. Precision Math Examples
This section provides some examples that show how precision math improves query results in MySQL 5
compared to older versions.

Example 1. Numbers are used with their exact value as given when possible.

Before MySQL 5.0.3, numbers that are treated as floating-point values produce inexact results:

mysql> SELECT .1 + .2 = .3;
+--------------+
| .1 + .2 = .3 |
+--------------+
| 0 |
+--------------+

As of MySQL 5.0.3, numbers are used as given when possible:

mysql> SELECT .1 + .2 = .3;
+--------------+
| .1 + .2 = .3 |
+--------------+
| 1 |
+--------------+

For floating-point values, results are inexact:

mysql> SELECT .1E0 + .2E0 = .3E0;
+--------------------+
| .1E0 + .2E0 = .3E0 |
+--------------------+
| 0 |
+--------------------+

Another way to see the difference in exact and approximate value handling is to add a small number to a
sum many times. Consider the following stored procedure, which adds .0001 to a variable 1,000 times.

CREATE PROCEDURE p ()
BEGIN

DECLARE i INT DEFAULT 0;
DECLARE d DECIMAL(10,4) DEFAULT 0;
DECLARE f FLOAT DEFAULT 0;
WHILE i < 10000 DO
SET d = d + .0001;
SET f = f + .0001E0;
SET i = i + 1;

END WHILE;
SELECT d, f;

Precision Math

1192

END;

The sum for both d and f logically should be 1, but that is true only for the decimal calculation. The
floating-point calculation introduces small errors:

+--------+------------------+
| d | f |
+--------+------------------+
| 1.0000 | 0.99999999999991 |
+--------+------------------+

Example 2. Multiplication is performed with the scale required by standard SQL. That is, for two num-
bers X1 and X2 that have scale S1 and S2, the scale of the result is S1 + S2:

Before MySQL 5.0.3, this is what happens:

mysql> SELECT .01 * .01;
+-----------+
| .01 * .01 |
+-----------+
| 0.00 |
+-----------+

The displayed value is incorrect. The value was calculated correctly in this case, but not displayed to the
required scale. To see that the calculated value actually was .0001, try this:

mysql> SELECT .01 * .01 + .0000;
+-------------------+
| .01 * .01 + .0000 |
+-------------------+
| 0.0001 |
+-------------------+

As of MySQL 5.0.3, the displayed scale is correct:

mysql> SELECT .01 * .01;
+-----------+
| .01 * .01 |
+-----------+
| 0.0001 |
+-----------+

Example 3. Rounding behavior is well-defined.

Before MySQL 5.0.3, rounding behavior (for example, with the ROUND() function) is dependent on the
implementation of the underlying C library. This results in inconsistencies from platform to platform.
For example, you might get a different value on Windows than on Linux, or a different value on x86
machines than on PowerPC machines.

As of MySQL 5.0.3, rounding happens like this:

Rounding for exact-value columns (DECIMAL and integer) and exact-valued numbers uses the “round
half up” rule. Values with a fractional part of .5 or greater are rounded away from zero to the nearest in-
teger, as shown here:

mysql> SELECT ROUND(2.5), ROUND(-2.5);
+------------+-------------+
| ROUND(2.5) | ROUND(-2.5) |
+------------+-------------+
| 3 | -3 |
+------------+-------------+

However, rounding for floating-point values uses the C library, which on many systems uses the “round

Precision Math

1193

to nearest even” rule. Values with any fractional part on such systems are rounded to the nearest even in-
teger:

mysql> SELECT ROUND(2.5E0), ROUND(-2.5E0);
+--------------+---------------+
| ROUND(2.5E0) | ROUND(-2.5E0) |
+--------------+---------------+
| 2 | -2 |
+--------------+---------------+

Example 4. In strict mode, inserting a value that is too large results in overflow and causes an error,
rather than truncation to a legal value.

Before MySQL 5.0.2 (or in 5.0.2 and later, without strict mode), truncation to a legal value occurs:

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t SET i = 128;
Query OK, 1 row affected, 1 warning (0.00 sec)

mysql> SELECT i FROM t;
+------+
| i |
+------+
| 127 |
+------+
1 row in set (0.00 sec)

As of MySQL 5.0.2, overflow occurs if strict mode is in effect:

mysql> SET sql_mode='STRICT_ALL_TABLES';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 128;
ERROR 1264 (22003): Out of range value adjusted for column 'i' at row 1

mysql> SELECT i FROM t;
Empty set (0.00 sec)

Example 5: In strict mode and with ERROR_FOR_DIVISION_BY_ZERO set, division by zero causes
an error, and not a result of NULL.

Before MySQL 5.0.2 (or when not using strict mode in 5.0.2 or a later version), division by zero has a
result of NULL:

mysql> CREATE TABLE t (i TINYINT);
Query OK, 0 rows affected (0.01 sec)

mysql> INSERT INTO t SET i = 1 / 0;
Query OK, 1 row affected (0.00 sec)

mysql> SELECT i FROM t;
+------+
| i |
+------+
| NULL |
+------+
1 row in set (0.00 sec)

As of MySQL 5.0.2, division by zero is an error if the proper SQL modes are in effect:

mysql> SET sql_mode='STRICT_ALL_TABLES,ERROR_FOR_DIVISION_BY_ZERO';
Query OK, 0 rows affected (0.00 sec)

mysql> CREATE TABLE t (i TINYINT);

Precision Math

1194

Query OK, 0 rows affected (0.00 sec)

mysql> INSERT INTO t SET i = 1 / 0;
ERROR 1365 (22012): Division by 0

mysql> SELECT i FROM t;
Empty set (0.01 sec)

Example 6. Prior to MySQL 5.0.3 (before precision math was introduced), exact-value and approxim-
ate-value literals both are converted to double-precision floating-point values:

mysql> SELECT VERSION();
+------------+
| VERSION() |
+------------+
| 4.1.18-log |
+------------+
1 row in set (0.01 sec)

mysql> CREATE TABLE t SELECT 2.5 AS a, 25E-1 AS b;
Query OK, 1 row affected (0.07 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> DESCRIBE t;
+-------+-------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-------------+------+-----+---------+-------+
| a | double(3,1) | | | 0.0 | |
| b | double | | | 0 | |
+-------+-------------+------+-----+---------+-------+
2 rows in set (0.04 sec)

As of MySQL 5.0.3, the approximate-value literal still is converted to floating-point, but the exact-value
literal is handled as DECIMAL:

mysql> SELECT VERSION();
+------------+
| VERSION() |
+------------+
| 5.0.19-log |
+------------+
1 row in set (0.17 sec)

mysql> CREATE TABLE t SELECT 2.5 AS a, 25E-1 AS b;
Query OK, 1 row affected (0.19 sec)
Records: 1 Duplicates: 0 Warnings: 0

mysql> DESCRIBE t;
+-------+-----------------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+-------+-----------------------+------+-----+---------+-------+
| a | decimal(2,1) unsigned | NO | | 0.0 | |
| b | double | NO | | 0 | |
+-------+-----------------------+------+-----+---------+-------+
2 rows in set (0.02 sec)

Example 7. If the argument to an aggregate function is an exact numeric type, the result is also an exact
numeric type, with a scale at least that of the argument.

Consider these statements:

mysql> CREATE TABLE t (i INT, d DECIMAL, f FLOAT);
mysql> INSERT INTO t VALUES(1,1,1);
mysql> CREATE TABLE y SELECT AVG(i), AVG(d), AVG(f) FROM t;

Result before MySQL 5.0.3 (prior to the introduction of precision math in MySQL):

mysql> DESCRIBE y;
+--------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+--------------+------+-----+---------+-------+
| AVG(i) | double(17,4) | YES | | NULL | |

Precision Math

1195

| AVG(d) | double(17,4) | YES | | NULL | |
| AVG(f) | double | YES | | NULL | |
+--------+--------------+------+-----+---------+-------+

The result is a double no matter the argument type.

Result as of MySQL 5.0.3:

mysql> DESCRIBE y;
+--------+---------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+---------------+------+-----+---------+-------+
AVG(i)	decimal(14,4)	YES		NULL	
AVG(d)	decimal(14,4)	YES		NULL	
AVG(f)	double	YES		NULL	
+--------+---------------+------+-----+---------+-------+

The result is a double only for the floating-point argument. For exact type arguments, the result is also
an exact type. (From MySQL 5.0.3 to 5.0.6, the first two columns are DECIMAL(64,0).)

Precision Math

1196

Chapter 22. APIs and Libraries
This chapter describes the APIs available for MySQL, where to get them, and how to use them. The C
API is the most extensively covered, because it was developed by the MySQL team, and is the basis for
most of the other APIs. This chapter also covers some programs that are useful for application de-
velopers.

22.1. libmysqld, the Embedded MySQL Server Library
The embedded MySQL server library is NOT part of MySQL 5.0. It is part of previous editions
and will be included in future versions, starting with MySQL 5.1. You can find appropriate docu-
mentation in the corresponding manuals for these versions. In this manual, only an overview of
the embedded library is provided.

The embedded MySQL server library makes it possible to run a full-featured MySQL server inside a cli-
ent application. The main benefits are increased speed and more simple management for embedded ap-
plications.

The embedded server library is based on the client/server version of MySQL, which is written in C/C++.
Consequently, the embedded server also is written in C/C++. There is no embedded server available in
other languages.

The API is identical for the embedded MySQL version and the client/server version. To change an old
threaded application to use the embedded library, you normally only have to add calls to the following
functions:

Function When to Call

mysql_server_init
()

Should be called before any other MySQL function is called, preferably
early in the main() function.

mysql_server_end(
)

Should be called before your program exits.

mysql_thread_init
()

Should be called in each thread you create that accesses MySQL.

mysql_thread_end(
)

Should be called before calling pthread_exit()

Then you must link your code with libmysqld.a instead of libmysqlclient.a.

The mysql_server_xxx() functions are also included in libmysqlclient.a to allow you to
change between the embedded and the client/server version by just linking your application with the
right library. See Section 22.2.12.1, “mysql_server_init()”.

One difference between the embedded server and the standalone server is that for the embedded server,
authentication for connections is disabled by default. To use authentication for the embedded server,
specify the --with-embedded-privilege-control option when you invoke configure to
configure your MySQL distribution.

22.2. MySQL C API
The C API code is distributed with MySQL. It is included in the mysqlclient library and allows C
programs to access a database.

Many of the clients in the MySQL source distribution are written in C. If you are looking for examples

1197

that demonstrate how to use the C API, take a look at these clients. You can find these in the clients
directory in the MySQL source distribution.

Most of the other client APIs (all except Connector/J and Connector/NET) use the mysqlclient lib-
rary to communicate with the MySQL server. This means that, for example, you can take advantage of
many of the same environment variables that are used by other client programs, because they are refer-
enced from the library. See Chapter 8, Client and Utility Programs, for a list of these variables.

The client has a maximum communication buffer size. The size of the buffer that is allocated initially
(16KB) is automatically increased up to the maximum size (the maximum is 16MB). Because buffer
sizes are increased only as demand warrants, simply increasing the default maximum limit does not in it-
self cause more resources to be used. This size check is mostly a check for erroneous statements and
communication packets.

The communication buffer must be large enough to contain a single SQL statement (for client-to-server
traffic) and one row of returned data (for server-to-client traffic). Each thread's communication buffer is
dynamically enlarged to handle any query or row up to the maximum limit. For example, if you have
BLOB values that contain up to 16MB of data, you must have a communication buffer limit of at least
16MB (in both server and client). The client's default maximum is 16MB, but the default maximum in
the server is 1MB. You can increase this by changing the value of the max_allowed_packet para-
meter when the server is started. See Section 7.5.2, “Tuning Server Parameters”.

The MySQL server shrinks each communication buffer to net_buffer_length bytes after each
query. For clients, the size of the buffer associated with a connection is not decreased until the connec-
tion is closed, at which time client memory is reclaimed.

For programming with threads, see Section 22.2.15, “How to Make a Threaded Client”. For creating a
standalone application which includes the "server" and "client" in the same program (and does not com-
municate with an external MySQL server), see Section 22.1, “libmysqld, the Embedded MySQL Server
Library”.

22.2.1. C API Data types

• MYSQL

This structure represents a handle to one database connection. It is used for almost all MySQL func-
tions. You should not try to make a copy of a MYSQL structure. There is no guarantee that such a
copy will be usable.

• MYSQL_RES

This structure represents the result of a query that returns rows (SELECT, SHOW, DESCRIBE, EX-
PLAIN). The information returned from a query is called the result set in the remainder of this sec-
tion.

• MYSQL_ROW

This is a type-safe representation of one row of data. It is currently implemented as an array of coun-
ted byte strings. (You cannot treat these as null-terminated strings if field values may contain binary
data, because such values may contain null bytes internally.) Rows are obtained by calling
mysql_fetch_row().

• MYSQL_FIELD

This structure contains information about a field, such as the field's name, type, and size. Its mem-
bers are described in more detail here. You may obtain the MYSQL_FIELD structures for each field
by calling mysql_fetch_field() repeatedly. Field values are not part of this structure; they are

APIs and Libraries

1198

contained in a MYSQL_ROW structure.

• MYSQL_FIELD_OFFSET

This is a type-safe representation of an offset into a MySQL field list. (Used by
mysql_field_seek().) Offsets are field numbers within a row, beginning at zero.

• my_ulonglong

The type used for the number of rows and for mysql_affected_rows(),
mysql_num_rows(), and mysql_insert_id(). This type provides a range of 0 to
1.84e19.

On some systems, attempting to print a value of type my_ulonglong does not work. To print such
a value, convert it to unsigned long and use a %lu print format. Example:

printf ("Number of rows: %lu\n", (unsigned long) mysql_num_rows(result));

• my_bool

A boolean type, for values that are true (non-zero) or false (zero).

The MYSQL_FIELD structure contains the members listed here:

• char * name

The name of the field, as a null-terminated string. If the field was given an alias with an AS clause,
the value of name is the alias.

• char * org_name

The name of the field, as a null-terminated string. Aliases are ignored.

• char * table

The name of the table containing this field, if it isn't a calculated field. For calculated fields, the ta-
ble value is an empty string. If the table was given an alias with an AS clause, the value of table
is the alias.

• char * org_table

The name of the table, as a null-terminated string. Aliases are ignored.

• char * db

The name of the database that the field comes from, as a null-terminated string. If the field is a cal-
culated field, db is an empty string.

• char * catalog

The catalog name. This value is always "def".

• char * def

The default value of this field, as a null-terminated string. This is set only if you use
mysql_list_fields().

APIs and Libraries

1199

• unsigned long length

The width of the field, as specified in the table definition.

• unsigned long max_length

The maximum width of the field for the result set (the length of the longest field value for the rows
actually in the result set). If you use mysql_store_result() or mysql_list_fields(),
this contains the maximum length for the field. If you use mysql_use_result(), the value of
this variable is zero.

• unsigned int name_length

The length of name.

• unsigned int org_name_length

The length of org_name.

• unsigned int table_length

The length of table.

• unsigned int org_table_length

The length of org_table.

• unsigned int db_length

The length of db.

• unsigned int catalog_length

The length of catalog.

• unsigned int def_length

The length of def.

• unsigned int flags

Different bit-flags for the field. The flags value may have zero or more of the following bits set:

Flag Value Flag Description

NOT_NULL_FLAG Field can't be NULL

PRI_KEY_FLAG Field is part of a primary key

UNIQUE_KEY_FLAG Field is part of a unique key

MULTIPLE_KEY_FLAG Field is part of a non-unique key

UNSIGNED_FLAG Field has the UNSIGNED attribute

ZEROFILL_FLAG Field has the ZEROFILL attribute

BINARY_FLAG Field has the BINARY attribute

AUTO_INCREMENT_FLAG Field has the AUTO_INCREMENT attribute

ENUM_FLAG Field is an ENUM (deprecated)

SET_FLAG Field is a SET (deprecated)

BLOB_FLAG Field is a BLOB or TEXT (deprecated)

APIs and Libraries

1200

TIMESTAMP_FLAG Field is a TIMESTAMP (deprecated)

Use of the BLOB_FLAG, ENUM_FLAG, SET_FLAG, and TIMESTAMP_FLAG flags is deprecated
because they indicate the type of a field rather than an attribute of its type. It is preferable to test
field->type against MYSQL_TYPE_BLOB, MYSQL_TYPE_ENUM, MYSQL_TYPE_SET, or
MYSQL_TYPE_TIMESTAMP instead.

The following example illustrates a typical use of the flags value:

if (field->flags & NOT_NULL_FLAG)
printf("Field can't be null\n");

You may use the following convenience macros to determine the boolean status of the flags value:

Flag Status Description

IS_NOT_NULL(flags) True if this field is defined as NOT NULL

IS_PRI_KEY(flags) True if this field is a primary key

IS_BLOB(flags) True if this field is a BLOB or TEXT (deprecated; test field->type
instead)

• unsigned int decimals

The number of decimals for numeric fields.

• unsigned int charsetnr

The character set number for the field.

• enum enum_field_types type

The type of the field. The type value may be one of the MYSQL_TYPE_ symbols shown in the fol-
lowing table.

Type Value Type Description

MYSQL_TYPE_TINY TINYINT field

MYSQL_TYPE_SHORT SMALLINT field

MYSQL_TYPE_LONG INTEGER field

MYSQL_TYPE_INT24 MEDIUMINT field

MYSQL_TYPE_LONGLONG BIGINT field

MYSQL_TYPE_DECIMAL DECIMAL or NUMERIC field

MYSQL_TYPE_NEWDECIMAL Precision math DECIMAL or NUMERIC field (MySQL 5.0.3
and up)

MYSQL_TYPE_FLOAT FLOAT field

MYSQL_TYPE_DOUBLE DOUBLE or REAL field

MYSQL_TYPE_BIT BIT field (MySQL 5.0.3 and up)

MYSQL_TYPE_TIMESTAMP TIMESTAMP field

MYSQL_TYPE_DATE DATE field

MYSQL_TYPE_TIME TIME field

APIs and Libraries

1201

MYSQL_TYPE_DATETIME DATETIME field

MYSQL_TYPE_YEAR YEAR field

MYSQL_TYPE_STRING CHAR or BINARY field

MYSQL_TYPE_VAR_STRING VARCHAR or VARBINARY field

MYSQL_TYPE_BLOB BLOB or TEXT field (use max_length to determine the
maximum length)

MYSQL_TYPE_SET SET field

MYSQL_TYPE_ENUM ENUM field

MYSQL_TYPE_GEOMETRY Spatial field

MYSQL_TYPE_NULL NULL-type field

MYSQL_TYPE_CHAR Deprecated; use MYSQL_TYPE_TINY instead

You can use the IS_NUM() macro to test whether a field has a numeric type. Pass the type value
to IS_NUM() and it evaluates to TRUE if the field is numeric:

if (IS_NUM(field->type))
printf("Field is numeric\n");

To distinguish between binary and non-binary data for string data types, check whether the char-
setnr value is 63. If so, the character set is binary, which indicates binary rather than non-binary
data. This is how to distinguish between BINARY and CHAR, VARBINARY and VARCHAR, and
BLOB and TEXT.

22.2.2. C API Function Overview
The functions available in the C API are summarized here and described in greater detail in a later sec-
tion. See Section 22.2.3, “C API Function Descriptions”.

Function Description

mysql_affected_rows() Returns the number of rows changed/deleted/inserted by the last UP-
DATE, DELETE, or INSERT query.

mysql_autocommit() Toggles autocommit mode on/off.

mysql_change_user() Changes user and database on an open connection.

mysql_close() Closes a server connection.

mysql_commit() Commits the transaction.

mysql_connect() Connects to a MySQL server. This function is deprecated; use
mysql_real_connect() instead.

mysql_create_db() Creates a database. This function is deprecated; use the SQL state-
ment CREATE DATABASE instead.

mysql_data_seek() Seeks to an arbitrary row number in a query result set.

mysql_debug() Does a DBUG_PUSH with the given string.

mysql_drop_db() Drops a database. This function is deprecated; use the SQL statement
DROP DATABASE instead.

mysql_dump_debug_info() Makes the server write debug information to the log.

mysql_eof() Determines whether the last row of a result set has been read. This
function is deprecated; mysql_errno() or mysql_error()

APIs and Libraries

1202

may be used instead.

mysql_errno() Returns the error number for the most recently invoked MySQL func-
tion.

mysql_error() Returns the error message for the most recently invoked MySQL
function.

mysql_escape_string() Escapes special characters in a string for use in an SQL statement.

mysql_fetch_field() Returns the type of the next table field.

mysql_fetch_field_direct() Returns the type of a table field, given a field number.

mysql_fetch_fields() Returns an array of all field structures.

mysql_fetch_lengths() Returns the lengths of all columns in the current row.

mysql_fetch_row() Fetches the next row from the result set.

mysql_field_seek() Puts the column cursor on a specified column.

mysql_field_count() Returns the number of result columns for the most recent statement.

mysql_field_tell() Returns the position of the field cursor used for the last
mysql_fetch_field().

mysql_free_result() Frees memory used by a result set.

mysql_get_client_info() Returns client version information as a string.

mysql_get_client_version() Returns client version information as an integer.

mysql_get_host_info() Returns a string describing the connection.

mysql_get_server_version() Returns version number of server as an integer.

mysql_get_proto_info() Returns the protocol version used by the connection.

mysql_get_server_info() Returns the server version number.

mysql_info() Returns information about the most recently executed query.

mysql_init() Gets or initializes a MYSQL structure.

mysql_insert_id() Returns the ID generated for an AUTO_INCREMENT column by the
previous query.

mysql_kill() Kills a given thread.

mysql_library_end() Finalize MySQL C API library.

mysql_library_init() Initialize MySQL C API library.

mysql_list_dbs() Returns database names matching a simple regular expression.

mysql_list_fields() Returns field names matching a simple regular expression.

mysql_list_processes() Returns a list of the current server threads.

mysql_list_tables() Returns table names matching a simple regular expression.

mysql_more_results() Checks whether any more results exist.

mysql_next_result() Returns/initiates the next result in multiple-statement executions.

mysql_num_fields() Returns the number of columns in a result set.

mysql_num_rows() Returns the number of rows in a result set.

mysql_options() Sets connect options for mysql_connect().

mysql_ping() Checks whether the connection to the server is working, reconnecting
as necessary.

mysql_query() Executes an SQL query specified as a null-terminated string.

mysql_real_connect() Connects to a MySQL server.

mysql_real_escape_string() Escapes special characters in a string for use in an SQL statement,

APIs and Libraries

1203

taking into account the current character set of the connection.

mysql_real_query() Executes an SQL query specified as a counted string.

mysql_refresh() Flush or reset tables and caches.

mysql_reload() Tells the server to reload the grant tables.

mysql_rollback() Rolls back the transaction.

mysql_row_seek() Seeks to a row offset in a result set, using value returned from
mysql_row_tell().

mysql_row_tell() Returns the row cursor position.

mysql_select_db() Selects a database.

mysql_server_end() Finalize embedded server library.

mysql_server_init() Initialize embedded server library.

mysql_set_local_infile_default
()

Set the LOAD DATA LOCAL INFILE handler callbacks to their de-
fault values.

mysql_set_local_infile_handle
r()

Install application-specific LOAD DATA LOCAL INFILE handler
callbacks.

mysql_set_server_option() Sets an option for the connection (like multi-statements).

mysql_sqlstate() Returns the SQLSTATE error code for the last error.

mysql_shutdown() Shuts down the database server.

mysql_stat() Returns the server status as a string.

mysql_store_result() Retrieves a complete result set to the client.

mysql_thread_id() Returns the current thread ID.

mysql_thread_safe() Returns 1 if the clients are compiled as thread-safe.

mysql_use_result() Initiates a row-by-row result set retrieval.

mysql_warning_count() Returns the warning count for the previous SQL statement.

Application programs should use this general outline for interacting with MySQL:

1. Initialize the MySQL library by calling mysql_library_init(). The library can be either the
mysqlclient C client library or the mysqld embedded server library, depending on whether
the application was linked with the -libmysqlclient or -libmysqld flag.

2. Initialize a connection handler by calling mysql_init() and connect to the server by calling
mysql_real_connect().

3. Issue SQL statements and process their results. (The following discussion provides more informa-
tion about how to do this.)

4. Close the connection to the MySQL server by calling mysql_close().

5. End use of the MySQL library by calling mysql_library_end().

The purpose of calling mysql_library_init() and mysql_library_end() is to provide
proper initialization and finalization of the MySQL library. For applications that are linked with the cli-
ent library, they provide improved memory management. If you don't call mysql_library_end(),
a block of memory remains allocated. (This does not increase the amount of memory used by the applic-
ation, but some memory leak detectors will complain about it.) For applications that are linked with the
embedded server, these calls start and stop the server.

APIs and Libraries

1204

mysql_library_init() and mysql_library_end() are available as of MySQL 5.0.3. These
actually are #define symbols that make them equivalent to mysql_server_init() and
mysql_server_end(), but the names more clearly indicate that they should be called when begin-
ning and ending use of a MySQL library no matter whether the application uses the mysqlclient or
mysqld library. For older versions of MySQL, you can call mysql_server_init() and
mysql_server_end() instead.

In a non-multi-threaded environment, the call to mysql_library_init() may be omitted, because
mysql_init() will invoke it automatically as necessary. However, a race condition is possible if
mysql_library_init() is invoked by mysql_init() in a multi-threaded environment:
mysql_library_init() is not thread-safe, so it should be called prior to any other client library
call.

To connect to the server, call mysql_init() to initialize a connection handler, then call
mysql_real_connect() with that handler (along with other information such as the hostname,
username, and password). Upon connection, mysql_real_connect() sets the reconnect flag
(part of the MYSQL structure) to a value of 1 in versions of the API older than 5.0.3, or 0 in newer ver-
sions. A value of 1 for this flag indicates that if a statement cannot be performed because of a lost con-
nection, to try reconnecting to the server before giving up. As of MySQL 5.0.13, you can use the
MYSQL_OPT_RECONNECT option to mysql_options() to control reconnection behavior. When
you are done with the connection, call mysql_close() to terminate it.

While a connection is active, the client may send SQL statements to the server using mysql_query()
or mysql_real_query(). The difference between the two is that mysql_query() expects the
query to be specified as a null-terminated string whereas mysql_real_query() expects a counted
string. If the string contains binary data (which may include null bytes), you must use
mysql_real_query().

For each non-SELECT query (for example, INSERT, UPDATE, DELETE), you can find out how many
rows were changed (affected) by calling mysql_affected_rows().

For SELECT queries, you retrieve the selected rows as a result set. (Note that some statements are SE-
LECT-like in that they return rows. These include SHOW, DESCRIBE, and EXPLAIN. They should be
treated the same way as SELECT statements.)

There are two ways for a client to process result sets. One way is to retrieve the entire result set all at
once by calling mysql_store_result(). This function acquires from the server all the rows re-
turned by the query and stores them in the client. The second way is for the client to initiate a row-
by-row result set retrieval by calling mysql_use_result(). This function initializes the retrieval,
but does not actually get any rows from the server.

In both cases, you access rows by calling mysql_fetch_row(). With mysql_store_result(),
mysql_fetch_row() accesses rows that have previously been fetched from the server. With
mysql_use_result(), mysql_fetch_row() actually retrieves the row from the server. Inform-
ation about the size of the data in each row is available by calling mysql_fetch_lengths().

After you are done with a result set, call mysql_free_result() to free the memory used for it.

The two retrieval mechanisms are complementary. Client programs should choose the approach that is
most appropriate for their requirements. In practice, clients tend to use mysql_store_result()
more commonly.

An advantage of mysql_store_result() is that because the rows have all been fetched to the cli-
ent, you not only can access rows sequentially, you can move back and forth in the result set using
mysql_data_seek() or mysql_row_seek() to change the current row position within the result
set. You can also find out how many rows there are by calling mysql_num_rows(). On the other
hand, the memory requirements for mysql_store_result() may be very high for large result sets
and you are more likely to encounter out-of-memory conditions.

APIs and Libraries

1205

An advantage of mysql_use_result() is that the client requires less memory for the result set be-
cause it maintains only one row at a time (and because there is less allocation overhead,
mysql_use_result() can be faster). Disadvantages are that you must process each row quickly to
avoid tying up the server, you don't have random access to rows within the result set (you can only ac-
cess rows sequentially), and you don't know how many rows are in the result set until you have retrieved
them all. Furthermore, you must retrieve all the rows even if you determine in mid-retrieval that you've
found the information you were looking for.

The API makes it possible for clients to respond appropriately to statements (retrieving rows only as ne-
cessary) without knowing whether the statement is a SELECT. You can do this by calling
mysql_store_result() after each mysql_query() (or mysql_real_query()). If the res-
ult set call succeeds, the statement was a SELECT and you can read the rows. If the result set call fails,
call mysql_field_count() to determine whether a result was actually to be expected. If
mysql_field_count() returns zero, the statement returned no data (indicating that it was an IN-
SERT, UPDATE, DELETE, and so forth), and was not expected to return rows. If
mysql_field_count() is non-zero, the statement should have returned rows, but didn't. This indic-
ates that the statement was a SELECT that failed. See the description for mysql_field_count()
for an example of how this can be done.

Both mysql_store_result() and mysql_use_result() allow you to obtain information
about the fields that make up the result set (the number of fields, their names and types, and so forth).
You can access field information sequentially within the row by calling mysql_fetch_field() re-
peatedly, or by field number within the row by calling mysql_fetch_field_direct(). The cur-
rent field cursor position may be changed by calling mysql_field_seek(). Setting the field cursor
affects subsequent calls to mysql_fetch_field(). You can also get information for fields all at
once by calling mysql_fetch_fields().

For detecting and reporting errors, MySQL provides access to error information by means of the
mysql_errno() and mysql_error() functions. These return the error code or error message for
the most recently invoked function that can succeed or fail, allowing you to determine when an error oc-
curred and what it was.

22.2.3. C API Function Descriptions
In the descriptions here, a parameter or return value of NULL means NULL in the sense of the C pro-
gramming language, not a MySQL NULL value.

Functions that return a value generally return a pointer or an integer. Unless specified otherwise, func-
tions returning a pointer return a non-NULL value to indicate success or a NULL value to indicate an er-
ror, and functions returning an integer return zero to indicate success or non-zero to indicate an error.
Note that “non-zero” means just that. Unless the function description says otherwise, do not test against
a value other than zero:

if (result) /* correct */
... error ...

if (result < 0) /* incorrect */
... error ...

if (result == -1) /* incorrect */
... error ...

When a function returns an error, the Errors subsection of the function description lists the possible
types of errors. You can find out which of these occurred by calling mysql_errno(). A string repres-
entation of the error may be obtained by calling mysql_error().

22.2.3.1. mysql_affected_rows()

my_ulonglong mysql_affected_rows(MYSQL *mysql)

APIs and Libraries

1206

Description

Returns the number of rows changed by the last UPDATE, deleted by the last DELETE or inserted by the
last INSERT statement. May be called immediately after mysql_query() for UPDATE, DELETE, or
INSERT statements. For SELECT statements, mysql_affected_rows() works like
mysql_num_rows().

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no re-
cords were updated for an UPDATE statement, no rows matched the WHERE clause in the query or that
no query has yet been executed. -1 indicates that the query returned an error or that, for a SELECT
query, mysql_affected_rows() was called prior to calling mysql_store_result(). Be-
cause mysql_affected_rows() returns an unsigned value, you can check for -1 by comparing the
return value to (my_ulonglong)-1 (or to (my_ulonglong)~0, which is equivalent).

Errors

None.

Example

mysql_query(&mysql,"UPDATE products SET cost=cost*1.25 WHERE group=10");
printf("%ld products updated",(long) mysql_affected_rows(&mysql));

If you specify the flag CLIENT_FOUND_ROWS when connecting to mysqld,
mysql_affected_rows() returns the number of rows matched by the WHERE statement for UP-
DATE statements. Otherwise, it returns the number of rows actually changed.

Note that when you use a REPLACE command, mysql_affected_rows() returns 2 if the new row
replaced an old row, because in this case, one row was inserted after the duplicate was deleted.

If you use INSERT ... ON DUPLICATE KEY UPDATE to insert a row,
mysql_affected_rows() returns 1 if the row is inserted as a new row and 2 if an existing row is
updated.

22.2.3.2. mysql_autocommit()

my_bool mysql_autocommit(MYSQL *mysql, my_bool mode)

Description

Sets autocommit mode on if mode is 1, off if mode is 0.

Return Values

Zero if successful. Non-zero if an error occurred.

Errors

None.

22.2.3.3. mysql_change_user()

my_bool mysql_change_user(MYSQL *mysql, const char *user, const char
*password, const char *db)

Description

APIs and Libraries

1207

Changes the user and causes the database specified by db to become the default (current) database on
the connection specified by mysql. In subsequent queries, this database is the default for table refer-
ences that do not include an explicit database specifier.

mysql_change_user() fails if the connected user cannot be authenticated or doesn't have permis-
sion to use the database. In this case, the user and database are not changed

The db parameter may be set to NULL if you don't want to have a default database.

This command always performs a ROLLBACK of any active transactions, closes all temporary tables,
unlocks all locked tables and resets the state as if one had done a new connect. This happens even if the
user didn't change.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

The same that you can get from mysql_real_connect().

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

• ER_UNKNOWN_COM_ERROR

The MySQL server doesn't implement this command (probably an old server).

• ER_ACCESS_DENIED_ERROR

The user or password was wrong.

• ER_BAD_DB_ERROR

The database didn't exist.

• ER_DBACCESS_DENIED_ERROR

The user did not have access rights to the database.

• ER_WRONG_DB_NAME

The database name was too long.

Example

APIs and Libraries

1208

if (mysql_change_user(&mysql, "user", "password", "new_database"))
{

fprintf(stderr, "Failed to change user. Error: %s\n",
mysql_error(&mysql));

}

22.2.3.4. mysql_character_set_name()

const char *mysql_character_set_name(MYSQL *mysql)

Description

Returns the default character set for the current connection.

Return Values

The default character set

Errors

None.

22.2.3.5. mysql_close()

void mysql_close(MYSQL *mysql)

Description

Closes a previously opened connection. mysql_close() also deallocates the connection handle poin-
ted to by mysql if the handle was allocated automatically by mysql_init() or
mysql_connect().

Return Values

None.

Errors

None.

22.2.3.6. mysql_commit()

my_bool mysql_commit(MYSQL *mysql)

Description

Commits the current transaction.

As of MySQL 5.0.3, the action of this function is subject to the value of the completion_type sys-
tem variable. In particular, if the value of completion_type is 2, the server performs a release after
terminating a transaction and closes the client connection. The client program should call
mysql_close() to close the connection from the client side.

Return Values

Zero if successful. Non-zero if an error occurred.

Errors

APIs and Libraries

1209

None.

22.2.3.7. mysql_connect()

MYSQL *mysql_connect(MYSQL *mysql, const char *host, const char *user,
const char *passwd)

Description

This function is deprecated. It is preferable to use mysql_real_connect() instead.

mysql_connect() attempts to establish a connection to a MySQL database engine running on
host. mysql_connect() must complete successfully before you can execute any of the other API
functions, with the exception of mysql_get_client_info().

The meanings of the parameters are the same as for the corresponding parameters for
mysql_real_connect() with the difference that the connection parameter may be NULL. In this
case, the C API allocates memory for the connection structure automatically and frees it when you call
mysql_close(). The disadvantage of this approach is that you can't retrieve an error message if the
connection fails. (To get error information from mysql_errno() or mysql_error(), you must
provide a valid MYSQL pointer.)

Return Values

Same as for mysql_real_connect().

Errors

Same as for mysql_real_connect().

22.2.3.8. mysql_create_db()

int mysql_create_db(MYSQL *mysql, const char *db)

Description

Creates the database named by the db parameter.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL CREATE DATA-
BASE statement instead.

Return Values

Zero if the database was created successfully. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

APIs and Libraries

1210

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

if(mysql_create_db(&mysql, "my_database"))
{

fprintf(stderr, "Failed to create new database. Error: %s\n",
mysql_error(&mysql));

}

22.2.3.9. mysql_data_seek()

void mysql_data_seek(MYSQL_RES *result, my_ulonglong offset)

Description

Seeks to an arbitrary row in a query result set. The offset value is a row number and should be in the
range from 0 to mysql_num_rows(result)-1.

This function requires that the result set structure contains the entire result of the query, so
mysql_data_seek() may be used only in conjunction with mysql_store_result(), not with
mysql_use_result().

Return Values

None.

Errors

None.

22.2.3.10. mysql_debug()

void mysql_debug(const char *debug)

Description

Does a DBUG_PUSH with the given string. mysql_debug() uses the Fred Fish debug library. To use
this function, you must compile the client library to support debugging. See Section E.1, “Debugging a
MySQL Server”, and Section E.2, “Debugging a MySQL Client”.

Return Values

None.

Errors

None.

Example

The call shown here causes the client library to generate a trace file in /tmp/client.trace on the
client machine:

mysql_debug("d:t:O,/tmp/client.trace");

APIs and Libraries

1211

22.2.3.11. mysql_drop_db()

int mysql_drop_db(MYSQL *mysql, const char *db)

Description

Drops the database named by the db parameter.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL DROP DATA-
BASE statement instead.

Return Values

Zero if the database was dropped successfully. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

if(mysql_drop_db(&mysql, "my_database"))
fprintf(stderr, "Failed to drop the database: Error: %s\n",

mysql_error(&mysql));

22.2.3.12. mysql_dump_debug_info()

int mysql_dump_debug_info(MYSQL *mysql)

Description

Instructs the server to write some debug information to the log. For this to work, the connected user
must have the SUPER privilege.

Return Values

Zero if the command was successful. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

APIs and Libraries

1212

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.13. mysql_eof()

my_bool mysql_eof(MYSQL_RES *result)

Description

This function is deprecated. mysql_errno() or mysql_error() may be used instead.

mysql_eof() determines whether the last row of a result set has been read.

If you acquire a result set from a successful call to mysql_store_result(), the client receives the
entire set in one operation. In this case, a NULL return from mysql_fetch_row() always means the
end of the result set has been reached and it is unnecessary to call mysql_eof(). When used with
mysql_store_result(), mysql_eof() always returns true.

On the other hand, if you use mysql_use_result() to initiate a result set retrieval, the rows of the
set are obtained from the server one by one as you call mysql_fetch_row() repeatedly. Because an
error may occur on the connection during this process, a NULL return value from
mysql_fetch_row() does not necessarily mean the end of the result set was reached normally. In
this case, you can use mysql_eof() to determine what happened. mysql_eof() returns a non-zero
value if the end of the result set was reached and zero if an error occurred.

Historically, mysql_eof() predates the standard MySQL error functions mysql_errno() and
mysql_error(). Because those error functions provide the same information, their use is preferred
over mysql_eof(), which is deprecated. (In fact, they provide more information, because
mysql_eof() returns only a boolean value whereas the error functions indicate a reason for the error
when one occurs.)

Return Values

Zero if no error occurred. Non-zero if the end of the result set has been reached.

Errors

None.

Example

The following example shows how you might use mysql_eof():

mysql_query(&mysql,"SELECT * FROM some_table");
result = mysql_use_result(&mysql);
while((row = mysql_fetch_row(result)))
{

// do something with data

APIs and Libraries

1213

}
if(!mysql_eof(result)) // mysql_fetch_row() failed due to an error
{

fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

However, you can achieve the same effect with the standard MySQL error functions:

mysql_query(&mysql,"SELECT * FROM some_table");
result = mysql_use_result(&mysql);
while((row = mysql_fetch_row(result)))
{

// do something with data
}
if(mysql_errno(&mysql)) // mysql_fetch_row() failed due to an error
{

fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

22.2.3.14. mysql_errno()

unsigned int mysql_errno(MYSQL *mysql)

Description

For the connection specified by mysql, mysql_errno() returns the error code for the most recently
invoked API function that can succeed or fail. A return value of zero means that no error occurred. Cli-
ent error message numbers are listed in the MySQL errmsg.h header file. Server error message num-
bers are listed in mysqld_error.h. Errors also are listed at Appendix B, Error Codes and Messages.

Note that some functions like mysql_fetch_row() don't set mysql_errno() if they succeed.

A rule of thumb is that all functions that have to ask the server for information reset mysql_errno()
if they succeed.

MySQL-specific error numbers returned by mysql_errno() differ from SQLSTATE values returned
by mysql_sqlstate(). For example, the mysql client program displays errors using the following
format, where 1146 is the mysql_errno() value and '42S02' is the corresponding
mysql_sqlstate() value:

shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Return Values

An error code value for the last mysql_xxx() call, if it failed. zero means no error occurred.

Errors

None.

22.2.3.15. mysql_error()

const char *mysql_error(MYSQL *mysql)

Description

For the connection specified by mysql, mysql_error() returns a null-terminated string containing
the error message for the most recently invoked API function that failed. If a function didn't fail, the re-
turn value of mysql_error() may be the previous error or an empty string to indicate no error.

APIs and Libraries

1214

A rule of thumb is that all functions that have to ask the server for information reset mysql_error()
if they succeed.

For functions that reset mysql_errno(), the following two tests are equivalent:

if(mysql_errno(&mysql))
{

// an error occurred
}

if(mysql_error(&mysql)[0] != '\0')
{

// an error occurred
}

The language of the client error messages may be changed by recompiling the MySQL client library.
Currently, you can choose error messages in several different languages. See Section 5.11.2, “Setting the
Error Message Language”.

Return Values

A null-terminated character string that describes the error. An empty string if no error occurred.

Errors

None.

22.2.3.16. mysql_escape_string()

You should use mysql_real_escape_string() instead!

This function is identical to mysql_real_escape_string() except that
mysql_real_escape_string() takes a connection handler as its first argument and escapes the
string according to the current character set. mysql_escape_string() does not take a connection
argument and does not respect the current character set.

22.2.3.17. mysql_fetch_field()

MYSQL_FIELD *mysql_fetch_field(MYSQL_RES *result)

Description

Returns the definition of one column of a result set as a MYSQL_FIELD structure. Call this function re-
peatedly to retrieve information about all columns in the result set. mysql_fetch_field() returns
NULL when no more fields are left.

mysql_fetch_field() is reset to return information about the first field each time you execute a
new SELECT query. The field returned by mysql_fetch_field() is also affected by calls to
mysql_field_seek().

If you've called mysql_query() to perform a SELECT on a table but have not called
mysql_store_result(), MySQL returns the default blob length (8KB) if you call
mysql_fetch_field() to ask for the length of a BLOB field. (The 8KB size is chosen because
MySQL doesn't know the maximum length for the BLOB. This should be made configurable sometime.)
Once you've retrieved the result set, field->max_length contains the length of the largest value for
this column in the specific query.

Return Values

The MYSQL_FIELD structure for the current column. NULL if no columns are left.

APIs and Libraries

1215

Errors

None.

Example

MYSQL_FIELD *field;

while((field = mysql_fetch_field(result)))
{

printf("field name %s\n", field->name);
}

22.2.3.18. mysql_fetch_field_direct()

MYSQL_FIELD *mysql_fetch_field_direct(MYSQL_RES *result, unsigned int
fieldnr)

Description

Given a field number fieldnr for a column within a result set, returns that column's field definition as
a MYSQL_FIELD structure. You may use this function to retrieve the definition for an arbitrary column.
The value of fieldnr should be in the range from 0 to mysql_num_fields(result)-1.

Return Values

The MYSQL_FIELD structure for the specified column.

Errors

None.

Example

unsigned int num_fields;
unsigned int i;
MYSQL_FIELD *field;

num_fields = mysql_num_fields(result);
for(i = 0; i < num_fields; i++)
{

field = mysql_fetch_field_direct(result, i);
printf("Field %u is %s\n", i, field->name);

}

22.2.3.19. mysql_fetch_fields()

MYSQL_FIELD *mysql_fetch_fields(MYSQL_RES *result)

Description

Returns an array of all MYSQL_FIELD structures for a result set. Each structure provides the field
definition for one column of the result set.

Return Values

An array of MYSQL_FIELD structures for all columns of a result set.

Errors

None.

APIs and Libraries

1216

Example

unsigned int num_fields;
unsigned int i;
MYSQL_FIELD *fields;

num_fields = mysql_num_fields(result);
fields = mysql_fetch_fields(result);
for(i = 0; i < num_fields; i++)
{

printf("Field %u is %s\n", i, fields[i].name);
}

22.2.3.20. mysql_fetch_lengths()

unsigned long *mysql_fetch_lengths(MYSQL_RES *result)

Description

Returns the lengths of the columns of the current row within a result set. If you plan to copy field values,
this length information is also useful for optimization, because you can avoid calling strlen(). In ad-
dition, if the result set contains binary data, you must use this function to determine the size of the data,
because strlen() returns incorrect results for any field containing null characters.

The length for empty columns and for columns containing NULL values is zero. To see how to distin-
guish these two cases, see the description for mysql_fetch_row().

Return Values

An array of unsigned long integers representing the size of each column (not including any terminating
null characters). NULL if an error occurred.

Errors

mysql_fetch_lengths() is valid only for the current row of the result set. It returns NULL if you
call it before calling mysql_fetch_row() or after retrieving all rows in the result.

Example

MYSQL_ROW row;
unsigned long *lengths;
unsigned int num_fields;
unsigned int i;

row = mysql_fetch_row(result);
if (row)
{

num_fields = mysql_num_fields(result);
lengths = mysql_fetch_lengths(result);
for(i = 0; i < num_fields; i++)
{

printf("Column %u is %lu bytes in length.\n", i, lengths[i]);
}

}

22.2.3.21. mysql_fetch_row()

MYSQL_ROW mysql_fetch_row(MYSQL_RES *result)

Description

Retrieves the next row of a result set. When used after mysql_store_result(),
mysql_fetch_row() returns NULL when there are no more rows to retrieve. When used after
mysql_use_result(), mysql_fetch_row() returns NULL when there are no more rows to re-

APIs and Libraries

1217

trieve or if an error occurred.

The number of values in the row is given by mysql_num_fields(result). If row holds the re-
turn value from a call to mysql_fetch_row(), pointers to the values are accessed as row[0] to
row[mysql_num_fields(result)-1]. NULL values in the row are indicated by NULL pointers.

The lengths of the field values in the row may be obtained by calling mysql_fetch_lengths().
Empty fields and fields containing NULL both have length 0; you can distinguish these by checking the
pointer for the field value. If the pointer is NULL, the field is NULL; otherwise, the field is empty.

MySQL-specific error numbers returned by mysql_errno() differ from SQLSTATE values returned
by mysql_sqlstate(). For example, the mysql client program displays errors using the following
format, where 1146 is the mysql_errno() value and '42S02' is the corresponding
mysql_sqlstate() value:

shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Return Values

A MYSQL_ROW structure for the next row. NULL if there are no more rows to retrieve or if an error oc-
curred.

Errors

Note that error is not reset between calls to mysql_fetch_row()

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

MYSQL_ROW row;
unsigned int num_fields;
unsigned int i;

num_fields = mysql_num_fields(result);
while ((row = mysql_fetch_row(result)))
{

unsigned long *lengths;
lengths = mysql_fetch_lengths(result);
for(i = 0; i < num_fields; i++)
{

printf("[%.*s] ", (int) lengths[i], row[i] ? row[i] : "NULL");
}
printf("\n");

}

22.2.3.22. mysql_field_count()

unsigned int mysql_field_count(MYSQL *mysql)

Description

Returns the number of columns for the most recent query on the connection.

APIs and Libraries

1218

The normal use of this function is when mysql_store_result() returned NULL (and thus you
have no result set pointer). In this case, you can call mysql_field_count() to determine whether
mysql_store_result() should have produced a non-empty result. This allows the client program
to take proper action without knowing whether the query was a SELECT (or SELECT-like) statement.
The example shown here illustrates how this may be done.

See Section 22.2.13.1, “Why mysql_store_result() Sometimes Returns NULL After
mysql_query() Returns Success”.

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

Example

MYSQL_RES *result;
unsigned int num_fields;
unsigned int num_rows;

if (mysql_query(&mysql,query_string))
{

// error
}
else // query succeeded, process any data returned by it
{

result = mysql_store_result(&mysql);
if (result) // there are rows
{

num_fields = mysql_num_fields(result);
// retrieve rows, then call mysql_free_result(result)

}
else // mysql_store_result() returned nothing; should it have?
{

if(mysql_field_count(&mysql) == 0)
{

// query does not return data
// (it was not a SELECT)
num_rows = mysql_affected_rows(&mysql);

}
else // mysql_store_result() should have returned data
{

fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

}
}

An alternative is to replace the mysql_field_count(&mysql) call with
mysql_errno(&mysql). In this case, you are checking directly for an error from
mysql_store_result() rather than inferring from the value of mysql_field_count()
whether the statement was a SELECT.

22.2.3.23. mysql_field_seek()

MYSQL_FIELD_OFFSET mysql_field_seek(MYSQL_RES *result,
MYSQL_FIELD_OFFSET offset)

Description

Sets the field cursor to the given offset. The next call to mysql_fetch_field() retrieves the field
definition of the column associated with that offset.

To seek to the beginning of a row, pass an offset value of zero.

APIs and Libraries

1219

Return Values

The previous value of the field cursor.

Errors

None.

22.2.3.24. mysql_field_tell()

MYSQL_FIELD_OFFSET mysql_field_tell(MYSQL_RES *result)

Description

Returns the position of the field cursor used for the last mysql_fetch_field(). This value can be
used as an argument to mysql_field_seek().

Return Values

The current offset of the field cursor.

Errors

None.

22.2.3.25. mysql_free_result()

void mysql_free_result(MYSQL_RES *result)

Description

Frees the memory allocated for a result set by mysql_store_result(),
mysql_use_result(), mysql_list_dbs(), and so forth. When you are done with a result set,
you must free the memory it uses by calling mysql_free_result().

Do not attempt to access a result set after freeing it.

Return Values

None.

Errors

None.

22.2.3.26. mysql_get_character_set_info()

void mysql_get_character_set_info(MYSQL *mysql, MY_CHARSET_INFO *cs)

Description

This function provides information about the default client character set. The default character set may
be changed with the mysql_set_character_set() function.

This function was added in MySQL 5.0.10.

Example

if (!mysql_set_character_set(&mysql, "utf8"))

APIs and Libraries

1220

{
MY_CHARSET_INFO cs;
mysql_get_character_set_info(&mysql, &cs);
printf("character set information:\n");
printf("character set name: %s\n", cs.name);
printf("collation name: %s\n", cs.csname);
printf("comment: %s\n", cs.comment);
printf("directory: %s\n", cs.dir);
printf("multi byte character min. length: %d\n", cs.mbminlen);
printf("multi byte character max. length: %d\n", cs.mbmaxlen);

}

22.2.3.27. mysql_get_client_info()

const char *mysql_get_client_info(void)

Description

Returns a string that represents the client library version.

Return Values

A character string that represents the MySQL client library version.

Errors

None.

22.2.3.28. mysql_get_client_version()

unsigned long mysql_get_client_version(void)

Description

Returns an integer that represents the client library version. The value has the format XYYZZ where X is
the major version, YY is the release level, and ZZ is the version number within the release level. For ex-
ample, a value of 40102 represents a client library version of 4.1.2.

Return Values

An integer that represents the MySQL client library version.

Errors

None.

22.2.3.29. mysql_get_host_info()

const char *mysql_get_host_info(MYSQL *mysql)

Description

Returns a string describing the type of connection in use, including the server hostname.

Return Values

A character string representing the server hostname and the connection type.

Errors

None.

APIs and Libraries

1221

22.2.3.30. mysql_get_proto_info()

unsigned int mysql_get_proto_info(MYSQL *mysql)

Description

Returns the protocol version used by current connection.

Return Values

An unsigned integer representing the protocol version used by the current connection.

Errors

None.

22.2.3.31. mysql_get_server_info()

const char *mysql_get_server_info(MYSQL *mysql)

Description

Returns a string that represents the server version number.

Return Values

A character string that represents the server version number.

Errors

None.

22.2.3.32. mysql_get_server_version()

unsigned long mysql_get_server_version(MYSQL *mysql)

Description

Returns the version number of the server as an integer.

Return Values

A number that represents the MySQL server version in this format:

major_version*10000 + minor_version *100 + sub_version

For example, 5.0.12 is returned as 50012.

This function is useful in client programs for quickly determining whether some version-specific server
capability exists.

Errors

None.

22.2.3.33. mysql_hex_string()

unsigned long mysql_hex_string(char *to, const char *from, unsigned

APIs and Libraries

1222

long length)

Description

This function is used to create a legal SQL string that you can use in an SQL statement. See Sec-
tion 9.1.1, “Strings”.

The string in from is encoded to hexadecimal format, with each character encoded as two hexadecimal
digits. The result is placed in to and a terminating null byte is appended.

The string pointed to by from must be length bytes long. You must allocate the to buffer to be at
least length*2+1 bytes long. When mysql_hex_string() returns, the contents of to is a null-
terminated string. The return value is the length of the encoded string, not including the terminating null
character.

The return value can be placed into an SQL statement using either 0xvalue or X'value' format.
However, the return value does not include the 0x or X'...'. The caller must supply whichever of
those is desired.

Example

char query[1000],*end;

end = strmov(query,"INSERT INTO test_table values(");
end = strmov(end,"0x");
end += mysql_hex_string(end,"What's this",11);
end = strmov(end,",0x");
end += mysql_hex_string(end,"binary data: \0\r\n",16);
*end++ = ')';

if (mysql_real_query(&mysql,query,(unsigned int) (end - query)))
{

fprintf(stderr, "Failed to insert row, Error: %s\n",
mysql_error(&mysql));

}

The strmov() function used in the example is included in the mysqlclient library and works like
strcpy() but returns a pointer to the terminating null of the first parameter.

Return Values

The length of the value placed into to, not including the terminating null character.

Errors

None.

22.2.3.34. mysql_info()

const char *mysql_info(MYSQL *mysql)

Description

Retrieves a string providing information about the most recently executed query, but only for the state-
ments listed here. For other statements, mysql_info() returns NULL. The format of the string varies
depending on the type of query, as described here. The numbers are illustrative only; the string contains
values appropriate for the query.

• INSERT INTO ... SELECT ...

String format: Records: 100 Duplicates: 0 Warnings: 0

APIs and Libraries

1223

• INSERT INTO ... VALUES (...),(...),(...)...

String format: Records: 3 Duplicates: 0 Warnings: 0

• LOAD DATA INFILE ...

String format: Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

• ALTER TABLE

String format: Records: 3 Duplicates: 0 Warnings: 0

• UPDATE

String format: Rows matched: 40 Changed: 40 Warnings: 0

Note that mysql_info() returns a non-NULL value for INSERT ... VALUES only for the mul-
tiple-row form of the statement (that is, only if multiple value lists are specified).

Return Values

A character string representing additional information about the most recently executed query. NULL if
no information is available for the query.

Errors

None.

22.2.3.35. mysql_init()

MYSQL *mysql_init(MYSQL *mysql)

Description

Allocates or initializes a MYSQL object suitable for mysql_real_connect(). If mysql is a NULL
pointer, the function allocates, initializes, and returns a new object. Otherwise, the object is initialized
and the address of the object is returned. If mysql_init() allocates a new object, it is freed when
mysql_close() is called to close the connection.

Return Values

An initialized MYSQL* handle. NULL if there was insufficient memory to allocate a new object.

Errors

In case of insufficient memory, NULL is returned.

22.2.3.36. mysql_insert_id()

my_ulonglong mysql_insert_id(MYSQL *mysql)

Description

Returns the value generated for an AUTO_INCREMENT column by the previous INSERT or UPDATE
statement. Use this function after you have performed an INSERT statement into a table that contains an
AUTO_INCREMENT field.

More precisely, mysql_insert_id() is updated under these conditions:

APIs and Libraries

1224

• INSERT statements that store a value into an AUTO_INCREMENT column. This is true whether the
value is automatically generated by storing the special values NULL or 0 into the column, or is an
explicit non-special value.

• In the case of a multiple-row INSERT statement, mysql_insert_id() returns the first automat-
ically generated AUTO_INCREMENT value; if no such value is generated, it returns the last last ex-
plicit value inserted into the AUTO_INCREMENT column.

• INSERT statements that generate an AUTO_INCREMENT value by inserting
LAST_INSERT_ID(expr) into any column.

• INSERT statements that generate an AUTO_INCREMENT value by updating any column to
LAST_INSERT_ID(expr).

• The value of mysql_insert_id() is not affected by statements such as SELECT that return a
result set.

• If the previous statement returned an error, the value of mysql_insert_id() is undefined.

Note that mysql_insert_id() returns 0 if the previous statement does not use an
AUTO_INCREMENT value. If you need to save the value for later, be sure to call
mysql_insert_id() immediately after the statement that generates the value.

The value of mysql_insert_id() is affected only by statements issued within the current client
connection. It is not affected by statements issued by other clients.

See Section 12.9.3, “Information Functions”.

Also note that the value of the SQL LAST_INSERT_ID() function always contains the most recently
generated AUTO_INCREMENT value, and is not reset between statements because the value of that
function is maintained in the server. Another difference is that LAST_INSERT_ID() is not updated if
you set an AUTO_INCREMENT column to a specific non-special value.

The reason for the difference between LAST_INSERT_ID() and mysql_insert_id() is that
LAST_INSERT_ID() is made easy to use in scripts while mysql_insert_id() tries to provide a
little more exact information of what happens to the AUTO_INCREMENT column.

Return Values

Described in the preceding discussion.

Errors

None.

22.2.3.37. mysql_kill()

int mysql_kill(MYSQL *mysql, unsigned long pid)

Description

Asks the server to kill the thread specified by pid.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

APIs and Libraries

1225

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.38. mysql_library_end()

void mysql_library_end(void)

Description

This is a synonym for the mysql_server_end() function. It was added in MySQL 5.0.3.

See Section 22.2.2, “C API Function Overview”, for usage information.

22.2.3.39. mysql_library_init()

int mysql_library_init(int argc, char **argv, char **groups)

Description

This is a synonym for the mysql_server_init() function. It was added in MySQL 5.0.3. See Sec-
tion 22.2.12.1, “mysql_server_init()”.

See Section 22.2.2, “C API Function Overview” for usage information.

22.2.3.40. mysql_list_dbs()

MYSQL_RES *mysql_list_dbs(MYSQL *mysql, const char *wild)

Description

Returns a result set consisting of database names on the server that match the simple regular expression
specified by the wild parameter. wild may contain the wildcard characters ‘%’ or ‘_’, or may be a
NULL pointer to match all databases. Calling mysql_list_dbs() is similar to executing the query
SHOW databases [LIKE wild].

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

APIs and Libraries

1226

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.41. mysql_list_fields()

MYSQL_RES *mysql_list_fields(MYSQL *mysql, const char *table, const
char *wild)

Description

Returns a result set consisting of field names in the given table that match the simple regular expression
specified by the wild parameter. wild may contain the wildcard characters ‘%’ or ‘_’, or may be a
NULL pointer to match all fields. Calling mysql_list_fields() is similar to executing the query
SHOW COLUMNS FROM tbl_name [LIKE wild].

Note that it's recommended that you use SHOW COLUMNS FROM tbl_name instead of
mysql_list_fields().

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

APIs and Libraries

1227

22.2.3.42. mysql_list_processes()

MYSQL_RES *mysql_list_processes(MYSQL *mysql)

Description

Returns a result set describing the current server threads. This is the same kind of information as that re-
ported by mysqladmin processlist or a SHOW PROCESSLIST query.

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.43. mysql_list_tables()

MYSQL_RES *mysql_list_tables(MYSQL *mysql, const char *wild)

Description

Returns a result set consisting of table names in the current database that match the simple regular ex-
pression specified by the wild parameter. wild may contain the wildcard characters ‘%’ or ‘_’, or may
be a NULL pointer to match all tables. Calling mysql_list_tables() is similar to executing the
query SHOW tables [LIKE wild].

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

APIs and Libraries

1228

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.44. mysql_more_results()

my_bool mysql_more_results(MYSQL *mysql)

Description

Returns true if more results exist from the currently executed query, and the application must call
mysql_next_result() to fetch the results.

Return Values

TRUE (1) if more results exist. FALSE (0) if no more results exist.

In most cases, you can call mysql_next_result() instead to test whether more results exist and
initiate retrieval if so.

See Section 22.2.9, “C API Handling of Multiple Statement Execution”, and Section 22.2.3.45,
“mysql_next_result()”.

Errors

None.

22.2.3.45. mysql_next_result()

int mysql_next_result(MYSQL *mysql)

Description

If more query results exist, mysql_next_result() reads the next query results and returns the
status back to application.

You must call mysql_free_result() for the preceding query if it returned a result set.

After calling mysql_next_result() the state of the connection is as if you had called
mysql_real_query() or mysql_query() for the next query. This means that you can call
mysql_store_result(), mysql_warning_count(), mysql_affected_rows(), and so
forth.

If mysql_next_result() returns an error, no other statements are executed and there are no more
results to fetch.

If your program executes stored procedures with the CALL SQL statement, you must set the CLI-
ENT_MULTI_RESULTS flag, either explicitly, or implicitly by setting CLI-
ENT_MULTI_STATEMENTS when you call mysql_real_connect(). This is because each CALL
returns a result to indicate the call status, in addition to any results sets that might be returned by state-

APIs and Libraries

1229

ments executed within the procedure. In addition, because CALL can return multiple results, you should
process those results using a loop that calls mysql_next_result() to determine whether there are
more results.

For an example that shows how to use mysql_next_result(), see Section 22.2.9, “C API Hand-
ling of Multiple Statement Execution”.

Return Values

Return Value Description

0 Successful and there are more results

-1 Successful and there are no more results

>0 An error occurred

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order. For example if you didn't call
mysql_use_result() for a previous result set.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.46. mysql_num_fields()

unsigned int mysql_num_fields(MYSQL_RES *result)

To pass a MYSQL* argument instead, use unsigned int mysql_field_count(MYSQL
*mysql).

Description

Returns the number of columns in a result set.

Note that you can get the number of columns either from a pointer to a result set or to a connection
handle. You would use the connection handle if mysql_store_result() or
mysql_use_result() returned NULL (and thus you have no result set pointer). In this case, you can
call mysql_field_count() to determine whether mysql_store_result() should have pro-
duced a non-empty result. This allows the client program to take proper action without knowing whether
the query was a SELECT (or SELECT-like) statement. The example shown here illustrates how this may
be done.

See Section 22.2.13.1, “Why mysql_store_result() Sometimes Returns NULL After
mysql_query() Returns Success”.

APIs and Libraries

1230

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

Example

MYSQL_RES *result;
unsigned int num_fields;
unsigned int num_rows;

if (mysql_query(&mysql,query_string))
{

// error
}
else // query succeeded, process any data returned by it
{

result = mysql_store_result(&mysql);
if (result) // there are rows
{

num_fields = mysql_num_fields(result);
// retrieve rows, then call mysql_free_result(result)

}
else // mysql_store_result() returned nothing; should it have?
{

if (mysql_errno(&mysql))
{

fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}
else if (mysql_field_count(&mysql) == 0)
{

// query does not return data
// (it was not a SELECT)
num_rows = mysql_affected_rows(&mysql);

}
}

}

An alternative (if you know that your query should have returned a result set) is to replace the
mysql_errno(&mysql) call with a check whether mysql_field_count(&mysql) is = 0. This
happens only if something went wrong.

22.2.3.47. mysql_num_rows()

my_ulonglong mysql_num_rows(MYSQL_RES *result)

Description

Returns the number of rows in the result set.

The use of mysql_num_rows() depends on whether you use mysql_store_result() or
mysql_use_result() to return the result set. If you use mysql_store_result(),
mysql_num_rows() may be called immediately. If you use mysql_use_result(),
mysql_num_rows() does not return the correct value until all the rows in the result set have been re-
trieved.

Return Values

The number of rows in the result set.

Errors

None.

APIs and Libraries

1231

22.2.3.48. mysql_options()

int mysql_options(MYSQL *mysql, enum mysql_option option, const char
*arg)

Description

Can be used to set extra connect options and affect behavior for a connection. This function may be
called multiple times to set several options.

mysql_options() should be called after mysql_init() and before mysql_connect() or
mysql_real_connect().

The option argument is the option that you want to set; the arg argument is the value for the option.
If the option is an integer, then arg should point to the value of the integer.

Possible option values:

Option Argument Type Function

MYSQL_INIT_COMMAND char * Command to execute when connecting
to the MySQL server. Will automatic-
ally be re-executed when reconnect-
ing.

MYSQL_OPT_COMPRESS Not used Use the compressed client/server pro-
tocol.

MYSQL_OPT_CONNECT_TIMEOUT unsigned int
*

Connect timeout in seconds.

MYSQL_OPT_GUESS_CONNECTION Not used For an application linked against
libmysqld, this allows the library
to guess whether to use the embedded
server or a remote server. “Guess”
means that if the hostname is set and
is not localhost, it uses a remote
server. This behavior is the default.
MYSQL_OPT_USE_EMBEDDED_CO
NNECTION and
MYSQL_OPT_USE_REMOTE_CONN
ECTION can be used to override it.
This option is ignored for applications
linked against libmysqlclient.

MYSQL_OPT_LOCAL_INFILE optional pointer to
uint

If no pointer is given or if pointer
points to an unsigned int != 0
the command LOAD LOCAL IN-
FILE is enabled.

MYSQL_OPT_NAMED_PIPE Not used Use named pipes to connect to a
MySQL server on NT.

MYSQL_OPT_PROTOCOL unsigned int
*

Type of protocol to use. Should be one
of the enum values of
mysql_protocol_type defined
in mysql.h.

MYSQL_OPT_READ_TIMEOUT unsigned int
*

Timeout for reads from server (works
currently only on Windows on TCP/IP
connections).

MYSQL_OPT_RECONNECT my_bool * Enable or disable automatic reconnec-

APIs and Libraries

1232

tion to the server if the connection is
found to have been lost. Reconnect
has been off by default since MySQL
5.0.3; this option is new in 5.0.13 and
provides a way to set reconnection be-
havior explicitly.

MYSQL_OPT_SET_CLIENT_IP char * For an application linked against
linked against libmysqld (with
libmysqld compiled with authen-
tication support), this means that the
user is considered to have connected
from the specified IP address
(specified as a string) for authentica-
tion purposes. This option is ignored
for applications linked against
libmysqlclient.

MYSQL_OPT_SSL_VERIFY_SERVER_
CERT

my_bool * Enable or disable verification of the
server's Common Name value in its
certificate against the hostname used
when connecting to the server. The
connection is rejected if there is a mis-
match. This feature can be used to pre-
vent man-in-the-middle attacks. Veri-
fication is disabled by default. Added
in MySQL 5.0.23.

MYSQL_OPT_USE_EMBEDDED_CONNE
CTION

Not used For an application linked against
libmysqld, this forces the use of
the embedded server for the connec-
tion. This option is ignored for applic-
ations linked against libmysql-
client.

MYSQL_OPT_USE_REMOTE_CONNECT
ION

Not used For an application linked against
libmysqld, this forces the use of a
remote server for the connection. This
option is ignored for applications
linked against libmysqlclient.

MYSQL_OPT_USE_RESULT Not used This option is unused.

MYSQL_OPT_WRITE_TIMEOUT unsigned int
*

Timeout for writes to server (works
currently only on Windows on TCP/IP
connections).

MYSQL_READ_DEFAULT_FILE char * Read options from the named option
file instead of from my.cnf.

MYSQL_READ_DEFAULT_GROUP char * Read options from the named group
from my.cnf or the file specified
with
MYSQL_READ_DEFAULT_FILE.

MYSQL_REPORT_DATA_TRUNCATION my_bool * Enable or disable reporting of data
truncation errors for prepared state-
ments via MYSQL_BIND.error.
(Default: enabled) Added in 5.0.3.

MYSQL_SECURE_AUTH my_bool* Whether to connect to a server that
does not support the password hashing
used in MySQL 4.1.1 and later.

APIs and Libraries

1233

MYSQL_SET_CHARSET_DIR char* The pathname to the directory that
contains character set definition files.

MYSQL_SET_CHARSET_NAME char* The name of the character set to use as
the default character set.

MYSQL_SHARED_MEMORY_BASE_NAM
E

char* Named of shared-memory object for
communication to server. Should be
same as the option -
-shared-memory-base-name
used for the mysqld server you want
to connect to.

Note that the client group is always read if you use MYSQL_READ_DEFAULT_FILE or
MYSQL_READ_DEFAULT_GROUP.

The specified group in the option file may contain the following options:

Option Description

connect-timeout Connect timeout in seconds. On Linux this timeout is also used for wait-
ing for the first answer from the server.

compress Use the compressed client/server protocol.

database Connect to this database if no database was specified in the connect
command.

debug Debug options.

disable-loc-
al-infile

Disable use of LOAD DATA LOCAL.

host Default hostname.

init-command Command to execute when connecting to MySQL server. Will automat-
ically be re-executed when reconnecting.

interactive-timeout Same as specifying CLIENT_INTERACTIVE to
mysql_real_connect(). See Section 22.2.3.51,
“mysql_real_connect()”.

local-in-
file[=(0|1)]

If no argument or argument != 0 then enable use of LOAD DATA LOC-
AL.

max_allowed_packet Max size of packet client can read from server.

multi-results Allow multiple result sets from multiple-statement executions or stored
procedures.

multi-statements Allow the client to send multiple statements in a single string (separated
by ‘;’).

password Default password.

pipe Use named pipes to connect to a MySQL server on NT.

pro-
tocol={TCP|SOCKET|P
IPE|MEMORY}

The protocol to use when connecting to the server.

port Default port number.

return-found-rows Tell mysql_info() to return found rows instead of updated rows
when using UPDATE.

shared-
na
memory-base-name=me

Shared-memory name to use to connect to server (default is "MYSQL").

APIs and Libraries

1234

socket Default socket file.

user Default user.

Note that timeout has been replaced by connect-timeout, but timeout is still supported in
MySQL 5.0.25 for backward compatibility.

For more information about option files, see Section 4.3.2, “Using Option Files”.

Return Values

Zero for success. Non-zero if you used an unknown option.

Example

MYSQL mysql;

mysql_init(&mysql);
mysql_options(&mysql,MYSQL_OPT_COMPRESS,0);
mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"odbc");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{

fprintf(stderr, "Failed to connect to database: Error: %s\n",
mysql_error(&mysql));

}

This code requests the client to use the compressed client/server protocol and read the additional options
from the odbc section in the my.cnf file.

22.2.3.49. mysql_ping()

int mysql_ping(MYSQL *mysql)

Description

Checks whether the connection to the server is working. If the connection has gone down, an automatic
reconnection is attempted.

This function can be used by clients that remain idle for a long while, to check whether the server has
closed the connection and reconnect if necessary.

Return Values

Zero if the connection to the server is alive. Non-zero if an error occurred. A non-zero return does not
indicate whether the MySQL server itself is down; the connection might be broken for other reasons
such as network problems.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_UNKNOWN_ERROR

APIs and Libraries

1235

An unknown error occurred.

22.2.3.50. mysql_query()

int mysql_query(MYSQL *mysql, const char *query)

Description

Executes the SQL query pointed to by the null-terminated string query. Normally, the string must con-
sist of a single SQL statement and you should not add a terminating semicolon (‘;’) or \g to the state-
ment. If multiple-statement execution has been enabled, the string can contain several statements separ-
ated by semicolons. See Section 22.2.9, “C API Handling of Multiple Statement Execution”.

mysql_query() cannot be used for queries that contain binary data; you should use
mysql_real_query() instead. (Binary data may contain the ‘\0’ character, which
mysql_query() interprets as the end of the query string.)

If you want to know whether the query should return a result set, you can use
mysql_field_count() to check for this. See Section 22.2.3.22, “mysql_field_count()”.

Return Values

Zero if the query was successful. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.51. mysql_real_connect()

MYSQL *mysql_real_connect(MYSQL *mysql, const char *host, const char
*user, const char *passwd, const char *db, unsigned int port, const
char *unix_socket, unsigned long client_flag)

Description

mysql_real_connect() attempts to establish a connection to a MySQL database engine running
on host. mysql_real_connect() must complete successfully before you can execute any other
API functions that require a valid MYSQL connection handle structure.

The parameters are specified as follows:

APIs and Libraries

1236

• The first parameter should be the address of an existing MYSQL structure. Before calling
mysql_real_connect() you must call mysql_init() to initialize the MYSQL structure.
You can change a lot of connect options with the mysql_options() call. See Section 22.2.3.48,
“mysql_options()”.

• The value of host may be either a hostname or an IP address. If host is NULL or the string "loc-
alhost", a connection to the local host is assumed. If the OS supports sockets (Unix) or named
pipes (Windows), they are used instead of TCP/IP to connect to the server.

• The user parameter contains the user's MySQL login ID. If user is NULL or the empty string "",
the current user is assumed. Under Unix, this is the current login name. Under Windows ODBC, the
current username must be specified explicitly. See the MyODBC section of Chapter 23, Connectors.

• The passwd parameter contains the password for user. If passwd is NULL, only entries in the
user table for the user that have a blank (empty) password field are checked for a match. This al-
lows the database administrator to set up the MySQL privilege system in such a way that users get
different privileges depending on whether they have specified a password.

Note: Do not attempt to encrypt the password before calling mysql_real_connect(); pass-
word encryption is handled automatically by the client API.

• db is the database name. If db is not NULL, the connection sets the default database to this value.

• If port is not 0, the value is used as the port number for the TCP/IP connection. Note that the host
parameter determines the type of the connection.

• If unix_socket is not NULL, the string specifies the socket or named pipe that should be used.
Note that the host parameter determines the type of the connection.

• The value of client_flag is usually 0, but can be set to a combination of the following flags to
enable certain features:

Flag Name Flag Description

CLIENT_COMPRESS Use compression protocol.

CLIENT_FOUND_ROWS Return the number of found (matched) rows, not the number of
changed rows.

CLIENT_IGNORE_SPACE Allow spaces after function names. Makes all functions names re-
served words.

CLIENT_INTERACTIVE Allow interactive_timeout seconds (instead of
wait_timeout seconds) of inactivity before closing the connec-
tion. The client's session wait_timeout variable is set to the value
of the session interactive_timeout variable.

CLIENT_LOCAL_FILES Enable LOAD DATA LOCAL handling.

CLI-
ENT_MULTI_STATEMENTS

Tell the server that the client may send multiple statements in a single
string (separated by ‘;’). If this flag is not set, multiple-statement exe-
cution is disabled. See the note following this table for more informa-
tion about this flag.

CLIENT_MULTI_RESULTS Tell the server that the client can handle multiple result sets from mul-
tiple-statement executions or stored procedures. This is automatically
set if CLIENT_MULTI_STATEMENTS is set. See the note following
this table for more information about this flag.

CLIENT_NO_SCHEMA Don't allow the db_name.tbl_name.col_name syntax. This is
for ODBC. It causes the parser to generate an error if you use that syn-
tax, which is useful for trapping bugs in some ODBC programs.

CLIENT_ODBC The client is an ODBC client. This changes mysqld to be more

APIs and Libraries

1237

ODBC-friendly.

CLIENT_SSL Use SSL (encrypted protocol). This option should not be set by applic-
ation programs; it is set internally in the client library. Instead, use
mysql_ssl_set() before calling mysql_real_connect().

If your program executes stored procedures with the CALL SQL statement, you must set the CLI-
ENT_MULTI_RESULTS flag, either explicitly, or implicitly by setting CLI-
ENT_MULTI_STATEMENTS when you call mysql_real_connect(). This is because each CALL
returns a result to indicate the call status, in addition to any results sets that might be returned by state-
ments executed within the procedure.

If you enable CLIENT_MULTI_STATEMENTS or CLIENT_MULTI_RESULTS, you should process
the result for every call to mysql_query() or mysql_real_query() by using a loop that calls
mysql_next_result() to determine whether there are more results. For an example, see Sec-
tion 22.2.9, “C API Handling of Multiple Statement Execution”.

For some parameters, it is possible to have the value taken from an option file rather than from an expli-
cit value in the mysql_real_connect() call. To do this, call mysql_options() with the
MYSQL_READ_DEFAULT_FILE or MYSQL_READ_DEFAULT_GROUP option before calling
mysql_real_connect(). Then, in the mysql_real_connect() call, specify the “no-value”
value for each parameter to be read from an option file:

• For host, specify a value of NULL or the empty string ("").

• For user, specify a value of NULL or the empty string.

• For passwd, specify a value of NULL. (For the password, a value of the empty string in the
mysql_real_connect() call cannot be overridden in an option file, because the empty string
indicates explicitly that the MySQL account must have an empty password.)

• For db, specify a value of NULL or the empty string.

• For port, specify a value of 0.

• For unix_socket, specify a value of NULL.

If no value is found in an option file for a parameter, its default value is used as indicated in the descrip-
tions given earlier in this section.

Return Values

A MYSQL* connection handle if the connection was successful, NULL if the connection was unsuccess-
ful. For a successful connection, the return value is the same as the value of the first parameter.

Errors

• CR_CONN_HOST_ERROR

Failed to connect to the MySQL server.

• CR_CONNECTION_ERROR

Failed to connect to the local MySQL server.

APIs and Libraries

1238

• CR_IPSOCK_ERROR

Failed to create an IP socket.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SOCKET_CREATE_ERROR

Failed to create a Unix socket.

• CR_UNKNOWN_HOST

Failed to find the IP address for the hostname.

• CR_VERSION_ERROR

A protocol mismatch resulted from attempting to connect to a server with a client library that uses a
different protocol version. This can happen if you use a very old client library to connect to a new
server that wasn't started with the --old-protocol option.

• CR_NAMEDPIPEOPEN_ERROR

Failed to create a named pipe on Windows.

• CR_NAMEDPIPEWAIT_ERROR

Failed to wait for a named pipe on Windows.

• CR_NAMEDPIPESETSTATE_ERROR

Failed to get a pipe handler on Windows.

• CR_SERVER_LOST

If connect_timeout > 0 and it took longer than connect_timeout seconds to connect to the
server or if the server died while executing the init-command.

Example

MYSQL mysql;

mysql_init(&mysql);
mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"your_prog_name");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{

fprintf(stderr, "Failed to connect to database: Error: %s\n",
mysql_error(&mysql));

}

By using mysql_options() the MySQL library reads the [client] and [your_prog_name]
sections in the my.cnf file which ensures that your program works, even if someone has set up
MySQL in some non-standard way.

Note that upon connection, mysql_real_connect() sets the reconnect flag (part of the MYSQL
structure) to a value of 1 in versions of the API older than 5.0.3, or 0 in newer versions. A value of 1 for
this flag indicates that if a statement cannot be performed because of a lost connection, to try reconnect-
ing to the server before giving up. As of MySQL 5.0.13, you can use the MYSQL_OPT_RECONNECT
option to mysql_options() to control reconnection behavior.

APIs and Libraries

1239

22.2.3.52. mysql_real_escape_string()

unsigned long mysql_real_escape_string(MYSQL *mysql, char *to, const
char *from, unsigned long length)

Note that mysql must be a valid, open connection. This is needed because the escaping depends on the
character set in use by the server.

Description

This function is used to create a legal SQL string that you can use in an SQL statement. See Sec-
tion 9.1.1, “Strings”.

The string in from is encoded to an escaped SQL string, taking into account the current character set of
the connection. The result is placed in to and a terminating null byte is appended. Characters encoded
are NUL (ASCII 0), ‘\n’, ‘\r’, ‘\’, ‘'’, ‘"’, and Control-Z (see Section 9.1, “Literal Values”). (Strictly
speaking, MySQL requires only that backslash and the quote character used to quote the string in the
query be escaped. This function quotes the other characters to make them easier to read in log files.)

The string pointed to by from must be length bytes long. You must allocate the to buffer to be at
least length*2+1 bytes long. (In the worst case, each character may need to be encoded as using two
bytes, and you need room for the terminating null byte.) When mysql_real_escape_string()
returns, the contents of to is a null-terminated string. The return value is the length of the encoded
string, not including the terminating null character.

If you need to change the character set of the connection, you should use the
mysql_set_character_set() function rather than executing a SET NAMES (or SET CHARAC-
TER SET) statement. mysql_set_character_set() works like SET NAMES but also affects the
character set used by mysql_real_escape_string(), which SET NAMES does not.

Example

char query[1000],*end;

end = strmov(query,"INSERT INTO test_table values(");
*end++ = '\'';
end += mysql_real_escape_string(&mysql, end,"What's this",11);
*end++ = '\'';
*end++ = ',';
*end++ = '\'';
end += mysql_real_escape_string(&mysql, end,"binary data: \0\r\n",16);
*end++ = '\'';
*end++ = ')';

if (mysql_real_query(&mysql,query,(unsigned int) (end - query)))
{

fprintf(stderr, "Failed to insert row, Error: %s\n",
mysql_error(&mysql));

}

The strmov() function used in the example is included in the mysqlclient library and works like
strcpy() but returns a pointer to the terminating null of the first parameter.

Return Values

The length of the value placed into to, not including the terminating null character.

Errors

None.

22.2.3.53. mysql_real_query()

APIs and Libraries

1240

int mysql_real_query(MYSQL *mysql, const char *query, unsigned long
length)

Description

Executes the SQL query pointed to by query, which should be a string length bytes long. Normally,
the string must consist of a single SQL statement and you should not add a terminating semicolon (‘;’)
or \g to the statement. If multiple-statement execution has been enabled, the string can contain several
statements separated by semicolons. See Section 22.2.9, “C API Handling of Multiple Statement Execu-
tion”.

You must use mysql_real_query() rather than mysql_query() for queries that contain binary
data, because binary data may contain the ‘\0’ character. In addition, mysql_real_query() is
faster than mysql_query() because it does not call strlen() on the query string.

If you want to know whether the query should return a result set, you can use
mysql_field_count() to check for this. See Section 22.2.3.22, “mysql_field_count()”.

Return Values

Zero if the query was successful. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.54. mysql_refresh()

int mysql_refresh(MYSQL *mysql, unsigned int options)

Description

This functions flushes tables or caches, or resets replication server information. The connected user must
have the RELOAD privilege.

The options argument is a bit mask composed from any combination of the following values. Mul-
tiple values can be OR'ed together to perform multiple operations with a single call.

• REFRESH_GRANT

Refresh the grant tables, like FLUSH PRIVILEGES.

APIs and Libraries

1241

• REFRESH_LOG

Flush the logs, like FLUSH LOGS.

• REFRESH_TABLES

Flush the table cache, like FLUSH TABLES.

• REFRESH_HOSTS

Flush the host cache, like FLUSH HOSTS.

• REFRESH_STATUS

Reset status variables, like FLUSH STATUS.

• REFRESH_THREADS

Flush the thread cache.

• REFRESH_SLAVE

On a slave replication server, reset the master server information and restart the slave, like RESET
SLAVE.

• REFRESH_MASTER

On a master replication server, remove the binary log files listed in the binary log index and truncate
the index file, like RESET MASTER.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.55. mysql_reload()

int mysql_reload(MYSQL *mysql)

Description

APIs and Libraries

1242

Asks the MySQL server to reload the grant tables. The connected user must have the RELOAD privilege.

This function is deprecated. It is preferable to use mysql_query() to issue an SQL FLUSH PRIV-
ILEGES statement instead.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.56. mysql_rollback()

my_bool mysql_rollback(MYSQL *mysql)

Description

Rolls back the current transaction.

As of MySQL 5.0.3, the action of this function is subject to the value of the completion_type sys-
tem variable. In particular, if the value of completion_type is 2, the server performs a release after
terminating a transaction and closes the client connection. The client program should call
mysql_close() to close the connection from the client side.

Return Values

Zero if successful. Non-zero if an error occurred.

Errors

None.

22.2.3.57. mysql_row_seek()

MYSQL_ROW_OFFSET mysql_row_seek(MYSQL_RES *result, MYSQL_ROW_OFFSET
offset)

Description

Sets the row cursor to an arbitrary row in a query result set. The offset value is a row offset that
should be a value returned from mysql_row_tell() or from mysql_row_seek(). This value is

APIs and Libraries

1243

not a row number; if you want to seek to a row within a result set by number, use
mysql_data_seek() instead.

This function requires that the result set structure contains the entire result of the query, so
mysql_row_seek() may be used only in conjunction with mysql_store_result(), not with
mysql_use_result().

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to
mysql_row_seek().

Errors

None.

22.2.3.58. mysql_row_tell()

MYSQL_ROW_OFFSET mysql_row_tell(MYSQL_RES *result)

Description

Returns the current position of the row cursor for the last mysql_fetch_row(). This value can be
used as an argument to mysql_row_seek().

You should use mysql_row_tell() only after mysql_store_result(), not after
mysql_use_result().

Return Values

The current offset of the row cursor.

Errors

None.

22.2.3.59. mysql_select_db()

int mysql_select_db(MYSQL *mysql, const char *db)

Description

Causes the database specified by db to become the default (current) database on the connection spe-
cified by mysql. In subsequent queries, this database is the default for table references that do not in-
clude an explicit database specifier.

mysql_select_db() fails unless the connected user can be authenticated as having permission to
use the database.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

APIs and Libraries

1244

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.60. mysql_set_character_set()

int mysql_set_character_set(MYSQL *mysql, char *csname)

Description

This function is used to set the default character set for the current connection. The string csname spe-
cifies a valid character set name. The connection collation becomes the default collation of the character
set. This function works like the SET NAMES statement, but also sets the value of mysql->charset,
and thus affects the character set used by mysql_real_escape_string()

This function was added in MySQL 5.0.7.

Return Values

Zero for success. Non-zero if an error occurred.

Example

MYSQL mysql;

mysql_init(&mysql);
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{

fprintf(stderr, "Failed to connect to database: Error: %s\n",
mysql_error(&mysql));

}

if (!mysql_set_character_set(&mysql, "utf8"))
{

printf("New client character set: %s\n", mysql_character_set_name(&mysql));
}

22.2.3.61. mysql_set_local_infile_default()
void
mysql_set_local_infile_default(MYSQL *mysql);

Description

Sets the LOAD LOCAL DATA INFILE handler callback functions to the defaults used internally by
the C client library. The library calls this function automatically if
mysql_set_local_infile_handler() has not been called or does not supply valid functions
for each of its callbacks.

The mysql_set_local_infile_default() function was added in MySQL 4.1.2.

Return Values

APIs and Libraries

1245

None.

Errors

None.

22.2.3.62. mysql_set_local_infile_handler()
void
mysql_set_local_infile_handler(MYSQL *mysql,

int (*local_infile_init)(void **, const char *, void *),
int (*local_infile_read)(void *, char *, unsigned int),
void (*local_infile_end)(void *),
int (*local_infile_error)(void *, char*, unsigned int),
void *userdata);

Description

This function installs callbacks to be used during the execution of LOAD DATA LOCAL INFILE
statements. It enables application programs to exert control over local (client-side) datafile reading. The
arguments are the connection handler, a set of pointers to callback functions, and a pointer to a data area
that the callbacks can use to share information.

To use mysql_set_local_infile_handler(), you must write the following callback func-
tions:

int
local_infile_init(void **ptr, const char *filename, void *userdata);

The initialization function. This is called once to do any setup necessary, open the datafile, allocate data
structures, and so forth. The first void** argument is a pointer to a pointer. You can set the pointer
(that is, *ptr) to a value that will be passed to each of the other callbacks (as a void*). The callbacks
can use this pointed-to value to maintain state information. The userdata argument is the same value
that is passed to mysql_set_local_infile_handler().

The initialization function should return zero for success, non-zero for an error.

int
local_infile_read(void *ptr, char *buf, unsigned int buf_len);

The data-reading function. This is called repeatedly to read the data file. buf points to the buffer where
the read data should be stored, and buf_len is the maximum number of bytes that the callback can
read and store in the buffer. (It can read fewer bytes, but should not read more.)

The return value is the number of bytes read, or zero when no more data could be read (this indicates
EOF). Return a value less than zero if an error occurs.

void
local_infile_end(void *ptr)

The termination function. This is called once after local_infile_read() has returned zero (EOF)
or an error. This function should deallocate any memory allocated by local_infile_init() and
perform any other cleanup necessary. It is invoked even if the initalization function returns an error.

int
local_infile_error(void *ptr, char *error_msg, unsigned int error_msg_len);

The error-handling function. This is called to get a textual error message to return to the user in case any
of your other functions returns an error. error_msg points to the buffer into which the message should

APIs and Libraries

1246

be written, and error_msg_len is the length of the buffer. The message should be written as a null-
terminated string, so the message can be at most error_msg_len–1 bytes long.

The return value is the error number.

Typically, the other callbacks store the error message in the data structure pointed to by ptr, so that
local_infile_error() can copy the message from there into error_msg.

After calling mysql_set_local_infile_handler() in your C code and passing pointers to
your callback functions, you can then issue a LOAD DATA LOCAL INFILE statement (for example,
by using mysql_query()). The client library automatically invokes your callbacks. The filename
specified in LOAD DATA LOCAL INFILE will be passed as the second parameter to the loc-
al_infile_init() callback.

The mysql_set_local_infile_handler() function was added in MySQL 4.1.2.

Return Values

None.

Errors

None.

22.2.3.63. mysql_set_server_option()

int mysql_set_server_option(MYSQL *mysql, enum enum_mysql_set_option
option)

Description

Enables or disables an option for the connection. option can have one of the following values:

MYSQL_OPTION_MULTI_S
TATEMENTS_ON

Enable multiple-statement support.

MYSQL_OPTION_MULTI_S
TATEMENTS_OFF

Disable multiple-statement support.

If you enable multiple-statement support, you should retrieve results from calls to mysql_query() or
mysql_real_query() by using a loop that calls mysql_next_result() to determine whether
there are more results. For an example, see Section 22.2.9, “C API Handling of Multiple Statement Exe-
cution”.

Enabling multiple-statement support with MYSQL_OPTION_MULTI_STATEMENTS_ON does not have
quite the same effect as enabling it by passing the CLIENT_MULTI_STATEMENTS flag to
mysql_real_connect(): CLIENT_MULTI_STATEMENTS also enables CLI-
ENT_MULTI_RESULTS. If you are using the CALL SQL statement in your programs, multiple-result
support must be enabled; this means that MYSQL_OPTION_MULTI_STATEMENTS_ON by itself is in-
sufficient to allow the use of CALL.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

APIs and Libraries

1247

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• ER_UNKNOWN_COM_ERROR

The server didn't support mysql_set_server_option() (which is the case that the server is
older than 4.1.1) or the server didn't support the option one tried to set.

22.2.3.64. mysql_shutdown()

int mysql_shutdown(MYSQL *mysql, enum mysql_enum_shutdown_level shut-
down_level)

Description

Asks the database server to shut down. The connected user must have SHUTDOWN privileges. The
shutdown_level argument was added in MySQL 5.0.1. MySQL 5.0 servers support only one type
of shutdown; shutdown_level must be equal to SHUTDOWN_DEFAULT. Additional shutdown
levels are planned to make it possible to choose the desired level. Dynamically linked executables which
have been compiled with older versions of the libmysqlclient headers and call
mysql_shutdown() need to be used with the old libmysqlclient dynamic library.

The shutdown process is described in Section 5.2.7, “The Shutdown Process”.

Return Values

Zero for success. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.65. mysql_sqlstate()

APIs and Libraries

1248

const char *mysql_sqlstate(MYSQL *mysql)

Description

Returns a null-terminated string containing the SQLSTATE error code for the last error. The error code
consists of five characters. '00000' means “no error.” The values are specified by ANSI SQL and
ODBC. For a list of possible values, see Appendix B, Error Codes and Messages.

SQLSTATE values returned by mysql_sqlstate() differ from MySQL-specific error numbers re-
turned by mysql_errno(). For example, the mysql client program displays errors using the follow-
ing format, where 1146 is the mysql_errno() value and '42S02' is the corresponding
mysql_sqlstate() value:

shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Not all MySQL error numbers are mapped to SQLSTATE error codes. The value 'HY000' (general er-
ror) is used for unmapped error numbers.

Return Values

A null-terminated character string containing the SQLSTATE error code.

See Also

See Section 22.2.3.14, “mysql_errno()”, Section 22.2.3.15, “mysql_error()”, and Sec-
tion 22.2.7.26, “mysql_stmt_sqlstate()”.

22.2.3.66. mysql_ssl_set()

int mysql_ssl_set(MYSQL *mysql, const char *key, const char *cert,
const char *ca, const char *capath, const char *cipher)

Description

mysql_ssl_set() is used for establishing secure connections using SSL. It must be called before
mysql_real_connect().

mysql_ssl_set() does nothing unless OpenSSL support is enabled in the client library.

mysql is the connection handler returned from mysql_init(). The other parameters are specified as
follows:

• key is the pathname to the key file.

• cert is the pathname to the certificate file.

• ca is the pathname to the certificate authority file.

• capath is the pathname to a directory that contains trusted SSL CA certificates in pem format.

• cipher is a list of allowable ciphers to use for SSL encryption.

Any unused SSL parameters may be given as NULL.

Return Values

APIs and Libraries

1249

This function always returns 0. If SSL setup is incorrect, mysql_real_connect() returns an error
when you attempt to connect.

22.2.3.67. mysql_stat()

const char *mysql_stat(MYSQL *mysql)

Description

Returns a character string containing information similar to that provided by the mysqladmin
status command. This includes uptime in seconds and the number of running threads, questions, re-
loads, and open tables.

Return Values

A character string describing the server status. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.68. mysql_store_result()

MYSQL_RES *mysql_store_result(MYSQL *mysql)

Description

You must call mysql_store_result() or mysql_use_result() for every query that success-
fully retrieves data (SELECT, SHOW, DESCRIBE, EXPLAIN, CHECK TABLE, and so forth).

You don't have to call mysql_store_result() or mysql_use_result() for other queries, but
it does not do any harm or cause any notable performance degradation if you call
mysql_store_result() in all cases. You can detect if the query didn't have a result set by check-
ing if mysql_store_result() returns 0 (more about this later on).

If you want to know whether the query should return a result set, you can use
mysql_field_count() to check for this. See Section 22.2.3.22, “mysql_field_count()”.

mysql_store_result() reads the entire result of a query to the client, allocates a MYSQL_RES
structure, and places the result into this structure.

mysql_store_result() returns a null pointer if the query didn't return a result set (if the query
was, for example, an INSERT statement).

APIs and Libraries

1250

mysql_store_result() also returns a null pointer if reading of the result set failed. You can check
whether an error occurred by checking if mysql_error() returns a non-empty string, if
mysql_errno() returns non-zero, or if mysql_field_count() returns zero.

An empty result set is returned if there are no rows returned. (An empty result set differs from a null
pointer as a return value.)

Once you have called mysql_store_result() and got a result back that isn't a null pointer, you
may call mysql_num_rows() to find out how many rows are in the result set.

You can call mysql_fetch_row() to fetch rows from the result set, or mysql_row_seek() and
mysql_row_tell() to obtain or set the current row position within the result set.

You must call mysql_free_result() once you are done with the result set.

See Section 22.2.13.1, “Why mysql_store_result() Sometimes Returns NULL After
mysql_query() Returns Success”.

Return Values

A MYSQL_RES result structure with the results. NULL if an error occurred.

Errors

mysql_store_result() resets mysql_error() and mysql_errno() if it succeeds.

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.69. mysql_thread_id()

unsigned long mysql_thread_id(MYSQL *mysql)

Description

Returns the thread ID of the current connection. This value can be used as an argument to
mysql_kill() to kill the thread.

If the connection is lost and you reconnect with mysql_ping(), the thread ID changes. This means
you should not get the thread ID and store it for later. You should get it when you need it.

APIs and Libraries

1251

Return Values

The thread ID of the current connection.

Errors

None.

22.2.3.70. mysql_use_result()

MYSQL_RES *mysql_use_result(MYSQL *mysql)

Description

You must call mysql_store_result() or mysql_use_result() for every query that success-
fully retrieves data (SELECT, SHOW, DESCRIBE, EXPLAIN).

mysql_use_result() initiates a result set retrieval but does not actually read the result set into the
client like mysql_store_result() does. Instead, each row must be retrieved individually by mak-
ing calls to mysql_fetch_row(). This reads the result of a query directly from the server without
storing it in a temporary table or local buffer, which is somewhat faster and uses much less memory than
mysql_store_result(). The client allocates memory only for the current row and a communica-
tion buffer that may grow up to max_allowed_packet bytes.

On the other hand, you shouldn't use mysql_use_result() if you are doing a lot of processing for
each row on the client side, or if the output is sent to a screen on which the user may type a ^S (stop
scroll). This ties up the server and prevent other threads from updating any tables from which the data is
being fetched.

When using mysql_use_result(), you must execute mysql_fetch_row() until a NULL value
is returned, otherwise, the unfetched rows are returned as part of the result set for your next query. The
C API gives the error Commands out of sync; you can't run this command now if
you forget to do this!

You may not use mysql_data_seek(), mysql_row_seek(), mysql_row_tell(),
mysql_num_rows(), or mysql_affected_rows() with a result returned from
mysql_use_result(), nor may you issue other queries until mysql_use_result() has fin-
ished. (However, after you have fetched all the rows, mysql_num_rows() accurately returns the
number of rows fetched.)

You must call mysql_free_result() once you are done with the result set.

When using the libmysqld embedded server, the memory benefits are essentially lost because
memory usage incrementally increases with each row retrieved until mysql_free_result() is
called.

Return Values

A MYSQL_RES result structure. NULL if an error occurred.

Errors

mysql_use_result() resets mysql_error() and mysql_errno() if it succeeds.

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

APIs and Libraries

1252

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.3.71. mysql_warning_count()

unsigned int mysql_warning_count(MYSQL *mysql)

Description

Returns the number of warnings generated during execution of the previous SQL statement.

Return Values

The warning count.

Errors

None.

22.2.4. C API Prepared Statements
The MySQL client/server protocol provides for the use of prepared statements. This capability uses the
MYSQL_STMT statement handler data structure returned by the mysql_stmt_init() initialization
function. Prepared execution is an efficient way to execute a statement more than once. The statement is
first parsed to prepare it for execution. Then it is executed one or more times at a later time, using the
statement handle returned by the initialization function.

Prepared execution is faster than direct execution for statements executed more than once, primarily be-
cause the query is parsed only once. In the case of direct execution, the query is parsed every time it is
executed. Prepared execution also can provide a reduction of network traffic because for each execution
of the prepared statement, it is necessary only to send the data for the parameters.

Prepared statements might not provide a performance increase in some situations. For best results, test
your application both with prepared and non-prepared statements and choose whichever yields best per-
formance.

Another advantage of prepared statements is that it uses a binary protocol that makes data transfer
between client and server more efficient.

The following statements can be used as prepared statements: CREATE TABLE, DELETE, DO, IN-
SERT, REPLACE, SELECT, SET, UPDATE, and most SHOW statements. Other statements are not sup-
ported in MySQL 5.0.

22.2.5. C API Prepared Statement Data types

APIs and Libraries

1253

Prepared statements mainly use the MYSQL_STMT and MYSQL_BIND data structures. A third structure,
MYSQL_TIME, is used to transfer temporal data.

• MYSQL_STMT

This structure represents a prepared statement. A statement is created by calling
mysql_stmt_init(), which returns a statement handle (that is, a pointer to a MYSQL_STMT).
The handle is used for all subsequent statement-related functions until you close it with
mysql_stmt_close().

The MYSQL_STMT structure has no members that are for application use. Also, you should not try to
make a copy of a MYSQL_STMT structure. There is no guarantee that such a copy will be usable.

Multiple statement handles can be associated with a single connection. The limit on the number of
handles depends on the available system resources.

• MYSQL_BIND

This structure is used both for statement input (data values sent to the server) and output (result val-
ues returned from the server). For input, it is used with mysql_stmt_bind_param() to bind
parameter data values to buffers for use by mysql_stmt_execute(). For output, it is used with
mysql_stmt_bind_result() to bind result set buffers for use in fetching rows with
mysql_stmt_fetch().

To use a MYSQL_BIND structure, you should zero its contents to initialize it, and then set its mem-
bers appropriately. For example, to declare and initialize an array of three MYSQL_BIND structures,
use this code:

MYSQL_BIND bind[3];
memset(bind, 0, sizeof(bind));

The MYSQL_BIND structure contains the following members for use by application programs. Each
is used both for input and for output, although sometimes for different purposes depending on the
direction of data transfer.

• enum enum_field_types buffer_type

The type of the buffer. The allowable buffer_type values are listed later in this section. For
input, buffer_type indicates what type of value you are binding to a statement parameter.
For output, it indicates what type of value you expect to receive in a result buffer.

• void *buffer

For input, this is a pointer to the buffer in which a statement parameter's data value is stored. For
output, it is a pointer to the buffer in which to return a result set column value. For numeric data
types, buffer should point to a variable of the proper C type. (If you are associating the vari-
able with a column that has the UNSIGNED attribute, the variable should be an unsigned C
type. Indicate whether the variable is signed or unsigned by using the is_unsigned member,
described later in this list.) For date and time data types, buffer should point to a
MYSQL_TIME structure. For character and binary string data types, buffer should point to a
character buffer.

• unsigned long buffer_length

The actual size of *buffer in bytes. This indicates the maximum amount of data that can be
stored in the buffer. For character and binary C data, the buffer_length value specifies the
length of *buffer when used with mysql_stmt_bind_param(), or the maximum num-
ber of data bytes that can be fetched into the buffer when used with

APIs and Libraries

1254

mysql_stmt_bind_result().

• unsigned long *length

A pointer to an unsigned long variable that indicates the actual number of bytes of data
stored in *buffer. length is used for character or binary C data. For input parameter data
binding, length points to an unsigned long variable that indicates the length of the para-
meter value stored in *buffer; this is used by mysql_stmt_execute(). For output value
binding, the return value of mysql_stmt_fetch() determines the interpretation of the
length. If mysql_stmt_fetch() returns 0, *length indicates the actual length of the para-
meter value. If mysql_stmt_fetch() returns MYSQL_DATA_TRUNCATED, *length in-
dicates the non-truncated length of the parameter value. In this case, the minimum of *length
and buffer_length indicates the actual length of the value.

length is ignored for numeric and temporal data types because the length of the data value is
determined by the buffer_type value.

• my_bool *is_null

This member points to a my_bool variable that is true if a value is NULL, false if it is not
NULL. For input, set *is_null to true to indicate that you are passing a NULL value as a state-
ment parameter. For output, this value is set to true after you fetch a row if the result set column
value returned from the statement is NULL.

is_null is a pointer to a boolean rather than a boolean scalar so that it can be used in the fol-
lowing way:

• If your data values are always NULL, use MYSQL_TYPE_NULL to bind the column.

• If your data values are always NOT NULL, set is_null = (my_bool*) 0.

• In all other cases, you should set is_null to the address of a my_bool variable and
change that variable's value appropriately between executions to indicate whether data values
are NULL or NOT NULL.

• my_bool is_unsigned

This member is used for integer types. (These correspond to the MYSQL_TYPE_TINY,
MYSQL_TYPE_SHORT, MYSQL_TYPE_LONG, and MYSQL_TYPE_LONGLONG type codes.)
is_unsigned should be set to true for unsigned types and false for signed types.

• my_bool *error

For output, set this member to point to a my_bool variable to have truncation information for
the parameter stored there after a row fetching operation. (Truncation reporting is enabled by de-
fault, but can be controlled by calling mysql_options() with the
MYSQL_REPORT_DATA_TRUNCATION option.) When truncation reporting is enabled,
mysql_stmt_fetch() returns MYSQL_DATA_TRUNCATED and *error is true in the
MYSQL_BIND structures for parameters in which truncation occurred. Truncation indicates loss
of sign or significant digits, or that a string was too long to fit in a column. The error member
was added in MySQL 5.0.3.

• MYSQL_TIME

This structure is used to send and receive DATE, TIME, DATETIME, and TIMESTAMP data directly
to and from the server. This is done by setting the buffer_type member of a MYSQL_BIND
structure to one of the temporal types, and setting the buffer member to point to a MYSQL_TIME
structure.

APIs and Libraries

1255

The MYSQL_TIME structure contains the following members:

• unsigned int year

The year.

• unsigned int month

The month of the year.

• unsigned int day

The day of the month.

• unsigned int hour

The hour of the day.

• unsigned int minute

The minute of the hour.

• unsigned int second

The second of the minute.

• my_bool neg

A boolean flag to indicate whether the time is negative.

• unsigned long second_part

The fractional part of the second. This member currently is unused.

Only those parts of a MYSQL_TIME structure that apply to a given type of temporal value are used:
The year, month, and day elements are used for DATE, DATETIME, and TIMESTAMP values.
The hour, minute, and second elements are used for TIME, DATETIME, and TIMESTAMP val-
ues. See Section 22.2.10, “C API Handling of Date and Time Values”.

The following table shows the allowable values that may be specified in the buffer_type member of
MYSQL_BIND structures. The table also shows those SQL types that correspond most closely to each
buffer_type value, and, for numeric and temporal types, the corresponding recommended C type.

The types are “recommended” because implicit type conversion may be performed in both directions.
The buffer_type value controls the conversion that will be performed. For example, to fetch a SQL
MEDIUMINT column value, you can specify a buffer_type value of MYSQL_TYPE_LONG and use
a C variable of type int as the destination buffer. If you fetch a numeric column with a value of 255 in-
to a char[4] character array, specify a buffer_type value of MYSQL_TYPE_STRING and the res-
ulting value in the array will be a 4-byte string containing '255\0'.

To distinguish between binary and non-binary data for string data types, check whether the charset-
nr value of the result set metadata is 63. If so, the character set is binary, which indicates binary
rather than non-binary data. This is how to distinguish between BINARY and CHAR, VARBINARY and
VARCHAR, and BLOB and TEXT.

buffer_type Value SQL Type Recommended C Type

MYSQL_TYPE_BIT BIT unsigned long long int

APIs and Libraries

1256

MYSQL_TYPE_TINY TINYINT unsigned char

MYSQL_TYPE_SHORT SMALLINT short int

MYSQL_TYPE_LONG INT int

MYSQL_TYPE_LONGLONG BIGINT long long int

MYSQL_TYPE_FLOAT FLOAT float

MYSQL_TYPE_DOUBLE DOUBLE double

MYSQL_TYPE_NEWDECIMAL DECIMAL char[]

MYSQL_TYPE_TIME TIME MYSQL_TIME

MYSQL_TYPE_DATE DATE MYSQL_TIME

MYSQL_TYPE_DATETIME DATETIME MYSQL_TIME

MYSQL_TYPE_TIMESTAMP TIMESTAMP MYSQL_TIME

MYSQL_TYPE_STRING CHAR/BINARY char[]

MYSQL_TYPE_VAR_STRING VARCHAR/VARBINARY char[]

MYSQL_TYPE_TINY_BLOB TINYBLOB/TINYTEXT char[]

MYSQL_TYPE_BLOB BLOB/TEXT char[]

MYSQL_TYPE_MEDIUM_BLOB MEDIUMBLOB/MEDIUMTEXT char[]

MYSQL_TYPE_LONG_BLOB LONGBLOB/LONGTEXT char[]

22.2.6. C API Prepared Statement Function Overview
The functions available for prepared statement processing are summarized here and described in greater
detail in a later section. See Section 22.2.7, “C API Prepared Statement Function Descriptions”.

Function Description

mysql_stmt_affected_rows() Returns the number of rows changes, deleted, or inserted by prepared
UPDATE, DELETE, or INSERT statement.

mysql_stmt_attr_get() Get value of an attribute for a prepared statement.

mysql_stmt_attr_set() Sets an attribute for a prepared statement.

mysql_stmt_bind_param() Associates application data buffers with the parameter markers in a
prepared SQL statement.

mysql_stmt_bind_result() Associates application data buffers with columns in the result set.

mysql_stmt_close() Frees memory used by prepared statement.

mysql_stmt_data_seek() Seeks to an arbitrary row number in a statement result set.

mysql_stmt_errno() Returns the error number for the last statement execution.

mysql_stmt_error() Returns the error message for the last statement execution.

mysql_stmt_execute() Executes the prepared statement.

mysql_stmt_fetch() Fetches the next row of data from the result set and returns data for all
bound columns.

mysql_stmt_fetch_column() Fetch data for one column of the current row of the result set.

mysql_stmt_field_count() Returns the number of result columns for the most recent statement.

mysql_stmt_free_result() Free the resources allocated to the statement handle.

mysql_stmt_init() Allocates memory for MYSQL_STMT structure and initializes it.

mysql_stmt_insert_id() Returns the ID generated for an AUTO_INCREMENT column by pre-

APIs and Libraries

1257

pared statement.

mysql_stmt_num_rows() Returns total rows from the statement buffered result set.

mysql_stmt_param_count() Returns the number of parameters in a prepared SQL statement.

mysql_stmt_param_metadata
()

(Return parameter metadata in the form of a result set.) Currently, this
function does nothing.

mysql_stmt_prepare() Prepares an SQL string for execution.

mysql_stmt_reset() Reset the statement buffers in the server.

mysql_stmt_result_metadata(
)

Returns prepared statement metadata in the form of a result set.

mysql_stmt_row_seek() Seeks to a row offset in a statement result set, using value returned
from mysql_stmt_row_tell().

mysql_stmt_row_tell() Returns the statement row cursor position.

mysql_stmt_send_long_data() Sends long data in chunks to server.

mysql_stmt_sqlstate() Returns the SQLSTATE error code for the last statement execution.

mysql_stmt_store_result() Retrieves the complete result set to the client.

Call mysql_stmt_init() to create a statement handle, then mysql_stmt_prepare to prepare
it, mysql_stmt_bind_param() to supply the parameter data, and mysql_stmt_execute() to
execute the statement. You can repeat the mysql_stmt_execute() by changing parameter values
in the respective buffers supplied through mysql_stmt_bind_param().

If the statement is a SELECT or any other statement that produces a result set,
mysql_stmt_prepare() also returns the result set metadata information in the form of a
MYSQL_RES result set through mysql_stmt_result_metadata().

You can supply the result buffers using mysql_stmt_bind_result(), so that the
mysql_stmt_fetch() automatically returns data to these buffers. This is row-by-row fetching.

You can also send the text or binary data in chunks to server using
mysql_stmt_send_long_data(). See Section 22.2.7.25,
“mysql_stmt_send_long_data()”.

When statement execution has been completed, the statement handle must be closed using
mysql_stmt_close() so that all resources associated with it can be freed.

If you obtained a SELECT statement's result set metadata by calling
mysql_stmt_result_metadata(), you should also free the metadata using
mysql_free_result().

Execution Steps

To prepare and execute a statement, an application follows these steps:

1. Create a prepared statement handle with msyql_stmt_init(). To prepare the statement on the
server, call mysql_stmt_prepare() and pass it a string containing the SQL statement.

2. If the statement produces a result set, call mysql_stmt_result_metadata() to obtain the
result set metadata. This metadata is itself in the form of result set, albeit a separate one from the
one that contains the rows returned by the query. The metadata result set indicates how many
columns are in the result and contains information about each column.

3. Set the values of any parameters using mysql_stmt_bind_param(). All parameters must be

APIs and Libraries

1258

set. Otherwise, statement execution returns an error or produces unexpected results.

4. Call mysql_stmt_execute() to execute the statement.

5. If the statement produces a result set, bind the data buffers to use for retrieving the row values by
calling mysql_stmt_bind_result().

6. Fetch the data into the buffers row by row by calling mysql_stmt_fetch() repeatedly until no
more rows are found.

7. Repeat steps 3 through 6 as necessary, by changing the parameter values and re-executing the state-
ment.

When mysql_stmt_prepare() is called, the MySQL client/server protocol performs these actions:

• The server parses the statement and sends the okay status back to the client by assigning a statement
ID. It also sends total number of parameters, a column count, and its metadata if it is a result set ori-
ented statement. All syntax and semantics of the statement are checked by the server during this call.

• The client uses this statement ID for the further operations, so that the server can identify the state-
ment from among its pool of statements.

When mysql_stmt_execute() is called, the MySQL client/server protocol performs these actions:

• The client uses the statement handle and sends the parameter data to the server.

• The server identifies the statement using the ID provided by the client, replaces the parameter mark-
ers with the newly supplied data, and executes the statement. If the statement produces a result set,
the server sends the data back to the client. Otherwise, it sends an okay status and total number of
rows changed, deleted, or inserted.

When mysql_stmt_fetch() is called, the MySQL client/server protocol performs these actions:

• The client reads the data from the packet row by row and places it into the application data buffers
by doing the necessary conversions. If the application buffer type is same as that of the field type re-
turned from the server, the conversions are straightforward.

If an error occurs, you can get the statement error code, error message, and SQLSTATE value using
mysql_stmt_errno(), mysql_stmt_error(), and mysql_stmt_sqlstate(), respect-
ively.

Prepared Statement Logging

For prepared statements that are executed with the mysql_stmt_prepare() and
mysql_stmt_execute() C API functions, the server writes Prepare and Execute lines to the
general query log so that you can tell when statements are prepared and executed.

Suppose that you prepare and execute a statement as follows:

1. Call mysql_stmt_prepare() to prepare the statement string "SELECT ?".

2. Call mysql_stmt_bind_param() to bind the value 3 to the parameter in the prepared state-

APIs and Libraries

1259

ment.

3. Call mysql_stmt_execute() to execute the prepared statement.

As a result of the preceding calls, the server writes the following lines to the general query log:

Prepare [1] SELECT ?
Execute [1] SELECT 3

Each Prepare and Execute line in the log is tagged with a [N] statement identifier so that you can
keep track of which prepared statement is being logged. N is a positive integer. If there are multiple pre-
pared statements active simultaneously for the client, N may be greater than 1. Each Execute lines
shows a prepared statement after substitution of data values for ? parameters.

Version notes: Prepare lines are displayed without [N] before MySQL 4.1.10. Execute lines are
not displayed at all before MySQL 4.1.10.

22.2.7. C API Prepared Statement Function Descriptions
To prepare and execute queries, use the functions described in detail in the following sections.

Note that all functions operating with a MYSQL_STMT structure begin with the prefix mysql_stmt_.

To create a MYSQL_STMT handle, use the mysql_stmt_init() function.

22.2.7.1. mysql_stmt_affected_rows()

my_ulonglong mysql_stmt_affected_rows(MYSQL_STMT *stmt)

Description

Returns the total number of rows changed, deleted, or inserted by the last executed statement. May be
called immediately after mysql_stmt_execute() for UPDATE, DELETE, or INSERT statements.
For SELECT statements, mysql_stmt_affected_rows() works like mysql_num_rows().

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no re-
cords were updated for an UPDATE statement, no rows matched the WHERE clause in the query, or that
no query has yet been executed. -1 indicates that the query returned an error or that, for a SELECT
query, mysql_stmt_affected_rows() was called prior to calling
mysql_stmt_store_result(). Because mysql_stmt_affected_rows() returns an un-
signed value, you can check for -1 by comparing the return value to (my_ulonglong)-1 (or to
(my_ulonglong)~0, which is equivalent).

See Section 22.2.3.1, “mysql_affected_rows()”, for additional information on the return value.

Errors

None.

Example

For the usage of mysql_stmt_affected_rows(), refer to the Example from Section 22.2.7.10,
“mysql_stmt_execute()”.

22.2.7.2. mysql_stmt_attr_get()

APIs and Libraries

1260

int mysql_stmt_attr_get(MYSQL_STMT *stmt, enum enum_stmt_attr_type op-
tion, void *arg)

Description

Can be used to get the current value for a statement attribute.

The option argument is the option that you want to get; the arg should point to a variable that should
contain the option value. If the option is an integer, then arg should point to the value of the integer.

See Section 22.2.7.3, “mysql_stmt_attr_set()”, for a list of options and option types.

Note: In MySQL 5.0, mysql_stmt_attr_get() uses unsigned int *, not my_bool *, for
STMT_ATTR_UPDATE_MAX_LENGTH. This is corrected in MySQL 5.1.7.

Return Values

0 if okay. Non-zero if option is unknown.

Errors

None.

22.2.7.3. mysql_stmt_attr_set()

int mysql_stmt_attr_set(MYSQL_STMT *stmt, enum enum_stmt_attr_type op-
tion, const void *arg)

Description

Can be used to affect behavior for a prepared statement. This function may be called multiple times to
set several options.

The option argument is the option that you want to set; the arg argument is the value for the option.
If the option is an integer, then arg should point to the value of the integer.

Possible option values:

Option Argument Type Function

STMT_ATTR_UPDATE_MAX_LENGTH my_bool * If set to 1: Update metadata
MYSQL_FIELD->max_length in
mysql_stmt_store_result().

STMT_ATTR_CURSOR_TYPE unsigned long
*

Type of cursor to open for statement
when mysql_stmt_execute() is
invoked. *arg can be CURS-
OR_TYPE_NO_CURSOR (the default)
or CURSOR_TYPE_READ_ONLY.

STMT_ATTR_PREFETCH_ROWS unsigned long
*

Number of rows to fetch from server
at a time when using a cursor. *arg
can be in the range from 1 to the max-
imum value of unsigned long.
The default is 1.

Note: In MySQL 5.0, mysql_stmt_attr_get() uses unsigned int *, not my_bool *, for
STMT_ATTR_UPDATE_MAX_LENGTH. This is corrected in MySQL 5.1.7.

APIs and Libraries

1261

If you use the STMT_ATTR_CURSOR_TYPE option with CURSOR_TYPE_READ_ONLY, a cursor is
opened for the statement when you invoke mysql_stmt_execute(). If there is already an open
cursor from a previous mysql_stmt_execute() call, it closes the cursor before opening a new one.
mysql_stmt_reset() also closes any open cursor before preparing the statement for re-execution.
mysql_stmt_free_result() closes any open cursor.

If you open a cursor for a prepared statement, mysql_stmt_store_result() is unnecessary, be-
cause that function causes the result set to be buffered on the client side.

The STMT_ATTR_CURSOR_TYPE option was added in MySQL 5.0.2. The
STMT_ATTR_PREFETCH_ROWS option was added in MySQL 5.0.6.

Return Values

0 if okay. Non-zero if option is unknown.

Errors

None.

Example

The following example opens a cursor for a prepared statement and sets the number of rows to fetch at a
time to 5:

MYSQL_STMT *stmt;
int rc;
unsigned long type;
unsigned long prefetch_rows = 5;

stmt = mysql_stmt_init(mysql);
type = (unsigned long) CURSOR_TYPE_READ_ONLY;
rc = mysql_stmt_attr_set(stmt, STMT_ATTR_CURSOR_TYPE, (void*) &type);
/* ... check return value ... */
rc = mysql_stmt_attr_set(stmt, STMT_ATTR_PREFETCH_ROWS,

(void*) &prefetch_rows);
/* ... check return value ... */

22.2.7.4. mysql_stmt_bind_param()

my_bool mysql_stmt_bind_param(MYSQL_STMT *stmt, MYSQL_BIND *bind)

Description

mysql_stmt_bind_param() is used to bind data for the parameter markers in the SQL statement
that was passed to mysql_stmt_prepare(). It uses MYSQL_BIND structures to supply the data.
bind is the address of an array of MYSQL_BIND structures. The client library expects the array to con-
tain an element for each ‘?’ parameter marker that is present in the query.

Suppose that you prepare the following statement:

INSERT INTO mytbl VALUES(?,?,?)

When you bind the parameters, the array of MYSQL_BIND structures must contain three elements, and
can be declared like this:

MYSQL_BIND bind[3];

The members of each MYSQL_BIND element that should be set are described in Section 22.2.5, “C API
Prepared Statement Data types”.

APIs and Libraries

1262

Return Values

Zero if the bind was successful. Non-zero if an error occurred.

Errors

• CR_INVALID_BUFFER_USE

Indicates if the bind is to supply the long data in chunks and if the buffer type is non string or binary.

• CR_UNSUPPORTED_PARAM_TYPE

The conversion is not supported. Possibly the buffer_type value is illegal or is not one of the
supported types.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

For the usage of mysql_stmt_bind_param(), refer to the Example from Section 22.2.7.10,
“mysql_stmt_execute()”.

22.2.7.5. mysql_stmt_bind_result()

my_bool mysql_stmt_bind_result(MYSQL_STMT *stmt, MYSQL_BIND *bind)

Description

mysql_stmt_bind_result() is used to associate (bind) columns in the result set to data buffers
and length buffers. When mysql_stmt_fetch() is called to fetch data, the MySQL client/server
protocol places the data for the bound columns into the specified buffers.

All columns must be bound to buffers prior to calling mysql_stmt_fetch(). bind is the address
of an array of MYSQL_BIND structures. The client library expects the array to contain an element for
each column of the result set. If you do not bind columns to MYSQL_BIND structures,
mysql_stmt_fetch() simply ignores the data fetch. The buffers should be large enough to hold the
data values, because the protocol doesn't return data values in chunks.

A column can be bound or rebound at any time, even after a result set has been partially retrieved. The
new binding takes effect the next time mysql_stmt_fetch() is called. Suppose that an application
binds the columns in a result set and calls mysql_stmt_fetch(). The client/server protocol returns
data in the bound buffers. Then suppose that the application binds the columns to a different set of buf-
fers. The protocol does not place data into the newly bound buffers until the next call to
mysql_stmt_fetch() occurs.

To bind a column, an application calls mysql_stmt_bind_result() and passes the type, address,
and the address of the length buffer. The members of each MYSQL_BIND element that should be set are
described in Section 22.2.5, “C API Prepared Statement Data types”.

Return Values

APIs and Libraries

1263

Zero if the bind was successful. Non-zero if an error occurred.

Errors

• CR_UNSUPPORTED_PARAM_TYPE

The conversion is not supported. Possibly the buffer_type value is illegal or is not one of the
supported types.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

For the usage of mysql_stmt_bind_result(), refer to the Example from Section 22.2.7.11,
“mysql_stmt_fetch()”.

22.2.7.6. mysql_stmt_close()

my_bool mysql_stmt_close(MYSQL_STMT *)

Description

Closes the prepared statement. mysql_stmt_close() also deallocates the statement handle pointed
to by stmt.

If the current statement has pending or unread results, this function cancels them so that the next query
can be executed.

Return Values

Zero if the statement was freed successfully. Non-zero if an error occurred.

Errors

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

For the usage of mysql_stmt_close(), refer to the Example from Section 22.2.7.10,
“mysql_stmt_execute()”.

22.2.7.7. mysql_stmt_data_seek()

APIs and Libraries

1264

void mysql_stmt_data_seek(MYSQL_STMT *stmt, my_ulonglong offset)

Description

Seeks to an arbitrary row in a statement result set. The offset value is a row number and should be in
the range from 0 to mysql_stmt_num_rows(stmt)-1.

This function requires that the statement result set structure contains the entire result of the last executed
query, so mysql_stmt_data_seek() may be used only in conjunction with
mysql_stmt_store_result().

Return Values

None.

Errors

None.

22.2.7.8. mysql_stmt_errno()

unsigned int mysql_stmt_errno(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_errno() returns the error code for the most re-
cently invoked statement API function that can succeed or fail. A return value of zero means that no er-
ror occurred. Client error message numbers are listed in the MySQL errmsg.h header file. Server er-
ror message numbers are listed in mysqld_error.h. Errors also are listed at Appendix B, Error
Codes and Messages.

Return Values

An error code value. Zero if no error occurred.

Errors

None.

22.2.7.9. mysql_stmt_error()

const char *mysql_stmt_error(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_error() returns a null-terminated string con-
taining the error message for the most recently invoked statement API function that can succeed or fail.
An empty string ("") is returned if no error occurred. This means the following two tests are equivalent:

if (mysql_stmt_errno(stmt))
{

// an error occurred
}

if (mysql_stmt_error(stmt)[0])
{

// an error occurred
}

The language of the client error messages may be changed by recompiling the MySQL client library.

APIs and Libraries

1265

Currently, you can choose error messages in several different languages.

Return Values

A character string that describes the error. An empty string if no error occurred.

Errors

None.

22.2.7.10. mysql_stmt_execute()

int mysql_stmt_execute(MYSQL_STMT *stmt)

Description

mysql_stmt_execute() executes the prepared query associated with the statement handle. The
currently bound parameter marker values are sent to server during this call, and the server replaces the
markers with this newly supplied data.

If the statement is an UPDATE, DELETE, or INSERT, the total number of changed, deleted, or inserted
rows can be found by calling mysql_stmt_affected_rows(). If this is a statement such as SE-
LECT that generates a result set, you must call mysql_stmt_fetch() to fetch the data prior to call-
ing any other functions that result in query processing. For more information on how to fetch the results,
refer to Section 22.2.7.11, “mysql_stmt_fetch()”.

For statements that generate a result set, you can request that mysql_stmt_execute() open a curs-
or for the statement by calling mysql_stmt_attr_set() before executing the statement. If you ex-
ecute a statement multiple times, mysql_stmt_execute() closes any open cursor before opening a
new one.

Return Values

Zero if execution was successful. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

APIs and Libraries

1266

Example

The following example demonstrates how to create and populate a table using mysql_stmt_init(),
mysql_stmt_prepare(), mysql_stmt_param_count(), mysql_stmt_bind_param(),
mysql_stmt_execute(), and mysql_stmt_affected_rows(). The mysql variable is as-
sumed to be a valid connection handle.

#define STRING_SIZE 50

#define DROP_SAMPLE_TABLE "DROP TABLE IF EXISTS test_table"
#define CREATE_SAMPLE_TABLE "CREATE TABLE test_table(col1 INT,\

col2 VARCHAR(40),\
col3 SMALLINT,\
col4 TIMESTAMP)"

#define INSERT_SAMPLE "INSERT INTO test_table(col1,col2,col3) VALUES(?,?,?)"

MYSQL_STMT *stmt;
MYSQL_BIND bind[3];
my_ulonglong affected_rows;
int param_count;
short small_data;
int int_data;
char str_data[STRING_SIZE];
unsigned long str_length;
my_bool is_null;

if (mysql_query(mysql, DROP_SAMPLE_TABLE))
{

fprintf(stderr, " DROP TABLE failed\n");
fprintf(stderr, " %s\n", mysql_error(mysql));
exit(0);

}

if (mysql_query(mysql, CREATE_SAMPLE_TABLE))
{

fprintf(stderr, " CREATE TABLE failed\n");
fprintf(stderr, " %s\n", mysql_error(mysql));
exit(0);

}

/* Prepare an INSERT query with 3 parameters */
/* (the TIMESTAMP column is not named; the server */
/* sets it to the current date and time) */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{

fprintf(stderr, " mysql_stmt_init(), out of memory\n");
exit(0);

}
if (mysql_stmt_prepare(stmt, INSERT_SAMPLE, strlen(INSERT_SAMPLE)))
{

fprintf(stderr, " mysql_stmt_prepare(), INSERT failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}
fprintf(stdout, " prepare, INSERT successful\n");

/* Get the parameter count from the statement */
param_count= mysql_stmt_param_count(stmt);
fprintf(stdout, " total parameters in INSERT: %d\n", param_count);

if (param_count != 3) /* validate parameter count */
{

fprintf(stderr, " invalid parameter count returned by MySQL\n");
exit(0);

}

/* Bind the data for all 3 parameters */

memset(bind, 0, sizeof(bind));

/* INTEGER PARAM */
/* This is a number type, so there is no need to specify buffer_length */
bind[0].buffer_type= MYSQL_TYPE_LONG;
bind[0].buffer= (char *)&int_data;
bind[0].is_null= 0;
bind[0].length= 0;

APIs and Libraries

1267

/* STRING PARAM */
bind[1].buffer_type= MYSQL_TYPE_STRING;
bind[1].buffer= (char *)str_data;
bind[1].buffer_length= STRING_SIZE;
bind[1].is_null= 0;
bind[1].length= &str_length;

/* SMALLINT PARAM */
bind[2].buffer_type= MYSQL_TYPE_SHORT;
bind[2].buffer= (char *)&small_data;
bind[2].is_null= &is_null;
bind[2].length= 0;

/* Bind the buffers */
if (mysql_stmt_bind_param(stmt, bind))
{

fprintf(stderr, " mysql_stmt_bind_param() failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

/* Specify the data values for the first row */
int_data= 10; /* integer */
strncpy(str_data, "MySQL", STRING_SIZE); /* string */
str_length= strlen(str_data);

/* INSERT SMALLINT data as NULL */
is_null= 1;

/* Execute the INSERT statement - 1*/
if (mysql_stmt_execute(stmt))
{

fprintf(stderr, " mysql_stmt_execute(), 1 failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

/* Get the total number of affected rows */
affected_rows= mysql_stmt_affected_rows(stmt);
fprintf(stdout, " total affected rows(insert 1): %lu\n",

(unsigned long) affected_rows);

if (affected_rows != 1) /* validate affected rows */
{

fprintf(stderr, " invalid affected rows by MySQL\n");
exit(0);

}

/* Specify data values for second row, then re-execute the statement */
int_data= 1000;
strncpy(str_data, "The most popular Open Source database", STRING_SIZE);
str_length= strlen(str_data);
small_data= 1000; /* smallint */
is_null= 0; /* reset */

/* Execute the INSERT statement - 2*/
if (mysql_stmt_execute(stmt))
{

fprintf(stderr, " mysql_stmt_execute, 2 failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

/* Get the total rows affected */
affected_rows= mysql_stmt_affected_rows(stmt);
fprintf(stdout, " total affected rows(insert 2): %lu\n",

(unsigned long) affected_rows);

if (affected_rows != 1) /* validate affected rows */
{

fprintf(stderr, " invalid affected rows by MySQL\n");
exit(0);

}

/* Close the statement */
if (mysql_stmt_close(stmt))
{

fprintf(stderr, " failed while closing the statement\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

APIs and Libraries

1268

}

Note: For complete examples on the use of prepared statement functions, refer to the file tests/
mysql_client_test.c. This file can be obtained from a MySQL source distribution or from the
BitKeeper source repository.

22.2.7.11. mysql_stmt_fetch()

int mysql_stmt_fetch(MYSQL_STMT *stmt)

Description

mysql_stmt_fetch() returns the next row in the result set. It can be called only while the result set
exists; that is, after a call to mysql_stmt_execute() that creates a result set or after
mysql_stmt_store_result(), which is called after mysql_stmt_execute() to buffer the
entire result set.

mysql_stmt_fetch() returns row data using the buffers bound by
mysql_stmt_bind_result(). It returns the data in those buffers for all the columns in the current
row set and the lengths are returned to the length pointer.

All columns must be bound by the application before calling mysql_stmt_fetch().

If a fetched data value is a NULL value, the *is_null value of the corresponding MYSQL_BIND
structure contains TRUE (1). Otherwise, the data and its length are returned in the *buffer and
*length elements based on the buffer type specified by the application. Each numeric and temporal
type has a fixed length, as listed in the following table. The length of the string types depends on the
length of the actual data value, as indicated by data_length.

Type Length

MYSQL_TYPE_TINY 1

MYSQL_TYPE_SHORT 2

MYSQL_TYPE_LONG 4

MYSQL_TYPE_LONGLONG 8

MYSQL_TYPE_FLOAT 4

MYSQL_TYPE_DOUBLE 8

MYSQL_TYPE_TIME sizeof(MYSQL_TIME)

MYSQL_TYPE_DATE sizeof(MYSQL_TIME)

MYSQL_TYPE_DATETIME sizeof(MYSQL_TIME)

MYSQL_TYPE_STRING data length

MYSQL_TYPE_BLOB data_length

Return Values

Return Value Description

0 Successful, the data has been fetched to application data buffers.

1 Error occurred. Error code and message can be obtained by calling
mysql_stmt_errno() and mysql_stmt_error().

MYSQL_NO_DATA No more rows/data exists

MYSQL_DATA_TRUNCATED Data truncation occurred

APIs and Libraries

1269

MYSQL_DATA_TRUNCATED is returned when truncation reporting is enabled. (Reporting is enabled by
default, but can be controlled with mysql_options().) To determine which parameters were trun-
cated when this value is returned, check the error members of the MYSQL_BIND parameter struc-
tures.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

• CR_UNSUPPORTED_PARAM_TYPE

The buffer type is MYSQL_TYPE_DATE, MYSQL_TYPE_TIME, MYSQL_TYPE_DATETIME, or
MYSQL_TYPE_TIMESTAMP, but the data type is not DATE, TIME, DATETIME, or TIMESTAMP.

• All other unsupported conversion errors are returned from mysql_stmt_bind_result().

Example

The following example demonstrates how to fetch data from a table using
mysql_stmt_result_metadata(), mysql_stmt_bind_result(), and
mysql_stmt_fetch(). (This example expects to retrieve the two rows inserted by the example
shown in Section 22.2.7.10, “mysql_stmt_execute()”.) The mysql variable is assumed to be a
valid connection handle.

#define STRING_SIZE 50

#define SELECT_SAMPLE "SELECT col1, col2, col3, col4 FROM test_table"

MYSQL_STMT *stmt;
MYSQL_BIND bind[4];
MYSQL_RES *prepare_meta_result;
MYSQL_TIME ts;
unsigned long length[4];
int param_count, column_count, row_count;
short small_data;
int int_data;
char str_data[STRING_SIZE];
my_bool is_null[4];
my_bool error[4];

/* Prepare a SELECT query to fetch data from test_table */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{

fprintf(stderr, " mysql_stmt_init(), out of memory\n");

APIs and Libraries

1270

exit(0);
}
if (mysql_stmt_prepare(stmt, SELECT_SAMPLE, strlen(SELECT_SAMPLE)))
{

fprintf(stderr, " mysql_stmt_prepare(), SELECT failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}
fprintf(stdout, " prepare, SELECT successful\n");

/* Get the parameter count from the statement */
param_count= mysql_stmt_param_count(stmt);
fprintf(stdout, " total parameters in SELECT: %d\n", param_count);

if (param_count != 0) /* validate parameter count */
{

fprintf(stderr, " invalid parameter count returned by MySQL\n");
exit(0);

}

/* Fetch result set meta information */
prepare_meta_result = mysql_stmt_result_metadata(stmt);
if (!prepare_meta_result)
{

fprintf(stderr,
" mysql_stmt_result_metadata(), returned no meta information\n");

fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

/* Get total columns in the query */
column_count= mysql_num_fields(prepare_meta_result);
fprintf(stdout, " total columns in SELECT statement: %d\n", column_count);

if (column_count != 4) /* validate column count */
{

fprintf(stderr, " invalid column count returned by MySQL\n");
exit(0);

}

/* Execute the SELECT query */
if (mysql_stmt_execute(stmt))
{

fprintf(stderr, " mysql_stmt_execute(), failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

/* Bind the result buffers for all 4 columns before fetching them */

memset(bind, 0, sizeof(bind));

/* INTEGER COLUMN */
bind[0].buffer_type= MYSQL_TYPE_LONG;
bind[0].buffer= (char *)&int_data;
bind[0].is_null= &is_null[0];
bind[0].length= &length[0];
bind[0].error= &error[0];

/* STRING COLUMN */
bind[1].buffer_type= MYSQL_TYPE_STRING;
bind[1].buffer= (char *)str_data;
bind[1].buffer_length= STRING_SIZE;
bind[1].is_null= &is_null[1];
bind[1].length= &length[1];
bind[1].error= &error[1];

/* SMALLINT COLUMN */
bind[2].buffer_type= MYSQL_TYPE_SHORT;
bind[2].buffer= (char *)&small_data;
bind[2].is_null= &is_null[2];
bind[2].length= &length[2];
bind[2].error= &error[2];

/* TIMESTAMP COLUMN */
bind[3].buffer_type= MYSQL_TYPE_TIMESTAMP;
bind[3].buffer= (char *)&ts;
bind[3].is_null= &is_null[3];
bind[3].length= &length[3];
bind[3].error= &error[3];

APIs and Libraries

1271

/* Bind the result buffers */
if (mysql_stmt_bind_result(stmt, bind))
{

fprintf(stderr, " mysql_stmt_bind_result() failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

/* Now buffer all results to client */
if (mysql_stmt_store_result(stmt))
{

fprintf(stderr, " mysql_stmt_store_result() failed\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

/* Fetch all rows */
row_count= 0;
fprintf(stdout, "Fetching results ...\n");
while (!mysql_stmt_fetch(stmt))
{

row_count++;
fprintf(stdout, " row %d\n", row_count);

/* column 1 */
fprintf(stdout, " column1 (integer) : ");
if (is_null[0])
fprintf(stdout, " NULL\n");

else
fprintf(stdout, " %d(%ld)\n", int_data, length[0]);

/* column 2 */
fprintf(stdout, " column2 (string) : ");
if (is_null[1])
fprintf(stdout, " NULL\n");

else
fprintf(stdout, " %s(%ld)\n", str_data, length[1]);

/* column 3 */
fprintf(stdout, " column3 (smallint) : ");
if (is_null[2])
fprintf(stdout, " NULL\n");

else
fprintf(stdout, " %d(%ld)\n", small_data, length[2]);

/* column 4 */
fprintf(stdout, " column4 (timestamp): ");
if (is_null[3])
fprintf(stdout, " NULL\n");

else
fprintf(stdout, " %04d-%02d-%02d %02d:%02d:%02d (%ld)\n",

ts.year, ts.month, ts.day,
ts.hour, ts.minute, ts.second,
length[3]);

fprintf(stdout, "\n");
}

/* Validate rows fetched */
fprintf(stdout, " total rows fetched: %d\n", row_count);
if (row_count != 2)
{

fprintf(stderr, " MySQL failed to return all rows\n");
exit(0);

}

/* Free the prepared result metadata */
mysql_free_result(prepare_meta_result);

/* Close the statement */
if (mysql_stmt_close(stmt))
{

fprintf(stderr, " failed while closing the statement\n");
fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
exit(0);

}

APIs and Libraries

1272

22.2.7.12. mysql_stmt_fetch_column()

int mysql_stmt_fetch_column(MYSQL_STMT *stmt, MYSQL_BIND *bind, un-
signed int column, unsigned long offset)

Description

Fetch one column from the current result set row. bind provides the buffer where data should be
placed. It should be set up the same way as for mysql_stmt_bind_result(). column indicates
which column to fetch. The first column is numbered 0. offset is the offset within the data value at
which to begin retrieving data. This can be used for fetching the data value in pieces. The beginning of
the value is offset 0.

Return Values

Zero if the value was fetched successfully. Non-zero if an error occurred.

Errors

• CR_INVALID_PARAMETER_NO

Invalid column number.

• CR_NO_DATA

The end of the result set has already been reached.

22.2.7.13. mysql_stmt_field_count()

unsigned int mysql_stmt_field_count(MYSQL_STMT *stmt)

Description

Returns the number of columns for the most recent statement for the statement handler. This value is
zero for statements such as INSERT or DELETE that do not produce result sets.

mysql_stmt_field_count() can be called after you have prepared a statement by invoking
mysql_stmt_prepare().

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

22.2.7.14. mysql_stmt_free_result()

my_bool mysql_stmt_free_result(MYSQL_STMT *stmt)

Description

Releases memory associated with the result set produced by execution of the prepared statement. If there
is a cursor open for the statement, mysql_stmt_free_result() closes it.

APIs and Libraries

1273

Return Values

Zero if the result set was freed successfully. Non-zero if an error occurred.

Errors

22.2.7.15. mysql_stmt_init()

MYSQL_STMT *mysql_stmt_init(MYSQL *mysql)

Description

Create a MYSQL_STMT handle. The handle should be freed with
mysql_stmt_close(MYSQL_STMT *).

Return values

A pointer to a MYSQL_STMT structure in case of success. NULL if out of memory.

Errors

• CR_OUT_OF_MEMORY

Out of memory.

22.2.7.16. mysql_stmt_insert_id()

my_ulonglong mysql_stmt_insert_id(MYSQL_STMT *stmt)

Description

Returns the value generated for an AUTO_INCREMENT column by the prepared INSERT or UPDATE
statement. Use this function after you have executed a prepared INSERT statement on a table which
contains an AUTO_INCREMENT field.

See Section 22.2.3.36, “mysql_insert_id()”, for more information.

Return Values

Value for AUTO_INCREMENT column which was automatically generated or explicitly set during exe-
cution of prepared statement, or value generated by LAST_INSERT_ID(expr) function. Return
value is undefined if statement does not set AUTO_INCREMENT value.

Errors

None.

22.2.7.17. mysql_stmt_num_rows()

my_ulonglong mysql_stmt_num_rows(MYSQL_STMT *stmt)

Description

Returns the number of rows in the result set.

The use of mysql_stmt_num_rows() depends on whether you used
mysql_stmt_store_result() to buffer the entire result set in the statement handle.

APIs and Libraries

1274

If you use mysql_stmt_store_result(), mysql_stmt_num_rows() may be called immedi-
ately.

Return Values

The number of rows in the result set.

Errors

None.

22.2.7.18. mysql_stmt_param_count()

unsigned long mysql_stmt_param_count(MYSQL_STMT *stmt)

Description

Returns the number of parameter markers present in the prepared statement.

Return Values

An unsigned long integer representing the number of parameters in a statement.

Errors

None.

Example

For the usage of mysql_stmt_param_count(), refer to the Example from Section 22.2.7.10,
“mysql_stmt_execute()”.

22.2.7.19. mysql_stmt_param_metadata()

MYSQL_RES *mysql_stmt_param_metadata(MYSQL_STMT *stmt)

This function currently does nothing.

Description

Return Values

Errors

22.2.7.20. mysql_stmt_prepare()

int mysql_stmt_prepare(MYSQL_STMT *stmt, const char *query, unsigned
long length)

Description

Given the statement handle returned by mysql_stmt_init(), prepares the SQL statement pointed
to by the string query and returns a status value. The string length should be given by the length ar-
gument. The string must consist of a single SQL statement. You should not add a terminating semicolon
(‘;’) or \g to the statement.

The application can include one or more parameter markers in the SQL statement by embedding ques-
tion mark (‘?’) characters into the SQL string at the appropriate positions.

APIs and Libraries

1275

The markers are legal only in certain places in SQL statements. For example, they are allowed in the
VALUES() list of an INSERT statement (to specify column values for a row), or in a comparison with a
column in a WHERE clause to specify a comparison value. However, they are not allowed for identifiers
(such as table or column names), or to specify both operands of a binary operator such as the = equal
sign. The latter restriction is necessary because it would be impossible to determine the parameter type.
In general, parameters are legal only in Data Manipulation Language (DML) statements, and not in Data
Definition Language (DDL) statements.

The parameter markers must be bound to application variables using mysql_stmt_bind_param()
before executing the statement.

Return Values

Zero if the statement was prepared successfully. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query

• CR_UNKNOWN_ERROR

An unknown error occurred.

If the prepare operation was unsuccessful (that is, mysql_stmt_prepare() returns non-zero), the
error message can be obtained by calling mysql_stmt_error().

Example

For the usage of mysql_stmt_prepare(), refer to the Example from Section 22.2.7.10,
“mysql_stmt_execute()”.

22.2.7.21. mysql_stmt_reset()

my_bool mysql_stmt_reset(MYSQL_STMT *stmt)

Description

Reset the prepared statement on the client and server to state after prepare. This is mainly used to reset
data sent with mysql_stmt_send_long_data(). Any open cursor for the statement is closed.

To re-prepare the statement with another query, use mysql_stmt_prepare().

Return Values

APIs and Libraries

1276

Zero if the statement was reset successfully. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.7.22. mysql_stmt_result_metadata()

MYSQL_RES *mysql_stmt_result_metadata(MYSQL_STMT *stmt)

Description

If a statement passed to mysql_stmt_prepare() is one that produces a result set,
mysql_stmt_result_metadata() returns the result set metadata in the form of a pointer to a
MYSQL_RES structure that can be used to process the meta information such as total number of fields
and individual field information. This result set pointer can be passed as an argument to any of the field-
based API functions that process result set metadata, such as:

• mysql_num_fields()

• mysql_fetch_field()

• mysql_fetch_field_direct()

• mysql_fetch_fields()

• mysql_field_count()

• mysql_field_seek()

• mysql_field_tell()

• mysql_free_result()

The result set structure should be freed when you are done with it, which you can do by passing it to
mysql_free_result(). This is similar to the way you free a result set obtained from a call to
mysql_store_result().

The result set returned by mysql_stmt_result_metadata() contains only metadata. It does not
contain any row results. The rows are obtained by using the statement handle with
mysql_stmt_fetch().

APIs and Libraries

1277

Return Values

A MYSQL_RES result structure. NULL if no meta information exists for the prepared query.

Errors

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

For the usage of mysql_stmt_result_metadata(), refer to the Example from Section 22.2.7.11,
“mysql_stmt_fetch()”.

22.2.7.23. mysql_stmt_row_seek()

MYSQL_ROW_OFFSET mysql_stmt_row_seek(MYSQL_STMT *stmt,
MYSQL_ROW_OFFSET offset)

Description

Sets the row cursor to an arbitrary row in a statement result set. The offset value is a row offset that
should be a value returned from mysql_stmt_row_tell() or from mysql_stmt_row_seek().
This value is not a row number; if you want to seek to a row within a result set by number, use
mysql_stmt_data_seek() instead.

This function requires that the result set structure contains the entire result of the query, so
mysql_stmt_row_seek() may be used only in conjunction with
mysql_stmt_store_result().

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to
mysql_stmt_row_seek().

Errors

None.

22.2.7.24. mysql_stmt_row_tell()

MYSQL_ROW_OFFSET mysql_stmt_row_tell(MYSQL_STMT *stmt)

Description

Returns the current position of the row cursor for the last mysql_stmt_fetch(). This value can be
used as an argument to mysql_stmt_row_seek().

You should use mysql_stmt_row_tell() only after mysql_stmt_store_result().

Return Values

APIs and Libraries

1278

The current offset of the row cursor.

Errors

None.

22.2.7.25. mysql_stmt_send_long_data()

my_bool mysql_stmt_send_long_data(MYSQL_STMT *stmt, unsigned int para-
meter_number, const char *data, unsigned long length)

Description

Allows an application to send parameter data to the server in pieces (or “chunks”). This function can be
called multiple times to send the parts of a character or binary data value for a column, which must be
one of the TEXT or BLOB data types.

parameter_number indicates which parameter to associate the data with. Parameters are numbered
beginning with 0. data is a pointer to a buffer containing data to be sent, and length indicates the
number of bytes in the buffer.

Note: The next mysql_stmt_execute() call ignores the bind buffer for all parameters that have
been used with mysql_stmt_send_long_data() since last mysql_stmt_execute() or
mysql_stmt_reset().

If you want to reset/forget the sent data, you can do it with mysql_stmt_reset(). See Sec-
tion 22.2.7.21, “mysql_stmt_reset()”.

Return Values

Zero if the data is sent successfully to server. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

The following example demonstrates how to send the data for a TEXT column in chunks. It inserts the
data value 'MySQL - The most popular Open Source database' into the
text_column column. The mysql variable is assumed to be a valid connection handle.

#define INSERT_QUERY "INSERT INTO test_long_data(text_column) VALUES(?)"

APIs and Libraries

1279

MYSQL_BIND bind[1];
long length;

smtt = mysql_stmt_init(mysql);
if (!stmt)
{

fprintf(stderr, " mysql_stmt_init(), out of memory\n");
exit(0);

}
if (mysql_stmt_prepare(stmt, INSERT_QUERY, strlen(INSERT_QUERY)))
{

fprintf(stderr, "\n mysql_stmt_prepare(), INSERT failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}
memset(bind, 0, sizeof(bind));
bind[0].buffer_type= MYSQL_TYPE_STRING;
bind[0].length= &length;
bind[0].is_null= 0;

/* Bind the buffers */
if (mysql_stmt_bind_param(stmt, bind))
{

fprintf(stderr, "\n param bind failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}

/* Supply data in chunks to server */
if (!mysql_stmt_send_long_data(stmt,0,"MySQL",5))

{
fprintf(stderr, "\n send_long_data failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}

/* Supply the next piece of data */
if (!mysql_stmt_send_long_data(stmt,0," - The most popular Open Source database",40))

{
fprintf(stderr, "\n send_long_data failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}

/* Now, execute the query */
if (mysql_stmt_execute(stmt))

{
fprintf(stderr, "\n mysql_stmt_execute failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}

22.2.7.26. mysql_stmt_sqlstate()

const char *mysql_stmt_sqlstate(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_sqlstate() returns a null-terminated string
containing the SQLSTATE error code for the most recently invoked prepared statement API function
that can succeed or fail. The error code consists of five characters. "00000" means “no error.” The val-
ues are specified by ANSI SQL and ODBC. For a list of possible values, see Appendix B, Error Codes
and Messages.

Note that not all MySQL errors are yet mapped to SQLSTATE codes. The value "HY000" (general er-
ror) is used for unmapped errors.

Return Values

A null-terminated character string containing the SQLSTATE error code.

APIs and Libraries

1280

22.2.7.27. mysql_stmt_store_result()

int mysql_stmt_store_result(MYSQL_STMT *stmt)

Description

You must call mysql_stmt_store_result() for every statement that successfully produces a
result set (SELECT, SHOW, DESCRIBE, EXPLAIN), and only if you want to buffer the complete result
set by the client, so that the subsequent mysql_stmt_fetch() call returns buffered data.

It is unnecessary to call mysql_stmt_store_result() for other statements, but if you do, it does
not harm or cause any notable performance problem. You can detect whether the statement produced a
result set by checking if mysql_stmt_result_metadata() returns NULL. For more information,
refer to Section 22.2.7.22, “mysql_stmt_result_metadata()”.

Note: MySQL doesn't by default calculate MYSQL_FIELD->max_length for all columns in
mysql_stmt_store_result() because calculating this would slow down
mysql_stmt_store_result() considerably and most applications doesn't need max_length. If
you want max_length to be updated, you can call mysql_stmt_attr_set(MYSQL_STMT,
STMT_ATTR_UPDATE_MAX_LENGTH, &flag) to enable this. See Section 22.2.7.3,
“mysql_stmt_attr_set()”.

Return Values

Zero if the results are buffered successfully. Non-zero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

22.2.8. C API Prepared statement problems
Here follows a list of the currently known problems with prepared statements:

• TIME, TIMESTAMP, and DATETIME do not support parts of seconds (for example from
DATE_FORMAT().

• When converting an integer to string, ZEROFILL is honored with prepared statements in some cases

APIs and Libraries

1281

where the MySQL server doesn't print the leading zeros. (For example, with
MIN(number-with-zerofill)).

• When converting a floating point number to a string in the client, the rightmost digits of the conver-
ted value may differ slightly from those of the original value.

• Prepared statements do not use the Query Cache, even in cases where a query does not contain any
placeholders. See Section 5.14.1, “How the Query Cache Operates”.

• Prepared statements do not support multi-statements (that is, multiple statements within a single
string separated by ‘;’ characters). This also means that prepared statements cannot invoke stored
procedures that return result sets, because prepared statements do not support multiple result sets.

22.2.9. C API Handling of Multiple Statement Execution
MySQL 5.0 supports the execution of multiple statements specified in a single query string. To use this
capability with a given connection, you must specify the CLIENT_MULTI_STATEMENTS option in the
flags parameter to mysql_real_connect() when opening the connection. You can also set this
for an existing connection by calling
mysql_set_server_option(MYSQL_OPTION_MULTI_STATEMENTS_ON).

By default, mysql_query() and mysql_real_query() return only the first query status and the
subsequent queries status can be processed using mysql_more_results() and
mysql_next_result().

If you enable multiple-statement support, you should process the results from mysql_query() and
mysql_real_query() within a loop that checks for more results. This is true even for statements
such as DROP TABLE that return a result but not a result set. Failure to process the result this way may
result in a dropped connection to the server.

/* Connect to server with option CLIENT_MULTI_STATEMENTS */
mysql_real_connect(..., CLIENT_MULTI_STATEMENTS);

/* Now execute multiple queries */
mysql_query(mysql,"DROP TABLE IF EXISTS test_table;\

CREATE TABLE test_table(id INT);\
INSERT INTO test_table VALUES(10);\
UPDATE test_table SET id=20 WHERE id=10;\
SELECT * FROM test_table;\
DROP TABLE test_table");

do
{

/* Process all results */
...
printf("total affected rows: %lld", mysql_affected_rows(mysql));
...
if (!(result= mysql_store_result(mysql)))
{

printf(stderr, "Got fatal error processing query\n");
exit(1);

}
process_result_set(result); /* client function */
mysql_free_result(result);

} while (!mysql_next_result(mysql));

The multiple-statement capability can be used with mysql_query() or mysql_real_query(). It
cannot be used with the prepared statement interface. Prepared statement handles are defined to work
only with strings that contain a single statement.

22.2.10. C API Handling of Date and Time Values
The binary protocol allows you to send and receive date and time values (DATE, TIME, DATETIME,

APIs and Libraries

1282

and TIMESTAMP), using the MYSQL_TIME structure. The members of this structure are described in
Section 22.2.5, “C API Prepared Statement Data types”.

To send temporal data values, create a prepared statement using mysql_stmt_prepare(). Then,
before calling mysql_stmt_execute() to execute the statement, use the following procedure to set
up each temporal parameter:

1. In the MYSQL_BIND structure associated with the data value, set the buffer_type member to
the type that indicates what kind of temporal value you're sending. For DATE, TIME, DATETIME,
or TIMESTAMP values, set buffer_type to MYSQL_TYPE_DATE, MYSQL_TYPE_TIME,
MYSQL_TYPE_DATETIME, or MYSQL_TYPE_TIMESTAMP, respectively.

2. Set the buffer member of the MYSQL_BIND structure to the address of the MYSQL_TIME struc-
ture in which you pass the temporal value.

3. Fill in the members of the MYSQL_TIME structure that are appropriate for the type of temporal
value to be passed.

Use mysql_stmt_bind_param() to bind the parameter data to the statement. Then you can call
mysql_stmt_execute().

To retrieve temporal values, the procedure is similar, except that you set the buffer_type member to
the type of value you expect to receive, and the buffer member to the address of a MYSQL_TIME
structure into which the returned value should be placed. Use mysql_bind_results() to bind the
buffers to the statement after calling mysql_stmt_execute() and before fetching the results.

Here is a simple example that inserts DATE, TIME, and TIMESTAMP data. The mysql variable is as-
sumed to be a valid connection handle.

MYSQL_TIME ts;
MYSQL_BIND bind[3];
MYSQL_STMT *stmt;

strmov(query, "INSERT INTO test_table(date_field, time_field,
timestamp_field) VALUES(?,?,?");

stmt = mysql_stmt_init(mysql);
if (!stmt)
{
fprintf(stderr, " mysql_stmt_init(), out of memory\n");
exit(0);

}
if (mysql_stmt_prepare(mysql, query, strlen(query)))
{
fprintf(stderr, "\n mysql_stmt_prepare(), INSERT failed");
fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
exit(0);

}

/* set up input buffers for all 3 parameters */
bind[0].buffer_type= MYSQL_TYPE_DATE;
bind[0].buffer= (char *)&ts;
bind[0].is_null= 0;
bind[0].length= 0;
...
bind[1]= bind[2]= bind[0];
...

mysql_stmt_bind_param(stmt, bind);

/* supply the data to be sent in the ts structure */
ts.year= 2002;
ts.month= 02;
ts.day= 03;

ts.hour= 10;
ts.minute= 45;
ts.second= 20;

APIs and Libraries

1283

mysql_stmt_execute(stmt);
..

22.2.11. C API Threaded Function Descriptions
You need to use the following functions when you want to create a threaded client. See Section 22.2.15,
“How to Make a Threaded Client”.

22.2.11.1. my_init()

void my_init(void)

Description

This function needs to be called once in the program before calling any MySQL function. This initial-
izes some global variables that MySQL needs. If you are using a thread-safe client library, this also calls
mysql_thread_init() for this thread.

This is automatically called by mysql_init(), mysql_library_init(),
mysql_server_init() and mysql_connect().

Return Values

None.

22.2.11.2. mysql_thread_init()

my_bool mysql_thread_init(void)

Description

This function needs to be called for each created thread to initialize thread-specific variables.

This is automatically called by my_init() and mysql_connect().

Return Values

Zero if successful. Non-zero if an error occurred.

22.2.11.3. mysql_thread_end()

void mysql_thread_end(void)

Description

This function needs to be called before calling pthread_exit() to free memory allocated by
mysql_thread_init().

Note that this function is not invoked automatically by the client library. It must be called explicitly to
avoid a memory leak.

Return Values

None.

22.2.11.4. mysql_thread_safe()

APIs and Libraries

1284

unsigned int mysql_thread_safe(void)

Description

This function indicates whether the client is compiled as thread-safe.

Return Values

1 if the client is thread-safe, 0 otherwise.

22.2.12. C API Embedded Server Function Descriptions
If you want to allow your application to be linked against the embedded MySQL server library, you
must use the mysql_server_init() and mysql_server_end() functions. See Section 22.1,
“libmysqld, the Embedded MySQL Server Library”.

However, to provide improved memory management, even programs that are linked with -
lmysqlclient rather than -lmysqld should include calls to begin and end use of the library. As of
MySQL 5.0.3, the mysql_library_init() and mysql_library_end() functions can be used
to do this. These actually are #define symbols that make them equivalent to
mysql_server_init() and mysql_server_end(), but the names more clearly indicate that
they should be called when beginning and ending use of a MySQL C API library no matter whether the
application uses libmysqlclient or libmysqld. For more information, see Section 22.2.2, “C
API Function Overview”.

22.2.12.1. mysql_server_init()

int mysql_server_init(int argc, char **argv, char **groups)

Description

This function must be called once in the program using the embedded server before calling any other
MySQL function. It starts the server and initializes any subsystems (mysys, InnoDB, and so forth) that
the server uses. If this function is not called, the next call to mysql_init() executes
mysql_server_init().

In a non-multi-threaded environment, the call to mysql_server_init() may be omitted, because
mysql_init() will invoke it automatically as necessary. However, a race condition is possible if
mysql_server_init() is invoked by mysql_init() in a multi-threaded environment:
mysql_server_init() is not thread-safe, so it should be called prior to any other client library
call.

If you are using the DBUG package that comes with MySQL, you should call
mysql_server_init() after you have called my_init().

The argc and argv arguments are analogous to the arguments to main(). The first element of argv
is ignored (it typically contains the program name). For convenience, argc may be 0 (zero) if there are
no command-line arguments for the server. mysql_server_init() makes a copy of the arguments
so it's safe to destroy argv or groups after the call.

If you want to connect to an external server without starting the embedded server, you have to specify a
negative value for argc.

The NULL-terminated list of strings in groups selects which groups in the option files are active. See
Section 4.3.2, “Using Option Files”. For convenience, groups may be NULL, in which case the
[server] and [embedded] groups are active.

Example

APIs and Libraries

1285

#include <mysql.h>
#include <stdlib.h>

static char *server_args[] = {
"this_program", /* this string is not used */
"--datadir=.",
"--key_buffer_size=32M"

};
static char *server_groups[] = {

"embedded",
"server",
"this_program_SERVER",
(char *)NULL

};

int main(void) {
if (mysql_server_init(sizeof(server_args) / sizeof(char *),

server_args, server_groups))
exit(1);

/* Use any MySQL API functions here */

mysql_server_end();

return EXIT_SUCCESS;
}

Return Values

0 if okay, 1 if an error occurred.

22.2.12.2. mysql_server_end()

void mysql_server_end(void)

Description

This function must be called once in the program after all other MySQL functions. It shuts down the
embedded server.

Return Values

None.

22.2.13. Common Questions and Problems When Using the C
API

22.2.13.1. Why mysql_store_result() Sometimes Returns NULL
After mysql_query() Returns Success

It is possible for mysql_store_result() to return NULL following a successful call to
mysql_query(). When this happens, it means one of the following conditions occurred:

• There was a malloc() failure (for example, if the result set was too large).

• The data couldn't be read (an error occurred on the connection).

• The query returned no data (for example, it was an INSERT, UPDATE, or DELETE).

You can always check whether the statement should have produced a non-empty result by calling
mysql_field_count(). If mysql_field_count() returns zero, the result is empty and the last

APIs and Libraries

1286

query was a statement that does not return values (for example, an INSERT or a DELETE). If
mysql_field_count() returns a non-zero value, the statement should have produced a non-empty
result. See the description of the mysql_field_count() function for an example.

You can test for an error by calling mysql_error() or mysql_errno().

22.2.13.2. What Results You Can Get from a Query

In addition to the result set returned by a query, you can also get the following information:

• mysql_affected_rows() returns the number of rows affected by the last query when doing an
INSERT, UPDATE, or DELETE.

For a fast re-create, use TRUNCATE TABLE.

• mysql_num_rows() returns the number of rows in a result set. With
mysql_store_result(), mysql_num_rows() may be called as soon as
mysql_store_result() returns. With mysql_use_result(), mysql_num_rows()
may be called only after you have fetched all the rows with mysql_fetch_row().

• mysql_insert_id() returns the ID generated by the last query that inserted a row into a table
with an AUTO_INCREMENT index. See Section 22.2.3.36, “mysql_insert_id()”.

• Some queries (LOAD DATA INFILE ..., INSERT INTO ... SELECT ..., UPDATE) re-
turn additional information. The result is returned by mysql_info(). See the description for
mysql_info() for the format of the string that it returns. mysql_info() returns a NULL point-
er if there is no additional information.

22.2.13.3. How to Get the Unique ID for the Last Inserted Row

If you insert a record into a table that contains an AUTO_INCREMENT column, you can obtain the value
stored into that column by calling the mysql_insert_id() function.

You can check from your C applications whether a value was stored in an AUTO_INCREMENT column
by executing the following code (which assumes that you've checked that the statement succeeded). It
determines whether the query was an INSERT with an AUTO_INCREMENT index:

if ((result = mysql_store_result(&mysql)) == 0 &&
mysql_field_count(&mysql) == 0 &&
mysql_insert_id(&mysql) != 0)

{
used_id = mysql_insert_id(&mysql);

}

For more information, see Section 22.2.3.36, “mysql_insert_id()”.

When a new AUTO_INCREMENT value has been generated, you can also obtain it by executing a SE-
LECT LAST_INSERT_ID() statement with mysql_query() and retrieving the value from the res-
ult set returned by the statement.

For LAST_INSERT_ID(), the most recently generated ID is maintained in the server on a per-
connection basis. It is not changed by another client. It is not even changed if you update another
AUTO_INCREMENT column with a non-magic value (that is, a value that is not NULL and not 0).

If you want to use the ID that was generated for one table and insert it into a second table, you can use
SQL statements like this:

INSERT INTO foo (auto,text)
VALUES(NULL,'text'); # generate ID by inserting NULL

APIs and Libraries

1287

INSERT INTO foo2 (id,text)
VALUES(LAST_INSERT_ID(),'text'); # use ID in second table

Note that mysql_insert_id() returns the value stored into an AUTO_INCREMENT column, wheth-
er that value is automatically generated by storing NULL or 0 or was specified as an explicit value.
LAST_INSERT_ID() returns only automatically generated AUTO_INCREMENT values. If you store
an explicit value other than NULL or 0, it does not affect the value returned by LAST_INSERT_ID().

22.2.13.4. Problems Linking with the C API

When linking with the C API, the following errors may occur on some systems:

gcc -g -o client test.o -L/usr/local/lib/mysql -lmysqlclient -lsocket -lnsl

Undefined first referenced
symbol in file

floor /usr/local/lib/mysql/libmysqlclient.a(password.o)
ld: fatal: Symbol referencing errors. No output written to client

If this happens on your system, you must include the math library by adding -lm to the end of the com-
pile/link line.

22.2.14. Building Client Programs
If you compile MySQL clients that you've written yourself or that you obtain from a third-party, they
must be linked using the -lmysqlclient -lz options in the link command. You may also need to
specify a -L option to tell the linker where to find the library. For example, if the library is installed in /
usr/local/mysql/lib, use -L/usr/local/mysql/lib -lmysqlclient -lz in the link
command.

For clients that use MySQL header files, you may need to specify an -I option when you compile them
(for example, -I/usr/local/mysql/include), so that the compiler can find the header files.

To make it simpler to compile MySQL programs on Unix, we have provided the mysql_config
script for you. See Section 22.9.2, “mysql_config — Get Compile Options for Compiling Clients”.

You can use it to compile a MySQL client as follows:

CFG=/usr/local/mysql/bin/mysql_config
sh -c "gcc -o progname `$CFG --cflags` progname.c `$CFG --libs`"

The sh -c is needed to get the shell not to treat the output from mysql_config as one word.

22.2.15. How to Make a Threaded Client
The client library is almost thread-safe. The biggest problem is that the subroutines in net.c that read
from sockets are not interrupt safe. This was done with the thought that you might want to have your
own alarm that can break a long read to a server. If you install interrupt handlers for the SIGPIPE inter-
rupt, the socket handling should be thread-safe.

To avoid aborting the program when a connection terminates, MySQL blocks SIGPIPE on the first call
to mysql_server_init(), mysql_init(), or mysql_connect(). If you want to use your own
SIGPIPE handler, you should first call mysql_server_init() and then install your handler.

In the older binaries we distribute on our Web site (http://www.mysql.com/), the client libraries are not
normally compiled with the thread-safe option (the Windows binaries are by default compiled to be
thread-safe). Newer binary distributions should have both a normal and a thread-safe client library.

APIs and Libraries

1288

http://www.mysql.com/

To get a threaded client where you can interrupt the client from other threads and set timeouts when
talking with the MySQL server, you should use the -lmysys, -lmystrings, and -ldbug libraries
and the net_serv.o code that the server uses.

If you don't need interrupts or timeouts, you can just compile a thread-safe client library
(mysqlclient_r) and use this. See Section 22.2, “MySQL C API”. In this case, you don't have to
worry about the net_serv.o object file or the other MySQL libraries.

When using a threaded client and you want to use timeouts and interrupts, you can make great use of the
routines in the thr_alarm.c file. If you are using routines from the mysys library, the only thing
you must remember is to call my_init() first! See Section 22.2.11, “C API Threaded Function De-
scriptions”.

All functions except mysql_real_connect() are by default thread-safe. The following notes de-
scribe how to compile a thread-safe client library and use it in a thread-safe manner. (The notes below
for mysql_real_connect() actually apply to mysql_connect() as well, but because
mysql_connect() is deprecated, you should be using mysql_real_connect() anyway.)

To make mysql_real_connect() thread-safe, you must recompile the client library with this com-
mand:

shell> ./configure --enable-thread-safe-client

This creates a thread-safe client library libmysqlclient_r. (Assuming that your OS has a thread-
safe gethostbyname_r() function.) This library is thread-safe per connection. You can let two
threads share the same connection with the following caveats:

• Two threads can't send a query to the MySQL server at the same time on the same connection. In
particular, you have to ensure that between a mysql_query() and mysql_store_result()
no other thread is using the same connection.

• Many threads can access different result sets that are retrieved with mysql_store_result().

• If you use mysql_use_result, you have to ensure that no other thread is using the same connec-
tion until the result set is closed. However, it really is best for threaded clients that share the same
connection to use mysql_store_result().

• If you want to use multiple threads on the same connection, you must have a mutex lock around your
mysql_query() and mysql_store_result() call combination. Once
mysql_store_result() is ready, the lock can be released and other threads may query the
same connection.

• If you program with POSIX threads, you can use pthread_mutex_lock() and
pthread_mutex_unlock() to establish and release a mutex lock.

You need to know the following if you have a thread that is calling MySQL functions which did not cre-
ate the connection to the MySQL database:

When you call mysql_init() or mysql_connect(), MySQL creates a thread-specific variable
for the thread that is used by the debug library (among other things).

If you call a MySQL function, before the thread has called mysql_init() or mysql_connect(),
the thread does not have the necessary thread-specific variables in place and you are likely to end up
with a core dump sooner or later.

To get things to work smoothly you have to do the following:

APIs and Libraries

1289

1. Call my_init() at the start of your program if it calls any other MySQL function before calling
mysql_real_connect().

2. Call mysql_thread_init() in the thread handler before calling any MySQL function.

3. In the thread, call mysql_thread_end() before calling pthread_exit(). This frees the
memory used by MySQL thread-specific variables.

You may get some errors because of undefined symbols when linking your client with libmysqlcli-
ent_r. In most cases this is because you haven't included the thread libraries on the link/compile line.

22.3. MySQL PHP API
PHP is a server-side, HTML-embedded scripting language that may be used to create dynamic Web
pages. It is available for most operating systems and Web servers, and can access most common data-
bases, including MySQL. PHP may be run as a separate program or compiled as a module for use with
the Apache Web server.

PHP actually provides two different MySQL API extensions:

• mysql: Available for PHP versions 4 and 5, this extension is intended for use with MySQL versions
prior to MySQL 4.1. This extension does not support the improved authentication protocol used in
MySQL 5.0, nor does it support prepared statements or multiple statements. If you wish to use this
extension with MySQL 5.0, you will likely want to configure the MySQL server to use the -
-old-passwords option (see Section A.2.3, “Client does not support authentic-
ation protocol”). This extension is documented on the PHP Web site at http://php.net/mysql.

• mysqli - Stands for “MySQL, Improved”; this extension is available only in PHP 5. It is intended
for use with MySQL 4.1.1 and later. This extension fully supports the authentication protocol used in
MySQL 5.0, as well as the Prepared Statements and Multiple Statements APIs. In addition, this ex-
tension provides an advanced, object-oriented programming interface. You can read the documenta-
tion for the mysqli extension at http://php.net/mysqli. A helpful article can be found at ht-
tp://www.zend.com/php5/articles/php5-mysqli.php.

If you're experiencing problems with enabling both the mysql and the mysqli extension when build-
ing PHP on Linux yourself, see Section 22.3.2, “Enabling Both mysql and mysqli in PHP”.

The PHP distribution and documentation are available from the PHP Web site [http://www.php.net/].
MySQL provides the mysql and mysqli extensions for the Windows operating system for MySQL
versions as of 5.0.18 on http://dev.mysql.com/downloads/connector/php/. You can find information why
you should preferably use the extensions provided by MySQL on that page.

22.3.1. Common Problems with MySQL and PHP

• Error: Maximum Execution Time Exceeded: This is a PHP limit; go into the php.ini
file and set the maximum execution time up from 30 seconds to something higher, as needed. It is
also not a bad idea to double the RAM allowed per script to 16MB instead of 8MB.

• Fatal error: Call to unsupported or undefined function
mysql_connect() in ...: This means that your PHP version isn't compiled with MySQL
support. You can either compile a dynamic MySQL module and load it into PHP or recompile PHP
with built-in MySQL support. This process is described in detail in the PHP manual.

• Error: Undefined reference to 'uncompress': This means that the client library is

APIs and Libraries

1290

http://php.net/mysql
http://php.net/mysqli
http://www.zend.com/php5/articles/php5-mysqli.php
http://www.zend.com/php5/articles/php5-mysqli.php
http://www.php.net/
http://dev.mysql.com/downloads/connector/php/

compiled with support for a compressed client/server protocol. The fix is to add -lz last when link-
ing with -lmysqlclient.

• Error: Client does not support authentication protocol: This is most often
encountered when trying to use the older mysql extension with MySQL 4.1.1 and later. Possible
solutions are: downgrade to MySQL 4.0; switch to PHP 5 and the newer mysqli extension; or con-
figure the MySQL server with --old-passwords. (See Section A.2.3, “Client does not
support authentication protocol”, for more information.)

Those with PHP4 legacy code can make use of a compatibility layer for the old and new MySQL librar-
ies, such as this one: http://www.coggeshall.org/oss/mysql2i.

22.3.2. Enabling Both mysql and mysqli in PHP
If you're experiencing problems with enabling both the mysql and the mysqli extension when build-
ing PHP on Linux yourself, you should try the following procedure.

1. Configure PHP like this:

./configure --with-mysqli=/usr/bin/mysql_config --with-mysql=/usr

2. Edit the Makefile and search for a line that starts with EXTRA_LIBS. It might look like this (all
on one line):

EXTRA_LIBS = -lcrypt -lcrypt -lmysqlclient -lz -lresolv -lm -ldl -lnsl
-lxml2 -lz -lm -lxml2 -lz -lm -lmysqlclient -lz -lcrypt -lnsl -lm
-lxml2 -lz -lm -lcrypt -lxml2 -lz -lm -lcrypt

Remove all duplicates, so that the line looks like this (all on one line):

EXTRA_LIBS = -lcrypt -lcrypt -lmysqlclient -lz -lresolv -lm -ldl -lnsl
-lxml2

3. Build and install PHP:

make
make install

22.4. MySQL Perl API
The Perl DBI module provides a generic interface for database access. You can write a DBI script that
works with many different database engines without change. To use DBI, you must install the DBI mod-
ule, as well as a DataBase Driver (DBD) module for each type of server you want to access. For
MySQL, this driver is the DBD::mysql module.

Perl DBI is the recommended Perl interface. It replaces an older interface called mysqlperl, which
should be considered obsolete.

Installation instructions for Perl DBI support are given in Section 2.14, “Perl Installation Notes”.

DBI information is available at the command line, online, or in printed form:

• Once you have the DBI and DBD::mysql modules installed, you can get information about them
at the command line with the perldoc command:

APIs and Libraries

1291

http://www.coggeshall.org/oss/mysql2i

shell> perldoc DBI
shell> perldoc DBI::FAQ
shell> perldoc DBD::mysql

You can also use pod2man, pod2html, and so forth to translate this information into other
formats.

• For online information about Perl DBI, visit the DBI Web site, http://dbi.perl.org/. That site hosts a
general DBI mailing list. MySQL AB hosts a list specifically about DBD::mysql; see Sec-
tion 1.7.1, “MySQL Mailing Lists”.

• For printed information, the official DBI book is Programming the Perl DBI (Alligator Descartes
and Tim Bunce, O'Reilly & Associates, 2000). Information about the book is available at the DBI
Web site, http://dbi.perl.org/.

For information that focuses specifically on using DBI with MySQL, see MySQL and Perl for the
Web (Paul DuBois, New Riders, 2001). This book's Web site is
http://www.kitebird.com/mysql-perl/.

22.5. MySQL C++ API
MySQL++ is a MySQL API for C++. Warren Young has taken over this project. More information can
be found at http://www.mysql.com/products/mysql++/.

22.5.1. Borland C++
You can compile the MySQL Windows source with Borland C++ 5.02. (The Windows source includes
only projects for Microsoft VC++, for Borland C++ you have to do the project files yourself.)

One known problem with Borland C++ is that it uses a different structure alignment than VC++. This
means that you run into problems if you try to use the default libmysql.dll libraries (that were
compiled using VC++) with Borland C++. To avoid this problem, only call mysql_init() with
NULL as an argument, not a pre-allocated MYSQL structure.

22.6. MySQL Python API
MySQLdb provides MySQL support for Python, compliant with the Python DB API version 2.0. It can
be found at http://sourceforge.net/projects/mysql-python/.

22.7. MySQL Tcl API
MySQLtcl is a simple API for accessing a MySQL database server from the Tcl programming lan-
guage. It can be found at http://www.xdobry.de/mysqltcl/.

22.8. MySQL Eiffel Wrapper
Eiffel MySQL is an interface to the MySQL database server using the Eiffel programming language,
written by Michael Ravits. It can be found at http://efsa.sourceforge.net/archive/ravits/mysql.htm.

22.9. MySQL Program Development Utilities
This section describes some utilities that you may find useful when developing MySQL programs.

APIs and Libraries

1292

http://dbi.perl.org/
http://dbi.perl.org/
http://www.kitebird.com/mysql-perl/
http://www.mysql.com/products/mysql++/
http://sourceforge.net/projects/mysql-python/
http://www.xdobry.de/mysqltcl/
http://efsa.sourceforge.net/archive/ravits/mysql.htm

• msql2mysql

A shell script that converts mSQL programs to MySQL. It doesn't handle every case, but it gives a
good start when converting.

• mysql_config

A shell script that produces the option values needed when compiling MySQL programs.

22.9.1. msql2mysql — Convert mSQL Programs for Use with
MySQL

Initially, the MySQL C API was developed to be very similar to that for the mSQL database system. Be-
cause of this, mSQL programs often can be converted relatively easily for use with MySQL by changing
the names of the C API functions.

The msql2mysql utility performs the conversion of mSQL C API function calls to their MySQL equi-
valents. msql2mysql converts the input file in place, so make a copy of the original before converting
it. For example, use msql2mysql like this:

shell> cp client-prog.c client-prog.c.orig
shell> msql2mysql client-prog.c
client-prog.c converted

Then examine client-prog.c and make any post-conversion revisions that may be necessary.

msql2mysql uses the replace utility to make the function name substitutions. See Section 8.18,
“replace — A String-Replacement Utility”.

22.9.2. mysql_config — Get Compile Options for Compiling
Clients

mysql_config provides you with useful information for compiling your MySQL client and connect-
ing it to MySQL.

mysql_config supports the following options:

• --cflags

Compiler flags to find include files and critical compiler flags and defines used when compiling the
libmysqlclient library.

• --include

Compiler options to find MySQL include files. (Note that normally you would use --cflags in-
stead of this option.)

• --libmysqld-libs, --embedded

Libraries and options required to link with the MySQL embedded server.

• --libs

Libraries and options required to link with the MySQL client library.

APIs and Libraries

1293

• --libs_r

Libraries and options required to link with the thread-safe MySQL client library.

• --port

The default TCP/IP port number, defined when configuring MySQL.

• --socket

The default Unix socket file, defined when configuring MySQL.

• --version

Version number for the MySQL distribution.

If you invoke mysql_config with no options, it displays a list of all options that it supports, and their
values:

shell> mysql_config
Usage: /usr/local/mysql/bin/mysql_config [options]
Options:

--cflags [-I/usr/local/mysql/include/mysql -mcpu=pentiumpro]
--include [-I/usr/local/mysql/include/mysql]
--libs [-L/usr/local/mysql/lib/mysql -lmysqlclient -lz

-lcrypt -lnsl -lm -L/usr/lib -lssl -lcrypto]
--libs_r [-L/usr/local/mysql/lib/mysql -lmysqlclient_r

-lpthread -lz -lcrypt -lnsl -lm -lpthread]
--socket [/tmp/mysql.sock]
--port [3306]
--version [4.0.16]
--libmysqld-libs [-L/usr/local/mysql/lib/mysql -lmysqld -lpthread -lz

-lcrypt -lnsl -lm -lpthread -lrt]

You can use mysql_config within a command line to include the value that it displays for a particu-
lar option. For example, to compile a MySQL client program, use mysql_config as follows:

shell> CFG=/usr/local/mysql/bin/mysql_config
shell> sh -c "gcc -o progname `$CFG --cflags` progname.c `$CFG --libs`"

When you use mysql_config this way, be sure to invoke it within backtick (‘`’) characters. That
tells the shell to execute it and substitute its output into the surrounding command.

APIs and Libraries

1294

Chapter 23. Connectors
This chapter describes MySQL Connectors, drivers that provide connectivity to the MySQL server for
client programs. There are currently five MySQL Connectors:

• Connector/ODBC provides driver support for connecting to a MySQL server using the Open Data-
base Connectivity (ODBC) API. Support is available for ODBC connectivity from Windows, Unix
and Mac OS X platforms.

• Connector/NET enables developers to create .NET applications that use data stored in a MySQL
database. Connector/NET implement a fully-functional ADO.NET interface and provides support for
use with ADO.NET aware tools. Applications that want to use Connector/NET can be written in any
of the supported .NET languages.

• Connector/J provides driver support for connecting to MySQL from a Java application using the
standard Java Database Connectivity (JDBC) API.

• Connector/MXJ is a tool that enables easy deployment and management of MySQL server and data-
base through your Java application.

• Connector/PHP is a Windows-only connector for PHP that provides the mysql and mysqli exten-
sions for use with MySQL 5.0.18 and later.

For information on connecting to a MySQL server using other languages and interfaces than those de-
tailed above, including Perl, Python and PHP for other platforms and environments, please refer to the
Chapter 22, APIs and Libraries chapter.

23.1. MySQL Connector/ODBC
The MySQL Connector/ODBC is the name for the family of MySQL ODBC drivers (also called MyO-
DBC drivers) that provide access to a MySQL database using the industry standard Open Database Con-
nectivity (ODBC) API. This reference covers Connector/ODBC 3.51, a version of the API that provides
ODBC 3.5x compliant access to a MySQL database.

The manual for versions of MyODBC older than 3.51 can be located in the corresponding binary or
source distribution.

For more information on the ODBC API standard and how to use it, refer to ht-
tp://www.microsoft.com/data/.

The application development part of this reference assumes a good working knowledge of C, general
DBMS knowledge, and finally, but not least, familiarity with MySQL. For more information about
MySQL functionality and its syntax, refer to http://dev.mysql.com/doc/.

Typically, you need to install MyODBC only on Windows machines. For Unix and Mac OS X you can
use the native MySQL network or named pipe to communicate with your MySQL database. You may
need MyODBC for Unix or Mac OS X if you have an application that requires an ODBC interface to
communicate with database.. Applications that require ODBC to communicate with MySQL include
ColdFusion, Microsoft Office, and Filemaker Pro.

If you want to install the MyODBC connector on a Unix host, then you must also install an ODBC man-
ager.

If you have questions that are not answered in this document, please send a mail message to
<myodbc@lists.mysql.com>.

1295

http://www.microsoft.com/data/
http://www.microsoft.com/data/
http://dev.mysql.com/doc/

23.1.1. Introduction to MyODBC
ODBC (Open Database Connectivity) provides a way for client programs to access a wide range of data-
bases or data sources. ODBC is a standardized API that allows connections to SQL database servers. It
was developed according to the specifications of the SQL Access Group and defines a set of function
calls, error codes, and data types that can be used to develop database-independent applications. ODBC
usually is used when database independence or simultaneous access to different data sources is required.

For more information about ODBC, refer to http://www.microsoft.com/data/.

23.1.1.1. MyODBC Versions

There are currently two version of MyODBC available:

• MyODBC 5.0, currently in beta status, has been designed to extend the functionality of the MyOD-
BC 3.51 driver and incorporate full support for the functionality in the MySQL 5.0 server release, in-
cluding stored procedures and views. Applications using MyODBC 3.51 will be compatible with
MyODBC 5.0, while being able to take advantage of the new features. Features and functionality of
the MyODBC 5.0 driver are not currently included in this guide.

• MyODBC 3.51 is the current release of the 32-bit ODBC driver, also known as the MySQL ODBC
3.51 driver. This version is enhanced compared to the older MyODBC 2.50 driver. It has support for
ODBC 3.5x specification level 1 (complete core API + level 2 features) in order to continue to
provide all functionality of ODBC for accessing MySQL.

• MyODBC 2.50 is the previous version of the 32-bit ODBC driver from MySQL AB that is based on
ODBC 2.50 specification level 0 (with level 1 and 2 features). Information about the MyODBC 2.50
driver is included in this guide for the purposes of comparison only.

Note: From this section onward, the primary focus of this guide is the MyODBC 3.51 driver. More in-
formation about the MyODBC 2.50 driver in the documentation included in the installation packages for
that version. If there is a specific issue (error or known problem) that only affects the 2.50 version, it
may be included here for reference.

23.1.1.2. General Information About ODBC and MyODBC

Open Database Connectivity (ODBC) is a widely accepted application-programming interface (API) for
database access. It is based on the Call-Level Interface (CLI) specifications from X/Open and ISO/IEC
for database APIs and uses Structured Query Language (SQL) as its database access language.

A survey of ODBC functions supported by MyODBC is given at Section 23.1.5.1, “MyODBC API Ref-
erence”. For general information about ODBC, see http://www.microsoft.com/data/.

23.1.1.2.1. MyODBC Architecture

The MyODBC architecture is based on five components, as shown in the following diagram:

Connectors

1296

http://www.microsoft.com/data/
http://www.microsoft.com/data/

• Application:

The Application uses the ODBC API to access the data from the MySQL server. The ODBC API in
turn uses the communicates with the Driver Manager. The Application communicates with the
Driver Manager using the standard ODBC calls. The Application does not care where the data is
stored, how it is stored, or even how the system is configured to access the data. It needs to know
only the Data Source Name (DSN).

A number of tasks are common to all applications, no matter how they use ODBC. These tasks are:

• Selecting the MySQL server and connecting to it

• Submitting SQL statements for execution

• Retrieving results (if any)

• Processing errors

Connectors

1297

• Committing or rolling back the transaction enclosing the SQL statement

• Disconnecting from the MySQL server

Because most data access work is done with SQL, the primary tasks for applications that use ODBC
are submitting SQL statements and retrieving any results generated by those statements.

• Driver manager:

The Driver Manager is a library that manages communication between application and driver or
drivers. It performs the following tasks:

• Resolves Data Source Names (DSN). The DSN is a configuration string that identifies a given
database driver, database, database host and optionally authentication information that enables an
ODBC application to connect to a database using a standardized reference.

Because the database connectivity information is identified by the DSN, any ODBC compliant
application can connect to the data source using the same DSN reference. This eliminates the
need to separately configure each application that needs access to a given database; instead you
instruct the application to use a pre-configured DSN.

• Loading and unloading of the driver required to access a specific database as defined within the
DSN. For example, if you have configured a DSN that connects to a MySQL database then the
driver manager will load the MyODBC driver to enable the ODBC API to communicate with the
MySQL host.

• Processes ODBC function calls or passes them to the driver for processing.

• MyODBC Driver:

The MyODBC driver is a library that implements the functions supported by the ODBC API. It pro-
cesses ODBC function calls, submits SQL requests to MySQL server, and returns results back to the
application. If necessary, the driver modifies an application's request so that the request conforms to
syntax supported by MySQL.

• DSN Configuration:

The ODBC configuration file stores the driver and database information required to connect to the
server. It is used by the Driver Manager to determine which driver to be loaded according to the
definition in the DSN. The driver uses this to read connection parameters based on the DSN spe-
cified. For more information, Section 23.1.3, “MyODBC Configuration”.

• MySQL Server:

The MySQL database where the information is stored. The database is used as the source of the data
(during queries) and the destination for data (during inserts and updates).

23.1.1.2.2. ODBC Driver Managers

An ODBC Driver Manager is a library that manages communication between the ODBC-aware applica-
tion and any drivers. Its main functionality includes:

• Resolving Data Source Names (DSN).

• Driver loading and unloading.

Connectors

1298

• Processing ODBC function calls or passing them to the driver.

Both Windows and Mac OS X include ODBC driver managers with the operating system. Most ODBC
Driver Manager implementations also include an administration application that makes the configuration
of DSN and drivers easier. Examples and information on these managers, including Unix ODBC driver
managers are listed below:

• Microsoft Windows ODBC Driver Manager (odbc32.dll), http://www.microsoft.com/data/.

• Mac OS X includes ODBC Administrator, a GUI application that provides a simpler configura-
tion mechanism for the Unix iODBC Driver Manager. You can configure DSN and driver informa-
tion either through ODBC Administrator or through the iODBC configuration files. This also means
that you can test ODBC Administrator configurations using the iodbctest command. ht-
tp://www.apple.com.

• unixODBC Driver Manager for Unix (libodbc.so). See http://www.unixodbc.org, for more in-
formation. The unixODBC Driver Manager includes the MyODBC driver 3.51 in the installation
package, starting with version unixODBC 2.1.2.

• iODBC ODBC Driver Manager for Unix (libiodbc.so), see http://www.iodbc.org, for more in-
formation.

23.1.2. How to Install MyODBC
You can install the MyODBC drivers using two different methods, a binary installation and a source in-
stallation. The binary installation is the easiest and most straightforward method of installation. Using
the source installation methods should only be necessary on platforms where a binary installation pack-
age is not available, or in situations where you want to customize or modify the installation process or
MyODBC drivers before installation.

23.1.2.1. Where to Get MyODBC

MySQL AB distributes all its products under the General Public License (GPL). You can get a copy of
the latest version of MyODBC binaries and sources from the MySQL AB Web site ht-
tp://dev.mysql.com/downloads/.

For more information about MyODBC, visit http://www.mysql.com/products/myodbc/.

For more information about licensing, visit http://www.mysql.com/company/legal/licensing/.

23.1.2.2. Supported Platforms

MyODBC can be used on all major platforms supported by MySQL. You can install it on:

• Windows 95, 98, Me, NT, 2000, XP, and 2003

• All Unix-like Operating Systems, including: AIX, Amiga, BSDI, DEC, FreeBSD, HP-UX 10/11,
Linux, NetBSD, OpenBSD, OS/2, SGI Irix, Solaris, SunOS, SCO OpenServer, SCO UnixWare,
Tru64 Unix

• Mac OS X and Mac OS X Server

If a binary distribution is not available for a particular platform, see Section 23.1.2.4, “Installing MyOD-

Connectors

1299

http://www.microsoft.com/data/
http://www.apple.com
http://www.apple.com
http://www.unixodbc.org
http://www.iodbc.org
http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/
http://www.mysql.com/products/myodbc/
http://www.mysql.com/company/legal/licensing/

BC from a source distribution”, to build the driver from the original source code. You can contribute the
binaries you create to MySQL by sending a mail message to <myodbc@lists.mysql.com>, so that
it becomes available for other users.

23.1.2.3. Installing MyODBC from a binary distribution

Using a binary distribution offers the most straightforward method for installing MyODBC. If you want
more control over the driver, the installation location and or to customize elements of the driver you will
need to build and install from the source. See the Section 23.1.2.4, “Installing MyODBC from a source
distribution”.

23.1.2.3.1. Installing MyODBC from a Binary Distribution on Windows

Before installing the MyODBC drivers on Windows you should ensure that your Microsoft Data Access
Components (MDAC) are up to date. You can obtain the latest version from the Microsoft Data Access
and Storage [http://www.microsoft.com/data/] website.

There are three available distribution types to use when installing for Windows. The contents in each
case are identical, it is only the installation method which is different.

• Zipped installer consists of a Zipped package containing a standalone installation application. To in-
stall from this package, you must unzip the installer, and then run the installation application. See
Section 23.1.2.3.1.1, “Installing the Windows MyODBC Driver using an installer” to complete the
installation.

• MSI installer, an installation file that can be used with the installer included in Windows 2000, Win-
dows XP and Windows Server 2003. See Section 23.1.2.3.1.1, “Installing the Windows MyODBC
Driver using an installer” to complete the installation.

• Zipped DLL package, containing the DLL files that need must be manually installed. See Sec-
tion 23.1.2.3.1.2, “Installing the Windows MyODBC Driver using the Zipped DLL package” to
complete the installation.

23.1.2.3.1.1. Installing the Windows MyODBC Driver using an installer

The installer packages offer a very simple method for installing the MyODBC drivers. If you have
downloaded the zipped installer then you must extract the installer application. The basic installation
process is identical for both installers.

You should follow these steps to complete the installation:

1. Double click on the standalone installer that you extracted, or the MSI file you downloaded.

2. The MySQL Connector/ODBC 3.51 - Setup Wizard will start. Click the Next button to begin the
installation process.

Connectors

1300

http://www.microsoft.com/data/
http://www.microsoft.com/data/

3. You will need to choose the installation type. The Typical installation provides the standard files
you will need to connect to a MySQL database using ODBC. The Complete option installs all the
available files, including debug and utility components. It is recommended you choose one of these
two options to complete the installation. If choose one of these methods, click Next and then pro-
ceed to step 5.

You may also choose a Custom installation, which enables you to select the individual components
that you want to install. You have chosen this method, click Next and then proceed to step 4.

Connectors

1301

4. If you have chosen a custom installation, use the popups to select which components to install and
then click Next to install the necessary files.

Connectors

1302

5. Once the files have copied to your machine, the installation is complete. Click Finish to exit the
installer.

Connectors

1303

Now the installation is complete, you can continue to configure your ODBC connections using Sec-
tion 23.1.3, “MyODBC Configuration”.

23.1.2.3.1.2. Installing the Windows MyODBC Driver using the Zipped DLL package

If you have downloaded the Zipped DLL package then you must install the individual files required for
MyODBC operation manually. Once you have unzipped the installation files, you can either perform
this operation by hand, executing each statement individually, or you can use the included Batch file to
perform an installation to the default locations.

To install using the Batch file:

1. Unzip the MyODBC Zipped DLL package.

2. Open a Command Prompt.

3. Change to the directory created when you unzipped the MyODBC Zipped DLL package.

4. Run Install.bat:

C:\> Install.bat

This will copy the necessary files into the default location, and then register the MyODBC driver
with the Windows ODBC manager.

If you want to copy the files to an alternative location - for example, to run or test different versions of

Connectors

1304

the MyODBC driver on the same machine, then you must copy the files by hand. It is however not re-
commended to install these files in a non-standard location. To copy the files by hand to the default in-
stallation location use the following steps:

1. Unzip the MyODBC Zipped DLL package.

2. Open a Command Prompt.

3. Change to the directory created when you unzipped the MyODBC Zipped DLL package.

4. Copy the library files to a suitable directory. The default is to copy them into the default Windows
system directory \Windows\System32:

C:\> copy lib\myodbc3S.dll \Windows\System32
C:\> copy lib\myodbc3S.lib \Windows\System32
C:\> copy lib\myodbc3.dll \Windows\System32
C:\> copy lib\myodbc3.lib \Windows\System32

5. Copy the MyODBC tools. These must be placed into a directory that is in the system PATH. The
default is to install these into the Windows system directory \Windows\System32:

C:\> copy bin\myodbc3i.exe \Windows\System32
C:\> copy bin\myodbc3m.exe \Windows\System32
C:\> copy bin\myodbc3c.exe \Windows\System32

6. Optionally copy the help files. For these files to be accessible through the help system, they must
be installed in the Windows system directory:

C:\> copy doc*.hlp \Windows\System32

7. Finally, you must register the MyODBC driver with the ODBC manager:

C:\> myodbc3i -a -d -t"MySQL ODBC 3.51 Driver;\
DRIVER=myodbc3.dll;SETUP=myodbc3S.dll"

You must change the references to the DLL files and command location in the above statement if
you have not installed these files into the default location.

23.1.2.3.1.3. Handling Installation Errors

On Windows, you may get the following error when trying to install the older MyODBC 2.50 driver:

An error occurred while copying C:\WINDOWS\SYSTEM\MFC30.DLL.
Restart Windows and try installing again (before running any
applications which use ODBC)

The reason for the error is that another application is currently using the ODBC system. Windows may
not allow you to complete the installation. In most cases, you can continue by pressing Ignore to copy
the rest of the MyODBC files and the final installation should still work. If it doesn't, the solution is to
re-boot your computer in “safe mode.” Choose safe mode by pressing F8 just before your machine starts
Windows during re-booting, install the MyODBC drivers, and re-boot to normal mode.

23.1.2.3.2. Installing MyODBC from a Binary Distribution on Unix

There are two methods available for installing MyODBC on Unix from a binary distribution. For most
Unix environments you will need to use the tarball distribution. For Linux systems, there is also an RPM
distribution available.

Connectors

1305

23.1.2.3.2.1. Installing MyODBC from a Binary Tarball Distribution

To install the driver from a tarball distribution (.tar.gz file), download the latest version of the driver
for your operating system and follow these steps that demonstrate the process using the Linux version of
the tarball:

shell> su root
shell> gunzip MyODBC-3.51.11-i686-pc-linux.tar.gz
shell> tar xvf MyODBC-3.51.11-i686-pc-linux.tar
shell> cd MyODBC-3.51.11-i686-pc-linux

Read the installation instructions in the INSTALL-BINARY file and execute these commands.

shell> cp libmyodbc* /usr/local/lib
shell> cp odbc.ini /usr/local/etc
shell> export ODBCINI=/usr/local/etc/odbc.ini

Then proceed on to Section 23.1.3.4, “Configuring a MyODBC DSN on Unix”, to configure the DSN
for MyODBC. For more information, refer to the INSTALL-BINARY file that comes with your distri-
bution.

23.1.2.3.2.2. Installing MyODBC from an RPM Distribution

To install or upgrade MyODBC from an RPM distribution on Linux, simply download the RPM distri-
bution of the latest version of MyODBC and follow the instructions below. Use su root to become
root, then install the RPM file.

If you are installing for the first time:

shell> su root
shell> rpm -ivh MyODBC-3.51.12.i386.rpm

If the driver exists, upgrade it like this:

shell> su root
shell> rpm -Uvh MyODBC-3.51.12.i386.rpm

If there is any dependency error for MySQL client library, libmysqlclient, simply ignore it by
supplying the --nodeps option, and then make sure the MySQL client shared library is in the path or
set through LD_LIBRARY_PATH.

This installs the driver libraries and related documents to /usr/local/lib and /
usr/share/doc/MyODBC, respectively. Proceed onto Section 23.1.3.4, “Configuring a MyODBC
DSN on Unix”.

To uninstall the driver, become root and execute an rpm command:

shell> su root
shell> rpm -e MyODBC

23.1.2.3.3. Installing MyODBC on Mac OS X

Mac OS X is based on the FreeBSD operating system, and you can normally use the MySQL network
port for connecting to MySQL servers on other hosts. Installing the MyODBC driver enables you to
connect to MySQL databases on any platform through the ODBC interface. You should only need to in-
stall the MyODBC driver when your application requires an ODBC interface. Applications that require
or can use ODBC (and therefore the MyODBC driver) include ColdFusion, Filemaker Pro, 4th Dimen-
sion and many other applications.

Connectors

1306

Mac OS X includes its own ODBC manager, based on the iODBC manager. Mac OS X includes an ad-
ministration tool that provides easier administration of ODBC drivers and configuration, updating the
underlying iODBC configuration files.

23.1.2.3.3.1. Installing the MyODBC Driver

You can install MyODBC on a Mac OS X or Mac OS X Server computer by using the binary distribu-
tion. The package is available as a compressed disk image (.dmg) file. To install MyODBC on your
computer using this method, follow these steps:

1. Download the file to your computer and double-click on the downloaded image file.

2. Within the disk image you will find an installer package (with the .pkg extension). Double click
on this file to start the Mac OS X installer.

3. You will be presented with the installer welcome message. Click the Continue button to begin
the installation process.

4. Please take the time to read the Important Information as it contains guidance on how to complete
the installation process. Once you have read the notice and collected the necessary information,
click Continue.

Connectors

1307

5. MyODBC drivers are made available under the GNU General Public License. Please read the li-
cense if you are not familiar with it before continuing installation. Click Continue to approve the
license (you will be asked to confirm that decision) and continue the installation.

Connectors

1308

6. Choose a location to install the MyODBC drivers and the ODBC Administrator application. You
must install the files onto a drive with an operating system and you may be limited in the choices
available. Select the drive you want to use, and then click Continue.

7. The installer will automatically select the files that need to be installed on your machine. Click In-
stall to continue. The installer will copy the necessary files to your machine. A progress bar will
be shown indicating the installation progress.

Connectors

1309

8. When installation has been completed you will get a window like the one shown below. Click
Close to close and quit the installer.

Connectors

1310

23.1.2.4. Installing MyODBC from a source distribution

Installing MyODBC from a source distribution gives you greater flexibility in the contents and installa-
tion location of the MyODBC components. It also enables you to build and install MyODBC on plat-
forms where a pre-compiled binary is not available.

MyODBC sources are available either as a downloadable package, or through the revision control sys-
tem used by the MyODBC developers.

23.1.2.4.1. Installing MyODBC from a Source Distribution on Windows

You should only need to install MyODBC from source on Windows if you want to change or modify the
source or installation. If you are unsure whether to install from source, please use the binary installation
detailed in Section 23.1.2.3.1, “Installing MyODBC from a Binary Distribution on Windows”.

Installing MyODBC from source on Windows requires a number of different tools and packages:

• MDAC, Microsoft Data Access SDK from http://www.microsoft.com/data/.

• Suitable C compiler, such as Microsoft Visual C++ or the C compiler included with Microsoft Visu-
al Studio.

• Compatible make tool. Microsoft's nmake is used in the examples in this section.

• MySQL client libraries and include files from MySQL 4.0.0 or higher. (Preferably MySQL 4.0.16 or
higher). This is required because MyODBC uses new calls and structures that exist only starting
from this version of the library. To get the client libraries and include files, visit ht-
tp://dev.mysql.com/downloads/.

23.1.2.4.1.1. Building MyODBC 3.51

MyODBC source distributions include Makefiles that require the nmake or other make utility. In
the distribution, you can find Makefile for building the release version and Makefile_debug for
building debugging versions of the driver libraries and DLLs.

To build the driver, use this procedure:

1. Download and extract the sources to a folder, then change directory into that folder. The following
command assumes the folder is named myodbc3-src:

C:\> cd myodbc3-src

2. Edit Makefile to specify the correct path for the MySQL client libraries and header files. Then
use the following commands to build and install the release version:

C:\> nmake -f Makefile
C:\> nmake -f Makefile install

nmake -f Makefile builds the release version of the driver and places the binaries in subdir-
ectory called Release.

nmake -f Makefile install installs (copies) the driver DLLs and libraries (myod-
bc3.dll, myodbc3.lib) to your system directory.

3. To build the debug version, use Makefile_Debug rather than Makefile, as shown below:

Connectors

1311

http://www.microsoft.com/data/
http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/

C:\> nmake -f Makefile_debug
C:\> nmake -f Makefile_debug install

4. You can clean and rebuild the driver by using:

C:\> nmake -f Makefile clean
C:\> nmake -f Makefile install

Note:

• Make sure to specify the correct MySQL client libraries and header files path in the Makefiles (set
the MYSQL_LIB_PATH and MYSQL_INCLUDE_PATH variables). The default header file path is
assumed to be C:\mysql\include. The default library path is assumed to be
C:\mysql\lib\opt for release DLLs and C:\mysql\lib\debug for debug versions.

• For the complete usage of nmake, visit ht-
tp://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vcce4/html/evgrfRunningNMAK
E.asp.

• If you are using the Subversion tree for compiling, all Windows-specific Makefiles are named as
Win_Makefile*.

23.1.2.4.1.2. Testing

After the driver libraries are copied/installed to the system directory, you can test whether the libraries
are properly built by using the samples provided in the samples subdirectory:

C:\> cd samples
C:\> nmake -f Makefile all

23.1.2.4.1.3. Building MyODBC 2.50

The MyODBC 2.50 source distribution includes VC workspace files. You can build the driver using
these files (.dsp and .dsw) directly by loading them from Microsoft Visual Studio 6.0 or higher.

23.1.2.4.2. Installing MyODBC from a Source Distribution on Unix

You need the following tools to build MySQL from source on Unix:

• A working ANSI C++ compiler. gcc 2.95.2 or later, egcs 1.0.2 or later or egcs 2.91.66, SGI
C++, and SunPro C++ are some of the compilers that are known to work.

• A good make program. GNU make is always recommended and is sometimes required.

• MySQL client libraries and include files from MySQL 4.0.0 or higher. (Preferably MySQL 4.0.16 or
higher). This is required because MyODBC uses new calls and structures that exist only starting
from this version of the library. To get the client libraries and include files, visit ht-
tp://dev.mysql.com/downloads/.

If you have built your own MySQL server and/or client libraries from source then you must have
used the --enable-thread-safe-client option to configure when the libraries were
built.

You should also ensure that the libmysqlclient library were built and installed as a shared lib-

Connectors

1312

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vcce4/html/evgrfRunningNMAKE.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vcce4/html/evgrfRunningNMAKE.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vcce4/html/evgrfRunningNMAKE.asp
http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/

rary.

• A compatible ODBC manager must be installed. MyODBC is known to work with the iODBC and
unixODBC managers. See Section 23.1.1.2.2, “ODBC Driver Managers”, for more information.

• If you are using a character set that isn't compiled into the MySQL client library then you need to in-
stall the MySQL character definitions from the charsets directory into SHAREDIR (by default, /
usr/local/mysql/share/mysql/charsets). These should be in place if you have in-
stalled the MySQL server on the same machine. See Chapter 10, Character Set Support, for more in-
formation on character set support.

Once you have all the required files, unpack the source files to a separate directory, you then have to run
configure and build the library using make.

23.1.2.4.2.1. Typical configure Options

The configure script gives you a great deal of control over how you configure your MyODBC build.
Typically you do this using options on the configure command line. You can also affect config-
ure using certain environment variables. For a list of options and environment variables supported by
configure, run this command:

shell> ./configure --help

Some of the more commonly used configure options are described here:

1. To compile MyODBC, you need to supply the MySQL client include and library files path using
the --with-mysql-path=DIR option, where DIR is the directory where MySQL is installed.

MySQL compile options can be determined by running DIR/bin/mysql_config.

2. Supply the standard header and library files path for your ODBC Driver Manager (iODBC or
unixODBC).

• If you are using iODBC and iODBC is not installed in its default location (/usr/local), you
might have to use the --with-iodbc=DIR option, where DIR is the directory where iODBC
is installed.

If the iODBC headers do not reside in DIR/include, you can use the -
-with-iodbc-includes=INCDIR option to specify their location.

The applies to libraries. If they are not in DIR/lib, you can use the -
-with-iodbc-libs=LIBDIR option.

• If you are using unixODBC, use the --with-unixODBC=DIR option (case sensitive) to
make configure look for unixODBC instead of iODBC by default, DIR is the directory
where unixODBC is installed.

If the unixODBC headers and libraries aren't located in DIR/include and DIR/lib, use
the --with-unixODBC-includes=INCDIR and --with-unixODBC-libs=LIBDIR
options.

3. You might want to specify an installation prefix other than /usr/local. For example, to install
the MyODBC drivers in /usr/local/odbc/lib, use the --prefix=/usr/local/odbc
option.

The final configuration command looks something like this:

Connectors

1313

shell> ./configure --prefix=/usr/local \
--with-iodbc=/usr/local \
--with-mysql-path=/usr/local/mysql

23.1.2.4.2.2. Additional configure Options

There are a number of other options that you need, or want, to set when configuring the MyODBC
driver before it is built.

• To link the driver with MySQL thread safe client libraries libmysqlclient_r.so or
libmysqlclient_r.a, you must specify the following configure option:

--enable-thread-safe

and can be disabled (default) using

--disable-thread-safe

This option enables the building of the driver thread-safe library libmyodbc3_r.so from by
linking with MySQL thread-safe client library libmysqlclient_r.so (The extensions are OS
dependent).

If the compilation with the thread-safe option fails, it may be because the correct thread-libraries on
the system could not be located. You should set the value of LIBS to point to the correct thread lib-
rary for your system.

LIBS="-lpthread" ./configure ..

• You can enable or disable the shared and static versions of MyODBC using these options:

--enable-shared[=yes/no]
--disable-shared
--enable-static[=yes/no]
--disable-static

• By default, all the binary distributions are built as non-debugging versions (configured with -
-without-debug).

To enable debugging information, build the driver from source distribution and use the -
-with-debug option when you run configure.

• This option is available only for source trees that have been obtained from the Subversion repository.
This option does not apply to the packaged source distributions.

By default, the driver is built with the --without-docs option. If you would like the documenta-
tion to be built, then execute configure with:

--with-docs

23.1.2.4.2.3. Building and Compilation

To build the driver libraries, you have to just execute make.

shell> make

If any errors occur, correct them and continue the build process. If you aren't able to build, then send a

Connectors

1314

detailed email to <myodbc@lists.mysql.com> for further assistance.

23.1.2.4.2.4. Building Shared Libraries

On most platforms, MySQL does not build or support .so (shared) client libraries by default. This is
based on our experience of problems when building shared libraries.

In cases like this, you have to download the MySQL distribution and configure it with these options:

--without-server --enable-shared

To build shared driver libraries, you must specify the --enable-shared option for configure.
By default, configure does not enable this option.

If you have configured with the --disable-shared option, you can build the .so file from the stat-
ic libraries using the following commands:

shell> cd MyODBC-3.51.01
shell> make
shell> cd driver
shell> CC=/usr/bin/gcc \

$CC -bundle -flat_namespace -undefined error \
-o .libs/libmyodbc3-3.51.01.so \
catalog.o connect.o cursor.o dll.o error.o execute.o \
handle.o info.o misc.o myodbc3.o options.o prepare.o \
results.o transact.o utility.o \
-L/usr/local/mysql/lib/mysql/ \
-L/usr/local/iodbc/lib/ \
-lz -lc -lmysqlclient -liodbcinst

Make sure to change -liodbcinst to -lodbcinst if you are using unixODBC instead of iODBC,
and configure the library paths accordingly.

This builds and places the libmyodbc3-3.51.01.so file in the .libs directory. Copy this file to
the MyODBC library installation directory (/usr/local/lib (or the lib directory under the install-
ation directory that you supplied with the --prefix).

shell> cd .libs
shell> cp libmyodbc3-3.51.01.so /usr/local/lib
shell> cd /usr/local/lib
shell> ln -s libmyodbc3-3.51.01.so libmyodbc3.so

To build the thread-safe driver library:

shell> CC=/usr/bin/gcc \
$CC -bundle -flat_namespace -undefined error
-o .libs/libmyodbc3_r-3.51.01.so
catalog.o connect.o cursor.o dll.o error.o execute.o
handle.o info.o misc.o myodbc3.o options.o prepare.o
results.o transact.o utility.o
-L/usr/local/mysql/lib/mysql/
-L/usr/local/iodbc/lib/
-lz -lc -lmysqlclient_r -liodbcinst

23.1.2.4.2.5. Installing Driver Libraries

To install the driver libraries, execute the following command:

shell> make install

That command installs one of the following sets of libraries:

For MyODBC 3.51:

Connectors

1315

• libmyodbc3.so

• libmyodbc3-3.51.01.so, where 3.51.01 is the version of the driver

• libmyodbc3.a

For thread-safe MyODBC 3.51:

• libmyodbc3_r.so

• libmyodbc3-3_r.51.01.so

• libmyodbc3_r.a

For MyODBC 2.5.0:

• libmyodbc.so

• libmyodbc-2.50.39.so, where 2.50.39 is the version of the driver

• libmyodbc.a

For more information on build process, refer to the INSTALL file that comes with the source distribu-
tion. Note that if you are trying to use the make from Sun, you may end up with errors. On the other
hand, GNU gmake should work fine on all platforms.

23.1.2.4.2.6. Testing MyODBC on Unix

To run the basic samples provided in the distribution with the libraries that you built, use the following
command:

shell> make test

Before running the tests, create the DSN 'myodbc3' in odbc.ini and set the environment variable
ODBCINI to the correct odbc.ini file; and MySQL server is running. You can find a sample
odbc.ini with the driver distribution.

You can even modify the samples/run-samples script to pass the desired DSN, UID, and PASS-
WORD values as the command-line arguments to each sample.

23.1.2.4.2.7. Building MyODBC from Source on Mac OS X

To build the driver on Mac OS X (Darwin), make use of the following configure example:

shell> ./configure --prefix=/usr/local
--with-unixODBC=/usr/local
--with-mysql-path=/usr/local/mysql
--disable-shared
--enable-gui=no
--host=powerpc-apple

The command assumes that the unixODBC and MySQL are installed in the default locations. If not,
configure accordingly.

On Mac OS X, --enable-shared builds .dylib files by default. You can build .so files like this:

Connectors

1316

shell> make
shell> cd driver
shell> CC=/usr/bin/gcc \

$CC -bundle -flat_namespace -undefined error
-o .libs/libmyodbc3-3.51.01.so *.o
-L/usr/local/mysql/lib/
-L/usr/local/iodbc/lib
-liodbcinst -lmysqlclient -lz -lc

To build the thread-safe driver library:

shell> CC=/usr/bin/gcc \
$CC -bundle -flat_namespace -undefined error
-o .libs/libmyodbc3-3.51.01.so *.o
-L/usr/local/mysql/lib/
-L/usr/local/iodbc/lib
-liodbcinst -lmysqlclienti_r -lz -lc -lpthread

Make sure to change the -liodbcinst to -lodbcinst in case of using unixODBC instead of
iODBC and configure the libraries path accordingly.

In Apple's version of GCC, both cc and gcc are actually symbolic links to gcc3.

Copy this library to the $prefix/lib directory and symlink to libmyodbc3.so.

You can cross-check the output shared-library properties using this command:

shell> otool -LD .libs/libmyodbc3-3.51.01.so

23.1.2.4.2.8. Building MyODBC from Source on HP-UX

To build the driver on HP-UX 10.x or 11.x, make use of the following configure example:

If using cc:

shell> CC="cc" \
CFLAGS="+z" \
LDFLAGS="-Wl,+b:-Wl,+s" \
./configure --prefix=/usr/local
--with-unixodbc=/usr/local
--with-mysql-path=/usr/local/mysql/lib/mysql
--enable-shared
--enable-thread-safe

If using gcc:

shell> CC="gcc" \
LDFLAGS="-Wl,+b:-Wl,+s" \
./configure --prefix=/usr/local
--with-unixodbc=/usr/local
--with-mysql-path=/usr/local/mysql
--enable-shared
--enable-thread-safe

Once the driver is built, cross-check its attributes using chatr .libs/libmyodbc3.sl to determ-
ine whether you need to have set the MySQL client library path using the SHLIB_PATH environment
variable. For static versions, ignore all shared-library options and run configure with the -
-disable-shared option.

23.1.2.4.2.9. Building MyODBC from Source on AIX

To build the driver on AIX, make use of the following configure example:

shell> ./configure --prefix=/usr/local

Connectors

1317

--with-unixodbc=/usr/local
--with-mysql-path=/usr/local/mysql
--disable-shared
--enable-thread-safe

NOTE: For more information about how to build and set up the static and shared libraries across the dif-
ferent platforms refer to ' Using static and shared libraries across platforms
[http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html]'.

23.1.2.4.3. Installing MyODBC from the Development Source Tree

Caution: You should read this section only if you are interested in helping us test our new code. If you
just want to get MySQL Connector/ODBC up and running on your system, you should use a standard re-
lease distribution.

To be able to access the MyODBC source tree, you must have Subversion installed. Subversion is freely
available from http://subversion.tigris.org/.

To build from the source trees, you need the following tools:

• autoconf 2.52 (or newer)

• automake 1.4 (or newer)

• libtool 1.4 (or newer)

• m4

The most recent development source tree is available from our public Subversion trees at ht-
tp://dev.mysql.com/tech-resources/sources.html.

To checkout out the Connector/ODBC sources, change to the directory where you want the copy of the
MyODBC tree to be stored, then use the following command:

shell> svn co http://svn.mysql.com/svnpublic/connector-odbc3

You should now have a copy of the entire MyODBC source tree in the directory connector-odbc3.
To build from this source tree on Unix or Linux follow these steps:

shell> cd connector-odbc3
shell> aclocal
shell> autoheader
shell> autoconf
shell> automake;
shell> ./configure # Add your favorite options here
shell> make

For more information on how to build, refer to the INSTALL file located in the same directory. For
more information on options to configure, see Section 23.1.2.4.2.1, “Typical configure Options”

When the build is done, run make install to install the MyODBC 3.51 driver on your system.

If you have gotten to the make stage and the distribution does not compile, please report it to
<myodbc@lists.mysql.com>.

On Windows, make use of Windows Makefiles WIN-Makefile and WIN-Makefile_debug in
building the driver. For more information, see Section 23.1.2.4.1, “Installing MyODBC from a Source
Distribution on Windows”.

Connectors

1318

http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html
http://subversion.tigris.org/
http://dev.mysql.com/tech-resources/sources.html
http://dev.mysql.com/tech-resources/sources.html

After the initial checkout operation to get the source tree, you should run svn update periodically up-
date your source according to the latest version.

23.1.3. MyODBC Configuration
Before you connect to a MySQL database using the MyODBC driver you must configure an ODBC
Data Source Name. The DSN associates the various configuration parameters required to communicate
with a database to a specific name. You use the DSN in an application to communicate with the data-
base, rather than specifying individual parameters within the application itself. DSN information can be
user specific, system specific, or provided in a special file. ODBC data source names are configured in
different ways, depending on your platform and ODBC driver.

23.1.3.1. Data Source Names

A Data Source Name associates the configuration parameters for communicating with a specific data-
base. Generally a DSN consists of the following parameters:

• Name

• Hostname

• Database Name

• Login

• Password

In addition, different ODBC drivers, including MyODBC, may accept additional driver-specific options
and parameters.

There are three types of DSN:

• A System DSN is a global DSN definition that is available to any user and application on a particular
system. A System DSN can normally only be configured by a systems administrator, or by a user
who has specific permissions that let them create System DSNs.

• A User DSN is specific to an individual user, and can be used to store database connectivity informa-
tion that the user regularly uses.

• A File DSN uses a simple file to define the DSN configuration. File DSNs can be shared between
users and machines and are therefore more practical when installing or deploying DSN information
as part of an application across many machines.

DSN information is stored in different locations depending on your platform and environment.

23.1.3.2. Configuring a MyODBC DSN on Windows

The ODBC Data Source Administrator within Windows enables you to create DSNs, check
driver installation and configure ODBC systems such as tracing (used for debugging) and connection
pooling.

Different editions and versions of Windows store the ODBC Data Source Administrator in
different locations depending on the version of Windows that you are using.

Connectors

1319

To open the ODBC Data Source Administrator in Windows Server 2003:

1. On the Start menu, choose Administrative Tools, and then click Data Sources
(ODBC).

To open the ODBC Data Source Administrator in Windows 2000 Server or Windows 2000
Professional:

1. On the Start menu, choose Settings, and then click Control Panel.

2. In Control Panel, click Administrative Tools.

3. In Administrative Tools, click Data Sources (ODBC).

To open the ODBC Data Source Administrator on Windows XP:

1. On the Start menu, click Control Panel.

2. In the Control Panel when in Category View click Performance and Mainten-
ance and then click Administrative Tools.. If you are viewing the Control Panel in
Classic View, click Administrative Tools.

3. In Administrative Tools, click Data Sources (ODBC).

Irrespective of your Windows version, you should be presented the ODBC Data Source Admin-
istrator window:

Connectors

1320

Within Windows XP, you can add the Administrative Tools folder to your Start menu to
make it easier to locate the ODBC Data Source Administrator. To do this:

1. Right click on the Start menu.

2. Select Properties.

3. Click Customize....

4. Select the Advanced tab.

5. Within Start menu items, within the System Administrative Tools section, select
Display on the All Programs menu.

Within both Windows Server 2003 and Windows XP you may want to permanently add the ODBC
Data Source Administrator to your Start menu. To do this, locate the Data Sources
(ODBC) icon using the methods shown, then right-click on the icon and then choose Pin to Start
Menu.

23.1.3.2.1. Adding a MyODBC DSN on Windows

To add and configure a new MyODBC data source on Windows, use the ODBC Data Source Ad-
ministrator:

Connectors

1321

1. Open the ODBC Data Source Administrator.

2. To create a System DSN (which will be available to all users) , select the System DSN tab. To
create a User DSN, which will be unique only to the current user, click the Add.. button.

3. You will need to select the ODBC driver for this DSN.

Select MySQL ODBC 3.51 Driver, then click Finish.

4. You now need to configure the specific fields for the DSN you are creating through the Add Data
Source Name dialog.

Connectors

1322

In the Data Source Name box, enter the name of the data source you want to access. It can be
any valid name that you choose.

5. In the Description box, enter some text to help identify the connection.

6. In the Server field, enter the name of the MySQL server host that you want to access. By default,
it is localhost.

7. In the User field, enter the user name to use for this connection.

8. In the Password field, enter the corresponding password for this connection.

9. The Database popup should automatically populate with the list of databases that the user has
permissions to access.

10. Click OK to save the DSN.

A completed DSN configuration may look like this:

Connectors

1323

23.1.3.2.2. Checking MyODBC DSN Configuration on Windows

You can verify the connection using the parameters you have entered by clicking the Test button. If
the connection could be made successfully, you will be notified with a Success; connection
was made! dialog.

If the connection failed, you can obtain more information on the test and why it may have failed by
clicking the Diagnostics... button to show additional error messages.

23.1.3.2.3. MyODBC DSN Configuration Options

You can configure a number of options for a specific DSN by using either the Connect Options or
Advanced tabs in the DSN configuration dialog.

The Connection Options dialog can be seen below.

Connectors

1324

The three options you can configure are:

• Port sets the TCP/IP port number to use when communicating with MySQL. Communication with
MySQL uses port 3306 by default. If your server is configured to use a different TCP/IP port, you
must specify that port number here.

• Socket sets the name or location of a specific socket or Windows pipe to use when communicating
with MySQL.

• Initial Statement defines an SQL statement that will be executed when the connection to
MySQL is opened. You can use this to set MySQL options for your connection, such as setting the
default character set or database to use during your connection.

The Advanced tab enables you to configure MyODBC connection parameters. Refer to Sec-
tion 23.1.3.5, “MyODBC Connection Parameters”, for information about the meaning of these options.

Connectors

1325

23.1.3.2.4. Errors and Debugging

This section answers MyODBC connection-related questions.

• While configuring a MyODBC DSN, a Could Not Load Translator or Setup Lib-
rary error occurs

For more information, refer to MS KnowledgeBase Article(Q260558)
[http://support.microsoft.com/default.aspx?scid=kb;EN-US;q260558]. Also, make sure you have the
latest valid ctl3d32.dll in your system directory.

• On Windows, the default myodbc3.dll is compiled for optimal performance. If you want to de-
bug MyODBC 3.51 (for example, to enable tracing), you should instead use myodbc3d.dll. To
install this file, copy myodbc3d.dll over the installed myodbc3.dll file. Make sure to revert
back to the release version of the driver DLL once you are done with the debugging because the de-
bug version may cause performance issues. Note that the myodbc3d.dll isn't included in MyOD-
BC 3.51.07 through 3.51.11. If you are using one of these versions, you should copy that DLL from
a previous version (for example, 3.51.06).

For MyODBC 2.50, myodbc.dll and myodbcd.dll are used instead.

23.1.3.3. Configuring a MyODBC DSN on Mac OS X

Connectors

1326

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q260558

To configure a DSN on Mac OS X you should use the ODBC Administrator. If you have Mac OS X
10.2 or earlier, refer to Section 23.1.3.4, “Configuring a MyODBC DSN on Unix”. Select whether you
want to create a User DSN or a System DSN. If you want to add a System DSN, you may need to au-
thenticate with the system. You must click the padlock and enter a user and password with administrator
privileges.

1. Open the ODBC Administrator from the Utilities folder in the Applications folder.

2. On the User DSN or System DSN panel, click Add.

3. Select the MyODBC driver and click OK.

4. You will be presented with the Data Source Name dialog. Enter The Data Source Name
and an optional Description for the DSN.

Connectors

1327

5. Click Add to add a new keyword/value pair to the panel. You should configure at least four pairs to
specify the server, username, password and database connection parameters. See Sec-
tion 23.1.3.5, “MyODBC Connection Parameters”.

6. Click OK to add the DSN to the list of configured data source names.

A completed DSN configuration may look like this:

You can configure additional ODBC options to your DSN by adding further keyword/value pairs and

Connectors

1328

setting the corresponding values. See Section 23.1.3.5, “MyODBC Connection Parameters”.

23.1.3.4. Configuring a MyODBC DSN on Unix

On Unix, you configure DSN entries directly in the odbc.ini file. Here is a typical odbc.ini file
that configures myodbc and myodbc3 as the DSN names for MyODBC 2.50 and MyODBC 3.51, re-
spectively:

;
; odbc.ini configuration for MyODBC and MyODBC 3.51 drivers
;

[ODBC Data Sources]
myodbc = MyODBC 2.50 Driver DSN
myodbc3 = MyODBC 3.51 Driver DSN

[myodbc]
Driver = /usr/local/lib/libmyodbc.so
Description = MyODBC 2.50 Driver DSN
SERVER = localhost
PORT =
USER = root
Password =
Database = test
OPTION = 3
SOCKET =

[myodbc3]
Driver = /usr/local/lib/libmyodbc3.so
Description = MyODBC 3.51 Driver DSN
SERVER = localhost
PORT =
USER = root
Password =
Database = test
OPTION = 3
SOCKET =

[Default]
Driver = /usr/local/lib/libmyodbc3.so
Description = MyODBC 3.51 Driver DSN
SERVER = localhost
PORT =
USER = root
Password =
Database = test
OPTION = 3
SOCKET =

Refer to the Section 23.1.3.5, “MyODBC Connection Parameters”, for the list of connection parameters
that can be supplied.

Note: If you are using unixODBC, you can use the following tools to set up the DSN:

• ODBCConfig GUI tool(HOWTO: ODBCConfig [http://www.unixodbc.org/config.html])

• odbcinst

In some cases when using unixODBC, you might get this error:

Data source name not found and no default driver specified

If this happens, make sure the ODBCINI and ODBCSYSINI environment variables are pointing to the
right odbc.ini file. For example, if your odbc.ini file is located in /usr/local/etc, set the
environment variables like this:

export ODBCINI=/usr/local/etc/odbc.ini

Connectors

1329

http://www.unixodbc.org/config.html

export ODBCSYSINI=/usr/local/etc

23.1.3.5. MyODBC Connection Parameters

You can specify the parameters in the following tables for MyODBC when configuring a DSN. Users on
Windows can use the Options and Advanced panels when configuring a DSN to set these parameters;
see the table for information on which options relate to which fields and checkboxes. On Unix and Mac
OS X, use the parameter name and value as the keyword/value pair in the DSN configuration. Alternat-
ively, you can set these parameters within the InConnectionString argument in the
SQLDriverConnect() call.

Parameter Default Value Comment

user ODBC (on Win-
dows)

The username used to connect to MySQL.

server localhost The hostname of the MySQL server.

database The default database.

option 0 Options that specify how MyODBC should work. See below.

port 3306 The TCP/IP port to use if server is not localhost.

stmt A statement to execute when connecting to MySQL.

password The password for the user account on server.

socket The Unix socket file or Windows named pipe to connect to if
server is localhost.

The option argument is used to tell MyODBC that the client isn't 100% ODBC compliant. On Win-
dows, you normally select options by toggling the checkboxes in the connection screen, but you can also
select them in the option argument. The following options are listed in the order in which they appear
in the MyODBC connect screen:

Value Windows Checkbox Description

1 Don't Optimized Column
Width

The client can't handle that MyODBC returns the real width
of a column.

2 Return Matching Rows The client can't handle that MySQL returns the true value of
affected rows. If this flag is set, MySQL returns “found
rows” instead. You must have MySQL 3.21.14 or newer to
get this to work.

4 Trace Driver Calls To myod-
bc.log

Make a debug log in C:\myodbc.log on Windows, or /
tmp/myodbc.log on Unix variants.

8 Allow Big Results Don't set any packet limit for results and parameters.

16 Don't Prompt Upon Connect Don't prompt for questions even if driver would like to
prompt.

32 Enable Dynamic Cursor Enable or disable the dynamic cursor support. (Not allowed
in MyODBC 2.50.)

64 Ignore # in Table Name Ignore use of database name in
db_name.tbl_name.col_name.

128 User Manager Cursors Force use of ODBC manager cursors (experimental).

256 Don't Use Set Locale Disable the use of extended fetch (experimental).

512 Pad Char To Full Length Pad CHAR columns to full column length.

1024 Return Table Names for SQL- SQLDescribeCol() returns fully qualified column

Connectors

1330

DescribeCol names.

2048 Use Compressed Protocol Use the compressed client/server protocol.

4096 Ignore Space After Function
Names

Tell server to ignore space after function name and before ‘(’
(needed by PowerBuilder). This makes all function names
keywords.

8192 Force Use of Named Pipes Connect with named pipes to a mysqld server running on
NT.

16384 Change BIGINT Columns to
Int

Change BIGINT columns to INT columns (some applica-
tions can't handle BIGINT).

32768 No Catalog (exp) Return 'user' as Table_qualifier and Table_owner
from SQLTables (experimental).

65536 Read Options From my.cnf Read parameters from the [client] and [odbc] groups
from my.cnf.

131072 Safe Add some extra safety checks (should not be needed but...).

262144 Disable transaction Disable transactions.

524288 Save queries to myod-
bc.sql

Enable query logging to c:\myodbc.sql(/
tmp/myodbc.sql) file. (Enabled only in debug mode.)

1048576 Don't Cache Result (forward
only cursors)

Do not cache the results locally in the driver, instead read
from server (mysql_use_result()). This works only for
forward-only cursors. This option is very important in deal-
ing with large tables when you don't want the driver to cache
the entire result set.

2097152 Force Use Of Forward Only
Cursors

Force the use of Forward-only cursor type. In case of ap-
plications setting the default static/dynamic cursor type, and
one wants the driver to use non-cache result sets, then this
option ensures the forward-only cursor behavior.

To select multiple options, add together their values. For example, setting option to 12 (4+8) gives
you debugging without packet limits.

The following table shows some recommended option values for various configurations:

Configuration Option Value

Microsoft Access, Visual Basic 3

Driver trace generation (Debug mode) 4

Microsoft Access (with improved DELETE queries) 35

Large tables with too many rows 2049

Sybase PowerBuilder 135168

Query log generation (Debug mode) 524288

Generate driver trace as well as query log (Debug mode) 524292

Large tables with no-cache results 3145731

23.1.3.6. Connecting Without a Predefined DSN

You can connect to the MySQL server using SQLDriverConnect, by specifying the DRIVER name field.
Here are the connection strings for MyODBC using DSN-Less connections:

Connectors

1331

For MyODBC 2.50:

ConnectionString = "DRIVER={MySQL};\
SERVER=localhost;\
DATABASE=test;\
USER=venu;\
PASSWORD=venu;\
OPTION=3;"

For MyODBC 3.51:

ConnectionString = "DRIVER={MySQL ODBC 3.51 Driver};\
SERVER=localhost;\
DATABASE=test;\
USER=venu;\
PASSWORD=venu;\
OPTION=3;"

If your programming language converts backslash followed by whitespace to a space, it is preferable to
specify the connection string as a single long string, or to use a concatenation of multiple strings that
does not add spaces in between. For example:

ConnectionString = "DRIVER={MySQL ODBC 3.51 Driver};"
"SERVER=localhost;"
"DATABASE=test;"
"USER=venu;"
"PASSWORD=venu;"
"OPTION=3;"

Note. Note that on Mac OS X you may need to specify the full path to the MyODBC driver library.

Refer to the Section 23.1.3.5, “MyODBC Connection Parameters”, for the list of connection parameters
that can be supplied.

23.1.3.7. ODBC Connection Pooling

Connection pooling enables the ODBC driver to re-use existing connections to a given database from a
pool of connections, instead of opening a new connection each time the database is accessed. By en-
abling connection pooling you can improve the overall performance of your application by lowering the
time taken to open a connection to a database in the connection pool.

For more information about connection pooling: ht-
tp://support.microsoft.com/default.aspx?scid=kb;EN-US;q169470.

23.1.3.8. Getting an ODBC Trace File

If you encounter difficulties or problems with MyODBC, you should start by making a log file from the
ODBC Manager and MyODBC. This is called tracing, and is enabled through the ODBC Manager.
The procedure for this differs for Windows, Mac OS X and Unix.

23.1.3.8.1. Enabling ODBC Tracing on Windows

To enable the trace option on Windows:

1. The Tracing tab of the ODBC Data Source Administrator dialog box enables you to configure
the way ODBC function calls are traced.

Connectors

1332

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q169470
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q169470

2. When you activate tracing from the Tracing tab, the Driver Manager logs all ODBC func-
tion calls for all subsequently run applications.

3. ODBC function calls from applications running before tracing is activated are not logged. ODBC
function calls are recorded in a log file you specify.

4. Tracing ceases only after you click Stop Tracing Now. Remember that while tracing is on, the
log file continues to increase in size and that tracing affects the performance of all your ODBC ap-
plications.

23.1.3.8.2. Enabling ODBC Tracing on Mac OS X

To enable the trace option on Mac OS X 10.3 or later you should use the Tracing tab within ODBC
Administrator .

1. Open the ODBC Administrator.

2. Select the Tracing tab.

Connectors

1333

3. Select the Enable Tracing checkbox.

4. Enter the location where you want to save the Tracing log. If you want to append information to an
existing log file, click the Choose... button.

23.1.3.8.3. Enabling ODBC Tracing on Unix

To enable the trace option on Mac OS X 10.2 (or earlier) or Unix you must add the trace option to the
ODBC configuration:

1. On Unix, you need to explicitly set the Trace option in the ODBC.INI file.

Set the tracing ON or OFF by using TraceFile and Trace parameters in odbc.ini as shown
below:

TraceFile = /tmp/odbc.trace
Trace = 1

TraceFile specifies the name and full path of the trace file and Trace is set to ON or OFF. You
can also use 1 or YES for ON and 0 or NO for OFF. If you are using ODBCConfig from unixOD-
BC, then follow the instructions for tracing unixODBC calls at HOWTO-ODBCConfig
[http://www.unixodbc.org/config.html].

23.1.3.8.4. Enabling a MyODBC Log

To generate a MyODBC log, do the following:

1. Within Windows, enable the Trace MyODBC option flag in the MyODBC connect/configure

Connectors

1334

http://www.unixodbc.org/config.html

screen. The log is written to file C:\myodbc.log. If the trace option is not remembered when
you are going back to the above screen, it means that you are not using the myodbcd.dll driver,
see Section 23.1.3.2.4, “Errors and Debugging”.

On Mac OS X, Unix, or if you are using DSN-Less connection, then you need to supply OP-
TION=4 in the connection string or set the corresponding keyword/value pair in the DSN.

2. Start your application and try to get it to fail. Then check the MyODBC trace file to find out what
could be wrong.

If you need help determining what is wrong, see Section 23.1.7.1, “MyODBC Community Support”.

23.1.4. MyODBC Examples
Once you have configured a DSN to provide access to a database, how you access and use that connec-
tion is dependent on the application or programming language. As ODBC is a standardized interface,
any application or language that supports ODBC can use the DSN and connect to the configured data-
base.

23.1.4.1. Basic MyODBC Application Steps

Interacting with a MySQL server from an applications using the MyODBC typically involves the fol-
lowing operations:

• Configure the MyODBC DSN

• Connect to MySQL server

• Initialization operations

• Execute SQL statements

• Retrieve results

• Perform Transactions

• Disconnect from the server

Most applications use some variation of these steps. The basic application steps are shown in the follow-
ing diagram:

Connectors

1335

23.1.4.2. Step-by-step Guide to Connecting to a MySQL Database
through MyODBC

A typical installation situation where you would install MyODBC is when you want to access a database
on a Linux or Unix host from a Windows machine.

As an example of the process required to set up access between two machines, the steps below take you
through the basic steps. These instructions assume that you want to connect to system ALPHA from sys-
tem BETA with a username and password of myuser and mypassword.

Connectors

1336

On system ALPHA (the MySQL server) follow these steps:

1. Start the MySQL server.

2. Use GRANT to set up an account with a username of myuser that can connect from system BETA
using a password of myuser to the database test:

GRANT ALL ON test.* to 'myuser'@'BETA' IDENTIFIED BY 'mypassword';

For more information about MySQL privileges, refer to Section 5.9, “MySQL User Account Man-
agement”.

On system BETA (the MyODBC client), follow these steps:

1. Configure a MyODBC DSN using parameters that match the server, database and authentication in-
formation that you have just configured on system ALPHA.

Parameter Value Comment

DSN remote_test A name to identify the connection.

SERVER ALPHA The address of the remote server.

DATABASE test The name of the default database.

USER myuser The username configured for access to this database.

PASSWORD mypassword The password for myuser.

2. Using an ODBC-capable application, such as Microsoft Office, connect to the MySQL server using
the DSN you have just created. If the connection fails, use tracing to examine the connection pro-
cess. See Section 23.1.3.8, “Getting an ODBC Trace File”, for more information.

23.1.4.3. MyODBC and Third-Party ODBC Tools

Once you have configured your MyODBC DSN, you can access your MySQL database through any ap-
plication that supports the ODBC interface, including programming languages and third-party applica-
tions. This section contains guides and help on using MyODBC with various ODBC-compatible tools
and applications, including Microsoft Word, Microsoft Excel and Adobe/Macromedia ColdFusion.

23.1.4.3.1. Applications Tested with MyODBC

MyODBC has been tested with the following applications:

Publisher Application Notes

Adobe ColdFusion Formerly Macromedia ColdFusion

Borland C++ Builder

Builder 4

Delphi

Business Objects Crystal Reports

Claris Filemaker Pro

Corel Paradox

Connectors

1337

Computer Associates Visual Objects Also known as CAVO

AllFusion ERwin Data
Modeler

Gupta Team Developer Previously known as Centura Team Developer;
Gupta SQL/Windows

Gensym G2-ODBC Bridge

Inline iHTML

Lotus Notes Versions 4.5 and 4.6

Microsoft Access

Excel

Visio Enterprise

Visual C++

Visual Basic

ODBC.NET Using C#, Visual Basic, C++

FoxPro

Visual Interdev

OpenOffice.org OpenOffice.org

Perl DBD::ODBC

Pervasive Software DataJunction

Sambar Technologies Sambar Server

SPSS SPSS

SoftVelocity Clarion

SQLExpress SQLExpress for
Xbase++

Sun StarOffice

SunSystems Vision

Sybase PowerBuilder

PowerDesigner

theKompany.com Data Architect

If you know of any other applications that work with MyODBC, please send mail to
<myodbc@lists.mysql.com> about them.

23.1.4.3.2. Using MyODBC with Microsoft Word or Excel

You can use Microsoft Word and Microsoft Excel to access information from a MySQL database using
MyODBC. Within Microsoft Word, this facility is most useful when importing data for mailmerge, or
for tables and data to be included in reports. Within Microsoft Excel, you can execute queries on your
MySQL server and import the data directly into an Excel Worksheet, presenting the data as a series of
rows and columns.

With both applications, data is accessed and imported into the application using Microsoft Query ,
which enables you to execute a query though an ODBC source. You use Microsoft Query to build the
SQL statement to be executed, selecting the tables, fields, selection criteria and sort order. For example,
to insert information from a table in the World test database into an Excel spreadsheet, using the DSN
samples shown in Section 23.1.3, “MyODBC Configuration”:

Connectors

1338

1. Create a new Worksheet.

2. From the Data menu, choose Import External Data, and then select New Database
Query.

3. Microsoft Query will start. First, you need to choose the data source, by selecting an existing Data
Source Name.

4. Within the Query Wizard, you must choose the columns that you want to import. The list of
tables available to the user configured through the DSN is shown on the left, the columns that will
be added to your query are shown on the right. The columns you choose are equivalent to those in
the first section of a SELECT query. Click Next to continue.

5. You can filter rows from the query (the equivalent of a WHERE clause) using the Filter Data
dialog. Click Next to continue.

Connectors

1339

6. Select an (optional) sort order for the data. This is equivalent to using a ORDER BY clause in your
SQL query. You can select up to three fields for sorting the information returned by the query.
Click Next to continue.

7. Select the destination for your query. You can select to return the data Microsoft Excel, where you
can choose a worksheet and cell where the data will be inserted; you can continue to view the query
and results within Microsoft Query, where you can edit the SQL query and further filter and sort
the information returned; or you can create an OLAP Cube from the query, which can then be used
directly within Microsoft Excel. Click Finish.

Connectors

1340

The same process can be used to import data into a Word document, where the data will be inserted as a
table. This can be used for mail merge purposes (where the field data is read from a Word table), or
where you want to include data and reports within a report or other document.

23.1.4.3.3. Using MyODBC and Microsoft Access

You can use MySQL database with Microsoft Access using MyODBC. The MySQL database can be
used as an import source, an export source, or as a linked table for direct use within an Access applica-
tion, so you can use Access as the front-end interface to a MySQL database.

23.1.4.3.3.1. Exporting Access Data to MySQL

To export a table of data from an Access database to MySQL, follow these instructions:

1. When you open an Access database or an Access project, a Database window appears. It displays
shortcuts for creating new database objects and opening existing objects.

Connectors

1341

2. Click the name of the table or query you want to export, and then in the File menu, select
Export.

3. In the Export Object Type Object name To dialog box, in the Save As Type box,
select ODBC Databases () as shown here:

4. In the Export dialog box, enter a name for the file (or use the suggested name), and then select
OK.

5. The Select Data Source dialog box is displayed; it lists the defined data sources for any ODBC
drivers installed on your computer. Click either the File Data Source or Machine Data Source tab,
and then double-click the MyODBC or MyODBC 3.51 data source that you want to export to. To
define a new data source for MyODBC, please Section 23.1.3.2, “Configuring a MyODBC DSN on
Windows”.

Microsoft Access connects to the MySQL Server through this data source and exports new tables and or
data.

Connectors

1342

23.1.4.3.3.2. Importing MySQL Data to Access

To import or link a table or tables from MySQL to Access, follow these instructions:

1. Open a database, or switch to the Database window for the open database.

2. To import tables, on the File menu, point to Get External Data, and then click Import.
To link tables, on the File menu, point to Get External Data, and then click Link Tables.

3. In the Import (or Link) dialog box, in the Files Of Type box, select ODBC Databases ().
The Select Data Source dialog box lists the defined data sources The Select Data Source dialog box
is displayed; it lists the defined data source names.

4. If the ODBC data source that you selected requires you to log on, enter your login ID and password
(additional information might also be required), and then click OK.

5. Microsoft Access connects to the MySQL server through ODBC data source and displays the
list of tables that you can import or link.

6. Click each table that you want to import or link, and then click OK. If you're linking a table and
it doesn't have an index that uniquely identifies each record, Microsoft Access displays a list of the
fields in the linked table. Click a field or a combination of fields that uniquely identifies each re-
cord, and then click OK.

23.1.4.3.3.3. Linking MySQL Data to Access Tables

Use the following procedure to view or to refresh links when the structure or location of a linked table
has changed. The Linked Table Manager lists the paths to all currently linked tables.

To view or refresh links:

1. Open the database that contains links to tables.

2. On the Tools menu, point to Add-ins (Database Utilities in Access 2000 or newer),
and then click Linked Table Manager.

3. Select the check box for the tables whose links you want to refresh.

4. Click OK to refresh the links.

Microsoft Access confirms a successful refresh or, if the table wasn't found, displays the Select New
Location of <table name> dialog box in which you can specify its the table's new location. If sever-
al selected tables have moved to the new location that you specify, the Linked Table Manager searches
that location for all selected tables, and updates all links in one step.

To change the path for a set of linked tables:

1. Open the database that contains links to tables.

2. On the Tools menu, point to Add-ins (Database Utilities in Access 2000 or newer),
and then click Linked Table Manager.

3. Select the Always Prompt For A New Location check box.

4. Select the check box for the tables whose links you want to change, and then click OK.

Connectors

1343

5. In the Select New Location of <table name> dialog box, specify the new location, click
Open, and then click OK.

23.1.4.4. MyODBC Programming Examples

With a suitable ODBC Manager and the my MyODBC driver installed, any programming language or
environment that can support ODBC should be able to connect to a MySQL database through MyOD-
BC.

This includes, but is certainly not limited to, Microsoft support languages (including Visual Basic, C#
and interfaces such as ODBC.NET), Perl (through the DBI module, and the DBD::ODBC driver).

23.1.4.4.1. Using MyODBC with Visual Basic Using ADO, DAO and RDO

This section contains simple examples of the use of MySQL ODBC 3.51 Driver with ADO, DAO and
RDO.

23.1.4.4.1.1. ADO: rs.addNew, rs.delete, and rs.update

The following ADO (ActiveX Data Objects) example creates a table my_ado and demonstrates the use
of rs.addNew, rs.delete, and rs.update.

Private Sub myodbc_ado_Click()

Dim conn As ADODB.Connection
Dim rs As ADODB.Recordset
Dim fld As ADODB.Field
Dim sql As String

'connect to MySQL server using MySQL ODBC 3.51 Driver
Set conn = New ADODB.Connection
conn.ConnectionString = "DRIVER={MySQL ODBC 3.51 Driver};"_
& "SERVER=localhost;"_
& " DATABASE=test;"_
& "UID=venu;PWD=venu; OPTION=3"

conn.Open

'create table
conn.Execute "DROP TABLE IF EXISTS my_ado"
conn.Execute "CREATE TABLE my_ado(id int not null primary key, name varchar(20)," _
& "txt text, dt date, tm time, ts timestamp)"

'direct insert
conn.Execute "INSERT INTO my_ado(id,name,txt) values(1,100,'venu')"
conn.Execute "INSERT INTO my_ado(id,name,txt) values(2,200,'MySQL')"
conn.Execute "INSERT INTO my_ado(id,name,txt) values(3,300,'Delete')"

Set rs = New ADODB.Recordset
rs.CursorLocation = adUseServer

'fetch the initial table ..
rs.Open "SELECT * FROM my_ado", conn
Debug.Print rs.RecordCount
rs.MoveFirst
Debug.Print String(50, "-") & "Initial my_ado Result Set " & String(50, "-")
For Each fld In rs.Fields
Debug.Print fld.Name,
Next
Debug.Print

Do Until rs.EOF
For Each fld In rs.Fields
Debug.Print fld.Value,
Next
rs.MoveNext
Debug.Print
Loop
rs.Close

'rs insert

Connectors

1344

rs.Open "select * from my_ado", conn, adOpenDynamic, adLockOptimistic
rs.AddNew
rs!Name = "Monty"
rs!txt = "Insert row"
rs.Update
rs.Close

'rs update
rs.Open "SELECT * FROM my_ado"
rs!Name = "update"
rs!txt = "updated-row"
rs.Update
rs.Close

'rs update second time..
rs.Open "SELECT * FROM my_ado"
rs!Name = "update"
rs!txt = "updated-second-time"
rs.Update
rs.Close

'rs delete
rs.Open "SELECT * FROM my_ado"
rs.MoveNext
rs.MoveNext
rs.Delete
rs.Close

'fetch the updated table ..
rs.Open "SELECT * FROM my_ado", conn
Debug.Print rs.RecordCount
rs.MoveFirst
Debug.Print String(50, "-") & "Updated my_ado Result Set " & String(50, "-")
For Each fld In rs.Fields
Debug.Print fld.Name,
Next
Debug.Print

Do Until rs.EOF
For Each fld In rs.Fields
Debug.Print fld.Value,
Next
rs.MoveNext
Debug.Print
Loop
rs.Close
conn.Close
End Sub

23.1.4.4.1.2. DAO: rs.addNew, rs.update, and Scrolling

The following DAO (Data Access Objects) example creates a table my_dao and demonstrates the use
of rs.addNew, rs.update, and result set scrolling.

Private Sub myodbc_dao_Click()

Dim ws As Workspace
Dim conn As Connection
Dim queryDef As queryDef
Dim str As String

'connect to MySQL using MySQL ODBC 3.51 Driver
Set ws = DBEngine.CreateWorkspace("", "venu", "venu", dbUseODBC)
str = "odbc;DRIVER={MySQL ODBC 3.51 Driver};"_
& "SERVER=localhost;"_
& " DATABASE=test;"_
& "UID=venu;PWD=venu; OPTION=3"
Set conn = ws.OpenConnection("test", dbDriverNoPrompt, False, str)

'Create table my_dao
Set queryDef = conn.CreateQueryDef("", "drop table if exists my_dao")
queryDef.Execute

Set queryDef = conn.CreateQueryDef("", "create table my_dao(Id INT AUTO_INCREMENT PRIMARY KEY, " _
& "Ts TIMESTAMP(14) NOT NULL, Name varchar(20), Id2 INT)")
queryDef.Execute

Connectors

1345

'Insert new records using rs.addNew
Set rs = conn.OpenRecordset("my_dao")
Dim i As Integer

For i = 10 To 15
rs.AddNew
rs!Name = "insert record" & i
rs!Id2 = i
rs.Update
Next i
rs.Close

'rs update..
Set rs = conn.OpenRecordset("my_dao")
rs.Edit
rs!Name = "updated-string"
rs.Update
rs.Close

'fetch the table back...
Set rs = conn.OpenRecordset("my_dao", dbOpenDynamic)
str = "Results:"
rs.MoveFirst
While Not rs.EOF
str = " " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print "DATA:" & str
rs.MoveNext
Wend

'rs Scrolling
rs.MoveFirst
str = " FIRST ROW: " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print str

rs.MoveLast
str = " LAST ROW: " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print str

rs.MovePrevious
str = " LAST-1 ROW: " & rs!Id & " , " & rs!Name & ", " & rs!Ts & ", " & rs!Id2
Debug.Print str

'free all resources
rs.Close
queryDef.Close
conn.Close
ws.Close

End Sub

23.1.4.4.1.3. RDO: rs.addNew and rs.update

The following RDO (Remote Data Objects) example creates a table my_rdo and demonstrates the use
of rs.addNew and rs.update.

Dim rs As rdoResultset
Dim cn As New rdoConnection
Dim cl As rdoColumn
Dim SQL As String

'cn.Connect = "DSN=test;"
cn.Connect = "DRIVER={MySQL ODBC 3.51 Driver};"_
& "SERVER=localhost;"_
& " DATABASE=test;"_
& "UID=venu;PWD=venu; OPTION=3"

cn.CursorDriver = rdUseOdbc
cn.EstablishConnection rdDriverPrompt

'drop table my_rdo
SQL = "drop table if exists my_rdo"
cn.Execute SQL, rdExecDirect

'create table my_rdo
SQL = "create table my_rdo(id int, name varchar(20))"
cn.Execute SQL, rdExecDirect

Connectors

1346

'insert - direct
SQL = "insert into my_rdo values (100,'venu')"
cn.Execute SQL, rdExecDirect

SQL = "insert into my_rdo values (200,'MySQL')"
cn.Execute SQL, rdExecDirect

'rs insert
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
rs.AddNew
rs!id = 300
rs!Name = "Insert1"
rs.Update
rs.Close

'rs insert
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
rs.AddNew
rs!id = 400
rs!Name = "Insert 2"
rs.Update
rs.Close

'rs update
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
rs.Edit
rs!id = 999
rs!Name = "updated"
rs.Update
rs.Close

'fetch back...
SQL = "select * from my_rdo"
Set rs = cn.OpenResultset(SQL, rdOpenStatic, rdConcurRowVer, rdExecDirect)
Do Until rs.EOF
For Each cl In rs.rdoColumns
Debug.Print cl.Value,
Next
rs.MoveNext
Debug.Print
Loop
Debug.Print "Row count="; rs.RowCount

'close
rs.Close
cn.Close

End Sub

23.1.4.4.2. Using MyODBC with .NET

This section contains simple examples that demonstrate the use of MyODBC drivers with ODBC.NET.

23.1.4.4.2.1. Using MyODBC with ODBC.NET and C# (C sharp)

The following sample creates a table my_odbc_net and demonstrates its use in C#.

/**
* @sample : mycon.cs
* @purpose : Demo sample for ODBC.NET using MyODBC
* @author : Venu, <myodbc@lists.mysql.com>
*
* (C) Copyright MySQL AB, 1995-2006
*
**/

/* build command
*
* csc /t:exe
* /out:mycon.exe mycon.cs
* /r:Microsoft.Data.Odbc.dll
*/

Connectors

1347

using Console = System.Console;
using Microsoft.Data.Odbc;

namespace myodbc3
{

class mycon
{
static void Main(string[] args)
{

try
{

//Connection string for MyODBC 2.50
/*string MyConString = "DRIVER={MySQL};" +

"SERVER=localhost;" +
"DATABASE=test;" +
"UID=venu;" +
"PASSWORD=venu;" +
"OPTION=3";

*/
//Connection string for MyODBC 3.51
string MyConString = "DRIVER={MySQL ODBC 3.51 Driver};" +

"SERVER=localhost;" +
"DATABASE=test;" +
"UID=venu;" +
"PASSWORD=venu;" +
"OPTION=3";

//Connect to MySQL using MyODBC
OdbcConnection MyConnection = new OdbcConnection(MyConString);
MyConnection.Open();

Console.WriteLine("\n !!! success, connected successfully !!!\n");

//Display connection information
Console.WriteLine("Connection Information:");
Console.WriteLine("\tConnection String:" +

MyConnection.ConnectionString);
Console.WriteLine("\tConnection Timeout:" +

MyConnection.ConnectionTimeout);
Console.WriteLine("\tDatabase:" +

MyConnection.Database);
Console.WriteLine("\tDataSource:" +

MyConnection.DataSource);
Console.WriteLine("\tDriver:" +

MyConnection.Driver);
Console.WriteLine("\tServerVersion:" +

MyConnection.ServerVersion);

//Create a sample table
OdbcCommand MyCommand =

new OdbcCommand("DROP TABLE IF EXISTS my_odbc_net",
MyConnection);

MyCommand.ExecuteNonQuery();
MyCommand.CommandText =

"CREATE TABLE my_odbc_net(id int, name varchar(20), idb bigint)";
MyCommand.ExecuteNonQuery();

//Insert
MyCommand.CommandText =

"INSERT INTO my_odbc_net VALUES(10,'venu', 300)";
Console.WriteLine("INSERT, Total rows affected:" +

MyCommand.ExecuteNonQuery());;

//Insert
MyCommand.CommandText =

"INSERT INTO my_odbc_net VALUES(20,'mysql',400)";
Console.WriteLine("INSERT, Total rows affected:" +

MyCommand.ExecuteNonQuery());

//Insert
MyCommand.CommandText =

"INSERT INTO my_odbc_net VALUES(20,'mysql',500)";
Console.WriteLine("INSERT, Total rows affected:" +

MyCommand.ExecuteNonQuery());

//Update
MyCommand.CommandText =

"UPDATE my_odbc_net SET id=999 WHERE id=20";
Console.WriteLine("Update, Total rows affected:" +

MyCommand.ExecuteNonQuery());

Connectors

1348

//COUNT(*)
MyCommand.CommandText =

"SELECT COUNT(*) as TRows FROM my_odbc_net";
Console.WriteLine("Total Rows:" +

MyCommand.ExecuteScalar());

//Fetch
MyCommand.CommandText = "SELECT * FROM my_odbc_net";
OdbcDataReader MyDataReader;
MyDataReader = MyCommand.ExecuteReader();
while (MyDataReader.Read())

{
if(string.Compare(MyConnection.Driver,"myodbc3.dll") == 0) {

//Supported only by MyODBC 3.51
Console.WriteLine("Data:" + MyDataReader.GetInt32(0) + " " +

MyDataReader.GetString(1) + " " +
MyDataReader.GetInt64(2));

}
else {

//BIGINTs not supported by MyODBC
Console.WriteLine("Data:" + MyDataReader.GetInt32(0) + " " +

MyDataReader.GetString(1) + " " +
MyDataReader.GetInt32(2));

}
}

//Close all resources
MyDataReader.Close();
MyConnection.Close();

}
catch (OdbcException MyOdbcException) //Catch any ODBC exception ..
{

for (int i=0; i < MyOdbcException.Errors.Count; i++)
{
Console.Write("ERROR #" + i + "\n" +

"Message: " +
MyOdbcException.Errors[i].Message + "\n" +
"Native: " +
MyOdbcException.Errors[i].NativeError.ToString() + "\n" +
"Source: " +
MyOdbcException.Errors[i].Source + "\n" +
"SQL: " +
MyOdbcException.Errors[i].SQLState + "\n");

}
}

}
}

}

23.1.4.4.2.2. Using MyODBC with ODBC.NET and Visual Basic

The following sample creates a table my_vb_net and demonstrates the use in VB.

' @sample : myvb.vb
' @purpose : Demo sample for ODBC.NET using MyODBC
' @author : Venu, <myodbc@lists.mysql.com>
'
' (C) Copyright MySQL AB, 1995-2006
'
'

'
' build command
'
' vbc /target:exe
' /out:myvb.exe
' /r:Microsoft.Data.Odbc.dll
' /r:System.dll
' /r:System.Data.dll
'

Imports Microsoft.Data.Odbc
Imports System

Module myvb
Sub Main()
Try

Connectors

1349

'MyODBC 3.51 connection string
Dim MyConString As String = "DRIVER={MySQL ODBC 3.51 Driver};" & _
"SERVER=localhost;" & _
"DATABASE=test;" & _
"UID=venu;" & _
"PASSWORD=venu;" & _
"OPTION=3;"

'Connection
Dim MyConnection As New OdbcConnection(MyConString)
MyConnection.Open()

Console.WriteLine("Connection State::" & MyConnection.State.ToString)

'Drop
Console.WriteLine("Dropping table")
Dim MyCommand As New OdbcCommand()
MyCommand.Connection = MyConnection
MyCommand.CommandText = "DROP TABLE IF EXISTS my_vb_net"
MyCommand.ExecuteNonQuery()

'Create
Console.WriteLine("Creating....")
MyCommand.CommandText = "CREATE TABLE my_vb_net(id int, name varchar(30))"
MyCommand.ExecuteNonQuery()

'Insert
MyCommand.CommandText = "INSERT INTO my_vb_net VALUES(10,'venu')"
Console.WriteLine("INSERT, Total rows affected:" & _
MyCommand.ExecuteNonQuery())

'Insert
MyCommand.CommandText = "INSERT INTO my_vb_net VALUES(20,'mysql')"
Console.WriteLine("INSERT, Total rows affected:" & _
MyCommand.ExecuteNonQuery())

'Insert
MyCommand.CommandText = "INSERT INTO my_vb_net VALUES(20,'mysql')"
Console.WriteLine("INSERT, Total rows affected:" & _
MyCommand.ExecuteNonQuery())

'Insert
MyCommand.CommandText = "INSERT INTO my_vb_net(id) VALUES(30)"
Console.WriteLine("INSERT, Total rows affected:" & _

MyCommand.ExecuteNonQuery())

'Update
MyCommand.CommandText = "UPDATE my_vb_net SET id=999 WHERE id=20"
Console.WriteLine("Update, Total rows affected:" & _
MyCommand.ExecuteNonQuery())

'COUNT(*)
MyCommand.CommandText = "SELECT COUNT(*) as TRows FROM my_vb_net"
Console.WriteLine("Total Rows:" & MyCommand.ExecuteScalar())

'Select
Console.WriteLine("Select * FROM my_vb_net")
MyCommand.CommandText = "SELECT * FROM my_vb_net"
Dim MyDataReader As OdbcDataReader
MyDataReader = MyCommand.ExecuteReader
While MyDataReader.Read
If MyDataReader("name") Is DBNull.Value Then

Console.WriteLine("id = " & _
CStr(MyDataReader("id")) & " name = " & _
"NULL")

Else
Console.WriteLine("id = " & _
CStr(MyDataReader("id")) & " name = " & _
CStr(MyDataReader("name")))

End If
End While

'Catch ODBC Exception
Catch MyOdbcException As OdbcException

Dim i As Integer
Console.WriteLine(MyOdbcException.ToString)

'Catch program exception
Catch MyException As Exception

Console.WriteLine(MyException.ToString)
End Try

Connectors

1350

End Sub

23.1.5. MyODBC Reference
This section provides reference material for the MyODBC API, showing supported functions and meth-
ods, supported MySQL column types and the corresponding native type in MyODBC, and the error
codes returned by MyODBC when a fault occurs.

23.1.5.1. MyODBC API Reference

This section summarizes ODBC routines, categorized by functionality.

For the complete ODBC API reference, please refer to the ODBC Programer's Reference at ht-
tp://msdn.microsoft.com/library/en-us/odbc/htm/odbcabout_this_manual.asp.

An application can call SQLGetInfo function to obtain conformance information about MyODBC. To
obtain information about support for a specific function in the driver, an application can call SQLGet-
Functions.

Note: For backward compatibility, the MyODBC 3.51 driver supports all deprecated functions.

The following tables list MyODBC API calls grouped by task:

Connecting to a data source:

MyODBC

Function name 2.50 3.51 Standard Purpose

SQLAllocHandle No Yes ISO 92 Obtains an environment, connection, statement, or
descriptor handle.

SQLConnect Yes Yes ISO 92 Connects to a specific driver by data source name,
user ID, and password.

SQLDriverConnect Yes Yes ODBC Connects to a specific driver by connection string
or requests that the Driver Manager and driver dis-
play connection dialog boxes for the user.

SQLAllocEnv Yes Yes Deprecated Obtains an environment handle allocated from
driver.

SQLAllocConnect Yes Yes Deprecated Obtains a connection handle

Obtaining information about a driver and data source:

MyODBC

Function name 2.50 3.51 Standard Purpose

SQLDataSources No No ISO 92 Returns the list of available data sources, handled
by the Driver Manager

SQLDrivers No No ODBC Returns the list of installed drivers and their attrib-
utes, handles by Driver Manager

SQLGetInfo Yes Yes ISO 92 Returns information about a specific driver and
data source.

SQLGetFunctions Yes Yes ISO 92 Returns supported driver functions.

SQLGetTypeInfo Yes Yes ISO 92 Returns information about supported data types.

Connectors

1351

http://msdn.microsoft.com/library/en-us/odbc/htm/odbcabout_this_manual.asp
http://msdn.microsoft.com/library/en-us/odbc/htm/odbcabout_this_manual.asp

Setting and retrieving driver attributes:

MyODBC

Function name 2.50 3.51 Standard Purpose

SQLSetConnectAttr No Yes ISO 92 Sets a connection attribute.

SQLGetConnectAttr No Yes ISO 92 Returns the value of a connection attribute.

SQLSetConnectOp-
tion

Yes Yes Deprecated Sets a connection option

SQLGetConnectOp-
tion

Yes Yes Deprecated Returns the value of a connection option

SQLSetEnvAttr No Yes ISO 92 Sets an environment attribute.

SQLGetEnvAttr No Yes ISO 92 Returns the value of an environment attribute.

SQLSetStmtAttr No Yes ISO 92 Sets a statement attribute.

SQLGetStmtAttr No Yes ISO 92 Returns the value of a statement attribute.

SQLSetStmtOption Yes Yes Deprecated Sets a statement option

SQLGetStmtOption Yes Yes Deprecated Returns the value of a statement option

Preparing SQL requests:

MyODBC

Function name 2.50 3.51 Standard Purpose

SQLAllocStmt Yes Yes Deprecated Allocates a statement handle

SQLPrepare Yes Yes ISO 92 Prepares an SQL statement for later execution.

SQLBindParameter Yes Yes ODBC Assigns storage for a parameter in an SQL state-
ment.

SQLGetCursorName Yes Yes ISO 92 Returns the cursor name associated with a state-
ment handle.

SQLSetCursorName Yes Yes ISO 92 Specifies a cursor name.

SQLSetScrollOp-
tions

Yes Yes ODBC Sets options that control cursor behavior.

Submitting requests:

MyODBC

Function name 2.50 3.51 Standard Purpose

SQLExecute Yes Yes ISO 92 Executes a prepared statement.

SQLExecDirect Yes Yes ISO 92 Executes a statement

SQLNativeSql Yes Yes ODBC Returns the text of an SQL statement as translated
by the driver.

SQLDescribeParam Yes Yes ODBC Returns the description for a specific parameter in
a statement.

SQLNumParams Yes Yes ISO 92 Returns the number of parameters in a statement.

SQLParamData Yes Yes ISO 92 Used in conjunction with SQLPutData to supply
parameter data at execution time. (Useful for long
data values.)

Connectors

1352

SQLPutData Yes Yes ISO 92 Sends part or all of a data value for a parameter.
(Useful for long data values.)

Retrieving results and information about results:

MyODBC

Function name 2.50 3.51 Standard Purpose

SQLRowCount Yes Yes ISO 92 Returns the number of rows affected by an insert,
update, or delete request.

SQLNumResultCols Yes Yes ISO 92 Returns the number of columns in the result set.

SQLDescribeCol Yes Yes ISO 92 Describes a column in the result set.

SQLColAttribute No Yes ISO 92 Describes attributes of a column in the result set.

SQLColAttributes Yes Yes Deprecated Describes attributes of a column in the result set.

SQLFetch Yes Yes ISO 92 Returns multiple result rows.

SQLFetchScroll No Yes ISO 92 Returns scrollable result rows.

SQLExtendedFetch Yes Yes Deprecated Returns scrollable result rows.

SQLSetPos Yes Yes ODBC Positions a cursor within a fetched block of data
and allows an application to refresh data in the
rowset or to update or delete data in the result set.

SQLBulkOperations No Yes ODBC Performs bulk insertions and bulk bookmark oper-
ations, including update, delete, and fetch by book-
mark.

Retrieving error or diagnostic information:

MyODBC

Function name 2.50 3.51 Standard Purpose

SQLError Yes Yes Deprecated Returns additional error or status information

SQLGetDiagField Yes Yes ISO 92 Returns additional diagnostic information (a single
field of the diagnostic data structure).

SQLGetDiagRec Yes Yes ISO 92 Returns additional diagnostic information
(multiple fields of the diagnostic data structure).

Obtaining information about the data source's system tables (catalog functions) item:

MyODBC

Function name 2.50 3.51 Standard Purpose

SQLColumnPriv-
ileges

Yes Yes ODBC Returns a list of columns and associated privileges
for one or more tables.

SQLColumns Yes Yes X/Open Returns the list of column names in specified
tables.

SQLForeignKeys Yes Yes ODBC Returns a list of column names that make up for-
eign keys, if they exist for a specified table.

SQLPrimaryKeys Yes Yes ODBC Returns the list of column names that make up the
primary key for a table.

SQLSpecialColumns Yes Yes X/Open Returns information about the optimal set of

Connectors

1353

columns that uniquely identifies a row in a spe-
cified table, or the columns that are automatically
updated when any value in the row is updated by a
transaction.

SQLStatistics Yes Yes ISO 92 Returns statistics about a single table and the list of
indexes associated with the table.

SQLTablePriv-
ileges

Yes Yes ODBC Returns a list of tables and the privileges associ-
ated with each table.

SQLTables Yes Yes X/Open Returns the list of table names stored in a specific
data source.

Performing transactions:

MyODBC

Function name 2.50 3.51 Standard Purpose

SQLTransact Yes Yes Deprecated Commits or rolls back a transaction

SQLEndTran No Yes ISO 92 Commits or rolls back a transaction.

Terminating a statement:

MyODBC

Function name 2.50 3.51 Standard Purpose

SQLFreeStmt Yes Yes ISO 92 Ends statement processing, discards pending res-
ults, and, optionally, frees all resources associated
with the statement handle.

SQLCloseCursor Yes Yes ISO 92 Closes a cursor that has been opened on a state-
ment handle.

SQLCancel Yes Yes ISO 92 Cancels an SQL statement.

Terminating a connection:

MyODBC

Function name 2.50 3.51 Standard Purpose

SQLDisconnect Yes Yes ISO 92 Closes the connection.

SQLFreeHandle No Yes ISO 92 Releases an environment, connection, statement, or
descriptor handle.

SQLFreeConnect Yes Yes Deprecated Releases connection handle

SQLFreeEnv Yes Yes Deprecated Releases an environment handle

23.1.5.2. MyODBC Data Types

The following table illustrates how driver maps the server data types to default SQL and C data types:

Native Value SQL Type C Type

bit SQL_BIT SQL_C_BIT

tinyint SQL_TINYINT SQL_C_STINYINT

Connectors

1354

tinyint unsigned SQL_TINYINT SQL_C_UTINYINT

bigint SQL_BIGINT SQL_C_SBIGINT

bigint unsigned SQL_BIGINT SQL_C_UBIGINT

long varbinary SQL_LONGVARBINARY SQL_C_BINARY

blob SQL_LONGVARBINARY SQL_C_BINARY

longblob SQL_LONGVARBINARY SQL_C_BINARY

tinyblob SQL_LONGVARBINARY SQL_C_BINARY

mediumblob SQL_LONGVARBINARY SQL_C_BINARY

long varchar SQL_LONGVARCHAR SQL_C_CHAR

text SQL_LONGVARCHAR SQL_C_CHAR

mediumtext SQL_LONGVARCHAR SQL_C_CHAR

char SQL_CHAR SQL_C_CHAR

numeric SQL_NUMERIC SQL_C_CHAR

decimal SQL_DECIMAL SQL_C_CHAR

integer SQL_INTEGER SQL_C_SLONG

integer unsigned SQL_INTEGER SQL_C_ULONG

int SQL_INTEGER SQL_C_SLONG

int unsigned SQL_INTEGER SQL_C_ULONG

mediumint SQL_INTEGER SQL_C_SLONG

mediumint unsigned SQL_INTEGER SQL_C_ULONG

smallint SQL_SMALLINT SQL_C_SSHORT

smallint unsigned SQL_SMALLINT SQL_C_USHORT

real SQL_FLOAT SQL_C_DOUBLE

double SQL_FLOAT SQL_C_DOUBLE

float SQL_REAL SQL_C_FLOAT

double precision SQL_DOUBLE SQL_C_DOUBLE

date SQL_DATE SQL_C_DATE

time SQL_TIME SQL_C_TIME

year SQL_SMALLINT SQL_C_SHORT

datetime SQL_TIMESTAMP SQL_C_TIMESTAMP

timestamp SQL_TIMESTAMP SQL_C_TIMESTAMP

text SQL_VARCHAR SQL_C_CHAR

varchar SQL_VARCHAR SQL_C_CHAR

enum SQL_VARCHAR SQL_C_CHAR

set SQL_VARCHAR SQL_C_CHAR

bit SQL_CHAR SQL_C_CHAR

bool SQL_CHAR SQL_C_CHAR

23.1.5.3. MyODBC Error Codes

The following tables lists the error codes returned by the driver apart from the server errors.

Connectors

1355

Native
Code

SQLSTATE 2 SQLSTATE 3 Error Message

500 01000 01000 General warning

501 01004 01004 String data, right truncated

502 01S02 01S02 Option value changed

503 01S03 01S03 No rows updated/deleted

504 01S04 01S04 More than one row updated/deleted

505 01S06 01S06 Attempt to fetch before the result set returned the first row
set

506 07001 07002 SQLBindParameter not used for all parameters

507 07005 07005 Prepared statement not a cursor-specification

508 07009 07009 Invalid descriptor index

509 08002 08002 Connection name in use

510 08003 08003 Connection does not exist

511 24000 24000 Invalid cursor state

512 25000 25000 Invalid transaction state

513 25S01 25S01 Transaction state unknown

514 34000 34000 Invalid cursor name

515 S1000 HY000 General driver defined error

516 S1001 HY001 Memory allocation error

517 S1002 HY002 Invalid column number

518 S1003 HY003 Invalid application buffer type

519 S1004 HY004 Invalid SQL data type

520 S1009 HY009 Invalid use of null pointer

521 S1010 HY010 Function sequence error

522 S1011 HY011 Attribute can not be set now

523 S1012 HY012 Invalid transaction operation code

524 S1013 HY013 Memory management error

525 S1015 HY015 No cursor name available

526 S1024 HY024 Invalid attribute value

527 S1090 HY090 Invalid string or buffer length

528 S1091 HY091 Invalid descriptor field identifier

529 S1092 HY092 Invalid attribute/option identifier

530 S1093 HY093 Invalid parameter number

531 S1095 HY095 Function type out of range

532 S1106 HY106 Fetch type out of range

533 S1117 HY117 Row value out of range

534 S1109 HY109 Invalid cursor position

535 S1C00 HYC00 Optional feature not implemented

0 21S01 21S01 Column count does not match value count

0 23000 23000 Integrity constraint violation

0 42000 42000 Syntax error or access violation

Connectors

1356

0 42S02 42S02 Base table or view not found

0 42S12 42S12 Index not found

0 42S21 42S21 Column already exists

0 42S22 42S22 Column not found

0 08S01 08S01 Communication link failure

23.1.6. MyODBC Notes and Tips
Here are some common notes and tips for using MyODBC within different environments, applications
and tools. The notes provided here are based on the experiences of MyODBC developers and users.

23.1.6.1. MyODBC General Functionality

This section provides help with common queries and areas of functionality in MySQL and how to use
them with MyODBC.

23.1.6.1.1. Obtaining Auto-Increment Values

Obtaining the value of column that uses AUTO_INCREMENT after an INSERT statement can be
achieved in a number of different ways. To obtain the value immediately after an INSERT, use a SE-
LECT query with the LAST_INSERT_ID() function.

For example, using MyODBC you would execute two separate statements, the INSERT statement and
the SELECT query to obtain the auto-increment value.

INSERT INTO tbl (auto,text) VALUES(NULL,'text');
SELECT LAST_INSERT_ID();

If you do not require the value within your application, but do require the value as part of another IN-
SERT, the entire process can be handled by executing the following statements:

INSERT INTO tbl (auto,text) VALUES(NULL,'text');
INSERT INTO tbl2 (id,text) VALUES(LAST_INSERT_ID(),'text');

Certain ODBC applications (including Delphi and Access) may have trouble obtaining the auto-in-
crement value using the previous examples. In this case, try the following statement as an alternative:

SELECT * FROM tbl WHERE auto IS NULL;

See Section 22.2.13.3, “How to Get the Unique ID for the Last Inserted Row”.

23.1.6.1.2. Dynamic Cursor Support

Support for the dynamic cursor is provided in MyODBC 3.51, but dynamic cursors are not enabled
by default. You can enable this function within Windows by selecting the Enable Dynamic Curs-
or checkbox within the ODBC Data Source Administrator.

On other platforms, you can enable the dynamic cursor by adding 32 to the OPTION value when creat-
ing the DSN.

23.1.6.1.3. MyODBC Performance

The MyODBC driver has been optimized to provide very fast performance. If you experience problems
with the performance of MyODBC, or notice a large amount of disk activity for simple queries, there are

Connectors

1357

a number of aspects you should check:

• Ensure that ODBC Tracing is not enabled. With tracing enabled, a lot of information is recorded
in the tracing file by the ODBC Manager. You can check, and disable, tracing within Windows using
the Tracing panel of the ODBC Data Source Administrator. Within Mac OS X, check the Tra-
cing panel of ODBC Administrator. See Section 23.1.3.8, “Getting an ODBC Trace File”.

• Make sure you are using the standard version of the driver, and not the debug version. The debug
version includes additional checks and reporting measures.

• Disable the MyODBC driver trace and query logs. These options are enabled for each DSN, so make
sure to examine only the DSN that you are using in your application. Within Windows, you can dis-
able the MyODBC and query logs by modifying the DSN configuration. Within Mac OS X and
Unix, ensure that the driver trace (option value 4) and query logging (option value 524288) are not
enabled.

23.1.6.1.4. Setting ODBC Query Timeout in Windows

For more information on how to set the query timeout on Microsoft Windows when executing queries
through an ODBC connection, read the Microsoft knowledgebase document at ht-
tp://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B153756.

23.1.6.2. MyODBC Application Specific Tips

Most programs should work with MyODBC, but for each of those listed here, there are specific notes
and tips to improve or enhance the way you work with MyODBC and these applications.

With all applications you should ensure that you are using the latest MyODBC drivers, ODBC Manager
and any supporting libraries and interfaces used by your application. For example, on Windows, using
the latest version of Microsoft Data Access Components (MDAC) will improve the compatibility with
ODBC in general, and with the MyODBC driver.

23.1.6.2.1. Using MyODBC with Microsoft Applications

The majority of Microsoft applications have been tested with MyODBC, including Microsoft Office,
Microsoft Access and the various programming languages supported within ASP and Microsoft Visual
Studio.

If you have problem with MyODBC and your program also works with OLEDB, you should try the
OLEDB driver.

23.1.6.2.1.1. Microsoft Access

To improve the integration between Microsoft Access and MySQL through MyODBC:

• For all versions of Access, you should enable the MyODBC Return matching rows option.
For Access 2.0, you should additionally enable the Simulate ODBC 1.0 option.

• You should have a TIMESTAMP column in all tables that you want to be able to update. For maxim-
um portability, don't use a length specification in the column declaration (which is unsupported with-
in MySQL in versions earlier than 4.1).

• You should have a primary key in each MySQL table you want to use with Access. If not, new or
updated rows may show up as #DELETED#.

Connectors

1358

http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B153756
http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B153756

• Use only DOUBLE float fields. Access fails when comparing with single-precision floats. The symp-
tom usually is that new or updated rows may show up as #DELETED# or that you can't find or up-
date rows.

• If you are using MyODBC to link to a table that has a BIGINT column, the results are displayed as
#DELETED#. The work around solution is:

• Have one more dummy column with TIMESTAMP as the data type.

• Select the Change BIGINT columns to INT option in the connection dialog in ODBC
DSN Administrator.

• Delete the table link from Access and re-create it.

Old records may still display as #DELETED#, but newly added/updated records are displayed prop-
erly.

• If you still get the error Another user has changed your data after adding a
TIMESTAMP column, the following trick may help you:

Don't use a table data sheet view. Instead, create a form with the fields you want, and use that
form data sheet view. You should set the DefaultValue property for the TIMESTAMP column
to NOW(). It may be a good idea to hide the TIMESTAMP column from view so your users are not
confused.

• In some cases, Access may generate SQL statements that MySQL can't understand. You can fix this
by selecting "Query|SQLSpecific|Pass-Through" from the Access menu.

• On Windows NT, Access reports BLOB columns as OLE OBJECTS. If you want to have MEMO
columns instead, you should change BLOB columns to TEXT with ALTER TABLE.

• Access can't always handle the MySQL DATE column properly. If you have a problem with these,
change the columns to DATETIME.

• If you have in Access a column defined as BYTE, Access tries to export this as TINYINT instead of
TINYINT UNSIGNED. This gives you problems if you have values larger than 127 in the column.

• If you have very large (long) tables in Access, it might take a very long time to open them. Or you
might run low on virtual memory and eventually get an ODBC Query Failed error and the table
cannot open. To deal with this, select the following options:

• Return Matching Rows (2)

• Allow BIG Results (8).

These add up to a value of 10 (OPTION=10).

Some external articles and tips that may be useful when using Access, ODBC and MyODBC:

• Read How to Trap ODBC Login Error Messages in Access
[http://support.microsoft.com/support/kb/articles/Q124/9/01.asp?LN=EN-US&SD=gn&FR=0%3CP
%3E]

• Optimizing Access ODBC Applications

• Optimizing for Client/Server Performance
[http://support.microsoft.com/default.aspx?scid=kb;en-us;128808]

Connectors

1359

http://support.microsoft.com/support/kb/articles/Q124/9/01.asp?LN=EN-US&SD=gn&FR=0%3CP%3E
http://support.microsoft.com/default.aspx?scid=kb;en-us;128808

• Tips for Converting Applications to Using ODBCDirect
[http://support.microsoft.com/default.aspx?scid=kb;en-us;164481]

• Tips for Optimizing Queries on Attached SQL Tables
[http://support.microsoft.com/default.aspx?scid=kb;EN-US;q99321]

• For a list of tools that can be used with Access and ODBC data sources, refer to converters
[http://www.mysql.com/portal/software/convertors/] section for list of available tools.

23.1.6.2.1.2. Microsoft Excel and Column Types

If you have problems importing data into Microsoft Excel, particularly numerical, date, and time values,
this is probably because of a bug in Excel, where the column type of the source data is used to determine
the data type when that data is inserted into a cell within the worksheet. The result is that Excel incor-
rectly identifies the content and this affects both the display format and the data when it is used within
calculations.

To address this issue, use the CONCAT() function in your queries. The use of CONCAT() forces Excel
to treat the value as a string, which Excel will then parse and usually correctly identify the embedded in-
formation.

However, even with this option, some data may be incorrectly formatted, even though the source data
remains unchanged. Use the Format Cells option within Excel to change the format of the displayed
information.

23.1.6.2.1.3. Microsoft Visual Basic

To be able to update a table, you must define a primary key for the table.

Visual Basic with ADO can't handle big integers. This means that some queries like SHOW PROCESS-
LIST do not work properly. The fix is to use OPTION=16384 in the ODBC connect string or to select
the Change BIGINT columns to INT option in the MyODBC connect screen. You may also
want to select the Return matching rows option.

23.1.6.2.1.4. Microsoft Visual InterDev

If you have a BIGINT in your result, you may get the error [Microsoft][ODBC Driver Man-
ager] Driver does not support this parameter. Try selecting the Change BIGINT
columns to INT option in the MyODBC connect screen.

23.1.6.2.1.5. Visual Objects

You should select the Don't optimize column widths option.

23.1.6.2.1.6. Microsoft ADO

When you are coding with the ADO API and MyODBC, you need to pay attention to some default prop-
erties that aren't supported by the MySQL server. For example, using the CursorLocation Prop-
erty as adUseServer returns a result of –1 for the RecordCount Property. To have the right
value, you need to set this property to adUseClient, as shown in the VB code here:

Dim myconn As New ADODB.Connection
Dim myrs As New Recordset
Dim mySQL As String
Dim myrows As Long

myconn.Open "DSN=MyODBCsample"
mySQL = "SELECT * from user"
myrs.Source = mySQL
Set myrs.ActiveConnection = myconn

Connectors

1360

http://support.microsoft.com/default.aspx?scid=kb;en-us;164481
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q99321
http://www.mysql.com/portal/software/convertors/

myrs.CursorLocation = adUseClient
myrs.Open
myrows = myrs.RecordCount

myrs.Close
myconn.Close

Another workaround is to use a SELECT COUNT(*) statement for a similar query to get the correct
row count.

To find the number of rows affected by a specific SQL statement in ADO, use the RecordsAf-
fected property in the ADO execute method. For more information on the usage of execute method,
refer to ht-
tp://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/mdmthcnnexecute.asp.

For information, see ActiveX Data Objects(ADO) Frequently Asked Questions
[http://support.microsoft.com/default.aspx?scid=kb;EN-US;q183606].

23.1.6.2.1.7. Using MyODBC with Active Server Pages (ASP)

You should select the Return matching rows option in the DSN.

For more information about how to access MySQL via ASP using MyODBC, refer to the following art-
icles:

• Using MyODBC To Access Your MySQL Database Via ASP
[http://www.devarticles.com/c/a/ASP/Using-MyODBC-To-Access-Your-MySQL-Database-Via-AS
P/]

• ASP and MySQL at DWAM.NT [http://www.dwam.net/mysql/asp_myodbc.asp]

A Frequently Asked Questions list for ASP can be found at ht-
tp://support.microsoft.com/default.aspx?scid=/Support/ActiveServer/faq/data/adofaq.asp.

23.1.6.2.1.8. Using MyODBC with Visual Basic (ADO, DAO and RDO) and ASP

Some articles that may help with Visual Basic and ASP:

• MySQL BLOB columns and Visual Basic 6
[http://dev.mysql.com/tech-resources/articles/vb-blob-handling.html] by Mike Hillyer
(<mike@openwin.org>).

• How to map Visual basic data type to MySQL types
[http://dev.mysql.com/tech-resources/articles/visual-basic-datatypes.html] by Mike Hillyer
(<mike@openwin.org>).

23.1.6.2.2. Using MyODBC with Borland Applications

With all Borland applications where the Borland Database Engine (BDE) is used, follow these steps to
improve compatibility:

• Update to BDE 3.2 or newer.

• Enable the Don't optimize column widths option in the DSN.

Connectors

1361

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/mdmthcnnexecute.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/mdmthcnnexecute.asp
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q183606
http://www.devarticles.com/c/a/ASP/Using-MyODBC-To-Access-Your-MySQL-Database-Via-ASP/
http://www.dwam.net/mysql/asp_myodbc.asp
http://support.microsoft.com/default.aspx?scid=/Support/ActiveServer/faq/data/adofaq.asp
http://support.microsoft.com/default.aspx?scid=/Support/ActiveServer/faq/data/adofaq.asp
http://dev.mysql.com/tech-resources/articles/vb-blob-handling.html
http://dev.mysql.com/tech-resources/articles/visual-basic-datatypes.html

• Enabled the Return matching rows option in the DSN.

23.1.6.2.2.1. Using MyODBC with Borland Builder 4

When you start a query, you can use the Active property or the Open method. Note that Active
starts by automatically issuing a SELECT * FROM ... query. That may not be a good thing if your
tables are large.

23.1.6.2.2.2. Using MyODBC with Delphi

Also, here is some potentially useful Delphi code that sets up both an ODBC entry and a BDE entry for
MyODBC. The BDE entry requires a BDE Alias Editor that is free at a Delphi Super Page near you.
(Thanks to Bryan Brunton <bryan@flesherfab.com> for this):

fReg:= TRegistry.Create;
fReg.OpenKey('\Software\ODBC\ODBC.INI\DocumentsFab', True);
fReg.WriteString('Database', 'Documents');
fReg.WriteString('Description', ' ');
fReg.WriteString('Driver', 'C:\WINNT\System32\myodbc.dll');
fReg.WriteString('Flag', '1');
fReg.WriteString('Password', '');
fReg.WriteString('Port', ' ');
fReg.WriteString('Server', 'xmark');
fReg.WriteString('User', 'winuser');
fReg.OpenKey('\Software\ODBC\ODBC.INI\ODBC Data Sources', True);
fReg.WriteString('DocumentsFab', 'MySQL');
fReg.CloseKey;
fReg.Free;

Memo1.Lines.Add('DATABASE NAME=');
Memo1.Lines.Add('USER NAME=');
Memo1.Lines.Add('ODBC DSN=DocumentsFab');
Memo1.Lines.Add('OPEN MODE=READ/WRITE');
Memo1.Lines.Add('BATCH COUNT=200');
Memo1.Lines.Add('LANGDRIVER=');
Memo1.Lines.Add('MAX ROWS=-1');
Memo1.Lines.Add('SCHEMA CACHE DIR=');
Memo1.Lines.Add('SCHEMA CACHE SIZE=8');
Memo1.Lines.Add('SCHEMA CACHE TIME=-1');
Memo1.Lines.Add('SQLPASSTHRU MODE=SHARED AUTOCOMMIT');
Memo1.Lines.Add('SQLQRYMODE=');
Memo1.Lines.Add('ENABLE SCHEMA CACHE=FALSE');
Memo1.Lines.Add('ENABLE BCD=FALSE');
Memo1.Lines.Add('ROWSET SIZE=20');
Memo1.Lines.Add('BLOBS TO CACHE=64');
Memo1.Lines.Add('BLOB SIZE=32');

AliasEditor.Add('DocumentsFab','MySQL',Memo1.Lines);

23.1.6.2.2.3. Using MyODBC with C++ Builder

Tested with BDE 3.0. The only known problem is that when the table schema changes, query fields are
not updated. BDE, however, does not seem to recognize primary keys, only the index named PRIMARY,
although this has not been a problem.

23.1.6.2.3. Using MyODBC with ColdFusion

The following information is taken from the ColdFusion documentation:

Use the following information to configure ColdFusion Server for Linux to use the unixODBC driver
with MyODBC for MySQL data sources. Allaire has verified that MyODBC 2.50.26 works with
MySQL 3.22.27 and ColdFusion for Linux. (Any newer version should also work.) You can download
MyODBC at http://dev.mysql.com/downloads/connector/odbc/.

ColdFusion version 4.5.1 allows you to us the ColdFusion Administrator to add the MySQL data source.
However, the driver is not included with ColdFusion version 4.5.1. Before the MySQL driver appears in

Connectors

1362

http://dev.mysql.com/downloads/connector/odbc/

the ODBC data sources drop-down list, you must build and copy the MyODBC driver to /
opt/coldfusion/lib/libmyodbc.so.

The Contrib directory contains the program mydsn-xxx.zip which allows you to build and remove
the DSN registry file for the MyODBC driver on ColdFusion applications.

For more information and guides on using ColdFusion and MyODBC, see the following external sites:

• Refer to MySQL ColdFusion unixODBC MyODBC and Solaris - how to succeed
[http://dbforums.com/showthread.php?threadid=174934]

• ColdFusion (on Solaris and NT with service pack 5), How-to: MySQL and ColdFusion
[http://www.njwtech.net/addons/coldfusion/mysql.html].

• Troubleshooting Data Sources and Database Connectivity for Unix Platforms
[http://www.macromedia.com/v1/handlers/index.cfm?ID=11328&Method=Full&PageCall=/support/
index.cfm].

23.1.6.2.4. Using MyODBC with OpenOffice

Open Office (http://www.openoffice.org) How-to: MySQL + OpenOffice
[http://dba.openoffice.org/proposals/MySQL_OOo.html]. How-to: OpenOffice + MyODBC + unixOD-
BC [http://www.unixodbc.org/doc/OOoMySQL.pdf].

23.1.6.2.5. Using MyODBC with Sambar Server

Sambar Server (http://www.sambarserver.info) How-to: MyODBC + SambarServer + MySQL
[http://www.sambarserver.info/article.php?sid=66].

23.1.6.2.6. Using MyODBC with Pervasive Software DataJunction

You have to change it to output VARCHAR rather than ENUM, as it exports the latter in a manner that
causes MySQL problems.

23.1.6.2.7. Using MyODBC with SunSystems Vision

You should select the Return matching rows option.

23.1.6.3. MyODBC Errors and Resolutions

The following section details some common errors and their suggested fix or alternative solution. If you
are still experiencing problems, use the MyODBC mailing list; see Section 23.1.7.1, “MyODBC Com-
munity Support”.

Many problems can be resolved by upgrading your MyODBC drivers to the latest available release. On
Windows, you should also make sure that you have the latest versions of the Microsoft Data Access
Components (MDAC) installed.

Questions

• 24.1.6.3.1: Are MyODBC 2.50 applications compatible with MyODBC 3.51?

• 24.1.6.3.2: I have installed MyODBC on Windows XP x64 Edition or Windows Server 2003 R2
x64. The installation completed successfully, but the MyODBC driver does not appear in ODBC
Data Source Administrator.

Connectors

1363

http://dbforums.com/showthread.php?threadid=174934
http://www.njwtech.net/addons/coldfusion/mysql.html
http://www.macromedia.com/v1/handlers/index.cfm?ID=11328&Method=Full&PageCall=/support/index.cfm
http://www.openoffice.org
http://dba.openoffice.org/proposals/MySQL_OOo.html
http://www.sambarserver.info
http://www.sambarserver.info/article.php?sid=66

• 24.1.6.3.3: When connecting or using the Test button in ODBC Data Source Adminis-
trator I get error 10061 (Cannot connect to server)

• 24.1.6.3.4: The following error is reported when using transactions: Transactions are not
enabled

• 24.1.6.3.5: The following error is reported when I submit a query: Cursor not found

• 24.1.6.3.6: Access reports records as #DELETED# when inserting or updating records in linked
tables.

• 24.1.6.3.7: How do I handle Write Conflicts or Row Location errors?

• 24.1.6.3.8: Exporting data from Access 97 to MySQL reports a Syntax Error.

• 24.1.6.3.9: Exporting data from Microsoft DTS to MySQL reports a Syntax Error.

• 24.1.6.3.10: Using ODBC.NET with MyODBC, while fetching empty string (0 length), it starts giv-
ing the SQL_NO_DATA exception.

• 24.1.6.3.11: Using SELECT COUNT(*) FROM tbl_name within Visual Basic and ASP returns
an error.

• 24.1.6.3.12: Using the AppendChunk() or GetChunk() ADO methods, the Multiple-step
operation generated errors. Check each status value error is returned.

• 24.1.6.3.13: Access Returns Another user had modified the record that you
have modified while editing records on a Linked Table.

Questions and Answers

24.1.6.3.1: Are MyODBC 2.50 applications compatible with MyODBC 3.51?

Applications based on MyODBC 2.50 should work fine with MyODBC 3.51 and later versions. If you
find something is not working with the latest version of MyODBC which previously worked under an
earlier version, please file a bug report. See Section 23.1.7.2, “How to Report MyODBC Problems or
Bugs”.

24.1.6.3.2: I have installed MyODBC on Windows XP x64 Edition or Windows Server 2003 R2
x64. The installation completed successfully, but the MyODBC driver does not appear in ODBC
Data Source Administrator.

This is not a bug, but is related to the way Windows x64 editions operate with the ODBC driver. On
Windows x64 editions, the MyODBC driver is installed in the %SystemRoot%\SysWOW64 folder.
However, the default ODBC Data Source Administrator that is available through the Admin-
istrative Tools or Control Panel in Windows x64 Editions is located in the
%SystemRoot%\system32 folder, and only searches this folder for ODBC drivers.

On Windowx x64 editions, you should use the ODBC administration tool located at
%SystemRoot%\SysWOW64\odbcad32.exe, this will correctly locate the installed MyODBC
drivers and enable you to create a MyODBC DSN.

This issue was originally reported as Bug#20301 [http://bugs.mysql.com/20301].

24.1.6.3.3: When connecting or using the Test button in ODBC Data Source Administrat-
or I get error 10061 (Cannot connect to server)

This error can be raised by a number of different issues, including server problems, network problems,

Connectors

1364

http://bugs.mysql.com/20301

and firewall and port blocking problems. For more information, see Section A.2.2, “Can't connect
to [local] MySQL server”.

24.1.6.3.4: The following error is reported when using transactions: Transactions are not
enabled

This error indicates that you are trying to use transactions with a MySQL table that does not support
transactions. Transactions are supported within MySQL when using the InnoDB and BDB database en-
gines.

You should check the following before continuing:

• Verify that your MySQL server supports a transactional database engine. Use SHOW ENGINES to
obtain a list of the available engine types.

• Verify that the tables you are updating use a transaction database engine.

• Ensure that you have not enabled the disable transactions option in your DSN.

24.1.6.3.5: The following error is reported when I submit a query: Cursor not found

This occurs because the application is using the old MyODBC 2.50 version, and it did not set the cursor
name explicitly through SQLSetCursorName. The fix is to upgrade to MyODBC 3.51 version.

24.1.6.3.6: Access reports records as #DELETED# when inserting or updating records in linked
tables.

If the inserted or updated records are shown as #DELETED# in the access, then:

• If you are using Access 2000, you should get and install the newest (version 2.6 or higher) Microsoft
MDAC (Microsoft Data Access Components) from http://www.microsoft.com/data/.
This fixes a bug in Access that when you export data to MySQL, the table and column names aren't
specified. Another way to work around this bug is to upgrade to MyODBC 2.50.33 or higher and
MySQL 3.23.x or higher, which together provide a workaround for the problem.

You should also get and apply the Microsoft Jet 4.0 Service Pack 5 (SP5) which can be found at ht-
tp://support.microsoft.com/default.aspx?scid=kb;EN-US;q239114. This fixes some cases where
columns are marked as #DELETED# in Access.

Note: If you are using MySQL 3.22, you must apply the MDAC patch and use MyODBC 2.50.32 or
2.50.34 and up to work around this problem.

• For all versions of Access, you should enable the MyODBC Return matching rows option.
For Access 2.0, you should additionally enable the Simulate ODBC 1.0 option.

• You should have a timestamp in all tables that you want to be able to update..

• You should have a primary key in the table. If not, new or updated rows may show up as
#DELETED#.

• Use only DOUBLE float fields. Access fails when comparing with single-precision floats. The symp-
tom usually is that new or updated rows may show up as #DELETED# or that you can't find or up-
date rows.

• If you are using MyODBC to link to a table that has a BIGINT column, the results are displayed as
#DELETED. The work around solution is:

Connectors

1365

http://www.microsoft.com/data/
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q239114
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q239114

• Have one more dummy column with TIMESTAMP as the data type.

• Select the Change BIGINT columns to INT option in the connection dialog in ODBC
DSN Administrator.

• Delete the table link from Access and re-create it.

Old records still display as #DELETED#, but newly added/updated records are displayed properly.

24.1.6.3.7: How do I handle Write Conflicts or Row Location errors?

If you see the following errors, select the Return Matching Rows option in the DSN configuration
dialog, or specify OPTION=2, as the connection parameter:

Write Conflict. Another user has changed your data.

Row cannot be located for updating. Some values may have been changed
since it was last read.

24.1.6.3.8: Exporting data from Access 97 to MySQL reports a Syntax Error.

This error is specific to Access 97 and versions of MyODBC earlier than 3.51.02. Update to the latest
version of the MyODBC driver to resolve this problem.

24.1.6.3.9: Exporting data from Microsoft DTS to MySQL reports a Syntax Error.

This error occurs only with MySQL tables using the TEXT or VARCHAR data types. You can fix this er-
ror by upgrading your MyODBC driver to version 3.51.02 or higher.

24.1.6.3.10: Using ODBC.NET with MyODBC, while fetching empty string (0 length), it starts giv-
ing the SQL_NO_DATA exception.

You can get the patch that addresses this problem from ht-
tp://support.microsoft.com/default.aspx?scid=kb;EN-US;q319243.

24.1.6.3.11: Using SELECT COUNT(*) FROM tbl_name within Visual Basic and ASP returns
an error.

This error occurs because the COUNT(*) expression is returning a BIGINT, and ADO can't make sense
of a number this big. Select the Change BIGINT columns to INT option (option value 16384).

24.1.6.3.12: Using the AppendChunk() or GetChunk() ADO methods, the Multiple-step
operation generated errors. Check each status value error is returned.

The GetChunk() and AppendChunk() methods from ADO doesn't work as expected when the
cursor location is specified as adUseServer. On the other hand, you can overcome this error by using
adUseClient.

A simple example can be found from http://www.dwam.net/iishelp/ado/docs/adomth02_4.htm

24.1.6.3.13: Access Returns Another user had modified the record that you have
modified while editing records on a Linked Table.

In most cases, this can be solved by doing one of the following things:

• Add a primary key for the table if one doesn't exist.

Connectors

1366

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q319243
http://support.microsoft.com/default.aspx?scid=kb;EN-US;q319243
http://www.dwam.net/iishelp/ado/docs/adomth02_4.htm

• Add a timestamp column if one doesn't exist.

• Only use double-precision float fields. Some programs may fail when they compare single-precision
floats.

If these strategies don't help, you should start by making a log file from the ODBC manager (the log you
get when requesting logs from ODBCADMIN) and a MyODBC log to help you figure out why things
go wrong. For instructions, see Section 23.1.3.8, “Getting an ODBC Trace File”.

23.1.7. MyODBC Support
There are many different places where you can get support for using MyODBC. You should always try
the MyODBC Mailing List or MyODBC Forum. See Section 23.1.7.1, “MyODBC Community
Support”, for help before reporting a specific bug or issue to MySQL.

23.1.7.1. MyODBC Community Support

MySQL AB provides assistance to the user community by means of its mailing lists. For MyODBC-re-
lated issues, you can get help from experienced users by using the <myodbc@lists.mysql.com>
mailing list. Archives are available online at http://lists.mysql.com/myodbc.

For information about subscribing to MySQL mailing lists or to browse list archives, visit ht-
tp://lists.mysql.com/. See Section 1.7.1, “MySQL Mailing Lists”.

Community support from experienced users is also available through the MyODBC Forum
[http://forums.mysql.com/list.php?37]. You may also find help from other users in the other MySQL
Forums, located at http://forums.mysql.com. See Section 1.7.2, “MySQL Community Support at the
MySQL Forums”.

23.1.7.2. How to Report MyODBC Problems or Bugs

If you encounter difficulties or problems with MyODBC, you should start by making a log file from the
ODBC Manager (the log you get when requesting logs from ODBC ADMIN) and MyODBC. The pro-
cedure for doing this is described in Section 23.1.3.8, “Getting an ODBC Trace File”.

Check the MyODBC trace file to find out what could be wrong. You should be able to determine what
statements were issued by searching for the string >mysql_real_query in the myodbc.log file.

You should also try issuing the statements from the mysql client program or from admndemo. This
helps you determine whether the error is in MyODBC or MySQL.

If you find out something is wrong, please only send the relevant rows (maximum 40 rows) to the myo-
dbc mailing list. See Section 1.7.1, “MySQL Mailing Lists”. Please never send the whole MyODBC or
ODBC log file!

You should ideally include the following information with the email:

• Operating system and version

• MyODBC version

• ODBC Driver Manager type and version

• MySQL server version

• ODBC trace from Driver Manager

Connectors

1367

http://lists.mysql.com/myodbc
http://lists.mysql.com/
http://lists.mysql.com/
http://forums.mysql.com/list.php?37
http://forums.mysql.com

• MyODBC log file from MyODBC driver

• Simple reproducible sample

Remember that the more information you can supply to us, the more likely it is that we can fix the prob-
lem!

Also, before posting the bug, check the MyODBC mailing list archive at http://lists.mysql.com/myodbc.

If you are unable to find out what's wrong, the last option is to create an archive in tar or Zip format
that contains a MyODBC trace file, the ODBC log file, and a README file that explains the problem.
You can send this to ftp://ftp.mysql.com/pub/mysql/upload/. Only MySQL engineers have access to the
files you upload, and we are very discreet with the data.

If you can create a program that also demonstrates the problem, please include it in the archive as well.

If the program works with another SQL server, you should include an ODBC log file where you perform
exactly the same SQL statements so that we can compare the results between the two systems.

Remember that the more information you can supply to us, the more likely it is that we can fix the prob-
lem.

23.1.7.3. How to Submit a MyODBC Patch

You can send a patch or suggest a better solution for any existing code or problems by sending a mail
message to <myodbc@lists.mysql.com>.

23.1.7.4. MyODBC Change History

The MyODBC Change History (Changelog) is located with the main Changelog for MySQL. See Sec-
tion D.3, “MySQL Connector/ODBC (MyODBC) Change History”.

23.1.7.5. Credits

These are the developers that have worked on the MyODBC and MyODBC 3.51 Drivers from MySQL
AB.

• Michael (Monty) Widenius

• Venu Anuganti

• Peter Harvey

23.2. Connector/NET
Connector/NET enables developers to easily create .NET applications that require secure, high-
performance data connectivity with MySQL. It implements the required ADO.NET interfaces and integ-
rates into ADO.NET aware tools. Developers can build applications using their choice of .NET lan-
guages. Connector/NET is a fully managed ADO.NET driver written in 100% pure C#.

Connector/NET includes full support for:

• MySQL 5.0 features (such as stored procedures)

Connectors

1368

http://lists.mysql.com/myodbc
ftp://ftp.mysql.com/pub/mysql/upload/

• MySQL 4.1 features (server-side prepared statements, Unicode, and shared memory access, and so
forth)

• Large-packet support for sending and receiving rows and BLOBs up to 2 gigabytes in size.

• Protocol compression which allows for compressing the data stream between the client and server.

• Support for connecting using TCP/IP sockets, named pipes, or shared memory on Windows.

• Support for connecting using TCP/IP sockets or Unix sockets on Unix.

• Support for the Open Source Mono framework developed by Novell.

• Fully managed, does not utilize the MySQL client library.

This document is intended as a user's guide to Connector/NET and includes a full syntax reference. Syn-
tax information is also included within the Documentation.chm file included with the Connector/
NET distribution.

23.2.1. Connector/NET Versions
There is currently one version of the Connector/NET available:

• Connector/NET 1.0 includes support for MySQL 4.0, and MySQL 5.0 features, and full compatibil-
ity with the ADO.NET driver interface.

23.2.2. How to install Connector/NET
Connector/NET runs on any platform that supports the .NET framework. The .NET framework is
primarily supported on recent versions of Microsoft Windows, and is supported on Linux through the
Open Source Mono framework (see http://www.mono-project.com).

Connector/NET is available for download from http://dev.mysql.com/downloads/connector/net/1.0.html.

23.2.2.1. Installing Connector/NET on Windows

On Windows, installation is supported either through a binary installation process or by downloading a
Zip file with the Connector/NET components.

Before installing, you should ensure that your system is up to date, including installing the latest version
of the .NET Framework.

23.2.2.1.1. Installing Connector/NET using the Installer

Using the installer is the most straightforward method of installing Connector/NET on Windows and the
installed components include the source code, test code and full reference documentation.

Connector/NET is installed through the use of a Windows Installer (.msi) installation package, which
can be used to install Connector/NET on all Windows operating systems. The MSI package in contained
within a ZIP archive named mysql-connector-net-version.zip, where version indicates
the Connector/NET version.

To install Connector/NET:

Connectors

1369

http://www.mono-project.com
http://dev.mysql.com/downloads/connector/net/1.0.html

1. Double click on the MSI installer file extracted from the Zip you downloaded. Click Next to start
the installation.

2. You must choose the type of installation that you want to perform.

Connectors

1370

For most situations, the Typical installation will be suitable. Click the Typical button and pro-
ceed to Step 5. A Complete installation installs all the available files. To conduct a Complete in-
stallation, click the Complete button and proceed to step 5. If you want to customize your install-
ation, including choosing the components to install and some installation options, click the Cus-
tom button and proceed to Step 3.

3. If you have chosen a custom installation, you can select the individual components that you want to
install, including the core interface component, supporting documentation (a CHM file) samples
and examples and the source code. Select the items, and their installation level, and then click
Next to continue the installation.

Connectors

1371

4. For a custom installation you can also decide whether the Connector/NET component should be re-
gistered in the Global Assembly Cache - this will make the Connector/NET component available to
all applications, not just those where you explicitly reference the Connector/NET component. You
can also enable, or disable, the creation or appropriate items in the Start menu. Click Next when
you have selected the required options.

Connectors

1372

5. You will be given a final opportunity to confirm the installation. Click Install to copy and in-
stall the files onto your machine.

Connectors

1373

6. Once the installation has been completed, click Finish to exit the installer.

Unless you choose otherwise, Connector/NET is installed in C:\Program Files\MySQL\MySQL
Connector Net X.X.X, where X.X.X is replaced with the version of Connector/NET you are in-
stalling. New installations do not overwrite existing versions of Connector/NET.

Depending on your installation type, the installed components will include some or all of the following
components:

• bin - Connector/NET MySQL libraries for different versions of the .NET environment.

• docs - contains a CHM of the Connector/NET documentation.

• samples - sample code and applications that use the Connector/NET component.

• src - the source code for the Connector/NET component.

You may also use the /quiet or /q command line option with the msiexec tool to install the Con-
nector/NET package automatically (using the default options) with no notification to the user. Using this
option you cannot select options and no prompts, messages or dialog boxes will be displayed.

C:\> msiexec /package conector-net.msi /quiet

To provide a progress bar to the user during automatic installation, but still without presenting the user
with a dialog box of the ability to select options, use the /passive option.

Connectors

1374

23.2.2.1.2. Installing Connector/NET using the Zip package

If you are having problems running the installer, you can download a .zip file without an installer as an
alternative. That file is called mysql-connector-net-version-noinstall.zip. Once down-
loaded, you can extract the files to a location of your choice.

The .zip file contains the following directories:

• bin - Connector/NET MySQL libraries for different versions of the .NET environment.

• doc - contains a CHM of the Connector/NET documentation.

• Samples - sample code and applications that use the Connector/NET component.

• mysqlclient - the source code for the Connector/NET component.

• testsuite - the test suite used to verify the operation of the Connector/NET component.

23.2.2.2. Installing Connector/NET on Unix with Mono

There is no installer available for installing the Connector/NET component on your Unix installation.
However, the installation is very simple. Before installing, please ensure that you have a working Mono
project installation.

Note that you should only install the Connector/NET component on Unix environments where you want
to connect to a MySQL server through the Mono project. If you are deploying or developing on a differ-
ent environment such as Java or Perl then you should use a more appropriate connectivity component.
See the Chapter 23, Connectors, or Chapter 22, APIs and Libraries, for more information.

To install Connector/NET on Unix/Mono:

1. Download the mysql-connector-net-version-noinstall.zip and extract the con-
tents.

2. Copy the MySql.Data.dll file to your Mono project installation folder.

3. You must register the Connector/NET component in the Global Assembly Cache using the
gacutil command:

shell> gacutil /i MySql.Data.dll

Once installed, applications that are compiled with the Connector/NET component need no further
changes. However, you must ensure that when you compile your applications you include the Connect-
or/NET component using the -r:MySqlData.dll command line option.

23.2.2.3. Installing Connector/NET using the Source

Caution: You should read this section only if you are interested in helping us test our new code. If you
just want to get Connector/NET up and running on your system, you should use a standard release distri-
bution.

To be able to access the Connector/NET source tree, you must have Subversion installed. Subversion is
freely available from http://subversion.tigris.org/.

Connectors

1375

http://subversion.tigris.org/

The most recent development source tree is available from our public Subversion trees at ht-
tp://dev.mysql.com/tech-resources/sources.html.

To checkout out the Connector/NET sources, change to the directory where you want the copy of the
Connector/NET tree to be stored, then use the following command:

shell> svn co
http://svn.mysql.com/svnpublic/connector-net

A Visual Studio project is included in the source which you can use to build Connector/NET.

23.2.3. Connector/NET Examples
Connector/NET comprises several classes that are used to connect to the database, execute queries and
statements, and manage query results.

The following are the major classes of Connector/NET:

• MySqlCommand: Represents an SQL statement to execute against a MySQL database.

• MySqlCommandBuilder: Automatically generates single-table commands used to reconcile
changes made to a DataSet with the associated MySQL database.

• MySqlConnection: Represents an open connection to a MySQL Server database.

• MySqlDataAdapter: Represents a set of data commands and a database connection that are used
to fill a dataset and update a MySQL database.

• MySqlDataReader: Provides a means of reading a forward-only stream of rows from a MySQL
database.

• MySqlException: The exception that is thrown when MySQL returns an error.

• MySqlHelper: Helper class that makes it easier to work with the provider.

• MySqlTransaction: Represents an SQL transaction to be made in a MySQL database.

This section contains basic information and examples for each of the above classes. For a more detailed
reference guide please see Section 23.2.4, “Connector/NET Reference”.

23.2.3.1. MySqlCommand

Represents a SQL statement to execute against a MySQL database. This class cannot be inherited.

MySqlCommand features the following methods for executing commands at a MySQL database:

Item Description

ExecuteReader Executes commands that return rows.

ExecuteNonQuery Executes commands such as SQL INSERT, DE-
LETE, and UPDATE statements.

ExecuteScalar Retrieves a single value (for example, an aggregate
value) from a database.

You can reset the CommandText property and reuse the MySqlCommand object. However, you must

Connectors

1376

http://dev.mysql.com/tech-resources/sources.html
http://dev.mysql.com/tech-resources/sources.html

close the MySqlDataReader before you can execute a new or previous command.

If a MySqlException is generated by the method executing a MySqlCommand, the MySqlConnection
remains open. It is the responsibility of the programmer to close the connection.

Note. Prior versions of the provider used the '@' symbol to mark parameters in SQL. This is incompat-
ible with MySQL user variables, so the provider now uses the '?' symbol to locate parameters in SQL.
To support older code, you can set 'old syntax=yes' on your connection string. If you do this, please be
aware that an exception will not be throw if you fail to define a parameter that you intended to use in
your SQL.

Examples

The following example creates a MySqlCommand and a MySqlConnection. The MySqlConnec-
tion is opened and set as the Connection for the MySqlCommand. The example then calls ExecuteN-
onQuery, and closes the connection. To accomplish this, the ExecuteNonQuery is passed a connec-
tion string and a query string that is a SQL INSERT statement.

Visual Basic example:

Public Sub InsertRow(myConnectionString As String)
" If the connection string is null, use a default.
If myConnectionString = "" Then
myConnectionString = "Database=Test;Data Source=localhost;User Id=username;Password=pass"

End If
Dim myConnection As New MySqlConnection(myConnectionString)
Dim myInsertQuery As String = "INSERT INTO Orders (id, customerId, amount) Values(1001, 23, 30.66)"
Dim myCommand As New MySqlCommand(myInsertQuery)
myCommand.Connection = myConnection
myConnection.Open()
myCommand.ExecuteNonQuery()
myCommand.Connection.Close()

End Sub

C# example:

public void InsertRow(string myConnectionString)
{

// If the connection string is null, use a default.
if(myConnectionString == "")
{
myConnectionString = "Database=Test;Data Source=localhost;User Id=username;Password=pass";

}
MySqlConnection myConnection = new MySqlConnection(myConnectionString);
string myInsertQuery = "INSERT INTO Orders (id, customerId, amount) Values(1001, 23, 30.66)";
MySqlCommand myCommand = new MySqlCommand(myInsertQuery);
myCommand.Connection = myConnection;
myConnection.Open();
myCommand.ExecuteNonQuery();
myCommand.Connection.Close();

}

23.2.3.1.1. Class MySqlCommand Constructor Form 1

Overload methods for MySqlCommand

Initializes a new instance of the MySqlCommand class.

Examples

The following example creates a MySqlCommand and sets some of its properties.

Note. This example shows how to use one of the overloaded versions of the MySqlCommand construct-
or. For other examples that might be available, see the individual overload topics.

Connectors

1377

Visual Basic example:

Public Sub CreateMySqlCommand()
Dim myConnection As New MySqlConnection _

("Persist Security Info=False;database=test;server=myServer")
myConnection.Open()
Dim myTrans As MySqlTransaction = myConnection.BeginTransaction()
Dim mySelectQuery As String = "SELECT * FROM MyTable"
Dim myCommand As New MySqlCommand(mySelectQuery, myConnection, myTrans)
myCommand.CommandTimeout = 20

End Sub

C# example:

public void CreateMySqlCommand()
{
MySqlConnection myConnection = new MySqlConnection("Persist Security Info=False;

database=test;server=myServer");
myConnection.Open();
MySqlTransaction myTrans = myConnection.BeginTransaction();
string mySelectQuery = "SELECT * FROM myTable";
MySqlCommand myCommand = new MySqlCommand(mySelectQuery, myConnection,myTrans);
myCommand.CommandTimeout = 20;

}

C++ example:

public:
void CreateMySqlCommand()
{
MySqlConnection* myConnection = new MySqlConnection(S"Persist Security Info=False;

database=test;server=myServer");
myConnection->Open();
MySqlTransaction* myTrans = myConnection->BeginTransaction();
String* mySelectQuery = S"SELECT * FROM myTable";
MySqlCommand* myCommand = new MySqlCommand(mySelectQuery, myConnection, myTrans);
myCommand->CommandTimeout = 20;

};

Initializes a new instance of the MySqlCommand class.

The base constructor initializes all fields to their default values. The following table shows initial prop-
erty values for an instance of MySqlCommand.

Properties Initial Value

CommandText empty string ("")

CommandTimeout 0

CommandType CommandType.Text

Connection Null

You can change the value for any of these properties through a separate call to the property.

Examples

The following example creates a MySqlCommand and sets some of its properties.

Visual Basic example:

Public Sub CreateMySqlCommand()
Dim myCommand As New MySqlCommand()
myCommand.CommandType = CommandType.Text

Connectors

1378

End Sub

C# example:

public void CreateMySqlCommand()
{

MySqlCommand myCommand = new MySqlCommand();
myCommand.CommandType = CommandType.Text;

}

23.2.3.1.2. Class MySqlCommand Constructor Form 2

Initializes a new instance of the MySqlCommand class with the text of the query.

Parameters: The text of the query.

When an instance of MySqlCommand is created, the following read/write properties are set to initial
values.

Properties Initial Value

CommandText cmdText

CommandTimeout 0

CommandType CommandType.Text

Connection Null

You can change the value for any of these properties through a separate call to the property.

Examples

The following example creates a MySqlCommand and sets some of its properties.

Visual Basic example:

Public Sub CreateMySqlCommand()
Dim sql as String = "SELECT * FROM mytable"
Dim myCommand As New MySqlCommand(sql)
myCommand.CommandType = CommandType.Text

End Sub

C# example:

public void CreateMySqlCommand()
{

string sql = "SELECT * FROM mytable";
MySqlCommand myCommand = new MySqlCommand(sql);
myCommand.CommandType = CommandType.Text;

}

23.2.3.1.3. Class MySqlCommand Constructor Form 3

Initializes a new instance of the MySqlCommand class with the text of the query and a MySqlCon-
nection.

Parameters: The text of the query.

Parameters: A MySqlConnection that represents the connection to an instance of SQL Server.

When an instance of MySqlCommand is created, the following read/write properties are set to initial

Connectors

1379

values.

Properties Initial Value

CommandText cmdText

CommandTimeout 0

CommandType CommandType.Text

Connection connection

You can change the value for any of these properties through a separate call to the property.

Examples

The following example creates a MySqlCommand and sets some of its properties.

Visual Basic example:

Public Sub CreateMySqlCommand()
Dim conn as new MySqlConnection("server=myServer")
Dim sql as String = "SELECT * FROM mytable"
Dim myCommand As New MySqlCommand(sql, conn)
myCommand.CommandType = CommandType.Text

End Sub

C# example:

public void CreateMySqlCommand()
{

MySqlConnection conn = new MySqlConnection("server=myserver")
string sql = "SELECT * FROM mytable";
MySqlCommand myCommand = new MySqlCommand(sql, conn);
myCommand.CommandType = CommandType.Text;

}

23.2.3.1.4. Class MySqlCommand Constructor Form 4

Initializes a new instance of the MySqlCommand class with the text of the query, a MySqlConnec-
tion, and the MySqlTransaction.

Parameters: The text of the query.

Parameters: A MySqlConnection that represents the connection to an instance of SQL Server.

Parameters: The MySqlTransaction in which the MySqlCommand executes.

When an instance of MySqlCommand is created, the following read/write properties are set to initial
values.

Properties Initial Value

CommandText cmdText

CommandTimeout 0

CommandType CommandType.Text

Connection connection

You can change the value for any of these properties through a separate call to the property.

Examples

Connectors

1380

The following example creates a MySqlCommand and sets some of its properties.

Visual Basic example:

Public Sub CreateMySqlCommand()
Dim conn as new MySqlConnection("server=myServer")
conn.Open();
Dim txn as MySqlTransaction = conn.BeginTransaction()
Dim sql as String = "SELECT * FROM mytable"
Dim myCommand As New MySqlCommand(sql, conn, txn)
myCommand.CommandType = CommandType.Text

End Sub

C# example:

public void CreateMySqlCommand()
{

MySqlConnection conn = new MySqlConnection("server=myserver")
conn.Open();
MySqlTransaction txn = conn.BeginTransaction();
string sql = "SELECT * FROM mytable";
MySqlCommand myCommand = new MySqlCommand(sql, conn, txn);
myCommand.CommandType = CommandType.Text;

}

23.2.3.1.5. ExecuteNonQuery

Executes a SQL statement against the connection and returns the number of rows affected.

Returns: Number of rows affected

You can use ExecuteNonQuery to perform any type of database operation, however any resultsets re-
turned will not be available. Any output parameters used in calling a stored procedure will be populated
with data and can be retrieved after execution is complete. For UPDATE, INSERT, and DELETE state-
ments, the return value is the number of rows affected by the command. For all other types of state-
ments, the return value is -1.

Examples

The following example creates a MySqlCommand and then executes it using ExecuteNonQuery. The
example is passed a string that is a SQL statement (such as UPDATE, INSERT, or DELETE) and a
string to use to connect to the data source.

Visual Basic example:

Public Sub CreateMySqlCommand(myExecuteQuery As String, myConnection As MySqlConnection)
Dim myCommand As New MySqlCommand(myExecuteQuery, myConnection)
myCommand.Connection.Open()
myCommand.ExecuteNonQuery()
myConnection.Close()

End Sub

C# example:

public void CreateMySqlCommand(string myExecuteQuery, MySqlConnection myConnection)
{

MySqlCommand myCommand = new MySqlCommand(myExecuteQuery, myConnection);
myCommand.Connection.Open();
myCommand.ExecuteNonQuery();
myConnection.Close();

}

Connectors

1381

23.2.3.1.6. ExecuteReader1

Sends the CommandText to the MySqlConnectionConnection, and builds a MySqlDataReader
using one of the CommandBehavior values.

Parameters: One of the CommandBehavior values.

When the CommandType property is set to StoredProcedure, the CommandText property
should be set to the name of the stored procedure. The command executes this stored procedure when
you call ExecuteReader.

The MySqlDataReader supports a special mode that enables large binary values to be read effi-
ciently. For more information, see the SequentialAccess setting for CommandBehavior.

While the MySqlDataReader is in use, the associated MySqlConnection is busy serving the
MySqlDataReader. While in this state, no other operations can be performed on the MySqlCon-
nection other than closing it. This is the case until the MySqlDataReader.Close method of the
MySqlDataReader is called. If the MySqlDataReader is created with CommandBehavior set
to CloseConnection, closing the MySqlDataReader closes the connection automatically.

Note. When calling ExecuteReader with the SingleRow behavior, you should be aware that using a
limit clause in your SQL will cause all rows (up to the limit given) to be retrieved by the client. The
MySqlDataReader.Read method will still return false after the first row but pulling all rows of data
into the client will have a performance impact. If the limit clause is not necessary, it should be
avoided.

Returns: A MySqlDataReader object.

23.2.3.1.7. ExecuteReader

Sends the CommandText to the MySqlConnectionConnection and builds a MySqlDataReader.

Returns: A MySqlDataReader object.

When the CommandType property is set to StoredProcedure, the CommandText property
should be set to the name of the stored procedure. The command executes this stored procedure when
you call ExecuteReader.

While the MySqlDataReader is in use, the associated MySqlConnection is busy serving the
MySqlDataReader. While in this state, no other operations can be performed on the MySqlCon-
nection other than closing it. This is the case until the MySqlDataReader.Close method of the
MySqlDataReader is called.

Examples

The following example creates a MySqlCommand, then executes it by passing a string that is a SQL
SELECT statement, and a string to use to connect to the data source.

Visual Basic example:

Public Sub CreateMySqlDataReader(mySelectQuery As String, myConnection As MySqlConnection)
Dim myCommand As New MySqlCommand(mySelectQuery, myConnection)
myConnection.Open()
Dim myReader As MySqlDataReader
myReader = myCommand.ExecuteReader()
Try
While myReader.Read()

Console.WriteLine(myReader.GetString(0))
End While

Finally
myReader.Close
myConnection.Close

Connectors

1382

End Try
End Sub

C# example:

public void CreateMySqlDataReader(string mySelectQuery, MySqlConnection myConnection)
{

MySqlCommand myCommand = new MySqlCommand(mySelectQuery, myConnection);
myConnection.Open();
MySqlDataReader myReader;
myReader = myCommand.ExecuteReader();
try
{

while(myReader.Read())
{
Console.WriteLine(myReader.GetString(0));

}
}
finally
{

myReader.Close();
myConnection.Close();

}
}

23.2.3.1.8. Prepare

Creates a prepared version of the command on an instance of MySQL Server.

Prepared statements are only supported on MySQL version 4.1 and higher. Calling prepare while con-
nected to earlier versions of MySQL will succeed but will execute the statement in the same way as un-
prepared.

Examples

The following example demonstrates the use of the Prepare method.

Visual Basic example:

public sub PrepareExample()
Dim cmd as New MySqlCommand("INSERT INTO mytable VALUES (?val)", myConnection)
cmd.Parameters.Add("?val", 10)
cmd.Prepare()
cmd.ExecuteNonQuery()

cmd.Parameters(0).Value = 20
cmd.ExecuteNonQuery()

end sub

C# example:

private void PrepareExample()
{
MySqlCommand cmd = new MySqlCommand("INSERT INTO mytable VALUES (?val)", myConnection);
cmd.Parameters.Add("?val", 10);
cmd.Prepare();
cmd.ExecuteNonQuery();

cmd.Parameters[0].Value = 20;
cmd.ExecuteNonQuery();

}

23.2.3.1.9. ExecuteScalar

Connectors

1383

Executes the query, and returns the first column of the first row in the result set returned by the query.
Extra columns or rows are ignored.

Returns: The first column of the first row in the result set, or a null reference if the result set is empty

Use the ExecuteScalar method to retrieve a single value (for example, an aggregate value) from a
database. This requires less code than using the ExecuteReader method, and then performing the op-
erations necessary to generate the single value using the data returned by a MySqlDataReader

A typical ExecuteScalar query can be formatted as in the following C# example:

C# example:

cmd.CommandText = "select count(*) from region";
Int32 count = (int32) cmd.ExecuteScalar();

Examples

The following example creates a MySqlCommand and then executes it using ExecuteScalar. The
example is passed a string that is a SQL statement that returns an aggregate result, and a string to use to
connect to the data source.

Visual Basic example:

Public Sub CreateMySqlCommand(myScalarQuery As String, myConnection As MySqlConnection)
Dim myCommand As New MySqlCommand(myScalarQuery, myConnection)
myCommand.Connection.Open()
myCommand.ExecuteScalar()
myConnection.Close()

End Sub

C# example:

public void CreateMySqlCommand(string myScalarQuery, MySqlConnection myConnection)
{

MySqlCommand myCommand = new MySqlCommand(myScalarQuery, myConnection);
myCommand.Connection.Open();
myCommand.ExecuteScalar();
myConnection.Close();

}

C++ example:

public:
void CreateMySqlCommand(String* myScalarQuery, MySqlConnection* myConnection)
{

MySqlCommand* myCommand = new MySqlCommand(myScalarQuery, myConnection);
myCommand->Connection->Open();
myCommand->ExecuteScalar();
myConnection->Close();

}

23.2.3.1.10. CommandText

Gets or sets the SQL statement to execute at the data source.

Value: The SQL statement or stored procedure to execute. The default is an empty string.

When the CommandType property is set to StoredProcedure, the CommandText property
should be set to the name of the stored procedure. The user may be required to use escape character syn-
tax if the stored procedure name contains any special characters. The command executes this stored pro-

Connectors

1384

cedure when you call one of the Execute methods.

Examples

The following example creates a MySqlCommand and sets some of its properties.

Visual Basic example:

Public Sub CreateMySqlCommand()
Dim myCommand As New MySqlCommand()
myCommand.CommandText = "SELECT * FROM Mytable ORDER BY id"
myCommand.CommandType = CommandType.Text

End Sub

C# example:

public void CreateMySqlCommand()
{

MySqlCommand myCommand = new MySqlCommand();
myCommand.CommandText = "SELECT * FROM mytable ORDER BY id";
myCommand.CommandType = CommandType.Text;

}

23.2.3.1.11. CommandTimeout

Gets or sets the wait time before terminating the attempt to execute a command and generating an error.

Value: The time (in seconds) to wait for the command to execute. The default is 0 seconds.

MySQL currently does not support any method of canceling a pending or executing operation. All com-
mands issues against a MySQL server will execute until completion or exception occurs.

23.2.3.1.12. CommandType

Gets or sets a value indicating how the CommandText property is to be interpreted.

Value: One of the System.Data.CommandType values. The default is Text.

When you set the CommandType property to StoredProcedure, you should set the Command-
Text property to the name of the stored procedure. The command executes this stored procedure when
you call one of the Execute methods.

Examples

The following example creates a MySqlCommand and sets some of its properties.

Visual Basic example:

Public Sub CreateMySqlCommand()
Dim myCommand As New MySqlCommand()
myCommand.CommandType = CommandType.Text

End Sub

C# example:

public void CreateMySqlCommand()
{

MySqlCommand myCommand = new MySqlCommand();
myCommand.CommandType = CommandType.Text;

}

23.2.3.1.13. Connection

Connectors

1385

Gets or sets the MySqlConnection used by this instance of the MySqlCommand.

Value: The connection to a data source. The default value is a null reference (Nothing in Visual Ba-
sic).

If you set Connection while a transaction is in progress and the Transaction property is not null,
an InvalidOperationException is generated. If the Transaction property is not null and the
transaction has already been committed or rolled back, Transaction is set to null.

Examples

The following example creates a MySqlCommand and sets some of its properties.

Visual Basic example:

Public Sub CreateMySqlCommand()
Dim mySelectQuery As String = "SELECT * FROM mytable ORDER BY id"
Dim myConnectString As String = "Persist Security Info=False;database=test;server=myServer"
Dim myCommand As New MySqlCommand(mySelectQuery)
myCommand.Connection = New MySqlConnection(myConnectString)
myCommand.CommandType = CommandType.Text

End Sub

C# example:

public void CreateMySqlCommand()
{

string mySelectQuery = "SELECT * FROM mytable ORDER BY id";
string myConnectString = "Persist Security Info=False;database=test;server=myServer";
MySqlCommand myCommand = new MySqlCommand(mySelectQuery);
myCommand.Connection = new MySqlConnection(myConnectString);
myCommand.CommandType = CommandType.Text;

}

23.2.3.1.14. IsPrepared

Returns true if the statement is prepared.

23.2.3.1.15. Parameters

Get the MySqlParameterCollection

Value: The parameters of the SQL statement or stored procedure. The default is an empty collection.

Connector/Net does not support unnamed parameters. Every parameter added to the collection must
have an associated name.

Examples

The following example creates a MySqlCommand and displays its parameters. To accomplish this, the
method is passed a MySqlConnection, a query string that is a SQL SELECT statement, and an array
of MySqlParameter objects.

Visual Basic example:

Public Sub CreateMySqlCommand(myConnection As MySqlConnection, _
mySelectQuery As String, myParamArray() As MySqlParameter)

Dim myCommand As New MySqlCommand(mySelectQuery, myConnection)
myCommand.CommandText = "SELECT id, name FROM mytable WHERE age=?age"
myCommand.UpdatedRowSource = UpdateRowSource.Both
myCommand.Parameters.Add(myParamArray)
Dim j As Integer
For j = 0 To myCommand.Parameters.Count - 1

Connectors

1386

myCommand.Parameters.Add(myParamArray(j))
Next j
Dim myMessage As String = ""
Dim i As Integer
For i = 0 To myCommand.Parameters.Count - 1

myMessage += myCommand.Parameters(i).ToString() & ControlChars.Cr
Next i
Console.WriteLine(myMessage)

End Sub

C# example:

public void CreateMySqlCommand(MySqlConnection myConnection, string mySelectQuery,
MySqlParameter[] myParamArray)

{
MySqlCommand myCommand = new MySqlCommand(mySelectQuery, myConnection);
myCommand.CommandText = "SELECT id, name FROM mytable WHERE age=?age";
myCommand.Parameters.Add(myParamArray);
for (int j=0; j<myParamArray.Length; j++)
{

myCommand.Parameters.Add(myParamArray[j]) ;
}
string myMessage = "";
for (int i = 0; i < myCommand.Parameters.Count; i++)
{

myMessage += myCommand.Parameters[i].ToString() + "\n";
}
MessageBox.Show(myMessage);

}

23.2.3.1.16. Transaction

Gets or sets the MySqlTransaction within which the MySqlCommand executes.

Value: The MySqlTransaction. The default value is a null reference (Nothing in Visual Basic).

You cannot set the Transaction property if it is already set to a specific value, and the command is
in the process of executing. If you set the transaction property to a MySqlTransaction object that is
not connected to the same MySqlConnection as the MySqlCommand object, an exception will be
thrown the next time you attempt to execute a statement.

23.2.3.1.17. UpdatedRowSource

Gets or sets how command results are applied to the DataRow when used by the Sys-
tem.Data.Common.DbDataAdapter.Update method of the Sys-
tem.Data.Common.DbDataAdapter.

Value: One of the UpdateRowSource values.

The default System.Data.UpdateRowSource value is Both unless the command is automatic-
ally generated (as in the case of the MySqlCommandBuilder), in which case the default is None.

23.2.3.2. MySqlCommandBuilder

Automatically generates single-table commands used to reconcile changes made to a DataSet with the
associated MySQL database. This class cannot be inherited.

The MySqlDataAdapter does not automatically generate the SQL statements required to reconcile
changes made to a System.Data.DataSetDataSet with the associated instance of MySQL.
However, you can create a MySqlCommandBuilder object to automatically generate SQL statements
for single-table updates if you set the MySqlDataAdapter.SelectCommandSelectCommand
property of the MySqlDataAdapter. Then, any additional SQL statements that you do not set are
generated by the MySqlCommandBuilder.

Connectors

1387

The MySqlCommandBuilder registers itself as a listener for MySqlDataAd-
apter.OnRowUpdatingRowUpdating events whenever you set the DataAdapter property. You
can only associate one MySqlDataAdapter or MySqlCommandBuilder object with each other at
one time.

To generate INSERT, UPDATE, or DELETE statements, the MySqlCommandBuilder uses the Se-
lectCommand property to retrieve a required set of metadata automatically. If you change the Se-
lectCommand after the metadata has is retrieved (for example, after the first update), you should call
the RefreshSchema method to update the metadata.

The SelectCommand must also return at least one primary key or unique column. If none are present,
an InvalidOperation exception is generated, and the commands are not generated.

The MySqlCommandBuilder also uses the MySqlCommand.ConnectionConnection, MySql-
Command.CommandTimeoutCommandTimeout, and MySqlCommand.TransactionTransac-
tion properties referenced by the SelectCommand. The user should call RefreshSchema if any of
these properties are modified, or if the SelectCommand itself is replaced. Otherwise the
MySqlDataAdapter.InsertCommandInsertCommand, MySqlDataAd-
apter.UpdateCommandUpdateCommand, and MySqlDataAdapter.DeleteCommandDelete-
Command properties retain their previous values.

If you call Dispose, the MySqlCommandBuilder is disassociated from the
MySqlDataAdapter, and the generated commands are no longer used.

Note. Caution must be used when using MySqlCOmmandBuilder on MySql 4.0 systems. With MySql
4.0, database/schema information is not provided to the connector for a query. This means that a query
that pulls columns from two identically named tables in two or more different databases will not cause
an exception to be thrown but will not work correctly. Even more dangerous is the situation where your
select statement references database X but is executed in database Y and both databases have tables with
similar layouts. This situation can cause unwanted changes or deletes. This note does not apply to
MySQL versions 4.1 and later.

Examples

The following example uses the MySqlCommand, along MySqlDataAdapter and MySqlConnec-
tion, to select rows from a data source. The example is passed an initialized Sys-
tem.Data.DataSet, a connection string, a query string that is a SQL SELECT statement, and a
string that is the name of the database table. The example then creates a MySqlCommandBuilder.

Visual Basic example:

Public Shared Function SelectRows(myConnection As String, mySelectQuery As String, myTableName As String) As DataSet
Dim myConn As New MySqlConnection(myConnection)
Dim myDataAdapter As New MySqlDataAdapter()
myDataAdapter.SelectCommand = New MySqlCommand(mySelectQuery, myConn)
Dim cb As SqlCommandBuilder = New MySqlCommandBuilder(myDataAdapter)
myConn.Open()
Dim ds As DataSet = New DataSet
myDataAdapter.Fill(ds, myTableName)
' Code to modify data in DataSet here
' Without the MySqlCommandBuilder this line would fail.
myDataAdapter.Update(ds, myTableName)
myConn.Close()

End Function 'SelectRows

C# example:

public static DataSet SelectRows(string myConnection, string mySelectQuery, string myTableName)
{
MySqlConnection myConn = new MySqlConnection(myConnection);
MySqlDataAdapter myDataAdapter = new MySqlDataAdapter();
myDataAdapter.SelectCommand = new MySqlCommand(mySelectQuery, myConn);

Connectors

1388

MySqlCommandBuilder cb = new MySqlCommandBuilder(myDataAdapter);
myConn.Open();
DataSet ds = new DataSet();
myDataAdapter.Fill(ds, myTableName);
//code to modify data in DataSet here
//Without the MySqlCommandBuilder this line would fail
myDataAdapter.Update(ds, myTableName);
myConn.Close();
return ds;
}

23.2.3.2.1. Class MySqlCommandBuilder Constructor

Initializes a new instance of the MySqlCommandBuilder class.

23.2.3.2.2. Class MySqlCommandBuilder Constructor Form 1

Initializes a new instance of the MySqlCommandBuilder class and sets the last one wins property.

Parameters: False to generate change protection code. True otherwise.

The lastOneWins parameter indicates whether SQL code should be included with the generated DE-
LETE and UPDATE commands that checks the underlying data for changes. If lastOneWins is true
then this code is not included and data records could be overwritten in a multi-user or multi-threaded en-
vironments. Setting lastOneWins to false will include this check which will cause a concurrency ex-
ception to be thrown if the underlying data record has changed without our knowledge.

23.2.3.2.3. Class MySqlCommandBuilder Constructor Form 2

Initializes a new instance of the MySqlCommandBuilder class with the associated MySqlDataAd-
apter object.

Parameters: The MySqlDataAdapter to use.

The MySqlCommandBuilder registers itself as a listener for MySqlDataAd-
apter.RowUpdating events that are generated by the MySqlDataAdapter specified in this prop-
erty.

When you create a new instance MySqlCommandBuilder, any existing MySqlCommandBuilder
associated with this MySqlDataAdapter is released.

23.2.3.2.4. Class MySqlCommandBuilder Constructor Form 3

Initializes a new instance of the MySqlCommandBuilder class with the associated MySqlDataAd-
apter object.

Parameters: The MySqlDataAdapter to use.

Parameters: False to generate change protection code. True otherwise.

The MySqlCommandBuilder registers itself as a listener for MySqlDataAd-
apter.RowUpdating events that are generated by the MySqlDataAdapter specified in this prop-
erty.

When you create a new instance MySqlCommandBuilder, any existing MySqlCommandBuilder
associated with this MySqlDataAdapter is released.

The lastOneWins parameter indicates whether SQL code should be included with the generated DE-
LETE and UPDATE commands that checks the underlying data for changes. If lastOneWins is true
then this code is not included and data records could be overwritten in a multi-user or multi-threaded en-

Connectors

1389

vironments. Setting lastOneWins to false will include this check which will cause a concurrency ex-
ception to be thrown if the underlying data record has changed without our knowledge.

23.2.3.2.5. DataAdapter

Gets or sets a MySqlDataAdapter object for which SQL statements are automatically generated.

Value: A MySqlDataAdapter object.

The MySqlCommandBuilder registers itself as a listener for MySqlDataAd-
apter.RowUpdating events that are generated by the MySqlDataAdapter specified in this prop-
erty.

When you create a new instance MySqlCommandBuilder, any existing MySqlCommandBuilder
associated with this MySqlDataAdapter is released.

23.2.3.2.6. QuotePrefix

Gets or sets the beginning character or characters to use when specifying MySQL database objects (for
example, tables or columns) whose names contain characters such as spaces or reserved tokens.

Value: The beginning character or characters to use. The default value is `.

Database objects in MySQL can contain special characters such as spaces that would make normal SQL
strings impossible to correctly parse. Use of the QuotePrefix and the QuoteSuffix properties al-
lows the MySqlCommandBuilder to build SQL commands that handle this situation.

23.2.3.2.7. QuoteSuffix

Gets or sets the beginning character or characters to use when specifying MySQL database objects (for
example, tables or columns) whose names contain characters such as spaces or reserved tokens.

Value: The beginning character or characters to use. The default value is `.

Database objects in MySQL can contain special characters such as spaces that would make normal SQL
strings impossible to correctly parse. Use of the QuotePrefix and the QuoteSuffix properties al-
lows the MySqlCommandBuilder to build SQL commands that handle this situation.

23.2.3.2.8. DeriveParameters

23.2.3.2.9. GetDeleteCommand

Gets the automatically generated MySqlCommand object required to perform deletions on the database.

Returns: The MySqlCommand object generated to handle delete operations.

An application can use the GetDeleteCommand method for informational or troubleshooting pur-
poses because it returns the MySqlCommand object to be executed.

You can also use GetDeleteCommand as the basis of a modified command. For example, you might
call GetDeleteCommand and modify the MySqlCommand.CommandTimeout value, and then ex-
plicitly set that on the MySqlDataAdapter.

After the SQL statement is first generated, the application must explicitly call RefreshSchema if it
changes the statement in any way. Otherwise, the GetDeleteCommand will be still be using informa-
tion from the previous statement, which might not be correct. The SQL statements are first generated
either when the application calls System.Data.Common.DataAdapter.Update or GetDe-

Connectors

1390

leteCommand.

23.2.3.2.10. GetInsertCommand

Gets the automatically generated MySqlCommand object required to perform insertions on the data-
base.

Returns: The MySqlCommand object generated to handle insert operations.

An application can use the GetInsertCommand method for informational or troubleshooting pur-
poses because it returns the MySqlCommand object to be executed.

You can also use the GetInsertCommand as the basis of a modified command. For example, you
might call GetInsertCommand and modify the MySqlCommand.CommandTimeout value, and
then explicitly set that on the MySqlDataAdapter.

After the SQL statement is first generated, the application must explicitly call RefreshSchema if it
changes the statement in any way. Otherwise, the GetInsertCommand will be still be using informa-
tion from the previous statement, which might not be correct. The SQL statements are first generated
either when the application calls System.Data.Common.DataAdapter.Update or GetIn-
sertCommand.

23.2.3.2.11. GetUpdateCommand

Gets the automatically generated MySqlCommand object required to perform updates on the database.

Returns: The MySqlCommand object generated to handle update operations.

An application can use the GetUpdateCommand method for informational or troubleshooting pur-
poses because it returns the MySqlCommand object to be executed.

You can also use GetUpdateCommand as the basis of a modified command. For example, you might
call GetUpdateCommand and modify the MySqlCommand.CommandTimeout value, and then ex-
plicitly set that on the MySqlDataAdapter.

After the SQL statement is first generated, the application must explicitly call RefreshSchema if it
changes the statement in any way. Otherwise, the GetUpdateCommand will be still be using informa-
tion from the previous statement, which might not be correct. The SQL statements are first generated
either when the application calls System.Data.Common.DataAdapter.Update or GetUp-
dateCommand.

23.2.3.2.12. RefreshSchema

Refreshes the database schema information used to generate INSERT, UPDATE, or DELETE state-
ments.

An application should call RefreshSchema whenever the SELECT statement associated with the
MySqlCommandBuilder changes.

An application should call RefreshSchema whenever the MySqlDataAd-
apter.SelectCommand value of the MySqlDataAdapter changes.

23.2.3.3. MySqlConnection

Represents an open connection to a MySQL Server database. This class cannot be inherited.

A MySqlConnection object represents a session to a MySQL Server data source. When you create
an instance of MySqlConnection, all properties are set to their initial values. For a list of these val-
ues, see the MySqlConnection constructor.

Connectors

1391

If the MySqlConnection goes out of scope, it is not closed. Therefore, you must explicitly close the
connection by calling MySqlConnection.Close or MySqlConnection.Dispose.

Examples

The following example creates a MySqlCommand and a MySqlConnection. The MySqlConnec-
tion is opened and set as the MySqlCommand.Connection for the MySqlCommand. The ex-
ample then calls MySqlCommand.ExecuteNonQuery, and closes the connection. To accomplish
this, the ExecuteNonQuery is passed a connection string and a query string that is a SQL INSERT
statement.

Visual Basic example:

Public Sub InsertRow(myConnectionString As String)
' If the connection string is null, use a default.
If myConnectionString = "" Then

myConnectionString = "Database=Test;Data Source=localhost;User Id=username;Password=pass"
End If
Dim myConnection As New MySqlConnection(myConnectionString)
Dim myInsertQuery As String = "INSERT INTO Orders (id, customerId, amount) Values(1001, 23, 30.66)"
Dim myCommand As New MySqlCommand(myInsertQuery)
myCommand.Connection = myConnection
myConnection.Open()
myCommand.ExecuteNonQuery()
myCommand.Connection.Close()

End Sub

C# example:

public void InsertRow(string myConnectionString)
{
// If the connection string is null, use a default.
if(myConnectionString == "")
{

myConnectionString = "Database=Test;Data Source=localhost;User Id=username;Password=pass";
}
MySqlConnection myConnection = new MySqlConnection(myConnectionString);
string myInsertQuery = "INSERT INTO Orders (id, customerId, amount) Values(1001, 23, 30.66)";
MySqlCommand myCommand = new MySqlCommand(myInsertQuery);
myCommand.Connection = myConnection;
myConnection.Open();
myCommand.ExecuteNonQuery();
myCommand.Connection.Close();

}

23.2.3.3.1. Class MySqlConnection Constructor (Default)

Initializes a new instance of the MySqlConnection class.

When a new instance of MySqlConnection is created, the read/write properties are set to the follow-
ing initial values unless they are specifically set using their associated keywords in the Connection-
String property.

Properties Initial Value

ConnectionString empty string ("")

ConnectionTimeout 15

Database empty string ("")

DataSource empty string ("")

ServerVersion empty string ("")

Connectors

1392

You can change the value for these properties only by using the ConnectionString property.

Examples

Overload methods for MySqlConnection

Initializes a new instance of the MySqlConnection class.

23.2.3.3.2. Class MySqlConnection Constructor Form 1

Initializes a new instance of the MySqlConnection class when given a string containing the connec-
tion string.

When a new instance of MySqlConnection is created, the read/write properties are set to the follow-
ing initial values unless they are specifically set using their associated keywords in the Connection-
String property.

Properties Initial Value

ConnectionString empty string ("")

ConnectionTimeout 15

Database empty string ("")

DataSource empty string ("")

ServerVersion empty string ("")

You can change the value for these properties only by using the ConnectionString property.

Examples

Parameters: The connection properties used to open the MySQL database.

23.2.3.3.3. Open

Opens a database connection with the property settings specified by the ConnectionString.

Exception: Cannot open a connection without specifying a data source or server.

Exception: A connection-level error occurred while opening the connection.

The MySqlConnection draws an open connection from the connection pool if one is available. Oth-
erwise, it establishes a new connection to an instance of MySQL.

Examples

The following example creates a MySqlConnection, opens it, displays some of its properties, then
closes the connection.

Visual Basic example:

Public Sub CreateMySqlConnection(myConnString As String)
Dim myConnection As New MySqlConnection(myConnString)
myConnection.Open()
MessageBox.Show("ServerVersion: " + myConnection.ServerVersion _
+ ControlChars.Cr + "State: " + myConnection.State.ToString())
myConnection.Close()

End Sub

Connectors

1393

C# example:

public void CreateMySqlConnection(string myConnString)
{

MySqlConnection myConnection = new MySqlConnection(myConnString);
myConnection.Open();
MessageBox.Show("ServerVersion: " + myConnection.ServerVersion +

"\nState: " + myConnection.State.ToString());
myConnection.Close();

}

23.2.3.3.4. Database

Gets the name of the current database or the database to be used after a connection is opened.

Returns: The name of the current database or the name of the database to be used after a connection is
opened. The default value is an empty string.

The Database property does not update dynamically. If you change the current database using a SQL
statement, then this property may reflect the wrong value. If you change the current database using the
ChangeDatabase method, this property is updated to reflect the new database.

Examples

The following example creates a MySqlConnection and displays some of its read-only properties.

Visual Basic example:

Public Sub CreateMySqlConnection()
Dim myConnString As String = _
"Persist Security Info=False;database=test;server=localhost;user id=joeuser;pwd=pass"

Dim myConnection As New MySqlConnection(myConnString)
myConnection.Open()
MessageBox.Show("Server Version: " + myConnection.ServerVersion _
+ ControlChars.NewLine + "Database: " + myConnection.Database)

myConnection.ChangeDatabase("test2")
MessageBox.Show("ServerVersion: " + myConnection.ServerVersion _
+ ControlChars.NewLine + "Database: " + myConnection.Database)

myConnection.Close()
End Sub

C# example:

public void CreateMySqlConnection()
{

string myConnString =
"Persist Security Info=False;database=test;server=localhost;user id=joeuser;pwd=pass";

MySqlConnection myConnection = new MySqlConnection(myConnString);
myConnection.Open();
MessageBox.Show("Server Version: " + myConnection.ServerVersion
+ "\nDatabase: " + myConnection.Database);

myConnection.ChangeDatabase("test2");
MessageBox.Show("ServerVersion: " + myConnection.ServerVersion
+ "\nDatabase: " + myConnection.Database);

myConnection.Close();
}

23.2.3.3.5. State

Gets the current state of the connection.

Returns: A bitwise combination of the System.Data.ConnectionState values. The default is
Closed.

Connectors

1394

The allowed state changes are:

• From Closed to Open, using the Open method of the connection object.

• From Open to Closed, using either the Close method or the Dispose method of the connection
object.

Examples

The following example creates a MySqlConnection, opens it, displays some of its properties, then
closes the connection.

Visual Basic example:

Public Sub CreateMySqlConnection(myConnString As String)
Dim myConnection As New MySqlConnection(myConnString)
myConnection.Open()
MessageBox.Show("ServerVersion: " + myConnection.ServerVersion _
+ ControlChars.Cr + "State: " + myConnection.State.ToString())
myConnection.Close()

End Sub

C# example:

public void CreateMySqlConnection(string myConnString)
{

MySqlConnection myConnection = new MySqlConnection(myConnString);
myConnection.Open();
MessageBox.Show("ServerVersion: " + myConnection.ServerVersion +

"\nState: " + myConnection.State.ToString());
myConnection.Close();

}

23.2.3.3.6. ServerVersion

Gets a string containing the version of the MySQL server to which the client is connected.

Returns: The version of the instance of MySQL.

Exception: The connection is closed.

Examples

The following example creates a MySqlConnection, opens it, displays some of its properties, then
closes the connection.

Visual Basic example:

Public Sub CreateMySqlConnection(myConnString As String)
Dim myConnection As New MySqlConnection(myConnString)
myConnection.Open()
MessageBox.Show("ServerVersion: " + myConnection.ServerVersion _
+ ControlChars.Cr + "State: " + myConnection.State.ToString())
myConnection.Close()

End Sub

C# example:

public void CreateMySqlConnection(string myConnString)
{

Connectors

1395

MySqlConnection myConnection = new MySqlConnection(myConnString);
myConnection.Open();
MessageBox.Show("ServerVersion: " + myConnection.ServerVersion +

"\nState: " + myConnection.State.ToString());
myConnection.Close();

}

23.2.3.3.7. Close

Closes the connection to the database. This is the preferred method of closing any open connection.

The Close method rolls back any pending transactions. It then releases the connection to the connec-
tion pool, or closes the connection if connection pooling is disabled.

An application can call Close more than one time. No exception is generated.

Examples

The following example creates a MySqlConnection, opens it, displays some of its properties, then
closes the connection.

Visual Basic example:

Public Sub CreateMySqlConnection(myConnString As String)
Dim myConnection As New MySqlConnection(myConnString)
myConnection.Open()
MessageBox.Show("ServerVersion: " + myConnection.ServerVersion _
+ ControlChars.Cr + "State: " + myConnection.State.ToString())
myConnection.Close()

End Sub

C# example:

public void CreateMySqlConnection(string myConnString)
{

MySqlConnection myConnection = new MySqlConnection(myConnString);
myConnection.Open();
MessageBox.Show("ServerVersion: " + myConnection.ServerVersion +

"\nState: " + myConnection.State.ToString());
myConnection.Close();

}

23.2.3.3.8. CreateCommand

Creates and returns a MySqlCommand object associated with the MySqlConnection.

Returns: A MySqlCommand object.

23.2.3.3.9. BeginTransaction

Begins a database transaction.

Returns: An object representing the new transaction.

Exception: Parallel transactions are not supported.

This command is equivalent to the MySQL BEGIN TRANSACTION command.

You must explicitly commit or roll back the transaction using the MySqlTransaction.Commit or
MySqlTransaction.Rollback method.

Connectors

1396

Note. If you do not specify an isolation level, the default isolation level is used. To specify an isolation
level with the BeginTransaction method, use the overload that takes the iso parameter.

Examples

The following example creates a MySqlConnection and a MySqlTransaction. It also demon-
strates how to use the BeginTransaction, a MySqlTransaction.Commit, and MySql-
Transaction.Rollback methods.

Visual Basic example:

Public Sub RunTransaction(myConnString As String)
Dim myConnection As New MySqlConnection(myConnString)
myConnection.Open()

Dim myCommand As MySqlCommand = myConnection.CreateCommand()
Dim myTrans As MySqlTransaction

' Start a local transaction
myTrans = myConnection.BeginTransaction()
' Must assign both transaction object and connection
' to Command object for a pending local transaction
myCommand.Connection = myConnection
myCommand.Transaction = myTrans

Try
myCommand.CommandText = "Insert into Test (id, desc) VALUES (100, 'Description')"
myCommand.ExecuteNonQuery()
myCommand.CommandText = "Insert into Test (id, desc) VALUES (101, 'Description')"
myCommand.ExecuteNonQuery()
myTrans.Commit()
Console.WriteLine("Both records are written to database.")

Catch e As Exception
Try
myTrans.Rollback()

Catch ex As MySqlException
If Not myTrans.Connection Is Nothing Then

Console.WriteLine("An exception of type " + ex.GetType().ToString() + _
" was encountered while attempting to roll back the transaction.")

End If
End Try

Console.WriteLine("An exception of type " + e.GetType().ToString() + _
"was encountered while inserting the data.")

Console.WriteLine("Neither record was written to database.")
Finally

myConnection.Close()
End Try

End Sub

C# example:

public void RunTransaction(string myConnString)
{

MySqlConnection myConnection = new MySqlConnection(myConnString);
myConnection.Open();
MySqlCommand myCommand = myConnection.CreateCommand();
MySqlTransaction myTrans;
// Start a local transaction
myTrans = myConnection.BeginTransaction();
// Must assign both transaction object and connection
// to Command object for a pending local transaction
myCommand.Connection = myConnection;
myCommand.Transaction = myTrans;
try
{

myCommand.CommandText = "insert into Test (id, desc) VALUES (100, 'Description')";
myCommand.ExecuteNonQuery();
myCommand.CommandText = "insert into Test (id, desc) VALUES (101, 'Description')";
myCommand.ExecuteNonQuery();
myTrans.Commit();
Console.WriteLine("Both records are written to database.");

}
catch(Exception e)

Connectors

1397

{
try
{
myTrans.Rollback();

}
catch (SqlException ex)
{
if (myTrans.Connection != null)
{

Console.WriteLine("An exception of type " + ex.GetType() +
" was encountered while attempting to roll back the transaction.");

}
}

Console.WriteLine("An exception of type " + e.GetType() +
" was encountered while inserting the data.");

Console.WriteLine("Neither record was written to database.");
}
finally
{

myConnection.Close();
}

}

23.2.3.3.10. BeginTransaction1

Begins a database transaction with the specified isolation level.

Parameters: The isolation level under which the transaction should run.

Returns: An object representing the new transaction.

Exception: Parallel exceptions are not supported.

This command is equivalent to the MySQL BEGIN TRANSACTION command.

You must explicitly commit or roll back the transaction using the MySqlTransaction.Commit or
MySqlTransaction.Rollback method.

Note. If you do not specify an isolation level, the default isolation level is used. To specify an isolation
level with the BeginTransaction method, use the overload that takes the iso parameter.

Examples

The following example creates a MySqlConnection and a MySqlTransaction. It also demon-
strates how to use the BeginTransaction, a MySqlTransaction.Commit, and MySql-
Transaction.Rollback methods.

Visual Basic example:

Public Sub RunTransaction(myConnString As String)
Dim myConnection As New MySqlConnection(myConnString)
myConnection.Open()

Dim myCommand As MySqlCommand = myConnection.CreateCommand()
Dim myTrans As MySqlTransaction

' Start a local transaction
myTrans = myConnection.BeginTransaction()
' Must assign both transaction object and connection
' to Command object for a pending local transaction
myCommand.Connection = myConnection
myCommand.Transaction = myTrans

Try
myCommand.CommandText = "Insert into Test (id, desc) VALUES (100, 'Description')"
myCommand.ExecuteNonQuery()
myCommand.CommandText = "Insert into Test (id, desc) VALUES (101, 'Description')"
myCommand.ExecuteNonQuery()

Connectors

1398

myTrans.Commit()
Console.WriteLine("Both records are written to database.")

Catch e As Exception
Try
myTrans.Rollback()

Catch ex As MySqlException
If Not myTrans.Connection Is Nothing Then

Console.WriteLine("An exception of type " + ex.GetType().ToString() + _
" was encountered while attempting to roll back the transaction.")

End If
End Try

Console.WriteLine("An exception of type " + e.GetType().ToString() + _
"was encountered while inserting the data.")

Console.WriteLine("Neither record was written to database.")
Finally

myConnection.Close()
End Try

End Sub

C# example:

public void RunTransaction(string myConnString)
{

MySqlConnection myConnection = new MySqlConnection(myConnString);
myConnection.Open();
MySqlCommand myCommand = myConnection.CreateCommand();
MySqlTransaction myTrans;
// Start a local transaction
myTrans = myConnection.BeginTransaction();
// Must assign both transaction object and connection
// to Command object for a pending local transaction
myCommand.Connection = myConnection;
myCommand.Transaction = myTrans;
try
{

myCommand.CommandText = "insert into Test (id, desc) VALUES (100, 'Description')";
myCommand.ExecuteNonQuery();
myCommand.CommandText = "insert into Test (id, desc) VALUES (101, 'Description')";
myCommand.ExecuteNonQuery();
myTrans.Commit();
Console.WriteLine("Both records are written to database.");

}
catch(Exception e)
{

try
{
myTrans.Rollback();

}
catch (SqlException ex)
{
if (myTrans.Connection != null)
{

Console.WriteLine("An exception of type " + ex.GetType() +
" was encountered while attempting to roll back the transaction.");

}
}

Console.WriteLine("An exception of type " + e.GetType() +
" was encountered while inserting the data.");

Console.WriteLine("Neither record was written to database.");
}
finally
{

myConnection.Close();
}

}

23.2.3.3.11. ChangeDatabase

Changes the current database for an open MySqlConnection.

Parameters: The name of the database to use.

Connectors

1399

The value supplied in the database parameter must be a valid database name. The database para-
meter cannot contain a null value, an empty string, or a string with only blank characters.

When you are using connection pooling against MySQL, and you close the connection, it is returned to
the connection pool. The next time the connection is retrieved from the pool, the reset connection re-
quest executes before the user performs any operations.

Exception: The database name is not valid.

Exception: The connection is not open.

Exception: Cannot change the database.

Examples

The following example creates a MySqlConnection and displays some of its read-only properties.

Visual Basic example:

Public Sub CreateMySqlConnection()
Dim myConnString As String = _
"Persist Security Info=False;database=test;server=localhost;user id=joeuser;pwd=pass"

Dim myConnection As New MySqlConnection(myConnString)
myConnection.Open()
MessageBox.Show("Server Version: " + myConnection.ServerVersion _
+ ControlChars.NewLine + "Database: " + myConnection.Database)

myConnection.ChangeDatabase("test2")
MessageBox.Show("ServerVersion: " + myConnection.ServerVersion _
+ ControlChars.NewLine + "Database: " + myConnection.Database)

myConnection.Close()
End Sub

C# example:

public void CreateMySqlConnection()
{

string myConnString =
"Persist Security Info=False;database=test;server=localhost;user id=joeuser;pwd=pass";

MySqlConnection myConnection = new MySqlConnection(myConnString);
myConnection.Open();
MessageBox.Show("Server Version: " + myConnection.ServerVersion
+ "\nDatabase: " + myConnection.Database);

myConnection.ChangeDatabase("test2");
MessageBox.Show("ServerVersion: " + myConnection.ServerVersion
+ "\nDatabase: " + myConnection.Database);

myConnection.Close();
}

23.2.3.3.12. StateChange

Occurs when the state of the connection changes.

The StateChange event fires whenever the State changes from closed to opened, or from opened
to closed. StateChange fires immediately after the MySqlConnection transitions.

If an event handler throws an exception from within the StateChange event, the exception propag-
ates to the caller of the Open or Close method.

The StateChange event is not raised unless you explicitly call Close or Dispose.

The event handler receives an argument of type System.Data.StateChangeEventArgs contain-
ing data related to this event. The following StateChangeEventArgs properties provide informa-
tion specific to this event.

Connectors

1400

Property Description

Sys-
tem.Data.StateChangeEventArgs.Curr
entState

Gets the new state of the connection. The connec-
tion object will be in the new state already when
the event is fired.

Sys-
tem.Data.StateChangeEventArgs.Orig
inalState

Gets the original state of the connection.

23.2.3.3.13. InfoMessage

Occurs when MySQL returns warnings as a result of executing a command or query.

23.2.3.3.14. ConnectionTimeout

Gets the time to wait while trying to establish a connection before terminating the attempt and generat-
ing an error.

Exception: The value set is less than 0.

A value of 0 indicates no limit, and should be avoided in a MySqlConnec-
tion.ConnectionString because an attempt to connect will wait indefinitely.

Examples

The following example creates a MySqlConnection and sets some of its properties in the connection
string.

Visual Basic example:

Public Sub CreateSqlConnection()
Dim myConnection As New MySqlConnection()
myConnection.ConnectionString = "Persist Security Info=False;Username=user;Password=pass;database=test1;server=localhost;Connect Timeout=30"
myConnection.Open()

End Sub

C# example:

public void CreateSqlConnection()
{

MySqlConnection myConnection = new MySqlConnection();
myConnection.ConnectionString = "Persist Security Info=False;Username=user;Password=pass;database=test1;server=localhost;Connect Timeout=30";
myConnection.Open();

}

23.2.3.3.15. ConnectionString

Gets or sets the string used to connect to a MySQL Server database.

The ConnectionString returned may not be exactly like what was originally set but will be in-
dentical in terms of keyword/value pairs. Security information will not be included unless the Persist Se-
curity Info value is set to true.

You can use the ConnectionString property to connect to a database. The following example illus-
trates a typical connection string.

"Persist Security Info=False;database=MyDB;server=MySqlServer;user id=myUser;Password=myPass"

Connectors

1401

The ConnectionString property can be set only when the connection is closed. Many of the con-
nection string values have corresponding read-only properties. When the connection string is set, all of
these properties are updated, except when an error is detected. In this case, none of the properties are up-
dated. MySqlConnection properties return only those settings contained in the Connection-
String.

To connect to a local machine, specify "localhost" for the server. If you do not specify a server, local-
host is assumed.

Resetting the ConnectionString on a closed connection resets all connection string values (and re-
lated properties) including the password. For example, if you set a connection string that includes "Data-
base= MyDb", and then reset the connection string to "Data Source=myserver;User
Id=myUser;Password=myPass", the MySqlConnection.Database property is no longer set to
MyDb.

The connection string is parsed immediately after being set. If errors in syntax are found when parsing, a
runtime exception, such as ArgumentException, is generated. Other errors can be found only when
an attempt is made to open the connection.

The basic format of a connection string consists of a series of keyword/value pairs separated by semi-
colons. The equal sign (=) connects each keyword and its value. To include values that contain a semi-
colon, single-quote character, or double-quote character, the value must be enclosed in double quotes. If
the value contains both a semicolon and a double-quote character, the value can be enclosed in single
quotes. The single quote is also useful if the value begins with a double-quote character. Conversely, the
double quote can be used if the value begins with a single quote. If the value contains both single-quote
and double-quote characters, the quote character used to enclose the value must be doubled each time it
occurs within the value.

To include preceding or trailing spaces in the string value, the value must be enclosed in either single
quotes or double quotes. Any leading or trailing spaces around integer, Boolean, or enumerated values
are ignored, even if enclosed in quotes. However, spaces within a string literal keyword or value are pre-
served. Using .NET Framework version 1.1, single or double quotes may be used within a connection
string without using delimiters (for example, Data Source= my'Server or Data Source= my"Server), un-
less a quote character is the first or last character in the value.

To include an equal sign (=) in a keyword or value, it must be preceded by another equal sign. For ex-
ample, in the hypothetical connection string

"key==word=value"

the keyword is "key=word" and the value is "value".

If a specific keyword in a keyword= value pair occurs multiple times in a connection string, the last oc-
currence listed is used in the value set.

Keywords are not case sensitive.

The following table lists the valid names for keyword values within the ConnectionString.

Name Default Description

Connect Timeout -or- Connec-
tion Timeout

15 The length of time (in seconds) to
wait for a connection to the serv-
er before terminating the attempt
and generating an error.

Host -or- Server -or- Data Source
-or- DataSource -or- Address -or-
Addr -or- Network Address

localhost The name or network address of
the instance of MySQL to which
to connect. Multiple hosts can be

Connectors

1402

specified separated by &. This
can be useful where multiple
MySQL servers are configured
for replication and you are not
concerned about the precise serv-
er you are connecting to. No at-
tempt is made by the provider to
synchronize writes to the data-
base so care should be taken
when using this option. In Unix
environment with Mono, this can
be a fully qualified path to
MySQL socket filename. With
this configuration, the Unix sock-
et will be used instead of TCP/IP
socket. Currently only a single
socket name can be given so ac-
cessing MySQL in a replicated
environment using Unix sockets
is not currently supported.

Port 3306 The port MySQL is using to
listen for connections. Specify -1
for this value to use a named pipe
connection (Windows only). This
value is ignored if Unix socket is
used.

Protocol socket Specifies the type of connection
to make to the server.Values can
be: socket or tcp for a socket con-
nection pipe for a named pipe
connection unix for a Unix socket
connection memory to use
MySQL shared memory

CharSet -or Character Set Specifies the character set that
should be used to encode all
queries sent to the server. Result-
sets are still returned in the char-
acter set of the data returned.

Logging false When true, various pieces of in-
formation is output to any con-
figured TraceListeners.

Allow Batch true When true, multiple SQL state-
ments can be sent with one com-
mand execution. -Note- Starting
with MySQL 4.1.1, batch state-
ments should be separated by the
server-defined seperator charac-
ter. Commands sent to earlier
versions of MySQL should be
seperated with ';'.

Encrypt false When true, SSL encryption is
used for all data sent between the
client and server if the server has
a certificate installed. Recognized
values are true, false, yes,

Connectors

1403

and no.Note This parameter
currently has no effect.

Initial Catalog -or- Database mysql The name of the database to use
intially

Password -or- pwd The password for the MySQL ac-
count being used.

Persist Security Info false When set to false or no
(strongly recommended), secur-
ity-sensitive information, such as
the password, is not returned as
part of the connection if the con-
nection is open or has ever been
in an open state. Resetting the
connection string resets all con-
nection string values including
the password. Recognized values
are true, false, yes, and no.

User Id -or- Username -or- Uid -
or- User name

The MySQL login account being
used.

Shared Memory Name MYSQL The name of the shared memory
object to use for communication
if the connection protocol is set
to memory.

Allow Zero Datetime false True to have MySqlDataRead-
er.GetValue() return a MySqlD-
ateTime for date or datetime
columns that have illegal values.
False will cause a DateTime ob-
ject to be returned for legal val-
ues and an exception will be
thrown for illegal values.

Convert Zero Datetime false True to have MySqlDataRead-
er.GetValue() and
MySqlDataRead-
er.GetDateTime() return Date-
Time.MinValue for date or date-
time columns that have illegal
values.

Old Syntax -or- OldSyntax false Allows use of '@' symbol as a
parameter marker. See MySql-
Command for more info. This is
for compatibility only. All future
code should be written to use the
new '?' parameter marker.

Pipe Name -or- Pipe mysql When set to the name of a named
pipe, the MySqlConnection
will attempt to connect to
MySQL on that named pipe.This
settings only applies to the Win-
dows platform.

The following table lists the valid names for connection pooling values within the Connection-
String. For more information about connection pooling, see Connection Pooling for the MySql Data

Connectors

1404

Provider.

Name Default Description

Connection Lifetime 0 When a connection is returned to
the pool, its creation time is com-
pared with the current time, and
the connection is destroyed if that
time span (in seconds) exceeds
the value specified by Connec-
tion Lifetime. This is use-
ful in clustered configurations to
force load balancing between a
running server and a server just
brought online. A value of zero
(0) causes pooled connections to
have the maximum connection
timeout.

Max Pool Size 100 The maximum number of con-
nections allowed in the pool.

Min Pool Size 0 The minimum number of connec-
tions allowed in the pool.

Pooling true When true, the MySqlCon-
nection object is drawn from
the appropriate pool, or if neces-
sary, is created and added to the
appropriate pool. Recognized
values are true, false, yes,
and no.

Reset Pooled Connections -or-
ResetConnections -or- Reset-
PooledConnections

true Specifies whether a ping and a
reset should be sent to the server
before a pooled connection is re-
turned. Not resetting will yeild
faster connection opens but also
will not clear out session items
such as temp tables.

Cache Server Configuration -or-
CacheServerConfiguration -or-
CacheServerConfig

false Specifies whether server vari-
ables should be updated when a
pooled connection is returned.
Turning this one will yeild faster
opens but will also not catch any
server changes made by other
connections.

When setting keyword or connection pooling values that require a Boolean value, you can use 'yes' in-
stead of 'true', and 'no' instead of 'false'.

Note The MySql Data Provider uses the native socket protocol to communicate with MySQL. There-
fore, it does not support the use of an ODBC data source name (DSN) when connecting to MySQL be-
cause it does not add an ODBC layer.

CAUTION In this release, the application should use caution when constructing a connection string
based on user input (for example when retrieving user ID and password information from a dialog box,
and appending it to the connection string). The application should ensure that a user cannot embed extra
connection string parameters in these values (for example, entering a password as "validpass-
word;database=somedb" in an attempt to attach to a different database).

Connectors

1405

Examples

The following example creates a MySqlConnection and sets some of its properties

Visual Basic example:

Public Sub CreateConnection()
Dim myConnection As New MySqlConnection()
myConnection.ConnectionString = "Persist Security Info=False;database=myDB;server=myHost;Connect Timeout=30;user id=myUser; pwd=myPass"
myConnection.Open()

End Sub 'CreateConnection

C# example:

public void CreateConnection()
{
MySqlConnection myConnection = new MySqlConnection();
myConnection.ConnectionString = "Persist Security Info=False;database=myDB;server=myHost;Connect Timeout=30;user id=myUser; pwd=myPass";
myConnection.Open();

}

Examples

The following example creates a MySqlConnection in Unix environment with Mono installed.
MySQL socket filename used in this example is "/var/lib/mysql/mysql.sock". The actual filename de-
pends on your MySQL configuration.

Visual Basic example:

Public Sub CreateConnection()
Dim myConnection As New MySqlConnection()
myConnection.ConnectionString = "database=myDB;server=/var/lib/mysql/mysql.sock;user id=myUser; pwd=myPass"
myConnection.Open()

End Sub 'CreateConnection

C# example:

public void CreateConnection()
{
MySqlConnection myConnection = new MySqlConnection();
myConnection.ConnectionString = "database=myDB;server=/var/lib/mysql/mysql.sock;user id=myUser; pwd=myPass";
myConnection.Open();

}

23.2.3.4. MySqlDataAdapter

Represents a set of data commands and a database connection that are used to fill a dataset and update a
MySQL database. This class cannot be inherited.

The MySQLDataAdapter, serves as a bridge between a System.Data.DataSet and MySQL for
retrieving and saving data. The MySQLDataAdapter provides this bridge by mapping DbDataAd-
apter.Fill, which changes the data in the DataSet to match the data in the data source, and Db-
DataAdapter.Update, which changes the data in the data source to match the data in the
DataSet, using the appropriate SQL statements against the data source.

When the MySQLDataAdapter fills a DataSet, it will create the necessary tables and columns for
the returned data if they do not already exist. However, primary key information will not be included in
the implicitly created schema unless the System.Data.MissingSchemaAction property is set to
System.Data.MissingSchemaAction.AddWithKey. You may also have the

Connectors

1406

MySQLDataAdapter create the schema of the DataSet, including primary key information, before
filling it with data using System.Data.Common.DbDataAdapter.FillSchema.

MySQLDataAdapter is used in conjunction with MySqlConnection and MySqlCommand to in-
crease performance when connecting to a MySQL database.

The MySQLDataAdapter also includes the MySqlDataAdapter.SelectCommand,
MySqlDataAdapter.InsertCommand, MySqlDataAdapter.DeleteCommand,
MySqlDataAdapter.UpdateCommand, and DataAdapter.TableMappings properties to fa-
cilitate the loading and updating of data.

When an instance of MySQLDataAdapter is created, the read/write properties are set to initial values.
For a list of these values, see the MySQLDataAdapter constructor.

Note. Please be aware that the DataColumn class in .NET 1.0 and 1.1 does not allow columns with
type of UInt16, UInt32, or UInt64 to be autoincrement columns. If you plan to use autoincremement
columns with MySQL, you should consider using signed integer columns.

Examples

The following example creates a MySqlCommand and a MySqlConnection. The MySqlConnec-
tion is opened and set as the MySqlCommand.Connection for the MySqlCommand. The ex-
ample then calls MySqlCommand.ExecuteNonQuery, and closes the connection. To accomplish
this, the ExecuteNonQuery is passed a connection string and a query string that is a SQL INSERT
statement.

Visual Basic example:

Public Function SelectRows(dataSet As DataSet, connection As String, query As String) As DataSet
Dim conn As New MySqlConnection(connection)
Dim adapter As New MySqlDataAdapter()
adapter.SelectCommand = new MySqlCommand(query, conn)
adapter.Fill(dataset)
Return dataset

End Function

C# example:

public DataSet SelectRows(DataSet dataset,string connection,string query)
{

MySqlConnection conn = new MySqlConnection(connection);
MySqlDataAdapter adapter = new MySqlDataAdapter();
adapter.SelectCommand = new MySqlCommand(query, conn);
adapter.Fill(dataset);
return dataset;

}

23.2.3.4.1. Class MySqlDataAdapter Constructor

Overload methods for MySqlDataAdapter

Initializes a new instance of the MySqlDataAdapter class.

When an instance of MySqlDataAdapter is created, the following read/write properties are set to the
following initial values.

Properties Initial Value

MissingMappingAction MissingMappingAction.Passthrough

MissingSchemaAction MissingSchemaAction.Add

Connectors

1407

You can change the value of any of these properties through a separate call to the property.

Examples

The following example creates a MySqlDataAdapter and sets some of its properties.

Visual Basic example:

Public Sub CreateSqlDataAdapter()
Dim conn As MySqlConnection = New MySqlConnection("Data Source=localhost;" & _
"database=test")
Dim da As MySqlDataAdapter = New MySqlDataAdapter
da.MissingSchemaAction = MissingSchemaAction.AddWithKey

da.SelectCommand = New MySqlCommand("SELECT id, name FROM mytable", conn)
da.InsertCommand = New MySqlCommand("INSERT INTO mytable (id, name) " & _

"VALUES (?id, ?name)", conn)
da.UpdateCommand = New MySqlCommand("UPDATE mytable SET id=?id, name=?name " & _

"WHERE id=?oldId", conn)
da.DeleteCommand = New MySqlCommand("DELETE FROM mytable WHERE id=?id", conn)
da.InsertCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id")
da.InsertCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name")

da.UpdateCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id")
da.UpdateCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name")
da.UpdateCommand.Parameters.Add("?oldId", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original
da.DeleteCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original

End Sub

C# example:

public static void CreateSqlDataAdapter()
{

MySqlConnection conn = new MySqlConnection("Data Source=localhost;database=test");
MySqlDataAdapter da = new MySqlDataAdapter();
da.MissingSchemaAction = MissingSchemaAction.AddWithKey;

da.SelectCommand = new MySqlCommand("SELECT id, name FROM mytable", conn);
da.InsertCommand = new MySqlCommand("INSERT INTO mytable (id, name) " +

"VALUES (?id, ?name)", conn);
da.UpdateCommand = new MySqlCommand("UPDATE mytable SET id=?id, name=?name " +

"WHERE id=?oldId", conn);
da.DeleteCommand = new MySqlCommand("DELETE FROM mytable WHERE id=?id", conn);
da.InsertCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id");
da.InsertCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name");

da.UpdateCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id");
da.UpdateCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name");
da.UpdateCommand.Parameters.Add("?oldId", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original;
da.DeleteCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original;

}

23.2.3.4.2. Class MySqlDataAdapter Constructor Form 1

Initializes a new instance of the MySqlDataAdapter class with the specified MySqlCommand as
the SelectCommand property.

Parameters: MySqlCommand that is a SQL SELECT statement or stored procedure and is set as the
SelectCommand property of the MySqlDataAdapter.

When an instance of MySqlDataAdapter is created, the following read/write properties are set to the
following initial values.

Properties Initial Value

MissingMappingAction MissingMappingAction.Passthrough

MissingSchemaAction MissingSchemaAction.Add

Connectors

1408

You can change the value of any of these properties through a separate call to the property.

When SelectCommand (or any of the other command properties) is assigned to a previously created
MySqlCommand, the MySqlCommand is not cloned. The SelectCommand maintains a reference to
the previously created MySqlCommand object.

Examples

The following example creates a MySqlDataAdapter and sets some of its properties.

Visual Basic example:

Public Sub CreateSqlDataAdapter()
Dim conn As MySqlConnection = New MySqlConnection("Data Source=localhost;" & _
"database=test")

Dim cmd as new MySqlCommand("SELECT id, name FROM mytable", conn)
Dim da As MySqlDataAdapter = New MySqlDataAdapter(cmd)
da.MissingSchemaAction = MissingSchemaAction.AddWithKey

da.InsertCommand = New MySqlCommand("INSERT INTO mytable (id, name) " & _
"VALUES (?id, ?name)", conn)

da.UpdateCommand = New MySqlCommand("UPDATE mytable SET id=?id, name=?name " & _
"WHERE id=?oldId", conn)

da.DeleteCommand = New MySqlCommand("DELETE FROM mytable WHERE id=?id", conn)
da.InsertCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id")
da.InsertCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name")

da.UpdateCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id")
da.UpdateCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name")
da.UpdateCommand.Parameters.Add("?oldId", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original
da.DeleteCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original

End Sub

C# example:

public static void CreateSqlDataAdapter()
{

MySqlConnection conn = new MySqlConnection("Data Source=localhost;database=test");
MySqlCommand cmd = new MySqlCommand("SELECT id, name FROM mytable", conn);
MySqlDataAdapter da = new MySqlDataAdapter(cmd);
da.MissingSchemaAction = MissingSchemaAction.AddWithKey;

da.InsertCommand = new MySqlCommand("INSERT INTO mytable (id, name) " +
"VALUES (?id, ?name)", conn);

da.UpdateCommand = new MySqlCommand("UPDATE mytable SET id=?id, name=?name " +
"WHERE id=?oldId", conn);

da.DeleteCommand = new MySqlCommand("DELETE FROM mytable WHERE id=?id", conn);
da.InsertCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id");
da.InsertCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name");

da.UpdateCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id");
da.UpdateCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name");
da.UpdateCommand.Parameters.Add("?oldId", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original;
da.DeleteCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original;

}

23.2.3.4.3. Class MySqlDataAdapter Constructor Form 2

Initializes a new instance of the MySqlDataAdapter class with a SelectCommand and a MySql-
Connection object.

Parameters: A String that is a SQL SELECT statement or stored procedure to be used by the Se-
lectCommand property of the MySqlDataAdapter.

Parameters: A MySqlConnection that represents the connection.

This implementation of the MySqlDataAdapter opens and closes a MySqlConnection if it is not

Connectors

1409

already open. This can be useful in a an application that must call the DbDataAdapter.Fill method
for two or more MySqlDataAdapter objects. If the MySqlConnection is already open, you must
explicitly call MySqlConnection.Close or MySqlConnection.Dispose to close it.

When an instance of MySqlDataAdapter is created, the following read/write properties are set to the
following initial values.

Properties Initial Value

MissingMappingAction MissingMappingAction.Passthrough

MissingSchemaAction MissingSchemaAction.Add

You can change the value of any of these properties through a separate call to the property.

Examples

The following example creates a MySqlDataAdapter and sets some of its properties.

Visual Basic example:

Public Sub CreateSqlDataAdapter()
Dim conn As MySqlConnection = New MySqlConnection("Data Source=localhost;" & _
"database=test")
Dim da As MySqlDataAdapter = New MySqlDataAdapter("SELECT id, name FROM mytable", conn)
da.MissingSchemaAction = MissingSchemaAction.AddWithKey

da.InsertCommand = New MySqlCommand("INSERT INTO mytable (id, name) " & _
"VALUES (?id, ?name)", conn)

da.UpdateCommand = New MySqlCommand("UPDATE mytable SET id=?id, name=?name " & _
"WHERE id=?oldId", conn)

da.DeleteCommand = New MySqlCommand("DELETE FROM mytable WHERE id=?id", conn)
da.InsertCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id")
da.InsertCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name")

da.UpdateCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id")
da.UpdateCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name")
da.UpdateCommand.Parameters.Add("?oldId", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original
da.DeleteCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original

End Sub

C# example:

public static void CreateSqlDataAdapter()
{

MySqlConnection conn = new MySqlConnection("Data Source=localhost;database=test");
MySqlDataAdapter da = new MySqlDataAdapter("SELECT id, name FROM mytable", conn);
da.MissingSchemaAction = MissingSchemaAction.AddWithKey;

da.InsertCommand = new MySqlCommand("INSERT INTO mytable (id, name) " +
"VALUES (?id, ?name)", conn);

da.UpdateCommand = new MySqlCommand("UPDATE mytable SET id=?id, name=?name " +
"WHERE id=?oldId", conn);

da.DeleteCommand = new MySqlCommand("DELETE FROM mytable WHERE id=?id", conn);
da.InsertCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id");
da.InsertCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name");

da.UpdateCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id");
da.UpdateCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name");
da.UpdateCommand.Parameters.Add("?oldId", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original;
da.DeleteCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original;

}

23.2.3.4.4. Class MySqlDataAdapter Constructor Form 3

Initializes a new instance of the MySqlDataAdapter class with a SelectCommand and a connec-
tion string.

Connectors

1410

Parameters: A string that is a SQL SELECT statement or stored procedure to be used by the Se-
lectCommand property of the MySqlDataAdapter.

Parameters: The connection string

When an instance of MySqlDataAdapter is created, the following read/write properties are set to the
following initial values.

Properties Initial Value

MissingMappingAction MissingMappingAction.Passthrough

MissingSchemaAction MissingSchemaAction.Add

You can change the value of any of these properties through a separate call to the property.

Examples

The following example creates a MySqlDataAdapter and sets some of its properties.

Visual Basic example:

Public Sub CreateSqlDataAdapter()
Dim da As MySqlDataAdapter = New MySqlDataAdapter("SELECT id, name FROM mytable", "Data Source=localhost;database=test")
Dim conn As MySqlConnection = da.SelectCommand.Connection
da.MissingSchemaAction = MissingSchemaAction.AddWithKey

da.InsertCommand = New MySqlCommand("INSERT INTO mytable (id, name) " & _
"VALUES (?id, ?name)", conn)

da.UpdateCommand = New MySqlCommand("UPDATE mytable SET id=?id, name=?name " & _
"WHERE id=?oldId", conn)

da.DeleteCommand = New MySqlCommand("DELETE FROM mytable WHERE id=?id", conn)
da.InsertCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id")
da.InsertCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name")

da.UpdateCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id")
da.UpdateCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name")
da.UpdateCommand.Parameters.Add("?oldId", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original
da.DeleteCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original

End Sub

C# example:

public static void CreateSqlDataAdapter()
{

MySqlDataAdapter da = new MySqlDataAdapter("SELECT id, name FROM mytable", "Data Source=localhost;database=test");
MySqlConnection conn = da.SelectCommand.Connection;
da.MissingSchemaAction = MissingSchemaAction.AddWithKey;

da.InsertCommand = new MySqlCommand("INSERT INTO mytable (id, name) " +
"VALUES (?id, ?name)", conn);

da.UpdateCommand = new MySqlCommand("UPDATE mytable SET id=?id, name=?name " +
"WHERE id=?oldId", conn);

da.DeleteCommand = new MySqlCommand("DELETE FROM mytable WHERE id=?id", conn);
da.InsertCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id");
da.InsertCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name");

da.UpdateCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id");
da.UpdateCommand.Parameters.Add("?name", MySqlDbType.VarChar, 40, "name");
da.UpdateCommand.Parameters.Add("?oldId", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original;
da.DeleteCommand.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id").SourceVersion = DataRowVersion.Original;

}

23.2.3.4.5. DeleteCommand

Gets or sets a SQL statement or stored procedure used to delete records from the data set.

Connectors

1411

Value: A MySqlCommand used during System.Data.Common.DataAdapter.Update to de-
lete records in the database that correspond to deleted rows in the DataSet.

During System.Data.Common.DataAdapter.Update, if this property is not set and primary
key information is present in the DataSet, the DeleteCommand can be generated automatically if
you set the SelectCommand property and use the MySqlCommandBuilder. Then, any additional
commands that you do not set are generated by the MySqlCommandBuilder. This generation logic
requires key column information to be present in the DataSet.

When DeleteCommand is assigned to a previously created MySqlCommand, the MySqlCommand is
not cloned. The DeleteCommand maintains a reference to the previously created MySqlCommand
object.

Examples

The following example creates a MySqlDataAdapter and sets the SelectCommand and De-
leteCommand properties. It assumes you have already created a MySqlConnection object.

Visual Basic example:

Public Shared Function CreateCustomerAdapter(conn As MySqlConnection) As MySqlDataAdapter

Dim da As MySqlDataAdapter = New MySqlDataAdapter()
Dim cmd As MySqlCommand
Dim parm As MySqlParameter
' Create the SelectCommand.
cmd = New MySqlCommand("SELECT * FROM mytable WHERE id=?id AND name=?name", conn)
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15)
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15)
da.SelectCommand = cmd
' Create the DeleteCommand.
cmd = New MySqlCommand("DELETE FROM mytable WHERE id=?id", conn)
parm = cmd.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id")
parm.SourceVersion = DataRowVersion.Original
da.DeleteCommand = cmd
Return da

End Function

C# example:

public static MySqlDataAdapter CreateCustomerAdapter(MySqlConnection conn)
{

MySqlDataAdapter da = new MySqlDataAdapter();
MySqlCommand cmd;
MySqlParameter parm;
// Create the SelectCommand.
cmd = new MySqlCommand("SELECT * FROM mytable WHERE id=?id AND name=?name", conn);
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15);
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15);
da.SelectCommand = cmd;
// Create the DeleteCommand.
cmd = new MySqlCommand("DELETE FROM mytable WHERE id=?id", conn);
parm = cmd.Parameters.Add("?id", MySqlDbType.VarChar, 5, "id");
parm.SourceVersion = DataRowVersion.Original;
da.DeleteCommand = cmd;
return da;

}

23.2.3.4.6. InsertCommand

Gets or sets a SQL statement or stored procedure used to insert records into the data set.

Value: A MySqlCommand used during System.Data.Common.DataAdapter.Update to in-
sert records into the database that correspond to new rows in the DataSet.

During System.Data.Common.DataAdapter.Update, if this property is not set and primary

Connectors

1412

key information is present in the DataSet, the InsertCommand can be generated automatically if
you set the SelectCommand property and use the MySqlCommandBuilder. Then, any additional
commands that you do not set are generated by the MySqlCommandBuilder. This generation logic
requires key column information to be present in the DataSet.

When InsertCommand is assigned to a previously created MySqlCommand, the MySqlCommand is
not cloned. The InsertCommand maintains a reference to the previously created MySqlCommand
object.

Note. If execution of this command returns rows, these rows may be added to the DataSet depending
on how you set the MySqlCommand.UpdatedRowSource property of the MySqlCommand object.

Examples

The following example creates a MySqlDataAdapter and sets the SelectCommand and In-
sertCommand properties. It assumes you have already created a MySqlConnection object.

Visual Basic example:

Public Shared Function CreateCustomerAdapter(conn As MySqlConnection) As MySqlDataAdapter

Dim da As MySqlDataAdapter = New MySqlDataAdapter()
Dim cmd As MySqlCommand
Dim parm As MySqlParameter
' Create the SelectCommand.
cmd = New MySqlCommand("SELECT * FROM mytable WHERE id=?id AND name=?name", conn)
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15)
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15)
da.SelectCommand = cmd
' Create the InsertCommand.
cmd = New MySqlCommand("INSERT INTO mytable (id,name) VALUES (?id, ?name)", conn)
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15, "id")
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15, "name")
da.InsertCommand = cmd

Return da
End Function

C# example:

public static MySqlDataAdapter CreateCustomerAdapter(MySqlConnection conn)
{

MySqlDataAdapter da = new MySqlDataAdapter();
MySqlCommand cmd;
MySqlParameter parm;
// Create the SelectCommand.
cmd = new MySqlCommand("SELECT * FROM mytable WHERE id=?id AND name=?name", conn);
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15);
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15);
da.SelectCommand = cmd;
// Create the InsertCommand.
cmd = new MySqlCommand("INSERT INTO mytable (id,name) VALUES (?id,?name)", conn);
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15, "id");
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15, "name");

da.InsertCommand = cmd;
return da;

}

23.2.3.4.7. UpdateCommand

Gets or sets a SQL statement or stored procedure used to updated records in the data source.

Value: A MySqlCommand used during System.Data.Common.DataAdapter.Update to up-
date records in the database with data from the DataSet.

During System.Data.Common.DataAdapter.Update, if this property is not set and primary
key information is present in the DataSet, the UpdateCommand can be generated automatically if

Connectors

1413

you set the SelectCommand property and use the MySqlCommandBuilder. Then, any additional
commands that you do not set are generated by the MySqlCommandBuilder. This generation logic
requires key column information to be present in the DataSet.

When UpdateCommand is assigned to a previously created MySqlCommand, the MySqlCommand is
not cloned. The UpdateCommand maintains a reference to the previously created MySqlCommand
object.

Note. If execution of this command returns rows, these rows may be merged with the DataSet depend-
ing on how you set the MySqlCommand.UpdatedRowSource property of the MySqlCommand ob-
ject.

Examples

The following example creates a MySqlDataAdapter and sets the SelectCommand and Up-
dateCommand properties. It assumes you have already created a MySqlConnection object.

Visual Basic example:

Public Shared Function CreateCustomerAdapter(conn As MySqlConnection) As MySqlDataAdapter

Dim da As MySqlDataAdapter = New MySqlDataAdapter()
Dim cmd As MySqlCommand
Dim parm As MySqlParameter
' Create the SelectCommand.
cmd = New MySqlCommand("SELECT * FROM mytable WHERE id=?id AND name=?name", conn)
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15)
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15)
da.SelectCommand = cmd
' Create the UpdateCommand.
cmd = New MySqlCommand("UPDATE mytable SET id=?id, name=?name WHERE id=?oldId", conn)
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15, "id")
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15, "name")

parm = cmd.Parameters.Add("?oldId", MySqlDbType.VarChar, 15, "id")
parm.SourceVersion = DataRowVersion.Original

da.UpdateCommand = cmd

Return da
End Function

C# example:

public static MySqlDataAdapter CreateCustomerAdapter(MySqlConnection conn)
{

MySqlDataAdapter da = new MySqlDataAdapter();
MySqlCommand cmd;
MySqlParameter parm;
// Create the SelectCommand.
cmd = new MySqlCommand("SELECT * FROM mytable WHERE id=?id AND name=?name", conn);
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15);
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15);
da.SelectCommand = cmd;
// Create the UpdateCommand.
cmd = new MySqlCommand("UPDATE mytable SET id=?id, name=?name WHERE id=?oldId", conn);
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15, "id");
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15, "name");

parm = cmd.Parameters.Add("?oldId", MySqlDbType.VarChar, 15, "id");
parm.SourceVersion = DataRowVersion.Original;

da.UpdateCommand = cmd;
return da;

}

23.2.3.4.8. SelectCommand

Gets or sets a SQL statement or stored procedure used to select records in the data source.

Connectors

1414

Value: A MySqlCommand used during System.Data.Common.DbDataAdapter.Fill to se-
lect records from the database for placement in the DataSet.

When SelectCommand is assigned to a previously created MySqlCommand, the MySqlCommand is
not cloned. The SelectCommand maintains a reference to the previously created MySqlCommand
object.

If the SelectCommand does not return any rows, no tables are added to the DataSet, and no excep-
tion is raised.

Examples

The following example creates a MySqlDataAdapter and sets the SelectCommand and In-
sertCommand properties. It assumes you have already created a MySqlConnection object.

Visual Basic example:

Public Shared Function CreateCustomerAdapter(conn As MySqlConnection) As MySqlDataAdapter

Dim da As MySqlDataAdapter = New MySqlDataAdapter()
Dim cmd As MySqlCommand
Dim parm As MySqlParameter
' Create the SelectCommand.
cmd = New MySqlCommand("SELECT * FROM mytable WHERE id=?id AND name=?name", conn)
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15)
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15)
da.SelectCommand = cmd
' Create the InsertCommand.
cmd = New MySqlCommand("INSERT INTO mytable (id,name) VALUES (?id, ?name)", conn)
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15, "id")
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15, "name")
da.InsertCommand = cmd

Return da
End Function

C# example:

public static MySqlDataAdapter CreateCustomerAdapter(MySqlConnection conn)
{

MySqlDataAdapter da = new MySqlDataAdapter();
MySqlCommand cmd;
MySqlParameter parm;
// Create the SelectCommand.
cmd = new MySqlCommand("SELECT * FROM mytable WHERE id=?id AND name=?name", conn);
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15);
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15);
da.SelectCommand = cmd;
// Create the InsertCommand.
cmd = new MySqlCommand("INSERT INTO mytable (id,name) VALUES (?id,?name)", conn);
cmd.Parameters.Add("?id", MySqlDbType.VarChar, 15, "id");
cmd.Parameters.Add("?name", MySqlDbType.VarChar, 15, "name");

da.InsertCommand = cmd;
return da;

}

23.2.3.5. MySqlDataReader

To create a MySQLDataReader, you must call the MySqlCommand.ExecuteReader method of
the MySqlCommand object, rather than directly using a constructor.

While the MySqlDataReader is in use, the associated MySqlConnection is busy serving the
MySqlDataReader, and no other operations can be performed on the MySqlConnection other
than closing it. This is the case until the MySqlDataReader.Close method of the
MySqlDataReader is called.

Connectors

1415

MySqlDataReader.IsClosed and MySqlDataReader.RecordsAffected are the only
properties that you can call after the MySqlDataReader is closed. Though the RecordsAffected
property may be accessed at any time while the MySqlDataReader exists, always call Close before
returning the value of RecordsAffected to ensure an accurate return value.

For optimal performance, MySqlDataReader avoids creating unnecessary objects or making unne-
cessary copies of data. As a result, multiple calls to methods such as MySqlDataReader.GetValue
return a reference to the same object. Use caution if you are modifying the underlying value of the ob-
jects returned by methods such as GetValue.

Examples

The following example creates a MySqlConnection, a MySqlCommand, and a MySqlDataRead-
er. The example reads through the data, writing it out to the console. Finally, the example closes the
MySqlDataReader, then the MySqlConnection.

Visual Basic example:

Public Sub ReadMyData(myConnString As String)
Dim mySelectQuery As String = "SELECT OrderID, CustomerID FROM Orders"
Dim myConnection As New MySqlConnection(myConnString)
Dim myCommand As New MySqlCommand(mySelectQuery, myConnection)
myConnection.Open()
Dim myReader As MySqlDataReader
myReader = myCommand.ExecuteReader()
' Always call Read before accessing data.
While myReader.Read()

Console.WriteLine((myReader.GetInt32(0) & ", " & myReader.GetString(1)))
End While
' always call Close when done reading.
myReader.Close()
' Close the connection when done with it.
myConnection.Close()

End Sub 'ReadMyData

C# example:

public void ReadMyData(string myConnString) {
string mySelectQuery = "SELECT OrderID, CustomerID FROM Orders";
MySqlConnection myConnection = new MySqlConnection(myConnString);
MySqlCommand myCommand = new MySqlCommand(mySelectQuery,myConnection);
myConnection.Open();
MySqlDataReader myReader;
myReader = myCommand.ExecuteReader();
// Always call Read before accessing data.
while (myReader.Read()) {

Console.WriteLine(myReader.GetInt32(0) + ", " + myReader.GetString(1));
}
// always call Close when done reading.
myReader.Close();
// Close the connection when done with it.
myConnection.Close();

}

23.2.3.5.1. GetBytes

GetBytes returns the number of available bytes in the field. In most cases this is the exact length of
the field. However, the number returned may be less than the true length of the field if GetBytes has
already been used to obtain bytes from the field. This may be the case, for example, if the
MySqlDataReader is reading a large data structure into a buffer. For more information, see the Se-
quentialAccess setting for MySqlCommand.CommandBehavior.

If you pass a buffer that is a null reference (Nothing in Visual Basic), GetBytes returns the length
of the field in bytes.

Connectors

1416

No conversions are performed; therefore the data retrieved must already be a byte array.

23.2.3.5.2. GetTimeSpan

Gets the value of the specified column as a TimeSpan object.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

23.2.3.5.3. GetDateTime

Gets the value of the specified column as a DateTime object.

Note. MySql allows date columns to contain the value '0000-00-00' and datetime columns to contain the
value '0000-00-00 00:00:00'. The DateTime structure cannot contain or represent these values. To read a
datetime value from a column that might contain zero values, use GetMySqlDateTime. The behavior
of reading a zero datetime column using this method is defined by the ZeroDateTimeBehavior
connection string option. For more information on this option, please refer to MySqlConnec-
tion.ConnectionString.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

23.2.3.5.4. GetMySqlDateTime

Gets the value of the specified column as a MySql.Data.Types.MySqlDateTime object.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

23.2.3.5.5. GetString

Gets the value of the specified column as a String object.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

23.2.3.5.6. GetDecimal

Gets the value of the specified column as a Decimal object.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

23.2.3.5.7. GetDouble

Gets the value of the specified column as a double-precision floating point number.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

Connectors

1417

23.2.3.5.8. GetFloat

Gets the value of the specified column as a single-precision floating point number.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

23.2.3.5.9. GetGiud

Gets the value of the specified column as a globally-unique identifier (GUID).

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

23.2.3.5.10. GetInt16

Gets the value of the specified column as a 16-bit signed integer.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

23.2.3.5.11. GetInt32

Gets the value of the specified column as a 32-bit signed integer.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

23.2.3.5.12. GetInt64

Gets the value of the specified column as a 64-bit signed integer.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

23.2.3.5.13. GetUInt16

Gets the value of the specified column as a 16-bit unsigned integer.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

23.2.3.5.14. GetUInt32

Gets the value of the specified column as a 32-bit unsigned integer.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

23.2.3.5.15. GetUInt64

Connectors

1418

Gets the value of the specified column as a 64-bit unsigned integer.

Parameters: The zero-based column ordinal.

Returns: The value of the specified column.

23.2.3.6. MySqlException

This class is created whenever the MySql Data Provider encounters an error generated from the server.

Any open connections are not automatically closed when an exception is thrown. If the client application
determines that the exception is fatal, it should close any open MySqlDataReader objects or
MySqlConnection objects.

Examples

The following example generates a MySqlException due to a missing server, and then displays the
exception.

Visual Basic example:

Public Sub ShowException()
Dim mySelectQuery As String = "SELECT column1 FROM table1"
Dim myConnection As New MySqlConnection ("Data Source=localhost;Database=Sample;")
Dim myCommand As New MySqlCommand(mySelectQuery, myConnection)
Try

myCommand.Connection.Open()
Catch e As MySqlException

MessageBox.Show(e.Message)
End Try

End Sub

C# example:

public void ShowException()
{

string mySelectQuery = "SELECT column1 FROM table1";
MySqlConnection myConnection =

new MySqlConnection("Data Source=localhost;Database=Sample;");
MySqlCommand myCommand = new MySqlCommand(mySelectQuery,myConnection);
try
{

myCommand.Connection.Open();
}
catch (MySqlException e)
{
MessageBox.Show(e.Message);

}
}

23.2.3.7. MySqlParameter

Parameter names are not case sensitive.

Examples

The following example creates multiple instances of MySqlParameter through the MySqlPara-
meterCollection collection within the MySqlDataAdapter. These parameters are used to select
data from the data source and place the data in the DataSet. This example assumes that a DataSet
and a MySqlDataAdapter have already been created with the appropriate schema, commands, and
connection.

Connectors

1419

Visual Basic example:

Public Sub AddSqlParameters()
' ...
' create myDataSet and myDataAdapter
' ...
myDataAdapter.SelectCommand.Parameters.Add("@CategoryName", MySqlDbType.VarChar, 80).Value = "toasters"
myDataAdapter.SelectCommand.Parameters.Add("@SerialNum", MySqlDbType.Long).Value = 239

myDataAdapter.Fill(myDataSet)
End Sub 'AddSqlParameters

C# example:

public void AddSqlParameters()
{
// ...
// create myDataSet and myDataAdapter
// ...

myDataAdapter.SelectCommand.Parameters.Add("@CategoryName", MySqlDbType.VarChar, 80).Value = "toasters";
myDataAdapter.SelectCommand.Parameters.Add("@SerialNum", MySqlDbType.Long).Value = 239;
myDataAdapter.Fill(myDataSet);

}

23.2.3.8. MySqlParameterCollection

The number of the parameters in the collection must be equal to the number of parameter placeholders
within the command text, or an exception will be generated.

Examples

The following example creates multiple instances of MySqlParameter through the MySqlPara-
meterCollection collection within the MySqlDataAdapter. These parameters are used to select
data within the data source and place the data in the DataSet. This code assumes that a DataSet and
a MySqlDataAdapter have already been created with the appropriate schema, commands, and con-
nection.

Visual Basic example:

Public Sub AddParameters()
' ...
' create myDataSet and myDataAdapter
' ...
myDataAdapter.SelectCommand.Parameters.Add("@CategoryName", MySqlDbType.VarChar, 80).Value = "toasters"
myDataAdapter.SelectCommand.Parameters.Add("@SerialNum", MySqlDbType.Long).Value = 239

myDataAdapter.Fill(myDataSet)
End Sub 'AddSqlParameters

C# example:

public void AddSqlParameters()
{
// ...
// create myDataSet and myDataAdapter
// ...

myDataAdapter.SelectCommand.Parameters.Add("@CategoryName", MySqlDbType.VarChar, 80).Value = "toasters";
myDataAdapter.SelectCommand.Parameters.Add("@SerialNum", MySqlDbType.Long).Value = 239;
myDataAdapter.Fill(myDataSet);

}

23.2.3.9. MySqlTransaction

Connectors

1420

Represents a SQL transaction to be made in a MySQL database. This class cannot be inherited.

The application creates a MySqlTransaction object by calling MySqlConnec-
tion.BeginTransaction on the MySqlConnection object. All subsequent operations associ-
ated with the transaction (for example, committing or aborting the transaction), are performed on the
MySqlTransaction object.

Examples

The following example creates a MySqlConnection and a MySqlTransaction. It also demon-
strates how to use the MySqlConnection.BeginTransaction, MySqlTransac-
tion.Commit, and MySqlTransaction.Rollback methods.

Visual Basic example:

Public Sub RunTransaction(myConnString As String)
Dim myConnection As New MySqlConnection(myConnString)
myConnection.Open()

Dim myCommand As MySqlCommand = myConnection.CreateCommand()
Dim myTrans As MySqlTransaction

' Start a local transaction
myTrans = myConnection.BeginTransaction()
' Must assign both transaction object and connection
' to Command object for a pending local transaction
myCommand.Connection = myConnection
myCommand.Transaction = myTrans

Try
myCommand.CommandText = "Insert into Region (RegionID, RegionDescription) VALUES (100, 'Description')"
myCommand.ExecuteNonQuery()
myCommand.CommandText = "Insert into Region (RegionID, RegionDescription) VALUES (101, 'Description')"
myCommand.ExecuteNonQuery()
myTrans.Commit()
Console.WriteLine("Both records are written to database.")

Catch e As Exception
Try
myTrans.Rollback()

Catch ex As MySqlException
If Not myTrans.Connection Is Nothing Then

Console.WriteLine("An exception of type " & ex.GetType().ToString() & _
" was encountered while attempting to roll back the transaction.")

End If
End Try

Console.WriteLine("An exception of type " & e.GetType().ToString() & _
"was encountered while inserting the data.")

Console.WriteLine("Neither record was written to database.")
Finally

myConnection.Close()
End Try

End Sub 'RunTransaction

C# example:

public void RunTransaction(string myConnString)
{

MySqlConnection myConnection = new MySqlConnection(myConnString);
myConnection.Open();
MySqlCommand myCommand = myConnection.CreateCommand();
MySqlTransaction myTrans;
// Start a local transaction
myTrans = myConnection.BeginTransaction();
// Must assign both transaction object and connection
// to Command object for a pending local transaction
myCommand.Connection = myConnection;
myCommand.Transaction = myTrans;
try
{

myCommand.CommandText = "Insert into Region (RegionID, RegionDescription) VALUES (100, 'Description')";
myCommand.ExecuteNonQuery();

Connectors

1421

myCommand.CommandText = "Insert into Region (RegionID, RegionDescription) VALUES (101, 'Description')";
myCommand.ExecuteNonQuery();
myTrans.Commit();
Console.WriteLine("Both records are written to database.");

}
catch(Exception e)
{

try
{
myTrans.Rollback();

}
catch (MySqlException ex)
{
if (myTrans.Connection != null)
{

Console.WriteLine("An exception of type " + ex.GetType() +
" was encountered while attempting to roll back the transaction.");

}
}

Console.WriteLine("An exception of type " + e.GetType() +
" was encountered while inserting the data.");

Console.WriteLine("Neither record was written to database.");
}
finally
{

myConnection.Close();
}

}

23.2.3.9.1. Rollback

Rolls back a transaction from a pending state.

The Rollback method is equivalent to the MySQL statement ROLLBACK. The transaction can only be
rolled back from a pending state (after BeginTransaction has been called, but before Commit is called).

Examples

The following example creates MySqlConnection and a MySqlTransaction. It also demon-
strates how to use the MySqlConnection.BeginTransaction, Commit, and Rollback meth-
ods.

Visual Basic example:

Public Sub RunSqlTransaction(myConnString As String)
Dim myConnection As New MySqlConnection(myConnString)
myConnection.Open()

Dim myCommand As MySqlCommand = myConnection.CreateCommand()
Dim myTrans As MySqlTransaction

' Start a local transaction
myTrans = myConnection.BeginTransaction()

' Must assign both transaction object and connection
' to Command object for a pending local transaction
myCommand.Connection = myConnection
myCommand.Transaction = myTrans

Try
myCommand.CommandText = "Insert into mytable (id, desc) VALUES (100, 'Description')"
myCommand.ExecuteNonQuery()
myCommand.CommandText = "Insert into mytable (id, desc) VALUES (101, 'Description')"
myCommand.ExecuteNonQuery()
myTrans.Commit()
Console.WriteLine("Success.")

Catch e As Exception
Try
myTrans.Rollback()

Catch ex As MySqlException
If Not myTrans.Connection Is Nothing Then

Console.WriteLine("An exception of type " & ex.GetType().ToString() & _

Connectors

1422

" was encountered while attempting to roll back the transaction.")
End If

End Try

Console.WriteLine("An exception of type " & e.GetType().ToString() & _
"was encountered while inserting the data.")

Console.WriteLine("Neither record was written to database.")
Finally

myConnection.Close()
End Try

End Sub

C# example:

public void RunSqlTransaction(string myConnString)
{

MySqlConnection myConnection = new MySqlConnection(myConnString);
myConnection.Open();
MySqlCommand myCommand = myConnection.CreateCommand();
MySqlTransaction myTrans;
// Start a local transaction
myTrans = myConnection.BeginTransaction();
// Must assign both transaction object and connection
// to Command object for a pending local transaction
myCommand.Connection = myConnection;
myCommand.Transaction = myTrans;
try
{

myCommand.CommandText = "Insert into mytable (id, desc) VALUES (100, 'Description')";
myCommand.ExecuteNonQuery();
myCommand.CommandText = "Insert into mytable (id, desc) VALUES (101, 'Description')";
myCommand.ExecuteNonQuery();
myTrans.Commit();
Console.WriteLine("Both records are written to database.");

}
catch(Exception e)
{

try
{
myTrans.Rollback();

}
catch (MySqlException ex)
{
if (myTrans.Connection != null)
{

Console.WriteLine("An exception of type " + ex.GetType() +
" was encountered while attempting to roll back the transaction.");

}
}

Console.WriteLine("An exception of type " + e.GetType() +
" was encountered while inserting the data.");

Console.WriteLine("Neither record was written to database.");
}
finally
{

myConnection.Close();
}

}

23.2.3.9.2. Commit

Commits the database transaction.

The Commit method is equivalent to the MySQL SQL statement COMMIT.

Examples

The following example creates MySqlConnection and a MySqlTransaction. It also demon-
strates how to use the MySqlConnection.BeginTransaction, Commit, and Rollback meth-
ods.

Connectors

1423

Visual Basic example:

Public Sub RunSqlTransaction(myConnString As String)
Dim myConnection As New MySqlConnection(myConnString)
myConnection.Open()

Dim myCommand As MySqlCommand = myConnection.CreateCommand()
Dim myTrans As MySqlTransaction

' Start a local transaction
myTrans = myConnection.BeginTransaction()

' Must assign both transaction object and connection
' to Command object for a pending local transaction
myCommand.Connection = myConnection
myCommand.Transaction = myTrans

Try
myCommand.CommandText = "Insert into mytable (id, desc) VALUES (100, 'Description')"
myCommand.ExecuteNonQuery()
myCommand.CommandText = "Insert into mytable (id, desc) VALUES (101, 'Description')"
myCommand.ExecuteNonQuery()
myTrans.Commit()
Console.WriteLine("Success.")

Catch e As Exception
Try
myTrans.Rollback()

Catch ex As MySqlException
If Not myTrans.Connection Is Nothing Then

Console.WriteLine("An exception of type " & ex.GetType().ToString() & _
" was encountered while attempting to roll back the transaction.")

End If
End Try

Console.WriteLine("An exception of type " & e.GetType().ToString() & _
"was encountered while inserting the data.")

Console.WriteLine("Neither record was written to database.")
Finally

myConnection.Close()
End Try

End Sub

C# example:

public void RunSqlTransaction(string myConnString)
{

MySqlConnection myConnection = new MySqlConnection(myConnString);
myConnection.Open();
MySqlCommand myCommand = myConnection.CreateCommand();
MySqlTransaction myTrans;
// Start a local transaction
myTrans = myConnection.BeginTransaction();
// Must assign both transaction object and connection
// to Command object for a pending local transaction
myCommand.Connection = myConnection;
myCommand.Transaction = myTrans;
try
{

myCommand.CommandText = "Insert into mytable (id, desc) VALUES (100, 'Description')";
myCommand.ExecuteNonQuery();
myCommand.CommandText = "Insert into mytable (id, desc) VALUES (101, 'Description')";
myCommand.ExecuteNonQuery();
myTrans.Commit();
Console.WriteLine("Both records are written to database.");

}
catch(Exception e)
{

try
{
myTrans.Rollback();

}
catch (MySqlException ex)
{
if (myTrans.Connection != null)
{

Console.WriteLine("An exception of type " + ex.GetType() +
" was encountered while attempting to roll back the transaction.");

}

Connectors

1424

}

Console.WriteLine("An exception of type " + e.GetType() +
" was encountered while inserting the data.");

Console.WriteLine("Neither record was written to database.");
}
finally
{

myConnection.Close();
}

}

23.2.4. Connector/NET Reference
This section of the manual contains a complete reference to the Connector/NET ADO.NET component,
automatically generated from the embedded documentation.

23.2.4.1. MySql.Data.MySqlClient

Namespace hierarchy

Classes

Class Description

MySqlCommand

MySqlCommandBuilder

MySqlConnection

MySqlDataAdapter

MySqlDataReader Provides a means of reading a forward-only stream
of rows from a MySQL database. This class cannot
be inherited.

MySqlError Collection of error codes that can be returned by
the server

MySqlException The exception that is thrown when MySQL returns
an error. This class cannot be inherited.

MySqlHelper Helper class that makes it easier to work with the
provider.

MySqlInfoMessageEventArgs Provides data for the InfoMessage event. This
class cannot be inherited.

MySqlParameter Represents a parameter to a MySqlCommand , and
optionally, its mapping to DataSetcolumns. This
class cannot be inherited.

MySqlParameterCollection Represents a collection of parameters relevant to a
MySqlCommand as well as their respective map-
pings to columns in a DataSet. This class cannot be
inherited.

MySqlRowUpdatedEventArgs Provides data for the RowUpdated event. This
class cannot be inherited.

MySqlRowUpdatingEventArgs Provides data for the RowUpdating event. This
class cannot be inherited.

MySqlTransaction

Delegates

Connectors

1425

Delegate Description

MySqlInfoMessageEventHandler Represents the method that will handle the In-
foMessage event of a MySqlConnection .

MySqlRowUpdatedEventHandler Represents the method that will handle the
RowUpdatedevent of a MySqlDataAdapter .

MySqlRowUpdatingEventHandler Represents the method that will handle the
RowUpdatingevent of a MySqlDataAdapter .

Enumerations

Enumeration Description

MySqlDbType Specifies MySQL specific data type of a field,
property, for use in a MySqlParameter .

MySqlErrorCode

23.2.4.1.1. MySql.Data.MySqlClientHierarchy

See Also

MySql.Data.MySqlClient Namespace

23.2.4.1.2. MySqlCommand Class

For a list of all members of this type, see MySqlCommand Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlCommand_
Inherits Component_
Implements IDbCommand, ICloneable

Syntax: C#

public sealed class MySqlCommand : Component, IDbCommand, ICloneable

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. In-
stance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlCommand Members , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1. MySqlCommand Members

MySqlCommand overview

Connectors

1426

Public Instance Constructors

MySqlCommand Overloaded. Initializes a new instance of the
MySqlCommand class.

Public Instance Properties

CommandText

CommandTimeout

CommandType

Connection

Container(inherited from Component) Gets the IContainerthat contains the Component.

IsPrepared

Parameters

Site(inherited from Component) Gets or sets the ISiteof the Component.

Transaction

UpdatedRowSource

Public Instance Methods

Cancel Attempts to cancel the execution of a MySqlCom-
mand. This operation is not supported.

CreateObjRef(inherited from MarshalByRefOb-
ject)

Creates an object that contains all the relevant in-
formation required to generate a proxy used to
communicate with a remote object.

CreateParameter Creates a new instance of a MySqlParameter ob-
ject.

Dispose(inherited from Component) Releases all resources used by the Component.

Equals(inherited from Object) Determines whether the specified Objectis equal to
the current Object.

ExecuteNonQuery

ExecuteReader Overloaded.

ExecuteScalar

GetHashCode(inherited from Object) Serves as a hash function for a particular type.
GetHashCodeis suitable for use in hashing al-
gorithms and data structures like a hash table.

GetLifetimeService(inherited from MarshalByRe-
fObject)

Retrieves the current lifetime service object that
controls the lifetime policy for this instance.

GetType(inherited from Object) Gets the Typeof the current instance.

InitializeLifetimeService(inherited from Mar-
shalByRefObject)

Obtains a lifetime service object to control the life-
time policy for this instance.

Prepare

ToString(inherited from Component) Returns a Stringcontaining the name of the Com-
ponent, if any. This method should not be overrid-
den.

Connectors

1427

Public Instance Events

Disposed(inherited from Component) Adds an event handler to listen to the Dispose-
devent on the component.

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1. MySqlCommand Constructor

Initializes a new instance of the MySqlCommand class.

Overload List

Initializes a new instance of the MySqlCommand class.

• public MySqlCommand();

• public MySqlCommand(string);

• public MySqlCommand(string,MySqlConnection);

• public MySqlCommand(string,MySqlConnection,MySqlTransaction);

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.1. MySqlCommand Constructor ()

Initializes a new instance of the MySqlCommand class.

Syntax: Visual Basic

Overloads Public Sub New()

Syntax: C#

public MySqlCommand();

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace , MySqlCommand Constructor Overload
List

23.2.4.1.2.1.1.2. MySqlCommand Constructor (String)

Syntax: Visual Basic

Overloads Public Sub New(_
ByVal cmdText As String _

)

Syntax: C#

Connectors

1428

public MySqlCommand(
stringcmdText
);

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace , MySqlCommand Constructor Overload
List

23.2.4.1.2.1.1.3. MySqlCommand Constructor (String, MySqlConnection)

Syntax: Visual Basic

Overloads Public Sub New(_
ByVal cmdText As String, _
ByVal connection As MySqlConnection _

)

Syntax: C#

public MySqlCommand(
stringcmdText,
MySqlConnectionconnection
);

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace , MySqlCommand Constructor Overload
List

23.2.4.1.2.1.1.3.1. MySqlConnection Class

For a list of all members of this type, see MySqlConnection Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlConnection_
Inherits Component_
Implements IDbConnection, ICloneable

Syntax: C#

public sealed class MySqlConnection : Component, IDbConnection, ICloneable

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. In-
stance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlConnection Members , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1. MySqlConnection Members

Connectors

1429

MySqlConnection overview

Public Instance Constructors

MySqlConnection Overloaded. Initializes a new instance of the
MySqlConnection class.

Public Instance Properties

ConnectionString

ConnectionTimeout

Container(inherited from Component) Gets the IContainerthat contains the Component.

Database

DataSource Gets the name of the MySQL server to which to
connect.

ServerThread Returns the id of the server thread this connection
is executing on

ServerVersion

Site(inherited from Component) Gets or sets the ISiteof the Component.

State

UseCompression Indicates if this connection should use compres-
sion when communicating with the server.

Public Instance Methods

BeginTransaction Overloaded.

ChangeDatabase

Close

CreateCommand

CreateObjRef(inherited from MarshalByRefOb-
ject)

Creates an object that contains all the relevant in-
formation required to generate a proxy used to
communicate with a remote object.

Dispose(inherited from Component) Releases all resources used by the Component.

Equals(inherited from Object) Determines whether the specified Objectis equal to
the current Object.

GetHashCode(inherited from Object) Serves as a hash function for a particular type.
GetHashCodeis suitable for use in hashing al-
gorithms and data structures like a hash table.

GetLifetimeService(inherited from MarshalByRe-
fObject)

Retrieves the current lifetime service object that
controls the lifetime policy for this instance.

GetType(inherited from Object) Gets the Typeof the current instance.

InitializeLifetimeService(inherited from Mar-
shalByRefObject)

Obtains a lifetime service object to control the life-
time policy for this instance.

Open

Ping Ping

ToString(inherited from Component) Returns a Stringcontaining the name of the Com-
ponent, if any. This method should not be overrid-

Connectors

1430

den.

Public Instance Events

Disposed(inherited from Component) Adds an event handler to listen to the Dispose-
devent on the component.

InfoMessage

StateChange

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.1. MySqlConnection Constructor

Initializes a new instance of the MySqlConnection class.

Overload List

Initializes a new instance of the MySqlConnection class.

• public MySqlConnection();

• public MySqlConnection(string);

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.1.1. MySqlConnection Constructor ()

Initializes a new instance of the MySqlConnection class.

Syntax: Visual Basic

Overloads Public Sub New()

Syntax: C#

public MySqlConnection();

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace , MySqlConnection Constructor Over-
load List

23.2.4.1.2.1.1.3.1.1.1.2. MySqlConnection Constructor (String)

Syntax: Visual Basic

Overloads Public Sub New(_
ByVal connectionString As String _

)

Connectors

1431

Syntax: C#

public MySqlConnection(
stringconnectionString
);

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace , MySqlConnection Constructor Over-
load List

23.2.4.1.2.1.1.3.1.1.2. ConnectionString Property

Syntax: Visual Basic

NotOverridable Public Property ConnectionString As String _
_

Implements IDbConnection.ConnectionString

Syntax: C#

public string ConnectionString {get; set;}

Implements

IDbConnection.ConnectionString

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.3. ConnectionTimeout Property

Syntax: Visual Basic

NotOverridable Public ReadOnly Property ConnectionTimeout As Integer _
_

Implements IDbConnection.ConnectionTimeout

Syntax: C#

public int ConnectionTimeout {get;}

Implements

IDbConnection.ConnectionTimeout

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.4. Database Property

Syntax: Visual Basic

NotOverridable Public ReadOnly Property Database As String _
_

Implements IDbConnection.Database

Connectors

1432

Syntax: C#

public string Database {get;}

Implements

IDbConnection.Database

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.5. DataSource Property

Gets the name of the MySQL server to which to connect.

Syntax: Visual Basic

Public ReadOnly Property DataSource As String

Syntax: C#

public string DataSource {get;}

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.6. ServerThread Property

Returns the id of the server thread this connection is executing on

Syntax: Visual Basic

Public ReadOnly Property ServerThread As Integer

Syntax: C#

public int ServerThread {get;}

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.7. ServerVersion Property

Syntax: Visual Basic

Public ReadOnly Property ServerVersion As String

Syntax: C#

public string ServerVersion {get;}

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

Connectors

1433

23.2.4.1.2.1.1.3.1.1.8. State Property

Syntax: Visual Basic

NotOverridable Public ReadOnly Property State As ConnectionState _
_

Implements IDbConnection.State

Syntax: C#

public System.Data.ConnectionState State {get;}

Implements

IDbConnection.State

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.9. UseCompression Property

Indicates if this connection should use compression when communicating with the server.

Syntax: Visual Basic

Public ReadOnly Property UseCompression As Boolean

Syntax: C#

public bool UseCompression {get;}

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.10. BeginTransaction Method

Overload List

• public MySqlTransaction BeginTransaction();

• public MySqlTransaction BeginTransaction(IsolationLevel);

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.10.1. MySqlConnection.BeginTransaction Method ()

Syntax: Visual Basic

Overloads Public Function BeginTransaction() As MySqlTransaction

Syntax: C#

public MySqlTransaction BeginTransaction();

Connectors

1434

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace , MySqlConnection.BeginTransaction
Overload List

23.2.4.1.2.1.1.3.1.1.10.1.1. MySqlTransaction Class

For a list of all members of this type, see MySqlTransaction Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlTransaction_
Implements IDbTransaction, IDisposable

Syntax: C#

public sealed class MySqlTransaction : IDbTransaction, IDisposable

Thread Safety

Public static (Sharedin Visual Basic) members of this type are safe for multithreaded operations. In-
stance members are notguaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlTransaction Members , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.10.1.1.1. MySqlTransaction Members

MySqlTransaction overview

Public Instance Properties

Connection Gets the MySqlConnection object associated with
the transaction, or a null reference (Nothing in
Visual Basic) if the transaction is no longer valid.

IsolationLevel Specifies the IsolationLevelfor this transaction.

Public Instance Methods

Commit

Equals(inherited from Object) Determines whether the specified Objectis equal to
the current Object.

GetHashCode(inherited from Object) Serves as a hash function for a particular type.
GetHashCodeis suitable for use in hashing al-
gorithms and data structures like a hash table.

GetType(inherited from Object) Gets the Typeof the current instance.

Rollback

ToString(inherited from Object) Returns a Stringthat represents the current Object.

Connectors

1435

See Also

MySqlTransaction Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.10.1.1.1.1. Connection Property

Gets the MySqlConnection object associated with the transaction, or a null reference (Nothing in Visual
Basic) if the transaction is no longer valid.

Syntax: Visual Basic

Public ReadOnly Property Connection As MySqlConnection

Syntax: C#

public MySqlConnection Connection {get;}

Property Value

The MySqlConnection object associated with this transaction.

Remarks

A single application may have multiple database connections, each with zero or more transactions. This
property enables you to determine the connection object associated with a particular transaction created
by BeginTransaction .

See Also

MySqlTransaction Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.10.1.1.1.2. IsolationLevel Property

Specifies the IsolationLevelfor this transaction.

Syntax: Visual Basic

NotOverridable Public ReadOnly Property IsolationLevel As IsolationLevel _
_

Implements IDbTransaction.IsolationLevel

Syntax: C#

public System.Data.IsolationLevel IsolationLevel {get;}

Property Value

The IsolationLevel for this transaction. The default is ReadCommitted.

Implements

IDbTransaction.IsolationLevel

Remarks

Parallel transactions are not supported. Therefore, the IsolationLevel applies to the entire transaction.

See Also

Connectors

1436

MySqlTransaction Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.10.1.1.1.3. MySqlTransaction.Commit Method

Syntax: Visual Basic

NotOverridable Public Sub Commit() _
_

Implements IDbTransaction.Commit

Syntax: C#

public void Commit();

Implements

IDbTransaction.Commit

See Also

MySqlTransaction Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.10.1.1.1.4. MySqlTransaction.Rollback Method

Syntax: Visual Basic

NotOverridable Public Sub Rollback() _
_

Implements IDbTransaction.Rollback

Syntax: C#

public void Rollback();

Implements

IDbTransaction.Rollback

See Also

MySqlTransaction Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.10.2. MySqlConnection.BeginTransaction Method (IsolationLevel)

Syntax: Visual Basic

Overloads Public Function BeginTransaction(_
ByVal iso As IsolationLevel _

) As MySqlTransaction

Syntax: C#

public MySqlTransaction BeginTransaction(
IsolationLeveliso
);

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace , MySqlConnection.BeginTransaction

Connectors

1437

Overload List

23.2.4.1.2.1.1.3.1.1.11. MySqlConnection.ChangeDatabase Method

Syntax: Visual Basic

NotOverridable Public Sub ChangeDatabase(_
ByVal databaseName As String _

) _
_

Implements IDbConnection.ChangeDatabase

Syntax: C#

public void ChangeDatabase(
stringdatabaseName
);

Implements

IDbConnection.ChangeDatabase

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.12. MySqlConnection.Close Method

Syntax: Visual Basic

NotOverridable Public Sub Close() _
_

Implements IDbConnection.Close

Syntax: C#

public void Close();

Implements

IDbConnection.Close

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.13. MySqlConnection.CreateCommand Method

Syntax: Visual Basic

Public Function CreateCommand() As MySqlCommand

Syntax: C#

public MySqlCommand CreateCommand();

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

Connectors

1438

23.2.4.1.2.1.1.3.1.1.14. MySqlConnection.Open Method

Syntax: Visual Basic

NotOverridable Public Sub Open() _
_

Implements IDbConnection.Open

Syntax: C#

public void Open();

Implements

IDbConnection.Open

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.15. MySqlConnection.Ping Method

Ping

Syntax: Visual Basic

Public Function Ping() As Boolean

Syntax: C#

public bool Ping();

Return Value

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.16. MySqlConnection.InfoMessage Event

Syntax: Visual Basic

Public Event InfoMessage As MySqlInfoMessageEventHandler

Syntax: C#

public event MySqlInfoMessageEventHandler InfoMessage;

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.16.1. MySqlInfoMessageEventHandler Delegate

Represents the method that will handle the InfoMessage event of a MySqlConnection .

Syntax: Visual Basic

Connectors

1439

Public Delegate Sub MySqlInfoMessageEventHandler(_
ByVal sender As Object, _
ByVal args As MySqlInfoMessageEventArgs _

)

Syntax: C#

public delegate void MySqlInfoMessageEventHandler(
objectsender,
MySqlInfoMessageEventArgsargs
);

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.16.1.1. MySqlInfoMessageEventArgs Class

Provides data for the InfoMessage event. This class cannot be inherited.

For a list of all members of this type, see MySqlInfoMessageEventArgs Members .

Syntax: Visual Basic

Public Class MySqlInfoMessageEventArgs_
Inherits EventArgs

Syntax: C#

public class MySqlInfoMessageEventArgs : EventArgs

Thread Safety

Public static (Sharedin Visual Basic) members of this type are safe for multithreaded operations. In-
stance members are notguaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlInfoMessageEventArgs Members , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.16.1.1.1. MySqlInfoMessageEventArgs Members

MySqlInfoMessageEventArgs overview

Public Instance Constructors

MySqlInfoMessageEventArgs Constructor Initializes a new instance of the MySqlInfoMes-
sageEventArgs class.

Connectors

1440

Public Instance Fields

errors

Public Instance Methods

Equals(inherited from Object) Determines whether the specified Objectis equal to
the current Object.

GetHashCode(inherited from Object) Serves as a hash function for a particular type.
GetHashCodeis suitable for use in hashing al-
gorithms and data structures like a hash table.

GetType(inherited from Object) Gets the Typeof the current instance.

ToString(inherited from Object) Returns a Stringthat represents the current Object.

Protected Instance Methods

Finalize(inherited from Object) Allows an Objectto attempt to free resources and
perform other cleanup operations before the Objec-
tis reclaimed by garbage collection.

MemberwiseClone(inherited from Object) Creates a shallow copy of the current Object.

See Also

MySqlInfoMessageEventArgs Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.16.1.1.1.1. MySqlInfoMessageEventArgs Constructor

Initializes a new instance of the MySqlInfoMessageEventArgs class.

Syntax: Visual Basic

Public Sub New()

Syntax: C#

public MySqlInfoMessageEventArgs();

See Also

MySqlInfoMessageEventArgs Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.16.1.1.1.2. MySqlInfoMessageEventArgs.errors Field

Syntax: Visual Basic

Public errors As MySqlError()

Syntax: C#

public MySqlError[] errors;

See Also

Connectors

1441

MySqlInfoMessageEventArgs Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1. MySqlError Class

Collection of error codes that can be returned by the server

For a list of all members of this type, see MySqlError Members .

Syntax: Visual Basic

Public Class MySqlError

Syntax: C#

public class MySqlError

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. In-
stance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlError Members , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1. MySqlError Members

MySqlError overview

Public Instance Constructors

MySqlError Constructor

Public Instance Properties

Code Error code

Level Error level

Message Error message

Public Instance Methods

Equals(inherited from Object) Determines whether the specified Objectis equal to
the current Object.

GetHashCode(inherited from Object) Serves as a hash function for a particular type.
GetHashCodeis suitable for use in hashing al-
gorithms and data structures like a hash table.

GetType(inherited from Object) Gets the Typeof the current instance.

ToString(inherited from Object) Returns a Stringthat represents the current Object.

Connectors

1442

Protected Instance Methods

Finalize(inherited from Object) Allows an Objectto attempt to free resources and
perform other cleanup operations before the Objec-
tis reclaimed by garbage collection.

MemberwiseClone(inherited from Object) Creates a shallow copy of the current Object.

See Also

MySqlError Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1.1. MySqlError Constructor

Syntax: Visual Basic

Public Sub New(_
ByVal level As String, _
ByVal code As Integer, _
ByVal message As String _

)

Syntax: C#

public MySqlError(
stringlevel,
intcode,
stringmessage
);

Parameters

• level:

• code:

• message:

See Also

MySqlError Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1.2. Code Property

Error code

Syntax: Visual Basic

Public ReadOnly Property Code As Integer

Syntax: C#

public int Code {get;}

See Also

MySqlError Class , MySql.Data.MySqlClient Namespace

Connectors

1443

23.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1.3. Level Property

Error level

Syntax: Visual Basic

Public ReadOnly Property Level As String

Syntax: C#

public string Level {get;}

See Also

MySqlError Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1.4. Message Property

Error message

Syntax: Visual Basic

Public ReadOnly Property Message As String

Syntax: C#

public string Message {get;}

See Also

MySqlError Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.3.1.1.17. MySqlConnection.StateChange Event

Syntax: Visual Basic

Public Event StateChange As StateChangeEventHandler

Syntax: C#

public event StateChangeEventHandler StateChange;

See Also

MySqlConnection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.1.4. MySqlCommand Constructor (String, MySqlConnection, MySqlTransaction)

Syntax: Visual Basic

Overloads Public Sub New(_
ByVal cmdText As String, _
ByVal connection As MySqlConnection, _
ByVal transaction As MySqlTransaction _

)

Syntax: C#

Connectors

1444

public MySqlCommand(
stringcmdText,
MySqlConnectionconnection,
MySqlTransactiontransaction
);

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace , MySqlCommand Constructor Overload
List

23.2.4.1.2.1.2. CommandText Property

Syntax: Visual Basic

NotOverridable Public Property CommandText As String _
_

Implements IDbCommand.CommandText

Syntax: C#

public string CommandText {get; set;}

Implements

IDbCommand.CommandText

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.3. CommandTimeout Property

Syntax: Visual Basic

NotOverridable Public Property CommandTimeout As Integer _
_

Implements IDbCommand.CommandTimeout

Syntax: C#

public int CommandTimeout {get; set;}

Implements

IDbCommand.CommandTimeout

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.4. CommandType Property

Syntax: Visual Basic

NotOverridable Public Property CommandType As CommandType _
_

Implements IDbCommand.CommandType

Syntax: C#

Connectors

1445

public System.Data.CommandType CommandType {get; set;}

Implements

IDbCommand.CommandType

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.5. Connection Property

Syntax: Visual Basic

Public Property Connection As MySqlConnection

Syntax: C#

public MySqlConnection Connection {get; set;}

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.6. IsPrepared Property

Syntax: Visual Basic

Public ReadOnly Property IsPrepared As Boolean

Syntax: C#

public bool IsPrepared {get;}

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7. Parameters Property

Syntax: Visual Basic

Public ReadOnly Property Parameters As MySqlParameterCollection

Syntax: C#

public MySqlParameterCollection Parameters {get;}

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1. MySqlParameterCollection Class

Represents a collection of parameters relevant to a MySqlCommand as well as their respective mappings
to columns in a DataSet. This class cannot be inherited.

Connectors

1446

For a list of all members of this type, see MySqlParameterCollection Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlParameterCollection_
Inherits MarshalByRefObject_
Implements IDataParameterCollection, IList, ICollection, IEnumerable

Syntax: C#

public sealed class MySqlParameterCollection : MarshalByRefObject, IDataParameterCollection, IList, ICollection, IEnumerable

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. In-
stance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlParameterCollection Members , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1. MySqlParameterCollection Members

MySqlParameterCollection overview

Public Instance Constructors

MySqlParameterCollection Constructor Initializes a new instance of the MySqlPara-
meterCollection class.

Public Instance Properties

Count Gets the number of MySqlParameter objects in the
collection.

Item Overloaded. Gets the MySqlParameter with a spe-
cified attribute. In C#, this property is the indexer
for the MySqlParameterCollection class.

Public Instance Methods

Add Overloaded. Adds the specified MySqlParameter
object to the MySqlParameterCollection .

Clear Removes all items from the collection.

Contains Overloaded. Gets a value indicating whether a
MySqlParameter exists in the collection.

CopyTo Copies MySqlParameter objects from the MySql-
ParameterCollection to the specified array.

CreateObjRef(inherited from MarshalByRefOb- Creates an object that contains all the relevant in-

Connectors

1447

ject) formation required to generate a proxy used to
communicate with a remote object.

Equals(inherited from Object) Determines whether the specified Objectis equal to
the current Object.

GetHashCode(inherited from Object) Serves as a hash function for a particular type.
GetHashCodeis suitable for use in hashing al-
gorithms and data structures like a hash table.

GetLifetimeService(inherited from MarshalByRe-
fObject)

Retrieves the current lifetime service object that
controls the lifetime policy for this instance.

GetType(inherited from Object) Gets the Typeof the current instance.

IndexOf Overloaded. Gets the location of a MySqlParamet-
er in the collection.

InitializeLifetimeService(inherited from Mar-
shalByRefObject)

Obtains a lifetime service object to control the life-
time policy for this instance.

Insert Inserts a MySqlParameter into the collection at the
specified index.

Remove Removes the specified MySqlParameter from the
collection.

RemoveAt Overloaded. Removes the specified MySqlPara-
meter from the collection.

ToString(inherited from Object) Returns a Stringthat represents the current Object.

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.1. MySqlParameterCollection Constructor

Initializes a new instance of the MySqlParameterCollection class.

Syntax: Visual Basic

Public Sub New()

Syntax: C#

public MySqlParameterCollection();

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.2. Count Property

Gets the number of MySqlParameter objects in the collection.

Syntax: Visual Basic

NotOverridable Public ReadOnly Property Count As Integer _
_

Implements ICollection.Count

Syntax: C#

Connectors

1448

public int Count {get;}

Implements

ICollection.Count

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.3. Item Property

Gets the MySqlParameter with a specified attribute. In C#, this property is the indexer for the MySql-
ParameterCollection class.

Overload List

Gets the MySqlParameter at the specified index.

• public MySqlParameter this[int] {get; set;}

Gets the MySqlParameter with the specified name.

• public MySqlParameter this[string] {get; set;}

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.3.1. MySqlParameter Class

Represents a parameter to a MySqlCommand , and optionally, its mapping to DataSetcolumns. This
class cannot be inherited.

For a list of all members of this type, see MySqlParameter Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlParameter_
Inherits MarshalByRefObject_
Implements IDataParameter, IDbDataParameter, ICloneable

Syntax: C#

public sealed class MySqlParameter : MarshalByRefObject, IDataParameter, IDbDataParameter, ICloneable

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. In-
stance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Connectors

1449

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlParameter Members , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.3.1.1. MySqlParameter Members

MySqlParameter overview

Public Instance Constructors

MySqlParameter Overloaded. Initializes a new instance of the
MySqlParameter class.

Public Instance Properties

DbType Gets or sets the DbTypeof the parameter.

Direction Gets or sets a value indicating whether the para-
meter is input-only, output-only, bidirectional, or a
stored procedure return value parameter. As of
MySql version 4.1 and earlier, input-only is the
only valid choice.

IsNullable Gets or sets a value indicating whether the para-
meter accepts null values.

IsUnsigned

MySqlDbType Gets or sets the MySqlDbType of the parameter.

ParameterName Gets or sets the name of the MySqlParameter.

Precision Gets or sets the maximum number of digits used to
represent the Value property.

Scale Gets or sets the number of decimal places to which
Value is resolved.

Size Gets or sets the maximum size, in bytes, of the
data within the column.

SourceColumn Gets or sets the name of the source column that is
mapped to the DataSetand used for loading or re-
turning the Value .

SourceVersion Gets or sets the DataRowVersionto use when load-
ing Value .

Value Gets or sets the value of the parameter.

Public Instance Methods

CreateObjRef(inherited from MarshalByRefOb-
ject)

Creates an object that contains all the relevant in-
formation required to generate a proxy used to
communicate with a remote object.

Equals(inherited from Object) Determines whether the specified Objectis equal to
the current Object.

GetHashCode(inherited from Object) Serves as a hash function for a particular type.
GetHashCodeis suitable for use in hashing al-
gorithms and data structures like a hash table.

Connectors

1450

GetLifetimeService(inherited from MarshalByRe-
fObject)

Retrieves the current lifetime service object that
controls the lifetime policy for this instance.

GetType(inherited from Object) Gets the Typeof the current instance.

InitializeLifetimeService(inherited from Mar-
shalByRefObject)

Obtains a lifetime service object to control the life-
time policy for this instance.

ToString Overridden. Gets a string containing the Paramet-
erName .

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.3.1.1.1. MySqlParameter Constructor

Initializes a new instance of the MySqlParameter class.

Overload List

Initializes a new instance of the MySqlParameter class.

• public MySqlParameter();

Initializes a new instance of the MySqlParameter class with the parameter name and the data type.

• public MySqlParameter(string,MySqlDbType);

Initializes a new instance of the MySqlParameter class with the parameter name, the MySqlDbType ,
and the size.

• public MySqlParameter(string,MySqlDbType,int);

Initializes a new instance of the MySqlParameter class with the parameter name, the type of the para-
meter, the size of the parameter, a ParameterDirection, the precision of the parameter, the scale of the
parameter, the source column, a DataRowVersionto use, and the value of the parameter.

• public MySqlParamet-
er(string,MySqlDbType,int,ParameterDirection,bool,byte,byte,string,DataRowVersion,object);

Initializes a new instance of the MySqlParameter class with the parameter name, the MySqlDbType , the
size, and the source column name.

• public MySqlParameter(string,MySqlDbType,int,string);

Initializes a new instance of the MySqlParameter class with the parameter name and a value of the new
MySqlParameter.

Connectors

1451

• public MySqlParameter(string,object);

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.3.1.1.1.1. MySqlParameter Constructor ()

Initializes a new instance of the MySqlParameter class.

Syntax: Visual Basic

Overloads Public Sub New()

Syntax: C#

public MySqlParameter();

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace , MySqlParameter Constructor Overload
List

23.2.4.1.2.1.7.1.1.3.1.1.1.2. MySqlParameter Constructor (String, MySqlDbType)

Initializes a new instance of the MySqlParameter class with the parameter name and the data type.

Syntax: Visual Basic

Overloads Public Sub New(_
ByVal parameterName As String, _
ByVal dbType As MySqlDbType _

)

Syntax: C#

public MySqlParameter(
stringparameterName,
MySqlDbTypedbType
);

Parameters

• parameterName: The name of the parameter to map.

• dbType: One of the MySqlDbType values.

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace , MySqlParameter Constructor Overload
List

23.2.4.1.2.1.7.1.1.3.1.1.1.2.1. MySqlDbType Enumeration

Specifies MySQL specific data type of a field, property, for use in a MySqlParameter .

Syntax: Visual Basic

Connectors

1452

Public Enum MySqlDbType

Syntax: C#

public enum MySqlDbType

Members

Member Name Description

VarString A variable-length string containing 0 to 65535
characters

Timestamp A timestamp. The range is '1970-01-01 00:00:00'
to sometime in the year 2037

LongBlob A BLOB or TEXT column with a maximum length
of 4294967295 or 4G (2^32 - 1) characters

Time Time

The range is '-838:59:59' to '838:59:59'.

TinyBlob A BLOB or TEXT column with a maximum length
of 255 (2^8 - 1) characters

Datetime DateTime The supported range is '1000-01-01
00:00:00' to '9999-12-31 23:59:59'.

Decimal Decimal

A fixed precision and scale numeric value between
-1038 -1 and 10 38 -1.

UByte

Blob A BLOB or TEXT column with a maximum length
of 65535 (2^16 - 1) characters

Double Double

A normal-size (double-precision) floating-point
number. Allowable values are -
1.7976931348623157E+308 to -
2.2250738585072014E-308, 0, and
2.2250738585072014E-308 to
1.7976931348623157E+308.

Newdate Obsolete Use Datetime or Date type

Byte Byte

The signed range is -128 to 127. The unsigned
range is 0 to 255.

Date Date The supported range is '1000-01-01' to
'9999-12-31'.

VarChar A variable-length string containing 0 to 255 char-
acters

UInt16

UInt24

Int16 Int16

A 16-bit signed integer. The signed range is -

Connectors

1453

32768 to 32767. The unsigned range is 0 to 65535

NewDecimal New Decimal

Set A set. A string object that can have zero or more
values, each of which must be chosen from the list
of values 'value1', 'value2', ... A SET can have a
maximum of 64 members.

String Obsolete Use VarChar type

Enum An enumeration. A string object that can have only
one value, chosen from the list of values 'value1',
'value2', ..., NULL or the special "" error value. An
ENUM can have a maximum of 65535 distinct val-
ues

Geometry

UInt64

Int64 Int64

A 64-bit signed integer.

UInt32

Int24 Specifies a 24 (3 byte) signed or unsigned value.

Bit Bit-field data type

Float Single

A small (single-precision) floating-point number.
Allowable values are -3.402823466E+38 to -
1.175494351E-38, 0, and 1.175494351E-38 to
3.402823466E+38.

Year A year in 2- or 4-digit format (default is 4-digit).
The allowable values are 1901 to 2155, 0000 in the
4-digit year format, and 1970-2069 if you use the
2-digit format (70-69)

Int32 Int32

A 32-bit signed integer

MediumBlob A BLOB or TEXT column with a maximum length
of 16777215 (2^24 - 1) characters

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.3.1.1.1.3. MySqlParameter Constructor (String, MySqlDbType, Int32)

Initializes a new instance of the MySqlParameter class with the parameter name, the MySqlDbType ,
and the size.

Connectors

1454

Syntax: Visual Basic

Overloads Public Sub New(_
ByVal parameterName As String, _
ByVal dbType As MySqlDbType, _
ByVal size As Integer _

)

Syntax: C#

public MySqlParameter(
stringparameterName,
MySqlDbTypedbType,
intsize
);

Parameters

• parameterName: The name of the parameter to map.

• dbType: One of the MySqlDbType values.

• size: The length of the parameter.

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace , MySqlParameter Constructor Overload
List

23.2.4.1.2.1.7.1.1.3.1.1.1.4. MySqlParameter Constructor (String, MySqlDbType, Int32, ParameterDirec-
tion, Boolean, Byte, Byte, String, DataRowVersion, Object)

Initializes a new instance of the MySqlParameter class with the parameter name, the type of the para-
meter, the size of the parameter, a ParameterDirection, the precision of the parameter, the scale of the
parameter, the source column, a DataRowVersionto use, and the value of the parameter.

Syntax: Visual Basic

Overloads Public Sub New(_
ByVal parameterName As String, _
ByVal dbType As MySqlDbType, _
ByVal size As Integer, _
ByVal direction As ParameterDirection, _
ByVal isNullable As Boolean, _
ByVal precision As Byte, _
ByVal scale As Byte, _
ByVal sourceColumn As String, _
ByVal sourceVersion As DataRowVersion, _
ByVal value As Object _

)

Syntax: C#

public MySqlParameter(
stringparameterName,
MySqlDbTypedbType,
intsize,
ParameterDirectiondirection,
boolisNullable,
byteprecision,
bytescale,
stringsourceColumn,
DataRowVersionsourceVersion,
objectvalue

Connectors

1455

);

Parameters

• parameterName: The name of the parameter to map.

• dbType: One of the MySqlDbType values.

• size: The length of the parameter.

• direction: One of the ParameterDirectionvalues.

• isNullable: true if the value of the field can be null, otherwise false.

• precision: The total number of digits to the left and right of the decimal point to which Value is
resolved.

• scale: The total number of decimal places to which Value is resolved.

• sourceColumn: The name of the source column.

• sourceVersion: One of the DataRowVersionvalues.

• value: An Objectthat is the value of the MySqlParameter .

Exceptions

Exception Type Condition

ArgumentException

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace , MySqlParameter Constructor Overload
List

23.2.4.1.2.1.7.1.1.3.1.1.1.4.1. Value Property

Gets or sets the value of the parameter.

Syntax: Visual Basic

NotOverridable Public Property Value As Object _
_

Implements IDataParameter.Value

Syntax: C#

public object Value {get; set;}

Implements

IDataParameter.Value

See Also

Connectors

1456

MySqlParameter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.3.1.1.1.5. MySqlParameter Constructor (String, MySqlDbType, Int32, String)

Initializes a new instance of the MySqlParameter class with the parameter name, the MySqlDbType , the
size, and the source column name.

Syntax: Visual Basic

Overloads Public Sub New(_
ByVal parameterName As String, _
ByVal dbType As MySqlDbType, _
ByVal size As Integer, _
ByVal sourceColumn As String _

)

Syntax: C#

public MySqlParameter(
stringparameterName,
MySqlDbTypedbType,
intsize,
stringsourceColumn
);

Parameters

• parameterName: The name of the parameter to map.

• dbType: One of the MySqlDbType values.

• size: The length of the parameter.

• sourceColumn: The name of the source column.

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace , MySqlParameter Constructor Overload
List

23.2.4.1.2.1.7.1.1.3.1.1.1.6. MySqlParameter Constructor (String, Object)

Initializes a new instance of the MySqlParameter class with the parameter name and a value of the new
MySqlParameter.

Syntax: Visual Basic

Overloads Public Sub New(_
ByVal parameterName As String, _
ByVal value As Object _

)

Syntax: C#

public MySqlParameter(
stringparameterName,
objectvalue
);

Parameters

Connectors

1457

• parameterName: The name of the parameter to map.

• value: An Objectthat is the value of the MySqlParameter .

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace , MySqlParameter Constructor Overload
List

23.2.4.1.2.1.7.1.1.3.1.1.2. DbType Property

Gets or sets the DbTypeof the parameter.

Syntax: Visual Basic

NotOverridable Public Property DbType As DbType _
_

Implements IDataParameter.DbType

Syntax: C#

public System.Data.DbType DbType {get; set;}

Implements

IDataParameter.DbType

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.3.1.1.3. Direction Property

Gets or sets a value indicating whether the parameter is input-only, output-only, bidirectional, or a stored
procedure return value parameter. As of MySql version 4.1 and earlier, input-only is the only valid
choice.

Syntax: Visual Basic

NotOverridable Public Property Direction As ParameterDirection _
_

Implements IDataParameter.Direction

Syntax: C#

public System.Data.ParameterDirection Direction {get; set;}

Implements

IDataParameter.Direction

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.3.1.1.4. IsNullable Property

Gets or sets a value indicating whether the parameter accepts null values.

Connectors

1458

Syntax: Visual Basic

NotOverridable Public Property IsNullable As Boolean _
_

Implements IDataParameter.IsNullable

Syntax: C#

public bool IsNullable {get; set;}

Implements

IDataParameter.IsNullable

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.3.1.1.5. IsUnsigned Property

Syntax: Visual Basic

Public Property IsUnsigned As Boolean

Syntax: C#

public bool IsUnsigned {get; set;}

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.3.1.1.6. MySqlDbType Property

Gets or sets the MySqlDbType of the parameter.

Syntax: Visual Basic

Public Property MySqlDbType As MySqlDbType

Syntax: C#

public MySqlDbType MySqlDbType {get; set;}

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.3.1.1.7. ParameterName Property

Gets or sets the name of the MySqlParameter.

Syntax: Visual Basic

NotOverridable Public Property ParameterName As String _
_

Implements IDataParameter.ParameterName

Connectors

1459

Syntax: C#

public string ParameterName {get; set;}

Implements

IDataParameter.ParameterName

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.3.1.1.8. Precision Property

Gets or sets the maximum number of digits used to represent the Value property.

Syntax: Visual Basic

NotOverridable Public Property Precision As Byte _
_

Implements IDbDataParameter.Precision

Syntax: C#

public byte Precision {get; set;}

Implements

IDbDataParameter.Precision

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.3.1.1.9. Scale Property

Gets or sets the number of decimal places to which Value is resolved.

Syntax: Visual Basic

NotOverridable Public Property Scale As Byte _
_

Implements IDbDataParameter.Scale

Syntax: C#

public byte Scale {get; set;}

Implements

IDbDataParameter.Scale

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.3.1.1.10. Size Property

Gets or sets the maximum size, in bytes, of the data within the column.

Connectors

1460

Syntax: Visual Basic

NotOverridable Public Property Size As Integer _
_

Implements IDbDataParameter.Size

Syntax: C#

public int Size {get; set;}

Implements

IDbDataParameter.Size

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.3.1.1.11. SourceColumn Property

Gets or sets the name of the source column that is mapped to the DataSetand used for loading or return-
ing the Value .

Syntax: Visual Basic

NotOverridable Public Property SourceColumn As String _
_

Implements IDataParameter.SourceColumn

Syntax: C#

public string SourceColumn {get; set;}

Implements

IDataParameter.SourceColumn

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.3.1.1.12. SourceVersion Property

Gets or sets the DataRowVersionto use when loading Value .

Syntax: Visual Basic

NotOverridable Public Property SourceVersion As DataRowVersion _
_

Implements IDataParameter.SourceVersion

Syntax: C#

public System.Data.DataRowVersion SourceVersion {get; set;}

Implements

IDataParameter.SourceVersion

Connectors

1461

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.3.1.1.13. MySqlParameter.ToString Method

Overridden. Gets a string containing the ParameterName .

Syntax: Visual Basic

Overrides Public Function ToString() As String

Syntax: C#

public override string ToString();

Return Value

See Also

MySqlParameter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.3.2. Item Property (Int32)

Gets the MySqlParameter at the specified index.

Syntax: Visual Basic

Overloads Public Default Property Item(_
ByVal index As Integer _

) As MySqlParameter

Syntax: C#

public MySqlParameter this[
intindex
] {get; set;}

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollec-
tion.Item Overload List

23.2.4.1.2.1.7.1.1.3.3. Item Property (String)

Gets the MySqlParameter with the specified name.

Syntax: Visual Basic

Overloads Public Default Property Item(_
ByVal name As String _

) As MySqlParameter

Syntax: C#

public MySqlParameter this[
stringname
] {get; set;}

Connectors

1462

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollec-
tion.Item Overload List

23.2.4.1.2.1.7.1.1.4. Add Method

Adds the specified MySqlParameter object to the MySqlParameterCollection .

Overload List

Adds the specified MySqlParameter object to the MySqlParameterCollection .

• public MySqlParameter Add(MySqlParameter);

Adds the specified MySqlParameter object to the MySqlParameterCollection .

• public int Add(object);

Adds a MySqlParameter to the MySqlParameterCollection given the parameter name and the data type.

• public MySqlParameter Add(string,MySqlDbType);

Adds a MySqlParameter to the MySqlParameterCollection with the parameter name, the data type, and
the column length.

• public MySqlParameter Add(string,MySqlDbType,int);

Adds a MySqlParameter to the MySqlParameterCollection with the parameter name, the data type, the
column length, and the source column name.

• public MySqlParameter Add(string,MySqlDbType,int,string);

Adds a MySqlParameter to the MySqlParameterCollection given the specified parameter name and
value.

• public MySqlParameter Add(string,object);

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.4.1. MySqlParameterCollection.Add Method (MySqlParameter)

Adds the specified MySqlParameter object to the MySqlParameterCollection .

Syntax: Visual Basic

Overloads Public Function Add(_

Connectors

1463

ByVal value As MySqlParameter _
) As MySqlParameter

Syntax: C#

public MySqlParameter Add(
MySqlParametervalue
);

Parameters

• value: The MySqlParameter to add to the collection.

Return Value

The newly added MySqlParameter object.

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollec-
tion.Add Overload List

23.2.4.1.2.1.7.1.1.4.2. MySqlParameterCollection.Add Method (Object)

Adds the specified MySqlParameter object to the MySqlParameterCollection .

Syntax: Visual Basic

NotOverridable Overloads Public Function Add(_
ByVal value As Object _

) As Integer _
_

Implements IList.Add

Syntax: C#

public int Add(
objectvalue
);

Parameters

• value: The MySqlParameter to add to the collection.

Return Value

The index of the new MySqlParameter object.

Implements

IList.Add

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollec-
tion.Add Overload List

Connectors

1464

23.2.4.1.2.1.7.1.1.4.3. MySqlParameterCollection.Add Method (String, MySqlDbType)

Adds a MySqlParameter to the MySqlParameterCollection given the parameter name and the data type.

Syntax: Visual Basic

Overloads Public Function Add(_
ByVal parameterName As String, _
ByVal dbType As MySqlDbType _

) As MySqlParameter

Syntax: C#

public MySqlParameter Add(
stringparameterName,
MySqlDbTypedbType
);

Parameters

• parameterName: The name of the parameter.

• dbType: One of the MySqlDbType values.

Return Value

The newly added MySqlParameter object.

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollec-
tion.Add Overload List

23.2.4.1.2.1.7.1.1.4.4. MySqlParameterCollection.Add Method (String, MySqlDbType, Int32)

Adds a MySqlParameter to the MySqlParameterCollection with the parameter name, the data type, and
the column length.

Syntax: Visual Basic

Overloads Public Function Add(_
ByVal parameterName As String, _
ByVal dbType As MySqlDbType, _
ByVal size As Integer _

) As MySqlParameter

Syntax: C#

public MySqlParameter Add(
stringparameterName,
MySqlDbTypedbType,
intsize
);

Parameters

• parameterName: The name of the parameter.

• dbType: One of the MySqlDbType values.

Connectors

1465

• size: The length of the column.

Return Value

The newly added MySqlParameter object.

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollec-
tion.Add Overload List

23.2.4.1.2.1.7.1.1.4.5. MySqlParameterCollection.Add Method (String, MySqlDbType, Int32, String)

Adds a MySqlParameter to the MySqlParameterCollection with the parameter name, the data type, the
column length, and the source column name.

Syntax: Visual Basic

Overloads Public Function Add(_
ByVal parameterName As String, _
ByVal dbType As MySqlDbType, _
ByVal size As Integer, _
ByVal sourceColumn As String _

) As MySqlParameter

Syntax: C#

public MySqlParameter Add(
stringparameterName,
MySqlDbTypedbType,
intsize,
stringsourceColumn
);

Parameters

• parameterName: The name of the parameter.

• dbType: One of the MySqlDbType values.

• size: The length of the column.

• sourceColumn: The name of the source column.

Return Value

The newly added MySqlParameter object.

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollec-
tion.Add Overload List

23.2.4.1.2.1.7.1.1.4.6. MySqlParameterCollection.Add Method (String, Object)

Adds a MySqlParameter to the MySqlParameterCollection given the specified parameter name and
value.

Syntax: Visual Basic

Connectors

1466

Overloads Public Function Add(_
ByVal parameterName As String, _
ByVal value As Object _

) As MySqlParameter

Syntax: C#

public MySqlParameter Add(
stringparameterName,
objectvalue
);

Parameters

• parameterName: The name of the parameter.

• value: The Value of the MySqlParameter to add to the collection.

Return Value

The newly added MySqlParameter object.

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollec-
tion.Add Overload List

23.2.4.1.2.1.7.1.1.5. MySqlParameterCollection.Clear Method

Removes all items from the collection.

Syntax: Visual Basic

NotOverridable Public Sub Clear() _
_

Implements IList.Clear

Syntax: C#

public void Clear();

Implements

IList.Clear

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.6. Contains Method

Gets a value indicating whether a MySqlParameter exists in the collection.

Overload List

Gets a value indicating whether a MySqlParameter exists in the collection.

Connectors

1467

• public bool Contains(object);

Gets a value indicating whether a MySqlParameter with the specified parameter name exists in the col-
lection.

• public bool Contains(string);

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.6.1. MySqlParameterCollection.Contains Method (Object)

Gets a value indicating whether a MySqlParameter exists in the collection.

Syntax: Visual Basic

NotOverridable Overloads Public Function Contains(_
ByVal value As Object _

) As Boolean _
_

Implements IList.Contains

Syntax: C#

public bool Contains(
objectvalue
);

Parameters

• value: The value of the MySqlParameter object to find.

Return Value

true if the collection contains the MySqlParameter object; otherwise, false.

Implements

IList.Contains

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollec-
tion.Contains Overload List

23.2.4.1.2.1.7.1.1.6.2. MySqlParameterCollection.Contains Method (String)

Gets a value indicating whether a MySqlParameter with the specified parameter name exists in the col-
lection.

Syntax: Visual Basic

NotOverridable Overloads Public Function Contains(_
ByVal name As String _

) As Boolean _
_

Connectors

1468

Implements IDataParameterCollection.Contains

Syntax: C#

public bool Contains(
stringname
);

Parameters

• name: The name of the MySqlParameter object to find.

Return Value

true if the collection contains the parameter; otherwise, false.

Implements

IDataParameterCollection.Contains

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollec-
tion.Contains Overload List

23.2.4.1.2.1.7.1.1.7. MySqlParameterCollection.CopyTo Method

Copies MySqlParameter objects from the MySqlParameterCollection to the specified array.

Syntax: Visual Basic

NotOverridable Public Sub CopyTo(_
ByVal array As Array, _
ByVal index As Integer _

) _
_

Implements ICollection.CopyTo

Syntax: C#

public void CopyTo(
Arrayarray,
intindex
);

Parameters

• array:

• index:

Implements

ICollection.CopyTo

See Also

Connectors

1469

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.8. IndexOf Method

Gets the location of a MySqlParameter in the collection.

Overload List

Gets the location of a MySqlParameter in the collection.

• public int IndexOf(object);

Gets the location of the MySqlParameter in the collection with a specific parameter name.

• public int IndexOf(string);

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.8.1. MySqlParameterCollection.IndexOf Method (Object)

Gets the location of a MySqlParameter in the collection.

Syntax: Visual Basic

NotOverridable Overloads Public Function IndexOf(_
ByVal value As Object _

) As Integer _
_

Implements IList.IndexOf

Syntax: C#

public int IndexOf(
objectvalue
);

Parameters

• value: The MySqlParameter object to locate.

Return Value

The zero-based location of the MySqlParameter in the collection.

Implements

IList.IndexOf

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollec-
tion.IndexOf Overload List

Connectors

1470

23.2.4.1.2.1.7.1.1.8.2. MySqlParameterCollection.IndexOf Method (String)

Gets the location of the MySqlParameter in the collection with a specific parameter name.

Syntax: Visual Basic

NotOverridable Overloads Public Function IndexOf(_
ByVal parameterName As String _

) As Integer _
_

Implements IDataParameterCollection.IndexOf

Syntax: C#

public int IndexOf(
stringparameterName
);

Parameters

• parameterName: The name of the MySqlParameter object to retrieve.

Return Value

The zero-based location of the MySqlParameter in the collection.

Implements

IDataParameterCollection.IndexOf

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollec-
tion.IndexOf Overload List

23.2.4.1.2.1.7.1.1.9. MySqlParameterCollection.Insert Method

Inserts a MySqlParameter into the collection at the specified index.

Syntax: Visual Basic

NotOverridable Public Sub Insert(_
ByVal index As Integer, _
ByVal value As Object _

) _
_

Implements IList.Insert

Syntax: C#

public void Insert(
intindex,
objectvalue
);

Parameters

• index:

Connectors

1471

• value:

Implements

IList.Insert

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.10. MySqlParameterCollection.Remove Method

Removes the specified MySqlParameter from the collection.

Syntax: Visual Basic

NotOverridable Public Sub Remove(_
ByVal value As Object _

) _
_

Implements IList.Remove

Syntax: C#

public void Remove(
objectvalue
);

Parameters

• value:

Implements

IList.Remove

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.11. RemoveAt Method

Removes the specified MySqlParameter from the collection.

Overload List

Removes the specified MySqlParameter from the collection using a specific index.

• public void RemoveAt(int);

Removes the specified MySqlParameter from the collection using the parameter name.

• public void RemoveAt(string);

Connectors

1472

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.7.1.1.11.1. MySqlParameterCollection.RemoveAt Method (Int32)

Removes the specified MySqlParameter from the collection using a specific index.

Syntax: Visual Basic

NotOverridable Overloads Public Sub RemoveAt(_
ByVal index As Integer _

) _
_

Implements IList.RemoveAt

Syntax: C#

public void RemoveAt(
intindex
);

Parameters

• index: The zero-based index of the parameter.

Implements

IList.RemoveAt

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollec-
tion.RemoveAt Overload List

23.2.4.1.2.1.7.1.1.11.2. MySqlParameterCollection.RemoveAt Method (String)

Removes the specified MySqlParameter from the collection using the parameter name.

Syntax: Visual Basic

NotOverridable Overloads Public Sub RemoveAt(_
ByVal name As String _

) _
_

Implements IDataParameterCollection.RemoveAt

Syntax: C#

public void RemoveAt(
stringname
);

Parameters

• name: The name of the MySqlParameter object to retrieve.

Connectors

1473

Implements

IDataParameterCollection.RemoveAt

See Also

MySqlParameterCollection Class , MySql.Data.MySqlClient Namespace , MySqlParameterCollec-
tion.RemoveAt Overload List

23.2.4.1.2.1.8. Transaction Property

Syntax: Visual Basic

Public Property Transaction As MySqlTransaction

Syntax: C#

public MySqlTransaction Transaction {get; set;}

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.9. UpdatedRowSource Property

Syntax: Visual Basic

NotOverridable Public Property UpdatedRowSource As UpdateRowSource _
_

Implements IDbCommand.UpdatedRowSource

Syntax: C#

public System.Data.UpdateRowSource UpdatedRowSource {get; set;}

Implements

IDbCommand.UpdatedRowSource

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.10. MySqlCommand.Cancel Method

Attempts to cancel the execution of a MySqlCommand. This operation is not supported.

Syntax: Visual Basic

NotOverridable Public Sub Cancel() _
_

Implements IDbCommand.Cancel

Syntax: C#

public void Cancel();

Implements

Connectors

1474

IDbCommand.Cancel

Remarks

Cancelling an executing command is currently not supported on any version of MySQL.

Exceptions

Exception Type Condition

NotSupportedException This operation is not supported.

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.11. MySqlCommand.CreateParameter Method

Creates a new instance of a MySqlParameter object.

Syntax: Visual Basic

Public Function CreateParameter() As MySqlParameter

Syntax: C#

public MySqlParameter CreateParameter();

Return Value

A MySqlParameter object.

Remarks

This method is a strongly-typed version of CreateParameter.

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.12. MySqlCommand.ExecuteNonQuery Method

Syntax: Visual Basic

NotOverridable Public Function ExecuteNonQuery() As Integer _
_

Implements IDbCommand.ExecuteNonQuery

Syntax: C#

public int ExecuteNonQuery();

Implements

IDbCommand.ExecuteNonQuery

See Also

Connectors

1475

MySqlCommand Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13. ExecuteReader Method

Overload List

• public MySqlDataReader ExecuteReader();

• public MySqlDataReader ExecuteReader(CommandBehavior);

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1. MySqlCommand.ExecuteReader Method ()

Syntax: Visual Basic

Overloads Public Function ExecuteReader() As MySqlDataReader

Syntax: C#

public MySqlDataReader ExecuteReader();

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace , MySqlCommand.ExecuteReader Over-
load List

23.2.4.1.2.1.13.1.1. MySqlDataReader Class

Provides a means of reading a forward-only stream of rows from a MySQL database. This class cannot
be inherited.

For a list of all members of this type, see MySqlDataReader Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlDataReader_
Inherits MarshalByRefObject_
Implements IEnumerable, IDataReader, IDisposable, IDataRecord

Syntax: C#

public sealed class MySqlDataReader : MarshalByRefObject, IEnumerable, IDataReader, IDisposable, IDataRecord

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. In-
stance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

Connectors

1476

See Also

MySqlDataReader Members , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1. MySqlDataReader Members

MySqlDataReader overview

Public Instance Properties

Depth Gets a value indicating the depth of nesting for the
current row. This method is not supported cur-
rently and always returns 0.

FieldCount Gets the number of columns in the current row.

HasRows Gets a value indicating whether the
MySqlDataReader contains one or more rows.

IsClosed Gets a value indicating whether the data reader is
closed.

Item Overloaded. Overloaded. Gets the value of a
column in its native format. In C#, this property is
the indexer for the MySqlDataReader class.

RecordsAffected Gets the number of rows changed, inserted, or de-
leted by execution of the SQL statement.

Public Instance Methods

Close Closes the MySqlDataReader object.

CreateObjRef(inherited from MarshalByRefOb-
ject)

Creates an object that contains all the relevant in-
formation required to generate a proxy used to
communicate with a remote object.

Equals(inherited from Object) Determines whether the specified Objectis equal to
the current Object.

GetBoolean Gets the value of the specified column as a
Boolean.

GetByte Gets the value of the specified column as a byte.

GetBytes Reads a stream of bytes from the specified column
offset into the buffer an array starting at the given
buffer offset.

GetChar Gets the value of the specified column as a single
character.

GetChars Reads a stream of characters from the specified
column offset into the buffer as an array starting at
the given buffer offset.

GetDataTypeName Gets the name of the source data type.

GetDateTime

GetDecimal

GetDouble

GetFieldType Gets the Type that is the data type of the object.

GetFloat

Connectors

1477

GetGuid

GetHashCode(inherited from Object) Serves as a hash function for a particular type.
GetHashCodeis suitable for use in hashing al-
gorithms and data structures like a hash table.

GetInt16

GetInt32

GetInt64

GetLifetimeService(inherited from MarshalByRe-
fObject)

Retrieves the current lifetime service object that
controls the lifetime policy for this instance.

GetMySqlDateTime

GetName Gets the name of the specified column.

GetOrdinal Gets the column ordinal, given the name of the
column.

GetSchemaTable Returns a DataTable that describes the column
metadata of the MySqlDataReader.

GetString

GetTimeSpan

GetType(inherited from Object) Gets the Typeof the current instance.

GetUInt16

GetUInt32

GetUInt64

GetValue Gets the value of the specified column in its native
format.

GetValues Gets all attribute columns in the collection for the
current row.

InitializeLifetimeService(inherited from Mar-
shalByRefObject)

Obtains a lifetime service object to control the life-
time policy for this instance.

IsDBNull Gets a value indicating whether the column con-
tains non-existent or missing values.

NextResult Advances the data reader to the next result, when
reading the results of batch SQL statements.

Read Advances the MySqlDataReader to the next re-
cord.

ToString(inherited from Object) Returns a Stringthat represents the current Object.

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.1. Depth Property

Gets a value indicating the depth of nesting for the current row. This method is not supported currently
and always returns 0.

Syntax: Visual Basic

NotOverridable Public ReadOnly Property Depth As Integer _
_

Implements IDataReader.Depth

Connectors

1478

Syntax: C#

public int Depth {get;}

Implements

IDataReader.Depth

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.2. FieldCount Property

Gets the number of columns in the current row.

Syntax: Visual Basic

NotOverridable Public ReadOnly Property FieldCount As Integer _
_

Implements IDataRecord.FieldCount

Syntax: C#

public int FieldCount {get;}

Implements

IDataRecord.FieldCount

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.3. HasRows Property

Gets a value indicating whether the MySqlDataReader contains one or more rows.

Syntax: Visual Basic

Public ReadOnly Property HasRows As Boolean

Syntax: C#

public bool HasRows {get;}

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.4. IsClosed Property

Gets a value indicating whether the data reader is closed.

Syntax: Visual Basic

NotOverridable Public ReadOnly Property IsClosed As Boolean _
_

Implements IDataReader.IsClosed

Connectors

1479

Syntax: C#

public bool IsClosed {get;}

Implements

IDataReader.IsClosed

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.5. Item Property

Overloaded. Gets the value of a column in its native format. In C#, this property is the indexer for the
MySqlDataReader class.

Overload List

Overloaded. Gets the value of a column in its native format. In C#, this property is the indexer for the
MySqlDataReader class.

• public object this[int] {get;}

Gets the value of a column in its native format. In C#, this property is the indexer for the
MySqlDataReader class.

• public object this[string] {get;}

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.5.1. Item Property (Int32)

Overloaded. Gets the value of a column in its native format. In C#, this property is the indexer for the
MySqlDataReader class.

Syntax: Visual Basic

NotOverridable Overloads Public Default ReadOnly Property Item(_
ByVal i As Integer _

) _
_

Implements IDataRecord.Item As Object _
_

Implements IDataRecord.Item

Syntax: C#

public object this[
inti
] {get;}

Implements

IDataRecord.Item

Connectors

1480

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace , MySqlDataReader.Item Overload List

23.2.4.1.2.1.13.1.1.1.5.2. Item Property (String)

Gets the value of a column in its native format. In C#, this property is the indexer for the
MySqlDataReader class.

Syntax: Visual Basic

NotOverridable Overloads Public Default ReadOnly Property Item(_
ByVal name As String _

) _
_

Implements IDataRecord.Item As Object _
_

Implements IDataRecord.Item

Syntax: C#

public object this[
stringname
] {get;}

Implements

IDataRecord.Item

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace , MySqlDataReader.Item Overload List

23.2.4.1.2.1.13.1.1.1.6. RecordsAffected Property

Gets the number of rows changed, inserted, or deleted by execution of the SQL statement.

Syntax: Visual Basic

NotOverridable Public ReadOnly Property RecordsAffected As Integer _
_

Implements IDataReader.RecordsAffected

Syntax: C#

public int RecordsAffected {get;}

Implements

IDataReader.RecordsAffected

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.7. MySqlDataReader.Close Method

Closes the MySqlDataReader object.

Syntax: Visual Basic

Connectors

1481

NotOverridable Public Sub Close() _
_

Implements IDataReader.Close

Syntax: C#

public void Close();

Implements

IDataReader.Close

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.8. MySqlDataReader.GetBoolean Method

Gets the value of the specified column as a Boolean.

Syntax: Visual Basic

NotOverridable Public Function GetBoolean(_
ByVal i As Integer _

) As Boolean _
_

Implements IDataRecord.GetBoolean

Syntax: C#

public bool GetBoolean(
inti
);

Parameters

• i:

Return Value

Implements

IDataRecord.GetBoolean

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.9. MySqlDataReader.GetByte Method

Gets the value of the specified column as a byte.

Syntax: Visual Basic

NotOverridable Public Function GetByte(_
ByVal i As Integer _

) As Byte _
_

Implements IDataRecord.GetByte

Connectors

1482

Syntax: C#

public byte GetByte(
inti
);

Parameters

• i:

Return Value

Implements

IDataRecord.GetByte

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.10. MySqlDataReader.GetBytes Method

Reads a stream of bytes from the specified column offset into the buffer an array starting at the given
buffer offset.

Syntax: Visual Basic

NotOverridable Public Function GetBytes(_
ByVal i As Integer, _
ByVal dataIndex As Long, _
ByVal buffer As Byte(), _
ByVal bufferIndex As Integer, _
ByVal length As Integer _

) As Long _
_

Implements IDataRecord.GetBytes

Syntax: C#

public long GetBytes(
inti,
longdataIndex,
byte[]buffer,
intbufferIndex,
intlength
);

Parameters

• i: The zero-based column ordinal.

• dataIndex: The index within the field from which to begin the read operation.

• buffer: The buffer into which to read the stream of bytes.

• bufferIndex: The index for buffer to begin the read operation.

• length: The maximum length to copy into the buffer.

Connectors

1483

Return Value

The actual number of bytes read.

Implements

IDataRecord.GetBytes

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.11. MySqlDataReader.GetChar Method

Gets the value of the specified column as a single character.

Syntax: Visual Basic

NotOverridable Public Function GetChar(_
ByVal i As Integer _

) As Char _
_

Implements IDataRecord.GetChar

Syntax: C#

public char GetChar(
inti
);

Parameters

• i:

Return Value

Implements

IDataRecord.GetChar

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.12. MySqlDataReader.GetChars Method

Reads a stream of characters from the specified column offset into the buffer as an array starting at the
given buffer offset.

Syntax: Visual Basic

NotOverridable Public Function GetChars(_
ByVal i As Integer, _
ByVal fieldOffset As Long, _
ByVal buffer As Char(), _
ByVal bufferoffset As Integer, _
ByVal length As Integer _

) As Long _
_

Implements IDataRecord.GetChars

Connectors

1484

Syntax: C#

public long GetChars(
inti,
longfieldOffset,
char[]buffer,
intbufferoffset,
intlength
);

Parameters

• i:

• fieldOffset:

• buffer:

• bufferoffset:

• length:

Return Value

Implements

IDataRecord.GetChars

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.13. MySqlDataReader.GetDataTypeName Method

Gets the name of the source data type.

Syntax: Visual Basic

NotOverridable Public Function GetDataTypeName(_
ByVal i As Integer _

) As String _
_

Implements IDataRecord.GetDataTypeName

Syntax: C#

public string GetDataTypeName(
inti
);

Parameters

• i:

Return Value

Implements

Connectors

1485

IDataRecord.GetDataTypeName

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.14. MySqlDataReader.GetDateTime Method

Syntax: Visual Basic

NotOverridable Public Function GetDateTime(_
ByVal index As Integer _

) As Date _
_

Implements IDataRecord.GetDateTime

Syntax: C#

public DateTime GetDateTime(
intindex
);

Implements

IDataRecord.GetDateTime

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.15. MySqlDataReader.GetDecimal Method

Syntax: Visual Basic

NotOverridable Public Function GetDecimal(_
ByVal index As Integer _

) As Decimal _
_

Implements IDataRecord.GetDecimal

Syntax: C#

public decimal GetDecimal(
intindex
);

Implements

IDataRecord.GetDecimal

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.16. MySqlDataReader.GetDouble Method

Syntax: Visual Basic

NotOverridable Public Function GetDouble(_
ByVal index As Integer _

) As Double _
_

Implements IDataRecord.GetDouble

Connectors

1486

Syntax: C#

public double GetDouble(
intindex
);

Implements

IDataRecord.GetDouble

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.17. MySqlDataReader.GetFieldType Method

Gets the Type that is the data type of the object.

Syntax: Visual Basic

NotOverridable Public Function GetFieldType(_
ByVal i As Integer _

) As Type _
_

Implements IDataRecord.GetFieldType

Syntax: C#

public Type GetFieldType(
inti
);

Parameters

• i:

Return Value

Implements

IDataRecord.GetFieldType

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.18. MySqlDataReader.GetFloat Method

Syntax: Visual Basic

NotOverridable Public Function GetFloat(_
ByVal index As Integer _

) As Single _
_

Implements IDataRecord.GetFloat

Syntax: C#

public float GetFloat(
intindex

Connectors

1487

);

Implements

IDataRecord.GetFloat

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.19. MySqlDataReader.GetGuid Method

Syntax: Visual Basic

NotOverridable Public Function GetGuid(_
ByVal index As Integer _

) As Guid _
_

Implements IDataRecord.GetGuid

Syntax: C#

public Guid GetGuid(
intindex
);

Implements

IDataRecord.GetGuid

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.20. MySqlDataReader.GetInt16 Method

Syntax: Visual Basic

NotOverridable Public Function GetInt16(_
ByVal index As Integer _

) As Short _
_

Implements IDataRecord.GetInt16

Syntax: C#

public short GetInt16(
intindex
);

Implements

IDataRecord.GetInt16

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.21. MySqlDataReader.GetInt32 Method

Syntax: Visual Basic

Connectors

1488

NotOverridable Public Function GetInt32(_
ByVal index As Integer _

) As Integer _
_

Implements IDataRecord.GetInt32

Syntax: C#

public int GetInt32(
intindex
);

Implements

IDataRecord.GetInt32

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.22. MySqlDataReader.GetInt64 Method

Syntax: Visual Basic

NotOverridable Public Function GetInt64(_
ByVal index As Integer _

) As Long _
_

Implements IDataRecord.GetInt64

Syntax: C#

public long GetInt64(
intindex
);

Implements

IDataRecord.GetInt64

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.23. MySqlDataReader.GetMySqlDateTime Method

Syntax: Visual Basic

Public Function GetMySqlDateTime(_
ByVal index As Integer _

) As MySqlDateTime

Syntax: C#

public MySqlDateTime GetMySqlDateTime(
intindex
);

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

Connectors

1489

23.2.4.1.2.1.13.1.1.1.24. MySqlDataReader.GetName Method

Gets the name of the specified column.

Syntax: Visual Basic

NotOverridable Public Function GetName(_
ByVal i As Integer _

) As String _
_

Implements IDataRecord.GetName

Syntax: C#

public string GetName(
inti
);

Parameters

• i:

Return Value

Implements

IDataRecord.GetName

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.25. MySqlDataReader.GetOrdinal Method

Gets the column ordinal, given the name of the column.

Syntax: Visual Basic

NotOverridable Public Function GetOrdinal(_
ByVal name As String _

) As Integer _
_

Implements IDataRecord.GetOrdinal

Syntax: C#

public int GetOrdinal(
stringname
);

Parameters

• name:

Return Value

Implements

Connectors

1490

IDataRecord.GetOrdinal

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.26. MySqlDataReader.GetSchemaTable Method

Returns a DataTable that describes the column metadata of the MySqlDataReader.

Syntax: Visual Basic

NotOverridable Public Function GetSchemaTable() As DataTable _
_

Implements IDataReader.GetSchemaTable

Syntax: C#

public DataTable GetSchemaTable();

Return Value

Implements

IDataReader.GetSchemaTable

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.27. MySqlDataReader.GetString Method

Syntax: Visual Basic

NotOverridable Public Function GetString(_
ByVal index As Integer _

) As String _
_

Implements IDataRecord.GetString

Syntax: C#

public string GetString(
intindex
);

Implements

IDataRecord.GetString

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.28. MySqlDataReader.GetTimeSpan Method

Syntax: Visual Basic

Public Function GetTimeSpan(_
ByVal index As Integer _

) As TimeSpan

Connectors

1491

Syntax: C#

public TimeSpan GetTimeSpan(
intindex
);

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.29. MySqlDataReader.GetUInt16 Method

Syntax: Visual Basic

Public Function GetUInt16(_
ByVal index As Integer _

) As UInt16

Syntax: C#

public ushort GetUInt16(
intindex
);

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.30. MySqlDataReader.GetUInt32 Method

Syntax: Visual Basic

Public Function GetUInt32(_
ByVal index As Integer _

) As UInt32

Syntax: C#

public uint GetUInt32(
intindex
);

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.31. MySqlDataReader.GetUInt64 Method

Syntax: Visual Basic

Public Function GetUInt64(_
ByVal index As Integer _

) As UInt64

Syntax: C#

public ulong GetUInt64(
intindex
);

Connectors

1492

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.32. MySqlDataReader.GetValue Method

Gets the value of the specified column in its native format.

Syntax: Visual Basic

NotOverridable Public Function GetValue(_
ByVal i As Integer _

) As Object _
_

Implements IDataRecord.GetValue

Syntax: C#

public object GetValue(
inti
);

Parameters

• i:

Return Value

Implements

IDataRecord.GetValue

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.33. MySqlDataReader.GetValues Method

Gets all attribute columns in the collection for the current row.

Syntax: Visual Basic

NotOverridable Public Function GetValues(_
ByVal values As Object() _

) As Integer _
_

Implements IDataRecord.GetValues

Syntax: C#

public int GetValues(
object[]values
);

Parameters

• values:

Connectors

1493

Return Value

Implements

IDataRecord.GetValues

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.34. MySqlDataReader.IsDBNull Method

Gets a value indicating whether the column contains non-existent or missing values.

Syntax: Visual Basic

NotOverridable Public Function IsDBNull(_
ByVal i As Integer _

) As Boolean _
_

Implements IDataRecord.IsDBNull

Syntax: C#

public bool IsDBNull(
inti
);

Parameters

• i:

Return Value

Implements

IDataRecord.IsDBNull

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.35. MySqlDataReader.NextResult Method

Advances the data reader to the next result, when reading the results of batch SQL statements.

Syntax: Visual Basic

NotOverridable Public Function NextResult() As Boolean _
_

Implements IDataReader.NextResult

Syntax: C#

public bool NextResult();

Return Value

Connectors

1494

Implements

IDataReader.NextResult

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.1.1.1.36. MySqlDataReader.Read Method

Advances the MySqlDataReader to the next record.

Syntax: Visual Basic

NotOverridable Public Function Read() As Boolean _
_

Implements IDataReader.Read

Syntax: C#

public bool Read();

Return Value

Implements

IDataReader.Read

See Also

MySqlDataReader Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.13.2. MySqlCommand.ExecuteReader Method (CommandBehavior)

Syntax: Visual Basic

Overloads Public Function ExecuteReader(_
ByVal behavior As CommandBehavior _

) As MySqlDataReader

Syntax: C#

public MySqlDataReader ExecuteReader(
CommandBehaviorbehavior
);

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace , MySqlCommand.ExecuteReader Over-
load List

23.2.4.1.2.1.14. MySqlCommand.ExecuteScalar Method

Syntax: Visual Basic

NotOverridable Public Function ExecuteScalar() As Object _
_

Implements IDbCommand.ExecuteScalar

Syntax: C#

Connectors

1495

public object ExecuteScalar();

Implements

IDbCommand.ExecuteScalar

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

23.2.4.1.2.1.15. MySqlCommand.Prepare Method

Syntax: Visual Basic

NotOverridable Public Sub Prepare() _
_

Implements IDbCommand.Prepare

Syntax: C#

public void Prepare();

Implements

IDbCommand.Prepare

See Also

MySqlCommand Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3. MySqlCommandBuilder Class

For a list of all members of this type, see MySqlCommandBuilder Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlCommandBuilder_
Inherits Component

Syntax: C#

public sealed class MySqlCommandBuilder : Component

Thread Safety

Public static (Sharedin Visual Basic) members of this type are safe for multithreaded operations. In-
stance members are notguaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlCommandBuilder Members , MySql.Data.MySqlClient Namespace

Connectors

1496

23.2.4.1.3.1. MySqlCommandBuilder Members

MySqlCommandBuilder overview

Public Static (Shared) Methods

DeriveParameters Overloaded. Retrieves parameter information from
the stored procedure specified in the MySqlCom-
mand and populates the Parameters collection of
the specified MySqlCommand object. This method
is not currently supported since stored procedures
are not available in MySql.

Public Instance Constructors

MySqlCommandBuilder Overloaded. Initializes a new instance of the
MySqlCommandBuilder class.

Public Instance Properties

Container(inherited from Component) Gets the IContainerthat contains the Component.

DataAdapter

QuotePrefix

QuoteSuffix

Site(inherited from Component) Gets or sets the ISiteof the Component.

Public Instance Methods

CreateObjRef(inherited from MarshalByRefOb-
ject)

Creates an object that contains all the relevant in-
formation required to generate a proxy used to
communicate with a remote object.

Dispose(inherited from Component) Releases all resources used by the Component.

Equals(inherited from Object) Determines whether the specified Objectis equal to
the current Object.

GetDeleteCommand

GetHashCode(inherited from Object) Serves as a hash function for a particular type.
GetHashCodeis suitable for use in hashing al-
gorithms and data structures like a hash table.

GetInsertCommand

GetLifetimeService(inherited from MarshalByRe-
fObject)

Retrieves the current lifetime service object that
controls the lifetime policy for this instance.

GetType(inherited from Object) Gets the Typeof the current instance.

GetUpdateCommand

InitializeLifetimeService(inherited from Mar-
shalByRefObject)

Obtains a lifetime service object to control the life-
time policy for this instance.

RefreshSchema

ToString(inherited from Component) Returns a Stringcontaining the name of the Com-
ponent, if any. This method should not be overrid-

Connectors

1497

den.

Public Instance Events

Disposed(inherited from Component) Adds an event handler to listen to the Dispose-
devent on the component.

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.1. DeriveParameters Method

Retrieves parameter information from the stored procedure specified in the MySqlCommand and popu-
lates the Parameters collection of the specified MySqlCommand object. This method is not currently
supported since stored procedures are not available in MySql.

Overload List

Retrieves parameter information from the stored procedure specified in the MySqlCommand and popu-
lates the Parameters collection of the specified MySqlCommand object. This method is not currently
supported since stored procedures are not available in MySql.

• public static void DeriveParameters(MySqlCommand);

• public static void DeriveParameters(MySqlCommand,bool);

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.1.1. MySqlCommandBuilder.DeriveParameters Method (MySqlCommand)

Retrieves parameter information from the stored procedure specified in the MySqlCommand and popu-
lates the Parameters collection of the specified MySqlCommand object. This method is not currently
supported since stored procedures are not available in MySql.

Syntax: Visual Basic

Overloads Public Shared Sub DeriveParameters(_
ByVal command As MySqlCommand _

)

Syntax: C#

public static void DeriveParameters(
MySqlCommandcommand
);

Parameters

• command: The MySqlCommand referencing the stored procedure from which the parameter in-
formation is to be derived. The derived parameters are added to the Parameters collection of the
MySqlCommand.

Connectors

1498

Exceptions

Exception Type Condition

InvalidOperationException The command text is not a valid stored procedure
name.

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace , MySqlCommandBuild-
er.DeriveParameters Overload List

23.2.4.1.3.1.1.2. MySqlCommandBuilder.DeriveParameters Method (MySqlCommand, Boolean)

Syntax: Visual Basic

Overloads Public Shared Sub DeriveParameters(_
ByVal command As MySqlCommand, _
ByVal useProc As Boolean _

)

Syntax: C#

public static void DeriveParameters(
MySqlCommandcommand,
booluseProc
);

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace , MySqlCommandBuild-
er.DeriveParameters Overload List

23.2.4.1.3.1.2. MySqlCommandBuilder Constructor

Initializes a new instance of the MySqlCommandBuilder class.

Overload List

Initializes a new instance of the MySqlCommandBuilder class.

• public MySqlCommandBuilder();

• public MySqlCommandBuilder(MySqlDataAdapter);

• public MySqlCommandBuilder(MySqlDataAdapter,bool);

• public MySqlCommandBuilder(bool);

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.2.1. MySqlCommandBuilder Constructor ()

Initializes a new instance of the MySqlCommandBuilder class.

Syntax: Visual Basic

Connectors

1499

Overloads Public Sub New()

Syntax: C#

public MySqlCommandBuilder();

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace , MySqlCommandBuilder Con-
structor Overload List

23.2.4.1.3.1.2.2. MySqlCommandBuilder Constructor (MySqlDataAdapter)

Syntax: Visual Basic

Overloads Public Sub New(_
ByVal adapter As MySqlDataAdapter _

)

Syntax: C#

public MySqlCommandBuilder(
MySqlDataAdapteradapter
);

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace , MySqlCommandBuilder Con-
structor Overload List

23.2.4.1.3.1.2.2.1. MySqlDataAdapter Class

For a list of all members of this type, see MySqlDataAdapter Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlDataAdapter_
Inherits DbDataAdapter

Syntax: C#

public sealed class MySqlDataAdapter : DbDataAdapter

Thread Safety

Public static (Sharedin Visual Basic) members of this type are safe for multithreaded operations. In-
stance members are notguaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlDataAdapter Members , MySql.Data.MySqlClient Namespace

Connectors

1500

23.2.4.1.3.1.2.2.1.1. MySqlDataAdapter Members

MySqlDataAdapter overview

Public Instance Constructors

MySqlDataAdapter Overloaded. Initializes a new instance of the
MySqlDataAdapter class.

Public Instance Properties

AcceptChangesDuringFill(inherited from DataAd-
apter)

Gets or sets a value indicating whether Ac-
ceptChangesis called on a DataRowafter it is added
to the DataTableduring any of the Fill operations.

AcceptChangesDuringUpdate(inherited from
DataAdapter)

Gets or sets whether AcceptChangesis called dur-
ing a Update.

Container(inherited from Component) Gets the IContainerthat contains the Component.

ContinueUpdateOnError(inherited from DataAd-
apter)

Gets or sets a value that specifies whether to gener-
ate an exception when an error is encountered dur-
ing a row update.

DeleteCommand Overloaded.

FillLoadOption(inherited from DataAdapter) Gets or sets the LoadOptionthat determines how
the adapter fills the DataTablefrom the Db-
DataReader.

InsertCommand Overloaded.

MissingMappingAction(inherited from DataAd-
apter)

Determines the action to take when incoming data
does not have a matching table or column.

MissingSchemaAction(inherited from DataAd-
apter)

Determines the action to take when existing Data-
Setschema does not match incoming data.

ReturnProviderSpecificTypes(inherited from
DataAdapter)

Gets or sets whether the Fillmethod should return
provider-specific values or common CLS-
compliant values.

SelectCommand Overloaded.

Site(inherited from Component) Gets or sets the ISiteof the Component.

TableMappings(inherited from DataAdapter) Gets a collection that provides the master mapping
between a source table and a DataTable.

UpdateBatchSize(inherited from DbDataAdapter) Gets or sets a value that enables or disables batch
processing support, and specifies the number of
commands that can be executed in a batch.

UpdateCommand Overloaded.

Public Instance Methods

CreateObjRef(inherited from MarshalByRefOb-
ject)

Creates an object that contains all the relevant in-
formation required to generate a proxy used to
communicate with a remote object.

Dispose(inherited from Component) Releases all resources used by the Component.

Equals(inherited from Object) Determines whether the specified Objectis equal to
the current Object.

Connectors

1501

Fill(inherited from DbDataAdapter) Overloaded. Adds or refreshes rows in the Data-
Setto match those in the data source using the
DataSetname, and creates a DataTablenamed "Ta-
ble."

FillSchema(inherited from DbDataAdapter) Overloaded. Configures the schema of the spe-
cified DataTablebased on the specified Schema-
Type.

GetFillParameters(inherited from DbDataAdapter) Gets the parameters set by the user when executing
an SQL SELECT statement.

GetHashCode(inherited from Object) Serves as a hash function for a particular type.
GetHashCodeis suitable for use in hashing al-
gorithms and data structures like a hash table.

GetLifetimeService(inherited from MarshalByRe-
fObject)

Retrieves the current lifetime service object that
controls the lifetime policy for this instance.

GetType(inherited from Object) Gets the Typeof the current instance.

InitializeLifetimeService(inherited from Mar-
shalByRefObject)

Obtains a lifetime service object to control the life-
time policy for this instance.

ResetFillLoadOption(inherited from DataAdapter) Resets FillLoadOptionto its default state and
causes Fillto honor AcceptChangesDuringFill.

ShouldSerializeAcceptChangesDuring-
Fill(inherited from DataAdapter)

Determines whether the AcceptChangesDuring-
Fillproperty should be persisted.

ShouldSerializeFillLoadOption(inherited from
DataAdapter)

Determines whether the FillLoadOptionproperty
should be persisted.

ToString(inherited from Component) Returns a Stringcontaining the name of the Com-
ponent, if any. This method should not be overrid-
den.

Update(inherited from DbDataAdapter) Overloaded. Calls the respective INSERT, UP-
DATE, or DELETE statements for each inserted,
updated, or deleted row in the specified DataSet.

Public Instance Events

Disposed(inherited from Component) Adds an event handler to listen to the Dispose-
devent on the component.

FillError(inherited from DataAdapter) Returned when an error occurs during a fill opera-
tion.

RowUpdated Occurs during Update after a command is executed
against the data source. The attempt to update is
made, so the event fires.

RowUpdating Occurs during Update before a command is ex-
ecuted against the data source. The attempt to up-
date is made, so the event fires.

Protected Internal Instance Properties

FillCommandBehavior(inherited from DbDataAd-
apter)

Gets or sets the behavior of the command used to
fill the data adapter.

Connectors

1502

See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.2.2.1.1.1. MySqlDataAdapter Constructor

Initializes a new instance of the MySqlDataAdapter class.

Overload List

Initializes a new instance of the MySqlDataAdapter class.

• public MySqlDataAdapter();

• public MySqlDataAdapter(MySqlCommand);

• public MySqlDataAdapter(string,MySqlConnection);

• public MySqlDataAdapter(string,string);

See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.2.2.1.1.1.1. MySqlDataAdapter Constructor ()

Initializes a new instance of the MySqlDataAdapter class.

Syntax: Visual Basic

Overloads Public Sub New()

Syntax: C#

public MySqlDataAdapter();

See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace , MySqlDataAdapter Constructor
Overload List

23.2.4.1.3.1.2.2.1.1.1.2. MySqlDataAdapter Constructor (MySqlCommand)

Syntax: Visual Basic

Overloads Public Sub New(_
ByVal selectCommand As MySqlCommand _

)

Syntax: C#

public MySqlDataAdapter(
MySqlCommandselectCommand
);

See Also

Connectors

1503

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace , MySqlDataAdapter Constructor
Overload List

23.2.4.1.3.1.2.2.1.1.1.3. MySqlDataAdapter Constructor (String, MySqlConnection)

Syntax: Visual Basic

Overloads Public Sub New(_
ByVal selectCommandText As String, _
ByVal connection As MySqlConnection _

)

Syntax: C#

public MySqlDataAdapter(
stringselectCommandText,
MySqlConnectionconnection
);

See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace , MySqlDataAdapter Constructor
Overload List

23.2.4.1.3.1.2.2.1.1.1.4. MySqlDataAdapter Constructor (String, String)

Syntax: Visual Basic

Overloads Public Sub New(_
ByVal selectCommandText As String, _
ByVal selectConnString As String _

)

Syntax: C#

public MySqlDataAdapter(
stringselectCommandText,
stringselectConnString
);

See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace , MySqlDataAdapter Constructor
Overload List

23.2.4.1.3.1.2.2.1.1.2. DeleteCommand Property

Syntax: Visual Basic

Overloads Public Property DeleteCommand As MySqlCommand

Syntax: C#

new public MySqlCommand DeleteCommand {get; set;}

See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.2.2.1.1.3. InsertCommand Property

Connectors

1504

Syntax: Visual Basic

Overloads Public Property InsertCommand As MySqlCommand

Syntax: C#

new public MySqlCommand InsertCommand {get; set;}

See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.2.2.1.1.4. SelectCommand Property

Syntax: Visual Basic

Overloads Public Property SelectCommand As MySqlCommand

Syntax: C#

new public MySqlCommand SelectCommand {get; set;}

See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.2.2.1.1.5. UpdateCommand Property

Syntax: Visual Basic

Overloads Public Property UpdateCommand As MySqlCommand

Syntax: C#

new public MySqlCommand UpdateCommand {get; set;}

See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.2.2.1.1.6. MySqlDataAdapter.RowUpdated Event

Occurs during Update after a command is executed against the data source. The attempt to update is
made, so the event fires.

Syntax: Visual Basic

Public Event RowUpdated As MySqlRowUpdatedEventHandler

Syntax: C#

public event MySqlRowUpdatedEventHandler RowUpdated;

Event Data

The event handler receives an argument of type MySqlRowUpdatedEventArgs containing data related to

Connectors

1505

this event. The following MySqlRowUpdatedEventArgsproperties provide information specific to this
event.

Property Description

Command Gets or sets the MySqlCommand executed when
Update is called.

Errors Gets any errors generated by the .NET Framework
data provider when the Commandwas executed.

RecordsAffected Gets the number of rows changed, inserted, or de-
leted by execution of the SQL statement.

Row Gets the DataRowsent through an Update.

RowCount Gets the number of rows processed in a batch of
updated records.

StatementType Gets the type of SQL statement executed.

Status Gets the UpdateStatusof the Commandproperty.

TableMapping Gets the DataTableMappingsent through an Up-
date.

See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.2.2.1.1.6.1. MySqlRowUpdatedEventHandler Delegate

Represents the method that will handle the RowUpdatedevent of a MySqlDataAdapter .

Syntax: Visual Basic

Public Delegate Sub MySqlRowUpdatedEventHandler(_
ByVal sender As Object, _
ByVal e As MySqlRowUpdatedEventArgs _

)

Syntax: C#

public delegate void MySqlRowUpdatedEventHandler(
objectsender,
MySqlRowUpdatedEventArgse
);

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.2.2.1.1.6.1.1. MySqlRowUpdatedEventArgs Class

Provides data for the RowUpdated event. This class cannot be inherited.

For a list of all members of this type, see MySqlRowUpdatedEventArgs Members .

Connectors

1506

Syntax: Visual Basic

NotInheritable Public Class MySqlRowUpdatedEventArgs_
Inherits RowUpdatedEventArgs

Syntax: C#

public sealed class MySqlRowUpdatedEventArgs : RowUpdatedEventArgs

Thread Safety

Public static (Sharedin Visual Basic) members of this type are safe for multithreaded operations. In-
stance members are notguaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlRowUpdatedEventArgs Members , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.2.2.1.1.6.1.1.1. MySqlRowUpdatedEventArgs Members

MySqlRowUpdatedEventArgs overview

Public Instance Constructors

MySqlRowUpdatedEventArgs Constructor Initializes a new instance of the MySqlRowUp-
datedEventArgs class.

Public Instance Properties

Command Overloaded. Gets or sets the MySqlCommand ex-
ecuted when Update is called.

Errors(inherited from RowUpdatedEventArgs) Gets any errors generated by the .NET Framework
data provider when the Commandwas executed.

RecordsAffected(inherited from RowUpdate-
dEventArgs)

Gets the number of rows changed, inserted, or de-
leted by execution of the SQL statement.

Row(inherited from RowUpdatedEventArgs) Gets the DataRowsent through an Update.

RowCount(inherited from RowUpdatedEventArgs) Gets the number of rows processed in a batch of
updated records.

StatementType(inherited from RowUpdatedEvent-
Args)

Gets the type of SQL statement executed.

Status(inherited from RowUpdatedEventArgs) Gets the UpdateStatusof the Commandproperty.

TableMapping(inherited from RowUpdatedEvent-
Args)

Gets the DataTableMappingsent through an Up-
date.

Public Instance Methods

CopyToRows(inherited from RowUpdatedEvent- Overloaded. Copies references to the modified

Connectors

1507

Args) rows into the provided array.

Equals(inherited from Object) Determines whether the specified Objectis equal to
the current Object.

GetHashCode(inherited from Object) Serves as a hash function for a particular type.
GetHashCodeis suitable for use in hashing al-
gorithms and data structures like a hash table.

GetType(inherited from Object) Gets the Typeof the current instance.

ToString(inherited from Object) Returns a Stringthat represents the current Object.

See Also

MySqlRowUpdatedEventArgs Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.2.2.1.1.6.1.1.1.1. MySqlRowUpdatedEventArgs Constructor

Initializes a new instance of the MySqlRowUpdatedEventArgs class.

Syntax: Visual Basic

Public Sub New(_
ByVal row As DataRow, _
ByVal command As IDbCommand, _
ByVal statementType As StatementType, _
ByVal tableMapping As DataTableMapping _

)

Syntax: C#

public MySqlRowUpdatedEventArgs(
DataRowrow,
IDbCommandcommand,
StatementTypestatementType,
DataTableMappingtableMapping
);

Parameters

• row: The DataRowsent through an Update.

• command: The IDbCommandexecuted when Updateis called.

• statementType: One of the StatementTypevalues that specifies the type of query executed.

• tableMapping: The DataTableMappingsent through an Update.

See Also

MySqlRowUpdatedEventArgs Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.2.2.1.1.6.1.1.1.2. Command Property

Gets or sets the MySqlCommand executed when Update is called.

Syntax: Visual Basic

Overloads Public ReadOnly Property Command As MySqlCommand

Connectors

1508

Syntax: C#

new public MySqlCommand Command {get;}

See Also

MySqlRowUpdatedEventArgs Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.2.2.1.1.7. MySqlDataAdapter.RowUpdating Event

Occurs during Update before a command is executed against the data source. The attempt to update is
made, so the event fires.

Syntax: Visual Basic

Public Event RowUpdating As MySqlRowUpdatingEventHandler

Syntax: C#

public event MySqlRowUpdatingEventHandler RowUpdating;

Event Data

The event handler receives an argument of type MySqlRowUpdatingEventArgs containing data related
to this event. The following MySqlRowUpdatingEventArgsproperties provide information specific to
this event.

Property Description

Command Gets or sets the MySqlCommand to execute when
performing the Update.

Errors Gets any errors generated by the .NET Framework
data provider when the Commandexecutes.

Row Gets the DataRowthat will be sent to the server as
part of an insert, update, or delete operation.

StatementType Gets the type of SQL statement to execute.

Status Gets or sets the UpdateStatusof the Command-
property.

TableMapping Gets the DataTableMappingto send through the
Update.

See Also

MySqlDataAdapter Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.2.2.1.1.7.1. MySqlRowUpdatingEventHandler Delegate

Represents the method that will handle the RowUpdatingevent of a MySqlDataAdapter .

Syntax: Visual Basic

Public Delegate Sub MySqlRowUpdatingEventHandler(_
ByVal sender As Object, _
ByVal e As MySqlRowUpdatingEventArgs _

)

Connectors

1509

Syntax: C#

public delegate void MySqlRowUpdatingEventHandler(
objectsender,
MySqlRowUpdatingEventArgse
);

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.2.2.1.1.7.1.1. MySqlRowUpdatingEventArgs Class

Provides data for the RowUpdating event. This class cannot be inherited.

For a list of all members of this type, see MySqlRowUpdatingEventArgs Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlRowUpdatingEventArgs_
Inherits RowUpdatingEventArgs

Syntax: C#

public sealed class MySqlRowUpdatingEventArgs : RowUpdatingEventArgs

Thread Safety

Public static (Sharedin Visual Basic) members of this type are safe for multithreaded operations. In-
stance members are notguaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlRowUpdatingEventArgs Members , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.2.2.1.1.7.1.1.1. MySqlRowUpdatingEventArgs Members

MySqlRowUpdatingEventArgs overview

Public Instance Constructors

MySqlRowUpdatingEventArgs Constructor Initializes a new instance of the MySqlRowUpdat-
ingEventArgs class.

Public Instance Properties

Connectors

1510

Command Overloaded. Gets or sets the MySqlCommand to
execute when performing the Update.

Errors(inherited from RowUpdatingEventArgs) Gets any errors generated by the .NET Framework
data provider when the Commandexecutes.

Row(inherited from RowUpdatingEventArgs) Gets the DataRowthat will be sent to the server as
part of an insert, update, or delete operation.

StatementType(inherited from RowUpdat-
ingEventArgs)

Gets the type of SQL statement to execute.

Status(inherited from RowUpdatingEventArgs) Gets or sets the UpdateStatusof the Command-
property.

TableMapping(inherited from RowUpdatingEvent-
Args)

Gets the DataTableMappingto send through the
Update.

Public Instance Methods

Equals(inherited from Object) Determines whether the specified Objectis equal to
the current Object.

GetHashCode(inherited from Object) Serves as a hash function for a particular type.
GetHashCodeis suitable for use in hashing al-
gorithms and data structures like a hash table.

GetType(inherited from Object) Gets the Typeof the current instance.

ToString(inherited from Object) Returns a Stringthat represents the current Object.

See Also

MySqlRowUpdatingEventArgs Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.2.2.1.1.7.1.1.1.1. MySqlRowUpdatingEventArgs Constructor

Initializes a new instance of the MySqlRowUpdatingEventArgs class.

Syntax: Visual Basic

Public Sub New(_
ByVal row As DataRow, _
ByVal command As IDbCommand, _
ByVal statementType As StatementType, _
ByVal tableMapping As DataTableMapping _

)

Syntax: C#

public MySqlRowUpdatingEventArgs(
DataRowrow,
IDbCommandcommand,
StatementTypestatementType,
DataTableMappingtableMapping
);

Parameters

• row: The DataRowto Update.

• command: The IDbCommandto execute during Update.

Connectors

1511

• statementType: One of the StatementTypevalues that specifies the type of query executed.

• tableMapping: The DataTableMappingsent through an Update.

See Also

MySqlRowUpdatingEventArgs Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.2.2.1.1.7.1.1.1.2. Command Property

Gets or sets the MySqlCommand to execute when performing the Update.

Syntax: Visual Basic

Overloads Public Property Command As MySqlCommand

Syntax: C#

new public MySqlCommand Command {get; set;}

See Also

MySqlRowUpdatingEventArgs Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.2.3. MySqlCommandBuilder Constructor (MySqlDataAdapter, Boolean)

Syntax: Visual Basic

Overloads Public Sub New(_
ByVal adapter As MySqlDataAdapter, _
ByVal lastOneWins As Boolean _

)

Syntax: C#

public MySqlCommandBuilder(
MySqlDataAdapteradapter,
boollastOneWins
);

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace , MySqlCommandBuilder Con-
structor Overload List

23.2.4.1.3.1.2.4. MySqlCommandBuilder Constructor (Boolean)

Syntax: Visual Basic

Overloads Public Sub New(_
ByVal lastOneWins As Boolean _

)

Syntax: C#

public MySqlCommandBuilder(
boollastOneWins
);

Connectors

1512

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace , MySqlCommandBuilder Con-
structor Overload List

23.2.4.1.3.1.3. DataAdapter Property

Syntax: Visual Basic

Public Property DataAdapter As MySqlDataAdapter

Syntax: C#

public MySqlDataAdapter DataAdapter {get; set;}

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.4. QuotePrefix Property

Syntax: Visual Basic

Public Property QuotePrefix As String

Syntax: C#

public string QuotePrefix {get; set;}

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.5. QuoteSuffix Property

Syntax: Visual Basic

Public Property QuoteSuffix As String

Syntax: C#

public string QuoteSuffix {get; set;}

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.6. MySqlCommandBuilder.GetDeleteCommand Method

Syntax: Visual Basic

Public Function GetDeleteCommand() As MySqlCommand

Syntax: C#

public MySqlCommand GetDeleteCommand();

Connectors

1513

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.7. MySqlCommandBuilder.GetInsertCommand Method

Syntax: Visual Basic

Public Function GetInsertCommand() As MySqlCommand

Syntax: C#

public MySqlCommand GetInsertCommand();

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.8. MySqlCommandBuilder.GetUpdateCommand Method

Syntax: Visual Basic

Public Function GetUpdateCommand() As MySqlCommand

Syntax: C#

public MySqlCommand GetUpdateCommand();

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace

23.2.4.1.3.1.9. MySqlCommandBuilder.RefreshSchema Method

Syntax: Visual Basic

Public Sub RefreshSchema()

Syntax: C#

public void RefreshSchema();

See Also

MySqlCommandBuilder Class , MySql.Data.MySqlClient Namespace

23.2.4.1.4. MySqlException Class

The exception that is thrown when MySQL returns an error. This class cannot be inherited.

For a list of all members of this type, see MySqlException Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlException_
Inherits SystemException

Connectors

1514

Syntax: C#

public sealed class MySqlException : SystemException

Thread Safety

Public static (Sharedin Visual Basic) members of this type are safe for multithreaded operations. In-
stance members are notguaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlException Members , MySql.Data.MySqlClient Namespace

23.2.4.1.4.1. MySqlException Members

MySqlException overview

Public Instance Properties

Data(inherited from Exception) Gets a collection of key/value pairs that provide
additional, user-defined information about the ex-
ception.

HelpLink(inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException(inherited from Exception) Gets the Exceptioninstance that caused the current
exception.

Message(inherited from Exception) Gets a message that describes the current excep-
tion.

Number Gets a number that identifies the type of error.

Source(inherited from Exception) Gets or sets the name of the application or the ob-
ject that causes the error.

StackTrace(inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite(inherited from Exception) Gets the method that throws the current exception.

Public Instance Methods

Equals(inherited from Object) Determines whether the specified Objectis equal to
the current Object.

GetBaseException(inherited from Exception) When overridden in a derived class, returns the Ex-
ceptionthat is the root cause of one or more sub-
sequent exceptions.

GetHashCode(inherited from Object) Serves as a hash function for a particular type.
GetHashCodeis suitable for use in hashing al-
gorithms and data structures like a hash table.

GetObjectData(inherited from Exception) When overridden in a derived class, sets the Serial-

Connectors

1515

izationInfowith information about the exception.

GetType(inherited from Exception) Gets the runtime type of the current instance.

ToString(inherited from Exception) Creates and returns a string representation of the
current exception.

See Also

MySqlException Class , MySql.Data.MySqlClient Namespace

23.2.4.1.4.1.1. Number Property

Gets a number that identifies the type of error.

Syntax: Visual Basic

Public ReadOnly Property Number As Integer

Syntax: C#

public int Number {get;}

See Also

MySqlException Class , MySql.Data.MySqlClient Namespace

23.2.4.1.5. MySqlHelper Class

Helper class that makes it easier to work with the provider.

For a list of all members of this type, see MySqlHelper Members .

Syntax: Visual Basic

NotInheritable Public Class MySqlHelper

Syntax: C#

public sealed class MySqlHelper

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. In-
stance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlHelper Members , MySql.Data.MySqlClient Namespace

23.2.4.1.5.1. MySqlHelper Members

Connectors

1516

MySqlHelper overview

Public Static (Shared) Methods

ExecuteDataRow Executes a single SQL command and returns the
first row of the resultset. A new MySqlConnection
object is created, opened, and closed during this
method.

ExecuteDataset Overloaded. Executes a single SQL command and
returns the resultset in a DataSet. A new MySql-
Connection object is created, opened, and closed
during this method.

ExecuteNonQuery Overloaded. Executes a single command against a
MySQL database. The MySqlConnection is as-
sumed to be open when the method is called and
remains open after the method completes.

ExecuteReader Overloaded. Executes a single command against a
MySQL database.

ExecuteScalar Overloaded. Execute a single command against a
MySQL database.

UpdateDataSet Updates the given table with data from the given
DataSet

Public Instance Methods

Equals(inherited from Object) Determines whether the specified Objectis equal to
the current Object.

GetHashCode(inherited from Object) Serves as a hash function for a particular type.
GetHashCodeis suitable for use in hashing al-
gorithms and data structures like a hash table.

GetType(inherited from Object) Gets the Typeof the current instance.

ToString(inherited from Object) Returns a Stringthat represents the current Object.

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace

23.2.4.1.5.1.1. MySqlHelper.ExecuteDataRow Method

Executes a single SQL command and returns the first row of the resultset. A new MySqlConnection ob-
ject is created, opened, and closed during this method.

Syntax: Visual Basic

Public Shared Function ExecuteDataRow(_
ByVal connectionString As String, _
ByVal commandText As String, _
ParamArray parms As MySqlParameter() _

) As DataRow

Syntax: C#

public static DataRow ExecuteDataRow(
stringconnectionString,

Connectors

1517

stringcommandText,
params MySqlParameter[]parms

);

Parameters

• connectionString: Settings to be used for the connection

• commandText: Command to execute

• parms: Parameters to use for the command

Return Value

DataRow containing the first row of the resultset

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace

23.2.4.1.5.1.2. ExecuteDataset Method

Executes a single SQL command and returns the resultset in a DataSet. The state of the MySqlConnec-
tion object remains unchanged after execution of this method.

Overload List

Executes a single SQL command and returns the resultset in a DataSet. The state of the MySqlConnec-
tion object remains unchanged after execution of this method.

• public static DataSet ExecuteDataset(MySqlConnection,string);

Executes a single SQL command and returns the resultset in a DataSet. The state of the MySqlConnec-
tion object remains unchanged after execution of this method.

• public static DataSet ExecuteDataset(MySqlConnection,string,params MySqlParameter[]);

Executes a single SQL command and returns the resultset in a DataSet. A new MySqlConnection object
is created, opened, and closed during this method.

• public static DataSet ExecuteDataset(string,string);

Executes a single SQL command and returns the resultset in a DataSet. A new MySqlConnection object
is created, opened, and closed during this method.

• public static DataSet ExecuteDataset(string,string,params MySqlParameter[]);

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace

Connectors

1518

23.2.4.1.5.1.2.1. MySqlHelper.ExecuteDataset Method (MySqlConnection, String)

Executes a single SQL command and returns the resultset in a DataSet. The state of the MySqlConnec-
tion object remains unchanged after execution of this method.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteDataset(_
ByVal connection As MySqlConnection, _
ByVal commandText As String _

) As DataSet

Syntax: C#

public static DataSet ExecuteDataset(
MySqlConnectionconnection,
stringcommandText
);

Parameters

• connection: MySqlConnection object to use

• commandText: Command to execute

Return Value

DataSetcontaining the resultset

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteDataset Overload
List

23.2.4.1.5.1.2.2. MySqlHelper.ExecuteDataset Method (MySqlConnection, String, MySqlParameter[])

Executes a single SQL command and returns the resultset in a DataSet. The state of the MySqlConnec-
tion object remains unchanged after execution of this method.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteDataset(_
ByVal connection As MySqlConnection, _
ByVal commandText As String, _
ParamArray commandParameters As MySqlParameter() _

) As DataSet

Syntax: C#

public static DataSet ExecuteDataset(
MySqlConnectionconnection,
stringcommandText,

params MySqlParameter[]commandParameters
);

Parameters

• connection: MySqlConnection object to use

Connectors

1519

• commandText: Command to execute

• commandParameters: Parameters to use for the command

Return Value

DataSetcontaining the resultset

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteDataset Overload
List

23.2.4.1.5.1.2.3. MySqlHelper.ExecuteDataset Method (String, String)

Executes a single SQL command and returns the resultset in a DataSet. A new MySqlConnection object
is created, opened, and closed during this method.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteDataset(_
ByVal connectionString As String, _
ByVal commandText As String _

) As DataSet

Syntax: C#

public static DataSet ExecuteDataset(
stringconnectionString,
stringcommandText
);

Parameters

• connectionString: Settings to be used for the connection

• commandText: Command to execute

Return Value

DataSetcontaining the resultset

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteDataset Overload
List

23.2.4.1.5.1.2.4. MySqlHelper.ExecuteDataset Method (String, String, MySqlParameter[])

Executes a single SQL command and returns the resultset in a DataSet. A new MySqlConnection object
is created, opened, and closed during this method.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteDataset(_
ByVal connectionString As String, _
ByVal commandText As String, _
ParamArray commandParameters As MySqlParameter() _

) As DataSet

Connectors

1520

Syntax: C#

public static DataSet ExecuteDataset(
stringconnectionString,
stringcommandText,

params MySqlParameter[]commandParameters
);

Parameters

• connectionString: Settings to be used for the connection

• commandText: Command to execute

• commandParameters: Parameters to use for the command

Return Value

DataSetcontaining the resultset

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteDataset Overload
List

23.2.4.1.5.1.3. ExecuteNonQuery Method

Executes a single command against a MySQL database. The MySqlConnection is assumed to be open
when the method is called and remains open after the method completes.

Overload List

Executes a single command against a MySQL database. The MySqlConnection is assumed to be open
when the method is called and remains open after the method completes.

• public static int ExecuteNonQuery(MySqlConnection,string,params MySqlParameter[]);

Executes a single command against a MySQL database. A new MySqlConnection is created using the
ConnectionString given.

• public static int ExecuteNonQuery(string,string,params MySqlParameter[]);

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace

23.2.4.1.5.1.3.1. MySqlHelper.ExecuteNonQuery Method (MySqlConnection, String, MySqlParameter[])

Executes a single command against a MySQL database. The MySqlConnection is assumed to be open
when the method is called and remains open after the method completes.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteNonQuery(_
ByVal connection As MySqlConnection, _
ByVal commandText As String, _

Connectors

1521

ParamArray commandParameters As MySqlParameter() _
) As Integer

Syntax: C#

public static int ExecuteNonQuery(
MySqlConnectionconnection,
stringcommandText,

params MySqlParameter[]commandParameters
);

Parameters

• connection: MySqlConnection object to use

• commandText: SQL command to be executed

• commandParameters: Array of MySqlParameter objects to use with the command.

Return Value

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteNonQuery Overload
List

23.2.4.1.5.1.3.2. MySqlHelper.ExecuteNonQuery Method (String, String, MySqlParameter[])

Executes a single command against a MySQL database. A new MySqlConnection is created using the
ConnectionString given.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteNonQuery(_
ByVal connectionString As String, _
ByVal commandText As String, _
ParamArray parms As MySqlParameter() _

) As Integer

Syntax: C#

public static int ExecuteNonQuery(
stringconnectionString,
stringcommandText,

params MySqlParameter[]parms
);

Parameters

• connectionString: ConnectionString to use

• commandText: SQL command to be executed

• parms: Array of MySqlParameter objects to use with the command.

Return Value

See Also

Connectors

1522

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteNonQuery Overload
List

23.2.4.1.5.1.4. ExecuteReader Method

Executes a single command against a MySQL database.

Overload List

Executes a single command against a MySQL database.

• public static MySqlDataReader ExecuteReader(string,string);

Executes a single command against a MySQL database.

• public static MySqlDataReader ExecuteReader(string,string,params MySqlParameter[]);

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace

23.2.4.1.5.1.4.1. MySqlHelper.ExecuteReader Method (String, String)

Executes a single command against a MySQL database.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteReader(_
ByVal connectionString As String, _
ByVal commandText As String _

) As MySqlDataReader

Syntax: C#

public static MySqlDataReader ExecuteReader(
stringconnectionString,
stringcommandText
);

Parameters

• connectionString: Settings to use for this command

• commandText: Command text to use

Return Value

MySqlDataReader object ready to read the results of the command

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteReader Overload
List

23.2.4.1.5.1.4.2. MySqlHelper.ExecuteReader Method (String, String, MySqlParameter[])

Connectors

1523

Executes a single command against a MySQL database.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteReader(_
ByVal connectionString As String, _
ByVal commandText As String, _
ParamArray commandParameters As MySqlParameter() _

) As MySqlDataReader

Syntax: C#

public static MySqlDataReader ExecuteReader(
stringconnectionString,
stringcommandText,

params MySqlParameter[]commandParameters
);

Parameters

• connectionString: Settings to use for this command

• commandText: Command text to use

• commandParameters: Array of MySqlParameter objects to use with the command

Return Value

MySqlDataReader object ready to read the results of the command

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteReader Overload
List

23.2.4.1.5.1.5. ExecuteScalar Method

Execute a single command against a MySQL database.

Overload List

Execute a single command against a MySQL database.

• public static object ExecuteScalar(MySqlConnection,string);

Execute a single command against a MySQL database.

• public static object ExecuteScalar(MySqlConnection,string,params MySqlParameter[]);

Execute a single command against a MySQL database.

• public static object ExecuteScalar(string,string);

Connectors

1524

Execute a single command against a MySQL database.

• public static object ExecuteScalar(string,string,params MySqlParameter[]);

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace

23.2.4.1.5.1.5.1. MySqlHelper.ExecuteScalar Method (MySqlConnection, String)

Execute a single command against a MySQL database.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteScalar(_
ByVal connection As MySqlConnection, _
ByVal commandText As String _

) As Object

Syntax: C#

public static object ExecuteScalar(
MySqlConnectionconnection,
stringcommandText
);

Parameters

• connection: MySqlConnection object to use

• commandText: Command text to use for the command

Return Value

The first column of the first row in the result set, or a null reference if the result set is empty.

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteScalar Overload List

23.2.4.1.5.1.5.2. MySqlHelper.ExecuteScalar Method (MySqlConnection, String, MySqlParameter[])

Execute a single command against a MySQL database.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteScalar(_
ByVal connection As MySqlConnection, _
ByVal commandText As String, _
ParamArray commandParameters As MySqlParameter() _

) As Object

Syntax: C#

public static object ExecuteScalar(
MySqlConnectionconnection,
stringcommandText,

params MySqlParameter[]commandParameters
);

Connectors

1525

Parameters

• connection: MySqlConnection object to use

• commandText: Command text to use for the command

• commandParameters: Parameters to use for the command

Return Value

The first column of the first row in the result set, or a null reference if the result set is empty.

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteScalar Overload List

23.2.4.1.5.1.5.3. MySqlHelper.ExecuteScalar Method (String, String)

Execute a single command against a MySQL database.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteScalar(_
ByVal connectionString As String, _
ByVal commandText As String _

) As Object

Syntax: C#

public static object ExecuteScalar(
stringconnectionString,
stringcommandText
);

Parameters

• connectionString: Settings to use for the update

• commandText: Command text to use for the update

Return Value

The first column of the first row in the result set, or a null reference if the result set is empty.

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteScalar Overload List

23.2.4.1.5.1.5.4. MySqlHelper.ExecuteScalar Method (String, String, MySqlParameter[])

Execute a single command against a MySQL database.

Syntax: Visual Basic

Overloads Public Shared Function ExecuteScalar(_
ByVal connectionString As String, _
ByVal commandText As String, _
ParamArray commandParameters As MySqlParameter() _

Connectors

1526

) As Object

Syntax: C#

public static object ExecuteScalar(
stringconnectionString,
stringcommandText,

params MySqlParameter[]commandParameters
);

Parameters

• connectionString: Settings to use for the command

• commandText: Command text to use for the command

• commandParameters: Parameters to use for the command

Return Value

The first column of the first row in the result set, or a null reference if the result set is empty.

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace , MySqlHelper.ExecuteScalar Overload List

23.2.4.1.5.1.6. MySqlHelper.UpdateDataSet Method

Updates the given table with data from the given DataSet

Syntax: Visual Basic

Public Shared Sub UpdateDataSet(_
ByVal connectionString As String, _
ByVal commandText As String, _
ByVal ds As DataSet, _
ByVal tablename As String _

)

Syntax: C#

public static void UpdateDataSet(
stringconnectionString,
stringcommandText,
DataSetds,
stringtablename
);

Parameters

• connectionString: Settings to use for the update

• commandText: Command text to use for the update

• ds: DataSetcontaining the new data to use in the update

• tablename: Tablename in the dataset to update

Connectors

1527

See Also

MySqlHelper Class , MySql.Data.MySqlClient Namespace

23.2.4.1.6. MySqlErrorCode Enumeration

Syntax: Visual Basic

Public Enum MySqlErrorCode

Syntax: C#

public enum MySqlErrorCode

Members

Member Name Description

PacketTooLarge

PasswordNotAllowed

DuplicateKeyEntry

HostNotPrivileged

PasswordNoMatch

AnonymousUser

DuplicateKey

KeyNotFound

DuplicateKeyName

Requirements

Namespace: MySql.Data.MySqlClient

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySql.Data.MySqlClient Namespace

23.2.4.2. MySql.Data.Types

Namespace hierarchy

Classes

Class Description

MySqlConversionException Summary description for MySqlConversionExcep-
tion.

MySqlDateTime Summary description for MySqlDateTime.

MySqlValue

23.2.4.2.1. MySql.Data.TypesHierarchy

Connectors

1528

See Also

MySql.Data.Types Namespace

23.2.4.2.2. MySqlConversionException Class

Summary description for MySqlConversionException.

For a list of all members of this type, see MySqlConversionException Members .

Syntax: Visual Basic

Public Class MySqlConversionException_
Inherits ApplicationException

Syntax: C#

public class MySqlConversionException : ApplicationException

Thread Safety

Public static (Sharedin Visual Basic) members of this type are safe for multithreaded operations. In-
stance members are notguaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.Types

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlConversionException Members , MySql.Data.Types Namespace

23.2.4.2.2.1. MySqlConversionException Members

MySqlConversionException overview

Public Instance Constructors

MySqlConversionException Constructor Ctor

Public Instance Properties

Data(inherited from Exception) Gets a collection of key/value pairs that provide
additional, user-defined information about the ex-
ception.

HelpLink(inherited from Exception) Gets or sets a link to the help file associated with
this exception.

InnerException(inherited from Exception) Gets the Exceptioninstance that caused the current
exception.

Message(inherited from Exception) Gets a message that describes the current excep-
tion.

Source(inherited from Exception) Gets or sets the name of the application or the ob-
ject that causes the error.

Connectors

1529

StackTrace(inherited from Exception) Gets a string representation of the frames on the
call stack at the time the current exception was
thrown.

TargetSite(inherited from Exception) Gets the method that throws the current exception.

Public Instance Methods

Equals(inherited from Object) Determines whether the specified Objectis equal to
the current Object.

GetBaseException(inherited from Exception) When overridden in a derived class, returns the Ex-
ceptionthat is the root cause of one or more sub-
sequent exceptions.

GetHashCode(inherited from Object) Serves as a hash function for a particular type.
GetHashCodeis suitable for use in hashing al-
gorithms and data structures like a hash table.

GetObjectData(inherited from Exception) When overridden in a derived class, sets the Serial-
izationInfowith information about the exception.

GetType(inherited from Exception) Gets the runtime type of the current instance.

ToString(inherited from Exception) Creates and returns a string representation of the
current exception.

Protected Instance Properties

HResult(inherited from Exception) Gets or sets HRESULT, a coded numerical value
that is assigned to a specific exception.

Protected Instance Methods

Finalize(inherited from Object) Allows an Objectto attempt to free resources and
perform other cleanup operations before the Objec-
tis reclaimed by garbage collection.

MemberwiseClone(inherited from Object) Creates a shallow copy of the current Object.

See Also

MySqlConversionException Class , MySql.Data.Types Namespace

23.2.4.2.2.1.1. MySqlConversionException Constructor

Syntax: Visual Basic

Public Sub New(_
ByVal msg As String _

)

Syntax: C#

public MySqlConversionException(
stringmsg
);

Connectors

1530

See Also

MySqlConversionException Class , MySql.Data.Types Namespace

23.2.4.2.3. MySqlDateTime Class

Summary description for MySqlDateTime.

For a list of all members of this type, see MySqlDateTime Members .

Syntax: Visual Basic

Public Class MySqlDateTime_
Inherits MySqlValue_
Implements IConvertible, IComparable

Syntax: C#

public class MySqlDateTime : MySqlValue, IConvertible, IComparable

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. In-
stance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.Types

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlDateTime Members , MySql.Data.Types Namespace

23.2.4.2.3.1. MySqlDateTime Members

MySqlDateTime overview

Public Static (Shared) Type Conversions

Explicit MySqlDateTime to DateTime Conversion

Public Instance Properties

Day Returns the day portion of this datetime

Hour Returns the hour portion of this datetime

IsNull (inherited from MySqlValue)

IsValidDateTime Indicates if this object contains a value that can be
represented as a DateTime

Minute Returns the minute portion of this datetime

Month Returns the month portion of this datetime

Second Returns the second portion of this datetime

ValueAsObject (inherited from MySqlValue) Returns the value of this field as an object

Connectors

1531

Year Returns the year portion of this datetime

Public Instance Methods

Equals(inherited from Object) Determines whether the specified Objectis equal to
the current Object.

GetDateTime Returns this value as a DateTime

GetHashCode(inherited from Object) Serves as a hash function for a particular type.
GetHashCodeis suitable for use in hashing al-
gorithms and data structures like a hash table.

GetType(inherited from Object) Gets the Typeof the current instance.

ToString Returns a MySQL specific string representation of
this value

Protected Instance Fields

classType (inherited from MySqlValue) The system type represented by this value

dbType (inherited from MySqlValue) The generic dbtype of this value

isNull (inherited from MySqlValue) Is this value null

mySqlDbType (inherited from MySqlValue) The specific MySQL db type

mySqlTypeName (inherited from MySqlValue) The MySQL specific typename of this value

objectValue (inherited from MySqlValue)

Protected Instance Methods

Finalize(inherited from Object) Allows an Objectto attempt to free resources and
perform other cleanup operations before the Objec-
tis reclaimed by garbage collection.

MemberwiseClone(inherited from Object) Creates a shallow copy of the current Object.

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

23.2.4.2.3.1.1. MySqlDateTime Explicit MySqlDateTime to DateTime Conversion

Syntax: Visual Basic

MySqlDateTime.op_Explicit(val)

Syntax: C#

public static explicit operator DateTime(
MySqlDateTimeval
);

Parameters

Connectors

1532

• val:

Return Value

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

23.2.4.2.3.1.2. Day Property

Returns the day portion of this datetime

Syntax: Visual Basic

Public Property Day As Integer

Syntax: C#

public int Day {get; set;}

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

23.2.4.2.3.1.3. Hour Property

Returns the hour portion of this datetime

Syntax: Visual Basic

Public Property Hour As Integer

Syntax: C#

public int Hour {get; set;}

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

23.2.4.2.3.1.4. IsNull Property

Syntax: Visual Basic

Public Property IsNull As Boolean

Syntax: C#

public bool IsNull {get; set;}

See Also

MySqlValue Class , MySql.Data.Types Namespace

23.2.4.2.3.1.4.1. MySqlValue Class

Connectors

1533

For a list of all members of this type, see MySqlValue Members .

Syntax: Visual Basic

MustInherit Public Class MySqlValue

Syntax: C#

public abstract class MySqlValue

Thread Safety

Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. In-
stance members are not guaranteed to be thread-safe.

Requirements

Namespace: MySql.Data.Types

Assembly: MySql.Data (in MySql.Data.dll)

See Also

MySqlValue Members , MySql.Data.Types Namespace

23.2.4.2.3.1.4.1.1. MySqlValue Members

MySqlValue overview

Protected Static (Shared) Fields

numberFormat

Public Instance Constructors

MySqlValue Constructor Initializes a new instance of the MySqlValue class.

Public Instance Properties

IsNull

ValueAsObject Returns the value of this field as an object

Public Instance Methods

Equals(inherited from Object) Determines whether the specified Objectis equal to
the current Object.

GetHashCode(inherited from Object) Serves as a hash function for a particular type.
GetHashCodeis suitable for use in hashing al-
gorithms and data structures like a hash table.

GetType(inherited from Object) Gets the Typeof the current instance.

ToString Returns a string representation of this value

Connectors

1534

Protected Instance Fields

classType The system type represented by this value

dbType The generic dbtype of this value

isNull Is this value null

mySqlDbType The specific MySQL db type

mySqlTypeName The MySQL specific typename of this value

objectValue

Protected Instance Methods

Finalize(inherited from Object) Allows an Objectto attempt to free resources and
perform other cleanup operations before the Objec-
tis reclaimed by garbage collection.

MemberwiseClone(inherited from Object) Creates a shallow copy of the current Object.

See Also

MySqlValue Class , MySql.Data.Types Namespace

23.2.4.2.3.1.4.1.1.1. MySqlValue.numberFormat Field

Syntax: Visual Basic

Protected Shared numberFormat As NumberFormatInfo

Syntax: C#

protected static NumberFormatInfo numberFormat;

See Also

MySqlValue Class , MySql.Data.Types Namespace

23.2.4.2.3.1.4.1.1.2. MySqlValue Constructor

Initializes a new instance of the MySqlValue class.

Syntax: Visual Basic

Public Sub New()

Syntax: C#

public MySqlValue();

See Also

MySqlValue Class , MySql.Data.Types Namespace

23.2.4.2.3.1.4.1.1.3. ValueAsObject Property

Returns the value of this field as an object

Connectors

1535

Syntax: Visual Basic

Public ReadOnly Property ValueAsObject As Object

Syntax: C#

public object ValueAsObject {get;}

See Also

MySqlValue Class , MySql.Data.Types Namespace

23.2.4.2.3.1.4.1.1.4. MySqlValue.ToString Method

Returns a string representation of this value

Syntax: Visual Basic

Overrides Public Function ToString() As String

Syntax: C#

public override string ToString();

See Also

MySqlValue Class , MySql.Data.Types Namespace

23.2.4.2.3.1.4.1.1.5. MySqlValue.classType Field

The system type represented by this value

Syntax: Visual Basic

Protected classType As Type

Syntax: C#

protected Type classType;

See Also

MySqlValue Class , MySql.Data.Types Namespace

23.2.4.2.3.1.4.1.1.6. MySqlValue.dbType Field

The generic dbtype of this value

Syntax: Visual Basic

Protected dbType As DbType

Syntax: C#

protected DbType dbType;

Connectors

1536

See Also

MySqlValue Class , MySql.Data.Types Namespace

23.2.4.2.3.1.4.1.1.7. MySqlValue.mySqlDbType Field

The specific MySQL db type

Syntax: Visual Basic

Protected mySqlDbType As MySqlDbType

Syntax: C#

protected MySqlDbType mySqlDbType;

See Also

MySqlValue Class , MySql.Data.Types Namespace

23.2.4.2.3.1.4.1.1.8. MySqlValue.mySqlTypeName Field

The MySQL specific typename of this value

Syntax: Visual Basic

Protected mySqlTypeName As String

Syntax: C#

protected string mySqlTypeName;

See Also

MySqlValue Class , MySql.Data.Types Namespace

23.2.4.2.3.1.4.1.1.9. MySqlValue.objectValue Field

Syntax: Visual Basic

Protected objectValue As Object

Syntax: C#

protected object objectValue;

See Also

MySqlValue Class , MySql.Data.Types Namespace

23.2.4.2.3.1.5. IsValidDateTime Property

Indicates if this object contains a value that can be represented as a DateTime

Syntax: Visual Basic

Public ReadOnly Property IsValidDateTime As Boolean

Connectors

1537

Syntax: C#

public bool IsValidDateTime {get;}

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

23.2.4.2.3.1.6. Minute Property

Returns the minute portion of this datetime

Syntax: Visual Basic

Public Property Minute As Integer

Syntax: C#

public int Minute {get; set;}

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

23.2.4.2.3.1.7. Month Property

Returns the month portion of this datetime

Syntax: Visual Basic

Public Property Month As Integer

Syntax: C#

public int Month {get; set;}

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

23.2.4.2.3.1.8. Second Property

Returns the second portion of this datetime

Syntax: Visual Basic

Public Property Second As Integer

Syntax: C#

public int Second {get; set;}

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

23.2.4.2.3.1.9. Year Property

Connectors

1538

Returns the year portion of this datetime

Syntax: Visual Basic

Public Property Year As Integer

Syntax: C#

public int Year {get; set;}

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

23.2.4.2.3.1.10. MySqlDateTime.GetDateTime Method

Returns this value as a DateTime

Syntax: Visual Basic

Public Function GetDateTime() As Date

Syntax: C#

public DateTime GetDateTime();

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

23.2.4.2.3.1.11. MySqlDateTime.ToString Method

Returns a MySQL specific string representation of this value

Syntax: Visual Basic

Overrides Public Function ToString() As String

Syntax: C#

public override string ToString();

See Also

MySqlDateTime Class , MySql.Data.Types Namespace

23.2.5. Connector/NET Notes and Tips
In this section we will cover some of the more common use cases for Connector/NET, including BLOB
handling, date handling, and using Connector/NET with common tools such as Crystal Reports.

23.2.5.1. Connecting to MySQL Using Connector/NET

23.2.5.1.1. Introduction

All interaction between a .NET application and the MySQL server is routed through a MySqlConnec-

Connectors

1539

tion object. Before your application can interact with the server, a MySqlConnection object must
be instanced, configured, and opened.

Even when using the MySqlHelper class, a MySqlConnection object is created by the helper
class.

In this section, we will describe how to connect to MySQL using the MySqlConnection object.

23.2.5.1.2. Creating a Connection String

The MySqlConnection object is configured using a connection string. A connection string contains
sever key/value pairs, separated by semicolons. Each key/value pair is joined with an equals sign.

The following is a sample connection string:

Server=127.0.0.1;Uid=root;Pwd=12345;Database=test;

In this example, the MySqlConnection object is configured to connect to a MySQL server at
127.0.0.1, with a username of root and a password of 12345. The default database for all state-
ments will be the test database.

The following options are typically used (a full list of options is available in the API documentation for
Section 23.2.3.3.15, “ConnectionString”):

• Server: The name or network address of the instance of MySQL to which to connect. The default
is localhost. Aliases include host, Data Source, DataSource, Address, Addr and
Network Address.

• Uid: The MySQL user account to use when connecting. Aliases include User Id, Username and
User name.

• Pwd: The password for the MySQL account being used. Alias Password can also be used.

• Database: The default database that all statements are applied to. Default is mysql. Alias Ini-
tial Catalog can also be used.

• Port: The port MySQL is using to listen for connections. Default is 3306. Specify -1 for this
value to use a named-pipe connection.

23.2.5.1.3. Opening a Connection

Once you have created a connection string it can be used to open a connection to the MySQL server.

The following code is used to create a MySqlConnection object, assign the connection string, and
open the connection.

Visual Basic Example

Dim conn As New MySql.Data.MySqlClient.MySqlConnection
Dim myConnectionString as String

myConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test;"

Try
conn.ConnectionString = myConnectionString
conn.Open()

Connectors

1540

Catch ex As MySql.Data.MySqlClient.MySqlException
MessageBox.Show(ex.Message)

End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
string myConnectionString;

myConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

conn = new MySql.Data.MySqlClient.MySqlConnection();
conn.ConnectionString = myConnectionString;
conn.Open();

}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show(ex.Message);
}

You can also pass the connection string to the constructor of the MySqlConnection class:

Visual Basic Example

Dim myConnectionString as String

myConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test;"

Try
Dim conn As New MySql.Data.MySqlClient.MySqlConnection(myConnectionString)
conn.Open()

Catch ex As MySql.Data.MySqlClient.MySqlException
MessageBox.Show(ex.Message)

End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
string myConnectionString;

myConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

conn = new MySql.Data.MySqlClient.MySqlConnection(myConnectionString);
conn.Open();

}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show(ex.Message);
}

Once the connection is open it can be used by the other Connector/NET classes to communicate with the
MySQL server.

23.2.5.1.4. Handling Connection Errors

Because connecting to an external server is unpredictable, it is important to add error handling to your
.NET application. When there is an error connecting, the MySqlConnection class will return a
MySqlException object. This object has two properties that are of interest when handling errors:

Connectors

1541

• Message: A message that describes the current exception.

• Number: The MySQL error number.

When handling errors, you can your application's response based on the error number. The two most
common error numbers when connecting are as follows:

• 0: Cannot connect to server.

• 1045: Invalid username and/or password.

The following code shows how to adapt the application's response based on the actual error:

Visual Basic Example

Dim myConnectionString as String

myConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test;"

Try
Dim conn As New MySql.Data.MySqlClient.MySqlConnection(myConnectionString)
conn.Open()

Catch ex As MySql.Data.MySqlClient.MySqlException
Select Case ex.Number

Case 0
MessageBox.Show("Cannot connect to server. Contact administrator")

Case 1045
MessageBox.Show("Invalid username/password, please try again")

End Select
End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
string myConnectionString;

myConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

conn = new MySql.Data.MySqlClient.MySqlConnection(myConnectionString);
conn.Open();

}
catch (MySql.Data.MySqlClient.MySqlException ex)

{
switch (ex.Number)
{

case 0:
MessageBox.Show("Cannot connect to server. Contact administrator");

case 1045:
MessageBox.Show("Invalid username/password, please try again");

}
}

Important: Note that if you are using multilanguage databases you must specify the character set in the
connection string. If you do not specify the character set, the connection defaults to the latin1 charset.
You can specify the character set as part of the connection string, for example:

MySqlConnection myConnection = new MySqlConnection("server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;Charset=latin1;");

Connectors

1542

23.2.5.2. Using the Connector/NET with Prepared Statements

23.2.5.2.1. Introduction

As of MySQL 4.1, it is possible to use prepared statements with Connector/NET. Use of prepared state-
ments can provide significant performance improvements on queries that are executed more than once.

Prepared execution is faster than direct execution for statements executed more than once, primarily be-
cause the query is parsed only once. In the case of direct execution, the query is parsed every time it is
executed. Prepared execution also can provide a reduction of network traffic because for each execution
of the prepared statement, it is necessary only to send the data for the parameters.

Another advantage of prepared statements is that it uses a binary protocol that makes data transfer
between client and server more efficient.

23.2.5.2.2. Preparing Statements in Connector/NET

To prepare a statement, create a command object and set the .CommandText property to your query.

After entering your statement, call the .Prepare method of the MySqlCommand object. After the
statement is prepared, add parameters for each of the dynamic elements in the query.

After you enter your query and enter parameters, execute the statement using the
.ExecuteNonQuery(), .ExecuteScalar(), or .ExecuteReader methods.

For subsequent executions, you need only modify the values of the parameters and call the execute
method again, there is no need to set the .CommandText property or redefine the parameters.

Visual Basic Example

Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand

conn.ConnectionString = strConnection

Try
conn.Open()
cmd.Connection = conn

cmd.CommandText = "INSERT INTO myTable VALUES(NULL, ?number, ?text)"
cmd.Prepare()

cmd.Parameters.Add("?number", 1)
cmd.Parameters.Add("?text", "One")

For i = 1 To 1000
cmd.Parameters["?number"].Value = i
cmd.Parameters["?text"].Value = "A string value"

cmd.ExecuteNonQuery()
Next

Catch ex As MySqlException
MessageBox.Show("Error " & ex.Number & " has occurred: " & ex.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();

conn.ConnectionString = strConnection;

try

Connectors

1543

{
conn.Open();
cmd.Connection = conn;

cmd.CommandText = "INSERT INTO myTable VALUES(NULL, ?number, ?text)";
cmd.Prepare();

cmd.Parameters.Add("?number", 1);
cmd.Parameters.Add("?text", "One");

for (int i=1; i <= 1000; i++)
{

cmd.Parameters["?number"].Value = i;
cmd.Parameters["?text"].Value = "A string value";

cmd.ExecuteNonQuery();
}

}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,
"Error", MessageBoxButtons.OK, MessageBoxIcon.Error);

}

23.2.5.3. Accessing Stored Procedures with Connector/NET

23.2.5.3.1. Introduction

With the release of MySQL version 5 the MySQL server now supports stored procedures with the SQL
2003 stored procedure syntax.

A stored procedure is a set of SQL statements that can be stored in the server. Once this has been done,
clients don't need to keep reissuing the individual statements but can refer to the stored procedure in-
stead.

Stored procedures can be particularly useful in situations such as the following:

• When multiple client applications are written in different languages or work on different platforms,
but need to perform the same database operations.

• When security is paramount. Banks, for example, use stored procedures for all common operations.
This provides a consistent and secure environment, and procedures can ensure that each operation is
properly logged. In such a setup, applications and users would not get any access to the database
tables directly, but can only execute specific stored procedures.

Connector/NET supports the calling of stored procedures through the MySqlCommand object. Data can
be passed in and our of a MySQL stored procedure through use of the MySqlCommand.Parameters
collection.

Note: When you call a stored procedure, the command object makes an additional SELECT call to de-
termine the parameters of the stored procedure. You must ensure that the user calling the procedure has
the SELECT privilege on the mysql.proc table to enable them to verify the parameters. Failure to do
this will result in an error when calling the procedure.

This section will not provide in-depth information on creating Stored Procedures. For such information,
please refer to http://dev.mysql.com/doc/mysql/en/stored-procedures.html.

A sample application demonstrating how to use stored procedures with Connector/NET can be found in
the Samples directory of your Connector/NET installation.

23.2.5.3.2. Creating Stored Procedures from Connector/NET

Connectors

1544

http://dev.mysql.com/doc/mysql/en/stored-procedures.html

Stored procedures in MySQL can be created using a variety of tools. First, stored procedures can be cre-
ated using the mysql command-line client. Second, stored procedures can be created using the MySQL
Query Browser GUI client. Finally, stored procedures can be created using the
.ExecuteNonQuery method of the MySqlCommand object:

Visual Basic Example

Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand

conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test"

Try
conn.Open()
cmd.Connection = conn

cmd.CommandText = "CREATE PROCEDURE add_emp(" _
& "IN fname VARCHAR(20), IN lname VARCHAR(20), IN bday DATETIME, OUT empno INT) " _
& "BEGIN INSERT INTO emp(first_name, last_name, birthdate) " _
& "VALUES(fname, lname, DATE(bday)); SET empno = LAST_INSERT_ID(); END"

cmd.ExecuteNonQuery()
Catch ex As MySqlException

MessageBox.Show("Error " & ex.Number & " has occurred: " & ex.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();

conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

conn.Open();
cmd.Connection = conn;

cmd.CommandText = "CREATE PROCEDURE add_emp(" +
"IN fname VARCHAR(20), IN lname VARCHAR(20), IN bday DATETIME, OUT empno INT) " +
"BEGIN INSERT INTO emp(first_name, last_name, birthdate) " +
"VALUES(fname, lname, DATE(bday)); SET empno = LAST_INSERT_ID(); END";

cmd.ExecuteNonQuery();
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{
MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,

"Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
}

It should be noted that, unlike the command-line and GUI clients, you are not required to specify a spe-
cial delimiter when creating stored procedures in Connector/NET.

23.2.5.3.3. Calling a Stored Procedure from Connector/NET

To call a stored procedure using Connector/NET, create a MySqlCommand object and pass the stored
procedure name as the .CommandText property. Set the .CommandType property to Command-
Type.StoredProcedure.

After the stored procedure is named, create one MySqlCommand parameter for every parameter in the
stored procedure. IN parameters are defined with the parameter name and the object containing the
value, OUT parameters are defined with the parameter name and the datatype that is expected to be re-

Connectors

1545

turned. All parameters need the parameter direction defined.

After defining parameters, call the stored procedure by using the MySqlCom-
mand.ExecuteNonQuery() method:

Visual Basic Example

Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand

conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test"

Try
conn.Open()
cmd.Connection = conn

cmd.CommandText = "add_emp"
cmd.CommandType = CommandType.StoredProcedure

cmd.Parameters.Add("?lname", 'Jones')
cmd.Parameters["?lname"].Direction = ParameterDirection.Input

cmd.Parameters.Add("?fname", 'Tom')
cmd.Parameters["?fname"].Direction = ParameterDirection.Input

cmd.Parameters.Add("?bday", #12/13/1977 2:17:36 PM#)
cmd.Parameters["?bday"].Direction = ParameterDirection.Input

cmd.Parameters.Add("?empno", MySqlDbType.Int32)
cmd.Parameters["?empno"].Direction = ParameterDirection.Output

cmd.ExecuteNonQuery()

MessageBox.Show(cmd.Parameters["?empno"].Value)
Catch ex As MySqlException

MessageBox.Show("Error " & ex.Number & " has occurred: " & ex.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();

conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

conn.Open();
cmd.Connection = conn;

cmd.CommandText = "add_emp";
cmd.CommandType = CommandType.StoredProcedure;

cmd.Parameters.Add("?lname", "Jones");
cmd.Parameters["?lname"].Direction = ParameterDirection.Input;

cmd.Parameters.Add("?fname", "Tom");
cmd.Parameters["?fname"].Direction = ParameterDirection.Input;

cmd.Parameters.Add("?bday", DateTime.Parse("12/13/1977 2:17:36 PM"));
cmd.Parameters["?bday"].Direction = ParameterDirection.Input;

cmd.Parameters.Add("?empno", MySqlDbType.Int32);
cmd.Parameters["?empno"].Direction = ParameterDirection.Output;

cmd.ExecuteNonQuery();

MessageBox.Show(cmd.Parameters["?empno"].Value);
}
catch (MySql.Data.MySqlClient.MySqlException ex)

Connectors

1546

{
MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,

"Error", MessageBoxButtons.OK, MessageBoxIcon.Error);
}

Once the stored procedure is called, the values of output parameters can be retrieved by using the
.Value property of the MySqlConnector.Parameters collection.

23.2.5.4. Handling BLOB Data With Connector/NET

23.2.5.4.1. Introduction

One common use for MySQL is the storage of binary data in BLOB columns. MySQL supports four dif-
ferent BLOB datatypes: TINYBLOB, BLOB, MEDIUMBLOB, and LONGBLOB.

Data stored in a BLOB column can be accessed using Connector/NET and manipulated using client-side
code. There are no special requirements for using Connector/NET with BLOB data.

Simple code examples will be presented within this section, and a full sample application can be found
in the Samples directory of the Connector/NET installation.

23.2.5.4.2. Preparing the MySQL Server

The first step is using MySQL with BLOB data is to configure the server. Let's start by creating a table
to be accessed. In my file tables, I usually have four columns: an AUTO_INCREMENT column of ap-
propriate size (UNSIGNED SMALLINT) to serve as a primary key to identify the file, a VARCHAR
column that stores the filename, an UNSIGNED MEDIUMINT column that stores the size of the file,
and a MEDIUMBLOB column that stores the file itself. For this example, I will use the following table
definition:

CREATE TABLE file(
file_id SMALLINT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
file_name VARCHAR(64) NOT NULL,
file_size MEDIUMINT UNSIGNED NOT NULL,
file MEDIUMBLOB NOT NULL);

After creating a table, you may need to modify the max_allowed_packet system variable. This variable
determines how large of a packet (i.e. a single row) can be sent to the MySQL server. By default, the
server will only accept a maximum size of 1 meg from our client application. If you do not intend to ex-
ceed 1 meg, this should be fine. If you do intend to exceed 1 meg in your file transfers, this number has
to be increased.

The max_allowed_packet option can be modified using MySQL Administrator's Startup Variables
screen. Adjust the Maximum allowed option in the Memory section of the Networking tab to an appro-
priate setting. After adjusting the value, click the Apply Changes button and restart the server using
the Service Control screen of MySQL Administrator. You can also adjust this value directly in
the my.cnf file (add a line that reads max_allowed_packet=xxM), or use the SET
max_allowed_packet=xxM; syntax from within MySQL.

Try to be conservative when setting max_allowed_packet, as transfers of BLOB data can take some time
to complete. Try to set a value that will be adequate for your intended use and increase the value if ne-
cessary.

23.2.5.4.3. Writing a File to the Database

To write a file to a database we need to convert the file to a byte array, then use the byte array as a para-
meter to an INSERT query.

The following code opens a file using a FileStream object, reads it into a byte array, and inserts it into

Connectors

1547

the file table:

Visual Basic Example

Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand

Dim SQL As String

Dim FileSize As UInt32
Dim rawData() As Byte
Dim fs As FileStream

conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test"

Try
fs = New FileStream("c:\image.png", FileMode.Open, FileAccess.Read)
FileSize = fs.Length

rawData = New Byte(FileSize) {}
fs.Read(rawData, 0, FileSize)
fs.Close()

conn.Open()

SQL = "INSERT INTO file VALUES(NULL, ?FileName, ?FileSize, ?File)"

cmd.Connection = conn
cmd.CommandText = SQL
cmd.Parameters.Add("?FileName", strFileName)
cmd.Parameters.Add("?FileSize", FileSize)
cmd.Parameters.Add("?File", rawData)

cmd.ExecuteNonQuery()

MessageBox.Show("File Inserted into database successfully!", _
"Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk)

conn.Close()
Catch ex As Exception

MessageBox.Show("There was an error: " & ex.Message, "Error", _
MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();

string SQL;
UInt32 FileSize;
byte[] rawData;
FileStream fs;

conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

fs = new FileStream(@"c:\image.png", FileMode.Open, FileAccess.Read);
FileSize = fs.Length;

rawData = new byte[FileSize];
fs.Read(rawData, 0, FileSize);
fs.Close();

conn.Open();

SQL = "INSERT INTO file VALUES(NULL, ?FileName, ?FileSize, ?File)";

Connectors

1548

cmd.Connection = conn;
cmd.CommandText = SQL;
cmd.Parameters.Add("?FileName", strFileName);
cmd.Parameters.Add("?FileSize", FileSize);
cmd.Parameters.Add("?File", rawData);

cmd.ExecuteNonQuery();

MessageBox.Show("File Inserted into database successfully!",
"Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);

conn.Close();
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,
"Error", MessageBoxButtons.OK, MessageBoxIcon.Error);

}

The Read method of the FileStream object is used to load the file into a byte array which is sized
according to the Length property of the FileStream object.

After assigning the byte array as a parameter of the MySqlCommand object, the ExecuteNonQuery
method is called and the BLOB is inserted into the file table.

23.2.5.4.4. Reading a BLOB from the Database to a File on Disk

Once a file is loaded into the file table, we can use the MySqlDataReader class to retrieve it.

The following code retrieves a row from the file table, then loads the data into a FileStream object
to be written to disk:

Visual Basic Example

Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myData As MySqlDataReader
Dim SQL As String
Dim rawData() As Byte
Dim FileSize As UInt32
Dim fs As FileStream

conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test"

SQL = "SELECT file_name, file_size, file FROM file"

Try
conn.Open()

cmd.Connection = conn
cmd.CommandText = SQL

myData = cmd.ExecuteReader

If Not myData.HasRows Then Throw New Exception("There are no BLOBs to save")

myData.Read()

FileSize = myData.GetUInt32(myData.GetOrdinal("file_size"))
rawData = New Byte(FileSize) {}

myData.GetBytes(myData.GetOrdinal("file"), 0, rawData, 0, FileSize)

fs = New FileStream("C:\newfile.png", FileMode.OpenOrCreate, FileAccess.Write)
fs.Write(rawData, 0, FileSize)
fs.Close()

MessageBox.Show("File successfully written to disk!", "Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk)

myData.Close()

Connectors

1549

conn.Close()
Catch ex As Exception

MessageBox.Show("There was an error: " & ex.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

C# Example

MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataReader myData;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();

string SQL;
UInt32 FileSize;
byte[] rawData;
FileStream fs;

conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

SQL = "SELECT file_name, file_size, file FROM file";

try
{

conn.Open();

cmd.Connection = conn;
cmd.CommandText = SQL;

myData = cmd.ExecuteReader();

if (! myData.HasRows)
throw new Exception("There are no BLOBs to save");

myData.Read();

FileSize = myData.GetUInt32(myData.GetOrdinal("file_size"));
rawData = new byte[FileSize];

myData.GetBytes(myData.GetOrdinal("file"), 0, rawData, 0, FileSize);

fs = new FileStream(@"C:\newfile.png", FileMode.OpenOrCreate, FileAccess.Write);
fs.Write(rawData, 0, FileSize);
fs.Close();

MessageBox.Show("File successfully written to disk!",
"Success!", MessageBoxButtons.OK, MessageBoxIcon.Asterisk);

myData.Close();
conn.Close();

}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show("Error " + ex.Number + " has occurred: " + ex.Message,
"Error", MessageBoxButtons.OK, MessageBoxIcon.Error);

}

After connecting, the contents of the file table are loaded into a MySqlDataReader object. The
GetBytes method of the MySqlDataReader is used to load the BLOB into a byte array, which is then
written to disk using a FileStream object.

The GetOrdinal method of the MySqlDataReader can be used to determine the integer index of a
named column. Use of the GetOrdinal method prevents errors if the column order of the SELECT query
is changed.

23.2.5.5. Using Connector/NET with Crystal Reports

23.2.5.5.1. Introduction

Connectors

1550

Crystal Reports is a common tool used by Windows application developers to perform reporting and
document generation. In this section we will show how to use Crystal Reports XI with MySQL and Con-
nector/NET.

23.2.5.5.2. Creating a Data Source

When creating a report in Crystal Reports there are two options for accessing the MySQL data while
designing your report.

The first option is to use Connector/ODBC as an ADO data source when designing your report. You will
be able to browse your database and choose tables and fields using drag and drop to build your report.
The disadvantage of this approach is that additional work must be performed within your application to
produce a dataset that matches the one expected by your report.

The second option is to create a dataset in VB.NET and save it as XML. This XML file can then be used
to design a report. This works quite well when displaying the report in your application, but is less ver-
satile at design time because you must choose all relevant columns when creating the dataset. If you for-
get a column you must re-create the dataset before the column can be added to the report.

The following code can be used to create a dataset from a query and write it to disk:

Visual Basic Example

Dim myData As New DataSet
Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myAdapter As New MySqlDataAdapter

conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=world"

Try
conn.Open()
cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " _

& "country.name, country.population, country.continent " _
& "FROM country, city ORDER BY country.continent, country.name"

cmd.Connection = conn

myAdapter.SelectCommand = cmd
myAdapter.Fill(myData)

myData.WriteXml("C:\dataset.xml", XmlWriteMode.WriteSchema)
Catch ex As Exception

MessageBox.Show(ex.Message, "Report could not be created", MessageBoxButtons.OK, MessageBoxIcon.Error)
End Try

C# Example

DataSet myData = new DataSet();
MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataAdapter myAdapter;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
myAdapter = new MySql.Data.MySqlClient.MySqlDataAdapter();

conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " +
"country.name, country.population, country.continent " +
"FROM country, city ORDER BY country.continent, country.name";
cmd.Connection = conn;

Connectors

1551

myAdapter.SelectCommand = cmd;
myAdapter.Fill(myData);

myData.WriteXml(@"C:\dataset.xml", XmlWriteMode.WriteSchema);
}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show(ex.Message, "Report could not be created",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}

The resulting XML file can be used as an ADO.NET XML datasource when designing your report.

If you choose to design your reports using Connector/ODBC, it can be downloaded from dev.mysql.com
[http://dev.mysql.com/downloads/connector/odbc/3.51.html].

23.2.5.5.3. Creating the Report

For most purposes the Standard Report wizard should help with the initial creation of a report. To start
the wizard, open Crystal Reports and choose the New > Standard Report option from the File menu.

The wizard will first prompt you for a data source. If you are using Connector/ODBC as your data
source, use the OLEDB provider for ODBC option from the OLE DB (ADO) tree instead of the ODBC
(RDO) tree when choosing a data source. If using a saved dataset, choose the ADO.NET (XML) option
and browse to your saved dataset.

The remainder of the report creation process is done automatically by the wizard.

After the report is created, choose the Report Options... entry of the File menu. Un-check the Save Data
With Report option. This prevents saved data from interfering with the loading of data within our applic-
ation.

23.2.5.5.4. Displaying the Report

To display a report we first populate a dataset with the data needed for the report, then load the report
and bind it to the dataset. Finally we pass the report to the crViewer control for display to the user.

The following references are needed in a project that displays a report:

• CrytalDecisions.CrystalReports.Engine

• CrystalDecisions.ReportSource

• CrystalDecisions.Shared

• CrystalDecisions.Windows.Forms

The following code assumes that you created your report using a dataset saved using the code shown in
Section 23.2.5.5.2, “Creating a Data Source”, and have a crViewer control on your form named
myViewer.

Visual Basic Example

Imports CrystalDecisions.CrystalReports.Engine
Imports System.Data
Imports MySql.Data.MySqlClient

Dim myReport As New ReportDocument
Dim myData As New DataSet
Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand

Connectors

1552

http://dev.mysql.com/downloads/connector/odbc/3.51.html

Dim myAdapter As New MySqlDataAdapter

conn.ConnectionString = _
"server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=test"

Try
conn.Open()

cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " _
& "country.name, country.population, country.continent " _
& "FROM country, city ORDER BY country.continent, country.name"

cmd.Connection = conn

myAdapter.SelectCommand = cmd
myAdapter.Fill(myData)

myReport.Load(".\world_report.rpt")
myReport.SetDataSource(myData)
myViewer.ReportSource = myReport

Catch ex As Exception
MessageBox.Show(ex.Message, "Report could not be created", MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try

C# Example

using CrystalDecisions.CrystalReports.Engine;
using System.Data;
using MySql.Data.MySqlClient;

ReportDocument myReport = new ReportDocument();
DataSet myData = new DataSet();
MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataAdapter myAdapter;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
myAdapter = new MySql.Data.MySqlClient.MySqlDataAdapter();

conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

cmd.CommandText = "SELECT city.name AS cityName, city.population AS CityPopulation, " +
"country.name, country.population, country.continent " +
"FROM country, city ORDER BY country.continent, country.name";

cmd.Connection = conn;

myAdapter.SelectCommand = cmd;
myAdapter.Fill(myData);

myReport.Load(@".\world_report.rpt");
myReport.SetDataSource(myData);
myViewer.ReportSource = myReport;

}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show(ex.Message, "Report could not be created",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}

A new dataset it generated using the same query used to generate the previously saved dataset. Once the
dataset is filled, a ReportDocument is used to load the report file and bind it to the dataset. The Re-
portDocument is the passed as the ReportSource of the crViewer.

This same approach is taken when a report is created from a single table using Connector/ODBC. The
dataset replaces the table used in the report and the report is displayed properly.

When a report is created from multiple tables using Connector/ODBC, a dataset with multiple tables
must be created in our application. This allows each table in the report data source to be replaced with a

Connectors

1553

report in the dataset.

We populate a dataset with multiple tables by providing multiple SELECT statements in our MySql-
Command object. These SELECT statements are based on the SQL query shown in Crystal Reports in
the Database menu's Show SQL Query option. Assume the following query:

SELECT `country`.`Name`, `country`.`Continent`, `country`.`Population`, `city`.`Name`, `city`.`Population`
FROM `world`.`country` `country` LEFT OUTER JOIN `world`.`city` `city` ON `country`.`Code`=`city`.`CountryCode`
ORDER BY `country`.`Continent`, `country`.`Name`, `city`.`Name`

This query is converted to two SELECT queries and displayed with the following code:

Visual Basic Example

Imports CrystalDecisions.CrystalReports.Engine
Imports System.Data
Imports MySql.Data.MySqlClient

Dim myReport As New ReportDocument
Dim myData As New DataSet
Dim conn As New MySqlConnection
Dim cmd As New MySqlCommand
Dim myAdapter As New MySqlDataAdapter

conn.ConnectionString = "server=127.0.0.1;" _
& "uid=root;" _
& "pwd=12345;" _
& "database=world"

Try
conn.Open()
cmd.CommandText = "SELECT name, population, countrycode FROM city ORDER BY countrycode, name; " _

& "SELECT name, population, code, continent FROM country ORDER BY continent, name"
cmd.Connection = conn

myAdapter.SelectCommand = cmd
myAdapter.Fill(myData)

myReport.Load(".\world_report.rpt")
myReport.Database.Tables(0).SetDataSource(myData.Tables(0))
myReport.Database.Tables(1).SetDataSource(myData.Tables(1))
myViewer.ReportSource = myReport

Catch ex As Exception
MessageBox.Show(ex.Message, "Report could not be created", MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try

C# Example

using CrystalDecisions.CrystalReports.Engine;
using System.Data;
using MySql.Data.MySqlClient;

ReportDocument myReport = new ReportDocument();
DataSet myData = new DataSet();
MySql.Data.MySqlClient.MySqlConnection conn;
MySql.Data.MySqlClient.MySqlCommand cmd;
MySql.Data.MySqlClient.MySqlDataAdapter myAdapter;

conn = new MySql.Data.MySqlClient.MySqlConnection();
cmd = new MySql.Data.MySqlClient.MySqlCommand();
myAdapter = new MySql.Data.MySqlClient.MySqlDataAdapter();

conn.ConnectionString = "server=127.0.0.1;uid=root;" +
"pwd=12345;database=test;";

try
{

cmd.CommandText = "SELECT name, population, countrycode FROM city ORDER " +
"BY countrycode, name; SELECT name, population, code, continent FROM " +
"country ORDER BY continent, name";

cmd.Connection = conn;

myAdapter.SelectCommand = cmd;
myAdapter.Fill(myData);

Connectors

1554

myReport.Load(@".\world_report.rpt");
myReport.Database.Tables(0).SetDataSource(myData.Tables(0));
myReport.Database.Tables(1).SetDataSource(myData.Tables(1));
myViewer.ReportSource = myReport;

}
catch (MySql.Data.MySqlClient.MySqlException ex)
{

MessageBox.Show(ex.Message, "Report could not be created",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}

It is important to order the SELECT queries in alphabetical order, as this is the order the report will ex-
pect its source tables to be in. One SetDataSource statement is needed for each table in the report.

This approach can cause performance problems because Crystal Reports must bind the tables together
on the client-side, which will be slower than using a pre-saved dataset.

23.2.5.6. Handling Date and Time Information in Connector/NET

23.2.5.6.1. Introduction

MySQL and the .NET languages handle date and time information differently, with MySQL allowing
dates that cannot be represented by a .NET data type, such as '0000-00-00 00:00:00'. These dif-
ferences can cause problems if not properly handled.

In this section we will demonstrate how to properly handle date and time information when using Con-
nector/NET.

23.2.5.6.2. Problems when Using Invalid Dates

The differences in date handling can cause problems for developers who use invalid dates. Invalid
MySQL dates cannot be loaded into native .NET DateTime objects, including NULL dates.

Because of this issue, .NET DataSet objects cannot be populated by the Fill method of the
MySqlDataAdapter class as invalid dates will cause a Sys-
tem.ArgumentOutOfRangeException exception to occur.

23.2.5.6.3. Restricting Invalid Dates

The best solution to the date problem is to restrict users from entering invalid dates. This can be done on
either the client or the server side.

Restricting invalid dates on the client side is as simple as always using the .NET DateTime class to
handle dates. The DateTime class will only allow valid dates, ensuring that the values in your database
are also valid. The disadvantage of this is that it is not useful in a mixed environment where .NET and
non .NET code are used to manipulate the database, as each application must perform its own date valid-
ation.

Users of MySQL 5.0.2 and higher can use the new traditional SQL mode to restrict invalid date
values. For information on using the traditional SQL mode, see Section 5.2.6, “SQL Modes”.

23.2.5.6.4. Handling Invalid Dates

Although it is strongly recommended that you avoid the use of invalid dates within your .NET applica-
tion, it is possible to use invalid dates by means of the MySqlDateTime datatype.

The MySqlDateTime datatype supports the same date values that are supported by the MySQL server.
The default behavior of Connector/NET is to return a .NET DateTime object for valid date values, and
return an error for invalid dates. This default can be modified to cause Connector/NET to return

Connectors

1555

MySqlDateTime objects for invalid dates.

To instruct Connector/NET to return a MySqlDateTime object for invalid dates, add the following
line to your connection string:

Allow Zero Datetime=True

Please note that the use of the MySqlDateTime class can still be problematic. The following are some
known issues:

1. Data binding for invalid dates can still cause errors (zero dates like 0000-00-00 do not seem to have
this problem).

2. The ToString method return a date formatted in the standard MySQL format (for example,
2005-02-23 08:50:25). This differs from the ToString behavior of the .NET DateTime
class.

3. The MySqlDateTime class supports NULL dates, while the .NET DateTime class does not. This
can cause errors when trying to convert a MySQLDateTime to a DateTime if you do not check for
NULL first.

Because of the known issues, the best recommendation is still to use only valid dates in your application.

23.2.5.6.5. Handling NULL Dates

The .NET DateTime datatype cannot handle NULL values. As such, when assigning values from a
query to a DateTime variable, you must first check whether the value is in fact NULL.

When using a MySqlDataReader, use the .IsDBNull method to check whether a value is NULL
before making the assignment:

Visual Basic Example

If Not myReader.IsDBNull(myReader.GetOrdinal("mytime")) Then
myTime = myReader.GetDateTime(myReader.GetOrdinal("mytime"))

Else
myTime = DateTime.MinValue

End If

C# Example

if (! myReader.IsDBNull(myReader.GetOrdinal("mytime")))
myTime = myReader.GetDateTime(myReader.GetOrdinal("mytime"));

else
myTime = DateTime.MinValue;

NULL values will work in a dataset and can be bound to form controls without special handling.

23.2.6. Connector/NET Support
The developers of Connector/NET greatly value the input of our users in the software development pro-
cess. If you find Connector/NET lacking some feature important to you, or if you discover a bug and
need to file a bug report, please use the instructions in Section 1.8, “How to Report Bugs or Problems”.

23.2.6.1. Connector/NET Community Support

Connectors

1556

• Community support for Connector/NET can be found through the forums at ht-
tp://forums.mysql.com.

• Community support for Connector/NET can also be found through the mailing lists at ht-
tp://lists.mysql.com.

• Paid support is available from MySQL AB. Additional information is available at ht-
tp://www.mysql.com/support/.

23.2.6.2. How to report Connector/NET Problems or Bugs

If you encounter difficulties or problems with Connector/NET, contact the Connector/NET community
Section 23.2.6.1, “Connector/NET Community Support”.

You should first try to execute the same SQL statements and commands from the mysql client program
or from admndemo. This helps you determine whether the error is in Connector/NET or MySQL.

If reporting a problem, you should ideally include the following information with the email:

• Operating system and version

• Connector/NET version

• MySQL server version

• Copies of error messages or other unexpected output

• Simple reproducible sample

Remember that the more information you can supply to us, the more likely it is that we can fix the prob-
lem.

If you believe the problem to be a bug, then you must report the bug through http://bugs.mysql.com/.

23.2.6.3. Connector/NET Change History

The Connector/NET Change History (Changelog) is located with the main Changelog for MySQL. See
Section D.4, “MySQL Connector/NET Change History”.

23.3. MySQL Connector/J
MySQL provides connectivity for client applications developed in the Java programming language via a
JDBC driver, which is called MySQL Connector/J.

MySQL Connector/J is a JDBC-3.0 Type 4 driver, which means that is pure Java, implements version
3.0 of the JDBC specification, and communicates directly with the MySQL server using the MySQL
protocol.

Although JDBC is useful by itself, we would hope that if you are not familiar with JDBC that after read-
ing the first few sections of this manual, that you would avoid using naked JDBC for all but the most
trivial problems and consider using one of the popular persistence frameworks such as Hibernate
[http://www.hibernate.org/], Spring's JDBC templates [http://www.springframework.org/] or Ibatis SQL
Maps [http://ibatis.apache.org/] to do the majority of repetitive work and heavier lifting that is some-
times required with JDBC.

Connectors

1557

http://forums.mysql.com
http://forums.mysql.com
http://lists.mysql.com
http://lists.mysql.com
http://www.mysql.com/support/
http://www.mysql.com/support/
http://bugs.mysql.com/
http://www.hibernate.org/
http://www.springframework.org/
http://ibatis.apache.org/
http://ibatis.apache.org/

This section is not designed to be a complete JDBC tutorial. If you need more information about using
JDBC you might be interested in the following online tutorials that are more in-depth than the informa-
tion presented here:

• JDBC Basics [http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html] — A tutorial from
Sun covering beginner topics in JDBC

• JDBC Short Course
[http://java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/index.html] — A more
in-depth tutorial from Sun and JGuru

23.3.1. Connector/J Versions
There are currently three version of MySQL Connector/J available:

• Connector/J 3.0 provides core functionality and was designed with connectivity to MySQL 3.x or
MySQL 4.1 servers, although it will provide basic compatibility with later versions of MySQL. Con-
nector/J 3.0 does not support server-side prepared statements, and does not support any of the fea-
tures in versions of MySQL later than 4.1.

• Connector/J 3.1 was designed for connectivity to MySQL 4.1 and MySQL 5.0 servers and provides
support for all the functionality in MySQL 5.0 except distributed transaction (XA) support.

• Connector/J 5.0 provides support for all the functionality offered by Connector/J 3.1 and includes
distributed transaction (XA) support.

The current recommended version for Connector/J is 5.0. This guide covers all three connector versions,
with specific notes given where a setting applies to a specific option.

23.3.1.1. Java Versions Supported

MySQL Connector/J supports Java-2 JVMs, including:

• JDK 1.2.x

• JDK 1.3.x

• JDK 1.4.x

• JDK 1.5.x

If you are building Connector/J from source using the source distribution (see Section 23.3.2.4,
“Installing from the Development Source Tree”) then you must use JDK 1.4.x or newer to compiler the
Connector package.

MySQL Connector/J does not support JDK-1.1.x or JDK-1.0.x

Because of the implementation of java.sql.Savepoint, Connector/J 3.1.0 and newer will not run
on JDKs older than 1.4 unless the class verifier is turned off (by setting the -Xverify:none option to
the Java runtime). This is because the class verifier will try to load the class definition for
java.sql.Savepoint even though it is not accessed by the driver unless you actually use savepoint
functionality.

Connectors

1558

http://java.sun.com/docs/books/tutorial/jdbc/basics/index.html
http://java.sun.com/developer/onlineTraining/Database/JDBCShortCourse/index.html

Caching functionality provided by Connector/J 3.1.0 or newer is also not available on JVMs older than
1.4.x, as it relies on java.util.LinkedHashMap which was first available in JDK-1.4.0.

23.3.2. Installing Connector/J
You can install the Connector/J package using two methods, using either the binary or source distribu-
tion. The binary distribution provides the easiest methods for installation; the source distribution enables
you to customize your installation further. With with either solution, you must

23.3.2.1. Installing Connector/J from a Binary Distribution

The easiest method of installation is to use the binary distribution of the Connector/J package. The bin-
ary distribution is available either as a Tar/Gzip or Zip file which you must extract to a suitable location
and then optionally make the information about the package available by changing your CLASSPATH
(see Section 23.3.2.2, “Installing the Driver and Configuring the CLASSPATH”).

MySQL Connector/J is distributed as a .zip or .tar.gz archive containing the sources, the class files, and
the JAR archive named mysql-connector-java-[version]-bin.jar, and starting with Con-
nector/J 3.1.8 a debug build of the driver in a file named mysql-connector-java-[version]-
bin-g.jar.

Starting with Connector/J 3.1.9, the .class files that constitute the JAR files are only included as part
of the driver JAR file.

You should not use the debug build of the driver unless instructed to do so when reporting a problem ors
bug to MySQL AB, as it is not designed to be run in production environments, and will have adverse
performance impact when used. The debug binary also depends on the Aspect/J runtime library, which
is located in the src/lib/aspectjrt.jar file that comes with the Connector/J distribution.

You will need to use the appropriate graphical or command-line utility to un-archive the distribution (for
example, WinZip for the .zip archive, and tar for the .tar.gz archive). Because there are potentially
long filenames in the distribution, we use the GNU tar archive format. You will need to use GNU tar (or
an application that understands the GNU tar archive format) to unpack the .tar.gz variant of the distribu-
tion.

23.3.2.2. Installing the Driver and Configuring the CLASSPATH

Once you have extracted the distribution archive, you can install the driver by placing mysql-
connector-java-[version]-bin.jar in your classpath, either by adding the full path to it to
your CLASSPATH environment variable, or by directly specifying it with the command line switch -cp
when starting your JVM.

If you are going to use the driver with the JDBC DriverManager, you would use
com.mysql.jdbc.Driver as the class that implements java.sql.Driver.

You can set the CLASSPATH environment variableunder UNIX, Linux or Mac OS X either locally for a
user within their .profile, .login or other login file. You can also set it globally by editing the
global /etc/profile file.

For example, under a C shell (csh, tcsh) you would add the Connector/J driver to your CLASSPATH us-
ing the following:

shell> setenv CLASSPATH /path/to/mysql-connector-java-[version]-bin.jar:$CLASSPATH

Or with a Bourne-compatible shell (sh, ksh, bash):

export set CLASSPATH=/path/to/mysql-connector-java-[version]-bin.jar:$CLASSPATH

Connectors

1559

Within Windows 2000, Windows XP and Windows Server 2003, you must set the environment variable
through the System control panel.

If you want to use MySQL Connector/J with an application server such as Tomcat or JBoss, you will
have to read your vendor's documentation for more information on how to configure third-party class
libraries, as most application servers ignore the CLASSPATH environment variable. For configuration
examples for some J2EE application servers, see Section 23.3.5.2, “Using Connector/J with J2EE and
Other Java Frameworks”. However, the authoritative source for JDBC connection pool configuration in-
formation for your particular application server is the documentation for that application server.

If you are developing servlets or JSPs, and your application server is J2EE-compliant, you can put the
driver's .jar file in the WEB-INF/lib subdirectory of your webapp, as this is a standard location for third
party class libraries in J2EE web applications.

You can also use the MysqlDataSource or MysqlConnectionPoolDataSource classes in the
com.mysql.jdbc.jdbc2.optional package, if your J2EE application server supports or re-
quires them. Starting with Connector/J 5.0.0, the javax.sql.XADataSource interface is imple-
mented via the com.mysql.jdbc.jdbc2.optional.MysqlXADataSource class, which sup-
ports XA distributed transactions when used in combination with MySQL server version 5.0.

The various MysqlDataSource classes support the following parameters (through standard set mutators):

• user

• password

• serverName (see the previous section about fail-over hosts)

• databaseName

• port

23.3.2.3. Upgrading from an Older Version

MySQL AB tries to keep the upgrade process as easy as possible, however as is the case with any soft-
ware, sometimes changes need to be made in new versions to support new features, improve existing
functionality, or comply with new standards.

This section has information about what users who are upgrading from one version of Connector/J to an-
other (or to a new version of the MySQL server, with respect to JDBC functionality) should be aware of.

23.3.2.3.1. Upgrading from MySQL Connector/J 3.0 to 3.1

Connector/J 3.1 is designed to be backward-compatible with Connector/J 3.0 as much as possible. Major
changes are isolated to new functionality exposed in MySQL-4.1 and newer, which includes Unicode
character sets, server-side prepared statements, SQLState codes returned in error messages by the server
and various performance enhancements that can be enabled or disabled via configuration properties.

• Unicode Character Sets — See the next section, as well as Chapter 10, Character Set Support, for
information on this new feature of MySQL. If you have something misconfigured, it will usually
show up as an error with a message similar to Illegal mix of collations.

• Server-side Prepared Statements — Connector/J 3.1 will automatically detect and use server-side
prepared statements when they are available (MySQL server version 4.1.0 and newer).

Starting with version 3.1.7, the driver scans SQL you are preparing via all variants of Connec-

Connectors

1560

tion.prepareStatement() to determine if it is a supported type of statement to prepare on
the server side, and if it is not supported by the server, it instead prepares it as a client-side emulated
prepared statement. You can disable this feature by passing emulateUnsupportedPstmts=false in
your JDBC URL.

If your application encounters issues with server-side prepared statements, you can revert to the
older client-side emulated prepared statement code that is still presently used for MySQL servers
older than 4.1.0 with the connection property useServerPrepStmts=false

• Datetimes with all-zero components (0000-00-00 ...) — These values can not be represented
reliably in Java. Connector/J 3.0.x always converted them to NULL when being read from a Result-
Set.

Connector/J 3.1 throws an exception by default when these values are encountered as this is the most
correct behavior according to the JDBC and SQL standards. This behavior can be modified using the
zeroDateTimeBehavior configuration property. The allowable values are:

• exception (the default), which throws an SQLException with an SQLState of S1009.

• convertToNull, which returns NULL instead of the date.

• round, which rounds the date to the nearest closest value which is 0001-01-01.

Starting with Connector/J 3.1.7, ResultSet.getString() can be decoupled from this behavior
via noDatetimeStringSync=true (the default value is false) so that you can get retrieve the un-
altered all-zero value as a String. It should be noted that this also precludes using any time zone con-
versions, therefore the driver will not allow you to enable noDatetimeStringSync and useTimezone
at the same time.

• New SQLState Codes — Connector/J 3.1 uses SQL:1999 SQLState codes returned by the MySQL
server (if supported), which are different from the legacy X/Open state codes that Connector/J 3.0
uses. If connected to a MySQL server older than MySQL-4.1.0 (the oldest version to return SQL-
States as part of the error code), the driver will use a built-in mapping. You can revert to the old
mapping by using the configuration property useSqlStateCodes=false.

• ResultSet.getString() — Calling ResultSet.getString() on a BLOB column will
now return the address of the byte[] array that represents it, instead of a String representation of the
BLOB. BLOBs have no character set, so they can't be converted to java.lang.Strings without data
loss or corruption.

To store strings in MySQL with LOB behavior, use one of the TEXT types, which the driver will
treat as a java.sql.Clob.

• Debug builds — Starting with Connector/J 3.1.8 a debug build of the driver in a file named
mysql-connector-java-[version]-bin-g.jar is shipped alongside the normal binary
jar file that is named mysql-connector-java-[version]-bin.jar.

Starting with Connector/J 3.1.9, we don't ship the .class files unbundled, they are only available in
the JAR archives that ship with the driver.

You should not use the debug build of the driver unless instructed to do so when reporting a problem
or bug to MySQL AB, as it is not designed to be run in production environments, and will have ad-
verse performance impact when used. The debug binary also depends on the Aspect/J runtime lib-
rary, which is located in the src/lib/aspectjrt.jar file that comes with the Connector/J dis-
tribution.

23.3.2.3.2. JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer

Connectors

1561

• Using the UTF-8 Character Encoding - Prior to MySQL server version 4.1, the UTF-8 character en-
coding was not supported by the server, however the JDBC driver could use it, allowing storage of
multiple character sets in latin1 tables on the server.

Starting with MySQL-4.1, this functionality is deprecated. If you have applications that rely on this
functionality, and can not upgrade them to use the official Unicode character support in MySQL
server version 4.1 or newer, you should add the following property to your connection URL:

useOldUTF8Behavior=true

• Server-side Prepared Statements - Connector/J 3.1 will automatically detect and use server-side pre-
pared statements when they are available (MySQL server version 4.1.0 and newer). If your applica-
tion encounters issues with server-side prepared statements, you can revert to the older client-side
emulated prepared statement code that is still presently used for MySQL servers older than 4.1.0
with the following connection property:

useServerPrepStmts=false

23.3.2.4. Installing from the Development Source Tree

Caution. You should read this section only if you are interested in helping us test our new code. If you
just want to get MySQL Connector/J up and running on your system, you should use a standard release
distribution.

To install MySQL Connector/J from the development source tree, make sure that you have the following
prerequisites:

• Subversion, to check out the sources from our repository (available from
http://subversion.tigris.org/).

• Apache Ant version 1.6 or newer (available from http://ant.apache.org/).

• JDK-1.4.2 or later. Although MySQL Connector/J can be installed on older JDKs, to compile it from
source you must have at least JDK-1.4.2.

The Subversion source code repository for MySQL Connector/J is located at ht-
tp://svn.mysql.com/svnpublic/connector-j. In general, you should not check out the entire repository be-
cause it contains every branch and tag for MySQL Connector/J and is quite large.

To check out and compile a specific branch of MySQL Connector/J, follow these steps:

1. At the time of this writing, there are three active branches of Connector/J: branch_3_0,
branch_3_1 and branch_5_0. Check out the latest code from the branch that you want with
the following command (replacing [major] and [minor] with appropriate version numbers):

shell> svn co »
http://svn.mysql.com/svnpublic/connector-j/branches/branch_[major]_[minor]/connector-j

This creates a connector-j subdirectory in the current directory that contains the latest sources
for the requested branch.

2. Change location to the connector-j directory to make it your current working directory:

shell> cd connector-j

Connectors

1562

http://subversion.tigris.org/
http://ant.apache.org/
http://svn.mysql.com/svnpublic/connector-j
http://svn.mysql.com/svnpublic/connector-j

3. Issue the following command to compile the driver and create a .jar file suitable for installation:

shell> ant dist

This creates a build directory in the current directory, where all build output will go. A directory
is created in the build directory that includes the version number of the sources you are building
from. This directory contains the sources, compiled .class files, and a .jar file suitable for de-
ployment. For other possible targets, including ones that will create a fully packaged distribution,
issue the following command:

shell> ant --projecthelp

4. A newly created .jar file containing the JDBC driver will be placed in the directory build/
mysql-connector-java-[version].

Install the newly created JDBC driver as you would a binary .jar file that you download from
MySQL by following the instructions in Section 23.3.2.2, “Installing the Driver and Configuring
the CLASSPATH”.

23.3.3. Connector/J Examples
Examples of using Connector/J are located throughout this document, this section provides a summary
and links to these examples.

• Example 23.1, “Obtaining a connection from the DriverManager”

• Example 23.2, “Using java.sql.Statement to execute a SELECT query”

• Example 23.3, “Stored Procedures”

• Example 23.4, “Using Connection.prepareCall()”

• Example 23.5, “Registering output parameters”

• Example 23.6, “Setting CallableStatement input parameters”

• Example 23.7, “Retrieving results and output parameter values”

• Example 23.8, “Retrieving AUTO_INCREMENT column values using State-
ment.getGeneratedKeys()”

• Example 23.9, “Retrieving AUTO_INCREMENT column values using SELECT
LAST_INSERT_ID()”

• Example 23.10, “Retrieving AUTO_INCREMENT column values in Updatable ResultSets”

• Example 23.11, “Using a connection pool with a J2EE application server”

• Example 23.12, “Example of transaction with retry logic”

23.3.4. Connector/J (JDBC) Reference
This section of the manual contains reference material for MySQL Connector/J, some of which is auto-
matically generated during the Connector/J build process.

Connectors

1563

23.3.4.1. Driver/Datasource Class Names, URL Syntax and Configura-
tion Properties for Connector/J

The name of the class that implements java.sql.Driver in MySQL Connector/J is
com.mysql.jdbc.Driver. The org.gjt.mm.mysql.Driver class name is also usable to re-
main backward-compatible with MM.MySQL. You should use this class name when registering the
driver, or when otherwise configuring software to use MySQL Connector/J.

The JDBC URL format for MySQL Connector/J is as follows, with items in square brackets ([,]) being
optional:

jdbc:mysql://[host][,failoverhost...][:port]/[database] »
[?propertyName1][=propertyValue1][&propertyName2][=propertyValue2]...

If the hostname is not specified, it defaults to 127.0.0.1. If the port is not specified, it defaults to 3306,
the default port number for MySQL servers.

jdbc:mysql://[host:port],[host:port].../[database] »
[?propertyName1][=propertyValue1][&propertyName2][=propertyValue2]...

If the database is not specified, the connection will be made with no default database. In this case, you
will need to either call the setCatalog() method on the Connection instance or fully-specify table
names using the database name (i.e. SELECT dbname.tablename.colname FROM db-
name.tablename...) in your SQL. Not specifying the database to use upon connection is generally
only useful when building tools that work with multiple databases, such as GUI database managers.

MySQL Connector/J has fail-over support. This allows the driver to fail-over to any number of slave
hosts and still perform read-only queries. Fail-over only happens when the connection is in an auto-
Commit(true) state, because fail-over can not happen reliably when a transaction is in progress.
Most application servers and connection pools set autoCommit to true at the end of every transac-
tion/connection use.

The fail-over functionality has the following behavior:

• If the URL property autoReconnect is false: Failover only happens at connection initialization, and
failback occurs when the driver determines that the first host has become available again.

• If the URL property autoReconnect is true: Failover happens when the driver determines that the
connection has failed (before every query), and falls back to the first host when it determines that the
host has become available again (after queriesBeforeRetryMaster queries have been is-
sued).

In either case, whenever you are connected to a "failed-over" server, the connection will be set to read-
only state, so queries that would modify data will have exceptions thrown (the query will never be pro-
cessed by the MySQL server).

Configuration properties define how Connector/J will make a connection to a MySQL server. Unless
otherwise noted, properties can be set for a DataSource object or for a Connection object.

Configuration Properties can be set in one of the following ways:

• Using the set*() methods on MySQL implementations of java.sql.DataSource (which is the preferred
method when using implementations of java.sql.DataSource):

• com.mysql.jdbc.jdbc2.optional.MysqlDataSource

Connectors

1564

• com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource

• As a key/value pair in the java.util.Properties instance passed to DriverMan-
ager.getConnection() or Driver.connect()

• As a JDBC URL parameter in the URL given to
java.sql.DriverManager.getConnection(), java.sql.Driver.connect() or
the MySQL implementations of the javax.sql.DataSource setURL() method.

Note. If the mechanism you use to configure a JDBC URL is XML-based, you will need to use the
XML character literal & to separate configuration parameters, as the ampersand is a reserved
character for XML.

The properties are listed in the following tables.

Connection/Authentication.

Property Name Definition Default
Value

Since
Version

user The user to connect as all

password The password to use when connecting all

socketFactory The name of the class that the driver should use for
creating socket connections to the server. This
class must implement the interface
com.mysql.jdbc.SocketFactory and
have public no-args constructor.

com.mys
ql.jdbc.S
tandard-
Socket-
Factory

3.0.3

connectTimeout Timeout for socket connect (in milliseconds), with
0 being no timeout. Only works on JDK-1.4 or
newer. Defaults to 0.

0 3.0.1

socketTimeout Timeout on network socket operations (0, the de-
fault means no timeout).

0 3.0.1

useConfigs Load the comma-delimited list of configuration
properties before parsing the URL or applying
user-specified properties. See Section 23.3.4.1,
“Driver/Datasource Class Names, URL Syntax and
Configuration Properties for Connector/J”

3.1.5

interactiveClient Set the CLIENT_INTERACTIVE flag, which tells
MySQL to timeout connections based on INTER-
ACTIVE_TIMEOUT instead of
WAIT_TIMEOUT

false 3.1.0

propertiesTransform An implementation of
com.mysql.jdbc.ConnectionPropertie
sTransform that the driver will use to modify
URL properties passed to the driver before at-
tempting a connection

3.1.4

useCompression Use zlib compression when communicating with
the server (true/false)? Defaults to false.

false 3.0.17

High Availability and Clustering.

Property Name Definition Default Since

Connectors

1565

Value Version

autoReconnect Should the driver try to re-establish stale and/or
dead connections? If enabled the driver will throw
an exception for a queries issued on a stale or dead
connection, which belong to the current transac-
tion, but will attempt reconnect before the next
query issued on the connection in a new transac-
tion. The use of this feature is not recommended,
because it has side effects related to session state
and data consistency when applications
don'thandle SQLExceptions properly, and is only
designed to be used when you are unable to con-
figure your application to handle SQLExceptions
resulting from dead andstale connections properly.
Alternatively, investigate setting the MySQL serv-
er variable "wait_timeout"to some high value
rather than the default of 8 hours.

false 1.1

autoReconnectForPools Use a reconnection strategy appropriate for con-
nection pools (defaults to 'false')

false 3.1.3

failOverReadOnly When failing over in autoReconnect mode, should
the connection be set to 'read-only'?

true 3.0.12

reconnectAtTxEnd If autoReconnect is set to true, should the driver at-
tempt reconnectionsat the end of every transac-
tion?

false 3.0.10

roundRobinLoadBalance When autoReconnect is enabled, and failover-
Readonly is false, should we pick hosts to connect
to on a round-robin basis?

false 3.1.2

queriesBeforeRetryMaster Number of queries to issue before falling back to
master when failed over (when using multi-host
failover). Whichever condition is met first, 'quer-
iesBeforeRetryMaster' or 'secondsBeforeRetryMas-
ter' will cause an attempt to be made to reconnect
to the master. Defaults to 50.

50 3.0.2

secondsBeforeRetryMaster How long should the driver wait, when failed over,
before attempting to reconnect to the master serv-
er? Whichever condition is met first, 'queriesBe-
foreRetryMaster' or 'secondsBeforeRetryMaster'
will cause an attempt to be made to reconnect to
the master. Time in seconds, defaults to 30

30 3.0.2

resourceId A globally unique name that identifies the resource
that this datasource or connection is connected to,
used for XAResource.isSameRM() when the
driver can't determine this value based on host-
names used in the URL

5.0.1

Security.

Property Name Definition Default
Value

Since
Version

allowMultiQueries Allow the use of ';' to delimit multiple queries dur-
ing one statement (true/false, defaults to 'false'

false 3.1.1

useSSL Use SSL when communicating with the server false 3.0.2

Connectors

1566

(true/false), defaults to 'false'

requireSSL Require SSL connection if useSSL=true? (defaults
to 'false').

false 3.1.0

allowUrlInLocalInfile Should the driver allow URLs in 'LOAD DATA
LOCAL INFILE' statements?

false 3.1.4

paranoid Take measures to prevent exposure sensitive in-
formation in error messages and clear data struc-
tures holding sensitive data when possible?
(defaults to 'false')

false 3.0.1

Performance Extensions.

Property Name Definition Default
Value

Since
Version

metadataCacheSize The number of queries to cacheResultSetMetadata
for if cacheResultSetMetaData is set to 'true'
(default 50)

50 3.1.1

prepStmtCacheSize If prepared statement caching is enabled, how
many prepared statements should be cached?

25 3.0.10

prepStmtCacheSqlLimit If prepared statement caching is enabled, what's
the largest SQL the driver will cache the parsing
for?

256 3.0.10

useCursorFetch If connected to MySQL > 5.0.2, and setFetch-
Size() > 0 on a statement, should that statement
use cursor-based fetching to retrieve rows?

false 5.0.0

blobSendChunkSize Chunk to use when sending BLOB/CLOBs via
ServerPreparedStatements

1048576 3.1.9

cacheCallableStmts Should the driver cache the parsing stage of
CallableStatements

false 3.1.2

cachePrepStmts Should the driver cache the parsing stage of Pre-
paredStatements of client-side prepared state-
ments, the check for suitability of server-side pre-
pared and server-side prepared statements them-
selves?

false 3.0.10

cacheResultSetMetadata Should the driver cache ResultSetMetaData for
Statements and PreparedStatements? (Req. JDK-
1.4+, true/false, default 'false')

false 3.1.1

cacheServerConfiguration Should the driver cache the results of SHOW
VARIABLES and SHOW COLLATION on a per-
URL basis?

false 3.1.5

defaultFetchSize The driver will call setFetchSize(n) with this value
on all newly-created Statements

0 3.1.9

dontTrackOpenResources The JDBC specification requires the driver to auto-
matically track and close resources, however if
your application doesn't do a good job of explicitly
calling close() on statements or result sets, this
can cause memory leakage. Setting this property to
true relaxes this constraint, and can be more
memory efficient for some applications.

false 3.1.7

dynamicCalendars Should the driver retrieve the default calendar false 3.1.5

Connectors

1567

when required, or cache it per connection/session?

elideSetAutoCommits If using MySQL-4.1 or newer, should the driver
only issue 'set autocommit=n' queries when the
server's state doesn't match the requested state by
Connection.setAutoCommit(boolean)?

false 3.1.3

holdResultsOpenOverState-
mentClose

Should the driver close result sets on State-
ment.close() as required by the JDBC spe-
cification?

false 3.1.7

locatorFetchBufferSize If 'emulateLocators' is configured to 'true', what
size buffer should be used when fetching BLOB
data for getBinaryInputStream?

1048576 3.2.1

rewriteBatchedStatements Should the driver use multiqueries (irregardless of
the setting of allowMultiQueries) as well as
rewriting of prepared statements for INSERT into
multi-value inserts when executeBatch() is called?
Notice that this has the potential for SQL injection
if using plain java.sql.Statements and your code
doesn't sanitize input correctly. Notice that for pre-
pared statements, server-side prepared statements
can not currently take advantage of this rewrite op-
tion, and that if you don't specify stream lengths
when using PreparedStatement.set*Stream(),the
driver won't be able to determine the optimium
number of parameters per batch and you might re-
ceive anan error from the driver that the resultant
packet is too large. Statement.getGeneratedKeys()
for these rewritten statements only works when the
entire batch includes INSERT statements.

false 3.1.13

useFastIntParsing Use internal String->Integer conversion routines to
avoid excessive object creation?

true 3.1.4

useJvmCharsetConverters Always use the character encoding routines built
into the JVM, rather than using lookup tables for
single-byte character sets? (The default of "true"
for this is appropriate for newer JVMs

true 5.0.1

useLocalSessionState Should the driver refer to the internal values of
autocommit and transaction isolation that are set
by Connection.setAutoCommit() and Connec-
tion.setTransactionIsolation(), rather than querying
the database?

false 3.1.7

useReadAheadInput Use newer, optimized non-blocking, buffered input
stream when reading from the server?

true 3.1.5

Debuging/Profiling.

Property Name Definition Default
Value

Since
Version

logger The name of a class that implements
'com.mysql.jdbc.log.Log' that will be used to log
messages to.(default is
'com.mysql.jdbc.log.StandardLogger', which logs
to STDERR)

com.mys
ql.jdbc.l
og.Stand
ardLog-
ger

3.1.1

profileSQL Trace queries and their execution/fetch times to the false 3.1.0

Connectors

1568

configured logger (true/false) defaults to 'false'

reportMetricsIntervalMillis If 'gatherPerfMetrics' is enabled, how often should
they be logged (in ms)?

30000 3.1.2

maxQuerySizeToLog Controls the maximum length/size of a query that
will get logged when profiling or tracing

2048 3.1.3

packetDebugBufferSize The maximum number of packets to retain when
'enablePacketDebug' is true

20 3.1.3

slowQueryThresholdMillis If 'logSlowQueries' is enabled, how long should a
query (in ms) before it is logged as 'slow'?

2000 3.1.2

useUsageAdvisor Should the driver issue 'usage' warnings advising
proper and efficient usage of JDBC and MySQL
Connector/J to the log (true/false, defaults to
'false')?

false 3.1.1

autoGenerateTestcaseScript Should the driver dump the SQL it is executing, in-
cluding server-side prepared statements to
STDERR?

false 3.1.9

dumpMetadataOnColum-
nNotFound

Should the driver dump the field-level metadata of
a result set into the exception message when Res-
ultSet.findColumn() fails?

false 3.1.13

dumpQueriesOnException Should the driver dump the contents of the query
sent to the server in the message for SQLExcep-
tions?

false 3.1.3

enablePacketDebug When enabled, a ring-buffer of 'packetDebugBuf-
ferSize' packets will be kept, and dumped when
exceptions are thrown in key areas in the driver's
code

false 3.1.3

explainSlowQueries If 'logSlowQueries' is enabled, should the driver
automatically issue an 'EXPLAIN' on the server
and send the results to the configured log at a
WARN level?

false 3.1.2

logSlowQueries Should queries that take longer than 'slowQueryTh-
resholdMillis' be logged?

false 3.1.2

traceProtocol Should trace-level network protocol be logged? false 3.1.2

Miscellaneous.

Property Name Definition Default
Value

Since
Version

useUnicode Should the driver use Unicode character encodings
when handling strings? Should only be used when
the driver can't determine the character set map-
ping, or you are trying to 'force' the driver to use a
character set that MySQL either doesn't natively
support (such as UTF-8), true/false, defaults to
'true'

true 1.1g

characterEncoding If 'useUnicode' is set to true, what character encod-
ing should the driver use when dealing with
strings? (defaults is to 'autodetect')

1.1g

characterSetResults Character set to tell the server to return results as. 3.0.13

connectionCollation If set, tells the server to use this collation via 'set 3.0.13

Connectors

1569

collation_connection'

sessionVariables A comma-separated list of name/value pairs to be
sent as SET SESSION ... to the server when the
driver connects.

3.1.8

allowNanAndInf Should the driver allow NaN or +/- INF values in
PreparedStatement.setDouble()?

false 3.1.5

autoClosePStmtStreams Should the driver automatically call .close() on
streams/readers passed as arguments via set*()
methods?

false 3.1.12

autoDeserialize Should the driver automatically detect and de-
serialize objects stored in BLOB fields?

false 3.1.5

capitalizeTypeNames Capitalize type names in DatabaseMetaData?
(usually only useful when using WebObjects, true/
false, defaults to 'false')

false 2.0.7

clobCharacterEncoding The character encoding to use for sending and re-
trieving TEXT, MEDIUMTEXT and LONGTEXT
values instead of the configured connection char-
acterEncoding

5.0.0

clobberStreamingResults This will cause a 'streaming' ResultSet to be auto-
matically closed, and any outstanding data still
streaming from the server to be discarded if anoth-
er query is executed before all the data has been
read from the server.

false 3.0.9

continueBatchOnError Should the driver continue processing batch com-
mands if one statement fails. The JDBC spec al-
lows either way (defaults to 'true').

true 3.0.3

createDatabaseIfNotExist Creates the database given in the URL if it doesn't
yet exist. Assumes the configured user has permis-
sions to create databases.

false 3.1.9

emptyStringsConvertToZero Should the driver allow conversions from empty
string fields to numeric values of '0'?

true 3.1.8

emulateLocators N/A false 3.1.0

emulateUnsupportedPstmts Should the driver detect prepared statements that
are not supported by the server, and replace them
with client-side emulated versions?

true 3.1.7

ignoreNonTxTables Ignore non-transactional table warning for roll-
back? (defaults to 'false').

false 3.0.9

jdbcCompliantTruncation Should the driver throw java.sql.DataTruncation
exceptions when data is truncated as is required by
the JDBC specification when connected to a server
that supports warnings(MySQL 4.1.0 and newer)?

true 3.1.2

maxRows The maximum number of rows to return (0, the de-
fault means return all rows).

-1 all ver-
sions

noAccessToProcedureBodies When determining procedure parameter types for
CallableStatements, and the connected user can't
access procedure bodies through "SHOW CRE-
ATE PROCEDURE" or select on mysql.proc
should the driver instead create basic metadata (all
parameters reported as INOUT VARCHARs) in-
stead of throwing an exception?

false 5.0.3

noDatetimeStringSync Don't ensure that Result- false 3.1.7

Connectors

1570

Set.getDatetimeType().toString().equals(ResultSet.
getString())

noTimezoneConversionFor-
TimeType

Don't convert TIME values using the server
timezone if 'useTimezone'='true'

false 5.0.0

nullCatalogMeansCurrent When DatabaseMetadataMethods ask for a 'cata-
log' parameter, does the value null mean use the
current catalog? (this is not JDBC-compliant, but
follows legacy behavior from earlier versions of
the driver)

true 3.1.8

nullNamePatternMatchesAll Should DatabaseMetaData methods that accept
*pattern parameters treat null the same as '%' (this
is not JDBC-compliant, however older versions of
the driver accepted this departure from the spe-
cification)

true 3.1.8

overrideSupportsIntegrityEn-
hancementFacility

Should the driver return "true" for Database-
MetaData.supportsIntegrityEnhancementFacility()
even if the database doesn't support it to work-
around applications that require this method to re-
turn "true" to signal support of foreign keys, even
though the SQL specification states that this facil-
ity contains much more than just foreign key sup-
port (one such application being OpenOffice)?

false 3.1.12

pedantic Follow the JDBC spec to the letter. false 3.0.0

pinGlobalTxToPhysicalCon-
nection

When using XAConnections, should the driver en-
sure that operations on a given XID are always
routed to the same physical connection? This al-
lows the XAConnection to support "XA START ...
JOIN" after "XA END" has been called

false 5.0.1

processEscapeCodesForPrep-
Stmts

Should the driver process escape codes in queries
that are prepared?

true 3.1.12

relaxAutoCommit If the version of MySQL the driver connects to
does not support transactions, still allow calls to
commit(), rollback() and setAutoCommit()
(true/false, defaults to 'false')?

false 2.0.13

retainStatementAfterResult-
SetClose

Should the driver retain the Statement reference in
a ResultSet after ResultSet.close() has been called.
This is not JDBC-compliant after JDBC-4.0.

false 3.1.11

rollbackOnPooledClose Should the driver issue a rollback() when the logic-
al connection in a pool is closed?

true 3.0.15

runningCTS13 Enables workarounds for bugs in Sun's JDBC
compliance testsuite version 1.3

false 3.1.7

serverTimezone Override detection/mapping of timezone. Used
when timezone from server doesn't map to Java
timezone

3.0.2

strictFloatingPoint Used only in older versions of compliance test false 3.0.0

strictUpdates Should the driver do strict checking (all primary
keys selected) of updatable result sets (true, false,
defaults to 'true')?

true 3.0.4

tinyInt1isBit Should the driver treat the datatype TINYINT(1)
as the BIT type (because the server silently con-
verts BIT -> TINYINT(1) when creating tables)?

true 3.0.16

Connectors

1571

transformedBitIsBoolean If the driver converts TINYINT(1) to a different
type, should it use BOOLEAN instead of BIT for
future compatibility with MySQL-5.0, as MySQL-
5.0 has a BIT type?

false 3.1.9

ultraDevHack Create PreparedStatements for prepareCall() when
required, because UltraDev is broken and issues a
prepareCall() for _all_ statements? (true/false, de-
faults to 'false')

false 2.0.3

useGmtMillisForDatetimes Convert between session timezone and GMT be-
fore creating Date and Timestamp instances (value
of "false" is legacy behavior, "true" leads to more
JDBC-compliant behavior.

false 3.1.12

useHostsInPrivileges Add '@hostname' to users in Database-
MetaData.getColumn/TablePrivileges()
(true/false), defaults to 'true'.

true 3.0.2

useInformationSchema When connected to MySQL-5.0.7 or newer, should
the driver use the INFORMATION_SCHEMA to
derive information used by DatabaseMetaData?

false 5.0.0

useJDBCCompliant-
TimezoneShift

Should the driver use JDBC-compliant rules when
converting TIME/TIMESTAMP/DATETIME val-
ues' timezone information for those JDBC argu-
ments which take a java.util.Calendar argument?
(Notice that this option is exclusive of the "use-
Timezone=true" configuration option.)

false 5.0.0

useOldUTF8Behavior Use the UTF-8 behavior the driver did when com-
municating with 4.0 and older servers

false 3.1.6

useOnlyServerErrorMessages Don't prepend 'standard' SQLState error messages
to error messages returned by the server.

true 3.0.15

useServerPrepStmts Use server-side prepared statements if the server
supports them? (defaults to 'true').

true 3.1.0

useSqlStateCodes Use SQL Standard state codes instead of 'legacy'
X/Open/SQL state codes (true/false), default is
'true'

true 3.1.3

useStreamLengthsInPrepSt-
mts

Honor stream length parameter in PreparedState-
ment/ResultSet.setXXXStream() method calls
(true/false, defaults to 'true')?

true 3.0.2

useTimezone Convert time/date types between client and server
timezones (true/false, defaults to 'false')?

false 3.0.2

useUnbufferedInput Don't use BufferedInputStream for reading data
from the server

true 3.0.11

yearIsDateType Should the JDBC driver treat the MySQL type
"YEAR" as a java.sql.Date, or as a SHORT?

true 3.1.9

zeroDateTimeBehavior What should happen when the driver encounters
DATETIME values that are composed entirely of
zeroes (used by MySQL to represent invalid
dates)? Valid values are 'exception', 'round' and
'convertToNull'.

excep-
tion

3.1.4

Connector/J also supports access to MySQL via named pipes on Windows NT/2000/XP using the
NamedPipeSocketFactory as a plugin-socket factory via the socketFactory property. If you don't use a
namedPipePath property, the default of '\\.\pipe\MySQL' will be used. If you use the Named-

Connectors

1572

PipeSocketFactory, the hostname and port number values in the JDBC url will be ignored. You
can enable this feature using:

socketFactory=com.mysql.jdbc.NamedPipeSocketFactory

Named pipes only work when connecting to a MySQL server on the same physical machine as the one
the JDBC driver is being used on. In simple performance tests, it appears that named pipe access is
between 30%-50% faster than the standard TCP/IP access.

You can create your own socket factories by following the example code in
com.mysql.jdbc.NamedPipeSocketFactory, or
com.mysql.jdbc.StandardSocketFactory.

23.3.4.2. JDBC API Implementation Notes

MySQL Connector/J passes all of the tests in the publicly-available version of Sun's JDBC compliance
test suite. However, in many places the JDBC specification is vague about how certain functionality
should be implemented, or the specification allows leeway in implementation.

This section gives details on a interface-by-interface level about how certain implementation decisions
may affect how you use MySQL Connector/J.

• Blob

The Blob implementation does not allow in-place modification (they are copies, as reported by the
DatabaseMetaData.locatorsUpdateCopies() method). Because of this, you should use
the corresponding PreparedStatement.setBlob() or ResultSet.updateBlob() (in
the case of updatable result sets) methods to save changes back to the database.

Starting with Connector/J version 3.1.0, you can emulate Blobs with locators by adding the property
'emulateLocators=true' to your JDBC URL. You must then use a column alias with the value of the
column set to the actual name of the Blob column in the SELECT that you write to retrieve the Blob.
The SELECT must also reference only one table, the table must have a primary key, and the SE-
LECT must cover all columns that make up the primary key. The driver will then delay loading the
actual Blob data until you retrieve the Blob and call retrieval methods (getInputStream(),
getBytes(), and so forth) on it.

• CallableStatement

Starting with Connector/J 3.1.1, stored procedures are supported when connecting to MySQL ver-
sion 5.0 or newer via the CallableStatement interface. Currently, the getParameter-
MetaData() method of CallableStatement is not supported.

• Clob

The Clob implementation does not allow in-place modification (they are copies, as reported by the
DatabaseMetaData.locatorsUpdateCopies() method). Because of this, you should use
the PreparedStatement.setClob() method to save changes back to the database. The JD-
BC API does not have a ResultSet.updateClob() method.

• Connection

Unlike older versions of MM.MySQL the isClosed() method does not ping the server to determ-
ine if it is alive. In accordance with the JDBC specification, it only returns true if closed() has
been called on the connection. If you need to determine if the connection is still valid, you should is-
sue a simple query, such as SELECT 1. The driver will throw an exception if the connection is no
longer valid.

Connectors

1573

• DatabaseMetaData

Foreign Key information (getImportedKeys()/getExportedKeys() and getCross-
Reference()) is only available from InnoDB tables. However, the driver uses SHOW CREATE
TABLE to retrieve this information, so when other storage engines support foreign keys, the driver
will transparently support them as well.

• PreparedStatement

PreparedStatements are implemented by the driver, as MySQL does not have a prepared statement
feature. Because of this, the driver does not implement getParameterMetaData() or get-
MetaData() as it would require the driver to have a complete SQL parser in the client.

Starting with version 3.1.0 MySQL Connector/J, server-side prepared statements and binary-en-
coded result sets are used when the server supports them.

Take care when using a server-side prepared statement with large parameters that are set via set-
BinaryStream(), setAsciiStream(), setUnicodeStream(), setBlob(), or
setClob(). If you want to re-execute the statement with any large parameter changed to a non-
large parameter, it is necessary to call clearParameters() and set all parameters again. The
reason for this is as follows:

• The driver streams the large data out-of-band to the prepared statement on the server side when
the parameter is set (before execution of the prepared statement).

• Once that has been done, the stream used to read the data on the client side is closed (as per the
JDBC spec), and can't be read from again.

• If a parameter changes from large to non-large, the driver must reset the server-side state of the
prepared statement to allow the parameter that is being changed to take the place of the prior
large value. This removes all of the large data that has already been sent to the server, thus re-
quiring the data to be re-sent, via the setBinaryStream(), setAsciiStream(), setU-
nicodeStream(), setBlob() or setClob() methods.

Consequently, if you want to change the type of a parameter to a non-large one, you must call
clearParameters() and set all parameters of the prepared statement again before it can be re-
executed.

• ResultSet

By default, ResultSets are completely retrieved and stored in memory. In most cases this is the most
efficient way to operate, and due to the design of the MySQL network protocol is easier to imple-
ment. If you are working with ResultSets that have a large number of rows or large values, and can
not allocate heap space in your JVM for the memory required, you can tell the driver to stream the
results back one row at a time.

To enable this functionality, you need to create a Statement instance in the following manner:

stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
java.sql.ResultSet.CONCUR_READ_ONLY);

stmt.setFetchSize(Integer.MIN_VALUE);

The combination of a forward-only, read-only result set, with a fetch size of In-
teger.MIN_VALUE serves as a signal to the driver to stream result sets row-by-row. After this any
result sets created with the statement will be retrieved row-by-row.

There are some caveats with this approach. You will have to read all of the rows in the result set (or
close it) before you can issue any other queries on the connection, or an exception will be thrown.

Connectors

1574

The earliest the locks these statements hold can be released (whether they be MyISAM table-level
locks or row-level locks in some other storage engine such as InnoDB) is when the statement com-
pletes.

If the statement is within scope of a transaction, then locks are released when the transaction com-
pletes (which implies that the statement needs to complete first). As with most other databases, state-
ments are not complete until all the results pending on the statement are read or the active result set
for the statement is closed.

Therefore, if using streaming results, you should process them as quickly as possible if you want to
maintain concurrent access to the tables referenced by the statement producing the result set.

• ResultSetMetaData

The isAutoIncrement() method only works when using MySQL servers 4.0 and newer.

• Statement

When using versions of the JDBC driver earlier than 3.2.1, and connected to server versions earlier
than 5.0.3, the "setFetchSize()" method has no effect, other than to toggle result set streaming as de-
scribed above.

MySQL does not support SQL cursors, and the JDBC driver doesn't emulate them, so "setCursor-
Name()" has no effect.

23.3.4.3. Java, JDBC and MySQL Types

MySQL Connector/J is flexible in the way it handles conversions between MySQL data types and Java
data types.

In general, any MySQL data type can be converted to a java.lang.String, and any numerical type can be
converted to any of the Java numerical types, although round-off, overflow, or loss of precision may oc-
cur.

Starting with Connector/J 3.1.0, the JDBC driver will issue warnings or throw DataTruncation excep-
tions as is required by the JDBC specification unless the connection was configured not to do so by us-
ing the property jdbcCompliantTruncation and setting it to false.

The conversions that are always guaranteed to work are listed in the following table:

Connection Properties - Miscellaneous.

These MySQL Data Types Can always be converted to these Java types

CHAR, VARCHAR, BLOB, TEXT, ENUM,
and SET

java.lang.String,
java.io.InputStream,
java.io.Reader, java.sql.Blob,
java.sql.Clob

FLOAT, REAL, DOUBLE PRECISION, NU-
MERIC, DECIMAL, TINYINT, SMALLINT,
MEDIUMINT, INTEGER, BIGINT

java.lang.String, java.lang.Short,
java.lang.Integer, java.lang.Long,
java.lang.Double,
java.math.BigDecimal

DATE, TIME, DATETIME, TIMESTAMP java.lang.String, java.sql.Date,
java.sql.Timestamp

Connectors

1575

Note: round-off, overflow or loss of precision may occur if you choose a Java numeric data type that has
less precision or capacity than the MySQL data type you are converting to/from.

The ResultSet.getObject() method uses the type conversions between MySQL and Java types,
following the JDBC specification where appropriate. The value returned by ResultSet-
MetaData.GetColumnClassName() is also shown below. For more information on the
java.sql.Types classes see Java 2 Platform Types
[http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Types.html].

MySQL Types to Java Types for ResultSet.getObject().

MySQL Type Name Return value of GetColumnClassName

BIT(1) (new in MySQL-5.0) BIT

BIT(> 1) (new in MySQL-5.0) BIT

TINYINT TINYINT

BOOL, BOOLEAN TINYINT

SMALLINT[(M)] [UNSIGNED] SMALLINT [UNSIGNED]

MEDIUMINT[(M)] [UNSIGNED] MEDIUMINT [UNSIGNED]

INT,INTEGER[(M)] [UNSIGNED] INTEGER [UNSIGNED]

BIGINT[(M)] [UNSIGNED] BIGINT [UNSIGNED]

FLOAT[(M,D)] FLOAT

DOUBLE[(M,B)] DOUBLE

DECIMAL[(M[,D])] DECIMAL

DATE DATE

DATETIME DATETIME

TIMESTAMP[(M)] TIMESTAMP

TIME TIME

YEAR[(2|4)] YEAR

CHAR(M) CHAR

VARCHAR(M) [BINARY] VARCHAR

BINARY(M) BINARY

VARBINARY(M) VARBINARY

TINYBLOB TINYBLOB

TINYTEXT VARCHAR

BLOB BLOB

TEXT VARCHAR

MEDIUMBLOB MEDIUMBLOB

MEDIUMTEXT VARCHAR

LONGBLOB LONGBLOB

LONGTEXT VARCHAR

ENUM('value1','value2',...) CHAR

SET('value1','value2',...) CHAR

23.3.4.4. Using Character Sets and Unicode

Connectors

1576

http://java.sun.com/j2se/1.4.2/docs/api/java/sql/Types.html

All strings sent from the JDBC driver to the server are converted automatically from native Java Uni-
code form to the client character encoding, including all queries sent via Statement.execute(),
Statement.executeUpdate(), Statement.executeQuery() as well as all Prepared-
Statement and CallableStatement parameters with the exclusion of parameters set using set-
Bytes(), setBinaryStream(), setAsciiStream(), setUnicodeStream() and set-
Blob() .

Prior to MySQL Server 4.1, Connector/J supported a single character encoding per connection, which
could either be automatically detected from the server configuration, or could be configured by the user
through the useUnicode and "characterEncoding" properties.

Starting with MySQL Server 4.1, Connector/J supports a single character encoding between client and
server, and any number of character encodings for data returned by the server to the client in Result-
Sets.

The character encoding between client and server is automatically detected upon connection. The encod-
ing used by the driver is specified on the server via the character_set system variable for server
versions older than 4.1.0 and character_set_server for server versions 4.1.0 and newer. For
more information, see Section 10.3.1, “Server Character Set and Collation”.

To override the automatically-detected encoding on the client side, use the characterEncoding
property in the URL used to connect to the server.

When specifying character encodings on the client side, Java-style names should be used. The following
table lists Java-style names for MySQL character sets:

MySQL to Java Encoding Name Translations.

MySQL Character Set Name Java-Style Character Encoding Name

ascii US-ASCII

big5 Big5

gbk GBK

sjis SJIS (or Cp932 or MS932 for MySQL Server <
4.1.11)

cp932 Cp932 or MS932 (MySQL Server > 4.1.11)

gb2312 EUC_CN

ujis EUC_JP

euckr EUC_KR

latin1 ISO8859_1

latin2 ISO8859_2

greek ISO8859_7

hebrew ISO8859_8

cp866 Cp866

tis620 TIS620

cp1250 Cp1250

cp1251 Cp1251

cp1257 Cp1257

macroman MacRoman

macce MacCentralEurope

utf8 UTF-8

Connectors

1577

ucs2 UnicodeBig

Warning. Do not issue the query 'set names' with Connector/J, as the driver will not detect that the
character set has changed, and will continue to use the character set detected during the initial connec-
tion setup.

To allow multiple character sets to be sent from the client, the UTF-8 encoding should be used, either by
configuring utf8 as the default server character set, or by configuring the JDBC driver to use UTF-8
through the characterEncoding property.

23.3.4.5. Connecting Securely Using SSL

SSL in MySQL Connector/J encrypts all data (other than the initial handshake) between the JDBC
driver and the server. The performance penalty for enabling SSL is an increase in query processing time
between 35% and 50%, depending on the size of the query, and the amount of data it returns.

For SSL Support to work, you must have the following:

• A JDK that includes JSSE (Java Secure Sockets Extension), like JDK-1.4.1 or newer. SSL does not
currently work with a JDK that you can add JSSE to, like JDK-1.2.x or JDK-1.3.x due to the follow-
ing JSSE bug: http://developer.java.sun.com/developer/bugParade/bugs/4273544.html

• A MySQL server that supports SSL and has been compiled and configured to do so, which is
MySQL-4.0.4 or later, see Section 5.9.7, “Using Secure Connections”, for more information.

• A client certificate (covered later in this section)

You will first need to import the MySQL server CA Certificate into a Java truststore. A sample MySQL
server CA Certificate is located in the SSL subdirectory of the MySQL source distribution. This is what
SSL will use to determine if you are communicating with a secure MySQL server.

To use Java's keytool to create a truststore in the current directory , and import the server's CA certi-
ficate (cacert.pem), you can do the following (assuming that keytool is in your path. The
keytool should be located in the bin subdirectory of your JDK or JRE):

shell> keytool -import -alias mysqlServerCACert -file cacert.pem -keystore truststore

Keytool will respond with the following information:

Enter keystore password: *********
Owner: EMAILADDRESS=walrus@example.com, CN=Walrus, O=MySQL AB, L=Orenburg, ST=Some
-State, C=RU
Issuer: EMAILADDRESS=walrus@example.com, CN=Walrus, O=MySQL AB, L=Orenburg, ST=Som
e-State, C=RU
Serial number: 0
Valid from: Fri Aug 02 16:55:53 CDT 2002 until: Sat Aug 02 16:55:53 CDT 2003
Certificate fingerprints:

MD5: 61:91:A0:F2:03:07:61:7A:81:38:66:DA:19:C4:8D:AB
SHA1: 25:77:41:05:D5:AD:99:8C:14:8C:CA:68:9C:2F:B8:89:C3:34:4D:6C

Trust this certificate? [no]: yes
Certificate was added to keystore

You will then need to generate a client certificate, so that the MySQL server knows that it is talking to a
secure client:

shell> keytool -genkey -keyalg rsa -alias mysqlClientCertificate -keystore keystore

Connectors

1578

http://developer.java.sun.com/developer/bugParade/bugs/4273544.html

Keytool will prompt you for the following information, and create a keystore named keystore in the
current directory.

You should respond with information that is appropriate for your situation:

Enter keystore password: *********
What is your first and last name?

[Unknown]: Matthews
What is the name of your organizational unit?

[Unknown]: Software Development
What is the name of your organization?

[Unknown]: MySQL AB
What is the name of your City or Locality?

[Unknown]: Flossmoor
What is the name of your State or Province?

[Unknown]: IL
What is the two-letter country code for this unit?

[Unknown]: US
Is <CN=Matthews, OU=Software Development, O=MySQL AB,
L=Flossmoor, ST=IL, C=US> correct?
[no]: y

Enter key password for <mysqlClientCertificate>
(RETURN if same as keystore password):

Finally, to get JSSE to use the keystore and truststore that you have generated, you need to set the fol-
lowing system properties when you start your JVM, replacing path_to_keystore_file with the full path to
the keystore file you created, path_to_truststore_file with the path to the truststore file you created, and
using the appropriate password values for each property.

-Djavax.net.ssl.keyStore=path_to_keystore_file
-Djavax.net.ssl.keyStorePassword=*********
-Djavax.net.ssl.trustStore=path_to_truststore_file
-Djavax.net.ssl.trustStorePassword=*********

You will also need to set useSSL to true in your connection parameters for MySQL Connector/J,
either by adding useSSL=true to your URL, or by setting the property useSSL to true in the
java.util.Properties instance you pass to DriverManager.getConnection().

You can test that SSL is working by turning on JSSE debugging (as detailed below), and look for the
following key events:

...
*** ClientHello, v3.1
RandomCookie: GMT: 1018531834 bytes = { 199, 148, 180, 215, 74, 12, 54, 244, 0, 168, 55, 103, 215, 64, 16, 138, 225, 190, 132, 153, 2, 217, 219, 239, 202, 19, 121, 78 }
Session ID: {}
Cipher Suites: { 0, 5, 0, 4, 0, 9, 0, 10, 0, 18, 0, 19, 0, 3, 0, 17 }
Compression Methods: { 0 }

[write] MD5 and SHA1 hashes: len = 59
0000: 01 00 00 37 03 01 3D B6 90 FA C7 94 B4 D7 4A 0C ...7..=.......J.
0010: 36 F4 00 A8 37 67 D7 40 10 8A E1 BE 84 99 02 D9 6...7g.@........
0020: DB EF CA 13 79 4E 00 00 10 00 05 00 04 00 09 00yN..........
0030: 0A 00 12 00 13 00 03 00 11 01 00
main, WRITE: SSL v3.1 Handshake, length = 59
main, READ: SSL v3.1 Handshake, length = 74
*** ServerHello, v3.1
RandomCookie: GMT: 1018577560 bytes = { 116, 50, 4, 103, 25, 100, 58, 202, 79, 185, 178, 100, 215, 66, 254, 21, 83, 187, 190, 42, 170, 3, 132, 110, 82, 148, 160, 92 }
Session ID: {163, 227, 84, 53, 81, 127, 252, 254, 178, 179, 68, 63, 182, 158, 30, 11, 150, 79, 170, 76, 255, 92, 15, 226, 24, 17, 177, 219, 158, 177, 187, 143}
Cipher Suite: { 0, 5 }
Compression Method: 0

%% Created: [Session-1, SSL_RSA_WITH_RC4_128_SHA]
** SSL_RSA_WITH_RC4_128_SHA
[read] MD5 and SHA1 hashes: len = 74
0000: 02 00 00 46 03 01 3D B6 43 98 74 32 04 67 19 64 ...F..=.C.t2.g.d
0010: 3A CA 4F B9 B2 64 D7 42 FE 15 53 BB BE 2A AA 03 :.O..d.B..S..*..
0020: 84 6E 52 94 A0 5C 20 A3 E3 54 35 51 7F FC FE B2 .nR..\ ..T5Q....
0030: B3 44 3F B6 9E 1E 0B 96 4F AA 4C FF 5C 0F E2 18 .D?.....O.L.\...
0040: 11 B1 DB 9E B1 BB 8F 00 05 00
main, READ: SSL v3.1 Handshake, length = 1712
...

Connectors

1579

JSSE provides debugging (to STDOUT) when you set the following system property: -
Djavax.net.debug=all This will tell you what keystores and truststores are being used, as well as
what is going on during the SSL handshake and certificate exchange. It will be helpful when trying to
determine what is not working when trying to get an SSL connection to happen.

23.3.4.6. Using Master/Slave Replication with ReplicationConnection

Starting with Connector/J 3.1.7, we've made available a variant of the driver that will automatically send
queries to a read/write master, or a failover or round-robin loadbalanced set of slaves based on the state
of Connection.getReadOnly() .

An application signals that it wants a transaction to be read-only by calling Connec-
tion.setReadOnly(true), this replication-aware connection will use one of the slave connec-
tions, which are load-balanced per-vm using a round-robin scheme (a given connection is sticky to a
slave unless that slave is removed from service). If you have a write transaction, or if you have a read
that is time-sensitive (remember, replication in MySQL is asynchronous), set the connection to be not
read-only, by calling Connection.setReadOnly(false) and the driver will ensure that further
calls are sent to the master MySQL server. The driver takes care of propagating the current state of auto-
commit, isolation level, and catalog between all of the connections that it uses to accomplish this load
balancing functionality.

To enable this functionality, use the " com.mysql.jdbc.ReplicationDriver " class when con-
figuring your application server's connection pool or when creating an instance of a JDBC driver for
your standalone application. Because it accepts the same URL format as the standard MySQL JDBC
driver, ReplicationDriver does not currently work with java.sql.DriverManager -based
connection creation unless it is the only MySQL JDBC driver registered with the DriverManager .

Here is a short, simple example of how ReplicationDriver might be used in a standalone application.

import java.sql.Connection;
import java.sql.ResultSet;
import java.util.Properties;

import com.mysql.jdbc.ReplicationDriver;

public class ReplicationDriverDemo {

public static void main(String[] args) throws Exception {
ReplicationDriver driver = new ReplicationDriver();

Properties props = new Properties();

// We want this for failover on the slaves
props.put("autoReconnect", "true");

// We want to load balance between the slaves
props.put("roundRobinLoadBalance", "true");

props.put("user", "foo");
props.put("password", "bar");

//
// Looks like a normal MySQL JDBC url, with a comma-separated list
// of hosts, the first being the 'master', the rest being any number
// of slaves that the driver will load balance against
//

Connection conn =
driver.connect("jdbc:mysql://master,slave1,slave2,slave3/test",

props);

//
// Perform read/write work on the master
// by setting the read-only flag to "false"
//

conn.setReadOnly(false);
conn.setAutoCommit(false);
conn.createStatement().executeUpdate("UPDATE some_table");

Connectors

1580

conn.commit();

//
// Now, do a query from a slave, the driver automatically picks one
// from the list
//

conn.setReadOnly(true);

ResultSet rs = conn.createStatement().executeQuery("SELECT a,b,c FROM some_other_table");

.......
}

}

23.3.5. Connector/J Notes and Tips

23.3.5.1. Basic JDBC Concepts

This section provides some general JDBC background.

23.3.5.1.1. Connecting to MySQL Using the DriverManager Interface

When you are using JDBC outside of an application server, the DriverManager class manages the
establishment of Connections.

The DriverManager needs to be told which JDBC drivers it should try to make Connections with.
The easiest way to do this is to use Class.forName() on the class that implements the
java.sql.Driver interface. With MySQL Connector/J, the name of this class is
com.mysql.jdbc.Driver. With this method, you could use an external configuration file to supply
the driver class name and driver parameters to use when connecting to a database.

The following section of Java code shows how you might register MySQL Connector/J from the
main() method of your application:

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;

// Notice, do not import com.mysql.jdbc.*
// or you will have problems!

public class LoadDriver {
public static void main(String[] args) {

try {
// The newInstance() call is a work around for some
// broken Java implementations

Class.forName("com.mysql.jdbc.Driver").newInstance();
} catch (Exception ex) {

// handle the error
}

}

After the driver has been registered with the DriverManager, you can obtain a Connection in-
stance that is connected to a particular database by calling DriverManager.getConnection():

Example 23.1. Obtaining a connection from the DriverManager

This example shows how you can obtain a Connection instance from the DriverManager. There
are a few different signatures for the getConnection() method. You should see the API document-
ation that comes with your JDK for more specific information on how to use them.

import java.sql.Connection;

Connectors

1581

import java.sql.DriverManager;
import java.sql.SQLException;

... try {
Connection conn = DriverManager.getConnection("jdbc:mysql://localhost/test?user=monty&password=greatsqldb");

// Do something with the Connection

....
} catch (SQLException ex) {

// handle any errors
System.out.println("SQLException: " + ex.getMessage());
System.out.println("SQLState: " + ex.getSQLState());
System.out.println("VendorError: " + ex.getErrorCode());

}

Once a Connection is established, it can be used to create Statement and PreparedState-
ment objects, as well as retrieve metadata about the database. This is explained in the following sec-
tions.

23.3.5.1.2. Using Statements to Execute SQL

Statement objects allow you to execute basic SQL queries and retrieve the results through the Res-
ultSet class which is described later.

To create a Statement instance, you call the createStatement() method on the Connection
object you have retrieved via one of the DriverManager.getConnection() or Data-
Source.getConnection() methods described earlier.

Once you have a Statement instance, you can execute a SELECT query by calling the ex-
ecuteQuery(String) method with the SQL you want to use.

To update data in the database, use the executeUpdate(String SQL) method. This method re-
turns the number of rows affected by the update statement.

If you don't know ahead of time whether the SQL statement will be a SELECT or an UPDATE/INSERT,
then you can use the execute(String SQL) method. This method will return true if the SQL query
was a SELECT, or false if it was an UPDATE, INSERT, or DELETE statement. If the statement was a
SELECT query, you can retrieve the results by calling the getResultSet() method. If the statement
was an UPDATE, INSERT, or DELETE statement, you can retrieve the affected rows count by calling
getUpdateCount() on the Statement instance.

Example 23.2. Using java.sql.Statement to execute a SELECT query

// assume that conn is an already created JDBC connection
Statement stmt = null;
ResultSet rs = null;

try {
stmt = conn.createStatement();
rs = stmt.executeQuery("SELECT foo FROM bar");

// or alternatively, if you don't know ahead of time that
// the query will be a SELECT...

if (stmt.execute("SELECT foo FROM bar")) {
rs = stmt.getResultSet();

}

// Now do something with the ResultSet
} finally {

// it is a good idea to release
// resources in a finally{} block
// in reverse-order of their creation
// if they are no-longer needed

Connectors

1582

if (rs != null) {
try {

rs.close();
} catch (SQLException sqlEx) { // ignore }

rs = null;
}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException sqlEx) { // ignore }

stmt = null;
}

}

23.3.5.1.3. Using CallableStatements to Execute Stored Procedures

Starting with MySQL server version 5.0 when used with Connector/J 3.1.1 or newer, the
java.sql.CallableStatement interface is fully implemented with the exception of the get-
ParameterMetaData() method.

See Chapter 17, Stored Procedures and Functions, for more information on MySQL stored procedures.

Connector/J exposes stored procedure functionality through JDBC's CallableStatement interface.

Note. Current versions of MySQL server do not return enough information for the JDBC driver to
provide result set metadata for callable statements. This means that when using CallableState-
ment, ResultSetMetaData may return NULL.

The following example shows a stored procedure that returns the value of inOutParam incremented
by 1, and the string passed in via inputParam as a ResultSet:

Example 23.3. Stored Procedures

CREATE PROCEDURE demoSp(IN inputParam VARCHAR(255), INOUT inOutParam INT)
BEGIN

DECLARE z INT;
SET z = inOutParam + 1;
SET inOutParam = z;

SELECT inputParam;

SELECT CONCAT('zyxw', inputParam);
END

To use the demoSp procedure with Connector/J, follow these steps:

1. Prepare the callable statement by using Connection.prepareCall() .

Notice that you have to use JDBC escape syntax, and that the parentheses surrounding the paramet-
er placeholders are not optional:

Example 23.4. Using Connection.prepareCall()

import java.sql.CallableStatement;

...

//

Connectors

1583

// Prepare a call to the stored procedure 'demoSp'
// with two parameters
//
// Notice the use of JDBC-escape syntax ({call ...})
//

CallableStatement cStmt = conn.prepareCall("{call demoSp(?, ?)}");

cStmt.setString(1, "abcdefg");

Note. Connection.prepareCall() is an expensive method, due to the metadata retrieval
that the driver performs to support output parameters. For performance reasons, you should try to
minimize unnecessary calls to Connection.prepareCall() by reusing CallableState-
ment instances in your code.

2. Register the output parameters (if any exist)

To retrieve the values of output parameters (parameters specified as OUT or INOUT when you cre-
ated the stored procedure), JDBC requires that they be specified before statement execution using
the various registerOutputParameter() methods in the CallableStatement inter-
face:

Example 23.5. Registering output parameters

import java.sql.Types;
...
//
// Connector/J supports both named and indexed
// output parameters. You can register output
// parameters using either method, as well
// as retrieve output parameters using either
// method, regardless of what method was
// used to register them.
//
// The following examples show how to use
// the various methods of registering
// output parameters (you should of course
// use only one registration per parameter).
//

//
// Registers the second parameter as output, and
// uses the type 'INTEGER' for values returned from
// getObject()
//

cStmt.registerOutParameter(2, Types.INTEGER);

//
// Registers the named parameter 'inOutParam', and
// uses the type 'INTEGER' for values returned from
// getObject()
//

cStmt.registerOutParameter("inOutParam", Types.INTEGER);
...

3. Set the input parameters (if any exist)

Input and in/out parameters are set as for PreparedStatement objects. However,
CallableStatement also supports setting parameters by name:

Connectors

1584

Example 23.6. Setting CallableStatement input parameters

...

//
// Set a parameter by index
//

cStmt.setString(1, "abcdefg");

//
// Alternatively, set a parameter using
// the parameter name
//

cStmt.setString("inputParameter", "abcdefg");

//
// Set the 'in/out' parameter using an index
//

cStmt.setInt(2, 1);

//
// Alternatively, set the 'in/out' parameter
// by name
//

cStmt.setInt("inOutParam", 1);

...

4. Execute the CallableStatement, and retrieve any result sets or output parameters.

Although CallableStatement supports calling any of the Statement execute methods
(executeUpdate(), executeQuery() or execute()), the most flexible method to call is
execute(), as you do not need to know ahead of time if the stored procedure returns result sets:

Example 23.7. Retrieving results and output parameter values

...

boolean hadResults = cStmt.execute();

//
// Process all returned result sets
//

while (hadResults) {
ResultSet rs = cStmt.getResultSet();

// process result set
...

hadResults = rs.getMoreResults();
}

//
// Retrieve output parameters
//
// Connector/J supports both index-based and
// name-based retrieval
//

int outputValue = cStmt.getInt(2); // index-based

outputValue = cStmt.getInt("inOutParam"); // name-based

...

Connectors

1585

23.3.5.1.4. Retrieving AUTO_INCREMENT Column Values

Before version 3.0 of the JDBC API, there was no standard way of retrieving key values from databases
that supported auto increment or identity columns. With older JDBC drivers for MySQL, you could al-
ways use a MySQL-specific method on the Statement interface, or issue the query SELECT
LAST_INSERT_ID() after issuing an INSERT to a table that had an AUTO_INCREMENT key. Using
the MySQL-specific method call isn't portable, and issuing a SELECT to get the AUTO_INCREMENT
key's value requires another round-trip to the database, which isn't as efficient as possible. The following
code snippets demonstrate the three different ways to retrieve AUTO_INCREMENT values. First, we
demonstrate the use of the new JDBC-3.0 method getGeneratedKeys() which is now the preferred
method to use if you need to retrieve AUTO_INCREMENT keys and have access to JDBC-3.0. The
second example shows how you can retrieve the same value using a standard SELECT
LAST_INSERT_ID() query. The final example shows how updatable result sets can retrieve the
AUTO_INCREMENT value when using the insertRow() method.

Example 23.8. Retrieving AUTO_INCREMENT column values using
Statement.getGeneratedKeys()

Statement stmt = null;
ResultSet rs = null;

try {

//
// Create a Statement instance that we can use for
// 'normal' result sets assuming you have a
// Connection 'conn' to a MySQL database already
// available

stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
java.sql.ResultSet.CONCUR_UPDATABLE);

//
// Issue the DDL queries for the table for this example
//

stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
stmt.executeUpdate(

"CREATE TABLE autoIncTutorial ("
+ "priKey INT NOT NULL AUTO_INCREMENT, "
+ "dataField VARCHAR(64), PRIMARY KEY (priKey))");

//
// Insert one row that will generate an AUTO INCREMENT
// key in the 'priKey' field
//

stmt.executeUpdate(
"INSERT INTO autoIncTutorial (dataField) "
+ "values ('Can I Get the Auto Increment Field?')",
Statement.RETURN_GENERATED_KEYS);

//
// Example of using Statement.getGeneratedKeys()
// to retrieve the value of an auto-increment
// value
//

int autoIncKeyFromApi = -1;

rs = stmt.getGeneratedKeys();

if (rs.next()) {
autoIncKeyFromApi = rs.getInt(1);

} else {

// throw an exception from here
}

Connectors

1586

rs.close();

rs = null;

System.out.println("Key returned from getGeneratedKeys():"
+ autoIncKeyFromApi);

} finally {

if (rs != null) {
try {

rs.close();
} catch (SQLException ex) {

// ignore
}

}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException ex) {

// ignore
}

}
}

Example 23.9. Retrieving AUTO_INCREMENT column values using SELECT
LAST_INSERT_ID()

Statement stmt = null;
ResultSet rs = null;

try {

//
// Create a Statement instance that we can use for
// 'normal' result sets.

stmt = conn.createStatement();

//
// Issue the DDL queries for the table for this example
//

stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
stmt.executeUpdate(

"CREATE TABLE autoIncTutorial ("
+ "priKey INT NOT NULL AUTO_INCREMENT, "
+ "dataField VARCHAR(64), PRIMARY KEY (priKey))");

//
// Insert one row that will generate an AUTO INCREMENT
// key in the 'priKey' field
//

stmt.executeUpdate(
"INSERT INTO autoIncTutorial (dataField) "
+ "values ('Can I Get the Auto Increment Field?')");

//
// Use the MySQL LAST_INSERT_ID()
// function to do the same thing as getGeneratedKeys()
//

int autoIncKeyFromFunc = -1;
rs = stmt.executeQuery("SELECT LAST_INSERT_ID()");

if (rs.next()) {
autoIncKeyFromFunc = rs.getInt(1);

} else {
// throw an exception from here

}

rs.close();

System.out.println("Key returned from " + "'SELECT LAST_INSERT_ID()': "

Connectors

1587

+ autoIncKeyFromFunc);

} finally {

if (rs != null) {
try {

rs.close();
} catch (SQLException ex) {

// ignore
}

}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException ex) {

// ignore
}

}
}

Example 23.10. Retrieving AUTO_INCREMENT column values in Updatable ResultSets

Statement stmt = null;
ResultSet rs = null;

try {

//
// Create a Statement instance that we can use for
// 'normal' result sets as well as an 'updatable'
// one, assuming you have a Connection 'conn' to
// a MySQL database already available
//

stmt = conn.createStatement(java.sql.ResultSet.TYPE_FORWARD_ONLY,
java.sql.ResultSet.CONCUR_UPDATABLE);

//
// Issue the DDL queries for the table for this example
//

stmt.executeUpdate("DROP TABLE IF EXISTS autoIncTutorial");
stmt.executeUpdate(

"CREATE TABLE autoIncTutorial ("
+ "priKey INT NOT NULL AUTO_INCREMENT, "
+ "dataField VARCHAR(64), PRIMARY KEY (priKey))");

//
// Example of retrieving an AUTO INCREMENT key
// from an updatable result set
//

rs = stmt.executeQuery("SELECT priKey, dataField "
+ "FROM autoIncTutorial");

rs.moveToInsertRow();

rs.updateString("dataField", "AUTO INCREMENT here?");
rs.insertRow();

//
// the driver adds rows at the end
//

rs.last();

//
// We should now be on the row we just inserted
//

int autoIncKeyFromRS = rs.getInt("priKey");

rs.close();

Connectors

1588

rs = null;

System.out.println("Key returned for inserted row: "
+ autoIncKeyFromRS);

} finally {

if (rs != null) {
try {

rs.close();
} catch (SQLException ex) {

// ignore
}

}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException ex) {

// ignore
}

}
}

When you run the preceding example code, you should get the following output: Key returned from
getGeneratedKeys(): 1 Key returned from SELECT LAST_INSERT_ID(): 1 Key returned for
inserted row: 2 You should be aware, that at times, it can be tricky to use the SELECT
LAST_INSERT_ID() query, as that function's value is scoped to a connection. So, if some other query
happens on the same connection, the value will be overwritten. On the other hand, the getGener-
atedKeys() method is scoped by the Statement instance, so it can be used even if other queries
happen on the same connection, but not on the same Statement instance.

23.3.5.2. Using Connector/J with J2EE and Other Java Frameworks

This section describes how to use Connector/J in several contexts.

23.3.5.2.1. General J2EE Concepts

This section provides general background on J2EE concepts that pertain to use of Connector/J.

23.3.5.2.1.1. Understanding Connection Pooling

Connection pooling is a technique of creating and managing a pool of connections that are ready for use
by any thread that needs them.

This technique of pooling connections is based on the fact that most applications only need a thread to
have access to a JDBC connection when they are actively processing a transaction, which usually take
only milliseconds to complete. When not processing a transaction, the connection would otherwise sit
idle. Instead, connection pooling allows the idle connection to be used by some other thread to do useful
work.

In practice, when a thread needs to do work against a MySQL or other database with JDBC, it requests a
connection from the pool. When the thread is finished using the connection, it returns it to the pool, so
that it may be used by any other threads that want to use it.

When the connection is loaned out from the pool, it is used exclusively by the thread that requested it.
From a programming point of view, it is the same as if your thread called DriverMan-
ager.getConnection() every time it needed a JDBC connection, however with connection pool-
ing, your thread may end up using either a new, or already-existing connection.

Connection pooling can greatly increase the performance of your Java application, while reducing over-

Connectors

1589

all resource usage. The main benefits to connection pooling are:

• Reduced connection creation time

Although this is not usually an issue with the quick connection setup that MySQL offers compared
to other databases, creating new JDBC connections still incurs networking and JDBC driver over-
head that will be avoided if connections are recycled.

• Simplified programming model

When using connection pooling, each individual thread can act as though it has created its own JD-
BC connection, allowing you to use straight-forward JDBC programming techniques.

• Controlled resource usage

If you don't use connection pooling, and instead create a new connection every time a thread needs
one, your application's resource usage can be quite wasteful and lead to unpredictable behavior un-
der load.

Remember that each connection to MySQL has overhead (memory, CPU, context switches, and so
forth) on both the client and server side. Every connection limits how many resources there are available
to your application as well as the MySQL server. Many of these resources will be used whether or not
the connection is actually doing any useful work!

Connection pools can be tuned to maximize performance, while keeping resource utilization below the
point where your application will start to fail rather than just run slower.

Luckily, Sun has standardized the concept of connection pooling in JDBC through the JDBC-2.0 Op-
tional interfaces, and all major application servers have implementations of these APIs that work fine
with MySQL Connector/J.

Generally, you configure a connection pool in your application server configuration files, and access it
via the Java Naming and Directory Interface (JNDI). The following code shows how you might use a
connection pool from an application deployed in a J2EE application server:

Example 23.11. Using a connection pool with a J2EE application server

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;

import javax.naming.InitialContext;
import javax.sql.DataSource;

public class MyServletJspOrEjb {

public void doSomething() throws Exception {
/*
* Create a JNDI Initial context to be able to
* lookup the DataSource
*
* In production-level code, this should be cached as
* an instance or static variable, as it can
* be quite expensive to create a JNDI context.
*
* Note: This code only works when you are using servlets
* or EJBs in a J2EE application server. If you are
* using connection pooling in standalone Java code, you
* will have to create/configure datasources using whatever
* mechanisms your particular connection pooling library
* provides.
*/

Connectors

1590

InitialContext ctx = new InitialContext();

/*
* Lookup the DataSource, which will be backed by a pool
* that the application server provides. DataSource instances
* are also a good candidate for caching as an instance
* variable, as JNDI lookups can be expensive as well.
*/

DataSource ds = (DataSource)ctx.lookup("java:comp/env/jdbc/MySQLDB");

/*
* The following code is what would actually be in your
* Servlet, JSP or EJB 'service' method...where you need
* to work with a JDBC connection.
*/

Connection conn = null;
Statement stmt = null;

try {
conn = ds.getConnection();

/*
* Now, use normal JDBC programming to work with
* MySQL, making sure to close each resource when you're
* finished with it, which allows the connection pool
* resources to be recovered as quickly as possible
*/

stmt = conn.createStatement();
stmt.execute("SOME SQL QUERY");

stmt.close();
stmt = null;

conn.close();
conn = null;

} finally {
/*
* close any jdbc instances here that weren't
* explicitly closed during normal code path, so
* that we don't 'leak' resources...
*/

if (stmt != null) {
try {

stmt.close();
} catch (sqlexception sqlex) {

// ignore -- as we can't do anything about it here
}

stmt = null;
}

if (conn != null) {
try {

conn.close();
} catch (sqlexception sqlex) {

// ignore -- as we can't do anything about it here
}

conn = null;
}

}
}

}

As shown in the example above, after obtaining the JNDI InitialContext, and looking up the DataSource,
the rest of the code should look familiar to anyone who has done JDBC programming in the past.

The most important thing to remember when using connection pooling is to make sure that no matter
what happens in your code (exceptions, flow-of-control, and so forth), connections, and anything created
by them (such as statements or result sets) are closed, so that they may be re-used, otherwise they will be
stranded, which in the best case means that the MySQL server resources they represent (such as buffers,

Connectors

1591

locks, or sockets) may be tied up for some time, or worst case, may be tied up forever.

What's the Best Size for my Connection Pool?

As with all other configuration rules-of-thumb, the answer is: it depends. Although the optimal size de-
pends on anticipated load and average database transaction time, the optimum connection pool size is
smaller than you might expect. If you take Sun's Java Petstore blueprint application for example, a con-
nection pool of 15-20 connections can serve a relatively moderate load (600 concurrent users) using
MySQL and Tomcat with response times that are acceptable.

To correctly size a connection pool for your application, you should create load test scripts with tools
such as Apache JMeter or The Grinder, and load test your application.

An easy way to determine a starting point is to configure your connection pool's maximum number of
connections to be unbounded, run a load test, and measure the largest amount of concurrently used con-
nections. You can then work backward from there to determine what values of minimum and maximum
pooled connections give the best performance for your particular application.

23.3.5.2.2. Using Connector/J with Tomcat

The following instructions are based on the instructions for Tomcat-5.x, available at ht-
tp://jakarta.apache.org/tomcat/tomcat-5.0-doc/jndi-datasource-examples-howto.html which is current at
the time this document was written.

First, install the .jar file that comes with Connector/J in $CATALINA_HOME/common/lib so that it is
available to all applications installed in the container.

Next, Configure the JNDI DataSource by adding a declaration resource to
$CATALINA_HOME/conf/server.xml in the context that defines your web application:

<Context>

...

<Resource name="jdbc/MySQLDB"
auth="Container"
type="javax.sql.DataSource"/>

<!-- The name you used above, must match _exactly_ here!

The connection pool will be bound into JNDI with the name
"java:/comp/env/jdbc/MySQLDB"

-->

<ResourceParams name="jdbc/MySQLDB">
<parameter>

<name>factory</name>
<value>org.apache.commons.dbcp.BasicDataSourceFactory</value>

</parameter>

<!-- Don't set this any higher than max_connections on your
MySQL server, usually this should be a 10 or a few 10's
of connections, not hundreds or thousands -->

<parameter>
<name>maxActive</name>
<value>10</value>

</parameter>

<!-- You don't want to many idle connections hanging around
if you can avoid it, only enough to soak up a spike in
the load -->

<parameter>
<name>maxIdle</name>
<value>5</value>

</parameter>

<!-- Don't use autoReconnect=true, it's going away eventually

Connectors

1592

http://jakarta.apache.org/tomcat/tomcat-5.0-doc/jndi-datasource-examples-howto.html
http://jakarta.apache.org/tomcat/tomcat-5.0-doc/jndi-datasource-examples-howto.html

and it's a crutch for older connection pools that couldn't
test connections. You need to decide whether your application is
supposed to deal with SQLExceptions (hint, it should), and
how much of a performance penalty you're willing to pay
to ensure 'freshness' of the connection -->

<parameter>
<name>validationQuery</name>
<value>SELECT 1</value>

</parameter>

<!-- The most conservative approach is to test connections
before they're given to your application. For most applications
this is okay, the query used above is very small and takes
no real server resources to process, other than the time used
to traverse the network.

If you have a high-load application you'll need to rely on
something else. -->

<parameter>
<name>testOnBorrow</name>
<value>true</value>

</parameter>

<!-- Otherwise, or in addition to testOnBorrow, you can test
while connections are sitting idle -->

<parameter>
<name>testWhileIdle</name>
<value>true</value>

</parameter>

<!-- You have to set this value, otherwise even though
you've asked connections to be tested while idle,
the idle evicter thread will never run -->

<parameter>
<name>timeBetweenEvictionRunsMillis</name>
<value>10000</value>

</parameter>

<!-- Don't allow connections to hang out idle too long,
never longer than what wait_timeout is set to on the
server...A few minutes or even fraction of a minute
is sometimes okay here, it depends on your application
and how much spikey load it will see -->

<parameter>
<name>minEvictableIdleTimeMillis</name>
<value>60000</value>

</parameter>

<!-- Username and password used when connecting to MySQL -->

<parameter>
<name>username</name>
<value>someuser</value>

</parameter>

<parameter>
<name>password</name>
<value>somepass</value>

</parameter>

<!-- Class name for the Connector/J driver -->

<parameter>
<name>driverClassName</name>
<value>com.mysql.jdbc.Driver</value>

</parameter>

<!-- The JDBC connection url for connecting to MySQL, notice
that if you want to pass any other MySQL-specific parameters
you should pass them here in the URL, setting them using the
parameter tags above will have no effect, you will also
need to use & to separate parameter values as the
ampersand is a reserved character in XML -->

<parameter>

Connectors

1593

<name>url</name>
<value>jdbc:mysql://localhost:3306/test</value>

</parameter>

</ResourceParams>
</Context>

In general, you should follow the installation instructions that come with your version of Tomcat, as the
way you configure datasources in Tomcat changes from time-to-time, and unfortunately if you use the
wrong syntax in your XML file, you will most likely end up with an exception similar to the following:

Error: java.sql.SQLException: Cannot load JDBC driver class 'null ' SQL
state: null

23.3.5.2.3. Using Connector/J with JBoss

These instructions cover JBoss-4.x. To make the JDBC driver classes available to the application server,
copy the .jar file that comes with Connector/J to the lib directory for your server configuration (which
is usually called default). Then, in the same configuration directory, in the subdirectory named de-
ploy, create a datasource configuration file that ends with "-ds.xml", which tells JBoss to deploy this file
as a JDBC Datasource. The file should have the following contents:

<datasources>
<local-tx-datasource>

<!-- This connection pool will be bound into JNDI with the name
"java:/MySQLDB" -->

<jndi-name>MySQLDB</jndi-name>
<connection-url>jdbc:mysql://localhost:3306/dbname</connection-url>
<driver-class>com.mysql.jdbc.Driver</driver-class>
<user-name>user</user-name>
<password>pass</password>

<min-pool-size>5</min-pool-size>

<!-- Don't set this any higher than max_connections on your
MySQL server, usually this should be a 10 or a few 10's
of connections, not hundreds or thousands -->

<max-pool-size>20</max-pool-size>

<!-- Don't allow connections to hang out idle too long,
never longer than what wait_timeout is set to on the
server...A few minutes is usually okay here,
it depends on your application
and how much spikey load it will see -->

<idle-timeout-minutes>5</idle-timeout-minutes>

<!-- If you're using Connector/J 3.1.8 or newer, you can use
our implementation of these to increase the robustness
of the connection pool. -->

<exception-sorter-class-name>com.mysql.jdbc.integration.jboss.ExtendedMysqlExceptionSorter</exception-sorter-class-name>
<valid-connection-checker-class-name>com.mysql.jdbc.integration.jboss.MysqlValidConnectionChecker</valid-connection-checker-class-name>

</local-tx-datasource>
</datasources>

23.3.5.3. Common Problems and Solutions

There are a few issues that seem to be commonly encountered often by users of MySQL Connector/J.
This section deals with their symptoms, and their resolutions.

Questions

• 24.3.5.3.1: When I try to connect to the database with MySQL Connector/J, I get the following ex-

Connectors

1594

ception:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What's going on? I can connect just fine with the MySQL command-line client.

• 24.3.5.3.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

• 24.3.5.3.3: I'm trying to use MySQL Connector/J in an applet or application and I get an exception
similar to:

SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?

(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0

• 24.3.5.3.4: I have a servlet/application that works fine for a day, and then stops working overnight

• 24.3.5.3.5: I'm trying to use JDBC-2.0 updatable result sets, and I get an exception saying my result
set is not updatable.

Questions and Answers

24.3.5.3.1: When I try to connect to the database with MySQL Connector/J, I get the following ex-
ception:

SQLException: Server configuration denies access to data source
SQLState: 08001
VendorError: 0

What's going on? I can connect just fine with the MySQL command-line client.

MySQL Connector/J must use TCP/IP sockets to connect to MySQL, as Java does not support Unix Do-
main Sockets. Therefore, when MySQL Connector/J connects to MySQL, the security manager in
MySQL server will use its grant tables to determine whether the connection should be allowed.

You must add the necessary security credentials to the MySQL server for this to happen, using the
GRANT statement to your MySQL Server. See Section 13.5.1.3, “GRANT Syntax”, for more information.

Note. Testing your connectivity with the mysql command-line client will not work unless you add the
--host flag, and use something other than localhost for the host. The mysql command-line client
will use Unix domain sockets if you use the special hostname localhost. If you are testing con-
nectivity to localhost, use 127.0.0.1 as the hostname instead.

Warning. Changing privileges and permissions improperly in MySQL can potentially cause your serv-
er installation to not have optimal security properties.

24.3.5.3.2: My application throws an SQLException 'No Suitable Driver'. Why is this happening?

There are three possible causes for this error:

• The Connector/J driver is not in your CLASSPATH, see Section 23.3.2, “Installing Connector/J”.

• The format of your connection URL is incorrect, or you are referencing the wrong JDBC driver.

• When using DriverManager, the jdbc.drivers system property has not been populated with the

Connectors

1595

location of the Connector/J driver.

24.3.5.3.3: I'm trying to use MySQL Connector/J in an applet or application and I get an excep-
tion similar to:

SQLException: Cannot connect to MySQL server on host:3306.
Is there a MySQL server running on the machine/port you
are trying to connect to?

(java.security.AccessControlException)
SQLState: 08S01
VendorError: 0

Either you're running an Applet, your MySQL server has been installed with the "--skip-networking" op-
tion set, or your MySQL server has a firewall sitting in front of it.

Applets can only make network connections back to the machine that runs the web server that served the
.class files for the applet. This means that MySQL must run on the same machine (or you must have
some sort of port re-direction) for this to work. This also means that you will not be able to test applets
from your local file system, you must always deploy them to a web server.

MySQL Connector/J can only communicate with MySQL using TCP/IP, as Java does not support Unix
domain sockets. TCP/IP communication with MySQL might be affected if MySQL was started with the
"--skip-networking" flag, or if it is firewalled.

If MySQL has been started with the "--skip-networking" option set (the Debian Linux package of
MySQL server does this for example), you need to comment it out in the file /etc/mysql/my.cnf or /
etc/my.cnf. Of course your my.cnf file might also exist in the data directory of your MySQL server, or
anywhere else (depending on how MySQL was compiled for your system). Binaries created by MySQL
AB always look in /etc/my.cnf and [datadir]/my.cnf. If your MySQL server has been firewalled, you
will need to have the firewall configured to allow TCP/IP connections from the host where your Java
code is running to the MySQL server on the port that MySQL is listening to (by default, 3306).

24.3.5.3.4: I have a servlet/application that works fine for a day, and then stops working overnight

MySQL closes connections after 8 hours of inactivity. You either need to use a connection pool that
handles stale connections or use the "autoReconnect" parameter (see Section 23.3.4.1,
“Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J”).

Also, you should be catching SQLExceptions in your application and dealing with them, rather than
propagating them all the way until your application exits, this is just good programming practice.
MySQL Connector/J will set the SQLState (see java.sql.SQLException.getSQLState() in
your APIDOCS) to "08S01" when it encounters network-connectivity issues during the processing of a
query. Your application code should then attempt to re-connect to MySQL at this point.

The following (simplistic) example shows what code that can handle these exceptions might look like:

Example 23.12. Example of transaction with retry logic

public void doBusinessOp() throws SQLException {
Connection conn = null;
Statement stmt = null;
ResultSet rs = null;

//
// How many times do you want to retry the transaction
// (or at least _getting_ a connection)?
//
int retryCount = 5;

Connectors

1596

boolean transactionCompleted = false;

do {
try {

conn = getConnection(); // assume getting this from a
// javax.sql.DataSource, or the
// java.sql.DriverManager

conn.setAutoCommit(false);

//
// Okay, at this point, the 'retry-ability' of the
// transaction really depends on your application logic,
// whether or not you're using autocommit (in this case
// not), and whether you're using transacational storage
// engines
//
// For this example, we'll assume that it's _not_ safe
// to retry the entire transaction, so we set retry count
// to 0 at this point
//
// If you were using exclusively transaction-safe tables,
// or your application could recover from a connection going
// bad in the middle of an operation, then you would not
// touch 'retryCount' here, and just let the loop repeat
// until retryCount == 0.
//
retryCount = 0;

stmt = conn.createStatement();

String query = "SELECT foo FROM bar ORDER BY baz";

rs = stmt.executeQuery(query);

while (rs.next()) {
}

rs.close();
rs = null;

stmt.close();
stmt = null;

conn.commit();
conn.close();
conn = null;

transactionCompleted = true;
} catch (SQLException sqlEx) {

//
// The two SQL states that are 'retry-able' are 08S01
// for a communications error, and 40001 for deadlock.
//
// Only retry if the error was due to a stale connection,
// communications problem or deadlock
//

String sqlState = sqlEx.getSQLState();

if ("08S01".equals(sqlState) || "40001".equals(sqlState)) {
retryCount--;

} else {
retryCount = 0;

}
} finally {

if (rs != null) {
try {

rs.close();
} catch (SQLException sqlEx) {

// You'd probably want to log this . . .
}

}

if (stmt != null) {
try {

stmt.close();
} catch (SQLException sqlEx) {

// You'd probably want to log this as well . . .

Connectors

1597

}
}

if (conn != null) {
try {

//
// If we got here, and conn is not null, the
// transaction should be rolled back, as not
// all work has been done

try {
conn.rollback();

} finally {
conn.close();

}
} catch (SQLException sqlEx) {

//
// If we got an exception here, something
// pretty serious is going on, so we better
// pass it up the stack, rather than just
// logging it. . .

throw sqlEx;
}

}
}

} while (!transactionCompleted && (retryCount > 0));
}

Note. Use of the autoReconnect option is not recommended because there is no safe method of re-
connecting to the MySQL server without risking some corruption of the connection state or database
state information. Instead, you should use a connection pool which will enable your application to con-
nect to the MySQL server using an available connection from the pool. The autoReconnect facility
is deprecated, and may be removed in a future release.

24.3.5.3.5: I'm trying to use JDBC-2.0 updatable result sets, and I get an exception saying my res-
ult set is not updatable.

Because MySQL does not have row identifiers, MySQL Connector/J can only update result sets that
have come from queries on tables that have at least one primary key, the query must select every
primary key and the query can only span one table (that is, no joins). This is outlined in the JDBC spe-
cification.

Note that this issue only occurs when using updatable result sets, and is caused because Connector/J is
unable to guarantee that it can identify the correct rows within the result set to be updated without hav-
ing a unique reference to each row. There is no requirement to have a unique field on a table if you are
using UPDATE or DELETE statements on a table where you can individually specify the criteria to be
matched using a WHERE clause.

23.3.6. Connector/J Support

23.3.6.1. Connector/J Community Support

MySQL AB provides assistance to the user community by means of its mailing lists. For Connector/J re-
lated issues, you can get help from experienced users by using the MySQL and Java mailing list.
Archives and subscription information is available online at http://lists.mysql.com/java.

For information about subscribing to MySQL mailing lists or to browse list archives, visit ht-
tp://lists.mysql.com/. See Section 1.7.1, “MySQL Mailing Lists”.

Community support from experienced users is also available through the JDBC Forum
[http://forums.mysql.com/list.php?39]. You may also find help from other users in the other MySQL
Forums, located at http://forums.mysql.com. See Section 1.7.2, “MySQL Community Support at the

Connectors

1598

http://lists.mysql.com/java
http://lists.mysql.com/
http://lists.mysql.com/
http://forums.mysql.com/list.php?39
http://forums.mysql.com

MySQL Forums”.

23.3.6.2. How to Report Connector/J Bugs or Problems

The normal place to report bugs is http://bugs.mysql.com/, which is the address for our bugs database.
This database is public, and can be browsed and searched by anyone. If you log in to the system, you
will also be able to enter new reports.

If you have found a sensitive security bug in MySQL, you can send email to security_at_mysql.com
[mailto:security_at_mysql.com].

Writing a good bug report takes patience, but doing it right the first time saves time both for us and for
yourself. A good bug report, containing a full test case for the bug, makes it very likely that we will fix
the bug in the next release.

This section will help you write your report correctly so that you don't waste your time doing things that
may not help us much or at all.

If you have a repeatable bug report, please report it to the bugs database at http://bugs.mysql.com/. Any
bug that we are able to repeat has a high chance of being fixed in the next MySQL release.

To report other problems, you can use one of the MySQL mailing lists.

Remember that it is possible for us to respond to a message containing too much information, but not to
one containing too little. People often omit facts because they think they know the cause of a problem
and assume that some details don't matter.

A good principle is this: If you are in doubt about stating something, state it. It is faster and less trouble-
some to write a couple more lines in your report than to wait longer for the answer if we must ask you to
provide information that was missing from the initial report.

The most common errors made in bug reports are (a) not including the version number of Connector/J or
MySQL used, and (b) not fully describing the platform on which Connector/J is installed (including the
JVM version, and the platform type and version number that MySQL itself is installed on).

This is highly relevant information, and in 99 cases out of 100, the bug report is useless without it. Very
often we get questions like, “Why doesn't this work for me?” Then we find that the feature requested
wasn't implemented in that MySQL version, or that a bug described in a report has already been fixed in
newer MySQL versions.

Sometimes the error is platform-dependent; in such cases, it is next to impossible for us to fix anything
without knowing the operating system and the version number of the platform.

If at all possible, you should create a repeatable, stanalone testcase that doesn't involve any third-party
classes.

To streamline this process, we ship a base class for testcases with Connector/J, named
'com.mysql.jdbc.util.BaseBugReport'. To create a testcase for Connector/J using this class,
create your own class that inherits from com.mysql.jdbc.util.BaseBugReport and override
the methods setUp(), tearDown() and runTest().

In the setUp() method, create code that creates your tables, and populates them with any data needed
to demonstrate the bug.

In the runTest() method, create code that demonstrates the bug using the tables and data you created
in the setUp method.

In the tearDown() method, drop any tables you created in the setUp() method.

In any of the above three methods, you should use one of the variants of the getConnection()

Connectors

1599

http://bugs.mysql.com/
mailto:security_at_mysql.com
http://bugs.mysql.com/

method to create a JDBC connection to MySQL:

• getConnection() - Provides a connection to the JDBC URL specified in getUrl(). If a con-
nection already exists, that connection is returned, otherwise a new connection is created.

• getNewConnection() - Use this if you need to get a new connection for your bug report (i.e.
there's more than one connection involved).

• getConnection(String url) - Returns a connection using the given URL.

• getConnection(String url, Properties props) - Returns a connection using the
given URL and properties.

If you need to use a JDBC URL that is different from 'jdbc:mysql:///test', override the method
getUrl() as well.

Use the assertTrue(boolean expression) and assertTrue(String failureMes-
sage, boolean expression) methods to create conditions that must be met in your testcase
demonstrating the behavior you are expecting (vs. the behavior you are observing, which is why you are
most likely filing a bug report).

Finally, create a main() method that creates a new instance of your testcase, and calls the run meth-
od:

public static void main(String[] args) throws Exception {
new MyBugReport().run();

}

Once you have finished your testcase, and have verified that it demonstrates the bug you are reporting,
upload it with your bug report to http://bugs.mysql.com/.

23.3.6.3. Connector/J Change History

The Connector/J Change History (Changelog) is located with the main Changelog for MySQL. See Sec-
tion D.5, “MySQL Connector/J Change History”.

23.4. MySQL Connector/MXJ
MySQL Connector/MXJ is a solution for deploying the MySQL database engine (mysqld) intelligently
from within a Java package.

23.4.1. Introduction to Connector/MXJ
MySQL Connector/MXJ is a Java Utility package for deploying and managing a MySQL database. De-
ploying and using MySQL can be as easy as adding an additional parameter to the JDBC connection url,
which will result in the database being started when the first connection is made. This makes it easy for
Java developers to deploy applications which require a database by reducing installation barriers for
their end-users.

MySQL Connector/MXJ makes the MySQL database appear to be a java-based component. It does this
by determining what platform the system is running on, selecting the appropriate binary, and launching
the executable. It will also optionally deploy an initial database, with any specified parameters.

Included are instructions for use with a JDBC driver and deploying as a JMX MBean to JBoss.

You can download sources and binaries from: http://dev.mysql.com/downloads/connector/mxj/

Connectors

1600

http://bugs.mysql.com/
http://dev.mysql.com/downloads/connector/mxj/

This a beta release and feedback is welcome and encouraged.

Please send questions or comments to the MySQL and Java mailing list [http://lists.mysql.com/java].

23.4.1.1. Connector/MXJ Versions

Connector/MX

• Connector/MXJ 5.x, currently in beta status, includes mysqld version 5.0.22 and includes binaries
for Linux x86, Mac OS X PPC, Windows XP/NT/2000 x86 and Solaris SPARC. Connector/MXJ 5.x
requires the Connector/J 5.x package.

• Connector/MXJ 1.x includes mysqld version 4.1.13 and includes binaries for Linux x86, Windows
XP/NT/2000 x86 and Solaris SPARC. Connector/MXJ 1.x requires the Connector/J 3.x package.

This guide provides information on the Connector/MXJ 5.x release. For information on using the older
releases, please see the documentation included with the appropriate distribution.

23.4.1.2. Connector/MXJ Overview

Connector/MXJ consists of a Java class, a copy of the mysqld binary for a specific list of platforms,
and associated files and support utilities. The Java class controls the initialization of an instance of the
embedded mysqld binary, and the ongoing management of the mysqld process. The entire sequence
and management can be controlled entirely from within Java using the Connector/MXJ Java classes.
You can see an overview of the contents of the Connector/MXJ package in the figure below.

It is important to note that Connector/MXJ is not an embedded version of MySQL, or a version of
MySQL written as part of a Java class. Connector/MXJ works through the use of an embedded, com-
piled binary of mysqld as would normally be used when deploying a standard MySQL installation.

It is the Connector/MXJ wrapper, support classes and tools, that enable Connector/MXJ to appear as a
MySQL instance.

When Connector/MXJ is initialized, the corresponding mysqld binary for the current platform is ex-
tracted, along with a pre-configured data directed. Both are contained within the Connector/MXJ JAR
file. The mysqld instance is then started, with any additional options as specified during the initializa-
tion, and the MySQL database becomes accessible.

Because Connector/MXJ works in combination with Connector/J, you can access and integrate with the
MySQL instance through a JDBC connection. When you have finished with the server, the instance is
terminated, and, by default, any data created during the session is retained within the temporary direct-

Connectors

1601

http://lists.mysql.com/java

ory created when the instance was started.

Connector/MXJ and the embedded mysqld instance can be deployed in a number of environments
where relying on an existing database, or installing a MySQL instance would be impossible, including
CD-ROM embedded database applications and temporary database requirements within a Java-based
application environment.

23.4.2. Installing Connector/MXJ
Connector/MXJ does not have a installation application or process, but there are some steps you can fol-
low to make the installation and deployment of Connector/MXJ easier.

Before you start, there are some baseline requirements for

• Java Runtime Environment (v1.4.0 or newer) if you are only going to deploy the package.

• Java Development Kit (v1.4.0 or newer) if you want to build Connector/MXJ from source.

• Connector/J 5.0 or newer.

Depending on your target installation/deployment environment you may also require:

• JBoss - 4.0rc1 or newer

• Apache Tomcat - 5.0 or newer

• Sun's JMX reference implementation version 1.2.1 (from ht-
tp://java.sun.com/products/JavaManagement/)

23.4.2.1. Supported Platforms

Connector/MXJ is compatible with any platform supporting Java and MySQL. By default, Connector/
MXJ incorporates the mysqld binary for a select number of platforms, as outlined below.

• Linux, i386

• Windows NT, Windows 2000, Windows XP, x86

• Solaris 8, SPARC 32 (compatible with Solaris 8, Solaris 9 and Solaris 10 on SPARC 32-bit and
64-bit platforms)

• Mac OS X, PowerPC

For more information on packaging your own Connector/MXJ with the platforms you require, see Sec-
tion 23.4.5.1, “Creating your own Connector/MXJ Package”

23.4.2.2. Connector/MXJ Base Installation

Because there is no formal installation process, the method, installation directory, and access methods
you use for Connector/MXJ are entirely up to your individual requirements.

To perform a basic installation, choose a target directory for the files included in the Connector/MXJ

Connectors

1602

http://java.sun.com/products/JavaManagement/
http://java.sun.com/products/JavaManagement/

package. On Unix/Linux systems you may opt to use a directory such as /
usr/local/connector-mxj; On Windows, you may want to install the files in the base directory,
C:\Connector-MXJ, or within the Program Files directory.

To install the files:

1. Download the Connector/MXJ package, either in Tar/Gzip format (ideal for Unix/Linux systems)
or Zip format (Windows).

2. Extract the files from the package. This will create a directory connector-mxj. Copy and op-
tionally rename this directory to your desired location.

3. For best results, you should update your global CLASSPATH variable with the location of the Con-
nector/MXJ JAR (connextor-mxj.jar). You will also need to add the AspectJ Runtime, loc-
ated in lib/aspectjrt.jar.

Within Unix/Linux you can do this globally by editing the global shell profile, or on a user by user
basis by editing their individual shell profile.

On Windows 2000, Windows NT and Windows XP, you can edit the global CLASSPATH by edit-
ing the Environment Variables configured through the System control panel.

23.4.2.3. Connector/MXJ Quick Start Guide

Once you have extracted the Connector/MXJ and Connector/J components you can run one of the
sample applications that initiates a MySQL instance. You can test the installation by running the Con-
nectorMXJUrlTestExample:

java ConnectorMXJUrlTestExample
jdbc:mysql:mxj://localhost:3336/test?server.basedir=/var/tmp/test-mxj
[MysqldResource] launching mysqld (getOptions)
[/var/tmp/test-mxj/bin/mysqld][--no-defaults][--pid-file=/var/tmp/test-mxj/data/MysqldResource.pid][--socket=mysql.sock][--datadir=/var/tmp/test-mxj/data][--port=3336][--basedir=/var/tmp/test-mxj]
[MysqldResource] launching mysqld (driver_launched_mysqld_1)
InnoDB: The first specified data file ./ibdata1 did not exist:
InnoDB: a new database to be created!
060726 15:40:42 InnoDB: Setting file ./ibdata1 size to 10 MB
InnoDB: Database physically writes the file full: wait...
060726 15:40:43 InnoDB: Log file ./ib_logfile0 did not exist: new to be created
InnoDB: Setting log file ./ib_logfile0 size to 5 MB
InnoDB: Database physically writes the file full: wait...
060726 15:40:43 InnoDB: Log file ./ib_logfile1 did not exist: new to be created
InnoDB: Setting log file ./ib_logfile1 size to 5 MB
InnoDB: Database physically writes the file full: wait...
InnoDB: Doublewrite buffer not found: creating new
InnoDB: Doublewrite buffer created
InnoDB: Creating foreign key constraint system tables
InnoDB: Foreign key constraint system tables created
060726 15:40:44 InnoDB: Started; log sequence number 0 0
060726 15:40:44 [Note] /var/tmp/test-mxj/bin/mysqld: ready for connections.
Version: '5.0.22-max' socket: 'mysql.sock' port: 3336 MySQL Community Edition - Experimental (GPL)
[MysqldResource] mysqld running as process: 1210

5.0.22-max

[MysqldResource] stopping mysqld (process: 1210)
060726 15:40:44 [Note] /var/tmp/test-mxj/bin/mysqld: Normal shutdown

060726 15:40:45 InnoDB: Starting shutdown...
060726 15:40:48 InnoDB: Shutdown completed; log sequence number 0 43655
060726 15:40:48 [Note] /var/tmp/test-mxj/bin/mysqld: Shutdown complete

[MysqldResource] clearing options
[MysqldResource] shutdown complete

Connectors

1603

The above output shows an instance of MySQL starting, the necessary files being created (log files, In-
noDB data files) and the MySQL database entering the running state. The instance is then shutdown by
Connector/MXJ before the example terminates.

23.4.2.4. Deploying Connector/MXJ using Driver Launch

Connector/MXJ and Connector/J work together to enable you to launch an instance of the mysqld
server through the use of a keyword in the JDBC connection string. Deploying Connector/MXJ within a
Java application can be automated through this method, making the deployment of Connector/MXJ a
simple process:

1. Download and unzip Connector/MXJ, add connector-mxj.jar to the CLASSPATH.

2. To the JDBC connection string, embed the mxj keyword, for example: jd-
bc:mysql:mxj://localhost:PORT/DBNAME.

For more details, see Section 23.4.3, “Connector/MXJ Configuration”.

23.4.2.5. Deploying Connector/MXJ within JBoss

For deployment within a JBoss environment, you must configure the JBoss environment to use the Con-
nector/MXJ component within the JDBC parameters:

1. Download Connector/MXJ copy the connector-mxj.jar file to the
$JBOSS_HOME/server/default/lib directory.

2. Download Connector/J copy the connector-mxj.jar file to the
$JBOSS_HOME/server/default/lib directory.

3. Create an MBean service xml file in the $JBOSS_HOME/server/default/deploy directory
with any attributes set, for instance the datadir and autostart.

4. Set the JDBC parameters of your web application to use:

String driver = "com.mysql.jdbc.Driver";
String url = "jdbc:mysql:///test?propertiesTransform="+

"com.mysql.management.jmx.ConnectorMXJPropertiesTransform";
String user = "root";
String password = "";
Class.forName(driver);
Connection conn = DriverManager.getConnection(url, user, password);

You may wish to create a separate users and database table spaces for each application, rather than using
"root and test".

We highly suggest having a routine backup procedure for backing up the database files in the datadir.

23.4.2.6. Verifying Installation using JUnit

The best way to ensure that your platform is supported is to run the JUnit tests. These will test the Con-
nector/MXJ classes and the associated components.

23.4.2.6.1. JUnit Test Requirements

The first thing to do is make sure that the components will work on the platform. The MysqldRe-

Connectors

1604

source class is really a wrapper for a native version of MySQL, so not all platforms are supported. At
the time of this writing, Linux on the i386 architecture has been tested and seems to work quite well, as
does OS X v10.3. There has been limited testing on Windows and Solaris.

Requirements:

1. JDK-1.4 or newer (or the JRE if you aren't going to be compiling the source or JSPs).

2. MySQL Connector/J version 5.0 or newer (from http://dev.mysql.com/downloads/connector/j/) in-
stalled and available via your CLASSPATH.

3. The javax.management classes for JMX version 1.2.1, these are present in the following ap-
plication servers:

• JBoss - 4.0rc1 or newer.

• Apache Tomcat - 5.0 or newer.

• Sun's JMX reference implementation version 1.2.1 (from ht-
tp://java.sun.com/products/JavaManagement/).

4. JUnit 3.8.1 (from http://www.junit.org/).

If building from source, All of the requirements from above, plus:

1. Ant version 1.5 or newer (download from http://ant.apache.org/).

23.4.2.6.2. Running the JUnit Tests

1. The tests attempt to launch MySQL on the port 3336. If you have a MySQL running, it may con-
flict, but this isn't very likely because the default port for MySQL is 3306. However, You may set
the "c-mxj_test_port" Java property to a port of your choosing. Alternatively, you may wish to start
by shutting down any instances of MySQL you have running on the target machine.

The tests suppress output to the console by default. For verbose output, you may set the "c-
mxj_test_silent" Java property to "false".

2. To run the JUnit test suite, the $CLASSPATH must include the following:

• JUnit

• JMX

• Connector/J

• MySQL Connector/MXJ

3. If connector-mxj.jar is not present in your download, unzip MySQL Connector/MXJ source
archive.

cd mysqldjmx
ant dist

Then add $TEMP/cmxj/stage/connector-mxj/connector-mxj.jar to the
CLASSPATH.

Connectors

1605

http://dev.mysql.com/downloads/connector/j/
http://java.sun.com/products/JavaManagement/
http://java.sun.com/products/JavaManagement/
http://www.junit.org/
http://ant.apache.org/

4. if you have junit, execute the unit tests. From the command line, type:

java junit.textui.TestRunner com.mysql.management.AllTestsSuite

The output should look something like this:

...

...

..........
Time: 259.438

OK (101 tests)

Note that the tests are a bit slow near the end, so please be patient.

23.4.3. Connector/MXJ Configuration

23.4.3.1. Running as part of the JDBC Driver

A feature of the MySQL Connector/J JDBC driver is the ability to specify a connection to an embedded
Connector/MXJ instance through the use of the mxj keyword in the JDBC connection string.

In the following example, we have a program which creates a connection, executes a query, and prints
the result to the System.out. The MySQL database will be deployed and started as part of the connection
process, and shutdown as part of the finally block.

You can find this file in the Connector/MXJ package as src/Con-
nectorMXJUrlTestExample.java.

import java.io.File;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;

import com.mysql.management.driverlaunched.ServerLauncherSocketFactory;

public class ConnectorMXJUrlTestExample {
public static String DRIVER = "com.mysql.jdbc.Driver";

public static String JAVA_IO_TMPDIR = "java.io.tmpdir";

public static void main(String[] args) throws Exception {
File ourAppDir = new File(System.getProperty(JAVA_IO_TMPDIR));
File databaseDir = new File(ourAppDir, "test-mxj");
int port = 3336;

String url = "jdbc:mysql:mxj://localhost:" + port + "/test" + "?"
+ "server.basedir=" + databaseDir;

System.out.println(url);

String userName = "root";
String password = "";

Class.forName(DRIVER);
Connection conn = null;
try {

conn = DriverManager.getConnection(url, userName, password);
printQueryResults(conn, "SELECT VERSION()");

} finally {
try {

if (conn != null)
conn.close();

} catch (Exception e) {
e.printStackTrace();

Connectors

1606

}

ServerLauncherSocketFactory.shutdown(databaseDir, null);
}

}

public static void printQueryResults(Connection conn, String SQLquery)
throws Exception {

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(SQLquery);
int columns = rs.getMetaData().getColumnCount();
System.out.println("------------------------");
System.out.println();
while (rs.next()) {

for (int i = 1; i <= columns; i++) {
System.out.println(rs.getString(i));

}
System.out.println();

}
rs.close();
stmt.close();
System.out.println("------------------------");
System.out.flush();
Thread.sleep(100); // wait for System.out to finish flush

}
}

To run the above program, be sure to have connector-mxj.jar and Connector/J in the CLASSPATH.
Then type:

java ConnectorMXJTestExample

23.4.3.2. Running within a Java Object

If you have a java application and wish to “embed” a MySQL database, make use of the
com.mysql.management.MysqldResource class directly. This class may be instantiated with the default
(no argument) constructor, or by passing in a java.io.File object representing the directory you wish the
server to be "unzipped" into. It may also be instantiated with printstreams for "stdout" and "stderr" for
logging.

Once instantiated, a java.util.Map, the object will be able to provide a java.util.Map of server options ap-
propriate for the platform and version of MySQL which you will be using.

The MysqldResource enables you to "start" MySQL with a java.util.Map of server options which you
provide, as well as "shutdown" the database. The following example shows a simplistic way to embed
MySQL in an application using plain java objects.

You can find this file in the Connector/MXJ package as src/
ConnectorMXJObjectTestExample.java.

import java.io.File;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;
import java.util.HashMap;
import java.util.Map;

import com.mysql.management.MysqldResource;

public class ConnectorMXJObjectTestExample {
public static String DRIVER = "com.mysql.jdbc.Driver";

public static String JAVA_IO_TMPDIR = "java.io.tmpdir";

public static void main(String[] args) throws Exception {
File ourAppDir = new File(System.getProperty(JAVA_IO_TMPDIR));
File databaseDir = new File(ourAppDir, "mysql-mxj");
int port = 3336;

Connectors

1607

MysqldResource mysqldResource = startDatabase(databaseDir, port);

String userName = "root";
String password = "";

Class.forName(DRIVER);
Connection conn = null;
try {

String url = "jdbc:mysql://localhost:" + port + "/test";
conn = DriverManager.getConnection(url, userName, password);
printQueryResults(conn, "SELECT VERSION()");

} finally {
try {

if (conn != null) {
conn.close();

}
} catch (Exception e) {

e.printStackTrace();
}
try {

mysqldResource.shutdown();
} catch (Exception e) {

e.printStackTrace();
}

}
}

public static MysqldResource startDatabase(File databaseDir, int port) {
MysqldResource mysqldResource = new MysqldResource(databaseDir);

Map database_options = new HashMap();
database_options.put("port", Integer.toString(port));
mysqldResource.start("test-mysqld-thread", database_options);

if (!mysqldResource.isRunning()) {
throw new RuntimeException("MySQL did not start.");

}

System.out.println("MySQL is running.");

return mysqldResource;
}

public static void printQueryResults(Connection conn, String SQLquery)
throws Exception {

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery(SQLquery);
int columns = rs.getMetaData().getColumnCount();
System.out.println("------------------------");
System.out.println();
while (rs.next()) {

for (int i = 1; i <= columns; i++) {
System.out.println(rs.getString(i));

}
System.out.println();

}
rs.close();
stmt.close();
System.out.println("------------------------");
System.out.flush();
Thread.sleep(100); // wait for System.out to finish flush

}
}

23.4.3.3. Setting server options

Of course there are many options we may wish to set for a MySQL database. These options may be spe-
cified as part of the JDBC connection string simply by prefixing each server option with ''server.''. In the
following example we set two driver parameters and two server parameters:

String url = "jdbc:mysql://" + hostColonPort + "/"
+ "?"
+ "cacheServerConfiguration=true"
+ "&"

Connectors

1608

+ "useLocalSessionState=true"
+ "&"
+ "server.basedir=/opt/myapp/db"
+ "&"
+ "server.datadir=/mnt/bigdisk/myapp/data";

23.4.4. Connector/MXJ Reference

23.4.4.1. MysqldResource API

23.4.4.1.1. MysqldResource Constructors

The MysqldResource class supports three different constructor forms:

• public MysqldResource(File baseDir, File dataDir, String mysqlVer-
sionString, PrintStream out, PrintStream err, Utils util)

The most detailed constructor, enables you to set the base directory, data directory, select a server by
its version string, standard out and standard error and MySQL utilities class.

• public MysqldResource(File baseDir, File dataDir, String mysqlVer-
sionString, PrintStream out, PrintStream err)

Enables you to set the base directory, data directory, select a server by its version string, standard out
and standard error.

• public MysqldResource(File baseDir, File dataDir, String mysqlVer-
sionString)

Enables you to set the base directory, data directory and select a server by its version string. Output
for standard out and standard err are directed to System.out and System.err.

• public MysqldResource(File baseDir, File dataDir)

Enables you to set the base directory and data directory. The default MySQL version is selected, and
output for standard out and standard err are directed to System.out and System.err.

• public MysqldResource(File baseDir);

Allows the setting of the "basedir" to deploy the MySQL files to. Output for standard out and stand-
ard err are directed to System.out and System.err.

• public MysqldResource();

The basedir is defaulted to a subdirectory of the java.io.tempdir. Output for standard out and stand-
ard err are directed to System.out and System.err;

23.4.4.1.2. MysqldResource Methods

MysqldResource API includes the following methods:

• void start(String threadName, Map mysqldArgs);

Deploys and starts MySQL. The "threadName" string is used to name the thread which actually per-
forms the execution of the MySQL command line. The map is the set of arguments and their values

Connectors

1609

to be passed to the command line.

• void shutdown();

Shuts down the MySQL instance managed by the MysqldResource object.

• Map getServerOptions();

Returns a map of all the options and their current (or default, if not running) options available for the
MySQL database.

• boolean isRunning();

Returns true if the MySQL database is running.

• boolean isReadyForConnections();

Returns true once the database reports that is ready for connections.

• void setKillDelay(int millis);

The default “Kill Delay” is 30 seconds. This represents the amount of time to wait between the ini-
tial request to shutdown and issuing a “force kill” if the database has not shutdown by itself.

• void addCompletionListenser(Runnable listener);

Allows for applications to be notified when the server process completes. Each ''listener'' will be
fired off in its own thread.

• String getVersion();

Returns the version of MySQL.

• void setVersion(int MajorVersion, int minorVersion, int patch-
Level);

The standard distribution comes with only one version of MySQL packaged. However, it is possible
to package multiple versions, and specify which version to use.

23.4.5. Connector/MXJ Notes and Tips
This section contains notes and tips on using the Connector/MXJ component within your applications.

23.4.5.1. Creating your own Connector/MXJ Package

If you want to create a custom Connector/MXJ package that includes a specific mysqld version or plat-
form then you must extract and rebuild the connector-mxj.jar file.

First, you should create a new directory into which you can extract the current connector-mxj.jar:

shell> mkdir custom-mxj
shell> cd custom-mxj
shell> jar -xf connector-mxj.jar
shell> ls
5-0-22/
ConnectorMXJObjectTestExample.class
ConnectorMXJUrlTestExample.class
META-INF/
TestDb.class

Connectors

1610

com/
kill.exe

The MySQL version directory, 5-0-22 in the above example, contains all of the files used to create an
instance of MySQL when Connector/MXJ is executed. All of the files in this directory are required for
each version of MySQL that you want to embed. Note as well the format of the version number, which
uses hyphens instead of periods to separate the version number components.

Within the version specific directory are the platform specific directories, and archives of the data and
share directory required by MySQL for the various platforms. For example, here is the listing for the
default Connector/MXJ package:

shell>> ls
Linux-i386/
META-INF/
Mac_OS_X-ppc/
SunOS-sparc/
Win-x86/
com/
data_dir.jar
share_dir.jar
win_share_dir.jar

Platform specific directories are listed by their OS and platform - for example the mysqld for Mac OS
X PowerPC is located within the Mac_OS_X-ppc directory. You can delete directories from this loca-
tion that you do not require, and add new directories for additional platforms that you want to support.

To add a platform specific mysqld, create a new directory with the corresponding name for your oper-
ating system/platform. For example, you could add a directory for Mac OS X/Intel using the directory
Mac_OS_X-i386.

On Unix systems, you can determine the platform using uname:

shell> uname -p
i386

Now you need to download or compile mysqld for the MySQL version and platform you want to in-
clude in your custom connector-mxj.jar package into the new directory.

Create a file called version.txt in the OS/platform directory you have just created that contains the
version string/path of the mysqld binary. For example:

mysql-5.0.22-osx10.3-i386/bin/mysqld

You can now recreate the connector-mxj.jar file with the added mysqld:

shell> cd custom-mxj
shell> jar -cf ../connector-mxj.jar *

You should test this package using the steps outlined in Section 23.4.2.3, “Connector/MXJ Quick Start
Guide”.

23.4.5.2. Deploying Connector/MXJ with a pre-configured database

To include a pre-configured/populated database within your Connector/MXJ JAR file you must create a
custom data_dir.jar file, as included within the main connector-mxj.jar file:

1. First extract the connector-mxj.jar file, as outlined in the previous section (see Sec-
tion 23.4.5.1, “Creating your own Connector/MXJ Package”).

Connectors

1611

2. First, create your database and populate the database with the information you require in an existing
instance of MySQL - including Connector/MXJ instances. Data file formats are compatible across
platforms.

3. Shutdown the instance of MySQL.

4. Create a JAR file of the data directory and databases that you want to include your Connector/MXJ
package. You should include the mysql database, which includes user authentication information,
in addition to the specific databases you want to include. For example, to create a JAR of the
mysql and mxjtest databases:

shell> jar -cf ../data_dir.jar mysql mxjtest

5. Copy the data_dir.jar file into the extracted connector-mxj.jar directory, and then cre-
ate an archive for connector-mxj.jar.

Note that if you are create databases using the InnoDB engine, you must include the ibdata.* and
ib_logfile* files within the data_dir.jar archive.

23.4.5.3. Running within a JMX Agent (custom)

As a JMX MBean, MySQL Connector/MXJ requires a JMX v1.2 compliant MBean container, such as
JBoss version 4. The MBean will uses the standard JMX management APIs to present (and allow the
setting of) parameters which are appropriate for that platform.

If you are not using the SUN Reference implementation of the JMX libraries, you should skip this sec-
tion. Or, if you are deploying to JBoss, you also may wish to skip to the next section.

We want to see the MysqldDynamicMBean in action inside of a JMX agent. In the
com.mysql.management.jmx.sunri package is a custom JMX agent with two MBeans:

1. the MysqldDynamicMBean, and

2. a com.sun.jdmk.comm.HtmlAdaptorServer, which provides a web interface for manipulating the
beans inside of a JMX agent.

When this very simple agent is started, it will allow a MySQL database to be started and stopped with a
web browser.

1. Complete the testing of the platform as above.

• current JDK, JUnit, Connector/J, MySQL Connector/MXJ

• this section requires the SUN reference implementation of JMX

• PATH, JAVA_HOME, ANT_HOME, CLASSPATH

2. If not building from source, skip to next step

rebuild with the "sunri.present"

ant -Dsunri.present=true dist
re-run tests:
java junit.textui.TestRunner com.mysql.management.AllTestsSuite

Connectors

1612

3. launch the test agent from the command line:

java com.mysql.management.jmx.sunri.MysqldTestAgentSunHtmlAdaptor &

4. from a browser:

http://localhost:9092/

5. under MysqldAgent,

select "name=mysqld"

6. Observe the MBean View

7. scroll to the bottom of the screen press the startMysqld button

8. click Back to MBean View

9. scroll to the bottom of the screen press stopMysqld button

10. kill the java process running the Test Agent (jmx server)

23.4.5.4. Deployment in a standard JMX Agent environment (JBoss)

Once there is confidence that the MBean will function on the platform, deploying the MBean inside of a
standard JMX Agent is the next step. Included are instructions for deploying to JBoss.

1. Ensure a current version of java development kit (v1.4.x), see above.

• Ensure JAVA_HOME is set (JBoss requires JAVA_HOME)

• Ensure JAVA_HOME/bin is in the PATH (You will NOT need to set your CLASSPATH, nor
will you need any of the jars used in the previous tests).

2. Ensure a current version of JBoss (v4.0RC1 or better)

http://www.jboss.org/index.html
select "Downloads"
select "jboss-4.0.zip"
pick a mirror
unzip ~/dload/jboss-4.0.zip
create a JBOSS_HOME environment variable set to the unzipped directory
unix only:
cd $JBOSS_HOME/bin
chmod +x *.sh

3. Deploy (copy) the connector-mxj.jar to $JBOSS_HOME/server/default/lib.

4. Deploy (copy) mysql-connector-java-3.1.4-beta-bin.jar to
$JBOSS_HOME/server/default/lib.

5. Create a mxjtest.war directory in $JBOSS_HOME/server/default/deploy.

6. Deploy (copy) index.jsp to $JBOSS_HOME/server/default/deploy/mxjtest.war.

Connectors

1613

7. Create a mysqld-service.xml file in $JBOSS_HOME/server/default/deploy.

<?xml version="1.0" encoding="UTF-8"?>
<server>
<mbean code="com.mysql.management.jmx.jboss.JBossMysqldDynamicMBean"

name="mysql:type=service,name=mysqld">
<attribute name="datadir">/tmp/xxx_data_xxx</attribute>
<attribute name="autostart">true</attribute>
</mbean>

</server>

8. Start jboss:

• on unix: $JBOSS_HOME/bin/run.sh

• on windows: %JBOSS_HOME%\bin\run.bat

Be ready: JBoss sends a lot of output to the screen.

9. When JBoss seems to have stopped sending output to the screen, open a web browser to: ht-
tp://localhost:8080/jmx-console

10. Scroll down to the bottom of the page in the mysql section, select the bulleted mysqld link.

11. Observe the JMX MBean View page. MySQL should already be running.

12. (If "autostart=true" was set, you may skip this step.) Scroll to the bottom of the screen. You may
press the Invoke button to stop (or start) MySQL observe Operation completed suc-
cessfully without a return value. Click Back to MBean View

13. To confirm MySQL is running, open a web browser to ht-
tp://localhost:8080/mxjtest/ and you should see that

SELECT 1

returned with a result of

1

14. Guided by the $JBOSS_HOME/server/default/deploy/mxjtest.war/index.jsp
you will be able to use MySQL in your Web Application. There is a test database and a root
user (no password) ready to experiment with. Try creating a table, inserting some rows, and doing
some selects.

15. Shut down MySQL. MySQL will be stopped automatically when JBoss is stopped, or: from the
browser, scroll down to the bottom of the MBean View press the stop service Invoke button to
halt the service. Observe Operation completed successfully without a return
value. Using ps or task manager see that MySQL is no longer running

As of 1.0.6-beta version is the ability to have the MBean start the MySQL database upon start up. Also,
we've taken advantage of the JBoss life-cycle extension methods so that the database will gracefully shut
down when JBoss is shutdown.

23.4.6. Connector/MXJ Support
There are a wide variety of options available for obtaining support for using Connector/MXJ. You
should contact the Connector/MXJ community for help before reporting a potential bug or problem. See

Connectors

1614

Section 23.4.6.1, “Connector/MXJ Community Support”.

23.4.6.1. Connector/MXJ Community Support

MySQL AB provides assistance to the user community by means of a number of mailing lists and web
based forums.

You can find help and support through the MySQL and Java [http://lists.mysql.com/java] mailing list.

For information about subscribing to MySQL mailing lists or to browse list archives, visit ht-
tp://lists.mysql.com/. See Section 1.7.1, “MySQL Mailing Lists”.

Community support from experienced users is also available through the MyODBC Forum
[http://forums.mysql.com/list.php?39]. You may also find help from other users in the other MySQL
Forums, located at http://forums.mysql.com. See Section 1.7.2, “MySQL Community Support at the
MySQL Forums”.

23.4.6.2. How to Report Connector/MXJ Problems

If you encounter difficulties or problems with Connector/MXJ, contact the Connector/MXJ community
Section 23.4.6.1, “Connector/MXJ Community Support”.

If reporting a problem, you should ideally include the following information with the email:

• Operating system and version

• Connector/MXJ version

• MySQL server version

• Copies of error messages or other unexpected output

• Simple reproducible sample

Remember that the more information you can supply to us, the more likely it is that we can fix the prob-
lem.

If you believe the problem to be a bug, then you must report the bug through http://bugs.mysql.com/.

23.5. Connector/PHP
The PHP distribution and documentation are available from the PHP Web site. MySQL provides the
mysql and mysqli extensions for the Windows operating system for MySQL versions as of 5.0.18 on
http://dev.mysql.com/downloads/connector/php/. You can find information why you should preferably
use the extensions provided by MySQL on that page. For platforms other than Windows, you should use
the mysql or mysqli extensions shipped with the PHP sources. See Section 22.3, “MySQL PHP
API”.

Connectors

1615

http://lists.mysql.com/java
http://lists.mysql.com/
http://lists.mysql.com/
http://forums.mysql.com/list.php?39
http://forums.mysql.com
http://bugs.mysql.com/
http://dev.mysql.com/downloads/connector/php/

Chapter 24. Extending MySQL
24.1. MySQL Internals

This chapter describes a lot of things that you need to know when working on the MySQL code. If you
plan to contribute to MySQL development, want to have access to the bleeding-edge versions of the
code, or just want to keep track of development, follow the instructions in Section 2.9.3, “Installing from
the Development Source Tree”. If you are interested in MySQL internals, you should also subscribe to
our internals mailing list. This list has relatively low traffic. For details on how to subscribe, please
see Section 1.7.1, “MySQL Mailing Lists”. All developers at MySQL AB are on the internals list
and we help other people who are working on the MySQL code. Feel free to use this list both to ask
questions about the code and to send patches that you would like to contribute to the MySQL project!

24.1.1. MySQL Threads
The MySQL server creates the following threads:

• One thread manages TCP/IP file connection requests and creates a new dedicated thread to handle
the authentication and SQL statement processing for each connection. (On Unix, this thread also
manages Unix socket file connection requests.) On Windows, a similar thread manages shared-
memory connection requests, and on Windows NT-based systems, a thread manages named-pipe
connection requests. Every client connection has its own thread, although the manager threads try to
avoid creating threads by consulting the thread cache first to see whether a cached thread can be
used for a new connection.

• On Windows NT, there is a named pipe handler thread that does the same work as the TCP/IP con-
nection thread on named pipe connect requests.

• On a master replication server, slave server connections are like client connections: There is one
thread per connected slave.

• On a slave replication server, an I/O thread is started to connect to the master server and read up-
dates from it. An SQL thread is started to apply updates read from the master. These two threads run
independently and can be started and stopped independently.

• The signal thread handles all signals. This thread also normally handles alarms and calls pro-
cess_alarm() to force timeouts on connections that have been idle too long.

• If mysqld is compiled with -DUSE_ALARM_THREAD, a dedicated thread that handles alarms is
created. This is only used on some systems where there are problems with sigwait() or if you
want to use the thr_alarm() code in your application without a dedicated signal handling thread.

• If the server is started with the --flush_time=val option, a dedicated thread is created to flush
all tables every val seconds.

• Each table for which INSERT DELAYED statements are issued gets its own thread.

mysqladmin processlist only shows the connection, INSERT DELAYED, and replication
threads.

24.1.2. MySQL Test Suite
The test system that is included in Unix source and binary distributions makes it possible for users and
developers to perform regression tests on the MySQL code. These tests can be run on Unix.

1616

The current set of test cases doesn't test everything in MySQL, but it should catch most obvious bugs in
the SQL processing code, operating system or library issues, and is quite thorough in testing replication.
Our goal is to have the tests cover 100% of the code. We welcome contributions to our test suite. You
may especially want to contribute tests that examine the functionality critical to your system because
this ensures that all future MySQL releases work well with your applications.

The test system consists of a test language interpreter (mysqltest), a shell script to run all tests
(mysql-test-run), the actual test cases written in a special test language, and their expected results.
To run the test suite on your system after a build, type make test from the source root directory, or
change location to the mysql-test directory and type ./mysql-test-run. If you have installed a
binary distribution, change location to the mysql-test directory under the installation root directory
(for example, /usr/local/mysql/mysql-test), and run ./mysql-test-run. All tests
should succeed. If any do not, you should try to find out why and report the problem if it indicates a bug
in MySQL. See Section 1.8, “How to Report Bugs or Problems”.

If one test fails, you should run mysql-test-run with the --force option to check whether any
other tests fail.

If you have a copy of mysqld running on the machine where you want to run the test suite, you do not
have to stop it, as long as it is not using ports 9306 or 9307. If either of those ports is taken, you
should edit mysql-test-run and change the values of the master or slave port to one that is avail-
able.

In the mysql-test directory, you can run an individual test case with ./mysql-test-run
test_name.

You can use the mysqltest language to write your own test cases. This is documented in the MySQL
Test Framework manual, available at http://dev.mysql.com/doc/.

If you have a question about the test suite, or have a test case to contribute, send an email message to the
MySQL internals mailing list. See Section 1.7.1, “MySQL Mailing Lists”. This list does not accept
attachments, so you should FTP all the relevant files to: ftp://ftp.mysql.com/pub/mysql/upload/

24.2. Adding New Functions to MySQL
There are two ways to add new functions to MySQL:

• You can add functions through the user-defined function (UDF) interface. User-defined functions
are compiled as object files and then added to and removed from the server dynamically using the
CREATE FUNCTION and DROP FUNCTION statements. See Section 24.2.2, “CREATE FUNC-
TION Syntax”.

• You can add functions as native (built-in) MySQL functions. Native functions are compiled into the
mysqld server and become available on a permanent basis.

Each method has advantages and disadvantages:

• If you write user-defined functions, you must install object files in addition to the server itself. If you
compile your function into the server, you don't need to do that.

• Native functions require you to modify a source distribution. UDFs do not. You can add UDFs to a
binary MySQL distribution. No access to MySQL source is necessary.

• If you upgrade your MySQL distribution, you can continue to use your previously installed UDFs,
unless you upgrade to a newer version for which the UDF interface changes. For native functions,

Extending MySQL

1617

http://dev.mysql.com/doc/
ftp://ftp.mysql.com/pub/mysql/upload/

you must repeat your modifications each time you upgrade.

Whichever method you use to add new functions, they can be invoked in SQL statements just like native
functions such as ABS() or SOUNDEX().

Another way to add functions is by creating stored functions. These are written using SQL statements
rather than by compiling object code. The syntax for writing stored functions is described in Chapter 17,
Stored Procedures and Functions.

The following sections describe features of the UDF interface, provide instructions for writing UDFs,
discuss security precautions that MySQL takes to prevent UDF misuse, and describe how to add native
mySQL functions.

For example source code that illustrates how to write UDFs, take a look at the sql/
udf_example.cc file that is provided in MySQL source distributions.

24.2.1. Features of the User-Defined Function Interface
The MySQL interface for user-defined functions provides the following features and capabilities:

• Functions can return string, integer, or real values.

• You can define simple functions that operate on a single row at a time, or aggregate functions that
operate on groups of rows.

• Information is provided to functions that enables them to check the number and types of the argu-
ments passed to them.

• You can tell MySQL to coerce arguments to a given type before passing them to a function.

• You can indicate that a function returns NULL or that an error occurred.

24.2.2. CREATE FUNCTION Syntax
CREATE [AGGREGATE] FUNCTION function_name RETURNS {STRING|INTEGER|REAL|DECIMAL}

SONAME shared_library_name

A user-defined function (UDF) is a way to extend MySQL with a new function that works like a native
(built-in) MySQL function such as ABS() or CONCAT().

function_name is the name that should be used in SQL statements to invoke the function. The RE-
TURNS clause indicates the type of the function's return value. As of MySQL 5.0.3, DECIMAL is a legal
value after RETURNS, but currently DECIMAL functions return string values and should be written like
STRING functions.

shared_library_name is the basename of the shared object file that contains the code that imple-
ments the function. The file must be located in a directory that is searched by your system's dynamic
linker.

To create a function, you must have the INSERT and privilege for the mysql database. This is neces-
sary because CREATE FUNCTION adds a row to the mysql.func system table that records the func-
tion's name, type, and shared library name. If you do not have this table, you should run the
mysql_upgrade command to create it. See Section 5.6.2, “mysql_upgrade — Check Tables for
MySQL Upgrade”.

Extending MySQL

1618

An active function is one that has been loaded with CREATE FUNCTION and not removed with DROP
FUNCTION. All active functions are reloaded each time the server starts, unless you start mysqld with
the --skip-grant-tables option. In this case, UDF initialization is skipped and UDFs are un-
available.

For instructions on writing user-defined functions, see Section 24.2.4, “Adding a New User-Defined
Function”. For the UDF mechanism to work, functions must be written in C or C++ (or another lan-
guage that can use C calling conventions), your operating system must support dynamic loading and you
must have compiled mysqld dynamically (not statically).

An AGGREGATE function works exactly like a native MySQL aggregate (summary) function such as
SUM or COUNT(). For AGGREGATE to work, your mysql.func table must contain a type column.
If your mysql.func table does not have this column, you should run the mysql_upgrade program
to create it (see Section 5.6.2, “mysql_upgrade — Check Tables for MySQL Upgrade”).

24.2.3. DROP FUNCTION Syntax
DROP FUNCTION function_name

This statement drops the user-defined function (UDF) named function_name.

To drop a function, you must have the DELETE privilege for the mysql database. This is because
DROP FUNCTION removes a row from the mysql.func system table that records the function's
name, type, and shared library name.

24.2.4. Adding a New User-Defined Function
For the UDF mechanism to work, functions must be written in C or C++ (or another language that can
use C calling conventions), and your operating system must support dynamic loading. The MySQL
source distribution includes a file sql/udf_example.cc that defines 5 new functions. Consult this
file to see how UDF calling conventions work. UDF-related symbols and data structures are defined in
the include/mysql_com.h header file. (You need not include this header file directly because it is
included by mysql.h.)

A UDF contains code that becomes part of the running server, so when you write a UDF, you are bound
by any and all constraints that otherwise apply to writing server code. For example, you may have prob-
lems if you attempt to use functions from the libstdc++ library. Note that these constraints may
change in future versions of the server, so it is possible that server upgrades will require revisions to
UDFs that were originally written for older servers. For information about these constraints, see Sec-
tion 2.9.2, “Typical configure Options”, and Section 2.9.4, “Dealing with Problems Compiling
MySQL”.

To be able to use UDFs, you need to link mysqld dynamically. Don't configure MySQL using -
-with-mysqld-ldflags=-all-static. If you want to use a UDF that needs to access symbols
from mysqld (for example, the metaphone function in sql/udf_example.cc that uses de-
fault_charset_info), you must link the program with -rdynamic (see man dlopen). If you
plan to use UDFs, the rule of thumb is to configure MySQL with -
-with-mysqld-ldflags=-rdynamic unless you have a very good reason not to.

If you must use a precompiled distribution of MySQL, use MySQL-Max, which contains a dynamically
linked server that supports dynamic loading.

For each function that you want to use in SQL statements, you should define corresponding C (or C++)
functions. In the following discussion, the name “xxx” is used for an example function name. To distin-
guish between SQL and C/C++ usage, XXX() (uppercase) indicates an SQL function call, and xxx()
(lowercase) indicates a C/C++ function call.

Extending MySQL

1619

The C/C++ functions that you write to implement the interface for XXX() are:

• xxx() (required)

The main function. This is where the function result is computed. The correspondence between the
SQL function data type and the return type of your C/C++ function is shown here:

SQL Type C/C++ Type

STRING char *

INTEGER long long

REAL double

It is also possible to declare a DECIMAL function, but currently the value is returned as a string, so
you should write the UDF as though it were a STRING function. ROW functions are not implemen-
ted.

• xxx_init() (optional)

The initialization function for xxx(). It can be used for the following purposes:

• To check the number of arguments to XXX().

• To check that the arguments are of a required type or, alternatively, to tell MySQL to coerce ar-
guments to the types you want when the main function is called.

• To allocate any memory required by the main function.

• To specify the maximum length of the result.

• To specify (for REAL functions) the maximum number of decimal places in the result.

• To specify whether the result can be NULL.

• xxx_deinit() (optional)

The deinitialization function for xxx(). It should deallocate any memory allocated by the initializa-
tion function.

When an SQL statement invokes XXX(), MySQL calls the initialization function xxx_init() to let it
perform any required setup, such as argument checking or memory allocation. If xxx_init() returns
an error, MySQL aborts the SQL statement with an error message and does not call the main or deini-
tialization functions. Otherwise, MySQL calls the main function xxx() once for each row. After all
rows have been processed, MySQL calls the deinitialization function xxx_deinit() so that it can
perform any required cleanup.

For aggregate functions that work like SUM(), you must also provide the following functions:

• xxx_clear() (required in 5.0)

Reset the current aggregate value but do not insert the argument as the initial aggregate value for a
new group.

• xxx_add() (required)

Extending MySQL

1620

Add the argument to the current aggregate value.

MySQL handles aggregate UDFs as follows:

1. Call xxx_init() to let the aggregate function allocate any memory it needs for storing results.

2. Sort the table according to the GROUP BY expression.

3. Call xxx_clear() for the first row in each new group.

4. Call xxx_add() for each new row that belongs in the same group.

5. Call xxx() to get the result for the aggregate when the group changes or after the last row has
been processed.

6. Repeat 3-5 until all rows has been processed

7. Call xxx_deinit() to let the UDF free any memory it has allocated.

All functions must be thread-safe. This includes not just the main function, but the initialization and
deinitialization functions as well, and also the additional functions required by aggregate functions. A
consequence of this requirement is that you are not allowed to allocate any global or static variables that
change! If you need memory, you should allocate it in xxx_init() and free it in xxx_deinit().

24.2.4.1. UDF Calling Sequences for Simple Functions

This section describes the different functions that you need to define when you create a simple UDF.
Section 24.2.4, “Adding a New User-Defined Function”, describes the order in which MySQL calls
these functions.

The main xxx() function should be declared as shown in this section. Note that the return type and
parameters differ, depending on whether you declare the SQL function XXX() to return STRING, IN-
TEGER, or REAL in the CREATE FUNCTION statement:

For STRING functions:

char *xxx(UDF_INIT *initid, UDF_ARGS *args,
char *result, unsigned long *length,
char *is_null, char *error);

For INTEGER functions:

long long xxx(UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);

For REAL functions:

double xxx(UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);

DECIMAL functions return string values and should be declared the same way as STRING functions.
ROW functions are not implemented.

The initialization and deinitialization functions are declared like this:

Extending MySQL

1621

my_bool xxx_init(UDF_INIT *initid, UDF_ARGS *args, char *message);

void xxx_deinit(UDF_INIT *initid);

The initid parameter is passed to all three functions. It points to a UDF_INIT structure that is used
to communicate information between functions. The UDF_INIT structure members follow. The initial-
ization function should fill in any members that it wishes to change. (To use the default for a member,
leave it unchanged.)

• my_bool maybe_null

xxx_init() should set maybe_null to 1 if xxx() can return NULL. The default value is 1 if
any of the arguments are declared maybe_null.

• unsigned int decimals

The number of decimal digits to the right of the decimal point. The default value is the maximum
number of decimal digits in the arguments passed to the main function. (For example, if the function
is passed 1.34, 1.345, and 1.3, the default would be 3, because 1.345 has 3 decimal digits.

• unsigned int max_length

The maximum length of the result. The default max_length value differs depending on the result
type of the function. For string functions, the default is the length of the longest argument. For in-
teger functions, the default is 21 digits. For real functions, the default is 13 plus the number of
decimal digits indicated by initid->decimals. (For numeric functions, the length includes any
sign or decimal point characters.)

If you want to return a blob value, you can set max_length to 65KB or 16MB. This memory is
not allocated, but the value is used to decide which data type to use if there is a need to temporarily
store the data.

• char *ptr

A pointer that the function can use for its own purposes. For example, functions can use initid-
>ptr to communicate allocated memory among themselves. xxx_init() should allocate the
memory and assign it to this pointer:

initid->ptr = allocated_memory;

In xxx() and xxx_deinit(), refer to initid->ptr to use or deallocate the memory.

• my_bool const_item

xxx_init() should set const_item to 1 if xxx() always returns the same value and to 0 oth-
erwise.

24.2.4.2. UDF Calling Sequences for Aggregate Functions

This section describes the different functions that you need to define when you create an aggregate
UDF. Section 24.2.4, “Adding a New User-Defined Function”, describes the order in which MySQL
calls these functions.

• xxx_reset()

This function is called when MySQL finds the first row in a new group. It should reset any internal

Extending MySQL

1622

summary variables and then use the given UDF_ARGS argument as the first value in your internal
summary value for the group. Declare xxx_reset() as follows:

char *xxx_reset(UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);

xxx_reset() is not needed or used in MySQL 5.0, in which the UDF interface uses
xxx_clear() instead. However, you can define both xxx_reset() and xxx_clear() if you
want to have your UDF work with older versions of the server. (If you do include both functions, the
xxx_reset() function in many cases can be implemented internally by calling xxx_clear()
to reset all variables, and then calling xxx_add() to add the UDF_ARGS argument as the first
value in the group.)

• xxx_clear()

This function is called when MySQL needs to reset the summary results. It is called at the beginning
for each new group but can also be called to reset the values for a query where there were no match-
ing rows. Declare xxx_clear() as follows:

char *xxx_clear(UDF_INIT *initid, char *is_null, char *error);

is_null is set to point to CHAR(0) before calling xxx_clear().

If something went wrong, you can store a value in the variable to which the error argument points.
error points to a single-byte variable, not to a string buffer.

xxx_clear() is required by MySQL 5.0.

• xxx_add()

This function is called for all rows that belong to the same group, except for the first row. You
should use it to add the value in the UDF_ARGS argument to your internal summary variable.

char *xxx_add(UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);

The xxx() function for an aggregate UDF should be declared the same way as for a non-aggregate
UDF. See Section 24.2.4.1, “UDF Calling Sequences for Simple Functions”.

For an aggregate UDF, MySQL calls the xxx() function after all rows in the group have been pro-
cessed. You should normally never access its UDF_ARGS argument here but instead return a value
based on your internal summary variables.

Return value handling in xxx() should be done the same way as for a non-aggregate UDF. See Sec-
tion 24.2.4.4, “UDF Return Values and Error Handling”.

The xxx_reset() and xxx_add() functions handle their UDF_ARGS argument the same way as
functions for non-aggregate UDFs. See Section 24.2.4.3, “UDF Argument Processing”.

The pointer arguments to is_null and error are the same for all calls to xxx_reset(),
xxx_clear(), xxx_add() and xxx(). You can use this to remember that you got an error or
whether the xxx() function should return NULL. You should not store a string into *error! error
points to a single-byte variable, not to a string buffer.

*is_null is reset for each group (before calling xxx_clear()). *error is never reset.

Extending MySQL

1623

If *is_null or *error are set when xxx() returns, MySQL returns NULL as the result for the
group function.

24.2.4.3. UDF Argument Processing

The args parameter points to a UDF_ARGS structure that has the members listed here:

• unsigned int arg_count

The number of arguments. Check this value in the initialization function if you require your function
to be called with a particular number of arguments. For example:

if (args->arg_count != 2)
{

strcpy(message,"XXX() requires two arguments");
return 1;

}

• enum Item_result *arg_type

A pointer to an array containing the types for each argument. The possible type values are
STRING_RESULT, INT_RESULT, REAL_RESULT, and DECIMAL_RESULT.

To make sure that arguments are of a given type and return an error if they are not, check the
arg_type array in the initialization function. For example:

if (args->arg_type[0] != STRING_RESULT ||
args->arg_type[1] != INT_RESULT)

{
strcpy(message,"XXX() requires a string and an integer");
return 1;

}

Arguments of type DECIMAL_RESULT are passed as strings, so you should handle them like
STRING_RESULT values.

As an alternative to requiring your function's arguments to be of particular types, you can use the ini-
tialization function to set the arg_type elements to the types you want. This causes MySQL to co-
erce arguments to those types for each call to xxx(). For example, to specify that the first two argu-
ments should be coerced to string and integer, respectively, do this in xxx_init():

args->arg_type[0] = STRING_RESULT;
args->arg_type[1] = INT_RESULT;

Exact-value decimal arguments such as 1.3 or DECIMAL column values are passed with a type of
DECIMAL_RESULT. However, the values are passed as strings. If you want to receive a number,
use the initialization function to specify that the argument should be coerced to a REAL_RESULT
value:

args->arg_type[2] = REAL_RESULT;

Note: Prior to MySQL 5.0.3, decimal arguments were passed as REAL_RESULT values. If you up-
grade to a newer version and find that your UDF now receives string values, use the initialization
function to coerce the arguments to numbers as just described.

• char **args

args->args communicates information to the initialization function about the general nature of
the arguments passed to your function. For a constant argument i, args->args[i] points to the

Extending MySQL

1624

argument value. (See below for instructions on how to access the value properly.) For a non-constant
argument, args->args[i] is 0. A constant argument is an expression that uses only constants,
such as 3 or 4*7-2 or SIN(3.14). A non-constant argument is an expression that refers to values
that may change from row to row, such as column names or functions that are called with non-
constant arguments.

For each invocation of the main function, args->args contains the actual arguments that are
passed for the row currently being processed.

If argument i represents NULL, args->args[i] is a null pointer (0). If the argument is not
NULL, functions can refer to it as follows:

• An argument of type STRING_RESULT is given as a string pointer plus a length, to allow hand-
ling of binary data or data of arbitrary length. The string contents are available as args-
>args[i] and the string length is args->lengths[i]. You should not assume that strings
are null-terminated.

• For an argument of type INT_RESULT, you must cast args->args[i] to a long long
value:

long long int_val;
int_val = *((long long*) args->args[i]);

• For an argument of type REAL_RESULT, you must cast args->args[i] to a double value:

double real_val;
real_val = *((double*) args->args[i]);

• For an argument of type DECIMAL_RESULT, the value is passed as a string and should be
handled like a STRING_RESULT value.

• ROW_RESULT arguments are not implemented.

• unsigned long *lengths

For the initialization function, the lengths array indicates the maximum string length for each ar-
gument. You should not change these. For each invocation of the main function, lengths contains
the actual lengths of any string arguments that are passed for the row currently being processed. For
arguments of types INT_RESULT or REAL_RESULT, lengths still contains the maximum length
of the argument (as for the initialization function).

24.2.4.4. UDF Return Values and Error Handling

The initialization function should return 0 if no error occurred and 1 otherwise. If an error occurs,
xxx_init() should store a null-terminated error message in the message parameter. The message is
returned to the client. The message buffer is MYSQL_ERRMSG_SIZE characters long, but you should
try to keep the message to less than 80 characters so that it fits the width of a standard terminal screen.

The return value of the main function xxx() is the function value, for long long and double func-
tions. A string function should return a pointer to the result and set *result and *length to the con-
tents and length of the return value. For example:

memcpy(result, "result string", 13);
*length = 13;

The result buffer that is passed to the xxx() function is 255 bytes long. If your result fits in this,
you don't have to worry about memory allocation for results.

Extending MySQL

1625

If your string function needs to return a string longer than 255 bytes, you must allocate the space for it
with malloc() in your xxx_init() function or your xxx() function and free it in your
xxx_deinit() function. You can store the allocated memory in the ptr slot in the UDF_INIT
structure for reuse by future xxx() calls. See Section 24.2.4.1, “UDF Calling Sequences for Simple
Functions”.

To indicate a return value of NULL in the main function, set *is_null to 1:

*is_null = 1;

To indicate an error return in the main function, set *error to 1:

*error = 1;

If xxx() sets *error to 1 for any row, the function value is NULL for the current row and for any
subsequent rows processed by the statement in which XXX() was invoked. (xxx() is not even called
for subsequent rows.)

24.2.4.5. Compiling and Installing User-Defined Functions

Files implementing UDFs must be compiled and installed on the host where the server runs. This pro-
cess is described below for the example UDF file sql/udf_example.cc that is included in the
MySQL source distribution.

The immediately following instructions are for Unix. Instructions for Windows are given later in this
section.

The udf_example.cc file contains the following functions:

• metaphon() returns a metaphon string of the string argument. This is something like a soundex
string, but it's more tuned for English.

• myfunc_double() returns the sum of the ASCII values of the characters in its arguments, di-
vided by the sum of the length of its arguments.

• myfunc_int() returns the sum of the length of its arguments.

• sequence([const int]) returns a sequence starting from the given number or 1 if no number
has been given.

• lookup() returns the IP number for a hostname.

• reverse_lookup() returns the hostname for an IP number. The function may be called either
with a single string argument of the form 'xxx.xxx.xxx.xxx' or with four numbers.

A dynamically loadable file should be compiled as a sharable object file, using a command something
like this:

shell> gcc -shared -o udf_example.so udf_example.cc

If you are using gcc with configure and libtool (which is how MySQL is configured), you
should be able to create udf_example.so with a simpler command:

shell> make udf_example.la

Extending MySQL

1626

After you compile a shared object containing UDFs, you must install it and tell MySQL about it. Com-
piling a shared object from udf_example.cc using gcc directly produces a file named
udf_example.so. Compiling the shared object using make produces a file named something like
udf_example.so.0.0.0 in the .libs directory (the exact name may vary from platform to plat-
form). Copy the shared object to some directory such as /usr/lib that is searched by your system's
dynamic (runtime) linker, or add the directory in which you placed the shared object to the linker config-
uration file (for example, /etc/ld.so.conf).

The dynamic linker name is system-specific (for example, ld-elf.so.1 on FreeBSD, ld.so on
Linux, or dyld on Mac OS X). Consult your system documentation for information about the linker
name and how to configure it.

On many systems, you can also set the LD_LIBRARY or LD_LIBRARY_PATH environment variable to
point at the directory where you have the files for your UDF. The dlopen manual page tells you which
variable you should use on your system. You should set this in mysql.server or mysqld_safe
startup scripts and restart mysqld.

On some systems, the ldconfig program that configures the dynamic linker does not recognize a
shared object unless its name begins with lib. In this case you should rename a file such as
udf_example.so to libudf_example.so.

On Windows, you can compile user-defined functions by using the following procedure:

1. You need to obtain the BitKeeper source repository for MySQL 5.0. See Section 2.9.3, “Installing
from the Development Source Tree”.

2. You must obtain the CMake build utility from http://www.cmake.org. (Version 2.4.2 or later is re-
quired).

3. In the source repository, look in the sql directory. There are files named udf_example.def
udf_example.c there. Copy both files from this directory to your working directory.

4. Create a CMake makefile with these contents:

PROJECT(udf_example)

Path for MySQL include directory
INCLUDE_DIRECTORIES("c:/mysql/include")

ADD_DEFINITIONS("-DHAVE_DLOPEN")
ADD_LIBRARY(udf_example MODULE udf_example.c udf_example.def)
TARGET_LINK_LIBRARIES(udf_example wsock32)

5. Create the VC project and solution files:

cmake -G "<Generator>"

Invoking cmake --help shows you a list of valid Generators.

6. Create udf_example.dll:

devenv udf_example.sln /build Release

After the shared object file has been installed, notify mysqld about the new functions with these state-
ments:

mysql> CREATE FUNCTION metaphon RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE FUNCTION myfunc_double RETURNS REAL SONAME 'udf_example.so';
mysql> CREATE FUNCTION myfunc_int RETURNS INTEGER SONAME 'udf_example.so';

Extending MySQL

1627

http://www.cmake.org

mysql> CREATE FUNCTION lookup RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE FUNCTION reverse_lookup

-> RETURNS STRING SONAME 'udf_example.so';
mysql> CREATE AGGREGATE FUNCTION avgcost

-> RETURNS REAL SONAME 'udf_example.so';

Functions can be deleted using DROP FUNCTION:

mysql> DROP FUNCTION metaphon;
mysql> DROP FUNCTION myfunc_double;
mysql> DROP FUNCTION myfunc_int;
mysql> DROP FUNCTION lookup;
mysql> DROP FUNCTION reverse_lookup;
mysql> DROP FUNCTION avgcost;

The CREATE FUNCTION and DROP FUNCTION statements update the func system table in the
mysql database. The function's name, type and shared library name are saved in the table. You must
have the INSERT and DELETE privileges for the mysql database to create and drop functions.

You should not use CREATE FUNCTION to add a function that has previously been created. If you
need to reinstall a function, you should remove it with DROP FUNCTION and then reinstall it with
CREATE FUNCTION. You would need to do this, for example, if you recompile a new version of your
function, so that mysqld gets the new version. Otherwise, the server continues to use the old version.

An active function is one that has been loaded with CREATE FUNCTION and not removed with DROP
FUNCTION. All active functions are reloaded each time the server starts, unless you start mysqld with
the --skip-grant-tables option. In this case, UDF initialization is skipped and UDFs are un-
available.

24.2.4.6. User-Defined Function Security Precautions

MySQL takes the following measures to prevent misuse of user-defined functions.

You must have the INSERT privilege to be able to use CREATE FUNCTION and the DELETE priv-
ilege to be able to use DROP FUNCTION. This is necessary because these statements add and delete
rows from the mysql.func table.

UDFs should have at least one symbol defined in addition to the xxx symbol that corresponds to the
main xxx() function. These auxiliary symbols correspond to the xxx_init(), xxx_deinit(),
xxx_reset(), xxx_clear(), and xxx_add() functions. As of MySQL 5.0.3, mysqld supports
an --allow-suspicious-udfs option that controls whether UDFs that have only an xxx symbol
can be loaded. By default, the option is off, to prevent attempts at loading functions from shared object
files other than those containing legitimate UDFs. If you have older UDFs that contain only the xxx
symbol and that cannot be recompiled to include an auxiliary symbol, it may be necessary to specify the
--allow-suspicious-udfs option. Otherwise, you should avoid enabling this capability.

UDF object files cannot be placed in arbitrary directories. They must be located in some system direct-
ory that the dynamic linker is configured to search. To enforce this restriction and prevent attempts at
specifying pathnames outside of directories searched by the dynamic linker, MySQL checks the shared
object file name specified in CREATE FUNCTION statements for pathname delimiter characters. As of
MySQL 5.0.3, MySQL also checks for pathname delimiters in filenames stored in the mysql.func ta-
ble when it loads functions. This prevents attempts at specifying illegitimate pathnames through direct
manipulation of the mysql.func table. For information about UDFs and the runtime linker, see Sec-
tion 24.2.4.5, “Compiling and Installing User-Defined Functions”.

24.2.5. Adding a New Native Function
The procedure for adding a new native function is described here. Note that you cannot add native func-
tions to a binary distribution because the procedure involves modifying MySQL source code. You must
compile MySQL yourself from a source distribution. Also note that if you migrate to another version of

Extending MySQL

1628

MySQL (for example, when a new version is released), you need to repeat the procedure with the new
version.

To add a new native MySQL function, follow these steps:

1. Add one line to lex.h that defines the function name in the sql_functions[] array.

2. If the function prototype is simple (just takes zero, one, two or three arguments), you should in
lex.h specify SYM(FUNC_ARGN) (where N is the number of arguments) as the second argument
in the sql_functions[] array and add a function that creates a function object in
item_create.cc. Take a look at "ABS" and create_funcs_abs() for an example of this.

If the function prototype is complicated (for example, if it takes a variable number of arguments),
you should add two lines to sql_yacc.yy. One indicates the preprocessor symbol that yacc
should define (this should be added at the beginning of the file). Then define the function paramet-
ers and add an “item” with these parameters to the simple_expr parsing rule. For an example,
check all occurrences of ATAN in sql_yacc.yy to see how this is done.

3. In item_func.h, declare a class inheriting from Item_num_func or Item_str_func, de-
pending on whether your function returns a number or a string.

4. In item_func.cc, add one of the following declarations, depending on whether you are defining
a numeric or string function:

double Item_func_newname::val()
longlong Item_func_newname::val_int()
String *Item_func_newname::Str(String *str)

If you inherit your object from any of the standard items (like Item_num_func), you probably
only have to define one of these functions and let the parent object take care of the other functions.
For example, the Item_str_func class defines a val() function that executes atof() on the
value returned by ::str().

5. You should probably also define the following object function:

void Item_func_newname::fix_length_and_dec()

This function should at least calculate max_length based on the given arguments.
max_length is the maximum number of characters the function may return. This function should
also set maybe_null = 0 if the main function can't return a NULL value. The function can
check whether any of the function arguments can return NULL by checking the arguments'
maybe_null variable. You can take a look at Item_func_mod::fix_length_and_dec
for a typical example of how to do this.

All functions must be thread-safe. In other words, don't use any global or static variables in the functions
without protecting them with mutexes)

If you want to return NULL, from ::val(), ::val_int() or ::str() you should set
null_value to 1 and return 0.

For ::str() object functions, there are some additional considerations to be aware of:

• The String *str argument provides a string buffer that may be used to hold the result. (For
more information about the String type, take a look at the sql_string.h file.)

• The ::str() function should return the string that holds the result or (char*) 0 if the result is

Extending MySQL

1629

NULL.

• All current string functions try to avoid allocating any memory unless absolutely necessary!

24.3. Adding New Procedures to MySQL
In MySQL, you can define a procedure in C++ that can access and modify the data in a query before it is
sent to the client. The modification can be done on a row-by-row or GROUP BY level.

We have created an example procedure to show you what can be done.

Additionally, we recommend that you take a look at mylua. With this you can use the LUA language to
load a procedure at runtime into mysqld.

24.3.1. Procedure Analyse
analyse([max_elements,[max_memory]])

This procedure is defined in the sql/sql_analyse.cc. This examines the result from your query
and returns an analysis of the results:

• max_elements (default 256) is the maximum number of distinct values analyse does notice per
column. This is used by analyse to check whether the optimal data type should be of type ENUM.

• max_memory (default 8192) is the maximum amount of memory that analyse should allocate
per column while trying to find all distinct values.

SELECT ... FROM ... WHERE ... PROCEDURE ANALYSE([max_elements,[max_memory]])

24.3.2. Writing a Procedure
For the moment, the only documentation for this is the source.

You can find all information about procedures by examining the following files:

• sql/sql_analyse.cc

• sql/procedure.h

• sql/procedure.cc

• sql/sql_select.cc

Extending MySQL

1630

Appendix A. Problems and Common Errors
This appendix lists some common problems and error messages that you may encounter. It describes
how to determine the causes of the problems and what to do to solve them.

A.1. How to Determine What Is Causing a Problem
When you run into a problem, the first thing you should do is to find out which program or piece of
equipment is causing it:

• If you have one of the following symptoms, then it is probably a hardware problems (such as
memory, motherboard, CPU, or hard disk) or kernel problem:

• The keyboard doesn't work. This can normally be checked by pressing the Caps Lock key. If the
Caps Lock light doesn't change, you have to replace your keyboard. (Before doing this, you
should try to restart your computer and check all cables to the keyboard.)

• The mouse pointer doesn't move.

• The machine doesn't answer to a remote machine's pings.

• Other programs that are not related to MySQL don't behave correctly.

• Your system restarted unexpectedly. (A faulty user-level program should never be able to take
down your system.)

In this case, you should start by checking all your cables and run some diagnostic tool to check your
hardware! You should also check whether there are any patches, updates, or service packs for your
operating system that could likely solve your problem. Check also that all your libraries (such as
glibc) are up to date.

It's always good to use a machine with ECC memory to discover memory problems early.

• If your keyboard is locked up, you may be able to recover by logging in to your machine from anoth-
er machine and executing kbd_mode -a.

• Please examine your system log file (/var/log/messages or similar) for reasons for your prob-
lem. If you think the problem is in MySQL, you should also examine MySQL's log files. See Sec-
tion 5.12, “MySQL Server Logs”.

• If you don't think you have hardware problems, you should try to find out which program is causing
problems. Try using top, ps, Task Manager, or some similar program, to check which program is
taking all CPU or is locking the machine.

• Use top, df, or a similar program to check whether you are out of memory, disk space, file
descriptors, or some other critical resource.

• If the problem is some runaway process, you can always try to kill it. If it doesn't want to die, there
is probably a bug in the operating system.

If after you have examined all other possibilities and you have concluded that the MySQL server or a
MySQL client is causing the problem, it's time to create a bug report for our mailing list or our support
team. In the bug report, try to give a very detailed description of how the system is behaving and what
you think is happening. You should also state why you think that MySQL is causing the problem. Take
into consideration all the situations in this chapter. State any problems exactly how they appear when

1631

you examine your system. Use the “copy and paste” method for any output and error messages from
programs and log files.

Try to describe in detail which program is not working and all symptoms you see. We have in the past
received many bug reports that state only “the system doesn't work.” This doesn't provide us with any
information about what could be the problem.

If a program fails, it's always useful to know the following information:

• Has the program in question made a segmentation fault (did it dump core)?

• Is the program taking up all available CPU time? Check with top. Let the program run for a while,
it may simply be evaluating something computationally intensive.

• If the mysqld server is causing problems, can you get any response from it with mysqladmin -
u root ping or mysqladmin -u root processlist?

• What does a client program say when you try to connect to the MySQL server? (Try with mysql,
for example.) Does the client jam? Do you get any output from the program?

When sending a bug report, you should follow the outline described in Section 1.8, “How to Report
Bugs or Problems”.

A.2. Common Errors When Using MySQL Programs
This section lists some errors that users frequently encounter when running MySQL programs. Although
the problems show up when you try to run client programs, the solutions to many of the problems in-
volves changing the configuration of the MySQL server.

A.2.1. Access denied

An Access denied error can have many causes. Often the problem is related to the MySQL ac-
counts that the server allows client programs to use when connecting. See Section 5.8.8, “Causes of Ac-
cess denied Errors”, and Section 5.8.2, “How the Privilege System Works”.

A.2.2. Can't connect to [local] MySQL server

A MySQL client on Unix can connect to the mysqld server in two different ways: By using a Unix
socket file to connect through a file in the filesystem (default /tmp/mysql.sock), or by using TCP/
IP, which connects through a port number. A Unix socket file connection is faster than TCP/IP, but can
be used only when connecting to a server on the same computer. A Unix socket file is used if you don't
specify a hostname or if you specify the special hostname localhost.

If the MySQL server is running on Windows 9x or Me, you can connect only via TCP/IP. If the server is
running on Windows NT, 2000, XP, or 2003 and is started with the --enable-named-pipe option,
you can also connect with named pipes if you run the client on the host where the server is running. The
name of the named pipe is MySQL by default. If you don't give a hostname when connecting to
mysqld, a MySQL client first tries to connect to the named pipe. If that doesn't work, it connects to the
TCP/IP port. You can force the use of named pipes on Windows by using . as the hostname.

The error (2002) Can't connect to ... normally means that there is no MySQL server running
on the system or that you are using an incorrect Unix socket filename or TCP/IP port number when try-
ing to connect to the server.

The error (2003) Can't connect to MySQL server on 'server' (10061) indicates that

Problems and Common Errors

1632

the network connection has been refused. You should check that there is a MySQL server running, that
it has network connections enabled, the network port you specified is the one configured on the server,
and that the TCP/IP port you are using has not been blocked by a firewall or port blocking service.

Start by checking whether there is a process named mysqld running on your server host. (Use ps xa
| grep mysqld on Unix or the Task Manager on Windows.) If there is no such process, you should
start the server. See Section 2.10.2.3, “Starting and Troubleshooting the MySQL Server”.

If a mysqld process is running, you can check it by trying the following commands. The port number
or Unix socket filename might be different in your setup. host_ip represents the IP number of the ma-
chine where the server is running.

shell> mysqladmin version
shell> mysqladmin variables
shell> mysqladmin -h `hostname` version variables
shell> mysqladmin -h `hostname` --port=3306 version
shell> mysqladmin -h host_ip version
shell> mysqladmin --protocol=socket --socket=/tmp/mysql.sock version

Note the use of backticks rather than forward quotes with the hostname command; these cause the
output of hostname (that is, the current hostname) to be substituted into the mysqladmin command.
If you have no hostname command or are running on Windows, you can manually type the hostname
of your machine (without backticks) following the -h option. You can also try -h 127.0.0.1 to
connect with TCP/IP to the local host.

Here are some reasons the Can't connect to local MySQL server error might occur:

• mysqld is not running. Check your operating system's process list to ensure the mysqld process is
present.

• You're running a MySQL server on Windows with many TCP/IP connections to it. If you're experi-
encing that quite often your clients get that error, you can find a workaround here: Section A.2.2.1,
“Connection to MySQL Server Failing on Windows”.

• You are running on a system that uses MIT-pthreads. If you are running on a system that doesn't
have native threads, mysqld uses the MIT-pthreads package. See Section 2.1.1, “Operating Sys-
tems Supported by MySQL”. However, not all MIT-pthreads versions support Unix socket files. On
a system without socket file support, you must always specify the hostname explicitly when connect-
ing to the server. Try using this command to check the connection to the server:

shell> mysqladmin -h `hostname` version

• Someone has removed the Unix socket file that mysqld uses (/tmp/mysql.sock by default).
For example, you might have a cron job that removes old files from the /tmp directory. You can
always run mysqladmin version to check whether the Unix socket file that mysqladmin is
trying to use really exists. The fix in this case is to change the cron job to not remove
mysql.sock or to place the socket file somewhere else. See Section A.4.5, “How to Protect or
Change the MySQL Unix Socket File”.

• You have started the mysqld server with the --socket=/path/to/socket option, but for-
gotten to tell client programs the new name of the socket file. If you change the socket pathname for
the server, you must also notify the MySQL clients. You can do this by providing the same -
-socket option when you run client programs. You also need to ensure that clients have permis-
sion to access the mysql.sock file. To find out where the socket file is, you can do:

shell> netstat -ln | grep mysql

See Section A.4.5, “How to Protect or Change the MySQL Unix Socket File”.

Problems and Common Errors

1633

• You are using Linux and one server thread has died (dumped core). In this case, you must kill the
other mysqld threads (for example, with kill or with the mysql_zap script) before you can re-
start the MySQL server. See Section A.4.2, “What to Do If MySQL Keeps Crashing”.

• The server or client program might not have the proper access privileges for the directory that holds
the Unix socket file or the socket file itself. In this case, you must either change the access privileges
for the directory or socket file so that the server and clients can access them, or restart mysqld with
a --socket option that specifies a socket filename in a directory where the server can create it and
where client programs can access it.

If you get the error message Can't connect to MySQL server on some_host, you can try
the following things to find out what the problem is:

• Check whether the server is running on that host by executing telnet some_host 3306 and
pressing the Enter key a couple of times. (3306 is the default MySQL port number. Change the value
if your server is listening to a different port.) If there is a MySQL server running and listening to the
port, you should get a response that includes the server's version number. If you get an error such as
telnet: Unable to connect to remote host: Connection refused, then there
is no server running on the given port.

• If the server is running on the local host, try using mysqladmin -h localhost variables
to connect using the Unix socket file. Verify the TCP/IP port number that the server is configured to
listen to (it is the value of the port variable.)

• Make sure that your mysqld server was not started with the --skip-networking option. If it
was, you cannot connect to it using TCP/IP.

• Check to make sure that there is no firewall blocking access to MySQL. Applications such as
ZoneAlarm and the Windows XP personal firewall may need to be configured to allow external ac-
cess to a MySQL server.

A.2.2.1. Connection to MySQL Server Failing on Windows

When you're running a MySQL server on Windows with many TCP/IP connections to it, and you're ex-
periencing that quite often your clients get a Can't connect to MySQL server error, the reas-
on might be that Windows doesn't allow for enough ephemeral (short-lived) ports to serve those connec-
tions.

By default, Windows allows 5000 ephemeral (short-lived) TCP ports to the user. After any port is closed
it will remain in a TIME_WAIT status for 120 seconds. This status allows the connection to be reused at
a much lower cost than reinitializing a brand new connection. However, the port will not be available
again until this time expires.

With a small stack of available TCP ports (5000) and a high number of TCP ports being open and closed
over a short period of time along with the TIME_WAIT status you have a good chance for running out
of ports. There are two ways to address this problem:

• Reduce the number of TCP ports consumed quickly by investigating connection pooling or persist-
ent connections where possible

• Tune some settings in the Windows registry (see below)

IMPORTANT: The following procedure involves modifying the Windows registry. Before you
modify the registry, make sure to back it up and make sure that you understand how to restore

Problems and Common Errors

1634

the registry if a problem occurs. For information about how to back up, restore, and edit the re-
gistry, view the following article in the Microsoft Knowledge Base: ht-
tp://support.microsoft.com/kb/256986/EN-US/.

1. Start Registry Editor (Regedt32.exe).

2. Locate the following key in the registry:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

3. On the Edit menu, click Add Value, and then add the following registry value:

Value Name: MaxUserPort
Data Type: REG_DWORD
Value: 65534

This sets the number of ephemeral ports available to any user. The valid range is between 5000 and
65534 (decimal). The default value is 0x1388 (5000 decimal).

4. On the Edit menu, click Add Value, and then add the following registry value:

Value Name: TcpTimedWaitDelay
Data Type: REG_DWORD
Value: 30

This sets the number of seconds to hold a TCP port connection in TIME_WAIT state before clos-
ing. The valid range is between 0 (zero) and 300 (decimal). The default value is 0x78 (120 decim-
al).

5. Quit Registry Editor.

6. Reboot the machine.

Note: Undoing the above should be as simple as deleting the registry entries you've created.

A.2.3. Client does not support authentication pro-
tocol

MySQL 5.0 uses an authentication protocol based on a password hashing algorithm that is incompatible
with that used by older (pre-4.1) clients. If you upgrade the server from 4.0, attempts to connect to it
with an older client may fail with the following message:

shell> mysql
Client does not support authentication protocol requested
by server; consider upgrading MySQL client

To solve this problem, you should use one of the following approaches:

• Upgrade all client programs to use a 4.1.1 or newer client library.

• When connecting to the server with a pre-4.1 client program, use an account that still has a pre-
4.1-style password.

• Reset the password to pre-4.1 style for each user that needs to use a pre-4.1 client program. This can
be done using the SET PASSWORD statement and the OLD_PASSWORD() function:

Problems and Common Errors

1635

http://support.microsoft.com/kb/256986/EN-US/
http://support.microsoft.com/kb/256986/EN-US/

mysql> SET PASSWORD FOR
-> 'some_user'@'some_host' = OLD_PASSWORD('newpwd');

Alternatively, use UPDATE and FLUSH PRIVILEGES:

mysql> UPDATE mysql.user SET Password = OLD_PASSWORD('newpwd')
-> WHERE Host = 'some_host' AND User = 'some_user';

mysql> FLUSH PRIVILEGES;

Substitute the password you want to use for “newpwd” in the preceding examples. MySQL cannot
tell you what the original password was, so you'll need to pick a new one.

• Tell the server to use the older password hashing algorithm:

1. Start mysqld with the --old-passwords option.

2. Assign an old-format password to each account that has had its password updated to the longer
4.1 format. You can identify these accounts with the following query:

mysql> SELECT Host, User, Password FROM mysql.user
-> WHERE LENGTH(Password) > 16;

For each account record displayed by the query, use the Host and User values and assign a
password using the OLD_PASSWORD() function and either SET PASSWORD or UPDATE, as
described earlier.

Note: In older versions of PHP, the mysql extension does not support the authentication protocol in
MySQL 4.1.1 and higher. This is true regardless of the PHP version being used. If you wish to use the
mysql extension with MySQL 4.1 or newer, you may need to follow one of the options discussed
above for configuring MySQL to work with old clients. The mysqli extension (stands for "MySQL,
Improved"; added in PHP 5) is compatible with the improved password hashing employed in MySQL
4.1 and higher, and no special configuration of MySQL need be done to use this MySQL client library.
For more information about the mysqli extension, see http://php.net/mysqli.

It may also be possible to compile the older mysql extension against the new MySQL client library.
This is beyond the scope of this Manual; consult the PHP documentation for more information. You also
be able to obtain assistance with these issues in our MySQL with PHP forum
[http://forums.mysql.com/list.php?52].

For additional background on password hashing and authentication, see Section 5.8.9, “Password Hash-
ing as of MySQL 4.1”.

A.2.4. Password Fails When Entered Interactively
MySQL client programs prompt for a password when invoked with a --password or -p option that
has no following password value:

shell> mysql -u user_name -p
Enter password:

On some systems, you may find that your password works when specified in an option file or on the
command line, but not when you enter it interactively at the Enter password: prompt. This occurs
when the library provided by the system to read passwords limits password values to a small number of
characters (typically eight). That is a problem with the system library, not with MySQL. To work around
it, change your MySQL password to a value that is eight or fewer characters long, or put your password
in an option file.

Problems and Common Errors

1636

http://php.net/mysqli
http://forums.mysql.com/list.php?52

A.2.5. Host 'host_name' is blocked

If you get the following error, it means that mysqld has received many connect requests from the host
'host_name' that have been interrupted in the middle:

Host 'host_name' is blocked because of many connection errors.
Unblock with 'mysqladmin flush-hosts'

The number of interrupted connect requests allowed is determined by the value of the
max_connect_errors system variable. After max_connect_errors failed requests, mysqld
assumes that something is wrong (for example, that someone is trying to break in), and blocks the host
from further connections until you execute a mysqladmin flush-hosts command or issue a
FLUSH HOSTS statement. See Section 5.2.3, “System Variables”.

By default, mysqld blocks a host after 10 connection errors. You can adjust the value by starting the
server like this:

shell> mysqld_safe --max_connect_errors=10000 &

If you get this error message for a given host, you should first verify that there isn't anything wrong with
TCP/IP connections from that host. If you are having network problems, it does you no good to increase
the value of the max_connect_errors variable.

A.2.6. Too many connections

If you get a Too many connections error when you try to connect to the mysqld server, this
means that all available connections are in use by other clients.

The number of connections allowed is controlled by the max_connections system variable. Its de-
fault value is 100. If you need to support more connections, you should restart mysqld with a larger
value for this variable.

mysqld actually allows max_connections+1 clients to connect. The extra connection is reserved
for use by accounts that have the SUPER privilege. By granting the SUPER privilege to administrators
and not to normal users (who should not need it), an administrator can connect to the server and use
SHOW PROCESSLIST to diagnose problems even if the maximum number of unprivileged clients are
connected. See Section 13.5.4.20, “SHOW PROCESSLIST Syntax”.

The maximum number of connections MySQL can support depends on the quality of the thread library
on a given platform. Linux or Solaris should be able to support 500-1000 simultaneous connections, de-
pending on how much RAM you have and what your clients are doing. Static Linux binaries provided
by MySQL AB can support up to 4000 connections.

A.2.7. Out of memory

If you issue a query using the mysql client program and receive an error like the following one, it
means that mysql does not have enough memory to store the entire query result:

mysql: Out of memory at line 42, 'malloc.c'
mysql: needed 8136 byte (8k), memory in use: 12481367 bytes (12189k)
ERROR 2008: MySQL client ran out of memory

To remedy the problem, first check whether your query is correct. Is it reasonable that it should return so
many rows? If not, correct the query and try again. Otherwise, you can invoke mysql with the -
-quick option. This causes it to use the mysql_use_result() C API function to retrieve the res-
ult set, which places less of a load on the client (but more on the server).

Problems and Common Errors

1637

A.2.8. MySQL server has gone away

This section also covers the related Lost connection to server during query error.

The most common reason for the MySQL server has gone away error is that the server timed
out and closed the connection. In this case, you normally get one of the following error codes (which
one you get is operating system-dependent):

Error Code Description

CR_SERVER_GONE_ERROR The client couldn't send a question to the server.

CR_SERVER_LOST The client didn't get an error when writing to the server, but it
didn't get a full answer (or any answer) to the question.

By default, the server closes the connection after eight hours if nothing has happened. You can change
the time limit by setting the wait_timeout variable when you start mysqld. See Section 5.2.3,
“System Variables”.

If you have a script, you just have to issue the query again for the client to do an automatic reconnection.
This assumes that you have automatic reconnection in the client enabled (which is the default for the
mysql command-line client).

Some other common reasons for the MySQL server has gone away error are:

• You (or the db administrator) has killed the running thread with a KILL statement or a mysqlad-
min kill command.

• You tried to run a query after closing the connection to the server. This indicates a logic error in the
application that should be corrected.

• A client application running on a different host does not have the necessary privileges to connect to
the MySQL server from that host.

• You got a timeout from the TCP/IP connection on the client side. This may happen if you have been
using the commands: mysql_options(..., MYSQL_OPT_READ_TIMEOUT,...) or
mysql_options(..., MYSQL_OPT_WRITE_TIMEOUT,...). In this case increasing the
timeout may help solve the problem.

• You have encountered a timeout on the server side and the automatic reconnection in the client is
disabled (the reconnect flag in the MYSQL structure is equal to 0).

• You are using a Windows client and the server had dropped the connection (probably because
wait_timeout expired) before the command was issued.

The problem on Windows is that in some cases MySQL doesn't get an error from the OS when writ-
ing to the TCP/IP connection to the server, but instead gets the error when trying to read the answer
from the connection.

Prior to MySQL 5.0.19, even if the reconnect flag in the MYSQL structure is equal to 1, MySQL
does not automatically reconnect and re-issue the query as it doesn't know if the server did get the
original query or not.

The solution to this is to either do a mysql_ping on the connection if there has been a long time
since the last query (this is what MyODBC does) or set wait_timeout on the mysqld server so
high that it in practice never times out.

• You can also get these errors if you send a query to the server that is incorrect or too large. If

Problems and Common Errors

1638

mysqld receives a packet that is too large or out of order, it assumes that something has gone
wrong with the client and closes the connection. If you need big queries (for example, if you are
working with big BLOB columns), you can increase the query limit by setting the server's
max_allowed_packet variable, which has a default value of 1MB. You may also need to in-
crease the maximum packet size on the client end. More information on setting the packet size is
given in Section A.2.9, “Packet too large”.

An INSERT or REPLACE statement that inserts a great many rows can also cause these sorts of er-
rors. Either one of these statements sends a single request to the server irrespective of the number of
rows to be inserted; thus, you can often avoid the error by reducing the number of rows sent per IN-
SERT or REPLACE.

• You also get a lost connection if you are sending a packet 16MB or larger if your client is older than
4.0.8 and your server is 4.0.8 and above, or the other way around.

• It is also possible to see this error if hostname lookups fail (for example, if the DNS server on which
your server or network relies goes down). This is because MySQL is dependent on the host system
for name resolution, but has no way of knowing whether it is working — from MySQL's point of
view the problem is indistinguishable from any other network timeout.

You may also see the MySQL server has gone away error if MySQL is started with the -
-skip-networking option.

• You can also encounter this error with applications that fork child processes, all of which try to use
the same connection to the MySQL server. This can be avoided by using a separate connection for
each child process.

Another networking issue that can cause this error occurs if if the MySQL port (default 3306) is
blocked by your firewall, thus preventing any connections at all to the MySQL server.

• You have encountered a bug where the server died while executing the query.

You can check whether the MySQL server died and restarted by executing mysqladmin version
and examining the server's uptime. If the client connection was broken because mysqld crashed and re-
started, you should concentrate on finding the reason for the crash. Start by checking whether issuing the
query again kills the server again. See Section A.4.2, “What to Do If MySQL Keeps Crashing”.

You can get more information about the lost connections by starting mysqld with the -
-log-warnings=2 option. This logs some of the disconnected errors in the hostname.err file.
See Section 5.12.1, “The Error Log”.

If you want to create a bug report regarding this problem, be sure that you include the following inform-
ation:

• Indicate whether the MySQL server died. You can find information about this in the server error log.
See Section A.4.2, “What to Do If MySQL Keeps Crashing”.

• If a specific query kills mysqld and the tables involved were checked with CHECK TABLE before
you ran the query, can you provide a reproducible test case? See Section E.1.6, “Making a Test Case
If You Experience Table Corruption”.

• What is the value of the wait_timeout system variable in the MySQL server? (mysqladmin
variables gives you the value of this variable.)

• Have you tried to run mysqld with the --log option to determine whether the problem query ap-
pears in the log?

Problems and Common Errors

1639

See also Section A.2.10, “Communication Errors and Aborted Connections”, and Section 1.8, “How to
Report Bugs or Problems”.

A.2.9. Packet too large

A communication packet is a single SQL statement sent to the MySQL server or a single row that is sent
to the client.

The largest possible packet that can be transmitted to or from a MySQL 5.0 server or client is 1GB.

When a MySQL client or the mysqld server receives a packet bigger than max_allowed_packet
bytes, it issues a Packet too large error and closes the connection. With some clients, you may
also get a Lost connection to MySQL server during query error if the communication
packet is too large.

Both the client and the server have their own max_allowed_packet variable, so if you want to
handle big packets, you must increase this variable both in the client and in the server.

If you are using the mysql client program, its default max_allowed_packet variable is 16MB. To
set a larger value, start mysql like this:

shell> mysql --max_allowed_packet=32M

That sets the packet size to 32MB.

The server's default max_allowed_packet value is 1MB. You can increase this if the server needs
to handle big queries (for example, if you are working with big BLOB columns). For example, to set the
variable to 16MB, start the server like this:

shell> mysqld --max_allowed_packet=16M

You can also use an option file to set max_allowed_packet. For example, to set the size for the
server to 16MB, add the following lines in an option file:

[mysqld]
max_allowed_packet=16M

It is safe to increase the value of this variable because the extra memory is allocated only when needed.
For example, mysqld allocates more memory only when you issue a long query or when mysqld
must return a large result row. The small default value of the variable is a precaution to catch incorrect
packets between the client and server and also to ensure that you do not run out of memory by using
large packets accidentally.

You can also get strange problems with large packets if you are using large BLOB values but have not
given mysqld access to enough memory to handle the query. If you suspect this is the case, try adding
ulimit -d 256000 to the beginning of the mysqld_safe script and restarting mysqld.

A.2.10. Communication Errors and Aborted Connections
The server error log can be a useful source of information about connection problems. See Sec-
tion 5.12.1, “The Error Log”. If you start the server with the --log-warnings option, you might find
messages like this in your error log:

010301 14:38:23 Aborted connection 854 to db: 'users' user: 'josh'

If Aborted connections messages appear in the error log, the cause can be any of the following:

Problems and Common Errors

1640

• The client program did not call mysql_close() before exiting.

• The client had been sleeping more than wait_timeout or interactive_timeout seconds
without issuing any requests to the server. See Section 5.2.3, “System Variables”.

• The client program ended abruptly in the middle of a data transfer.

When any of these things happen, the server increments the Aborted_clients status variable.

The server increments the Aborted_connects status variable when the following things happen:

• A client doesn't have privileges to connect to a database.

• A client uses an incorrect password.

• A connection packet doesn't contain the right information.

• It takes more than connect_timeout seconds to get a connect packet. See Section 5.2.3,
“System Variables”.

If these kinds of things happen, it might indicate that someone is trying to break into your server!

Other reasons for problems with aborted clients or aborted connections:

• Use of Ethernet protocol with Linux, both half and full duplex. Many Linux Ethernet drivers have
this bug. You should test for this bug by transferring a huge file via FTP between the client and serv-
er machines. If a transfer goes in burst-pause-burst-pause mode, you are experiencing a Linux du-
plex syndrome. The only solution is switching the duplex mode for both your network card and hub/
switch to either full duplex or to half duplex and testing the results to determine the best setting.

• Some problem with the thread library that causes interrupts on reads.

• Badly configured TCP/IP.

• Faulty Ethernets, hubs, switches, cables, and so forth. This can be diagnosed properly only by repla-
cing hardware.

• The max_allowed_packet variable value is too small or queries require more memory than you
have allocated for mysqld. See Section A.2.9, “Packet too large”.

See also Section A.2.8, “MySQL server has gone away”.

A.2.11. The table is full

There are several ways a full-table error can occur:

• You are using a MySQL server older than 3.23 and an in-memory temporary table becomes larger
than tmp_table_size bytes. To avoid this problem, you can use the
--tmp_table_size=val option to make mysqld increase the temporary table size or use the
SQL option SQL_BIG_TABLES before you issue the problematic query. See Section 13.5.3, “SET
Syntax”.

You can also start mysqld with the --big-tables option. This is exactly the same as using

Problems and Common Errors

1641

SQL_BIG_TABLES for all queries.

As of MySQL 3.23, this problem should not occur. If an in-memory temporary table becomes larger
than tmp_table_size, the server automatically converts it to a disk-based MyISAM table.

• You are using InnoDB tables and run out of room in the InnoDB tablespace. In this case, the solu-
tion is to extend the InnoDB tablespace. See Section 14.2.7, “Adding and Removing InnoDB Data
and Log Files”.

• You are using ISAM or MyISAM tables on an operating system that supports files only up to 2GB in
size and you have hit this limit for the data file or index file.

• You are using a MyISAM table and the space required for the table exceeds what is allowed by the
internal pointer size. If you don't specify the MAX_ROWS table option when you create a table,
MySQL uses the myisam_data_pointer_size system variable. From MySQL 5.0.6 on, the
default value is 6 bytes, which is enough to allow 256TB of data. Before MySQL 5.0.6, the default
value is 4 bytes, which is enough to allow only 4GB of data. See Section 5.2.3, “System Variables”.

You can check the maximum data/index sizes by using this statement:

SHOW TABLE STATUS FROM database LIKE 'tbl_name';

You also can use myisamchk -dv /path/to/table-index-file.

If the pointer size is too small, you can fix the problem by using ALTER TABLE:

ALTER TABLE tbl_name MAX_ROWS=1000000000 AVG_ROW_LENGTH=nnn;

You have to specify AVG_ROW_LENGTH only for tables with BLOB or TEXT columns; in this case,
MySQL can't optimize the space required based only on the number of rows.

A.2.12. Can't create/write to file

If you get an error of the following type for some queries, it means that MySQL cannot create a tempor-
ary file for the result set in the temporary directory:

Can't create/write to file '\\sqla3fe_0.ism'.

The preceding error is a typical message for Windows; the Unix message is similar.

One fix is to start mysqld with the --tmpdir option or to add the option to the [mysqld] section of
your option file. For example, to specify a directory of C:\temp, use these lines:

[mysqld]
tmpdir=C:/temp

The C:\temp directory must exist and have sufficient space for the MySQL server to write to. See Sec-
tion 4.3.2, “Using Option Files”.

Another cause of this error can be permissions issues. Make sure that the MySQL server can write to the
tmpdir directory.

Check also the error code that you get with perror. One reason the server cannot write to a table is
that the filesystem is full:

shell> perror 28
Error code 28: No space left on device

Problems and Common Errors

1642

A.2.13. Commands out of sync

If you get Commands out of sync; you can't run this command now in your client
code, you are calling client functions in the wrong order.

This can happen, for example, if you are using mysql_use_result() and try to execute a new
query before you have called mysql_free_result(). It can also happen if you try to execute two
queries that return data without calling mysql_use_result() or mysql_store_result() in
between.

A.2.14. Ignoring user

If you get the following error, it means that when mysqld was started or when it reloaded the grant
tables, it found an account in the user table that had an invalid password.

Found wrong password for user 'some_user'@'some_host'; ignoring user

As a result, the account is simply ignored by the permission system.

The following list indicates possible causes of and fixes for this problem:

• You may be running a new version of mysqld with an old user table. You can check this by ex-
ecuting mysqlshow mysql user to see whether the Password column is shorter than 16 char-
acters. If so, you can correct this condition by running the scripts/add_long_password
script.

• The account has an old password (eight characters long) and you didn't start mysqld with the -
-old-protocol option. Update the account in the user table to have a new password or restart
mysqld with the --old-protocol option.

• You have specified a password in the user table without using the PASSWORD() function. Use
mysql to update the account in the user table with a new password, making sure to use the
PASSWORD() function:

mysql> UPDATE user SET Password=PASSWORD('newpwd')
-> WHERE User='some_user' AND Host='some_host';

A.2.15. Table 'tbl_name' doesn't exist

If you get either of the following errors, it usually means that no table exists in the default database with
the given name:

Table 'tbl_name' doesn't exist
Can't find file: 'tbl_name' (errno: 2)

In some cases, it may be that the table does exist but that you are referring to it incorrectly:

• Because MySQL uses directories and files to store databases and tables, database and table names
are case sensitive if they are located on a filesystem that has case-sensitive filenames.

• Even for filesystems that are not case sensitive, such as on Windows, all references to a given table
within a query must use the same lettercase.

Problems and Common Errors

1643

You can check which tables are in the default database with SHOW TABLES. See Section 13.5.4,
“SHOW Syntax”.

A.2.16. Can't initialize character set

You might see an error like this if you have character set problems:

MySQL Connection Failed: Can't initialize character set charset_name

This error can have any of the following causes:

• The character set is a multi-byte character set and you have no support for the character set in the cli-
ent. In this case, you need to recompile the client by running configure with the -
-with-charset=charset_name or --with-extra-charsets=charset_name option.
See Section 2.9.2, “Typical configure Options”.

All standard MySQL binaries are compiled with -
-with-extra-character-sets=complex, which enables support for all multi-byte charac-
ter sets. See Section 5.11.1, “The Character Set Used for Data and Sorting”.

• The character set is a simple character set that is not compiled into mysqld, and the character set
definition files are not in the place where the client expects to find them.

In this case, you need to use one of the following methods to solve the problem:

• Recompile the client with support for the character set. See Section 2.9.2, “Typical configure
Options”.

• Specify to the client the directory where the character set definition files are located. For many
clients, you can do this with the --character-sets-dir option.

• Copy the character definition files to the path where the client expects them to be.

A.2.17. File Not Found
If you get ERROR '...' not found (errno: 23), Can't open file: ... (errno:
24), or any other error with errno 23 or errno 24 from MySQL, it means that you haven't alloc-
ated enough file descriptors for the MySQL server. You can use the perror utility to get a description
of what the error number means:

shell> perror 23
Error code 23: File table overflow
shell> perror 24
Error code 24: Too many open files
shell> perror 11
Error code 11: Resource temporarily unavailable

The problem here is that mysqld is trying to keep open too many files simultaneously. You can either
tell mysqld not to open so many files at once or increase the number of file descriptors available to
mysqld.

To tell mysqld to keep open fewer files at a time, you can make the table cache smaller by reducing the
value of the table_cache system variable (the default value is 64). Reducing the value of
max_connections also reduces the number of open files (the default value is 100).

To change the number of file descriptors available to mysqld, you can use the -

Problems and Common Errors

1644

-open-files-limit option to mysqld_safe or (as of MySQL 3.23.30) set the
open_files_limit system variable. See Section 5.2.3, “System Variables”. The easiest way to set
these values is to add an option to your option file. See Section 4.3.2, “Using Option Files”. If you have
an old version of mysqld that doesn't support setting the open files limit, you can edit the
mysqld_safe script. There is a commented-out line ulimit -n 256 in the script. You can remove
the ‘#’ character to uncomment this line, and change the number 256 to set the number of file
descriptors to be made available to mysqld.

--open-files-limit and ulimit can increase the number of file descriptors, but only up to the
limit imposed by the operating system. There is also a “hard” limit that can be overridden only if you
start mysqld_safe or mysqld as root (just remember that you also need to start the server with the
--user option in this case so that it does not continue to run as root after it starts up). If you need to
increase the operating system limit on the number of file descriptors available to each process, consult
the documentation for your system.

Note: If you run the tcsh shell, ulimit does not work! tcsh also reports incorrect values when you
ask for the current limits. In this case, you should start mysqld_safe using sh.

A.3. Installation-Related Issues

A.3.1. Problems Linking to the MySQL Client Library
When you are linking an application program to use the MySQL client library, you might get undefined
reference errors for symbols that start with mysql_, such as those shown here:

/tmp/ccFKsdPa.o: In function `main':
/tmp/ccFKsdPa.o(.text+0xb): undefined reference to `mysql_init'
/tmp/ccFKsdPa.o(.text+0x31): undefined reference to `mysql_real_connect'
/tmp/ccFKsdPa.o(.text+0x57): undefined reference to `mysql_real_connect'
/tmp/ccFKsdPa.o(.text+0x69): undefined reference to `mysql_error'
/tmp/ccFKsdPa.o(.text+0x9a): undefined reference to `mysql_close'

You should be able to solve this problem by adding -Ldir_path -lmysqlclient at the end of
your link command, where dir_path represents the pathname of the directory where the client library
is located. To determine the correct directory, try this command:

shell> mysql_config --libs

The output from mysql_config might indicate other libraries that should be specified on the link
command as well.

If you get undefined reference errors for the uncompress or compress function, add -lz to
the end of your link command and try again.

If you get undefined reference errors for a function that should exist on your system, such as
connect, check the manual page for the function in question to determine which libraries you should
add to the link command.

You might get undefined reference errors such as the following for functions that don't exist on
your system:

mf_format.o(.text+0x201): undefined reference to `__lxstat'

This usually means that your MySQL client library was compiled on a system that is not 100% compat-
ible with yours. In this case, you should download the latest MySQL source distribution and compile
MySQL yourself. See Section 2.9, “MySQL Installation Using a Source Distribution”.

You might get undefined reference errors at runtime when you try to execute a MySQL program. If

Problems and Common Errors

1645

these errors specify symbols that start with mysql_ or indicate that the mysqlclient library can't be
found, it means that your system can't find the shared libmysqlclient.so library. The fix for this
is to tell your system to search for shared libraries where the library is located. Use whichever of the fol-
lowing methods is appropriate for your system:

• Add the path to the directory where libmysqlclient.so is located to the LD_LIBRARY_PATH
environment variable.

• Add the path to the directory where libmysqlclient.so is located to the LD_LIBRARY envir-
onment variable.

• Copy libmysqlclient.so to some directory that is searched by your system, such as /lib,
and update the shared library information by executing ldconfig.

Another way to solve this problem is by linking your program statically with the -static option, or
by removing the dynamic MySQL libraries before linking your code. Before trying the second method,
you should be sure that no other programs are using the dynamic libraries.

A.3.2. Problems with File Permissions
If you have problems with file permissions, the UMASK environment variable might be set incorrectly
when mysqld starts. For example, MySQL might issue the following error message when you create a
table:

ERROR: Can't find file: 'path/with/filename.frm' (Errcode: 13)

The default UMASK value is 0660. You can change this behavior by starting mysqld_safe as fol-
lows:

shell> UMASK=384 # = 600 in octal
shell> export UMASK
shell> mysqld_safe &

By default, MySQL creates database and RAID directories with an access permission value of 0700.
You can modify this behavior by setting the UMASK_DIR variable. If you set its value, new directories
are created with the combined UMASK and UMASK_DIR values. For example, if you want to give group
access to all new directories, you can do this:

shell> UMASK_DIR=504 # = 770 in octal
shell> export UMASK_DIR
shell> mysqld_safe &

In MySQL 3.23.25 and above, MySQL assumes that the value for UMASK and UMASK_DIR is in octal if
it starts with a zero.

See Appendix F, Environment Variables.

A.4. Administration-Related Issues

A.4.1. How to Reset the Root Password
If you have never set a root password for MySQL, the server does not require a password at all for
connecting as root. However, it is recommended to set a password for each account. See Section 5.7.1,
“General Security Guidelines”.

Problems and Common Errors

1646

If you set a root password previously, but have forgotten what it was, you can set a new password. The
following procedure is for Windows systems. The procedure for Unix systems is given later in this sec-
tion.

The procedure under Windows:

1. Log on to your system as Administrator.

2. Stop the MySQL server if it is running. For a server that is running as a Windows service, go to the
Services manager:

Start Menu -> Control Panel -> Administrative Tools -> Services

Then find the MySQL service in the list, and stop it.

If your server is not running as a service, you may need to use the Task Manager to force it to stop.

3. Create a text file and place the following command within it on a single line:

SET PASSWORD FOR 'root'@'localhost' = PASSWORD('MyNewPassword');

Save the file with any name. For this example the file will be C:\mysql-init.txt.

4. Open a console window to get to the DOS command prompt:

Start Menu -> Run -> cmd

5. We are assuming that you installed MySQL to C:\mysql. If you installed MySQL to another loc-
ation, adjust the following commands accordingly.

At the DOS command prompt, execute this command:

C:\> C:\mysql\bin\mysqld-nt --init-file=C:\mysql-init.txt

The contents of the file named by the --init-file option are executed at server startup, chan-
ging the root password. After the server has started successfully, you should delete
C:\mysql-init.txt.

If you install MySQL using the MySQL Installation Wizard, you may need to specify a -
-defaults-file option:

C:\> "C:\Program Files\MySQL\MySQL Server 5.0\bin\mysqld-nt.exe"
--defaults-file="C:\Program Files\MySQL\MySQL Server 5.0\my.ini"
--init-file=C:\mysql-init.txt

The appropriate --defaults-file setting can be found using the Services Manager:

Start Menu -> Control Panel -> Administrative Tools -> Services

Find the MySQL service in the list, right-click on it, and choose the Properties option. The
Path to executable field contains the --defaults-file setting.

6. Stop the MySQL server, then restart it in normal mode again. If you run the server as a service,
start it from the Windows Services window. If you start the server manually, use whatever com-
mand you normally use.

Problems and Common Errors

1647

7. You should be able to connect using the new password.

In a Unix environment, the procedure for resetting the root password is as follows:

1. Log on to your system as either the Unix root user or as the same user that the mysqld server
runs as.

2. Locate the .pid file that contains the server's process ID. The exact location and name of this file
depend on your distribution, hostname, and configuration. Common locations are /
var/lib/mysql/, /var/run/mysqld/, and /usr/local/mysql/data/. Generally,
the filename has the extension of .pid and begins with either mysqld or your system's hostname.

You can stop the MySQL server by sending a normal kill (not kill -9) to the mysqld pro-
cess, using the pathname of the .pid file in the following command:

shell> kill `cat /mysql-data-directory/host_name.pid`

Note the use of backticks rather than forward quotes with the cat command; these cause the out-
put of cat to be substituted into the kill command.

3. Create a text file and place the following command within it on a single line:

SET PASSWORD FOR 'root'@'localhost' = PASSWORD('MyNewPassword');

Save the file with any name. For this example the file will be ~/mysql-init.

4. Restart the MySQL server with the special --init-file=~/mysql-init option:

shell> mysqld_safe --init-file=~/mysql-init &

The contents of the init-file are executed at server startup, changing the root password. After the
server has started successfully you should delete ~/mysql-init.

5. You should be able to connect using the new password.

Alternatively, on any platform, you can set the new password using the mysql client(but this approach
is less secure):

1. Stop mysqld and restart it with the --skip-grant-tables --user=root options
(Windows users omit the --user=root portion).

2. Connect to the mysqld server with this command:

shell> mysql -u root

3. Issue the following statements in the mysql client:

mysql> UPDATE mysql.user SET Password=PASSWORD('newpwd')
-> WHERE User='root';

mysql> FLUSH PRIVILEGES;

Replace “newpwd” with the actual root password that you want to use.

4. You should be able to connect using the new password.

Problems and Common Errors

1648

A.4.2. What to Do If MySQL Keeps Crashing
Each MySQL version is tested on many platforms before it is released. This doesn't mean that there are
no bugs in MySQL, but if there are bugs, they should be very few and can be hard to find. If you have a
problem, it always helps if you try to find out exactly what crashes your system, because you have a
much better chance of getting the problem fixed quickly.

First, you should try to find out whether the problem is that the mysqld server dies or whether your
problem has to do with your client. You can check how long your mysqld server has been up by ex-
ecuting mysqladmin version. If mysqld has died and restarted, you may find the reason by look-
ing in the server's error log. See Section 5.12.1, “The Error Log”.

On some systems, you can find in the error log a stack trace of where mysqld died that you can resolve
with the resolve_stack_dump program. See Section E.1.4, “Using a Stack Trace”. Note that the
variable values written in the error log may not always be 100% correct.

Many server crashes are caused by corrupted data files or index files. MySQL updates the files on disk
with the write() system call after every SQL statement and before the client is notified about the res-
ult. (This is not true if you are running with --delay-key-write, in which case data files are writ-
ten but not index files.) This means that data file contents are safe even if mysqld crashes, because the
operating system ensures that the unflushed data is written to disk. You can force MySQL to flush
everything to disk after every SQL statement by starting mysqld with the --flush option.

The preceding means that normally you should not get corrupted tables unless one of the following hap-
pens:

• The MySQL server or the server host was killed in the middle of an update.

• You have found a bug in mysqld that caused it to die in the middle of an update.

• Some external program is manipulating data files or index files at the same time as mysqld without
locking the table properly.

• You are running many mysqld servers using the same data directory on a system that doesn't sup-
port good filesystem locks (normally handled by the lockd lock manager), or you are running mul-
tiple servers with external locking disabled.

• You have a crashed data file or index file that contains very corrupt data that confused mysqld.

• You have found a bug in the data storage code. This isn't likely, but it's at least possible. In this case,
you can try to change the storage engine to another engine by using ALTER TABLE on a repaired
copy of the table.

Because it is very difficult to know why something is crashing, first try to check whether things that
work for others crash for you. Please try the following things:

• Stop the mysqld server with mysqladmin shutdown, run myisamchk --silent -
-force */*.MYI from the data directory to check all MyISAM tables, and restart mysqld. This
ensures that you are running from a clean state. See Chapter 5, Database Administration.

• Start mysqld with the --log option and try to determine from the information written to the log
whether some specific query kills the server. About 95% of all bugs are related to a particular query.
Normally, this is one of the last queries in the log file just before the server restarts. See Sec-
tion 5.12.2, “The General Query Log”. If you can repeatedly kill MySQL with a specific query, even
when you have checked all tables just before issuing it, then you have been able to locate the bug
and should submit a bug report for it. See Section 1.8, “How to Report Bugs or Problems”.

Problems and Common Errors

1649

• Try to make a test case that we can use to repeat the problem. See Section E.1.6, “Making a Test
Case If You Experience Table Corruption”.

• Try running the tests in the mysql-test directory and the MySQL benchmarks. See Sec-
tion 24.1.2, “MySQL Test Suite”. They should test MySQL rather well. You can also add code to the
benchmarks that simulates your application. The benchmarks can be found in the sql-bench dir-
ectory in a source distribution or, for a binary distribution, in the sql-bench directory under your
MySQL installation directory.

• Try the fork_big.pl script. (It is located in the tests directory of source distributions.)

• If you configure MySQL for debugging, it is much easier to gather information about possible errors
if something goes wrong. Configuring MySQL for debugging causes a safe memory allocator to be
included that can find some errors. It also provides a lot of output about what is happening. Recon-
figure MySQL with the --with-debug or --with-debug=full option to configure and
then recompile. See Section E.1, “Debugging a MySQL Server”.

• Make sure that you have applied the latest patches for your operating system.

• Use the --skip-external-locking option to mysqld. On some systems, the lockd lock
manager does not work properly; the --skip-external-locking option tells mysqld not to
use external locking. (This means that you cannot run two mysqld servers on the same data direct-
ory and that you must be careful if you use myisamchk. Nevertheless, it may be instructive to try
the option as a test.)

• Have you tried mysqladmin -u root processlist when mysqld appears to be running
but not responding? Sometimes mysqld is not comatose even though you might think so. The prob-
lem may be that all connections are in use, or there may be some internal lock problem. mysqlad-
min -u root processlist usually is able to make a connection even in these cases, and can
provide useful information about the current number of connections and their status.

• Run the command mysqladmin -i 5 status or mysqladmin -i 5 -r status in a
separate window to produce statistics while you run your other queries.

• Try the following:

1. Start mysqld from gdb (or another debugger). See Section E.1.3, “Debugging mysqld under
gdb”.

2. Run your test scripts.

3. Print the backtrace and the local variables at the three lowest levels. In gdb, you can do this
with the following commands when mysqld has crashed inside gdb:

backtrace
info local
up
info local
up
info local

With gdb, you can also examine which threads exist with info threads and switch to a
specific thread with thread N, where N is the thread ID.

• Try to simulate your application with a Perl script to force MySQL to crash or misbehave.

• Send a normal bug report. See Section 1.8, “How to Report Bugs or Problems”. Be even more de-
tailed than usual. Because MySQL works for many people, it may be that the crash results from
something that exists only on your computer (for example, an error that is related to your particular
system libraries).

Problems and Common Errors

1650

• If you have a problem with tables containing dynamic-length rows and you are using only VARCHAR
columns (not BLOB or TEXT columns), you can try to change all VARCHAR to CHAR with ALTER
TABLE. This forces MySQL to use fixed-size rows. Fixed-size rows take a little extra space, but are
much more tolerant to corruption.

The current dynamic row code has been in use at MySQL AB for several years with very few prob-
lems, but dynamic-length rows are by nature more prone to errors, so it may be a good idea to try
this strategy to see whether it helps.

• Do not rule out your server hardware when diagnosing problems. Defective hardware can be the
cause of data corruption. Particular attention should be paid to both RAMS and hard-drives when
troubleshooting hardware.

A.4.3. How MySQL Handles a Full Disk
This section describes how MySQL responds to disk-full errors (such as “no space left on device”), and
to quota-exceeded errors (such as “write failed” or “user block limit reached”).

This section is relevant for writes to MyISAM tables. It also applies for writes to binary log files and bin-
ary log index file, except that references to “row” and “record” should be understood to mean “event.”

When a disk-full condition occurs, MySQL does the following:

• It checks once every minute to see whether there is enough space to write the current row. If there is
enough space, it continues as if nothing had happened.

• Every 10 minutes it writes an entry to the log file, warning about the disk-full condition.

To alleviate the problem, you can take the following actions:

• To continue, you only have to free enough disk space to insert all records.

• To abort the thread, you must use mysqladmin kill. The thread is aborted the next time it
checks the disk (in one minute).

• Other threads might be waiting for the table that caused the disk-full condition. If you have several
“locked” threads, killing the one thread that is waiting on the disk-full condition allows the other
threads to continue.

Exceptions to the preceding behavior are when you use REPAIR TABLE or OPTIMIZE TABLE or
when the indexes are created in a batch after LOAD DATA INFILE or after an ALTER TABLE state-
ment. All of these statements may create large temporary files that, if left to themselves, would cause big
problems for the rest of the system. If the disk becomes full while MySQL is doing any of these opera-
tions, it removes the big temporary files and mark the table as crashed. The exception is that for ALTER
TABLE, the old table is left unchanged.

A.4.4. Where MySQL Stores Temporary Files
MySQL uses the value of the TMPDIR environment variable as the pathname of the directory in which
to store temporary files. If you don't have TMPDIR set, MySQL uses the system default, which is nor-
mally /tmp, /var/tmp, or /usr/tmp. If the filesystem containing your temporary file directory is
too small, you can use the --tmpdir option to mysqld to specify a directory in a filesystem where
you have enough space.

Problems and Common Errors

1651

In MySQL 5.0, the --tmpdir option can be set to a list of several paths that are used in round-robin
fashion. Paths should be separated by colon characters (‘:’) on Unix and semicolon characters (‘;’) on
Windows, NetWare, and OS/2. Note: To spread the load effectively, these paths should be located on
different physical disks, not different partitions of the same disk.

If the MySQL server is acting as a replication slave, you should not set --tmpdir to point to a direct-
ory on a memory-based filesystem or to a directory that is cleared when the server host restarts. A rep-
lication slave needs some of its temporary files to survive a machine restart so that it can replicate tem-
porary tables or LOAD DATA INFILE operations. If files in the temporary file directory are lost when
the server restarts, replication fails.

MySQL creates all temporary files as hidden files. This ensures that the temporary files are removed if
mysqld is terminated. The disadvantage of using hidden files is that you do not see a big temporary file
that fills up the filesystem in which the temporary file directory is located.

When sorting (ORDER BY or GROUP BY), MySQL normally uses one or two temporary files. The
maximum disk space required is determined by the following expression:

(length of what is sorted + sizeof(row pointer))
* number of matched rows
* 2

The row pointer size is usually four bytes, but may grow in the future for really big tables.

For some SELECT queries, MySQL also creates temporary SQL tables. These are not hidden and have
names of the form SQL_*.

ALTER TABLE creates a temporary table in the same directory as the original table.

A.4.5. How to Protect or Change the MySQL Unix Socket File
The default location for the Unix socket file that the server uses for communication with local clients is
/tmp/mysql.sock. (For some distribution formats, the directory might be different, such as /
var/lib/mysql for RPMs.)

On some versions of Unix, anyone can delete files in the /tmp directory or other similar directories
used for temporary files. If the socket file is located in such a directory on your system, this might cause
problems.

On most versions of Unix, you can protect your /tmp directory so that files can be deleted only by their
owners or the superuser (root). To do this, set the sticky bit on the /tmp directory by logging in as
root and using the following command:

shell> chmod +t /tmp

You can check whether the sticky bit is set by executing ls -ld /tmp. If the last permission char-
acter is t, the bit is set.

Another approach is to change the place where the server creates the Unix socket file. If you do this, you
should also let client programs know the new location of the file. You can specify the file location in
several ways:

• Specify the path in a global or local option file. For example, put the following lines in /
etc/my.cnf:

[mysqld]
socket=/path/to/socket

Problems and Common Errors

1652

[client]
socket=/path/to/socket

See Section 4.3.2, “Using Option Files”.

• Specify a --socket option on the command line to mysqld_safe and when you run client pro-
grams.

• Set the MYSQL_UNIX_PORT environment variable to the path of the Unix socket file.

• Recompile MySQL from source to use a different default Unix socket file location. Define the path
to the file with the --with-unix-socket-path option when you run configure. See Sec-
tion 2.9.2, “Typical configure Options”.

You can test whether the new socket location works by attempting to connect to the server with this
command:

shell> mysqladmin --socket=/path/to/socket version

A.4.6. Time Zone Problems
If you have a problem with SELECT NOW() returning values in UTC and not your local time, you have
to tell the server your current time zone. The same applies if UNIX_TIMESTAMP() returns the wrong
value. This should be done for the environment in which the server runs; for example, in
mysqld_safe or mysql.server. See Appendix F, Environment Variables.

You can set the time zone for the server with the --timezone=timezone_name option to
mysqld_safe. You can also set it by setting the TZ environment variable before you start mysqld.

The allowable values for --timezone or TZ are system-dependent. Consult your operating system
documentation to see what values are acceptable.

A.5. Query-Related Issues

A.5.1. Case Sensitivity in Searches
By default, MySQL searches are not case sensitive (although there are some character sets that are never
case insensitive, such as czech). This means that if you search with col_name LIKE 'a%', you
get all column values that start with A or a. If you want to make this search case sensitive, make sure
that one of the operands has a case sensitive or binary collation. For example, if you are comparing a
column and a string that both have the latin1 character set, you can use the COLLATE operator to
cause either operand to have the latin1_general_cs or latin1_bin collation. For example:

col_name COLLATE latin1_general_cs LIKE 'a%'
col_name LIKE 'a%' COLLATE latin1_general_cs
col_name COLLATE latin1_bin LIKE 'a%'
col_name LIKE 'a%' COLLATE latin1_bin

If you want a column always to be treated in case-sensitive fashion, declare it with a case sensitive or
binary collation. See Section 13.1.5, “CREATE TABLE Syntax”.

Simple comparison operations (>=, >, =, <, <=, sorting, and grouping) are based on each charac-
ter's “sort value.” Characters with the same sort value (such as ‘E’, ‘e’, and ‘Ã#Â©’) are treated as the
same character.

Problems and Common Errors

1653

A.5.2. Problems Using DATE Columns
The format of a DATE value is 'YYYY-MM-DD'. According to standard SQL, no other format is al-
lowed. You should use this format in UPDATE expressions and in the WHERE clause of SELECT state-
ments. For example:

mysql> SELECT * FROM tbl_name WHERE date >= '2003-05-05';

As a convenience, MySQL automatically converts a date to a number if the date is used in a numeric
context (and vice versa). It is also smart enough to allow a “relaxed” string form when updating and in a
WHERE clause that compares a date to a TIMESTAMP, DATE, or DATETIME column. (“Relaxed form”
means that any punctuation character may be used as the separator between parts. For example,
'2004-08-15' and '2004#08#15' are equivalent.) MySQL can also convert a string containing
no separators (such as '20040815'), provided it makes sense as a date.

When you compare a DATE, TIME, DATETIME, or TIMESTAMP to a constant string with the <, <=, =,
>=, >, or BETWEEN operators, MySQL normally converts the string to an internal long integer for faster
comparison (and also for a bit more “relaxed” string checking). However, this conversion is subject to
the following exceptions:

• When you compare two columns

• When you compare a DATE, TIME, DATETIME, or TIMESTAMP column to an expression

• When you use any other comparison method than those just listed, such as IN or STRCMP().

For these exceptional cases, the comparison is done by converting the objects to strings and performing
a string comparison.

To keep things safe, assume that strings are compared as strings and use the appropriate string functions
if you want to compare a temporal value to a string.

The special date '0000-00-00' can be stored and retrieved as '0000-00-00'. When using a
'0000-00-00' date through MyODBC, it is automatically converted to NULL in MyODBC 2.50.12
and above, because ODBC can't handle this kind of date.

Because MySQL performs the conversions described above, the following statements work:

mysql> INSERT INTO tbl_name (idate) VALUES (19970505);
mysql> INSERT INTO tbl_name (idate) VALUES ('19970505');
mysql> INSERT INTO tbl_name (idate) VALUES ('97-05-05');
mysql> INSERT INTO tbl_name (idate) VALUES ('1997.05.05');
mysql> INSERT INTO tbl_name (idate) VALUES ('1997 05 05');
mysql> INSERT INTO tbl_name (idate) VALUES ('0000-00-00');

mysql> SELECT idate FROM tbl_name WHERE idate >= '1997-05-05';
mysql> SELECT idate FROM tbl_name WHERE idate >= 19970505;
mysql> SELECT MOD(idate,100) FROM tbl_name WHERE idate >= 19970505;
mysql> SELECT idate FROM tbl_name WHERE idate >= '19970505';

However, the following does not work:

mysql> SELECT idate FROM tbl_name WHERE STRCMP(idate,'20030505')=0;

STRCMP() is a string function, so it converts idate to a string in 'YYYY-MM-DD' format and per-
forms a string comparison. It does not convert '20030505' to the date '2003-05-05' and perform
a date comparison.

If you are using the ALLOW_INVALID_DATES SQL mode, MySQL allows you to store dates that are

Problems and Common Errors

1654

given only limited checking: MySQL requires only that the day is in the range from 1 to 31 and the
month is in the range from 1 to 12.

This makes MySQL very convenient for Web applications where you obtain year, month, and day in
three different fields and you want to store exactly what the user inserted (without date validation).

If you are not using the NO_ZERO_IN_DATE SQL mode, the day or month part can be zero. This is
convenient if you want to store a birthdate in a DATE column and you know only part of the date.

If you are not using the NO_ZERO_DATE SQL mode, MySQL also allows you to store
'0000-00-00' as a “dummy date.” This is in some cases more convenient than using NULL values.

If the date cannot be converted to any reasonable value, a 0 is stored in the DATE column, which is re-
trieved as '0000-00-00'. This is both a speed and a convenience issue. We believe that the database
server's responsibility is to retrieve the same date you stored (even if the data was not logically correct in
all cases). We think it is up to the application and not the server to check the dates.

If you want MySQL to check all dates and accept only legal dates (unless overridden by IGNORE), you
should set sql_mode to "NO_ZERO_IN_DATE,NO_ZERO_DATE".

Date handling in MySQL 5.0.1 and earlier works like MySQL 5.0.2 with the AL-
LOW_INVALID_DATES SQL mode enabled.

A.5.3. Problems with NULL Values
The concept of the NULL value is a common source of confusion for newcomers to SQL, who often
think that NULL is the same thing as an empty string ''. This is not the case. For example, the follow-
ing statements are completely different:

mysql> INSERT INTO my_table (phone) VALUES (NULL);
mysql> INSERT INTO my_table (phone) VALUES ('');

Both statements insert a value into the phone column, but the first inserts a NULL value and the second
inserts an empty string. The meaning of the first can be regarded as “phone number is not known” and
the meaning of the second can be regarded as “the person is known to have no phone, and thus no phone
number.”

To help with NULL handling, you can use the IS NULL and IS NOT NULL operators and the
IFNULL() function.

In SQL, the NULL value is never true in comparison to any other value, even NULL. An expression that
contains NULL always produces a NULL value unless otherwise indicated in the documentation for the
operators and functions involved in the expression. All columns in the following example return NULL:

mysql> SELECT NULL, 1+NULL, CONCAT('Invisible',NULL);

If you want to search for column values that are NULL, you cannot use an expr = NULL test. The fol-
lowing statement returns no rows, because expr = NULL is never true for any expression:

mysql> SELECT * FROM my_table WHERE phone = NULL;

To look for NULL values, you must use the IS NULL test. The following statements show how to find
the NULL phone number and the empty phone number:

mysql> SELECT * FROM my_table WHERE phone IS NULL;
mysql> SELECT * FROM my_table WHERE phone = '';

See Section 3.3.4.6, “Working with NULL Values”, for additional information and examples.

Problems and Common Errors

1655

You can add an index on a column that can have NULL values if you are using the MyISAM, InnoDB,
or BDB, or MEMORY storage engine. Otherwise, you must declare an indexed column NOT NULL, and
you cannot insert NULL into the column.

When reading data with LOAD DATA INFILE, empty or missing columns are updated with ''. If you
want a NULL value in a column, you should use \N in the data file. The literal word “NULL” may also
be used under some circumstances. See Section 13.2.5, “LOAD DATA INFILE Syntax”.

When using DISTINCT, GROUP BY, or ORDER BY, all NULL values are regarded as equal.

When using ORDER BY, NULL values are presented first, or last if you specify DESC to sort in descend-
ing order.

Aggregate (summary) functions such as COUNT(), MIN(), and SUM() ignore NULL values. The ex-
ception to this is COUNT(*), which counts rows and not individual column values. For example, the
following statement produces two counts. The first is a count of the number of rows in the table, and the
second is a count of the number of non-NULL values in the age column:

mysql> SELECT COUNT(*), COUNT(age) FROM person;

For some data types, MySQL handles NULL values specially. If you insert NULL into a TIMESTAMP
column, the current date and time is inserted. If you insert NULL into an integer column that has the
AUTO_INCREMENT attribute, the next number in the sequence is inserted.

A.5.4. Problems with Column Aliases
You can use an alias to refer to a column in GROUP BY, ORDER BY, or HAVING clauses. Aliases can
also be used to give columns better names:

SELECT SQRT(a*b) AS root FROM tbl_name GROUP BY root HAVING root > 0;
SELECT id, COUNT(*) AS cnt FROM tbl_name GROUP BY id HAVING cnt > 0;
SELECT id AS 'Customer identity' FROM tbl_name;

Standard SQL doesn't allow you to refer to a column alias in a WHERE clause. This restriction is im-
posed because when the WHERE code is executed, the column value may not yet be determined. For ex-
ample, the following query is illegal:

SELECT id, COUNT(*) AS cnt FROM tbl_name WHERE cnt > 0 GROUP BY id;

The WHERE statement is executed to determine which rows should be included in the GROUP BY part,
whereas HAVING is used to decide which rows from the result set should be used.

A.5.5. Rollback Failure for Non-Transactional Tables
If you receive the following message when trying to perform a ROLLBACK, it means that one or more of
the tables you used in the transaction do not support transactions:

Warning: Some non-transactional changed tables couldn't be rolled back

These non-transactional tables are not affected by the ROLLBACK statement.

If you were not deliberately mixing transactional and non-transactional tables within the transaction, the
most likely cause for this message is that a table you thought was transactional actually is not. This can
happen if you try to create a table using a transactional storage engine that is not supported by your
mysqld server (or that was disabled with a startup option). If mysqld doesn't support a storage engine,
it instead creates the table as a MyISAM table, which is non-transactional.

Problems and Common Errors

1656

You can check the storage engine for a table by using either of these statements:

SHOW TABLE STATUS LIKE 'tbl_name';
SHOW CREATE TABLE tbl_name;

See Section 13.5.4.22, “SHOW TABLE STATUS Syntax”, and Section 13.5.4.6, “SHOW CREATE TA-
BLE Syntax”.

You can check which storage engines your mysqld server supports by using this statement:

SHOW ENGINES;

You can also use the following statement, and check the value of the variable that is associated with the
storage engine in which you are interested:

SHOW VARIABLES LIKE 'have_%';

For example, to determine whether the InnoDB storage engine is available, check the value of the
have_innodb variable.

See Section 13.5.4.10, “SHOW ENGINES Syntax”, and Section 13.5.4.25, “SHOW VARIABLES Syn-
tax”.

A.5.6. Deleting Rows from Related Tables
If the total length of the DELETE statement for related_table is more than 1MB (the default value
of the max_allowed_packet system variable), you should split it into smaller parts and execute
multiple DELETE statements. You probably get the fastest DELETE by specifying only 100 to 1,000
related_column values per statement if the related_column is indexed. If the re-
lated_column isn't indexed, the speed is independent of the number of arguments in the IN clause.

A.5.7. Solving Problems with No Matching Rows
If you have a complicated query that uses many tables but that doesn't return any rows, you should use
the following procedure to find out what is wrong:

1. Test the query with EXPLAIN to check whether you can find something that is obviously wrong.
See Section 7.2.1, “Optimizing Queries with EXPLAIN”.

2. Select only those columns that are used in the WHERE clause.

3. Remove one table at a time from the query until it returns some rows. If the tables are large, it's a
good idea to use LIMIT 10 with the query.

4. Issue a SELECT for the column that should have matched a row against the table that was last re-
moved from the query.

5. If you are comparing FLOAT or DOUBLE columns with numbers that have decimals, you can't use
equality (=) comparisons. This problem is common in most computer languages because not all
floating-point values can be stored with exact precision. In some cases, changing the FLOAT to a
DOUBLE fixes this. See Section A.5.8, “Problems with Floating-Point Comparisons”.

Similar problems may be encountered when comparing DECIMAL values prior to MySQL 5.0.3.

6. If you still can't figure out what's wrong, create a minimal test that can be run with mysql test
< query.sql that shows your problems. You can create a test file by dumping the tables with

Problems and Common Errors

1657

mysqldump --quick db_name tbl_name_1 ... tbl_name_n > query.sql.
Open the file in an editor, remove some insert lines (if there are more than needed to demonstrate
the problem), and add your SELECT statement at the end of the file.

Verify that the test file demonstrates the problem by executing these commands:

shell> mysqladmin create test2
shell> mysql test2 < query.sql

Attach the test file to a bug report, which you can file using the instructions in Section 1.8, “How to
Report Bugs or Problems”.

A.5.8. Problems with Floating-Point Comparisons
Floating-point numbers sometimes cause confusion because they are approximate. That is, they are not
stored as exact values inside computer architecture. What you can see on the screen usually is not the
exact value of the number. The FLOAT and DOUBLE data types are such, and DECIMAL operations be-
fore MySQL 5.0.3 are approximate as well.

Prior to MySQL 5.0.3, DECIMAL columns store values with exact precision because they are represen-
ted as strings, but calculations on DECIMAL values are done using floating-point operations. As of 5.0.3,
MySQL performs DECIMAL operations with a precision of 64 decimal digits, which should solve most
common inaccuracy problems when it comes to DECIMAL columns. (If your server is from MySQL
5.0.3 or higher, but you have DECIMAL columns in tables that were created before 5.0.3, the old behavi-
or still applies to those columns. To convert the tables to the newer DECIMAL format, dump them with
mysqldump and reload them.)

The following example (for versions of MySQL older than 5.0.3) demonstrates the problem. It shows
that even for older DECIMAL columns, calculations that are done using floating-point operations are
subject to floating-point error. (Were you to replace the DECIMAL columns with FLOAT, similar prob-
lems would occur for all versions of MySQL.)

mysql> CREATE TABLE t1 (i INT, d1 DECIMAL(9,2), d2 DECIMAL(9,2));
mysql> INSERT INTO t1 VALUES (1, 101.40, 21.40), (1, -80.00, 0.00),

-> (2, 0.00, 0.00), (2, -13.20, 0.00), (2, 59.60, 46.40),
-> (2, 30.40, 30.40), (3, 37.00, 7.40), (3, -29.60, 0.00),
-> (4, 60.00, 15.40), (4, -10.60, 0.00), (4, -34.00, 0.00),
-> (5, 33.00, 0.00), (5, -25.80, 0.00), (5, 0.00, 7.20),
-> (6, 0.00, 0.00), (6, -51.40, 0.00);

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b
-> FROM t1 GROUP BY i HAVING a <> b;

+------+--------+-------+
| i | a | b |
+------+--------+-------+
1	21.40	21.40
2	76.80	76.80
3	7.40	7.40
4	15.40	15.40
5	7.20	7.20
6	-51.40	0.00
+------+--------+-------+

The result is correct. Although the first five records look like they should not satisfy the comparison (the
values of a and b do not appear to be different), they may do so because the difference between the
numbers shows up around the tenth decimal or so, depending on factors such as computer architecture or
the compiler version or optimization level. For example, different CPUs may evaluate floating-point
numbers differently.

As of MySQL 5.0.3, you will get only the last row in the above result.

The problem cannot be solved by using ROUND() or similar functions, because the result is still a float-

Problems and Common Errors

1658

ing-point number:

mysql> SELECT i, ROUND(SUM(d1), 2) AS a, ROUND(SUM(d2), 2) AS b
-> FROM t1 GROUP BY i HAVING a <> b;

+------+--------+-------+
| i | a | b |
+------+--------+-------+
1	21.40	21.40
2	76.80	76.80
3	7.40	7.40
4	15.40	15.40
5	7.20	7.20
6	-51.40	0.00
+------+--------+-------+

This is what the numbers in column a look like when displayed with more decimal places:

mysql> SELECT i, ROUND(SUM(d1), 2)*1.0000000000000000 AS a,
-> ROUND(SUM(d2), 2) AS b FROM t1 GROUP BY i HAVING a <> b;

+------+----------------------+-------+
| i | a | b |
+------+----------------------+-------+
1	21.3999999999999986	21.40
2	76.7999999999999972	76.80
3	7.4000000000000004	7.40
4	15.4000000000000004	15.40
5	7.2000000000000002	7.20
6	-51.3999999999999986	0.00
+------+----------------------+-------+

Depending on your computer architecture, you may or may not see similar results. For example, on
some machines you may get the “correct” results by multiplying both arguments by 1, as the following
example shows.

Warning: Never use this method in your applications. It is not an example of a trustworthy method!

mysql> SELECT i, ROUND(SUM(d1), 2)*1 AS a, ROUND(SUM(d2), 2)*1 AS b
-> FROM t1 GROUP BY i HAVING a <> b;

+------+--------+------+
| i | a | b |
+------+--------+------+
| 6 | -51.40 | 0.00 |
+------+--------+------+

The reason that the preceding example seems to work is that on the particular machine where the test
was done, CPU floating-point arithmetic happens to round the numbers to the same value. However,
there is no rule that any CPU should do so, so this method cannot be trusted.

The correct way to do floating-point number comparison is to first decide on an acceptable tolerance for
differences between the numbers and then do the comparison against the tolerance value. For example,
if we agree that floating-point numbers should be regarded the same if they are same within a precision
of one in ten thousand (0.0001), the comparison should be written to find differences larger than the tol-
erance value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
-> GROUP BY i HAVING ABS(a - b) > 0.0001;

+------+--------+------+
| i | a | b |
+------+--------+------+
| 6 | -51.40 | 0.00 |
+------+--------+------+
1 row in set (0.00 sec)

Conversely, to get rows where the numbers are the same, the test should find differences within the tol-
erance value:

mysql> SELECT i, SUM(d1) AS a, SUM(d2) AS b FROM t1
-> GROUP BY i HAVING ABS(a - b) <= 0.0001;

Problems and Common Errors

1659

+------+-------+-------+
| i | a | b |
+------+-------+-------+
1	21.40	21.40
2	76.80	76.80
3	7.40	7.40
4	15.40	15.40
5	7.20	7.20
+------+-------+-------+

A.6. Optimizer-Related Issues
MySQL uses a cost-based optimizer to determine the best way to resolve a query. In many cases,
MySQL can calculate the best possible query plan, but sometimes MySQL doesn't have enough inform-
ation about the data at hand and has to make “educated” guesses about the data.

For the cases when MySQL does not do the "right" thing, tools that you have available to help MySQL
are:

• Use the EXPLAIN statement to get information about how MySQL processes a query. To use it, just
add the keyword EXPLAIN to the front of your SELECT statement:

mysql> EXPLAIN SELECT * FROM t1, t2 WHERE t1.i = t2.i;

EXPLAIN is discussed in more detail in Section 7.2.1, “Optimizing Queries with EXPLAIN”.

• Use ANALYZE TABLE tbl_name to update the key distributions for the scanned table. See Sec-
tion 13.5.2.1, “ANALYZE TABLE Syntax”.

• Use FORCE INDEX for the scanned table to tell MySQL that table scans are very expensive com-
pared to using the given index. See Section 13.2.7, “SELECT Syntax”.

SELECT * FROM t1, t2 FORCE INDEX (index_for_column)
WHERE t1.col_name=t2.col_name;

USE INDEX and IGNORE INDEX may also be useful.

• Global and table-level STRAIGHT_JOIN. See Section 13.2.7, “SELECT Syntax”.

• You can tune global or thread-specific system variables. For example, Start mysqld with the -
-max-seeks-for-key=1000 option or use SET max_seeks_for_key=1000 to tell the
optimizer to assume that no key scan causes more than 1,000 key seeks. See Section 5.2.3, “System
Variables”.

A.7. Table Definition-Related Issues

A.7.1. Problems with ALTER TABLE

ALTER TABLE changes a table to the current character set. If you get a duplicate-key error during AL-
TER TABLE, the cause is either that the new character sets maps two keys to the same value or that the
table is corrupted. In the latter case, you should run REPAIR TABLE on the table.

If ALTER TABLE dies with the following error, the problem may be that MySQL crashed during an
earlier ALTER TABLE operation and there is an old table named A-xxx or B-xxx lying around:

Error on rename of './database/name.frm'
to './database/B-xxx.frm' (Errcode: 17)

Problems and Common Errors

1660

In this case, go to the MySQL data directory and delete all files that have names starting with A- or B-.
(You may want to move them elsewhere instead of deleting them.)

ALTER TABLE works in the following way:

• Create a new table named A-xxx with the requested structural changes.

• Copy all rows from the original table to A-xxx.

• Rename the original table to B-xxx.

• Rename A-xxx to your original table name.

• Delete B-xxx.

If something goes wrong with the renaming operation, MySQL tries to undo the changes. If something
goes seriously wrong (although this shouldn't happen), MySQL may leave the old table as B-xxx. A
simple rename of the table files at the system level should get your data back.

If you use ALTER TABLE on a transactional table or if you are using Windows or OS/2, ALTER TA-
BLE unlocks the table if you had done a LOCK TABLE on it. This is done because InnoDB and these
operating systems cannot drop a table that is in use.

A.7.2. How to Change the Order of Columns in a Table
First, consider whether you really need to change the column order in a table. The whole point of SQL is
to abstract the application from the data storage format. You should always specify the order in which
you wish to retrieve your data. The first of the following statements returns columns in the order
col_name1, col_name2, col_name3, whereas the second returns them in the order col_name1,
col_name3, col_name2:

mysql> SELECT col_name1, col_name2, col_name3 FROM tbl_name;
mysql> SELECT col_name1, col_name3, col_name2 FROM tbl_name;

If you decide to change the order of table columns anyway, you can do so as follows:

1. Create a new table with the columns in the new order.

2. Execute this statement:

mysql> INSERT INTO new_table
-> SELECT columns-in-new-order FROM old_table;

3. Drop or rename old_table.

4. Rename the new table to the original name:

mysql> ALTER TABLE new_table RENAME old_table;

SELECT * is quite suitable for testing queries. However, in an application, you should never rely on
using SELECT * and retrieving the columns based on their position. The order and position in which
columns are returned does not remain the same if you add, move, or delete columns. A simple change to
your table structure could cause your application to fail.

Problems and Common Errors

1661

A.7.3. TEMPORARY TABLE Problems
The following list indicates limitations on the use of TEMPORARY tables:

• A TEMPORARY table can only be of type MEMORY, ISAM, MyISAM, MERGE, or InnoDB.

Temporary tables are not supported for MySQL Cluster.

• You cannot refer to a TEMPORARY table more than once in the same query. For example, the fol-
lowing does not work:

mysql> SELECT * FROM temp_table, temp_table AS t2;
ERROR 1137: Can't reopen table: 'temp_table'

• The SHOW TABLES statement does not list TEMPORARY tables.

• You cannot use RENAME to rename a TEMPORARY table. However, you can use ALTER TABLE in-
stead:

mysql> ALTER TABLE orig_name RENAME new_name;

• There are known issues in using temporary tables with replication. See Section 6.7, “Replication
Features and Known Problems”, for more information.

A.8. Known Issues in MySQL
This section is a list of the known issues in recent versions of MySQL.

For information about platform-specific issues, see the installation and porting instructions in Sec-
tion 2.13, “Operating System-Specific Notes”, and Appendix E, Porting to Other Systems.

A.8.1. Open Issues in MySQL
The following problems are known and fixing them is a high priority:

• If you compare a NULL value to a subquery using ALL/ANY/SOME and the subquery returns an
empty result, the comparison might evaluate to the non-standard result of NULL rather than to TRUE
or FALSE. This will be fixed in MySQL 5.1.

• Subquery optimization for IN is not as effective as for =.

• Even if you use lower_case_table_names=2 (which enables MySQL to remember the case
used for databases and table names), MySQL does not remember the case used for database names
for the function DATABASE() or within the various logs (on case-insensitive systems).

• Dropping a FOREIGN KEY constraint doesn't work in replication because the constraint may have
another name on the slave.

• REPLACE (and LOAD DATA with the REPLACE option) does not trigger ON DELETE CASCADE.

• DISTINCT with ORDER BY doesn't work inside GROUP_CONCAT() if you don't use all and only
those columns that are in the DISTINCT list.

• If one user has a long-running transaction and another user drops a table that is updated in the trans-
action, there is small chance that the binary log may contain the DROP TABLE command before the

Problems and Common Errors

1662

table is used in the transaction itself. We plan to fix this by having the DROP TABLE command wait
until the table is not being used in any transaction.

• When inserting a big integer value (between 263 and 264–1) into a decimal or string column, it is in-
serted as a negative value because the number is evaluated in a signed integer context.

• FLUSH TABLES WITH READ LOCK does not block COMMIT if the server is running without
binary logging, which may cause a problem (of consistency between tables) when doing a full
backup.

• ANALYZE TABLE on a BDB table may in some cases make the table unusable until you restart
mysqld. If this happens, look for errors of the following form in the MySQL error file:

001207 22:07:56 bdb: log_flush: LSN past current end-of-log

• Don't execute ALTER TABLE on a BDB table on which you are running multiple-statement transac-
tions until all those transactions complete. (The transaction might be ignored.)

• ANALYZE TABLE, OPTIMIZE TABLE, and REPAIR TABLE may cause problems on tables for
which you are using INSERT DELAYED.

• Performing LOCK TABLE ... and FLUSH TABLES ... doesn't guarantee that there isn't a
half-finished transaction in progress on the table.

• BDB tables are relatively slow to open. If you have many BDB tables in a database, it takes a long
time to use the mysql client on the database if you are not using the -A option or if you are using
rehash. This is especially noticeable when you have a large table cache.

• Replication uses query-level logging: The master writes the executed queries to the binary log. This
is a very fast, compact, and efficient logging method that works perfectly in most cases.

It is possible for the data on the master and slave to become different if a query is designed in such a
way that the data modification is non-deterministic (generally not a recommended practice, even out-
side of replication).

For example:

• CREATE ... SELECT or INSERT ... SELECT statements that insert zero or NULL values
into an AUTO_INCREMENT column.

• DELETE if you are deleting rows from a table that has foreign keys with ON DELETE CAS-
CADE properties.

• REPLACE ... SELECT, INSERT IGNORE ... SELECT if you have duplicate key values
in the inserted data.

If and only if the preceding queries have no ORDER BY clause guaranteeing a deterministic or-
der.

For example, for INSERT ... SELECT with no ORDER BY, the SELECT may return rows in a
different order (which results in a row having different ranks, hence getting a different number in the
AUTO_INCREMENT column), depending on the choices made by the optimizers on the master and
slave.

A query is optimized differently on the master and slave only if:

• The table is stored using a different storage engine on the master than on the slave. (It is possible
to use different storage engines on the master and slave. For example, you can use InnoDB on
the master, but MyISAM on the slave if the slave has less available disk space.)

Problems and Common Errors

1663

• MySQL buffer sizes (key_buffer_size, and so on) are different on the master and slave.

• The master and slave run different MySQL versions, and the optimizer code differs between
these versions.

This problem may also affect database restoration using mysqlbinlog|mysql.

The easiest way to avoid this problem is to add an ORDER BY clause to the aforementioned non-
deterministic queries to ensure that the rows are always stored or modified in the same order.

In future MySQL versions, we will automatically add an ORDER BY clause when needed.

The following issues are known and will be fixed in due time:

• Log filenames are based on the server hostname (if you don't specify a filename with the startup op-
tion). You have to use options such as --log-bin=old_host_name-bin if you change your
hostname to something else. Another option is to rename the old files to reflect your hostname
change (if these are binary logs, you need to edit the binary log index file and fix the binlog names
there as well). See Section 5.2.2, “Command Options”.

• mysqlbinlog does not delete temporary files left after a LOAD DATA INFILE command. See
Section 8.10, “mysqlbinlog — Utility for Processing Binary Log Files”.

• RENAME doesn't work with TEMPORARY tables or tables used in a MERGE table.

• Due to the way table format (.frm) files are stored, you cannot use character 255 (CHAR(255)) in
table names, column names, or enumerations. This is scheduled to be fixed in version 5.1 when we
implement new table definition format files.

• When using SET CHARACTER SET, you can't use translated characters in database, table, and
column names.

• You can't use ‘_’ or ‘%’ with ESCAPE in LIKE ... ESCAPE.

• If you have a DECIMAL column in which the same number is stored in different formats (for ex-
ample, +01.00, 1.00, 01.00), GROUP BY may regard each value as a different value.

• You cannot build the server in another directory when using MIT-pthreads. Because this requires
changes to MIT-pthreads, we are not likely to fix this. See Section 2.9.5, “MIT-pthreads Notes”.

• BLOB and TEXT values can't reliably be used in GROUP BY, ORDER BY or DISTINCT. Only the
first max_sort_length bytes are used when comparing BLOB values in these cases. The default
value of max_sort_length is 1024 and can be changed at server startup time or at runtime.

• Numeric calculations are done with BIGINT or DOUBLE (both are normally 64 bits long). Which
precision you get depends on the function. The general rule is that bit functions are performed with
BIGINT precision, IF and ELT() with BIGINT or DOUBLE precision, and the rest with DOUBLE
precision. You should try to avoid using unsigned long long values if they resolve to be larger than
63 bits (9223372036854775807) for anything other than bit fields.

• You can have up to 255 ENUM and SET columns in one table.

• In MIN(), MAX(), and other aggregate functions, MySQL currently compares ENUM and SET
columns by their string value rather than by the string's relative position in the set.

• mysqld_safe redirects all messages from mysqld to the mysqld log. One problem with this is

Problems and Common Errors

1664

that if you execute mysqladmin refresh to close and reopen the log, stdout and stderr
are still redirected to the old log. If you use --log extensively, you should edit mysqld_safe to
log to host_name.err instead of host_name.log so that you can easily reclaim the space for
the old log by deleting it and executing mysqladmin refresh.

• In an UPDATE statement, columns are updated from left to right. If you refer to an updated column,
you get the updated value instead of the original value. For example, the following statement incre-
ments KEY by 2, not 1:

mysql> UPDATE tbl_name SET KEY=KEY+1,KEY=KEY+1;

• You can refer to multiple temporary tables in the same query, but you cannot refer to any given tem-
porary table more than once. For example, the following doesn't work:

mysql> SELECT * FROM temp_table, temp_table AS t2;
ERROR 1137: Can't reopen table: 'temp_table'

• The optimizer may handle DISTINCT differently when you are using “hidden” columns in a join
than when you are not. In a join, hidden columns are counted as part of the result (even if they are
not shown), whereas in normal queries, hidden columns don't participate in the DISTINCT compar-
ison. We will probably change this in the future to never compare the hidden columns when execut-
ing DISTINCT.

An example of this is:

SELECT DISTINCT mp3id FROM band_downloads
WHERE userid = 9 ORDER BY id DESC;

and

SELECT DISTINCT band_downloads.mp3id
FROM band_downloads,band_mp3
WHERE band_downloads.userid = 9
AND band_mp3.id = band_downloads.mp3id
ORDER BY band_downloads.id DESC;

In the second case, using MySQL Server 3.23.x, you may get two identical rows in the result set
(because the values in the hidden id column may differ).

Note that this happens only for queries where that do not have the ORDER BY columns in the result.

• If you execute a PROCEDURE on a query that returns an empty set, in some cases the PROCEDURE
does not transform the columns.

• Creation of a table of type MERGE doesn't check whether the underlying tables are compatible types.

• If you use ALTER TABLE to add a UNIQUE index to a table used in a MERGE table and then add a
normal index on the MERGE table, the key order is different for the tables if there was an old,
non-UNIQUE key in the table. This is because ALTER TABLE puts UNIQUE indexes before normal
indexes to be able to detect duplicate keys as early as possible.

Problems and Common Errors

1665

Appendix B. Error Codes and Messages
This appendix lists the errors that may appear when you call MySQL from any host language. The first
list displays server error messages. The second list displays client program messages.

B.1. Server Error Codes and Messages
MySQL programs have access to several types of error information when the server returns an error. For
example, the mysql client program displays errors using the following format:

shell> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

The message displayed contains three types of information:

• A numeric error value (1146). This number is MySQL-specific and is not portable to other database
systems.

• A five-character SQLSTATE value ('42S02'). The values are specified by ANSI SQL and ODBC
and are more standardized. Not all MySQL error numbers are mapped to SQLSTATE error codes.
The value 'HY000' (general error) is used for unmapped errors.

• A string that provides a textual description of the error.

Server error information comes from the following source files. For details about the way that error in-
formation is defined, see the MySQL Internals manual, available at http://dev.mysql.com/doc/.

• Error message information is listed in the share/errmsg.txt file. %d and %s represent numbers
and strings, respectively, that are substituted into the Message values when they are displayed.

• The Error values listed in share/errmsg.txt are used to generate the definitions in the in-
clude/mysqld_error.h and include/mysqld_ername.h MySQL source files.

• The SQLSTATE values listed in share/errmsg.txt are used to generate the definitions in the
include/sql_state.h MySQL source file.

Because updates are frequent, it is possible that those files will contain additional error information not
listed here.

• Error: 1000 SQLSTATE: HY000 (ER_HASHCHK)

Message: hashchk

• Error: 1001 SQLSTATE: HY000 (ER_NISAMCHK)

Message: isamchk

• Error: 1002 SQLSTATE: HY000 (ER_NO)

Message: NO

• Error: 1003 SQLSTATE: HY000 (ER_YES)

1666

http://dev.mysql.com/doc/

Message: YES

• Error: 1004 SQLSTATE: HY000 (ER_CANT_CREATE_FILE)

Message: Can't create file '%s' (errno: %d)

• Error: 1005 SQLSTATE: HY000 (ER_CANT_CREATE_TABLE)

Message: Can't create table '%s' (errno: %d)

• Error: 1006 SQLSTATE: HY000 (ER_CANT_CREATE_DB)

Message: Can't create database '%s' (errno: %d)

• Error: 1007 SQLSTATE: HY000 (ER_DB_CREATE_EXISTS)

Message: Can't create database '%s'; database exists

• Error: 1008 SQLSTATE: HY000 (ER_DB_DROP_EXISTS)

Message: Can't drop database '%s'; database doesn't exist

• Error: 1009 SQLSTATE: HY000 (ER_DB_DROP_DELETE)

Message: Error dropping database (can't delete '%s', errno: %d)

• Error: 1010 SQLSTATE: HY000 (ER_DB_DROP_RMDIR)

Message: Error dropping database (can't rmdir '%s', errno: %d)

• Error: 1011 SQLSTATE: HY000 (ER_CANT_DELETE_FILE)

Message: Error on delete of '%s' (errno: %d)

• Error: 1012 SQLSTATE: HY000 (ER_CANT_FIND_SYSTEM_REC)

Message: Can't read record in system table

• Error: 1013 SQLSTATE: HY000 (ER_CANT_GET_STAT)

Message: Can't get status of '%s' (errno: %d)

• Error: 1014 SQLSTATE: HY000 (ER_CANT_GET_WD)

Message: Can't get working directory (errno: %d)

• Error: 1015 SQLSTATE: HY000 (ER_CANT_LOCK)

Message: Can't lock file (errno: %d)

• Error: 1016 SQLSTATE: HY000 (ER_CANT_OPEN_FILE)

Message: Can't open file: '%s' (errno: %d)

• Error: 1017 SQLSTATE: HY000 (ER_FILE_NOT_FOUND)

Message: Can't find file: '%s' (errno: %d)

• Error: 1018 SQLSTATE: HY000 (ER_CANT_READ_DIR)

Error Codes and Messages

1667

Message: Can't read dir of '%s' (errno: %d)

• Error: 1019 SQLSTATE: HY000 (ER_CANT_SET_WD)

Message: Can't change dir to '%s' (errno: %d)

• Error: 1020 SQLSTATE: HY000 (ER_CHECKREAD)

Message: Record has changed since last read in table '%s'

• Error: 1021 SQLSTATE: HY000 (ER_DISK_FULL)

Message: Disk full (%s); waiting for someone to free some space...

• Error: 1022 SQLSTATE: 23000 (ER_DUP_KEY)

Message: Can't write; duplicate key in table '%s'

• Error: 1023 SQLSTATE: HY000 (ER_ERROR_ON_CLOSE)

Message: Error on close of '%s' (errno: %d)

• Error: 1024 SQLSTATE: HY000 (ER_ERROR_ON_READ)

Message: Error reading file '%s' (errno: %d)

• Error: 1025 SQLSTATE: HY000 (ER_ERROR_ON_RENAME)

Message: Error on rename of '%s' to '%s' (errno: %d)

• Error: 1026 SQLSTATE: HY000 (ER_ERROR_ON_WRITE)

Message: Error writing file '%s' (errno: %d)

• Error: 1027 SQLSTATE: HY000 (ER_FILE_USED)

Message: '%s' is locked against change

• Error: 1028 SQLSTATE: HY000 (ER_FILSORT_ABORT)

Message: Sort aborted

• Error: 1029 SQLSTATE: HY000 (ER_FORM_NOT_FOUND)

Message: View '%s' doesn't exist for '%s'

• Error: 1030 SQLSTATE: HY000 (ER_GET_ERRNO)

Message: Got error %d from storage engine

• Error: 1031 SQLSTATE: HY000 (ER_ILLEGAL_HA)

Message: Table storage engine for '%s' doesn't have this option

• Error: 1032 SQLSTATE: HY000 (ER_KEY_NOT_FOUND)

Message: Can't find record in '%s'

• Error: 1033 SQLSTATE: HY000 (ER_NOT_FORM_FILE)

Error Codes and Messages

1668

Message: Incorrect information in file: '%s'

• Error: 1034 SQLSTATE: HY000 (ER_NOT_KEYFILE)

Message: Incorrect key file for table '%s'; try to repair it

• Error: 1035 SQLSTATE: HY000 (ER_OLD_KEYFILE)

Message: Old key file for table '%s'; repair it!

• Error: 1036 SQLSTATE: HY000 (ER_OPEN_AS_READONLY)

Message: Table '%s' is read only

• Error: 1037 SQLSTATE: HY001 (ER_OUTOFMEMORY)

Message: Out of memory; restart server and try again (needed %d bytes)

• Error: 1038 SQLSTATE: HY001 (ER_OUT_OF_SORTMEMORY)

Message: Out of sort memory; increase server sort buffer size

• Error: 1039 SQLSTATE: HY000 (ER_UNEXPECTED_EOF)

Message: Unexpected EOF found when reading file '%s' (errno: %d)

• Error: 1040 SQLSTATE: 08004 (ER_CON_COUNT_ERROR)

Message: Too many connections

• Error: 1041 SQLSTATE: HY000 (ER_OUT_OF_RESOURCES)

Message: Out of memory; check if mysqld or some other process uses all available memory; if not,
you may have to use 'ulimit' to allow mysqld to use more memory or you can add more swap space

• Error: 1042 SQLSTATE: 08S01 (ER_BAD_HOST_ERROR)

Message: Can't get hostname for your address

• Error: 1043 SQLSTATE: 08S01 (ER_HANDSHAKE_ERROR)

Message: Bad handshake

• Error: 1044 SQLSTATE: 42000 (ER_DBACCESS_DENIED_ERROR)

Message: Access denied for user '%s'@'%s' to database '%s'

• Error: 1045 SQLSTATE: 28000 (ER_ACCESS_DENIED_ERROR)

Message: Access denied for user '%s'@'%s' (using password: %s)

• Error: 1046 SQLSTATE: 3D000 (ER_NO_DB_ERROR)

Message: No database selected

• Error: 1047 SQLSTATE: 08S01 (ER_UNKNOWN_COM_ERROR)

Message: Unknown command

Error Codes and Messages

1669

• Error: 1048 SQLSTATE: 23000 (ER_BAD_NULL_ERROR)

Message: Column '%s' cannot be null

• Error: 1049 SQLSTATE: 42000 (ER_BAD_DB_ERROR)

Message: Unknown database '%s'

• Error: 1050 SQLSTATE: 42S01 (ER_TABLE_EXISTS_ERROR)

Message: Table '%s' already exists

• Error: 1051 SQLSTATE: 42S02 (ER_BAD_TABLE_ERROR)

Message: Unknown table '%s'

• Error: 1052 SQLSTATE: 23000 (ER_NON_UNIQ_ERROR)

Message: Column '%s' in %s is ambiguous

• Error: 1053 SQLSTATE: 08S01 (ER_SERVER_SHUTDOWN)

Message: Server shutdown in progress

• Error: 1054 SQLSTATE: 42S22 (ER_BAD_FIELD_ERROR)

Message: Unknown column '%s' in '%s'

• Error: 1055 SQLSTATE: 42000 (ER_WRONG_FIELD_WITH_GROUP)

Message: '%s' isn't in GROUP BY

• Error: 1056 SQLSTATE: 42000 (ER_WRONG_GROUP_FIELD)

Message: Can't group on '%s'

• Error: 1057 SQLSTATE: 42000 (ER_WRONG_SUM_SELECT)

Message: Statement has sum functions and columns in same statement

• Error: 1058 SQLSTATE: 21S01 (ER_WRONG_VALUE_COUNT)

Message: Column count doesn't match value count

• Error: 1059 SQLSTATE: 42000 (ER_TOO_LONG_IDENT)

Message: Identifier name '%s' is too long

• Error: 1060 SQLSTATE: 42S21 (ER_DUP_FIELDNAME)

Message: Duplicate column name '%s'

• Error: 1061 SQLSTATE: 42000 (ER_DUP_KEYNAME)

Message: Duplicate key name '%s'

• Error: 1062 SQLSTATE: 23000 (ER_DUP_ENTRY)

Message: Duplicate entry '%s' for key %d

Error Codes and Messages

1670

• Error: 1063 SQLSTATE: 42000 (ER_WRONG_FIELD_SPEC)

Message: Incorrect column specifier for column '%s'

• Error: 1064 SQLSTATE: 42000 (ER_PARSE_ERROR)

Message: %s near '%s' at line %d

• Error: 1065 SQLSTATE: 42000 (ER_EMPTY_QUERY)

Message: Query was empty

• Error: 1066 SQLSTATE: 42000 (ER_NONUNIQ_TABLE)

Message: Not unique table/alias: '%s'

• Error: 1067 SQLSTATE: 42000 (ER_INVALID_DEFAULT)

Message: Invalid default value for '%s'

• Error: 1068 SQLSTATE: 42000 (ER_MULTIPLE_PRI_KEY)

Message: Multiple primary key defined

• Error: 1069 SQLSTATE: 42000 (ER_TOO_MANY_KEYS)

Message: Too many keys specified; max %d keys allowed

• Error: 1070 SQLSTATE: 42000 (ER_TOO_MANY_KEY_PARTS)

Message: Too many key parts specified; max %d parts allowed

• Error: 1071 SQLSTATE: 42000 (ER_TOO_LONG_KEY)

Message: Specified key was too long; max key length is %d bytes

• Error: 1072 SQLSTATE: 42000 (ER_KEY_COLUMN_DOES_NOT_EXITS)

Message: Key column '%s' doesn't exist in table

• Error: 1073 SQLSTATE: 42000 (ER_BLOB_USED_AS_KEY)

Message: BLOB column '%s' can't be used in key specification with the used table type

• Error: 1074 SQLSTATE: 42000 (ER_TOO_BIG_FIELDLENGTH)

Message: Column length too big for column '%s' (max = %d); use BLOB or TEXT instead

• Error: 1075 SQLSTATE: 42000 (ER_WRONG_AUTO_KEY)

Message: Incorrect table definition; there can be only one auto column and it must be defined as a
key

• Error: 1076 SQLSTATE: HY000 (ER_READY)

Message: %s: ready for connections. Version: '%s' socket: '%s' port: %d

• Error: 1077 SQLSTATE: HY000 (ER_NORMAL_SHUTDOWN)

Message: %s: Normal shutdown

Error Codes and Messages

1671

• Error: 1078 SQLSTATE: HY000 (ER_GOT_SIGNAL)

Message: %s: Got signal %d. Aborting!

• Error: 1079 SQLSTATE: HY000 (ER_SHUTDOWN_COMPLETE)

Message: %s: Shutdown complete

• Error: 1080 SQLSTATE: 08S01 (ER_FORCING_CLOSE)

Message: %s: Forcing close of thread %ld user: '%s'

• Error: 1081 SQLSTATE: 08S01 (ER_IPSOCK_ERROR)

Message: Can't create IP socket

• Error: 1082 SQLSTATE: 42S12 (ER_NO_SUCH_INDEX)

Message: Table '%s' has no index like the one used in CREATE INDEX; recreate the table

• Error: 1083 SQLSTATE: 42000 (ER_WRONG_FIELD_TERMINATORS)

Message: Field separator argument is not what is expected; check the manual

• Error: 1084 SQLSTATE: 42000 (ER_BLOBS_AND_NO_TERMINATED)

Message: You can't use fixed rowlength with BLOBs; please use 'fields terminated by'

• Error: 1085 SQLSTATE: HY000 (ER_TEXTFILE_NOT_READABLE)

Message: The file '%s' must be in the database directory or be readable by all

• Error: 1086 SQLSTATE: HY000 (ER_FILE_EXISTS_ERROR)

Message: File '%s' already exists

• Error: 1087 SQLSTATE: HY000 (ER_LOAD_INFO)

Message: Records: %ld Deleted: %ld Skipped: %ld Warnings: %ld

• Error: 1088 SQLSTATE: HY000 (ER_ALTER_INFO)

Message: Records: %ld Duplicates: %ld

• Error: 1089 SQLSTATE: HY000 (ER_WRONG_SUB_KEY)

Message: Incorrect sub part key; the used key part isn't a string, the used length is longer than the
key part, or the storage engine doesn't support unique sub keys

• Error: 1090 SQLSTATE: 42000 (ER_CANT_REMOVE_ALL_FIELDS)

Message: You can't delete all columns with ALTER TABLE; use DROP TABLE instead

• Error: 1091 SQLSTATE: 42000 (ER_CANT_DROP_FIELD_OR_KEY)

Message: Can't DROP '%s'; check that column/key exists

• Error: 1092 SQLSTATE: HY000 (ER_INSERT_INFO)

Message: Records: %ld Duplicates: %ld Warnings: %ld

Error Codes and Messages

1672

• Error: 1093 SQLSTATE: HY000 (ER_UPDATE_TABLE_USED)

Message: You can't specify target table '%s' for update in FROM clause

• Error: 1094 SQLSTATE: HY000 (ER_NO_SUCH_THREAD)

Message: Unknown thread id: %lu

• Error: 1095 SQLSTATE: HY000 (ER_KILL_DENIED_ERROR)

Message: You are not owner of thread %lu

• Error: 1096 SQLSTATE: HY000 (ER_NO_TABLES_USED)

Message: No tables used

• Error: 1097 SQLSTATE: HY000 (ER_TOO_BIG_SET)

Message: Too many strings for column %s and SET

• Error: 1098 SQLSTATE: HY000 (ER_NO_UNIQUE_LOGFILE)

Message: Can't generate a unique log-filename %s.(1-999)

• Error: 1099 SQLSTATE: HY000 (ER_TABLE_NOT_LOCKED_FOR_WRITE)

Message: Table '%s' was locked with a READ lock and can't be updated

• Error: 1100 SQLSTATE: HY000 (ER_TABLE_NOT_LOCKED)

Message: Table '%s' was not locked with LOCK TABLES

• Error: 1101 SQLSTATE: 42000 (ER_BLOB_CANT_HAVE_DEFAULT)

Message: BLOB/TEXT column '%s' can't have a default value

• Error: 1102 SQLSTATE: 42000 (ER_WRONG_DB_NAME)

Message: Incorrect database name '%s'

• Error: 1103 SQLSTATE: 42000 (ER_WRONG_TABLE_NAME)

Message: Incorrect table name '%s'

• Error: 1104 SQLSTATE: 42000 (ER_TOO_BIG_SELECT)

Message: The SELECT would examine more than MAX_JOIN_SIZE rows; check your WHERE
and use SET SQL_BIG_SELECTS=1 or SET SQL_MAX_JOIN_SIZE=# if the SELECT is okay

• Error: 1105 SQLSTATE: HY000 (ER_UNKNOWN_ERROR)

Message: Unknown error

• Error: 1106 SQLSTATE: 42000 (ER_UNKNOWN_PROCEDURE)

Message: Unknown procedure '%s'

• Error: 1107 SQLSTATE: 42000 (ER_WRONG_PARAMCOUNT_TO_PROCEDURE)

Message: Incorrect parameter count to procedure '%s'

Error Codes and Messages

1673

• Error: 1108 SQLSTATE: HY000 (ER_WRONG_PARAMETERS_TO_PROCEDURE)

Message: Incorrect parameters to procedure '%s'

• Error: 1109 SQLSTATE: 42S02 (ER_UNKNOWN_TABLE)

Message: Unknown table '%s' in %s

• Error: 1110 SQLSTATE: 42000 (ER_FIELD_SPECIFIED_TWICE)

Message: Column '%s' specified twice

• Error: 1111 SQLSTATE: HY000 (ER_INVALID_GROUP_FUNC_USE)

Message: Invalid use of group function

• Error: 1112 SQLSTATE: 42000 (ER_UNSUPPORTED_EXTENSION)

Message: Table '%s' uses an extension that doesn't exist in this MySQL version

• Error: 1113 SQLSTATE: 42000 (ER_TABLE_MUST_HAVE_COLUMNS)

Message: A table must have at least 1 column

• Error: 1114 SQLSTATE: HY000 (ER_RECORD_FILE_FULL)

Message: The table '%s' is full

• Error: 1115 SQLSTATE: 42000 (ER_UNKNOWN_CHARACTER_SET)

Message: Unknown character set: '%s'

• Error: 1116 SQLSTATE: HY000 (ER_TOO_MANY_TABLES)

Message: Too many tables; MySQL can only use %d tables in a join

• Error: 1117 SQLSTATE: HY000 (ER_TOO_MANY_FIELDS)

Message: Too many columns

• Error: 1118 SQLSTATE: 42000 (ER_TOO_BIG_ROWSIZE)

Message: Row size too large. The maximum row size for the used table type, not counting BLOBs,
is %ld. You have to change some columns to TEXT or BLOBs

• Error: 1119 SQLSTATE: HY000 (ER_STACK_OVERRUN)

Message: Thread stack overrun: Used: %ld of a %ld stack. Use 'mysqld -O thread_stack=#' to spe-
cify a bigger stack if needed

• Error: 1120 SQLSTATE: 42000 (ER_WRONG_OUTER_JOIN)

Message: Cross dependency found in OUTER JOIN; examine your ON conditions

• Error: 1121 SQLSTATE: 42000 (ER_NULL_COLUMN_IN_INDEX)

Message: Column '%s' is used with UNIQUE or INDEX but is not defined as NOT NULL

• Error: 1122 SQLSTATE: HY000 (ER_CANT_FIND_UDF)

Error Codes and Messages

1674

Message: Can't load function '%s'

• Error: 1123 SQLSTATE: HY000 (ER_CANT_INITIALIZE_UDF)

Message: Can't initialize function '%s'; %s

• Error: 1124 SQLSTATE: HY000 (ER_UDF_NO_PATHS)

Message: No paths allowed for shared library

• Error: 1125 SQLSTATE: HY000 (ER_UDF_EXISTS)

Message: Function '%s' already exists

• Error: 1126 SQLSTATE: HY000 (ER_CANT_OPEN_LIBRARY)

Message: Can't open shared library '%s' (errno: %d %s)

• Error: 1127 SQLSTATE: HY000 (ER_CANT_FIND_DL_ENTRY)

Message: Can't find function '%s' in library

• Error: 1128 SQLSTATE: HY000 (ER_FUNCTION_NOT_DEFINED)

Message: Function '%s' is not defined

• Error: 1129 SQLSTATE: HY000 (ER_HOST_IS_BLOCKED)

Message: Host '%s' is blocked because of many connection errors; unblock with 'mysqladmin flush-
hosts'

• Error: 1130 SQLSTATE: HY000 (ER_HOST_NOT_PRIVILEGED)

Message: Host '%s' is not allowed to connect to this MySQL server

• Error: 1131 SQLSTATE: 42000 (ER_PASSWORD_ANONYMOUS_USER)

Message: You are using MySQL as an anonymous user and anonymous users are not allowed to
change passwords

• Error: 1132 SQLSTATE: 42000 (ER_PASSWORD_NOT_ALLOWED)

Message: You must have privileges to update tables in the mysql database to be able to change pass-
words for others

• Error: 1133 SQLSTATE: 42000 (ER_PASSWORD_NO_MATCH)

Message: Can't find any matching row in the user table

• Error: 1134 SQLSTATE: HY000 (ER_UPDATE_INFO)

Message: Rows matched: %ld Changed: %ld Warnings: %ld

• Error: 1135 SQLSTATE: HY000 (ER_CANT_CREATE_THREAD)

Message: Can't create a new thread (errno %d); if you are not out of available memory, you can con-
sult the manual for a possible OS-dependent bug

• Error: 1136 SQLSTATE: 21S01 (ER_WRONG_VALUE_COUNT_ON_ROW)

Error Codes and Messages

1675

Message: Column count doesn't match value count at row %ld

• Error: 1137 SQLSTATE: HY000 (ER_CANT_REOPEN_TABLE)

Message: Can't reopen table: '%s'

• Error: 1138 SQLSTATE: 22004 (ER_INVALID_USE_OF_NULL)

Message: Invalid use of NULL value

• Error: 1139 SQLSTATE: 42000 (ER_REGEXP_ERROR)

Message: Got error '%s' from regexp

• Error: 1140 SQLSTATE: 42000 (ER_MIX_OF_GROUP_FUNC_AND_FIELDS)

Message: Mixing of GROUP columns (MIN(),MAX(),COUNT(),...) with no GROUP columns is il-
legal if there is no GROUP BY clause

• Error: 1141 SQLSTATE: 42000 (ER_NONEXISTING_GRANT)

Message: There is no such grant defined for user '%s' on host '%s'

• Error: 1142 SQLSTATE: 42000 (ER_TABLEACCESS_DENIED_ERROR)

Message: %s command denied to user '%s'@'%s' for table '%s'

• Error: 1143 SQLSTATE: 42000 (ER_COLUMNACCESS_DENIED_ERROR)

Message: %s command denied to user '%s'@'%s' for column '%s' in table '%s'

• Error: 1144 SQLSTATE: 42000 (ER_ILLEGAL_GRANT_FOR_TABLE)

Message: Illegal GRANT/REVOKE command; please consult the manual to see which privileges
can be used

• Error: 1145 SQLSTATE: 42000 (ER_GRANT_WRONG_HOST_OR_USER)

Message: The host or user argument to GRANT is too long

• Error: 1146 SQLSTATE: 42S02 (ER_NO_SUCH_TABLE)

Message: Table '%s.%s' doesn't exist

• Error: 1147 SQLSTATE: 42000 (ER_NONEXISTING_TABLE_GRANT)

Message: There is no such grant defined for user '%s' on host '%s' on table '%s'

• Error: 1148 SQLSTATE: 42000 (ER_NOT_ALLOWED_COMMAND)

Message: The used command is not allowed with this MySQL version

• Error: 1149 SQLSTATE: 42000 (ER_SYNTAX_ERROR)

Message: You have an error in your SQL syntax; check the manual that corresponds to your MySQL
server version for the right syntax to use

• Error: 1150 SQLSTATE: HY000 (ER_DELAYED_CANT_CHANGE_LOCK)

Error Codes and Messages

1676

Message: Delayed insert thread couldn't get requested lock for table %s

• Error: 1151 SQLSTATE: HY000 (ER_TOO_MANY_DELAYED_THREADS)

Message: Too many delayed threads in use

• Error: 1152 SQLSTATE: 08S01 (ER_ABORTING_CONNECTION)

Message: Aborted connection %ld to db: '%s' user: '%s' (%s)

• Error: 1153 SQLSTATE: 08S01 (ER_NET_PACKET_TOO_LARGE)

Message: Got a packet bigger than 'max_allowed_packet' bytes

• Error: 1154 SQLSTATE: 08S01 (ER_NET_READ_ERROR_FROM_PIPE)

Message: Got a read error from the connection pipe

• Error: 1155 SQLSTATE: 08S01 (ER_NET_FCNTL_ERROR)

Message: Got an error from fcntl()

• Error: 1156 SQLSTATE: 08S01 (ER_NET_PACKETS_OUT_OF_ORDER)

Message: Got packets out of order

• Error: 1157 SQLSTATE: 08S01 (ER_NET_UNCOMPRESS_ERROR)

Message: Couldn't uncompress communication packet

• Error: 1158 SQLSTATE: 08S01 (ER_NET_READ_ERROR)

Message: Got an error reading communication packets

• Error: 1159 SQLSTATE: 08S01 (ER_NET_READ_INTERRUPTED)

Message: Got timeout reading communication packets

• Error: 1160 SQLSTATE: 08S01 (ER_NET_ERROR_ON_WRITE)

Message: Got an error writing communication packets

• Error: 1161 SQLSTATE: 08S01 (ER_NET_WRITE_INTERRUPTED)

Message: Got timeout writing communication packets

• Error: 1162 SQLSTATE: 42000 (ER_TOO_LONG_STRING)

Message: Result string is longer than 'max_allowed_packet' bytes

• Error: 1163 SQLSTATE: 42000 (ER_TABLE_CANT_HANDLE_BLOB)

Message: The used table type doesn't support BLOB/TEXT columns

• Error: 1164 SQLSTATE: 42000 (ER_TABLE_CANT_HANDLE_AUTO_INCREMENT)

Message: The used table type doesn't support AUTO_INCREMENT columns

• Error: 1165 SQLSTATE: HY000 (ER_DELAYED_INSERT_TABLE_LOCKED)

Error Codes and Messages

1677

Message: INSERT DELAYED can't be used with table '%s' because it is locked with LOCK
TABLES

• Error: 1166 SQLSTATE: 42000 (ER_WRONG_COLUMN_NAME)

Message: Incorrect column name '%s'

• Error: 1167 SQLSTATE: 42000 (ER_WRONG_KEY_COLUMN)

Message: The used storage engine can't index column '%s'

• Error: 1168 SQLSTATE: HY000 (ER_WRONG_MRG_TABLE)

Message: All tables in the MERGE table are not identically defined

• Error: 1169 SQLSTATE: 23000 (ER_DUP_UNIQUE)

Message: Can't write, because of unique constraint, to table '%s'

• Error: 1170 SQLSTATE: 42000 (ER_BLOB_KEY_WITHOUT_LENGTH)

Message: BLOB/TEXT column '%s' used in key specification without a key length

• Error: 1171 SQLSTATE: 42000 (ER_PRIMARY_CANT_HAVE_NULL)

Message: All parts of a PRIMARY KEY must be NOT NULL; if you need NULL in a key, use
UNIQUE instead

• Error: 1172 SQLSTATE: 42000 (ER_TOO_MANY_ROWS)

Message: Result consisted of more than one row

• Error: 1173 SQLSTATE: 42000 (ER_REQUIRES_PRIMARY_KEY)

Message: This table type requires a primary key

• Error: 1174 SQLSTATE: HY000 (ER_NO_RAID_COMPILED)

Message: This version of MySQL is not compiled with RAID support

• Error: 1175 SQLSTATE: HY000 (ER_UPDATE_WITHOUT_KEY_IN_SAFE_MODE)

Message: You are using safe update mode and you tried to update a table without a WHERE that
uses a KEY column

• Error: 1176 SQLSTATE: HY000 (ER_KEY_DOES_NOT_EXITS)

Message: Key '%s' doesn't exist in table '%s'

• Error: 1177 SQLSTATE: 42000 (ER_CHECK_NO_SUCH_TABLE)

Message: Can't open table

• Error: 1178 SQLSTATE: 42000 (ER_CHECK_NOT_IMPLEMENTED)

Message: The storage engine for the table doesn't support %s

• Error: 1179 SQLSTATE: 25000 (ER_CANT_DO_THIS_DURING_AN_TRANSACTION)

Error Codes and Messages

1678

Message: You are not allowed to execute this command in a transaction

• Error: 1180 SQLSTATE: HY000 (ER_ERROR_DURING_COMMIT)

Message: Got error %d during COMMIT

• Error: 1181 SQLSTATE: HY000 (ER_ERROR_DURING_ROLLBACK)

Message: Got error %d during ROLLBACK

• Error: 1182 SQLSTATE: HY000 (ER_ERROR_DURING_FLUSH_LOGS)

Message: Got error %d during FLUSH_LOGS

• Error: 1183 SQLSTATE: HY000 (ER_ERROR_DURING_CHECKPOINT)

Message: Got error %d during CHECKPOINT

• Error: 1184 SQLSTATE: 08S01 (ER_NEW_ABORTING_CONNECTION)

Message: Aborted connection %ld to db: '%s' user: '%s' host: '%s' (%s)

• Error: 1185 SQLSTATE: HY000 (ER_DUMP_NOT_IMPLEMENTED)

Message: The storage engine for the table does not support binary table dump

• Error: 1186 SQLSTATE: HY000 (ER_FLUSH_MASTER_BINLOG_CLOSED)

Message: Binlog closed, cannot RESET MASTER

• Error: 1187 SQLSTATE: HY000 (ER_INDEX_REBUILD)

Message: Failed rebuilding the index of dumped table '%s'

• Error: 1188 SQLSTATE: HY000 (ER_MASTER)

Message: Error from master: '%s'

• Error: 1189 SQLSTATE: 08S01 (ER_MASTER_NET_READ)

Message: Net error reading from master

• Error: 1190 SQLSTATE: 08S01 (ER_MASTER_NET_WRITE)

Message: Net error writing to master

• Error: 1191 SQLSTATE: HY000 (ER_FT_MATCHING_KEY_NOT_FOUND)

Message: Can't find FULLTEXT index matching the column list

• Error: 1192 SQLSTATE: HY000 (ER_LOCK_OR_ACTIVE_TRANSACTION)

Message: Can't execute the given command because you have active locked tables or an active trans-
action

• Error: 1193 SQLSTATE: HY000 (ER_UNKNOWN_SYSTEM_VARIABLE)

Message: Unknown system variable '%s'

Error Codes and Messages

1679

• Error: 1194 SQLSTATE: HY000 (ER_CRASHED_ON_USAGE)

Message: Table '%s' is marked as crashed and should be repaired

• Error: 1195 SQLSTATE: HY000 (ER_CRASHED_ON_REPAIR)

Message: Table '%s' is marked as crashed and last (automatic?) repair failed

• Error: 1196 SQLSTATE: HY000 (ER_WARNING_NOT_COMPLETE_ROLLBACK)

Message: Some non-transactional changed tables couldn't be rolled back

• Error: 1197 SQLSTATE: HY000 (ER_TRANS_CACHE_FULL)

Message: Multi-statement transaction required more than 'max_binlog_cache_size' bytes of storage;
increase this mysqld variable and try again

• Error: 1198 SQLSTATE: HY000 (ER_SLAVE_MUST_STOP)

Message: This operation cannot be performed with a running slave; run STOP SLAVE first

• Error: 1199 SQLSTATE: HY000 (ER_SLAVE_NOT_RUNNING)

Message: This operation requires a running slave; configure slave and do START SLAVE

• Error: 1200 SQLSTATE: HY000 (ER_BAD_SLAVE)

Message: The server is not configured as slave; fix in config file or with CHANGE MASTER TO

• Error: 1201 SQLSTATE: HY000 (ER_MASTER_INFO)

Message: Could not initialize master info structure; more error messages can be found in the
MySQL error log

• Error: 1202 SQLSTATE: HY000 (ER_SLAVE_THREAD)

Message: Could not create slave thread; check system resources

• Error: 1203 SQLSTATE: 42000 (ER_TOO_MANY_USER_CONNECTIONS)

Message: User %s already has more than 'max_user_connections' active connections

• Error: 1204 SQLSTATE: HY000 (ER_SET_CONSTANTS_ONLY)

Message: You may only use constant expressions with SET

• Error: 1205 SQLSTATE: HY000 (ER_LOCK_WAIT_TIMEOUT)

Message: Lock wait timeout exceeded; try restarting transaction

• Error: 1206 SQLSTATE: HY000 (ER_LOCK_TABLE_FULL)

Message: The total number of locks exceeds the lock table size

• Error: 1207 SQLSTATE: 25000 (ER_READ_ONLY_TRANSACTION)

Message: Update locks cannot be acquired during a READ UNCOMMITTED transaction

• Error: 1208 SQLSTATE: HY000 (ER_DROP_DB_WITH_READ_LOCK)

Error Codes and Messages

1680

Message: DROP DATABASE not allowed while thread is holding global read lock

• Error: 1209 SQLSTATE: HY000 (ER_CREATE_DB_WITH_READ_LOCK)

Message: CREATE DATABASE not allowed while thread is holding global read lock

• Error: 1210 SQLSTATE: HY000 (ER_WRONG_ARGUMENTS)

Message: Incorrect arguments to %s

• Error: 1211 SQLSTATE: 42000 (ER_NO_PERMISSION_TO_CREATE_USER)

Message: '%s'@'%s' is not allowed to create new users

• Error: 1212 SQLSTATE: HY000 (ER_UNION_TABLES_IN_DIFFERENT_DIR)

Message: Incorrect table definition; all MERGE tables must be in the same database

• Error: 1213 SQLSTATE: 40001 (ER_LOCK_DEADLOCK)

Message: Deadlock found when trying to get lock; try restarting transaction

• Error: 1214 SQLSTATE: HY000 (ER_TABLE_CANT_HANDLE_FT)

Message: The used table type doesn't support FULLTEXT indexes

• Error: 1215 SQLSTATE: HY000 (ER_CANNOT_ADD_FOREIGN)

Message: Cannot add foreign key constraint

• Error: 1216 SQLSTATE: 23000 (ER_NO_REFERENCED_ROW)

Message: Cannot add or update a child row: a foreign key constraint fails

• Error: 1217 SQLSTATE: 23000 (ER_ROW_IS_REFERENCED)

Message: Cannot delete or update a parent row: a foreign key constraint fails

• Error: 1218 SQLSTATE: 08S01 (ER_CONNECT_TO_MASTER)

Message: Error connecting to master: %s

• Error: 1219 SQLSTATE: HY000 (ER_QUERY_ON_MASTER)

Message: Error running query on master: %s

• Error: 1220 SQLSTATE: HY000 (ER_ERROR_WHEN_EXECUTING_COMMAND)

Message: Error when executing command %s: %s

• Error: 1221 SQLSTATE: HY000 (ER_WRONG_USAGE)

Message: Incorrect usage of %s and %s

• Error: 1222 SQLSTATE: 21000 (ER_WRONG_NUMBER_OF_COLUMNS_IN_SELECT)

Message: The used SELECT statements have a different number of columns

• Error: 1223 SQLSTATE: HY000 (ER_CANT_UPDATE_WITH_READLOCK)

Error Codes and Messages

1681

Message: Can't execute the query because you have a conflicting read lock

• Error: 1224 SQLSTATE: HY000 (ER_MIXING_NOT_ALLOWED)

Message: Mixing of transactional and non-transactional tables is disabled

• Error: 1225 SQLSTATE: HY000 (ER_DUP_ARGUMENT)

Message: Option '%s' used twice in statement

• Error: 1226 SQLSTATE: 42000 (ER_USER_LIMIT_REACHED)

Message: User '%s' has exceeded the '%s' resource (current value: %ld)

• Error: 1227 SQLSTATE: 42000 (ER_SPECIFIC_ACCESS_DENIED_ERROR)

Message: Access denied; you need the %s privilege for this operation

• Error: 1228 SQLSTATE: HY000 (ER_LOCAL_VARIABLE)

Message: Variable '%s' is a SESSION variable and can't be used with SET GLOBAL

• Error: 1229 SQLSTATE: HY000 (ER_GLOBAL_VARIABLE)

Message: Variable '%s' is a GLOBAL variable and should be set with SET GLOBAL

• Error: 1230 SQLSTATE: 42000 (ER_NO_DEFAULT)

Message: Variable '%s' doesn't have a default value

• Error: 1231 SQLSTATE: 42000 (ER_WRONG_VALUE_FOR_VAR)

Message: Variable '%s' can't be set to the value of '%s'

• Error: 1232 SQLSTATE: 42000 (ER_WRONG_TYPE_FOR_VAR)

Message: Incorrect argument type to variable '%s'

• Error: 1233 SQLSTATE: HY000 (ER_VAR_CANT_BE_READ)

Message: Variable '%s' can only be set, not read

• Error: 1234 SQLSTATE: 42000 (ER_CANT_USE_OPTION_HERE)

Message: Incorrect usage/placement of '%s'

• Error: 1235 SQLSTATE: 42000 (ER_NOT_SUPPORTED_YET)

Message: This version of MySQL doesn't yet support '%s'

• Error: 1236 SQLSTATE: HY000 (ER_MASTER_FATAL_ERROR_READING_BINLOG)

Message: Got fatal error %d: '%s' from master when reading data from binary log

• Error: 1237 SQLSTATE: HY000 (ER_SLAVE_IGNORED_TABLE)

Message: Slave SQL thread ignored the query because of replicate-*-table rules

• Error: 1238 SQLSTATE: HY000 (ER_INCORRECT_GLOBAL_LOCAL_VAR)

Error Codes and Messages

1682

Message: Variable '%s' is a %s variable

• Error: 1239 SQLSTATE: 42000 (ER_WRONG_FK_DEF)

Message: Incorrect foreign key definition for '%s': %s

• Error: 1240 SQLSTATE: HY000 (ER_KEY_REF_DO_NOT_MATCH_TABLE_REF)

Message: Key reference and table reference don't match

• Error: 1241 SQLSTATE: 21000 (ER_OPERAND_COLUMNS)

Message: Operand should contain %d column(s)

• Error: 1242 SQLSTATE: 21000 (ER_SUBQUERY_NO_1_ROW)

Message: Subquery returns more than 1 row

• Error: 1243 SQLSTATE: HY000 (ER_UNKNOWN_STMT_HANDLER)

Message: Unknown prepared statement handler (%.*s) given to %s

• Error: 1244 SQLSTATE: HY000 (ER_CORRUPT_HELP_DB)

Message: Help database is corrupt or does not exist

• Error: 1245 SQLSTATE: HY000 (ER_CYCLIC_REFERENCE)

Message: Cyclic reference on subqueries

• Error: 1246 SQLSTATE: HY000 (ER_AUTO_CONVERT)

Message: Converting column '%s' from %s to %s

• Error: 1247 SQLSTATE: 42S22 (ER_ILLEGAL_REFERENCE)

Message: Reference '%s' not supported (%s)

• Error: 1248 SQLSTATE: 42000 (ER_DERIVED_MUST_HAVE_ALIAS)

Message: Every derived table must have its own alias

• Error: 1249 SQLSTATE: 01000 (ER_SELECT_REDUCED)

Message: Select %u was reduced during optimization

• Error: 1250 SQLSTATE: 42000 (ER_TABLENAME_NOT_ALLOWED_HERE)

Message: Table '%s' from one of the SELECTs cannot be used in %s

• Error: 1251 SQLSTATE: 08004 (ER_NOT_SUPPORTED_AUTH_MODE)

Message: Client does not support authentication protocol requested by server; consider upgrading
MySQL client

• Error: 1252 SQLSTATE: 42000 (ER_SPATIAL_CANT_HAVE_NULL)

Message: All parts of a SPATIAL index must be NOT NULL

Error Codes and Messages

1683

• Error: 1253 SQLSTATE: 42000 (ER_COLLATION_CHARSET_MISMATCH)

Message: COLLATION '%s' is not valid for CHARACTER SET '%s'

• Error: 1254 SQLSTATE: HY000 (ER_SLAVE_WAS_RUNNING)

Message: Slave is already running

• Error: 1255 SQLSTATE: HY000 (ER_SLAVE_WAS_NOT_RUNNING)

Message: Slave already has been stopped

• Error: 1256 SQLSTATE: HY000 (ER_TOO_BIG_FOR_UNCOMPRESS)

Message: Uncompressed data size too large; the maximum size is %d (probably, length of uncom-
pressed data was corrupted)

• Error: 1257 SQLSTATE: HY000 (ER_ZLIB_Z_MEM_ERROR)

Message: ZLIB: Not enough memory

• Error: 1258 SQLSTATE: HY000 (ER_ZLIB_Z_BUF_ERROR)

Message: ZLIB: Not enough room in the output buffer (probably, length of uncompressed data was
corrupted)

• Error: 1259 SQLSTATE: HY000 (ER_ZLIB_Z_DATA_ERROR)

Message: ZLIB: Input data corrupted

• Error: 1260 SQLSTATE: HY000 (ER_CUT_VALUE_GROUP_CONCAT)

Message: %d line(s) were cut by GROUP_CONCAT()

• Error: 1261 SQLSTATE: 01000 (ER_WARN_TOO_FEW_RECORDS)

Message: Row %ld doesn't contain data for all columns

• Error: 1262 SQLSTATE: 01000 (ER_WARN_TOO_MANY_RECORDS)

Message: Row %ld was truncated; it contained more data than there were input columns

• Error: 1263 SQLSTATE: 22004 (ER_WARN_NULL_TO_NOTNULL)

Message: Column was set to data type implicit default; NULL supplied for NOT NULL column '%s'
at row %ld

• Error: 1264 SQLSTATE: 22003 (ER_WARN_DATA_OUT_OF_RANGE)

Message: Out of range value adjusted for column '%s' at row %ld

• Error: 1265 SQLSTATE: 01000 (WARN_DATA_TRUNCATED)

Message: Data truncated for column '%s' at row %ld

• Error: 1266 SQLSTATE: HY000 (ER_WARN_USING_OTHER_HANDLER)

Message: Using storage engine %s for table '%s'

• Error: 1267 SQLSTATE: HY000 (ER_CANT_AGGREGATE_2COLLATIONS)

Error Codes and Messages

1684

Message: Illegal mix of collations (%s,%s) and (%s,%s) for operation '%s'

• Error: 1268 SQLSTATE: HY000 (ER_DROP_USER)

Message: Cannot drop one or more of the requested users

• Error: 1269 SQLSTATE: HY000 (ER_REVOKE_GRANTS)

Message: Can't revoke all privileges for one or more of the requested users

• Error: 1270 SQLSTATE: HY000 (ER_CANT_AGGREGATE_3COLLATIONS)

Message: Illegal mix of collations (%s,%s), (%s,%s), (%s,%s) for operation '%s'

• Error: 1271 SQLSTATE: HY000 (ER_CANT_AGGREGATE_NCOLLATIONS)

Message: Illegal mix of collations for operation '%s'

• Error: 1272 SQLSTATE: HY000 (ER_VARIABLE_IS_NOT_STRUCT)

Message: Variable '%s' is not a variable component (can't be used as XXXX.variable_name)

• Error: 1273 SQLSTATE: HY000 (ER_UNKNOWN_COLLATION)

Message: Unknown collation: '%s'

• Error: 1274 SQLSTATE: HY000 (ER_SLAVE_IGNORED_SSL_PARAMS)

Message: SSL parameters in CHANGE MASTER are ignored because this MySQL slave was com-
piled without SSL support; they can be used later if MySQL slave with SSL is started

• Error: 1275 SQLSTATE: HY000 (ER_SERVER_IS_IN_SECURE_AUTH_MODE)

Message: Server is running in --secure-auth mode, but '%s'@'%s' has a password in the old format;
please change the password to the new format

• Error: 1276 SQLSTATE: HY000 (ER_WARN_FIELD_RESOLVED)

Message: Field or reference '%s%s%s%s%s' of SELECT #%d was resolved in SELECT #%d

• Error: 1277 SQLSTATE: HY000 (ER_BAD_SLAVE_UNTIL_COND)

Message: Incorrect parameter or combination of parameters for START SLAVE UNTIL

• Error: 1278 SQLSTATE: HY000 (ER_MISSING_SKIP_SLAVE)

Message: It is recommended to use --skip-slave-start when doing step-by-step replication with
START SLAVE UNTIL; otherwise, you will get problems if you get an unexpected slave's mysqld
restart

• Error: 1279 SQLSTATE: HY000 (ER_UNTIL_COND_IGNORED)

Message: SQL thread is not to be started so UNTIL options are ignored

• Error: 1280 SQLSTATE: 42000 (ER_WRONG_NAME_FOR_INDEX)

Message: Incorrect index name '%s'

• Error: 1281 SQLSTATE: 42000 (ER_WRONG_NAME_FOR_CATALOG)

Error Codes and Messages

1685

Message: Incorrect catalog name '%s'

• Error: 1282 SQLSTATE: HY000 (ER_WARN_QC_RESIZE)

Message: Query cache failed to set size %lu; new query cache size is %lu

• Error: 1283 SQLSTATE: HY000 (ER_BAD_FT_COLUMN)

Message: Column '%s' cannot be part of FULLTEXT index

• Error: 1284 SQLSTATE: HY000 (ER_UNKNOWN_KEY_CACHE)

Message: Unknown key cache '%s'

• Error: 1285 SQLSTATE: HY000 (ER_WARN_HOSTNAME_WONT_WORK)

Message: MySQL is started in --skip-name-resolve mode; you must restart it without this switch for
this grant to work

• Error: 1286 SQLSTATE: 42000 (ER_UNKNOWN_STORAGE_ENGINE)

Message: Unknown table engine '%s'

• Error: 1287 SQLSTATE: HY000 (ER_WARN_DEPRECATED_SYNTAX)

Message: '%s' is deprecated; use '%s' instead

• Error: 1288 SQLSTATE: HY000 (ER_NON_UPDATABLE_TABLE)

Message: The target table %s of the %s is not updatable

• Error: 1289 SQLSTATE: HY000 (ER_FEATURE_DISABLED)

Message: The '%s' feature is disabled; you need MySQL built with '%s' to have it working

• Error: 1290 SQLSTATE: HY000 (ER_OPTION_PREVENTS_STATEMENT)

Message: The MySQL server is running with the %s option so it cannot execute this statement

• Error: 1291 SQLSTATE: HY000 (ER_DUPLICATED_VALUE_IN_TYPE)

Message: Column '%s' has duplicated value '%s' in %s

• Error: 1292 SQLSTATE: 22007 (ER_TRUNCATED_WRONG_VALUE)

Message: Truncated incorrect %s value: '%s'

• Error: 1293 SQLSTATE: HY000 (ER_TOO_MUCH_AUTO_TIMESTAMP_COLS)

Message: Incorrect table definition; there can be only one TIMESTAMP column with CUR-
RENT_TIMESTAMP in DEFAULT or ON UPDATE clause

• Error: 1294 SQLSTATE: HY000 (ER_INVALID_ON_UPDATE)

Message: Invalid ON UPDATE clause for '%s' column

• Error: 1295 SQLSTATE: HY000 (ER_UNSUPPORTED_PS)

Message: This command is not supported in the prepared statement protocol yet

Error Codes and Messages

1686

• Error: 1296 SQLSTATE: HY000 (ER_GET_ERRMSG)

Message: Got error %d '%s' from %s

• Error: 1297 SQLSTATE: HY000 (ER_GET_TEMPORARY_ERRMSG)

Message: Got temporary error %d '%s' from %s

• Error: 1298 SQLSTATE: HY000 (ER_UNKNOWN_TIME_ZONE)

Message: Unknown or incorrect time zone: '%s'

• Error: 1299 SQLSTATE: HY000 (ER_WARN_INVALID_TIMESTAMP)

Message: Invalid TIMESTAMP value in column '%s' at row %ld

• Error: 1300 SQLSTATE: HY000 (ER_INVALID_CHARACTER_STRING)

Message: Invalid %s character string: '%s'

• Error: 1301 SQLSTATE: HY000 (ER_WARN_ALLOWED_PACKET_OVERFLOWED)

Message: Result of %s() was larger than max_allowed_packet (%ld) - truncated

• Error: 1302 SQLSTATE: HY000 (ER_CONFLICTING_DECLARATIONS)

Message: Conflicting declarations: '%s%s' and '%s%s'

• Error: 1303 SQLSTATE: 2F003 (ER_SP_NO_RECURSIVE_CREATE)

Message: Can't create a %s from within another stored routine

• Error: 1304 SQLSTATE: 42000 (ER_SP_ALREADY_EXISTS)

Message: %s %s already exists

• Error: 1305 SQLSTATE: 42000 (ER_SP_DOES_NOT_EXIST)

Message: %s %s does not exist

• Error: 1306 SQLSTATE: HY000 (ER_SP_DROP_FAILED)

Message: Failed to DROP %s %s

• Error: 1307 SQLSTATE: HY000 (ER_SP_STORE_FAILED)

Message: Failed to CREATE %s %s

• Error: 1308 SQLSTATE: 42000 (ER_SP_LILABEL_MISMATCH)

Message: %s with no matching label: %s

• Error: 1309 SQLSTATE: 42000 (ER_SP_LABEL_REDEFINE)

Message: Redefining label %s

• Error: 1310 SQLSTATE: 42000 (ER_SP_LABEL_MISMATCH)

Message: End-label %s without match

Error Codes and Messages

1687

• Error: 1311 SQLSTATE: 01000 (ER_SP_UNINIT_VAR)

Message: Referring to uninitialized variable %s

• Error: 1312 SQLSTATE: 0A000 (ER_SP_BADSELECT)

Message: PROCEDURE %s can't return a result set in the given context

• Error: 1313 SQLSTATE: 42000 (ER_SP_BADRETURN)

Message: RETURN is only allowed in a FUNCTION

• Error: 1314 SQLSTATE: 0A000 (ER_SP_BADSTATEMENT)

Message: %s is not allowed in stored procedures

• Error: 1315 SQLSTATE: 42000 (ER_UPDATE_LOG_DEPRECATED_IGNORED)

Message: The update log is deprecated and replaced by the binary log; SET SQL_LOG_UPDATE
has been ignored

• Error: 1316 SQLSTATE: 42000 (ER_UPDATE_LOG_DEPRECATED_TRANSLATED)

Message: The update log is deprecated and replaced by the binary log; SET SQL_LOG_UPDATE
has been translated to SET SQL_LOG_BIN

• Error: 1317 SQLSTATE: 70100 (ER_QUERY_INTERRUPTED)

Message: Query execution was interrupted

• Error: 1318 SQLSTATE: 42000 (ER_SP_WRONG_NO_OF_ARGS)

Message: Incorrect number of arguments for %s %s; expected %u, got %u

• Error: 1319 SQLSTATE: 42000 (ER_SP_COND_MISMATCH)

Message: Undefined CONDITION: %s

• Error: 1320 SQLSTATE: 42000 (ER_SP_NORETURN)

Message: No RETURN found in FUNCTION %s

• Error: 1321 SQLSTATE: 2F005 (ER_SP_NORETURNEND)

Message: FUNCTION %s ended without RETURN

• Error: 1322 SQLSTATE: 42000 (ER_SP_BAD_CURSOR_QUERY)

Message: Cursor statement must be a SELECT

• Error: 1323 SQLSTATE: 42000 (ER_SP_BAD_CURSOR_SELECT)

Message: Cursor SELECT must not have INTO

• Error: 1324 SQLSTATE: 42000 (ER_SP_CURSOR_MISMATCH)

Message: Undefined CURSOR: %s

• Error: 1325 SQLSTATE: 24000 (ER_SP_CURSOR_ALREADY_OPEN)

Error Codes and Messages

1688

Message: Cursor is already open

• Error: 1326 SQLSTATE: 24000 (ER_SP_CURSOR_NOT_OPEN)

Message: Cursor is not open

• Error: 1327 SQLSTATE: 42000 (ER_SP_UNDECLARED_VAR)

Message: Undeclared variable: %s

• Error: 1328 SQLSTATE: HY000 (ER_SP_WRONG_NO_OF_FETCH_ARGS)

Message: Incorrect number of FETCH variables

• Error: 1329 SQLSTATE: 02000 (ER_SP_FETCH_NO_DATA)

Message: No data - zero rows fetched, selected, or processed

• Error: 1330 SQLSTATE: 42000 (ER_SP_DUP_PARAM)

Message: Duplicate parameter: %s

• Error: 1331 SQLSTATE: 42000 (ER_SP_DUP_VAR)

Message: Duplicate variable: %s

• Error: 1332 SQLSTATE: 42000 (ER_SP_DUP_COND)

Message: Duplicate condition: %s

• Error: 1333 SQLSTATE: 42000 (ER_SP_DUP_CURS)

Message: Duplicate cursor: %s

• Error: 1334 SQLSTATE: HY000 (ER_SP_CANT_ALTER)

Message: Failed to ALTER %s %s

• Error: 1335 SQLSTATE: 0A000 (ER_SP_SUBSELECT_NYI)

Message: Subselect value not supported

• Error: 1336 SQLSTATE: 0A000 (ER_STMT_NOT_ALLOWED_IN_SF_OR_TRG)

Message: %s is not allowed in stored function or trigger

• Error: 1337 SQLSTATE: 42000 (ER_SP_VARCOND_AFTER_CURSHNDLR)

Message: Variable or condition declaration after cursor or handler declaration

• Error: 1338 SQLSTATE: 42000 (ER_SP_CURSOR_AFTER_HANDLER)

Message: Cursor declaration after handler declaration

• Error: 1339 SQLSTATE: 20000 (ER_SP_CASE_NOT_FOUND)

Message: Case not found for CASE statement

• Error: 1340 SQLSTATE: HY000 (ER_FPARSER_TOO_BIG_FILE)

Error Codes and Messages

1689

Message: Configuration file '%s' is too big

• Error: 1341 SQLSTATE: HY000 (ER_FPARSER_BAD_HEADER)

Message: Malformed file type header in file '%s'

• Error: 1342 SQLSTATE: HY000 (ER_FPARSER_EOF_IN_COMMENT)

Message: Unexpected end of file while parsing comment '%s'

• Error: 1343 SQLSTATE: HY000 (ER_FPARSER_ERROR_IN_PARAMETER)

Message: Error while parsing parameter '%s' (line: '%s')

• Error: 1344 SQLSTATE: HY000 (ER_FPARSER_EOF_IN_UNKNOWN_PARAMETER)

Message: Unexpected end of file while skipping unknown parameter '%s'

• Error: 1345 SQLSTATE: HY000 (ER_VIEW_NO_EXPLAIN)

Message: EXPLAIN/SHOW can not be issued; lacking privileges for underlying table

• Error: 1346 SQLSTATE: HY000 (ER_FRM_UNKNOWN_TYPE)

Message: File '%s' has unknown type '%s' in its header

• Error: 1347 SQLSTATE: HY000 (ER_WRONG_OBJECT)

Message: '%s.%s' is not %s

• Error: 1348 SQLSTATE: HY000 (ER_NONUPDATEABLE_COLUMN)

Message: Column '%s' is not updatable

• Error: 1349 SQLSTATE: HY000 (ER_VIEW_SELECT_DERIVED)

Message: View's SELECT contains a subquery in the FROM clause

• Error: 1350 SQLSTATE: HY000 (ER_VIEW_SELECT_CLAUSE)

Message: View's SELECT contains a '%s' clause

• Error: 1351 SQLSTATE: HY000 (ER_VIEW_SELECT_VARIABLE)

Message: View's SELECT contains a variable or parameter

• Error: 1352 SQLSTATE: HY000 (ER_VIEW_SELECT_TMPTABLE)

Message: View's SELECT refers to a temporary table '%s'

• Error: 1353 SQLSTATE: HY000 (ER_VIEW_WRONG_LIST)

Message: View's SELECT and view's field list have different column counts

• Error: 1354 SQLSTATE: HY000 (ER_WARN_VIEW_MERGE)

Message: View merge algorithm can't be used here for now (assumed undefined algorithm)

• Error: 1355 SQLSTATE: HY000 (ER_WARN_VIEW_WITHOUT_KEY)

Error Codes and Messages

1690

Message: View being updated does not have complete key of underlying table in it

• Error: 1356 SQLSTATE: HY000 (ER_VIEW_INVALID)

Message: View '%s.%s' references invalid table(s) or column(s) or function(s) or definer/invoker of
view lack rights to use them

• Error: 1357 SQLSTATE: HY000 (ER_SP_NO_DROP_SP)

Message: Can't drop or alter a %s from within another stored routine

• Error: 1358 SQLSTATE: HY000 (ER_SP_GOTO_IN_HNDLR)

Message: GOTO is not allowed in a stored procedure handler

• Error: 1359 SQLSTATE: HY000 (ER_TRG_ALREADY_EXISTS)

Message: Trigger already exists

• Error: 1360 SQLSTATE: HY000 (ER_TRG_DOES_NOT_EXIST)

Message: Trigger does not exist

• Error: 1361 SQLSTATE: HY000 (ER_TRG_ON_VIEW_OR_TEMP_TABLE)

Message: Trigger's '%s' is view or temporary table

• Error: 1362 SQLSTATE: HY000 (ER_TRG_CANT_CHANGE_ROW)

Message: Updating of %s row is not allowed in %strigger

• Error: 1363 SQLSTATE: HY000 (ER_TRG_NO_SUCH_ROW_IN_TRG)

Message: There is no %s row in %s trigger

• Error: 1364 SQLSTATE: HY000 (ER_NO_DEFAULT_FOR_FIELD)

Message: Field '%s' doesn't have a default value

• Error: 1365 SQLSTATE: 22012 (ER_DIVISION_BY_ZERO)

Message: Division by 0

• Error: 1366 SQLSTATE: HY000 (ER_TRUNCATED_WRONG_VALUE_FOR_FIELD)

Message: Incorrect %s value: '%s' for column '%s' at row %ld

• Error: 1367 SQLSTATE: 22007 (ER_ILLEGAL_VALUE_FOR_TYPE)

Message: Illegal %s '%s' value found during parsing

• Error: 1368 SQLSTATE: HY000 (ER_VIEW_NONUPD_CHECK)

Message: CHECK OPTION on non-updatable view '%s.%s'

• Error: 1369 SQLSTATE: HY000 (ER_VIEW_CHECK_FAILED)

Message: CHECK OPTION failed '%s.%s'

Error Codes and Messages

1691

• Error: 1370 SQLSTATE: 42000 (ER_PROCACCESS_DENIED_ERROR)

Message: %s command denied to user '%s'@'%s' for routine '%s'

• Error: 1371 SQLSTATE: HY000 (ER_RELAY_LOG_FAIL)

Message: Failed purging old relay logs: %s

• Error: 1372 SQLSTATE: HY000 (ER_PASSWD_LENGTH)

Message: Password hash should be a %d-digit hexadecimal number

• Error: 1373 SQLSTATE: HY000 (ER_UNKNOWN_TARGET_BINLOG)

Message: Target log not found in binlog index

• Error: 1374 SQLSTATE: HY000 (ER_IO_ERR_LOG_INDEX_READ)

Message: I/O error reading log index file

• Error: 1375 SQLSTATE: HY000 (ER_BINLOG_PURGE_PROHIBITED)

Message: Server configuration does not permit binlog purge

• Error: 1376 SQLSTATE: HY000 (ER_FSEEK_FAIL)

Message: Failed on fseek()

• Error: 1377 SQLSTATE: HY000 (ER_BINLOG_PURGE_FATAL_ERR)

Message: Fatal error during log purge

• Error: 1378 SQLSTATE: HY000 (ER_LOG_IN_USE)

Message: A purgeable log is in use, will not purge

• Error: 1379 SQLSTATE: HY000 (ER_LOG_PURGE_UNKNOWN_ERR)

Message: Unknown error during log purge

• Error: 1380 SQLSTATE: HY000 (ER_RELAY_LOG_INIT)

Message: Failed initializing relay log position: %s

• Error: 1381 SQLSTATE: HY000 (ER_NO_BINARY_LOGGING)

Message: You are not using binary logging

• Error: 1382 SQLSTATE: HY000 (ER_RESERVED_SYNTAX)

Message: The '%s' syntax is reserved for purposes internal to the MySQL server

• Error: 1383 SQLSTATE: HY000 (ER_WSAS_FAILED)

Message: WSAStartup Failed

• Error: 1384 SQLSTATE: HY000 (ER_DIFF_GROUPS_PROC)

Message: Can't handle procedures with different groups yet

Error Codes and Messages

1692

• Error: 1385 SQLSTATE: HY000 (ER_NO_GROUP_FOR_PROC)

Message: Select must have a group with this procedure

• Error: 1386 SQLSTATE: HY000 (ER_ORDER_WITH_PROC)

Message: Can't use ORDER clause with this procedure

• Error: 1387 SQLSTATE: HY000 (ER_LOGGING_PROHIBIT_CHANGING_OF)

Message: Binary logging and replication forbid changing the global server %s

• Error: 1388 SQLSTATE: HY000 (ER_NO_FILE_MAPPING)

Message: Can't map file: %s, errno: %d

• Error: 1389 SQLSTATE: HY000 (ER_WRONG_MAGIC)

Message: Wrong magic in %s

• Error: 1390 SQLSTATE: HY000 (ER_PS_MANY_PARAM)

Message: Prepared statement contains too many placeholders

• Error: 1391 SQLSTATE: HY000 (ER_KEY_PART_0)

Message: Key part '%s' length cannot be 0

• Error: 1392 SQLSTATE: HY000 (ER_VIEW_CHECKSUM)

Message: View text checksum failed

• Error: 1393 SQLSTATE: HY000 (ER_VIEW_MULTIUPDATE)

Message: Can not modify more than one base table through a join view '%s.%s'

• Error: 1394 SQLSTATE: HY000 (ER_VIEW_NO_INSERT_FIELD_LIST)

Message: Can not insert into join view '%s.%s' without fields list

• Error: 1395 SQLSTATE: HY000 (ER_VIEW_DELETE_MERGE_VIEW)

Message: Can not delete from join view '%s.%s'

• Error: 1396 SQLSTATE: HY000 (ER_CANNOT_USER)

Message: Operation %s failed for %s

• Error: 1397 SQLSTATE: XAE04 (ER_XAER_NOTA)

Message: XAER_NOTA: Unknown XID

• Error: 1398 SQLSTATE: XAE05 (ER_XAER_INVAL)

Message: XAER_INVAL: Invalid arguments (or unsupported command)

• Error: 1399 SQLSTATE: XAE07 (ER_XAER_RMFAIL)

Message: XAER_RMFAIL: The command cannot be executed when global transaction is in the %s
state

Error Codes and Messages

1693

• Error: 1400 SQLSTATE: XAE09 (ER_XAER_OUTSIDE)

Message: XAER_OUTSIDE: Some work is done outside global transaction

• Error: 1401 SQLSTATE: XAE03 (ER_XAER_RMERR)

Message: XAER_RMERR: Fatal error occurred in the transaction branch - check your data for con-
sistency

• Error: 1402 SQLSTATE: XA100 (ER_XA_RBROLLBACK)

Message: XA_RBROLLBACK: Transaction branch was rolled back

• Error: 1403 SQLSTATE: 42000 (ER_NONEXISTING_PROC_GRANT)

Message: There is no such grant defined for user '%s' on host '%s' on routine '%s'

• Error: 1404 SQLSTATE: HY000 (ER_PROC_AUTO_GRANT_FAIL)

Message: Failed to grant EXECUTE and ALTER ROUTINE privileges

• Error: 1405 SQLSTATE: HY000 (ER_PROC_AUTO_REVOKE_FAIL)

Message: Failed to revoke all privileges to dropped routine

• Error: 1406 SQLSTATE: 22001 (ER_DATA_TOO_LONG)

Message: Data too long for column '%s' at row %ld

• Error: 1407 SQLSTATE: 42000 (ER_SP_BAD_SQLSTATE)

Message: Bad SQLSTATE: '%s'

• Error: 1408 SQLSTATE: HY000 (ER_STARTUP)

Message: %s: ready for connections. Version: '%s' socket: '%s' port: %d %s

• Error: 1409 SQLSTATE: HY000 (ER_LOAD_FROM_FIXED_SIZE_ROWS_TO_VAR)

Message: Can't load value from file with fixed size rows to variable

• Error: 1410 SQLSTATE: 42000 (ER_CANT_CREATE_USER_WITH_GRANT)

Message: You are not allowed to create a user with GRANT

• Error: 1411 SQLSTATE: HY000 (ER_WRONG_VALUE_FOR_TYPE)

Message: Incorrect %s value: '%s' for function %s

• Error: 1412 SQLSTATE: HY000 (ER_TABLE_DEF_CHANGED)

Message: Table definition has changed, please retry transaction

• Error: 1413 SQLSTATE: 42000 (ER_SP_DUP_HANDLER)

Message: Duplicate handler declared in the same block

• Error: 1414 SQLSTATE: 42000 (ER_SP_NOT_VAR_ARG)

Message: OUT or INOUT argument %d for routine %s is not a variable or NEW pseudo-variable in

Error Codes and Messages

1694

BEFORE trigger

• Error: 1415 SQLSTATE: 0A000 (ER_SP_NO_RETSET)

Message: Not allowed to return a result set from a %s

• Error: 1416 SQLSTATE: 22003 (ER_CANT_CREATE_GEOMETRY_OBJECT)

Message: Cannot get geometry object from data you send to the GEOMETRY field

• Error: 1417 SQLSTATE: HY000 (ER_FAILED_ROUTINE_BREAK_BINLOG)

Message: A routine failed and has neither NO SQL nor READS SQL DATA in its declaration and
binary logging is enabled; if non-transactional tables were updated, the binary log will miss their
changes

• Error: 1418 SQLSTATE: HY000 (ER_BINLOG_UNSAFE_ROUTINE)

Message: This function has none of DETERMINISTIC, NO SQL, or READS SQL DATA in its de-
claration and binary logging is enabled (you *might* want to use the less safe
log_bin_trust_function_creators variable)

• Error: 1419 SQLSTATE: HY000 (ER_BINLOG_CREATE_ROUTINE_NEED_SUPER)

Message: You do not have the SUPER privilege and binary logging is enabled (you *might* want to
use the less safe log_bin_trust_function_creators variable)

• Error: 1420 SQLSTATE: HY000 (ER_EXEC_STMT_WITH_OPEN_CURSOR)

Message: You can't execute a prepared statement which has an open cursor associated with it. Reset
the statement to re-execute it.

• Error: 1421 SQLSTATE: HY000 (ER_STMT_HAS_NO_OPEN_CURSOR)

Message: The statement (%lu) has no open cursor.

• Error: 1422 SQLSTATE: HY000 (ER_COMMIT_NOT_ALLOWED_IN_SF_OR_TRG)

Message: Explicit or implicit commit is not allowed in stored function or trigger.

• Error: 1423 SQLSTATE: HY000 (ER_NO_DEFAULT_FOR_VIEW_FIELD)

Message: Field of view '%s.%s' underlying table doesn't have a default value

• Error: 1424 SQLSTATE: HY000 (ER_SP_NO_RECURSION)

Message: Recursive stored functions and triggers are not allowed.

• Error: 1425 SQLSTATE: 42000 (ER_TOO_BIG_SCALE)

Message: Too big scale %d specified for column '%s'. Maximum is %d.

• Error: 1426 SQLSTATE: 42000 (ER_TOO_BIG_PRECISION)

Message: Too big precision %d specified for column '%s'. Maximum is %d.

• Error: 1427 SQLSTATE: 42000 (ER_M_BIGGER_THAN_D)

Message: For float(M,D), double(M,D) or decimal(M,D), M must be >= D (column '%s').

Error Codes and Messages

1695

• Error: 1428 SQLSTATE: HY000 (ER_WRONG_LOCK_OF_SYSTEM_TABLE)

Message: You can't combine write-locking of system '%s.%s' table with other tables

• Error: 1429 SQLSTATE: HY000 (ER_CONNECT_TO_FOREIGN_DATA_SOURCE)

Message: Unable to connect to foreign data source: %s

• Error: 1430 SQLSTATE: HY000 (ER_QUERY_ON_FOREIGN_DATA_SOURCE)

Message: There was a problem processing the query on the foreign data source. Data source error:
%-.64

• Error: 1431 SQLSTATE: HY000 (ER_FOREIGN_DATA_SOURCE_DOESNT_EXIST)

Message: The foreign data source you are trying to reference does not exist. Data source error: %s

• Error: 1432 SQLSTATE: HY000 (ER_FOREIGN_DATA_STRING_INVALID_CANT_CREATE)

Message: Can't create federated table. The data source connection string '%s' is not in the correct
format

• Error: 1433 SQLSTATE: HY000 (ER_FOREIGN_DATA_STRING_INVALID)

Message: The data source connection string '%s' is not in the correct format

• Error: 1434 SQLSTATE: HY000 (ER_CANT_CREATE_FEDERATED_TABLE)

Message: Can't create federated table. Foreign data src error: %s

• Error: 1435 SQLSTATE: HY000 (ER_TRG_IN_WRONG_SCHEMA)

Message: Trigger in wrong schema

• Error: 1436 SQLSTATE: HY000 (ER_STACK_OVERRUN_NEED_MORE)

Message: Thread stack overrun: %ld bytes used of a %ld byte stack, and %ld bytes needed. Use
'mysqld -O thread_stack=#' to specify a bigger stack.

• Error: 1437 SQLSTATE: 42000 (ER_TOO_LONG_BODY)

Message: Routine body for '%s' is too long

• Error: 1438 SQLSTATE: HY000 (ER_WARN_CANT_DROP_DEFAULT_KEYCACHE)

Message: Cannot drop default keycache

• Error: 1439 SQLSTATE: 42000 (ER_TOO_BIG_DISPLAYWIDTH)

Message: Display width out of range for column '%s' (max = %d)

• Error: 1440 SQLSTATE: XAE08 (ER_XAER_DUPID)

Message: XAER_DUPID: The XID already exists

• Error: 1441 SQLSTATE: 22008 (ER_DATETIME_FUNCTION_OVERFLOW)

Message: Datetime function: %s field overflow

• Error: 1442 SQLSTATE: HY000 (ER_CANT_UPDATE_USED_TABLE_IN_SF_OR_TRG)

Error Codes and Messages

1696

Message: Can't update table '%s' in stored function/trigger because it is already used by statement
which invoked this stored function/trigger.

• Error: 1443 SQLSTATE: HY000 (ER_VIEW_PREVENT_UPDATE)

Message: The definition of table '%s' prevents operation %s on table '%s'.

• Error: 1444 SQLSTATE: HY000 (ER_PS_NO_RECURSION)

Message: The prepared statement contains a stored routine call that refers to that same statement. It's
not allowed to execute a prepared statement in such a recursive manner

• Error: 1445 SQLSTATE: HY000 (ER_SP_CANT_SET_AUTOCOMMIT)

Message: Not allowed to set autocommit from a stored function or trigger

• Error: 1446 SQLSTATE: HY000 (ER_MALFORMED_DEFINER)

Message: Definer is not fully qualified

• Error: 1447 SQLSTATE: HY000 (ER_VIEW_FRM_NO_USER)

Message: View '%s'.'%s' has no definer information (old table format). Current user is used as
definer. Please recreate the view!

• Error: 1448 SQLSTATE: HY000 (ER_VIEW_OTHER_USER)

Message: You need the SUPER privilege for creation view with '%s'@'%s' definer

• Error: 1449 SQLSTATE: HY000 (ER_NO_SUCH_USER)

Message: There is no '%s'@'%s' registered

• Error: 1450 SQLSTATE: HY000 (ER_FORBID_SCHEMA_CHANGE)

Message: Changing schema from '%s' to '%s' is not allowed.

• Error: 1451 SQLSTATE: 23000 (ER_ROW_IS_REFERENCED_2)

Message: Cannot delete or update a parent row: a foreign key constraint fails (%s)

• Error: 1452 SQLSTATE: 23000 (ER_NO_REFERENCED_ROW_2)

Message: Cannot add or update a child row: a foreign key constraint fails (%s)

• Error: 1453 SQLSTATE: 42000 (ER_SP_BAD_VAR_SHADOW)

Message: Variable '%s' must be quoted with `...`, or renamed

• Error: 1454 SQLSTATE: HY000 (ER_TRG_NO_DEFINER)

Message: No definer attribute for trigger '%s'.'%s'. The trigger will be activated under the authoriza-
tion of the invoker, which may have insufficient privileges. Please recreate the trigger.

• Error: 1455 SQLSTATE: HY000 (ER_OLD_FILE_FORMAT)

Message: '%s' has an old format, you should re-create the '%s' object(s)

• Error: 1456 SQLSTATE: HY000 (ER_SP_RECURSION_LIMIT)

Error Codes and Messages

1697

Message: Recursive limit %d (as set by the max_sp_recursion_depth variable) was exceeded for
routine %s

• Error: 1457 SQLSTATE: HY000 (ER_SP_PROC_TABLE_CORRUPT)

Message: Failed to load routine %s. The table mysql.proc is missing, corrupt, or contains bad data
(internal code %d)

• Error: 1458 SQLSTATE: 42000 (ER_SP_WRONG_NAME)

Message: Incorrect routine name '%s'

• Error: 1459 SQLSTATE: HY000 (ER_TABLE_NEEDS_UPGRADE)

Message: Table upgrade required. Please do "REPAIR TABLE `%s`" to fix it!

• Error: 1460 SQLSTATE: 42000 (ER_SP_NO_AGGREGATE)

Message: AGGREGATE is not supported for stored functions

• Error: 1461 SQLSTATE: 42000 (ER_MAX_PREPARED_STMT_COUNT_REACHED)

Message: Can't create more than max_prepared_stmt_count statements (current value: %lu)

• Error: 1462 SQLSTATE: HY000 (ER_VIEW_RECURSIVE)

Message: `%s`.`%s` contains view recursion

• Error: 1463 SQLSTATE: 42000 (ER_NON_GROUPING_FIELD_USED)

Message: non-grouping field '%s' is used in %s clause

• Error: 1464 SQLSTATE: HY000 (ER_TABLE_CANT_HANDLE_SPKEYS)

Message: The used table type doesn't support SPATIAL indexes

• Error: 1465 SQLSTATE: HY000 (ER_NO_TRIGGERS_ON_SYSTEM_SCHEMA)

Message: Triggers can not be created on system tables

• Error: 1466 SQLSTATE: HY000 (ER_REMOVED_SPACES)

Message: Leading spaces are removed from name '%s'

• Error: 1467 SQLSTATE: HY000 (ER_AUTOINC_READ_FAILED)

Message: Failed to read auto-increment value from storage engine

• Error: 1468 SQLSTATE: HY000 (ER_USERNAME)

Message: user name

• Error: 1469 SQLSTATE: HY000 (ER_HOSTNAME)

Message: host name

• Error: 1470 SQLSTATE: HY000 (ER_WRONG_STRING_LENGTH)

Message: String '%s' is too long for %s (should be no longer than %d)

Error Codes and Messages

1698

• Error: 1471 SQLSTATE: HY000 (ER_NON_INSERTABLE_TABLE)

Message: The target table %s of the %s is not insertable-into

B.2. Client Error Codes and Messages
Client error information comes from the following source files:

• The Error values and the symbols in parentheses correspond to definitions in the include/er-
rmsg.h MySQL source file.

• The Message values correspond to the error messages that are listed in the libmysql/errmsg.c
file. %d and %s represent numbers and strings, respectively, that are substituted into the messages
when they are displayed.

Because updates are frequent, it is possible that those files will contain additional error information not
listed here.

• Error: 2000 (CR_UNKNOWN_ERROR)

Message: Unknown MySQL error

• Error: 2001 (CR_SOCKET_CREATE_ERROR)

Message: Can't create UNIX socket (%d)

• Error: 2002 (CR_CONNECTION_ERROR)

Message: Can't connect to local MySQL server through socket '%s' (%d)

• Error: 2003 (CR_CONN_HOST_ERROR)

Message: Can't connect to MySQL server on '%s' (%d)

• Error: 2004 (CR_IPSOCK_ERROR)

Message: Can't create TCP/IP socket (%d)

• Error: 2005 (CR_UNKNOWN_HOST)

Message: Unknown MySQL server host '%s' (%d)

• Error: 2006 (CR_SERVER_GONE_ERROR)

Message: MySQL server has gone away

• Error: 2007 (CR_VERSION_ERROR)

Message: Protocol mismatch; server version = %d, client version = %d

• Error: 2008 (CR_OUT_OF_MEMORY)

Message: MySQL client ran out of memory

• Error: 2009 (CR_WRONG_HOST_INFO)

Error Codes and Messages

1699

Message: Wrong host info

• Error: 2010 (CR_LOCALHOST_CONNECTION)

Message: Localhost via UNIX socket

• Error: 2011 (CR_TCP_CONNECTION)

Message: %s via TCP/IP

• Error: 2012 (CR_SERVER_HANDSHAKE_ERR)

Message: Error in server handshake

• Error: 2013 (CR_SERVER_LOST)

Message: Lost connection to MySQL server during query

• Error: 2014 (CR_COMMANDS_OUT_OF_SYNC)

Message: Commands out of sync; you can't run this command now

• Error: 2015 (CR_NAMEDPIPE_CONNECTION)

Message: Named pipe: %s

• Error: 2016 (CR_NAMEDPIPEWAIT_ERROR)

Message: Can't wait for named pipe to host: %s pipe: %s (%lu)

• Error: 2017 (CR_NAMEDPIPEOPEN_ERROR)

Message: Can't open named pipe to host: %s pipe: %s (%lu)

• Error: 2018 (CR_NAMEDPIPESETSTATE_ERROR)

Message: Can't set state of named pipe to host: %s pipe: %s (%lu)

• Error: 2019 (CR_CANT_READ_CHARSET)

Message: Can't initialize character set %s (path: %s)

• Error: 2020 (CR_NET_PACKET_TOO_LARGE)

Message: Got packet bigger than 'max_allowed_packet' bytes

• Error: 2021 (CR_EMBEDDED_CONNECTION)

Message: Embedded server

• Error: 2022 (CR_PROBE_SLAVE_STATUS)

Message: Error on SHOW SLAVE STATUS:

• Error: 2023 (CR_PROBE_SLAVE_HOSTS)

Message: Error on SHOW SLAVE HOSTS:

• Error: 2024 (CR_PROBE_SLAVE_CONNECT)

Error Codes and Messages

1700

Message: Error connecting to slave:

• Error: 2025 (CR_PROBE_MASTER_CONNECT)

Message: Error connecting to master:

• Error: 2026 (CR_SSL_CONNECTION_ERROR)

Message: SSL connection error

• Error: 2027 (CR_MALFORMED_PACKET)

Message: Malformed packet

• Error: 2028 (CR_WRONG_LICENSE)

Message: This client library is licensed only for use with MySQL servers having '%s' license

• Error: 2029 (CR_NULL_POINTER)

Message: Invalid use of null pointer

• Error: 2030 (CR_NO_PREPARE_STMT)

Message: Statement not prepared

• Error: 2031 (CR_PARAMS_NOT_BOUND)

Message: No data supplied for parameters in prepared statement

• Error: 2032 (CR_DATA_TRUNCATED)

Message: Data truncated

• Error: 2033 (CR_NO_PARAMETERS_EXISTS)

Message: No parameters exist in the statement

• Error: 2034 (CR_INVALID_PARAMETER_NO)

Message: Invalid parameter number

• Error: 2035 (CR_INVALID_BUFFER_USE)

Message: Can't send long data for non-string/non-binary data types (parameter: %d)

• Error: 2036 (CR_UNSUPPORTED_PARAM_TYPE)

Message: Using unsupported buffer type: %d (parameter: %d)

• Error: 2037 (CR_SHARED_MEMORY_CONNECTION)

Message: Shared memory: %s

• Error: 2038 (CR_SHARED_MEMORY_CONNECT_REQUEST_ERROR)

Message: Can't open shared memory; client could not create request event (%lu)

• Error: 2039 (CR_SHARED_MEMORY_CONNECT_ANSWER_ERROR)

Error Codes and Messages

1701

Message: Can't open shared memory; no answer event received from server (%lu)

• Error: 2040 (CR_SHARED_MEMORY_CONNECT_FILE_MAP_ERROR)

Message: Can't open shared memory; server could not allocate file mapping (%lu)

• Error: 2041 (CR_SHARED_MEMORY_CONNECT_MAP_ERROR)

Message: Can't open shared memory; server could not get pointer to file mapping (%lu)

• Error: 2042 (CR_SHARED_MEMORY_FILE_MAP_ERROR)

Message: Can't open shared memory; client could not allocate file mapping (%lu)

• Error: 2043 (CR_SHARED_MEMORY_MAP_ERROR)

Message: Can't open shared memory; client could not get pointer to file mapping (%lu)

• Error: 2044 (CR_SHARED_MEMORY_EVENT_ERROR)

Message: Can't open shared memory; client could not create %s event (%lu)

• Error: 2045 (CR_SHARED_MEMORY_CONNECT_ABANDONED_ERROR)

Message: Can't open shared memory; no answer from server (%lu)

• Error: 2046 (CR_SHARED_MEMORY_CONNECT_SET_ERROR)

Message: Can't open shared memory; cannot send request event to server (%lu)

• Error: 2047 (CR_CONN_UNKNOW_PROTOCOL)

Message: Wrong or unknown protocol

• Error: 2048 (CR_INVALID_CONN_HANDLE)

Message: Invalid connection handle

• Error: 2049 (CR_SECURE_AUTH)

Message: Connection using old (pre-4.1.1) authentication protocol refused (client option 'se-
cure_auth' enabled)

• Error: 2050 (CR_FETCH_CANCELED)

Message: Row retrieval was canceled by mysql_stmt_close() call

• Error: 2051 (CR_NO_DATA)

Message: Attempt to read column without prior row fetch

• Error: 2052 (CR_NO_STMT_METADATA)

Message: Prepared statement contains no metadata

• Error: 2053 (CR_NO_RESULT_SET)

Message: Attempt to read a row while there is no result set associated with the statement

Error Codes and Messages

1702

• Error: 2054 (CR_NOT_IMPLEMENTED)

Message: This feature is not implemented yet

Error Codes and Messages

1703

Appendix C. Credits
This appendix lists the developers, contributors, and supporters that have helped to make MySQL what
it is today.

C.1. Developers at MySQL AB
These are the developers that are or have been employed by MySQL AB to work on the MySQL data-
base software, roughly in the order they started to work with us. Following each developer is a small list
of the tasks that the developer is responsible for, or the accomplishments they have made. All developers
are involved in support.

• Michael (Monty) Widenius

• Lead developer and main author of the MySQL server (mysqld).

• New functions for the string library.

• Most of the mysys library.

• The ISAM and MyISAM libraries (B-tree index file handlers with index compression and differ-
ent record formats).

• The HEAP library. A memory table system with our superior full dynamic hashing. In use since
1981 and published around 1984.

• The replace program (take a look at it, it's COOL!).

• Connector/ODBC (MyODBC), the ODBC driver for Windows.

• Fixing bugs in MIT-pthreads to get it to work for MySQL Server. And also Unireg, a curses-
based application tool with many utilities.

• Porting of mSQL tools like msqlperl, DBD/DBI, and DB2mysql.

• Most of crash-me and the foundation for the MySQL benchmarks.

• David Axmark

• Initial main writer of the Reference Manual, including enhancements to texi2html.

• Automatic Web site updating from the manual.

• Initial Autoconf, Automake, and Libtool support.

• Licensing.

• Parts of all the text files. (Nowadays only the README is left. The rest ended up in the manual.)

• Lots of testing of new features.

• Our in-house Free Software legal expert.

• Mailing list maintainer (who never has the time to do it right...).

• Our original portability code (now more than 10 years old). Nowadays only some parts of
mysys are left.

1704

• Someone for Monty to call in the middle of the night when he just got that new feature to work.

• Chief "Open Sourcerer" (MySQL community relations).

• Jani Tolonen

• mysqlimport

• A lot of extensions to the command-line clients.

• PROCEDURE ANALYSE()

• Sinisa Milivojevic (now in support)

• Compression (with zlib) in the client/server protocol.

• Perfect hashing for the lexical analyzer phase.

• Multi-row INSERT

• mysqldump -e option

• LOAD DATA LOCAL INFILE

• SQL_CALC_FOUND_ROWS SELECT option

• --max-user-connections=... option

• net_read and net_write_timeout

• GRANT/REVOKE and SHOW GRANTS FOR

• New client/server protocol for 4.0

• UNION in 4.0

• Multiple-table DELETE/UPDATE

• Subqueries in the FROM clause (4.1).

• User resources management

• Initial developer of the MySQL++ C++ API and the MySQLGUI client.

• Tonu Samuel (past developer)

• VIO interface (the foundation for the encrypted client/server protocol).

• MySQL Filesystem (a way to use MySQL databases as files and directories).

• The CASE expression.

• The MD5() and COALESCE() functions.

• RAID support for MyISAM tables.

• Sasha Pachev (past developer)

• Initial implementation of replication (up to version 4.0).

Credits

1705

• SHOW CREATE TABLE.

• mysql-bench

• Matt Wagner

• MySQL test suite.

• Webmaster (until 2002).

• Miguel Solorzano (now in support)

• Win32 development and release builds.

• Windows NT server code.

• WinMySQLAdmin

• Timothy Smith (now in support)

• Dynamic character sets support.

• configure, RPMs and other parts of the build system.

• Initial developer of libmysqld, the embedded server.

• Sergei Golubchik

• Full-text search.

• Added keys to the MERGE library.

• Precision math.

• Jeremy Cole (past developer)

• Proofreading and editing this fine manual.

• ALTER TABLE ... ORDER BY

• UPDATE ... ORDER BY

• DELETE ... ORDER BY

• Indrek Siitan

• Designing/programming of our Web interface.

• Author of our newsletter management system.

• Jorge del Conde (now in support)

• MySQLCC (MySQL Control Center)

• Win32 development

• Initial implementation of the Web site portals.

• Venu Anuganti (past developer)

Credits

1706

• MyODBC 3.51

• New client/server protocol for 4.1 (for prepared statements).

• Arjen Lentz (also handled community, 2004-2006; now works in Support)

• Maintainer of the MySQL Reference Manual (2001-2004).

• Preparing the O'Reilly printed edition of the manual (2002).

• Alexander (Bar) Barkov, Alexey (Holyfoot) Botchkov, and Ramil Kalimullin

• Spatial data (GIS) and R-Trees implementation for 4.1

• Unicode and character sets for 4.1; documentation for same

• Oleksandr (Sanja) Byelkin

• Query cache in 4.0

• Implementation of subqueries (4.1).

• Implementation of views (5.0).

• Aleksey (Walrus) Kishkin and Alexey (Ranger) Stroganov

• Benchmarks design and analysis.

• Maintenance of the MySQL test suite.

• Zak Greant (past employee)

• Open Source advocate, MySQL community relations.

• Carsten Pedersen

• The MySQL Certification program.

• Lenz Grimmer

• Production (build and release) engineering.

• Peter Zaitsev

• SHA1(), AES_ENCRYPT() and AES_DECRYPT() functions.

• Debugging, cleaning up various features.

• Alexander (Salle) Keremidarski

• Support.

• Debugging.

• Per-Erik Martin

• Lead developer for stored procedures (5.0).

• Jim Winstead

Credits

1707

• Former lead Web developer.

• Improving server, fixing bugs.

• Mark Matthews

• Connector/J driver (Java).

• Peter Gulutzan

• SQL standards compliance.

• Documentation of existing MySQL code/algorithms.

• Character set documentation.

• Guilhem Bichot

• Replication, from MySQL version 4.0.

• Fixed handling of exponents for DECIMAL.

• Author of mysql_tableinfo.

• Backup (in 5.1).

• Antony T. Curtis

• Porting of the MySQL Database software to OS/2.

• Mikael Ronstrom

• Much of the initial work on NDB Cluster until 2000. Roughly half the code base at that time.
Transaction protocol, node recovery, system restart and restart code and parts of the API func-
tionality.

• Lead Architect, developer, debugger of NDB Cluster 1994-2004

• Lots of optimizations

• Jonas Oreland

• On-line Backup

• The automatic test environment of MySQL Cluster

• Portability Library for NDB Cluster

• Lots of other things

• Pekka Nouisiainen

• Ordered index implementation of MySQL Cluster

• BLOB support in MySQL Cluster

• Charset support in MySQL Cluster

• Martin Skold

Credits

1708

• Unique index implementation of MySQL Cluster

• Integration of NDB Cluster into MySQL

• Magnus Svensson

• The test framework for MySQL Cluster

• Integration of NDB Cluster into MySQL

• Tomas Ulin

• Lots of work on configuration changes for simple installation and use of MySQL Cluster

• Konstantin Osipov

• Prepared statements.

• Cursors.

• Dmitri Lenev

• Time zone support.

• Triggers (in 5.0).

C.2. Contributors to MySQL
Although MySQL AB owns all copyrights in the MySQL server and the MySQL manual, we wish
to recognize those who have made contributions of one kind or another to the MySQL distribu-
tion. Contributors are listed here, in somewhat random order:

• Gianmassimo Vigazzola <qwerg@mbox.vol.it> or <qwerg@tin.it>

The initial port to Win32/NT.

• Per Eric Olsson

For more or less constructive criticism and real testing of the dynamic record format.

• Irena Pancirov <irena@mail.yacc.it>

Win32 port with Borland compiler. mysqlshutdown.exe and mysqlwatch.exe

• David J. Hughes

For the effort to make a shareware SQL database. At TcX, the predecessor of MySQL AB, we star-
ted with mSQL, but found that it couldn't satisfy our purposes so instead we wrote an SQL interface
to our application builder Unireg. mysqladmin and mysql client are programs that were largely
influenced by their mSQL counterparts. We have put a lot of effort into making the MySQL syntax a
superset of mSQL. Many of the API's ideas are borrowed from mSQL to make it easy to port free
mSQL programs to the MySQL API. The MySQL software doesn't contain any code from mSQL.
Two files in the distribution (client/insert_test.c and client/select_test.c) are
based on the corresponding (non-copyrighted) files in the mSQL distribution, but are modified as ex-
amples showing the changes necessary to convert code from mSQL to MySQL Server. (mSQL is
copyrighted David J. Hughes.)

Credits

1709

• Patrick Lynch

For helping us acquire http://www.mysql.com/.

• Fred Lindberg

For setting up qmail to handle the MySQL mailing list and for the incredible help we got in man-
aging the MySQL mailing lists.

• Igor Romanenko <igor@frog.kiev.ua>

mysqldump (previously msqldump, but ported and enhanced by Monty).

• Yuri Dario

For keeping up and extending the MySQL OS/2 port.

• Tim Bunce

Author of mysqlhotcopy.

• Zarko Mocnik <zarko.mocnik@dem.si>

Sorting for Slovenian language.

• "TAMITO" <tommy@valley.ne.jp>

The _MB character set macros and the ujis and sjis character sets.

• Joshua Chamas <joshua@chamas.com>

Base for concurrent insert, extended date syntax, debugging on NT, and answering on the MySQL
mailing list.

• Yves Carlier <Yves.Carlier@rug.ac.be>

mysqlaccess, a program to show the access rights for a user.

• Rhys Jones <rhys@wales.com> (And GWE Technologies Limited)

For one of the early JDBC drivers.

• Dr Xiaokun Kelvin ZHU <X.Zhu@brad.ac.uk>

Further development of one of the early JDBC drivers and other MySQL-related Java tools.

• James Cooper <pixel@organic.com>

For setting up a searchable mailing list archive at his site.

• Rick Mehalick <Rick_Mehalick@i-o.com>

For xmysql, a graphical X client for MySQL Server.

• Doug Sisk <sisk@wix.com>

For providing RPM packages of MySQL for Red Hat Linux.

• Diemand Alexander V. <axeld@vial.ethz.ch>

Credits

1710

http://www.mysql.com/

For providing RPM packages of MySQL for Red Hat Linux-Alpha.

• Antoni Pamies Olive <toni@readysoft.es>

For providing RPM versions of a lot of MySQL clients for Intel and SPARC.

• Jay Bloodworth <jay@pathways.sde.state.sc.us>

For providing RPM versions for MySQL 3.21.

• David Sacerdote <davids@secnet.com>

Ideas for secure checking of DNS hostnames.

• Wei-Jou Chen <jou@nematic.ieo.nctu.edu.tw>

Some support for Chinese(BIG5) characters.

• Wei He <hewei@mail.ied.ac.cn>

A lot of functionality for the Chinese(GBK) character set.

• Jan Pazdziora <adelton@fi.muni.cz>

Czech sorting order.

• Zeev Suraski <bourbon@netvision.net.il>

FROM_UNIXTIME() time formatting, ENCRYPT() functions, and bison advisor. Active mailing
list member.

• Luuk de Boer <luuk@wxs.nl>

Ported (and extended) the benchmark suite to DBI/DBD. Have been of great help with crash-me
and running benchmarks. Some new date functions. The mysql_setpermission script.

• Alexis Mikhailov <root@medinf.chuvashia.su>

User-defined functions (UDFs); CREATE FUNCTION and DROP FUNCTION.

• Andreas F. Bobak <bobak@relog.ch>

The AGGREGATE extension to user-defined functions.

• Ross Wakelin <R.Wakelin@march.co.uk>

Help to set up InstallShield for MySQL-Win32.

• Jethro Wright III <jetman@li.net>

The libmysql.dll library.

• James Pereria <jpereira@iafrica.com>

Mysqlmanager, a Win32 GUI tool for administering MySQL Servers.

• Curt Sampson <cjs@portal.ca>

Porting of MIT-pthreads to NetBSD/Alpha and NetBSD 1.3/i386.

Credits

1711

• Martin Ramsch <m.ramsch@computer.org>

Examples in the MySQL Tutorial.

• Steve Harvey

For making mysqlaccess more secure.

• Konark IA-64 Centre of Persistent Systems Private Limited

http://www.pspl.co.in/konark/. Help with the Win64 port of the MySQL server.

• Albert Chin-A-Young.

Configure updates for Tru64, large file support and better TCP wrappers support.

• John Birrell

Emulation of pthread_mutex() for OS/2.

• Benjamin Pflugmann

Extended MERGE tables to handle INSERTS. Active member on the MySQL mailing lists.

• Jocelyn Fournier

Excellent spotting and reporting innumerable bugs (especially in the MySQL 4.1 subquery code).

• Marc Liyanage

Maintaining the Mac OS X packages and providing invaluable feedback on how to create Mac OS X
PKGs.

• Robert Rutherford

Providing invaluable information and feedback about the QNX port.

• Previous developers of NDB Cluster

Lots of people were involved in various ways summer students, master thesis students, employees.
In total more than 100 people so too many to mention here. Notable name is Ataullah Dabaghi who
up until 1999 contributed around a third of the code base. A special thanks also to developers of the
AXE system which provided much of the architectural foundations for NDB Cluster with blocks,
signals and crash tracing functionality. Also credit should be given to those who believed in the
ideas enough to allocate of their budgets for its development from 1992 to present time.

Other contributors, bugfinders, and testers: James H. Thompson, Maurizio Menghini, Wojciech Tryc,
Luca Berra, Zarko Mocnik, Wim Bonis, Elmar Haneke, <jehamby@lightside>,
<psmith@BayNetworks.com>, <duane@connect.com.au>, Ted Deppner
<ted@psyber.com>, Mike Simons, Jaakko Hyvatti.

And lots of bug report/patches from the folks on the mailing list.

A big tribute goes to those that help us answer questions on the MySQL mailing lists:

• Daniel Koch <dkoch@amcity.com>

Irix setup.

Credits

1712

http://www.pspl.co.in/konark/

• Luuk de Boer <luuk@wxs.nl>

Benchmark questions.

• Tim Sailer <tps@users.buoy.com>

DBD::mysql questions.

• Boyd Lynn Gerber <gerberb@zenez.com>

SCO-related questions.

• Richard Mehalick <RM186061@shellus.com>

xmysql-related questions and basic installation questions.

• Zeev Suraski <bourbon@netvision.net.il>

Apache module configuration questions (log & auth), PHP-related questions, SQL syntax-related
questions and other general questions.

• Francesc Guasch <frankie@citel.upc.es>

General questions.

• Jonathan J Smith <jsmith@wtp.net>

Questions pertaining to OS-specifics with Linux, SQL syntax, and other things that might need some
work.

• David Sklar <sklar@student.net>

Using MySQL from PHP and Perl.

• Alistair MacDonald <A.MacDonald@uel.ac.uk>

Is flexible and can handle Linux and perhaps HP-UX. Tries to get users to use mysqlbug.

• John Lyon <jlyon@imag.net>

Questions about installing MySQL on Linux systems, using either .rpm files or compiling from
source.

• Lorvid Ltd. <lorvid@WOLFENET.com>

Simple billing/license/support/copyright issues.

• Patrick Sherrill <patrick@coconet.com>

ODBC and VisualC++ interface questions.

• Randy Harmon <rjharmon@uptimecomputers.com>

DBD, Linux, some SQL syntax questions.

C.3. Documenters and translators
The following people have helped us with writing the MySQL documentation and translating the docu-

Credits

1713

mentation or error messages in MySQL.

• Paul DuBois

Ongoing help with making this manual correct and understandable. That includes rewriting Monty's
and David's attempts at English into English as other people know it.

• Kim Aldale

Helped to rewrite Monty's and David's early attempts at English into English.

• Michael J. Miller Jr. <mke@terrapin.turbolift.com>

For the first MySQL manual. And a lot of spelling/language fixes for the FAQ (that turned into the
MySQL manual a long time ago).

• Yan Cailin

First translator of the MySQL Reference Manual into simplified Chinese in early 2000 on which the
Big5 and HK coded (http://mysql.hitstar.com/) versions were based. Personal home page at
linuxdb.yeah.net [http://linuxdb.yeah.net].

• Jay Flaherty <fty@mediapulse.com>

Big parts of the Perl DBI/DBD section in the manual.

• Paul Southworth <pauls@etext.org>, Ray Loyzaga <yar@cs.su.oz.au>

Proof-reading of the Reference Manual.

• Therrien Gilbert <gilbert@ican.net>, Jean-Marc Pouyot <jmp@scalaire.fr>

French error messages.

• Petr Snajdr, <snajdr@pvt.net>

Czech error messages.

• Jaroslaw Lewandowski <jotel@itnet.com.pl>

Polish error messages.

• Miguel Angel Fernandez Roiz

Spanish error messages.

• Roy-Magne Mo <rmo@www.hivolda.no>

Norwegian error messages and testing of MySQL 3.21.xx.

• Timur I. Bakeyev <root@timur.tatarstan.ru>

Russian error messages.

• <brenno@dewinter.com> & Filippo Grassilli <phil@hyppo.com>

Italian error messages.

• Dirk Munzinger <dirk@trinity.saar.de>

Credits

1714

http://mysql.hitstar.com/
http://linuxdb.yeah.net
http://linuxdb.yeah.net

German error messages.

• Billik Stefan <billik@sun.uniag.sk>

Slovak error messages.

• Stefan Saroiu <tzoompy@cs.washington.edu>

Romanian error messages.

• Peter Feher

Hungarian error messages.

• Roberto M. Serqueira

Portuguese error messages.

• Carsten H. Pedersen

Danish error messages.

• Arjen Lentz

Dutch error messages, completing earlier partial translation (also work on consistency and spelling).

C.4. Libraries used by and included with MySQL
The following is a list of the creators of the libraries we have included with the MySQL server source to
make it easy to compile and install MySQL. We are very thankfully to all individuals that have created
these and it has made our life much easier.

• Fred Fish

For his excellent C debugging and trace library. Monty has made a number of smaller improvements
to the library (speed and additional options).

• Richard A. O'Keefe

For his public domain string library.

• Henry Spencer

For his regex library, used in WHERE column REGEXP regexp.

• Chris Provenzano

Portable user level pthreads. From the copyright: This product includes software developed by Chris
Provenzano, the University of California, Berkeley, and contributors. We are currently using version
1_60_beta6 patched by Monty (see mit-pthreads/Changes-mysql).

• Jean-loup Gailly and Mark Adler

For the zlib library (used on MySQL on Windows).

• Bjorn Benson

Credits

1715

For his safe_malloc (memory checker) package which is used in when you configure MySQL with -
-debug.

• Free Software Foundation

The readline library (used by the mysql command-line client).

• The NetBSD foundation

The libedit package (optionally used by the mysql command-line client).

C.5. Packages that support MySQL
The following is a list of creators/maintainers of some of the most important API/packages/applications
that a lot of people use with MySQL.

We can't list every possible package here because the list would then be way to hard to maintain. For
other packages, please refer to the software portal at http://solutions.mysql.com/software/.

• Tim Bunce, Alligator Descartes

For the DBD (Perl) interface.

• Andreas Koenig <a.koenig@mind.de>

For the Perl interface for MySQL Server.

• Jochen Wiedmann <wiedmann@neckar-alb.de>

For maintaining the Perl DBD::mysql module.

• Eugene Chan <eugene@acenet.com.sg>

For porting PHP for MySQL Server.

• Georg Richter

MySQL 4.1 testing and bug hunting. New PHP 5.0 mysqli extension (API) for use with MySQL
4.1 and up.

• Giovanni Maruzzelli <maruzz@matrice.it>

For porting iODBC (Unix ODBC).

• Xavier Leroy <Xavier.Leroy@inria.fr>

The author of LinuxThreads (used by the MySQL Server on Linux).

C.6. Tools that were used to create MySQL
The following is a list of some of the tools we have used to create MySQL. We use this to express our
thanks to those that has created them as without these we could not have made MySQL what it is today.

Credits

1716

http://solutions.mysql.com/software/

• Free Software Foundation

From whom we got an excellent compiler (gcc), an excellent debugger (gdb and the libc library
(from which we have borrowed strto.c to get some code working in Linux).

• Free Software Foundation & The XEmacs development team

For a really great editor/environment used by almost everybody at MySQL AB.

• Julian Seward

Author of valgrind, an excellent memory checker tool that has helped us find a lot of otherwise
hard to find bugs in MySQL.

• Dorothea Lütkehaus and Andreas Zeller

For DDD (The Data Display Debugger) which is an excellent graphical front end to gdb).

C.7. Supporters of MySQL
Although MySQL AB owns all copyrights in the MySQL server and the MySQL manual, we wish
to recognize the following companies, which helped us finance the development of the MySQL serv-
er, such as by paying us for developing a new feature or giving us hardware for development of the
MySQL server.

• VA Linux / Andover.net

Funded replication.

• NuSphere

Editing of the MySQL manual.

• Stork Design studio

The MySQL Web site in use between 1998-2000.

• Intel

Contributed to development on Windows and Linux platforms.

• Compaq

Contributed to Development on Linux/Alpha.

• SWSoft

Development on the embedded mysqld version.

• FutureQuest

--skip-show-database

Credits

1717

Appendix D. MySQL Change History
This appendix lists the changes from version to version in the MySQL source code through the latest
version of MySQL 5.0, which is currently MySQL 5.0.25. Starting with MySQL 5.0, we began offering
a new version of the Manual for each new series of MySQL releases (5.0, 5.1, and so on). For informa-
tion about changes in previous release series of the MySQL database software, see the corresponding
version of this Manual. For information about legacy versions of the MySQL software through the 4.1
series, see MySQL 3.23, 4.0, 4.1 Reference Manual.

We update this section as we add new features in the 5.0 series, so that everybody can follow the devel-
opment process.

Note that we tend to update the manual at the same time we make changes to MySQL. If you find a re-
cent version of MySQL listed here that you can't find on our download page (ht-
tp://dev.mysql.com/downloads/), it means that the version has not yet been released.

The date mentioned with a release version is the date of the last BitKeeper ChangeSet on which the re-
lease was based, not the date when the packages were made available. The binaries are usually made
available a few days after the date of the tagged ChangeSet, because building and testing all packages
takes some time.

The manual included in the source and binary distributions may not be fully accurate when it comes to
the release changelog entries, because the integration of the manual happens at build time. For the most
up-to-date release changelog, please refer to the online version instead.

D.1. Changes in release 5.0.x (Production)
The following changelog shows what has been done in the 5.0 tree:

• Basic support for read-only server side cursors. For information about using cursors within stored
routines, see Section 17.2.9, “Cursors”. For information about using cursors from within the C API,
see Section 22.2.7.3, “mysql_stmt_attr_set()”.

• Basic support for (updatable) views. See, for example, Section 19.2, “CREATE VIEW Syntax”.

• Basic support for stored procedures and functions (SQL:2003 style). See Chapter 17, Stored Proced-
ures and Functions.

• Initial support for rudimentary triggers.

• Added SELECT INTO list_of_vars, which can be of mixed (that is, global and local) types.
See Section 17.2.7.3, “SELECT ... INTO Statement”.

• Removed the update log. It is fully replaced by the binary log. If the MySQL server is started with -
-log-update, it is translated to --log-bin (or ignored if the server is explicitly started with -
-log-bin), and a warning message is written to the error log. Setting SQL_LOG_UPDATE silently
sets SQL_LOG_BIN instead (or do nothing if the server is explicitly started with --log-bin).

• Support for the ISAM storage engine has been removed. If you have ISAM tables, you should con-
vert them before upgrading. See Section 2.11.2, “Upgrading from MySQL 4.1 to 5.0”.

• Support for RAID options in MyISAM tables has been removed. If you have tables that use these op-
tions, you should convert them before upgrading. See Section 2.11.2, “Upgrading from MySQL 4.1
to 5.0”.

• User variable names are now case insensitive: If you do SET @a=10; then SELECT @A; now re-

1718

http://dev.mysql.com/downloads/
http://dev.mysql.com/downloads/

turns 10. Case sensitivity of a variable's value depends on the collation of the value.

• Strict mode, which in essence means that you get an error instead of a warning when inserting an in-
correct value into a column. See Section 5.2.6, “SQL Modes”.

• VARCHAR and VARBINARY columns remember end space. A VARCHAR() or VARBINARY
column can contain up to 65,535 characters or bytes, respectively.

• MEMORY (HEAP) tables can have VARCHAR() columns.

• When using a constant string or a function that generates a string result in CREATE ... SELECT,
MySQL creates the result field based on the maximum length of the string or expression:

Maximum Length Data type

= 0 CHAR(0)

< 512 VARCHAR(max_length)

>= 512 TEXT

For a full list of changes, please refer to the changelog sections for each individual 5.0.x release.

D.1.1. Changes in release 5.0.26 (Not yet released)
This is a bugfix release for the current production release family.

This section documents all changes and bug fixes that have been applied since the last official MySQL
release. If you would like to receive more fine-grained and personalized update alerts about fixes that
are relevant to the version and features you use, please consider subscribing to MySQL Network (a com-
mercial MySQL offering). For more details please see http://www.mysql.com/network/advisors.html.

Functionality added or changed:

• The source distribution has been updated so that the UDF example can be compiled under Windows
with CMake. See Section 24.2.4.5, “Compiling and Installing User-Defined Functions”. (Bug#19121
[http://bugs.mysql.com/19121])

• The LOAD DATA FROM MASTER and LOAD TABLE FROM MASTER statements are deprecated.
See Section 13.6.2.2, “LOAD DATA FROM MASTER Syntax”, for recommended alternatives.
(Bug#18822 [http://bugs.mysql.com/18822])

• mysqldump now has a --flush-privileges option. It causes mysqldump to emit a FLUSH
PRIVILEGES statement after dumping the mysql database. This option should be used any time
the dump contains the mysql database and any other database that depends on the data in the
mysql database for proper restoration. (Bug#21424 [http://bugs.mysql.com/21424])

Bugs fixed:

• For INSERT ... ON DUPLICATE KEY UPDATE, use of VALUES(col_name) within the
UPDATE clause sometimes was handled incorrectly. (Bug#21555 [http://bugs.mysql.com/21555])

• Row equalities (such as WHERE (a,b) = (c,d) were not taken into account by the optimizer,
resulting in slow query execution. Now they are treated as conjunctions of equalities between row
elements. (Bug#16081 [http://bugs.mysql.com/16081])

MySQL Change History

1719

http://www.mysql.com/network/advisors.html
http://bugs.mysql.com/19121
http://bugs.mysql.com/18822
http://bugs.mysql.com/21424
http://bugs.mysql.com/21555
http://bugs.mysql.com/16081

• Column names supplied for a view created on a master server could be lost on a slave server.
(Bug#19419 [http://bugs.mysql.com/19419])

• For a MyISAM table locked with LOCK TABLES ...WRITE, queries optimized using the in-
dex_merge method did not show rows inserted with the lock in place. (Bug#20256
[http://bugs.mysql.com/20256])

• Table aliases in multiple-table DELETE statements sometimes were not resolved. (Bug#21392
[http://bugs.mysql.com/21392])

• A function result in a comparison was replaced with a constant by the optimizer under some circum-
stances when this optimization was invalid. (Bug#21698 [http://bugs.mysql.com/21698])

• A subquery that uses an index for both the WHERE and ORDER BY clauses produced an empty res-
ult. (Bug#21180 [http://bugs.mysql.com/21180])

• If the auto_increment_offset setting causes MySQL to generate a value larger than the
column's maximum possible value, the INSERT statement is accepted in strict SQL mode, whereas
but should fail with an error. (Bug#20573 [http://bugs.mysql.com/20573])

• Queries containing a subquery that used aggregate functions could return incorrect results.
(Bug#16792 [http://bugs.mysql.com/16792])

• EXPLAIN sometimes returned an incorrect select_type for a SELECT from a view, compared
to the select_type for the equivalent SELECT from the base table. (Bug#5500
[http://bugs.mysql.com/5500])

• Use of myisampack or myisamchk on a table with FULLTEXT indexing resulted in table corrup-
tion. (Bug#19702 [http://bugs.mysql.com/19702])

• BIN(), OCT(), and CONV() did not work with BIT values. (Bug#15583
[http://bugs.mysql.com/15583])

• The server could crash for the second execution of a function containing a SELECT statement that
uses an aggregating IN subquery. (Bug#21493 [http://bugs.mysql.com/21493])

• UPGRADE was treated as a reserved word, although it is not. (Bug#21772
[http://bugs.mysql.com/21772])

• mysql_upgrade produced a malformed upgrade_defaults file by overwriting the
[client] group header with a password option. This prevented mysqlcheck from running
successfully when invoked by mysql_upgrade. (Bug#21011 [http://bugs.mysql.com/21011])

• Usernames have a maximum length of 16 characters (even if they contain multi-byte characters), but
were being truncated to 16 bytes. (Bug#20393 [http://bugs.mysql.com/20393])

• mysql displayed an empty string for NULL values. (Bug#21618 [http://bugs.mysql.com/21618])

D.1.2. Changes in release 5.0.25 (15 September 2006)
This is a bugfix release for the current production release family. This version was released as MySQL
Classic 5.0.25 to commercial customers only.

This section documents all changes and bug fixes that have been applied since the last official MySQL
release. If you would like to receive more fine-grained and personalized update alerts about fixes that
are relevant to the version and features you use, please consider subscribing to MySQL Network (a com-
mercial MySQL offering). For more details please see http://www.mysql.com/network/advisors.html.

MySQL Change History

1720

http://bugs.mysql.com/19419
http://bugs.mysql.com/20256
http://bugs.mysql.com/21392
http://bugs.mysql.com/21698
http://bugs.mysql.com/21180
http://bugs.mysql.com/20573
http://bugs.mysql.com/16792
http://bugs.mysql.com/5500
http://bugs.mysql.com/19702
http://bugs.mysql.com/15583
http://bugs.mysql.com/21493
http://bugs.mysql.com/21772
http://bugs.mysql.com/21011
http://bugs.mysql.com/20393
http://bugs.mysql.com/21618
http://www.mysql.com/network/advisors.html

Functionality added or changed:

• For the mysql client, typing Control-C causes mysql to attempt to kill the current statement. If this
cannot be done, or Control-C is typed again before the statement is killed, mysql exits. Previously,
Control-C caused mysql to exit in all cases. (Bug#17926 [http://bugs.mysql.com/17926]; see also
Bug#1989 [http://bugs.mysql.com/1989])

• For mysqlshow, if a database name argument contains wildcard characters (such as ‘_’) but
matches a single database name exactly, treat the name as a literal name. This allows a command
such as mysqlshow information_schema work without having to escape the wildcard char-
acter. (Bug#19147 [http://bugs.mysql.com/19147])

• If a DROP VIEW statement named multiple views, it stopped with an error if a non-existent view
was named and did not drop the remaining views. Now it continues on and reports an error at the
end, similar to DROP TABLE. (Bug#16614 [http://bugs.mysql.com/16614])

• Table comments longer than 60 characters and column comments longer than 255 characters were
truncated silently. Now a warning is issued, or an error in strict mode. (Bug#13934
[http://bugs.mysql.com/13934])

• The bundled yaSSL library was upgraded to version 1.3.7.

• The bundled yaSSL library licensing has added a FLOSS exception similar to MySQL to resolve li-
censing incompatibilities with MySQL. (See the extra/yassl/FLOSS-EXCEPTIONS file in a
MySQL source distribution for details.) (Bug#16755 [http://bugs.mysql.com/16755])

• The server now issues a warning if it removes leading spaces from an alias. (Bug#10977
[http://bugs.mysql.com/10977])

• The VIEW_DEFINITION column of the INFORMATION_SCHEMA VIEWS table now contains in-
formation about the view algorithm. (Bug#16832 [http://bugs.mysql.com/16832])

• For a successful dump, mysqldump now writes a SQL comment to the end of the dump file in the
following format:

-- Dump completed on YYYY-MM-DD hh:mm:ss

(Bug#10877 [http://bugs.mysql.com/10877])

• The mysqld and mysqlmanager manpages have been reclassified from volume 1 to volume 8.
(Bug#21220 [http://bugs.mysql.com/21220])

• configure now defines the symbol DBUG_ON in config.h to indicate whether the source tree
is configured to be compiled with debugging support. (Bug#19517 [http://bugs.mysql.com/19517])

• The MySQL distribution now compiles on UnixWare 7.13. (Bug#20190
[http://bugs.mysql.com/20190])

• The mysql client used the default character set if it automatically reconnected to the server, which
is incorrect if the character set had been changed. To enable the character set to remain synchronized
on the client and server, the mysql command charset (or \C) that changes the default character
set and now also issues a SET NAMES statement. The changed character set is used for reconnects.
(Bug#11972 [http://bugs.mysql.com/11972])

• mysql_upgrade no longer reads the [client] option file group because it is not a client and
did not understand client options such as host. Now it reads only the [mysql_upgrade] group.
(Bug#19452 [http://bugs.mysql.com/19452])

MySQL Change History

1721

http://bugs.mysql.com/17926
http://bugs.mysql.com/1989
http://bugs.mysql.com/19147
http://bugs.mysql.com/16614
http://bugs.mysql.com/13934
http://bugs.mysql.com/16755
http://bugs.mysql.com/10977
http://bugs.mysql.com/16832
http://bugs.mysql.com/10877
http://bugs.mysql.com/21220
http://bugs.mysql.com/19517
http://bugs.mysql.com/20190
http://bugs.mysql.com/11972
http://bugs.mysql.com/19452

• MySQL now can do stack dumps on x86_64 and i386/NTPL systems. (Bug#21250
[http://bugs.mysql.com/21250])

• TIMESTAMP columns that are NOT NULL now are reported that way by SHOW COLUMNS and IN-
FORMATION_SCHEMA. (Bug#20910 [http://bugs.mysql.com/20910])

Bugs fixed:

• Security fix: On Linux, and possibly other platforms using case-sensitive filesystems, it was pos-
sible for a user granted rights on a database to create or access a database whose name differed only
from that of the first by the case of one or more letters. (CVE-2006-4226
[http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4226], Bug#17647
[http://bugs.mysql.com/17647])

• Security fix: A stored routine created by one user and then made accessible to a different user using
GRANT EXECUTE could be executed by that user with the privileges of the routine's definer. (CVE-
2006-4227 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4227], Bug#18630
[http://bugs.mysql.com/18630])

• A DATE can be represented as an integer (such as 20060101) or as a string (such as
'2006.01.01'). When a DATE (or TIME) column is compared in one SELECT against both rep-
resentations, constant propagation by the optimizer led to comparison of DATE as a string against
DATE as an integer. This could result in integer comparisons such as 2006 against 20060101, er-
roneously producing a false result. (Bug#21475 [http://bugs.mysql.com/21475])

• A query result could be sorted improperly when using ORDER BY for the second table in a join.
(Bug#21302 [http://bugs.mysql.com/21302])

• EXPORT_SET() did not accept arguments with coercible character sets. (Bug#21531
[http://bugs.mysql.com/21531])

• The --collation-server server option was being ignored. With the fix for this problem, if
you choose a non-default character set with --character-set-server, you should also use -
-collation-server to specify the collation. (Bug#15276 [http://bugs.mysql.com/15276])

• The index_merge/Intersection optimizer could have a memory overrrun when the number
of table columns covered by an index is sufficiently large, possibly resulting in a server crash.
(Bug#16201 [http://bugs.mysql.com/16201])

• With max_sp_recursion set to 0, a stored procedure that executed a SHOW CREATE PRO-
CEDURE statement for itself triggered a recursion limit exceeded error, though the statement in-
volves no recursion. (Bug#21416 [http://bugs.mysql.com/21416])

• The optimizer could produce an incorrect result after AND with collations such as lat-
in1_german2_ci, utf8_czech_ci, and utf8_lithianian_ci. (Bug#9509
[http://bugs.mysql.com/9509])

• Database and table names have a maximum length of 64 characters (even if they contain multi-byte
characters), but were being truncated to 64 bytes. (Bug#21432 [http://bugs.mysql.com/21432])

• character_set_results can be NULL to signify “no conversion,” but some code did not
check for NULL, resulting in a server crash. (Bug#21913 [http://bugs.mysql.com/21913])

• InnoDB was slow with more than 100,000 .idb files. (Bug#21112 [http://bugs.mysql.com/21112])

• SHOW INNODB STATUS contained some duplicate output. (Bug#21113
[http://bugs.mysql.com/21113])

MySQL Change History

1722

http://bugs.mysql.com/21250
http://bugs.mysql.com/20910
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4226
http://bugs.mysql.com/17647
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4227
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-4227
http://bugs.mysql.com/18630
http://bugs.mysql.com/21475
http://bugs.mysql.com/21302
http://bugs.mysql.com/21531
http://bugs.mysql.com/15276
http://bugs.mysql.com/16201
http://bugs.mysql.com/21416
http://bugs.mysql.com/9509
http://bugs.mysql.com/21432
http://bugs.mysql.com/21913
http://bugs.mysql.com/21112
http://bugs.mysql.com/21113

• Using cursors with READ COMMITTED isolation level could cause InnoDB to crash. (Bug#19834
[http://bugs.mysql.com/19834])

• The ndb_mgm program was included in both the MySQL-ndb-tools and MySQL-
ndb-management RPM packages, resulting in a conflict if both were installed. Now ndb_mgm is
included only in MySQL-ndb-tools. (Bug#21058 [http://bugs.mysql.com/21058])

• A query could produce different results with and without and index, if the WHERE clause contained a
range condition that used an invalid DATETIME constant. (Bug#16249
[http://bugs.mysql.com/16249])

• libmysqld produced some warnings to stderr which could not be silenced. These warnings
now are suppressed. (Bug#13717 [http://bugs.mysql.com/13717])

• The optimizer sometimes produced an incorrect row-count estimate after elimination of const
tables. This resulted in choosing extremely inefficient execution plans in same cases when distribu-
tion of data in joins were skewed. (Bug#21390 [http://bugs.mysql.com/21390])

• Query results could be incorrect if the WHERE clause contained t.key_part NOT IN
(val_list), where val_list is a list of more than 1000 constants. (Bug#21282
[http://bugs.mysql.com/21282])

• STR_TO_DATE() sometimes would return NULL if the %D format specifier was not the last spe-
cifier in the format string. (Bug#20987 [http://bugs.mysql.com/20987])

• The myisam_stats_method variable was mishandled when set from an option file or on the
command line. (Bug#21054 [http://bugs.mysql.com/21054])

• The optimizer assumed that if (a=x AND b=x) is true, (a=x AND b=x) AND a=b is also
true. But that is not always so if a and b have different data types. (Bug#21159
[http://bugs.mysql.com/21159])

• InnoDB did not honor IGNORE INDEX, which prevented using IGNORE INDEX in cases where
an index sort would be slower than a filesort. (Bug#21174 [http://bugs.mysql.com/21174])

• If a column definition contained a character set declaration, but a DEFAULT value began with an in-
troducer, the introducer character set was used as the column character set. (Bug#20695
[http://bugs.mysql.com/20695])

• The MD5(), SHA1(), and ENCRYPT() functions should return a binary string, but the result some-
times was converted to the character set of the argument. MAKE_SET() and EXPORT_SET() now
use the correct character set for their default separators, resulting in consistent result strings which
can be coerced according to normal character set rules. (Bug#20536 [http://bugs.mysql.com/20536])

• For connections that required a SUBJECT value, a check was performed to verify that the value was
correct, but the connection was not refused if not. (Bug#20411 [http://bugs.mysql.com/20411])

• Some Linux-x86_64-icc packages (of previous releases) mistakenly contained 32-bit binaries. Only
ICC builds are affected, not gcc builds. Solaris and FreeBSD x86_64 builds are not affected.
(Bug#22238 [http://bugs.mysql.com/22238])

• INSERT ... SELECT sometimes generated a spurious Column count doesn't match
value count error. (Bug#21774 [http://bugs.mysql.com/21774])

• For TIME_FORMAT(), the %H and %k format specifiers can return values larger than two digits (if
the hour is greater than 99), but for some query results that contained three-character hours, column
values were truncated. (Bug#19844 [http://bugs.mysql.com/19844])

• For table-format output, mysql did not always calculate columns widths correctly for columns con-

MySQL Change History

1723

http://bugs.mysql.com/19834
http://bugs.mysql.com/21058
http://bugs.mysql.com/16249
http://bugs.mysql.com/13717
http://bugs.mysql.com/21390
http://bugs.mysql.com/21282
http://bugs.mysql.com/20987
http://bugs.mysql.com/21054
http://bugs.mysql.com/21159
http://bugs.mysql.com/21174
http://bugs.mysql.com/20695
http://bugs.mysql.com/20536
http://bugs.mysql.com/20411
http://bugs.mysql.com/22238
http://bugs.mysql.com/21774
http://bugs.mysql.com/19844

taining multi-byte characters in the column name or contents. (Bug#17939
[http://bugs.mysql.com/17939])

• Views could not be updated within a stored function or trigger. (Bug#17591
[http://bugs.mysql.com/17591])

• Some user-level level errors were being written to the server's error log, which is for server errors.
(Bug#20402 [http://bugs.mysql.com/20402])

• When using tables created under MySQL 4.1 with a 5.0 server, if the tables contained VARCHAR
columns, for some queries the metadata sent to the client could have an empty column name.
(Bug#14897 [http://bugs.mysql.com/14897])

• On 64-bit systems, use of the cp1250 character set with a primary key column in a LIKE clause
caused a server crash for patterns having letters in the range 128..255. (Bug#19741
[http://bugs.mysql.com/19741])

• N'xxx' and _utf8'xxx' were not treated as equivalent because N'xxx' failed to unescape
backslashes (\) and doubled apostrophe/single quote characters (''). (Bug#17313
[http://bugs.mysql.com/17313])

• ORDER BY RAND() LIMIT 1 always set a user variable to the last possible value from the table.
(Bug#16861 [http://bugs.mysql.com/16861])

• A subquery in the WHERE clause of the outer query and using IN and GROUP BY returned an incor-
rect result. (Bug#16255 [http://bugs.mysql.com/16255])

• When NOW() was used in a BETWEEN clause of the definition for a view, it was replaced with a
constant in the view. (Bug#15950 [http://bugs.mysql.com/15950])

• A stored procedure with a CONTINUE handler that encountered an error continued to execute a
statement that caused an error, rather with the next statement following the the one that caused the
error. (Bug#8153 [http://bugs.mysql.com/8153])

• libmysqlclient defined a symbol BN_bin2bn which belongs to OpenSSL. This could break
applications that also linked against OpenSSL's libcrypto library. The fix required correcting an
error in a build script that was failing to add rename macros for some functions. (Bug#21930
[http://bugs.mysql.com/21930])

• COUNT(*) queries with ORDER BY and LIMIT could return the wrong result. (Bug#21787
[http://bugs.mysql.com/21787])

Note: This problem was introduced by the fix for Bug#9676 [http://bugs.mysql.com/9676], which
limited the rows stored in a temporary table to the LIMIT clause. This optimization is not applicable
to non-group queries with aggregate functions. The current fix disables the optimization in such
cases.

• Memory overruns could occur for certain kinds of subqueries. (Bug#21477
[http://bugs.mysql.com/21477])

• The SELECT privilege was required for an insert on a view, instead of the INSERT privilege.
(Bug#21261 [http://bugs.mysql.com/21261])

Note: This fixes a regression that was introduced by the fix for Bug#20989
[http://bugs.mysql.com/20989].

• Running SHOW MASTER LOGS at the same time as binary log files were being switched would
cause mysqld to hang. (Bug#21965 [http://bugs.mysql.com/21965])

MySQL Change History

1724

http://bugs.mysql.com/17939
http://bugs.mysql.com/17591
http://bugs.mysql.com/20402
http://bugs.mysql.com/14897
http://bugs.mysql.com/19741
http://bugs.mysql.com/17313
http://bugs.mysql.com/16861
http://bugs.mysql.com/16255
http://bugs.mysql.com/15950
http://bugs.mysql.com/8153
http://bugs.mysql.com/21930
http://bugs.mysql.com/21787
http://bugs.mysql.com/9676
http://bugs.mysql.com/21477
http://bugs.mysql.com/21261
http://bugs.mysql.com/20989
http://bugs.mysql.com/21965

• A server or network failure with an open client connection would cause the client to hang even
though the server was no longer available. (Bug#9678 [http://bugs.mysql.com/9678])

• Transient errors in replication from master to slave may trigger multiple Got fatal error
1236: 'binlog truncated in the middle of event' errors on the slave.
(Bug#4053 [http://bugs.mysql.com/4053])

• Inserts into BIT columns of FEDERATED tables did not work. (Bug#14532
[http://bugs.mysql.com/14532])

• The yaSSL library bundled with libmysqlclient had some conflicts with OpenSSL. Now mac-
ros are used to rename the conflicting symbols to have a prefix of ya. (Bug#19810
[http://bugs.mysql.com/19810])

• It is possible to create MERGE tables into which data cannot be inserted (by not specifying a UNION
clause. However, when an insert was attempted, the error message was confusing. Now an error oc-
curs indicating that the table is read-only. (Bug#17766 [http://bugs.mysql.com/17766])

• A NUL byte within a prepared statement string caused the rest of the string not to be written to the
query log, allowing logging to be bypassed. (Bug#21813 [http://bugs.mysql.com/21813])

• mysql_upgrade created temporary files in a possibly insecure way. (Bug#21224
[http://bugs.mysql.com/21224])

• Some prepared statements caused a server crash when executed a second time. (Bug#21166
[http://bugs.mysql.com/21166])

• With query_cache_type set to 0, RESET QUERY CACHE was very slow and other threads
were blocked during the operation. Now a cache reset is faster and non-blocking. (Bug#21051
[http://bugs.mysql.com/21051])

• NDB Cluster: Setting TransactionDeadlockDetectionTimeout to a value greater than
12000 would cause scans to deadlock, time out, fail to release scan records, until the cluster ran out
of scan records and stopped processing. (Bug#21800 [http://bugs.mysql.com/21800])

• NDB Cluster: The server provided a non-descriptive error message when encountering a fatally
corrupted REDO log. (Bug#21615 [http://bugs.mysql.com/21615])

• NDB Cluster: A partial rollback could lead to node restart failures. (Bug#21536
[http://bugs.mysql.com/21536])

• NDB Cluster: The failure of a unique index read due to an invalid schema version could be
handled incorrectly in some cases, leading to unpredictable results. (Bug#21384
[http://bugs.mysql.com/21384])

• NDB Cluster: In a cluster with more than 2 replicas, a manual restart of one of the data nodes
could fail and cause the other nodes in its nodegroup to shut down. (Bug#21213
[http://bugs.mysql.com/21213])

• NDB Cluster: When the redo buffer ran out of space, a Pointer too large error was raised and the
cluster could become unusable until restarted with --initial. (Bug#20892
[http://bugs.mysql.com/20892])

• NDB Cluster: In some situations with a high disk-load, writing of the redo log could hang, caus-
ing a crash with the error message GCP STOP detected. (Bug#20904
[http://bugs.mysql.com/20904])

• NDB Cluster: A vague error message was returned when reading of both schema files occurred
during a restart of the cluster. (Bug#20860 [http://bugs.mysql.com/20860])

MySQL Change History

1725

http://bugs.mysql.com/9678
http://bugs.mysql.com/4053
http://bugs.mysql.com/14532
http://bugs.mysql.com/19810
http://bugs.mysql.com/17766
http://bugs.mysql.com/21813
http://bugs.mysql.com/21224
http://bugs.mysql.com/21166
http://bugs.mysql.com/21051
http://bugs.mysql.com/21800
http://bugs.mysql.com/21615
http://bugs.mysql.com/21536
http://bugs.mysql.com/21384
http://bugs.mysql.com/21213
http://bugs.mysql.com/20892
http://bugs.mysql.com/20904
http://bugs.mysql.com/20860

• NDB Cluster: The server did not honor the value set for ndb_cache_check_time in the
my.cnf file. (Bug#20708 [http://bugs.mysql.com/20708])

• NDB Cluster: The server failed with a non-descriptive error message when out of data memory.
(Bug#18475 [http://bugs.mysql.com/18475])

• NDB Cluster: ndb_size.pl and ndb_error_reporter were missing from RPM pack-
ages. (Bug#20426 [http://bugs.mysql.com/20426])

• When DROP DATABASE or SHOW OPEN TABLES was issued while concurrently issuing DROP
TABLE (or RENAME TABLE, CREATE TABLE LIKE or any other statement that required a name
lock) in another connection, the server crashed. (Bug#21216 [http://bugs.mysql.com/21216])

• Use of zero-length variable names caused a server crash. (Bug#20908
[http://bugs.mysql.com/20908])

• Prepared statements caused general log and server memory corruption. (Bug#14346
[http://bugs.mysql.com/14346])

• mysqldump incorrectly tried to use LOCK TABLES for tables in the INFORMATION_SCHEMA
database. (Bug#21527 [http://bugs.mysql.com/21527])

• Adding ORDER BY to a SELECT DISTINCT(expr) query could produce incorrect results.
(Bug#21456 [http://bugs.mysql.com/21456])

• For InnoDB tables, the server could crash when executing NOT IN () subqueries. (Bug#21077
[http://bugs.mysql.com/21077])

• Use of the --prompt option or prompt command caused mysql to be unable to connect to the
Instance Manager. (Bug#17485 [http://bugs.mysql.com/17485])

• The server crashed if it tried to access a CSV table for which the data file had been removed.
(Bug#15205 [http://bugs.mysql.com/15205])

• CREATE USER did not respect the 16-character username limit. (Bug#10668
[http://bugs.mysql.com/10668])

• On Windows, a definition for mysql_set_server_option() was missing from the C client
library. (Bug#16513 [http://bugs.mysql.com/16513])

• For the CSV storage engine, memory-mapped pages of the data file were not invalidated when new
data was appended to the file via traditional (file descriptor-based) I/O primitives. (Bug#15669
[http://bugs.mysql.com/15669])

• In debugging mode, mysqld printed server_init rather than network_init during network
initialization. (Bug#20968 [http://bugs.mysql.com/20968])

• For user-defined functions created with CREATE FUNCTION, the DEFINER clause is not legal, but
no error was generated. (Bug#21269 [http://bugs.mysql.com/21269])

• mysqld --flush failed to flush changes to disk following an UPDATE statement for which no
updated column had an index. (Bug#20060 [http://bugs.mysql.com/20060])

• When not running in strict mode, the server failed to convert the invalid years portion of a DATE or
DATETIME value to '0000' when inserting it into a table. (Bug#19370
[http://bugs.mysql.com/19370])

• Setting myisam_repair_threads caused any repair operation on the table to fail to update the
cardinality of indexes, instead making them always equal to 1. (Bug#18874

MySQL Change History

1726

http://bugs.mysql.com/20708
http://bugs.mysql.com/18475
http://bugs.mysql.com/20426
http://bugs.mysql.com/21216
http://bugs.mysql.com/20908
http://bugs.mysql.com/14346
http://bugs.mysql.com/21527
http://bugs.mysql.com/21456
http://bugs.mysql.com/21077
http://bugs.mysql.com/17485
http://bugs.mysql.com/15205
http://bugs.mysql.com/10668
http://bugs.mysql.com/16513
http://bugs.mysql.com/15669
http://bugs.mysql.com/20968
http://bugs.mysql.com/21269
http://bugs.mysql.com/20060
http://bugs.mysql.com/19370
http://bugs.mysql.com/18874

[http://bugs.mysql.com/18874])

• The --with-collation option was not honored for client connections. (Bug#7192
[http://bugs.mysql.com/7192])

• Users who had the SHOW VIEW privilege for a view and privileges on one of the view's base table
could not see records in INFORMATION_SCHEMA tables relating to the base table. (Bug#20543
[http://bugs.mysql.com/20543])

• An issue with yaSSL prevented Connector/J clients from connecting to the server using a certificate.
(Bug#19705 [http://bugs.mysql.com/19705])

• Some server errors were not reported to the client, causing both to try to read from the connection
until a hang or crash resulted. (Bug#16581 [http://bugs.mysql.com/16581])

• When setting a column to its implicit default value as the result of inserting a NULL into a NOT
NULL column as part of a multi-row insert or LOAD DATA operation, the server returned a mislead-
ing warning message. (Bug#14770 [http://bugs.mysql.com/14770])

• DECIMAL columns were handled incorrectly in two respects (Bug#16172
[http://bugs.mysql.com/16172]):

1. When the precision of the column was too small for the value. In this case, the original value
was returned instead of an error.

2. When the scale of the column was set to 0. In this case, the value. In this case, the value was
treated as though the scale had been defined as 2.

• Tables created with the FEDERATED storage engine did not permit indexes using NULL columns.
(Bug#15133 [http://bugs.mysql.com/15133])

• The Instance Manager allowed STOP INSTANCE to be used on a server instance that was not run-
ning. (Bug#12673 [http://bugs.mysql.com/12673])

• On Windows, mysql_upgrade.exe could not find mysqlcheck.exe. (Bug#20950
[http://bugs.mysql.com/20950])

• FEDERATED tables raised invalid duplicate key errors when attempting on one server to insert rows
having the same primary key values as rows that had been deleted from the linked table on the other
server. (Bug#18764 [http://bugs.mysql.com/18764])

• The C API failed to return a status message when invoking a stored procedure. (Bug#15752
[http://bugs.mysql.com/15752])

• A stored procedure that created and invoked a prepared statement was not executed when called in a
mysqld init-file. (Bug#17843 [http://bugs.mysql.com/17843])

• Stored procedures did not use the character set defined for the database in which they were created.
(Bug#16676 [http://bugs.mysql.com/16676])

• CREATE PROCEDURE, CREATE FUNTION, CREATE TRIGGER, and CREATE VIEW state-
ments containing multi-line comments (/* ... */) could not be replicated. (Bug#20438
[http://bugs.mysql.com/20438])

• The final parenthesis of a CREATE INDEX statement occurring in a stored procedure was omitted
from the binary log when the stored procedure was called. (Bug#19207
[http://bugs.mysql.com/19207])

• Attempting to insert a string of greater than 4096 bytes into a FEDERATED table resulted in the error

MySQL Change History

1727

http://bugs.mysql.com/7192
http://bugs.mysql.com/20543
http://bugs.mysql.com/19705
http://bugs.mysql.com/16581
http://bugs.mysql.com/14770
http://bugs.mysql.com/16172
http://bugs.mysql.com/15133
http://bugs.mysql.com/12673
http://bugs.mysql.com/20950
http://bugs.mysql.com/18764
http://bugs.mysql.com/15752
http://bugs.mysql.com/17843
http://bugs.mysql.com/16676
http://bugs.mysql.com/20438
http://bugs.mysql.com/19207

ERROR 1296 (HY000) at line 2: Got error 10000 'Error on remote system: 1054: Unknown column
'string-value' from FEDERATED. This error was raised regardless of the type of column in-
volved (VARCHAR, TEXT, and so on.) (Bug#17608 [http://bugs.mysql.com/17608])

• Performance during an import on a table with a trigger that called a stored procedure was severely
degraded. This issue first arose in MySQL 5.0.18. (Bug#21013 [http://bugs.mysql.com/21013])

• Repeated DROP TABLE statements in a stored procedure could sometimes cause the server to crash.
(Bug#19399 [http://bugs.mysql.com/19399])

• The value returned by a stored function returning a string value was not of the declared character set.
(Bug#16211 [http://bugs.mysql.com/16211])

• For mysql, escaping with backslash sometimes did not work. (Bug#20103
[http://bugs.mysql.com/20103])

• Under certain circumstances, AVG(key_val) returned a value but MAX(key_val) returned an
empty set due to incorrect application of MIN()/MAX() optimization. (Bug#20954
[http://bugs.mysql.com/20954])

• Using aggregate functions in subqueries yielded incorrect results under certain circumstances due to
incorrect application of MIN()/MAX() optimization. (Bug#20792 [http://bugs.mysql.com/20792])

• A query using WHERE column = constant OR column IS NULL did not return consistent
results on successive invocations. The column in each part of the WHERE clause could be either the
same column, or two different columns, for the effect to be observed. (Bug#21091
[http://bugs.mysql.com/21091])

• The PASSWORD() function returned invalid results when used in some UNION queries.
(Bug#16881 [http://bugs.mysql.com/16881])

• USE did not refresh database privileges when employed to re-select the current database.
(Bug#10979 [http://bugs.mysql.com/10979])

• A query using WHERE NOT (column < ANY (subquery)) yielded a different result from
the same query using the same column and subquery with WHERE (column > ANY (sub-
query)). (Bug#20975 [http://bugs.mysql.com/20975])

• A user variable set to a value selected from an unsigned column was stored as a signed value.
(Bug#7498 [http://bugs.mysql.com/7498])

• SELECT statements using GROUP BY against a view could have missing columns in the output
when there was a trigger defined on one of the base tables for the view. (Bug#20466
[http://bugs.mysql.com/20466])

• A SELECT with a subquery that was bound to the outer query over multiple columns returned differ-
ent results when a constant was used instead of one of the dependant columns. (Bug#18925
[http://bugs.mysql.com/18925])

• When performing a GROUP_CONCAT(), the server transformed BLOB columns VARCHAR
columns, which could cause erroneous results when using Connector/J and possibly other MySQL
APIs. (Bug#16712 [http://bugs.mysql.com/16712])

• The type of the value returned by the VARIANCE() function varied according to the type of the in-
put value. The function should always return a DOUBLE value. (Bug#10966
[http://bugs.mysql.com/10966])

• Performing an INSERT on a view that was defined using a SELECT that specified a collation and a
column alias caused the server to crash (Bug#21086 [http://bugs.mysql.com/21086]).

MySQL Change History

1728

http://bugs.mysql.com/17608
http://bugs.mysql.com/21013
http://bugs.mysql.com/19399
http://bugs.mysql.com/16211
http://bugs.mysql.com/20103
http://bugs.mysql.com/20954
http://bugs.mysql.com/20792
http://bugs.mysql.com/21091
http://bugs.mysql.com/16881
http://bugs.mysql.com/10979
http://bugs.mysql.com/20975
http://bugs.mysql.com/7498
http://bugs.mysql.com/20466
http://bugs.mysql.com/18925
http://bugs.mysql.com/16712
http://bugs.mysql.com/10966
http://bugs.mysql.com/21086

• A query of the form shown here caused the server to crash:

SELECT * FROM t1 NATURAL JOIN (
t2 JOIN (

t3 NATURAL JOIN t4,
t5 NATURAL JOIN t6

)
ON (t3.id3 = t2.id3 AND t5.id5 = t2.id5)

);

(Bug#21007 [http://bugs.mysql.com/21007])

• NDB Cluster (Direct APIs): Invoking the MGM API function ndb_mgm_listen_event()
caused a memory leak. (Bug#21671 [http://bugs.mysql.com/21671])

• NDB Cluster (Direct APIs): The MGM API function ndb_logevent_get_fd() was not ac-
tually implemented. (Bug#21129 [http://bugs.mysql.com/21129])

• A memory leak was found when running ndb_mgm -e "SHOW". (Bug#21670
[http://bugs.mysql.com/21670])

• NDB Cluster: Restarting a data node while DDL operations were in progress on the cluster could
cause other data nodes to fail. This could also lead to mysqld hanging or crashing under some cir-
cumstances. (Bug#21017 [http://bugs.mysql.com/21017], Bug#21050
[http://bugs.mysql.com/21050])

• NDB Cluster: An issue that arose from a patch for Bug#19852 [http://bugs.mysql.com/19852]
made in MySQL 5.0.23 was corrected. (See Section D.1.5, “Changes in release 5.0.23 (Not re-
leased)”.)

• NDB Cluster: The management client ALL STATUS command could sometimes report the
status of some data nodes incorrectly. (Bug#13985 [http://bugs.mysql.com/13985])

• NDB Cluster: Some queries involving joins on very large NDB tables could crash the MySQL
server. (Bug#21059 [http://bugs.mysql.com/21059])

• NDB Cluster: SELECT ... FOR UPDATE failed to lock the selected rows. (Bug#18184
[http://bugs.mysql.com/18184])

• NDB Cluster: A Cluster whose storage nodes were installed from the
MySQL-ndb-storage-* RPMs could not perform CREATE or ALTER operations that made use
of non-default character sets or collations. (Bug#14918 [http://bugs.mysql.com/14918])

• NDB Cluster: REPLACE statements did not work correctly on an NDB table having both a
primary key and a unique key. In such cases, proper values were not set for columns which were not
explicitly referenced in the statement. (Bug#20728 [http://bugs.mysql.com/20728])

• NDB Cluster: Trying to create or drop a table while a node was restarting caused the node to
crash. This is now handled by raising an error. (Bug#18781 [http://bugs.mysql.com/18781])

• NDB Cluster: Running ndbd --nowait-nodes=id where id was the node ID of a node that
was already running would fail with an invalid error message. (Bug#20419
[http://bugs.mysql.com/20419])

• NDB Cluster: Incorrect values were inserted into AUTO_INCREMENT columns of tables restored
from a cluster backup. (Bug#20820 [http://bugs.mysql.com/20820])

• NDB Cluster: When attempting to restart the cluster following a data import, the cluster would
fail during Phase 4 of the restart with Error 2334: Job buffer congestion. (Bug#20774
[http://bugs.mysql.com/20774])

MySQL Change History

1729

http://bugs.mysql.com/21007
http://bugs.mysql.com/21671
http://bugs.mysql.com/21129
http://bugs.mysql.com/21670
http://bugs.mysql.com/21017
http://bugs.mysql.com/21050
http://bugs.mysql.com/19852
http://bugs.mysql.com/13985
http://bugs.mysql.com/21059
http://bugs.mysql.com/18184
http://bugs.mysql.com/14918
http://bugs.mysql.com/20728
http://bugs.mysql.com/18781
http://bugs.mysql.com/20419
http://bugs.mysql.com/20820
http://bugs.mysql.com/20774

• NDB Cluster: A node failure during a scan could sometime cause the node to crash when restart-
ing too quickly following the failure. (Bug#20197 [http://bugs.mysql.com/20197])

• NDB Cluster: It was possible to use port numbers greater than 65535 for ServerPort in the
config.ini file. (Bug#19164 [http://bugs.mysql.com/19164])

• NDB Cluster: Under certain circumstances, a node that was shut down then restarted could hang
during the restart. (Bug#18863 [http://bugs.mysql.com/18863])

• NDB Cluster (Replication): In some cases, a large number of MySQL servers sending requests to
the cluster simultaneously could cause the cluster to crash. This could also be triggered by many
NDB API clients making simultaneous event subscriptions or unsubscriptions. (Bug#20683
[http://bugs.mysql.com/20683])

• NDB Cluster (Direct APIs): NdbScanOperation::readTuples() and NdbIndex-
ScanOperation::readTuples() ignored the batch parameter. (Bug#20252
[http://bugs.mysql.com/20252])

• The implementation for UNCOMPRESS() did not indicate that it could return NULL, causing the op-
timizer to do the wrong thing. (Bug#18539 [http://bugs.mysql.com/18539])

• TIMESTAMPDIFF() examined only the date and ignored the time when the requested difference
unit was months or quarters. (Bug#16226 [http://bugs.mysql.com/16226])

• perror did not properly report NDB error codes. (Bug#16561 [http://bugs.mysql.com/16561])

• mysqlimport sends a set @@character_set_database=binary statement to the serv-
er, but this is not understood by pre-4.1 servers. Now mysqlimport encloses the statement within
a /*!40101 ... */ comment so that old servers will ignore it. (Bug#15690
[http://bugs.mysql.com/15690])

• The character set was not being properly initialized for CAST() with a type like CHAR(2) BIN-
ARY, which resulted in incorrect results or even a server crash. (Bug#17903
[http://bugs.mysql.com/17903])

• For ODBC compatibility, MySQL supports use of WHERE col_name IS NULL for DATE or
DATETIME columns that are NOT NULL, to allow column values of '0000-00-00' or
'0000-00-00 00:00:00' to be selected. However, this was not working for WHERE clauses in
DELETE statements. (Bug#8143 [http://bugs.mysql.com/8143])

• The --master-data option for mysqldump requires certain privileges, but mysqldump gener-
ated a truncated dump file without producing an appropriate error message or exit status if the invok-
ing user did not have those privileges. (Bug#21215 [http://bugs.mysql.com/21215])

• ALTER VIEW did not retain existing values of attributes that had been originally specified but were
not changed in the ALTER VIEW statement. (Bug#21080 [http://bugs.mysql.com/21080])

• mysql crashed for very long arguments to the connect command. (Bug#21042
[http://bugs.mysql.com/21042])

• perror crashed on Solaris due to NULL return value of strerror() system call. (Bug#20145
[http://bugs.mysql.com/20145])

• The query command for mysqltest did not work. (Bug#19890 [http://bugs.mysql.com/19890])

• For certain queries, the server incorrectly resolved a reference to an aggregate function and crashed.
(Bug#20868 [http://bugs.mysql.com/20868])

• When executing a SELECT with ORDER BY on a view that is constructed from a SELECT state-

MySQL Change History

1730

http://bugs.mysql.com/20197
http://bugs.mysql.com/19164
http://bugs.mysql.com/18863
http://bugs.mysql.com/20683
http://bugs.mysql.com/20252
http://bugs.mysql.com/18539
http://bugs.mysql.com/16226
http://bugs.mysql.com/16561
http://bugs.mysql.com/15690
http://bugs.mysql.com/17903
http://bugs.mysql.com/8143
http://bugs.mysql.com/21215
http://bugs.mysql.com/21080
http://bugs.mysql.com/21042
http://bugs.mysql.com/20145
http://bugs.mysql.com/19890
http://bugs.mysql.com/20868

ment containing a stored function, the stored function was evaluated too many times. (Bug#19862
[http://bugs.mysql.com/19862])

• Subqueries on INFORMATION_SCHEMA tables could erroneously return an empty result.
(Bug#21231 [http://bugs.mysql.com/21231])

• On 64-bit Windows, a missing table generated error 1017, not the correct value of 1146.
(Bug#21396 [http://bugs.mysql.com/21396])

• The same trigger error message was produced under two conditions: The trigger duplicated an exist-
ing trigger name, or the trigger duplicated an existing combination of action and event. Now differ-
ent messages are produced for the two conditions so as to be more informative. (Bug#10946
[http://bugs.mysql.com/10946])

• Multiplication of DECIMAL values could produce incorrect fractional part and trailing garbage
caused by signed overflow. (Bug#20569 [http://bugs.mysql.com/20569])

• A subquery that contained LIMIT N,1 could return more than one row. (Bug#20519
[http://bugs.mysql.com/20519])

• DESCRIBE returned the type BIGINT for a column of a view if the column was specified by an ex-
pression over values of the type INT. (Bug#19714 [http://bugs.mysql.com/19714])

• Multiple invocations of the REVERSE() function could return different results. (Bug#18243
[http://bugs.mysql.com/18243])

• Using > ALL with subqueries that return no rows yielded incorrect results under certain circum-
stances due to incorrect application of MIN()/MAX() optimization. (Bug#18503
[http://bugs.mysql.com/18503])

• Using ANY with “non-table” subqueries such as SELECT 1 yielded incorrect results under certain
circumstances due to incorrect application of MIN()/MAX() optimization. (Bug#16302
[http://bugs.mysql.com/16302])

• When a row was inserted through a view but did not specify a value for a column that had no default
value in the base table, no warning or error occurred. Now a warning occurs, or an error in strict
SQL mode. (Bug#16110 [http://bugs.mysql.com/16110])

• The use of WHERE col_name IS NULL in SELECT statements reset the value of
LAST_INSERT_ID() to zero. (Bug#14553 [http://bugs.mysql.com/14553])

• The server crashed when using the range access method to execut a subquery with a ORDER BY
DESC clause. (Bug#20869 [http://bugs.mysql.com/20869])

• Use of the join cache in favor of an index for ORDER BY operations could cause incorrect result
sorting. (Bug#17212 [http://bugs.mysql.com/17212])

• A user-defined function that is called on each row of a returned result set, could receive an
in_null state that is set, if it was set previously. Now, the is_null state is reset to false before
each invocation of a UDF. (Bug#19904 [http://bugs.mysql.com/19904])

• Referring to a stored function qualified with the name of one database and tables in another database
caused a “table doesn't exist” error. (Bug#18444 [http://bugs.mysql.com/18444])

• For NDB and possibly InnoDB tables, a BEFORE UPDATE trigger could insert incorrect values.
(Bug#18437 [http://bugs.mysql.com/18437])

• Triggers on tables in the mysql database caused a server crash. Triggers for tables in this database
now are disallowed. (Bug#18361 [http://bugs.mysql.com/18361])

MySQL Change History

1731

http://bugs.mysql.com/19862
http://bugs.mysql.com/21231
http://bugs.mysql.com/21396
http://bugs.mysql.com/10946
http://bugs.mysql.com/20569
http://bugs.mysql.com/20519
http://bugs.mysql.com/19714
http://bugs.mysql.com/18243
http://bugs.mysql.com/18503
http://bugs.mysql.com/16302
http://bugs.mysql.com/16110
http://bugs.mysql.com/14553
http://bugs.mysql.com/20869
http://bugs.mysql.com/17212
http://bugs.mysql.com/19904
http://bugs.mysql.com/18444
http://bugs.mysql.com/18437
http://bugs.mysql.com/18361

• The length of the pattern string prefix for LIKE operations was calculated incorrectly for multi-byte
character sets. As a result, the the scanned range was wider than necessary if the prefix contained
any multi-byte characters, and rows could be missing from the result set. (Bug#16674
[http://bugs.mysql.com/16674], Bug#18359 [http://bugs.mysql.com/18359])

• For very complex SELECT statements could create temporary tables that were too big, but for which
the temporary files did not get removed, causing subsequent queries to fail. (Bug#11824
[http://bugs.mysql.com/11824])

• For spatial data types, the server formerly returned these as VARSTRING values with a binary colla-
tion. Now the server returns spatial values as BLOB values. (Bug#10166
[http://bugs.mysql.com/10166])

• Using SELECT and a table join while running a concurrent INSERT operation would join incorrect
rows. (Bug#14400 [http://bugs.mysql.com/14400])

• Using SELECT on a corrupt table using the dynamic record format could cause a server crash.
(Bug#19835 [http://bugs.mysql.com/19835])

• Using tables from MySQL 4.x in MySQL 5.x, in particular those with VARCHAR fields and using
INSERT DELAYED to update data in the table would result in either data corruption or a server
crash. (Bug#16611 [http://bugs.mysql.com/16611], Bug#16218 [http://bugs.mysql.com/16218],
Bug#17294 [http://bugs.mysql.com/17294])

• Checking a spatial table (using CHECK TABLE) with an index and only one row would indicate a
table corruption. (Bug#17877 [http://bugs.mysql.com/17877])

• SHOW GRANTS FOR CURRENT_USER did not return definer grants when executed in DEFINER
context (such as within a stored prodedure defined with SQL SECURITY DEFINER), it returned
the invoker grants. (Bug#15298 [http://bugs.mysql.com/15298])

• For SELECT ... FOR UPDATE statements that used DISTINCT or GROUP BY over all key
parts of a unique index (or primary key), the optimizer unnecessarily created a temporary table, thus
losing the linkage to the underlying unique index values. This caused a Result set not up-
datable error. (The temporary table is unnecessary because under these circumstances the distinct
or grouped columns must also be unique.) (Bug#16458 [http://bugs.mysql.com/16458])

• The first time a user who had been granted the CREATE ROUTINE privilege used that privilege to
create a stored function or procedure, the Password column in that user's row in the
mysql.user table was set to NULL. (Bug#19857 [http://bugs.mysql.com/19857])

• Creation of a view as a join of views or tables could fail if the views or tables are in different data-
bases. (Bug#20482 [http://bugs.mysql.com/20482])

• Use of MIN() or MAX() with GROUP BY on a ucs2 column could cause a server crash.
(Bug#20076 [http://bugs.mysql.com/20076])

• INSERT INTO ... SELECT ... LIMIT 1 could be slow because the LIMIT was ignored
when selecting candidate rows. (Bug#9676 [http://bugs.mysql.com/9676])

• Certain queries having a WHERE clause that included conditions on multi-part keys with more than 2
key parts could produce incorrect results and send [Note] Use_count: Wrong count for key at... mes-
sages to STDERR. (Bug#16168 [http://bugs.mysql.com/16168])

• The mysql_list_fields() C API function returned the incorrect table name for views.
(Bug#19671 [http://bugs.mysql.com/19671])

• A cast problem caused incorrect results for prepared statements that returned float values when
MySQL was compiled with gcc 4.0. (Bug#19694 [http://bugs.mysql.com/19694])

MySQL Change History

1732

http://bugs.mysql.com/16674
http://bugs.mysql.com/18359
http://bugs.mysql.com/11824
http://bugs.mysql.com/10166
http://bugs.mysql.com/14400
http://bugs.mysql.com/19835
http://bugs.mysql.com/16611
http://bugs.mysql.com/16218
http://bugs.mysql.com/17294
http://bugs.mysql.com/17877
http://bugs.mysql.com/15298
http://bugs.mysql.com/16458
http://bugs.mysql.com/19857
http://bugs.mysql.com/20482
http://bugs.mysql.com/20076
http://bugs.mysql.com/9676
http://bugs.mysql.com/16168
http://bugs.mysql.com/19671
http://bugs.mysql.com/19694

• Updating a column of a FEDERATED table to NULL sometimes failed. (Bug#16494
[http://bugs.mysql.com/16494])

D.1.3. Changes in release 5.0.24a (25 August 2006)
This is a bugfix release for the current production release family. It replaces MySQL 5.0.24.

Changes from 5.0.24 to 5.0.24a:

• MySQL 5.0.24 introduced an ABI incompatibility, which this release reverts. Programs compiled
against 5.0.24 are not compatible with any other version and must be recompiled. (Bug#21543
[http://bugs.mysql.com/21543])

• Closing of temporary tables failed if binary logging was not enabled. (Bug#20919
[http://bugs.mysql.com/20919])

• For statements that have a DEFINER clause such as CREATE TRIGGER or CREATE VIEW, long
usernames or hostnames could cause a buffer overflow. (Bug#16899 [http://bugs.mysql.com/16899])

• Pathname separator and device characters were not correctly parameterized for NetWare, causing
mysqld startup errors. (Bug#21537 [http://bugs.mysql.com/21537])

• mysqld could crash when closing temporary tables. (Bug#21582 [http://bugs.mysql.com/21582])

In addition, the following problem affected the initial build of 5.0.24a, but has been corrected in the
RPM files now available:

• The shared compatibility RPM files were missing some files. (Bug#22251
[http://bugs.mysql.com/22251])

D.1.4. Changes in release 5.0.24 (27 July 2006)
This is a bugfix release for the current production release family.

This section documents all changes and bug fixes that have been applied since the last official MySQL
release. If you would like to receive more fine-grained and personalized update alerts about fixes that
are relevant to the version and features you use, please consider subscribing to MySQL Network (a com-
mercial MySQL offering). For more details please see http://www.mysql.com/network/advisors.html.

Functionality added or changed:

• The LEFT() and RIGHT() functions return NULL if any argument is NULL. (Bug#11728
[http://bugs.mysql.com/11728])

• In the INFORMATION_SCHEMA.ROUTINES table the ROUTINE_DEFINITION column now is
defined as NULL rather than NOT NULL. Also, NULL rather than the empty string is returned as the
column value if the user does not have sufficient privileges to see the routine definition. (Bug#20230
[http://bugs.mysql.com/20230])

Bugs fixed:

MySQL Change History

1733

http://bugs.mysql.com/16494
http://bugs.mysql.com/21543
http://bugs.mysql.com/20919
http://bugs.mysql.com/16899
http://bugs.mysql.com/21537
http://bugs.mysql.com/21582
http://bugs.mysql.com/22251
http://www.mysql.com/network/advisors.html
http://bugs.mysql.com/11728
http://bugs.mysql.com/20230

• Security fix: If a user has access to MyISAM table t, that user can create a MERGE table m that ac-
cesses t. However, if the user's privileges on t are subsequently revoked, the user can continue to
access t by doing so through m. If this behavior is undesirable, you can start the server with the new
--skip-merge option to disable the MERGE storage engine. (Bug#15195
[http://bugs.mysql.com/15195])

• Using the extended syntax for TRIM() — that is, TRIM(... FROM ...) — in a SELECT state-
ment defining a view caused an invalid syntax error when selecting from the view. (Bug#17526
[http://bugs.mysql.com/17526])

• Assignments of values to variables of type TEXT were handled incorrectly in stored routines.
(Bug#17225 [http://bugs.mysql.com/17225])

• NDB Cluster: The repeated creating and dropping of a table would eventually lead to NDB Error
826, Too many tables and attributes ... Insufficient space. (Bug#20847
[http://bugs.mysql.com/20847])

• Issuing a SHOW CREATE FUNCTION or SHOW CREATE PROCEDURE statement without suffi-
cient privileges could crash the mysql client. (Bug#20664 [http://bugs.mysql.com/20664])

• In a view defined with SQL SECURITY DEFINER, the CURRENT_USER() function returned the
invoker, not the definer. (Bug#20570 [http://bugs.mysql.com/20570])

• DATE_ADD() and DATE_SUB() returned NULL when the result date was on the day
'9999-12-31'. (Bug#12356 [http://bugs.mysql.com/12356])

• For a DATE parameter sent via a MYSQL_TIME data structure, mysql_stmt_execute() zeroed
the hour, minute, and second members of the structure rather than treating them as read-only.
(Bug#20152 [http://bugs.mysql.com/20152])

• The DATA DIRECTORY table option did not work for TEMPORARY tables. (Bug#8706
[http://bugs.mysql.com/8706])

• With the auto_increment_increment system variable set larger than 1, if the next generated
AUTO_INCREMENT value would be larger than the column's maximum value, the value would be
clipped down to that maximum value and inserted, even if the resulting value would not be in the
generated sequence. This could cause problems for master-master replication. Now the server clips
the value down to the previous value in the sequence, which correctly produces a duplicate-key error
if that value already exists in the column. (Bug#20524 [http://bugs.mysql.com/20524])

• If a table on a slave server had a higher AUTO_INCREMENT counter than the corresponding master
table (even though all rows of the two tables were identical), in some cases REPLACE or INSERT
... ON DUPLICATE KEY UPDATE would not replicate properly using statement-based logging.
(Different values would be inserted on the master and slave.) (Bug#20188
[http://bugs.mysql.com/20188])

• Under heavy load (executing more than 1024 simultaneous complex queries), a problem in the code
that handles internal temporary tables could lead to writing beyond allocated space and memory cor-
ruption. Use of more than 1024 simultaneous cursors server wide also could lead to memory corrup-
tion. (This applies both to stored procedure and C API cursors.) (Bug#21206
[http://bugs.mysql.com/21206])

• A race condition during slave server shutdown caused an assert failure. (Bug#20850
[http://bugs.mysql.com/20850])

• mysqldump produced a malformed dump file when dumping multiple databases that contained
views. (Bug#20221 [http://bugs.mysql.com/20221])

• SELECT @@INSERT_ID displayed a value unrelated to a preceding SET INSERT_ID. (It was

MySQL Change History

1734

http://bugs.mysql.com/15195
http://bugs.mysql.com/17526
http://bugs.mysql.com/17225
http://bugs.mysql.com/20847
http://bugs.mysql.com/20664
http://bugs.mysql.com/20570
http://bugs.mysql.com/12356
http://bugs.mysql.com/20152
http://bugs.mysql.com/8706
http://bugs.mysql.com/20524
http://bugs.mysql.com/20188
http://bugs.mysql.com/21206
http://bugs.mysql.com/20850
http://bugs.mysql.com/20221

returning LAST_INSERT_ID instead.) (Bug#20392 [http://bugs.mysql.com/20392])

• Performing INSERT ... SELECT ... JOIN ... USING without qualifying the column
names caused ERROR 1052 "column 'x' in field list is ambiguous" even in
cases where the column references were unambiguous. (Bug#18080 [http://bugs.mysql.com/18080])

• Bug#10952 [http://bugs.mysql.com/10952] may cause inadvertent data loss. A fix for this bug was
included in MySQL 5.0.23, but the approach used caused a loss of intended functionality. Because
of this, that fix has been reverted in MySQL 5.0.24. As a consequence, the risk of inadvertent data
loss still exists (see Bug#10952 [http://bugs.mysql.com/10952]).

• A SELECT that used a subquery in the FROM clause that did not select from a table failed when the
subquery was used in a join. (Bug#21002 [http://bugs.mysql.com/21002])

• REPLACE ... SELECT for a view required the INSERT privilege for tables other than the table
being modified. (Bug#20989 [http://bugs.mysql.com/20989])

• The mysql client did not understand help commands that had spaces at the end. (Bug#20328
[http://bugs.mysql.com/20328])

• Failure to account for a NULL table pointer on big-endian machines could cause a server crash dur-
ing type conversion. (Bug#21135 [http://bugs.mysql.com/21135])

• mysqldump sometimes did not select the correct database before trying to dump views from it, res-
ulting in an empty result set that caused mysqldump to die with a segmentation fault. (Bug#21014
[http://bugs.mysql.com/21014])

D.1.5. Changes in release 5.0.23 (Not released)
MySQL 5.0.23 was never officially released.

This section documents all changes and bug fixes that have been applied since the last official MySQL
release. If you would like to receive more fine-grained and personalized update alerts about fixes that
are relevant to the version and features you use, please consider subscribing to MySQL Network (a com-
mercial MySQL offering). For more details please see http://www.mysql.com/network/advisors.html.

Functionality added or changed:

• NDB Cluster: The limit of 2048 ordered indexes per cluster has been lifted. There is now no up-
per limit on the number of ordered indexes (including AUTO_INCREMENT columns) that may be
used. (Bug#14509 [http://bugs.mysql.com/14509])

• NDB Cluster: The status variables Ndb_connected_host and Ndb_connected_port
were renamed to Ndb_config_from_host and Ndb_config_from_port, respectively.

• The mysql_upgrade command has been converted from a shell script to a C program, so it is
available on non-Unix systems such as Windows. This program should be run for each MySQL up-
grade. See Section 5.6.2, “mysql_upgrade — Check Tables for MySQL Upgrade”.

• Binary distributions that include SSL support now are built using yaSSL when possible.

• Added the --ssl-verify-server-cert option to MySQL client programs. This option
causes the server's Common Name value in its certificate to be verified against the hostname used
when connecting to the server, and the connection is rejected if there is a mismatch. Added
MYSQL_OPT_SSL_VERIFY_SERVER_CERT option for the mysql_options() C API func-
tion to enable this verification. This feature can be used to prevent man-in-the-middle attacks. Veri-

MySQL Change History

1735

http://bugs.mysql.com/20392
http://bugs.mysql.com/18080
http://bugs.mysql.com/10952
http://bugs.mysql.com/10952
http://bugs.mysql.com/21002
http://bugs.mysql.com/20989
http://bugs.mysql.com/20328
http://bugs.mysql.com/21135
http://bugs.mysql.com/21014
http://www.mysql.com/network/advisors.html
http://bugs.mysql.com/14509

fication is disabled by default. (Bug#17208 [http://bugs.mysql.com/17208])

• Added the ssl_ca, ssl_capath, ssl_cert, ssl_cipher, and ssl_key system variables,
which display the values given via the corresponding command options. See Section 5.9.7.3, “SSL
Command Options”. (Bug#19606 [http://bugs.mysql.com/19606])

• Added the log_queries_not_using_indexes system variable. (Bug#19616
[http://bugs.mysql.com/19616])

• Added the --angel-pid-file option to mysqlmanager for specifying the file in which the
angel process records its process ID when mysqlmanager runs in daemon mode. (Bug#14106
[http://bugs.mysql.com/14106])

• The ONLY_FULL_GROUP_BY SQL mode now also applies to the HAVING clause. That is, columns
not named in the GROUP BY clause cannot be used in the HAVING clause if not used in an aggreg-
ate function. (Bug#18739 [http://bugs.mysql.com/18739])

• SQL syntax for prepared statements now supports ANALYZE TABLE, OPTIMIZE TABLE, and
REPAIR TABLE. (Bug#19308 [http://bugs.mysql.com/19308])

• The bundled yaSSL library was upgraded to version 1.3.5. This improves handling of certain prob-
lems with SSL-related command options. (Bug#17737 [http://bugs.mysql.com/17737])

• Added the --set-charset option to mysqlbinlog to allow the character set to be specified
for processing binary log files. (Bug#18351 [http://bugs.mysql.com/18351])

• For a table with an AUTO_INCREMENT column, SHOW CREATE TABLE now shows the next
AUTO_INCREMENT value to be generated. (Bug#19025 [http://bugs.mysql.com/19025])

• It is now possible to use NEW.var_name values within triggers as INOUT parameters to stored
procedures. (Bug#14635 [http://bugs.mysql.com/14635])

• The mysqldumpslow script has been moved from client RPM packages to server RPM packages.
This corrects a problem where mysqldumpslow could not be used with a client-only RPM install,
because it depends on my_print_defaults which is in the server RPM. (Bug#20216
[http://bugs.mysql.com/20216])

Bugs fixed:

• Use of the --no-pager option caused mysql to crash. (Bug#19363
[http://bugs.mysql.com/19363])

• mysqlcheck tried to check views instead of ignoring them. (Bug#16502
[http://bugs.mysql.com/16502])

• Long multiple-row INSERT statements could take a very long time for some multi-byte character
sets. (Bug#15811 [http://bugs.mysql.com/15811])

• Re-executing a stored procedure with a complex stored procedure cursor query could lead to a server
crash. (Bug#15217 [http://bugs.mysql.com/15217])

• Views created from prepared statements inside of stored procedures were created with a definition
that included both SQL_CACHE and SQL_NO_CACHE. (Bug#17203 [http://bugs.mysql.com/17203])

• mysqldump did not dump the table name correctly for some table identifiers that contained unusual
characters such as ‘:’. (Bug#19479 [http://bugs.mysql.com/19479])

MySQL Change History

1736

http://bugs.mysql.com/17208
http://bugs.mysql.com/19606
http://bugs.mysql.com/19616
http://bugs.mysql.com/14106
http://bugs.mysql.com/18739
http://bugs.mysql.com/19308
http://bugs.mysql.com/17737
http://bugs.mysql.com/18351
http://bugs.mysql.com/19025
http://bugs.mysql.com/14635
http://bugs.mysql.com/20216
http://bugs.mysql.com/19363
http://bugs.mysql.com/16502
http://bugs.mysql.com/15811
http://bugs.mysql.com/15217
http://bugs.mysql.com/17203
http://bugs.mysql.com/19479

• mysqldump would not dump views that had become invalid because a table named in the view
definition had been dropped. Instead, it quit with an error message. Now you can specify the -
-force option to cause mysqldump to keep going and write a SQL comment containing the view
definition to the dump output. (Bug#17371 [http://bugs.mysql.com/17371])

• The WITH CHECK OPTION was not enforced when a REPLACE statement was executed against a
view. (Bug#19789 [http://bugs.mysql.com/19789])

• The use of MIN() and MAX() on columns with a partial index produced incorrect results in some
queries. (Bug#18206 [http://bugs.mysql.com/18206])

• Concatenating the results of multiple constant subselects produced incorrect results. (Bug#16716
[http://bugs.mysql.com/16716])

• A “table not found” error could occur for statements that called a function defined in another data-
base. (Bug#17199 [http://bugs.mysql.com/17199])

• A buffer overwrite error in Instance Manager caused a crash. (Bug#20622
[http://bugs.mysql.com/20622])

• Re-execution of a prepared multiple-table DELETE statement that involves a trigger or stored func-
tion can result in a server crash. (Bug#19634 [http://bugs.mysql.com/19634])

• On Windows, corrected a crash stemming from differences in Visual C runtime library routines from
POSIX behavior regarding invalid file descriptors. (Bug#18275 [http://bugs.mysql.com/18275])

• Multiple-table updates with FEDERATED tables could cause a server crash. (Bug#19773
[http://bugs.mysql.com/19773])

• On Windows, terminating mysqld with Control-C could result in a crash during shutdown.
(Bug#18235 [http://bugs.mysql.com/18235])

• On Windows, removal of binary log files would fail if the files were already open. (Bug#19208
[http://bugs.mysql.com/19208])

• mysqldump produced garbled output for view definitions. (Bug#18462
[http://bugs.mysql.com/18462])

• The omission of leading zeros in dates could lead to erroneous results when these were compared
with the output of certain date and time functions. (Bug#16377 [http://bugs.mysql.com/16377])

• An invalid comparison between keys in partial indexes over multi-byte character fields could lead to
incorrect result sets if the selected query execution plan used a range scan by a partial index over a
UTF8 character field. This also caused incorrect results under similar circumstances with many other
character sets. (Bug#14896 [http://bugs.mysql.com/14896])

• NDB Cluster: Cluster system status variables were not updated. (Bug#11459
[http://bugs.mysql.com/11459])

• NDB Cluster: The cluster's data nodes would fail while trying to load data when NoOfFrang-
mentLogFiles was equal to 1. (Bug#19894 [http://bugs.mysql.com/19894])

• NDB Cluster: A problem with error handling when ndb_use_exact_count was enabled
could lead to incorrect values returned from queries using COUNT(). A warning is now returned in
such cases. (Bug#19202 [http://bugs.mysql.com/19202])

• NDB Cluster: Restoring a backup made using ndb_restore failed when the backup had been
taken from a cluster whose data memory was full. (Bug#19852 [http://bugs.mysql.com/19852])

MySQL Change History

1737

http://bugs.mysql.com/17371
http://bugs.mysql.com/19789
http://bugs.mysql.com/18206
http://bugs.mysql.com/16716
http://bugs.mysql.com/17199
http://bugs.mysql.com/20622
http://bugs.mysql.com/19634
http://bugs.mysql.com/18275
http://bugs.mysql.com/19773
http://bugs.mysql.com/18235
http://bugs.mysql.com/19208
http://bugs.mysql.com/18462
http://bugs.mysql.com/16377
http://bugs.mysql.com/14896
http://bugs.mysql.com/11459
http://bugs.mysql.com/19894
http://bugs.mysql.com/19202
http://bugs.mysql.com/19852

• NDB Cluster: TEXT columns in Cluster tables having both an explicit primary key and a unique
key were not correctly updated by REPLACE statements. (Bug#19906
[http://bugs.mysql.com/19906])

• NDB Cluster: An internal formatting error caused some management client error messages to be
unreadable. (Bug#20016 [http://bugs.mysql.com/20016])

• NDB Cluster: Running management client commands while mgmd was in the process of discon-
necting could cause the management server to fail. (Bug#19932 [http://bugs.mysql.com/19932])

• NDB Cluster (NDBAPI): Update operations on blobs were not checked for illegal operations.

Note: Read locks with blob update operations are now upgraded from read committed to read
shared.

• NDB Cluster: The management client ALL STOP command shut down mgmd processes (as well
as ndbd processes). (Bug#18966 [http://bugs.mysql.com/18966])

• NDB Cluster: LOAD DATA LOCAL failed to ignore duplicate keys in Cluster tables.
(Bug#19496 [http://bugs.mysql.com/19496])

• NDB Cluster: Repeated CREATE - INSERT - DROP operations tables could in some circum-
stances cause the MySQL table definition cache to become corrupt, so that some mysqld processes
could access table information but others could not. (Bug#18595 [http://bugs.mysql.com/18595])

• NDB Cluster: The mgm client command ALL CLUSTERLOG STATISTICS=15; had no ef-
fect. (Bug#20336 [http://bugs.mysql.com/20336])

• NDB Cluster: TRUNCATE TABLE failed to reset the AUTO_INCREMENT counter. (Bug#18864
[http://bugs.mysql.com/18864])

• NDB Cluster: The failure of a data node when preparing to commit a transaction (that is, while
the node's status was CS_PREPARE_TO_COMMIT) could cause the failure of other cluster data
nodes. (Bug#20185 [http://bugs.mysql.com/20185])

• NDB Cluster: Renaming a table in such a way as to move it to to a different database failed to
move the table's indexes. (Bug#19967 [http://bugs.mysql.com/19967])

• NDB Cluster: Resources for unique indexes on Cluster table columns were incorrectly allocated,
so that only one-fourth as many unique indexes as indicated by the value of Unique-
HashIndexes could be created. (Bug#19623 [http://bugs.mysql.com/19623])

• NDB Cluster: Running ALL START in the NDB management client or restarting multiple nodes
simultaneously could under some circumstances cause the cluster to crash. (Bug#19930
[http://bugs.mysql.com/19930])

• NDB Cluster: SELECT statements with a BLOB or TEXT column in the selected column list and
a WHERE condition including a primary key lookup on a VARCHAR primary key produced empty
result sets. Note: This issue affected the 5.0 series of MySQL Cluster releases only. (Bug#19956
[http://bugs.mysql.com/19956])

• NDB Cluster (NDBAPI): On big-endian platforms, NdbOperation::write_attr() did
not update 32-bit fields correctly. (Bug#19537 [http://bugs.mysql.com/19537])

• NDB Cluster: Some queries having a WHERE clause of the form c1=val1 OR c2 LIKE
'val2' were not evaluated correctly. (Bug # 17421)

• NDB Cluster: Using “stale” mysqld .FRM files could cause a newly-restored cluster to fail.
This situation could arise when restarting a MySQL Cluster using the --intial option while leav-

MySQL Change History

1738

http://bugs.mysql.com/19906
http://bugs.mysql.com/20016
http://bugs.mysql.com/19932
http://bugs.mysql.com/18966
http://bugs.mysql.com/19496
http://bugs.mysql.com/18595
http://bugs.mysql.com/20336
http://bugs.mysql.com/18864
http://bugs.mysql.com/20185
http://bugs.mysql.com/19967
http://bugs.mysql.com/19623
http://bugs.mysql.com/19930
http://bugs.mysql.com/19956
http://bugs.mysql.com/19537

ing connected mysqld processes running. (Bug#16875 [http://bugs.mysql.com/16875])

• NDB Cluster: Repeated use of the SHOW and ALL STATUS commands in the ndb_mgm client
could cause the mgmd process to crash. (Bug#18591 [http://bugs.mysql.com/18591])

• NDB Cluster: An issue with ndb_mgmd prevented more than 27 mysqld processes from con-
necting to a single cluster at one time. (Bug#17150 [http://bugs.mysql.com/17150])

• NDB Cluster: Data node failures could cause excessive CPU usage by ndb_mgmd. (Bug#13987
[http://bugs.mysql.com/13987])

• NDB Cluster: TRUNCATE failed on tables having BLOB or TEXT columns with the error Lock
wait timeout exceeded. (Bug#19201 [http://bugs.mysql.com/19201])

• NDB Cluster: Stopping multiple nodes could cause node failure handling not to be completed.
(Bug#19039 [http://bugs.mysql.com/19039])

• NDB Cluster: ndbd could sometimes fail to start with the error Node failure handling not com-
pleted following a graceful restart. (Bug#18550 [http://bugs.mysql.com/18550])

• NDB Cluster: Backups could fail for large clusters with many tables, where the number of tables
approached MaxNoOfTables. (Bug#17607 [http://bugs.mysql.com/17607])

• On Windows, temporary tables containing ‘:’ in the name could not be created. (Bug#20616
[http://bugs.mysql.com/20616])

• The --core-file-size option for mysqld_safe was effective only for root. (Bug#17353
[http://bugs.mysql.com/17353])

• Some queries that used ORDER BY and LIMIT performed quickly in MySQL 3.23, but slowly in
MySQL 4.x/5.x due to an optimizer problem. (Bug#4981 [http://bugs.mysql.com/4981])

• mysql_upgrade was missing from binary MySQL distributions. (Bug#18516
[http://bugs.mysql.com/18516], Bug#20403 [http://bugs.mysql.com/20403])

• Queries using an indexed column as the argument for the MIN() and MAX() functions following an
ALTER TABLE .. DISABLE KEYS statement returned Got error 124 from storage engine until
ALTER TABLE ... ENABLE KEYS was run on the table. (Bug#20357
[http://bugs.mysql.com/20357])

• A number of dependency issues in the RPM bench and test packages caused installation of these
packages to fail. (Bug#20078 [http://bugs.mysql.com/20078])

• Nested natural joins worked executed correctly when executed as a non-prepared statement could
fail with an Unknown column 'col_name' in 'field list' error when executed as a
prepared statement, due to a name resolution problem. (Bug#15355 [http://bugs.mysql.com/15355])

• GROUP BY on an expression that contained a cast to DECIMAL produced an incorrect result.
(Bug#19667 [http://bugs.mysql.com/19667])

• The max_length metadata value for columns created from CONCAT() could be incorrect when
the collation of an argument differed from the collation of the CONCAT() itself. In some contexts
such as UNION, this could lead to truncation of the column contents. (Bug#15962
[http://bugs.mysql.com/15962])

• The MD5() and SHA() functions treat their arguments as case-sensitive strings. But when they are
compared, their arguments were compared as case-insensitive strings, which leads to two function
calls with different arguments (and thus different results) compared as being identical. This can lead
to a wrong decision made in the range optimizer and thus to an incorrect result set. (Bug#15351

MySQL Change History

1739

http://bugs.mysql.com/16875
http://bugs.mysql.com/18591
http://bugs.mysql.com/17150
http://bugs.mysql.com/13987
http://bugs.mysql.com/19201
http://bugs.mysql.com/19039
http://bugs.mysql.com/18550
http://bugs.mysql.com/17607
http://bugs.mysql.com/20616
http://bugs.mysql.com/17353
http://bugs.mysql.com/4981
http://bugs.mysql.com/18516
http://bugs.mysql.com/20403
http://bugs.mysql.com/20357
http://bugs.mysql.com/20078
http://bugs.mysql.com/15355
http://bugs.mysql.com/19667
http://bugs.mysql.com/15962
http://bugs.mysql.com/15351

[http://bugs.mysql.com/15351])

• For BOOLEAN mode full-text searches on non-indexed columns, NULL rows generated by a LEFT
JOIN caused incorrect query results. (Bug#14708 [http://bugs.mysql.com/14708])

• BIT columns in a table could cause joins that use the table to fail. (Bug#18895
[http://bugs.mysql.com/18895])

• A UNION over more than 128 SELECT statements that use an aggregate function failed.
(Bug#18175 [http://bugs.mysql.com/18175])

• InnoDB unlocked its data directory before committing a transaction, potentially resulting in non-
recoverable tables if a server crash occurred before the commit. (Bug#19727
[http://bugs.mysql.com/19727])

• Multiple-table DELETE statements containing a subquery that selected from one of the tables being
modified caused a server crash. (Bug#19225 [http://bugs.mysql.com/19225])

• With settings of read_buffer_size >= 2G and read_rnd_buffer_size >=2G, LOAD
DATA INFILE failed with no error message or caused a server crash for files larger than 2GB.
(Bug#12982 [http://bugs.mysql.com/12982])

• REPLACE statements caused activation of UPDATE triggers, not DELETE and INSERT triggers.
(Bug#13479 [http://bugs.mysql.com/13479])

• The thread for INSERT DELAYED rows was maintaining a separate AUTO_INCREMENT counter,
resulting in incorrect values being assigned if DELAYED and non-DELAYED inserts were mixed.
(Bug#20195 [http://bugs.mysql.com/20195])

• mysqldump wrote an extra pair of DROP DATABASE and CREATE DATABASE statements if run
with the --add-drop-database option and the database contained views. (Bug#17201
[http://bugs.mysql.com/17201])

• On 64-bit Windows systems, REGEXP for regular expressions with exactly 31 characters did not
work. (Bug#19407 [http://bugs.mysql.com/19407])

• For mysqld, Valgrind revealed problems that were corrected: A dangling stack pointer being over-
written (Bug#20769 [http://bugs.mysql.com/20769]); possible uninitialized data in a string compar-
ison (Bug#20783 [http://bugs.mysql.com/20783]); memory corruption in replication slaves when
switching databases (Bug#19022 [http://bugs.mysql.com/19022]); syscall write parameter pointing
to uninitialized byte (Bug#20579 [http://bugs.mysql.com/20579]).

• For ndb_mgmd, Valgrind revealed problems that were corrected: A memory leak (Bug#19318
[http://bugs.mysql.com/19318]); a dependency on an uninitialized variable (Bug#20333
[http://bugs.mysql.com/20333]).

• An update that used a join of a table to itself and modified the table on both sides of the join reported
the table as crashed. (Bug#18036 [http://bugs.mysql.com/18036])

• SSL connections using yaSSL on OpenBSD could fail. (Bug#19191 [http://bugs.mysql.com/19191])

• On Windows, multiple clients simultaneously attempting to perform ALTER TABLE operations on
an InnoDB table could deadlock. (Bug#17264 [http://bugs.mysql.com/17264])

• The fill_help_tables.sql file did not load properly if the ANSI_QUOTES SQL mode was
enabled. (Bug#20542 [http://bugs.mysql.com/20542])

• The fill_help_tables.sql file did not contain a SET NAMES 'utf8' statement to indic-
ate its encoding. This caused problems for some settings of the MySQL character set such as big5.

MySQL Change History

1740

http://bugs.mysql.com/14708
http://bugs.mysql.com/18895
http://bugs.mysql.com/18175
http://bugs.mysql.com/19727
http://bugs.mysql.com/19225
http://bugs.mysql.com/12982
http://bugs.mysql.com/13479
http://bugs.mysql.com/20195
http://bugs.mysql.com/17201
http://bugs.mysql.com/19407
http://bugs.mysql.com/20769
http://bugs.mysql.com/20783
http://bugs.mysql.com/19022
http://bugs.mysql.com/20579
http://bugs.mysql.com/19318
http://bugs.mysql.com/20333
http://bugs.mysql.com/18036
http://bugs.mysql.com/19191
http://bugs.mysql.com/17264
http://bugs.mysql.com/20542

(Bug#20551 [http://bugs.mysql.com/20551])

• The MySQL server startup script /etc/init.d/mysql (created from mysql.server) is now
marked to ensure that the system services ypbind, nscd, ldap, and NTP are started first (if these
are configured on the machine). (Bug#18810 [http://bugs.mysql.com/18810])

• MERGE tables did not work reliably with BIT columns. (Bug#19648 [http://bugs.mysql.com/19648])

• For a reference to a non-existent index in FORCE INDEX, the error message referred to a column,
not an index. (Bug#17873 [http://bugs.mysql.com/17873])

• Some yaSSL public function names conflicted with those from OpenSSL, causing conflicts for ap-
plications that linked against both OpenSSL and a version of libmysqlclient that was built
with yaSSL support. The yaSSL public functions now are renamed to avoid this conflict.
(Bug#19575 [http://bugs.mysql.com/19575])

• CHECK TABLE temporarily cleared the AUTO_INCREMENT value. Because it runs with a read
lock, other readers could perform concurrent inserts, and if so, they could get an incorrect
AUTO_INCREMENT value. CHECK TABLE no longer modifies the AUTO_INCREMENT value.
(Bug#19604 [http://bugs.mysql.com/19604])

• If there is a global read lock, CREATE DATABASE, RENAME DATABASE, and DROP DATABASE
could deadlock. (Bug#19815 [http://bugs.mysql.com/19815])

• On Linux, libmysqlclient when compiled with yaSSL using the icc compiler had a spurious
dependency on C++ libraries. (Bug#20119 [http://bugs.mysql.com/20119])

• Using CONCAT(@user_var, col_name), where col_name is a column in an INFORMA-
TION_SCHEMA table, could cause erroneous duplication of data in the query result. (Bug#19599
[http://bugs.mysql.com/19599])

• Results from INFORMATION_SCHEMA.SCHEMATA could contain uppercase information when
lower_case_table_names was not 0. (Bug#17661 [http://bugs.mysql.com/17661])

• Grant table modifications sometimes did not refresh the in-memory tables if the hostname was '' or
not specified. (Bug#16297 [http://bugs.mysql.com/16297])

• Invalid escape sequences in option files caused MySQL programs that read them to abort.
(Bug#15328 [http://bugs.mysql.com/15328])

• InnoDB did not increment the handler_read_prev counter. (Bug#19542
[http://bugs.mysql.com/19542])

• Race conditions on certain platforms could cause the Instance Manager to fail to initialize.
(Bug#19391 [http://bugs.mysql.com/19391])

• ALTER TABLE on a table created prior to 5.0.3 would cause table corruption if the ALTER TABLE
did one of the following:

• Change the default value of a column.

• Change the table comment.

• Change the table password.

(Bug#17001 [http://bugs.mysql.com/17001])

• An ALTER TABLE operation that does not need to copy data, when executed on a table created pri-
or to MySQL 4.0.25, could result in a server crash for subsequent accesses to the table. (Bug#19192

MySQL Change History

1741

http://bugs.mysql.com/20551
http://bugs.mysql.com/18810
http://bugs.mysql.com/19648
http://bugs.mysql.com/17873
http://bugs.mysql.com/19575
http://bugs.mysql.com/19604
http://bugs.mysql.com/19815
http://bugs.mysql.com/20119
http://bugs.mysql.com/19599
http://bugs.mysql.com/17661
http://bugs.mysql.com/16297
http://bugs.mysql.com/15328
http://bugs.mysql.com/19542
http://bugs.mysql.com/19391
http://bugs.mysql.com/17001
http://bugs.mysql.com/19192

[http://bugs.mysql.com/19192])

• The binary log lacked character set information for table name when dropping temporary tables.
(Bug#14157 [http://bugs.mysql.com/14157])

• A B-TREE index on a MEMORY table erroneously reported duplicate entry error for multiple NULL
values. (Bug#12873 [http://bugs.mysql.com/12873])

• Race conditions on certain platforms could cause the Instance Manager to try to restart the same in-
stance multiple times. (Bug#18023 [http://bugs.mysql.com/18023])

• A CREATE TABLE statement that created a table from a materialized view did not inherit default
values from the underlying table. (Bug#19089 [http://bugs.mysql.com/19089])

• The COM_STATISTICS command was changed in 5.0.3 to display session status variable values
rather than global values. This causes mysqladmin status information not to be useful for the
Slow queries and Opens values. Now COM_STATISTICS displays the global values for
Slow queries and Opens. (Bug#18669 [http://bugs.mysql.com/18669])

• INFORMATION_SCHEMA.TABLES provided inconsistent info about invalid views. This could
cause server crashes or result in incorrect data being returned for queries that attempt to obtain in-
formation from INFORMATION_SCHEMA tables about views using stored functions. (Bug#18282
[http://bugs.mysql.com/18282])

• Multiple calls to a stored procedure that selects from INFORMATION_SCHEMA could cause a server
crash. (Bug#17204 [http://bugs.mysql.com/17204])

• Premature optimization of nested subqueries in the FROM clause that refer to aggregate functions
could lead to incorrect results. (Bug#19077 [http://bugs.mysql.com/19077])

• A view definition that referred to an alias in the HAVING clause could be saved in the .frm file
with the alias replaced by the expression that it referred to, causing failure of subsequent SELECT *
FROM view_name statements. (Bug#19573 [http://bugs.mysql.com/19573])

• Several aspects of view privileges were being checked incorrectly. (Bug#18681
[http://bugs.mysql.com/18681], Bug#20363 [http://bugs.mysql.com/20363])

• A view with a non-existent account in the DEFINER clause caused SHOW CREATE VIEW to fail.
Now SHOW CREATE VIEW issues a warning instead. (Bug#20048 [http://bugs.mysql.com/20048])

• A bug in NTPL threads on Linux could result in a deadlock with FLUSH TABLES WITH READ
LOCK under some conditions. (Bug#20048 [http://bugs.mysql.com/20048])

• MyISAM table deadlock was possible if one thread issued a LOCK TABLES request for write locks
and then an administrative statement such as OPTIMIZE TABLE, if between the two statements an-
other client meanwhile issued a multiple-table SELECT for some of the locked tables. (Bug#16986
[http://bugs.mysql.com/16986])

• Subqueries that produced a BIGINT UNSIGNED value were being treated as returning a signed
value. (Bug#19700 [http://bugs.mysql.com/19700])

• The patch for Bug#17164 [http://bugs.mysql.com/17164] introduced the problem that some outer
joins were incorrectly converted to inner joins. (Bug#19816 [http://bugs.mysql.com/19816])

• BLOB or TEXT arguments to or values returned from stored functions were not copied properly if
too long and could become garbled. (Bug#18587 [http://bugs.mysql.com/18587])

• Selecting data from a MEMORY table with a VARCHAR column and a HASH index over it returned
only the first row matched. (Bug#18233 [http://bugs.mysql.com/18233])

MySQL Change History

1742

http://bugs.mysql.com/14157
http://bugs.mysql.com/12873
http://bugs.mysql.com/18023
http://bugs.mysql.com/19089
http://bugs.mysql.com/18669
http://bugs.mysql.com/18282
http://bugs.mysql.com/17204
http://bugs.mysql.com/19077
http://bugs.mysql.com/19573
http://bugs.mysql.com/18681
http://bugs.mysql.com/20363
http://bugs.mysql.com/20048
http://bugs.mysql.com/20048
http://bugs.mysql.com/16986
http://bugs.mysql.com/19700
http://bugs.mysql.com/17164
http://bugs.mysql.com/19816
http://bugs.mysql.com/18587
http://bugs.mysql.com/18233

• CREATE TABLE ... SELECT did not always produce the proper column default value in TRA-
DITIONAL SQL mode. (Bug#17626 [http://bugs.mysql.com/17626])

• Privilege checking on the contents of the INFORMATION_SCHEMA.VIEWS table was insuffi-
ciently restrictive. (Bug#16681 [http://bugs.mysql.com/16681])

• The result from CONV() is a string, but was not always treated the same way as a string when con-
verted to a real value for an arithmetic operation. (Bug#13975 [http://bugs.mysql.com/13975])

• CREATE TABLE ... SELECT ... statements that used a stored function explicitly or impli-
citly (through a view) resulted in a Table not locked error. (Bug#12472
[http://bugs.mysql.com/12472], Bug#15137 [http://bugs.mysql.com/15137])

• Within a trigger, SET used the SQL mode of the invoking statement, not the mode in effect at trigger
creation time. (Bug#6951 [http://bugs.mysql.com/6951])

• The server no longer uses a signal handler for signal 0 because it could cause a crash on some plat-
forms. (Bug#15869 [http://bugs.mysql.com/15869])

• Revised memory allocation for local objects within stored functions and triggers to avoid memory
leak for repeated function or trigger invocation. (Bug#17260 [http://bugs.mysql.com/17260])

• EXPLAIN ... SELECT INTO caused the client to hang. (Bug#15463
[http://bugs.mysql.com/15463])

• Symlinking .mysql_history to /dev/null to suppress statement history saving by mysql
did not work. (mysql deleted the symlink and recreated .mysql_history as a regular file, and
then wrote history to it.) (Bug#16803 [http://bugs.mysql.com/16803])

• The basedir and tmpdir system variables could not be accessed via @@var_name syntax.
(Bug#1039 [http://bugs.mysql.com/1039])

• For certain CREATE VIEW statements, the server did not detect invalid subqueries within the SE-
LECT part. (Bug#7549 [http://bugs.mysql.com/7549])

• The range operator failed and caused a server crash for clauses of the form tbl_name.un-
signed_keypart NOT IN (negative_const, ...). (Bug#19618
[http://bugs.mysql.com/19618])

• Returning the value of a system variable from a stored function caused a server crash. (Bug#18037
[http://bugs.mysql.com/18037])

• Updates to a MEMORY table caused the size of BTREE indexes for the table to increase. (Bug#18160
[http://bugs.mysql.com/18160])

• REPAIR TABLE did not restore the length for packed keys in tables created under MySQL 4.x.
(Bug#17810 [http://bugs.mysql.com/17810])

• Selecting from a view that used GROUP BY on a non-constant temporal interval (such as
DATE(col) + INTERVAL TIME_TO_SEC(col) SECOND could cause a server crash.
(Bug#19490 [http://bugs.mysql.com/19490])

• An outer join of two views that was written using { OJ ... } syntax could cause a server crash.
(Bug#19396 [http://bugs.mysql.com/19396])

• LOAD_FILE() returned an error if the file did not exist, rather than NULL as it should according to
the manual. (Bug#10418 [http://bugs.mysql.com/10418])

• For certain CREATE TABLE ... SELECT statements, the selected values were truncated when

MySQL Change History

1743

http://bugs.mysql.com/17626
http://bugs.mysql.com/16681
http://bugs.mysql.com/13975
http://bugs.mysql.com/12472
http://bugs.mysql.com/15137
http://bugs.mysql.com/6951
http://bugs.mysql.com/15869
http://bugs.mysql.com/17260
http://bugs.mysql.com/15463
http://bugs.mysql.com/16803
http://bugs.mysql.com/1039
http://bugs.mysql.com/7549
http://bugs.mysql.com/19618
http://bugs.mysql.com/18037
http://bugs.mysql.com/18160
http://bugs.mysql.com/17810
http://bugs.mysql.com/19490
http://bugs.mysql.com/19396
http://bugs.mysql.com/10418

inserted into the new table. (Bug#17048 [http://bugs.mysql.com/17048])

• Use of uninitialized user variables in a subquery in the FROM clause results in bad entries in the bin-
ary log. (Bug#19136 [http://bugs.mysql.com/19136])

• In the INFORMATION_SCHEMA.COLUMNS table, the values for the CHARAC-
TER_MAXIMUM_LENGTH and CHARACTER_OCTET_LENGTH columns were incorrect for multi-
byte character sets. (Bug#19236 [http://bugs.mysql.com/19236])

• An entry in the mysql.proc table with an empty routine name caused access to the INFORMA-
TION_SCHEMA.ROUTINES table to crash the server. (Bug#18177 [http://bugs.mysql.com/18177])

• A range access optimizer heuristic was invalid, causing some queries to be much slower in MySQL
5.0 than in 4.0. (Bug#17379 [http://bugs.mysql.com/17379], Bug#18940
[http://bugs.mysql.com/18940])

• IS_USED_LOCK() could return an incorrect connection identifier. (Bug#16501
[http://bugs.mysql.com/16501])

• mysql displayed NULL for strings that are empty or contain only spaces. (Bug#19564
[http://bugs.mysql.com/19564])

• Concurrent reading and writing of privilege structures could crash the server. (Bug#16372
[http://bugs.mysql.com/16372])

• A NUL byte within a comment in a statement string caused the rest of the string not to be written to
the query log, allowing logging to be bypassed. (CVE-2006-0903
[http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0903], Bug#17667
[http://bugs.mysql.com/17667])

• mysql-test-run.pl started NDB even for test cases that didn't need it. (Bug#19083
[http://bugs.mysql.com/19083])

• SELECT DISTINCT queries sometimes returned only the last row. (Bug#18068
[http://bugs.mysql.com/18068])

• Use of CONVERT_TZ() in a stored function or trigger (or in a stored procedure called from a stored
function or trigger) caused an error. (Bug#11081 [http://bugs.mysql.com/11081])

• Some queries were slower in 5.0 than in 4.1 because some 4.1 cost-evaluation code had not been
merged into 5.0. (Bug#14292 [http://bugs.mysql.com/14292])

• Index prefixes for utf8 VARCHAR columns did not work for UPDATE statements. (Bug#19080
[http://bugs.mysql.com/19080])

• InnoDB does not support SPATIAL indexes, but did not prevent creation of such an index.
(Bug#15860 [http://bugs.mysql.com/15860])

• The configuration information for building the embedded server on Windows was missing a file.
(Bug#18455 [http://bugs.mysql.com/18455])

• The parser leaked memory when its stack needed to be extended. (Bug#18930
[http://bugs.mysql.com/18930])

• When myisamchk needed to rebuild a table, AUTO_INCREMENT information was lost.
(Bug#10405 [http://bugs.mysql.com/10405])

• LOAD DATA FROM MASTER would fail when trying to load the INFORMATION_SCHEMA data-
base from the master, because the INFORMATION_SCHEMA system database would already exist

MySQL Change History

1744

http://bugs.mysql.com/17048
http://bugs.mysql.com/19136
http://bugs.mysql.com/19236
http://bugs.mysql.com/18177
http://bugs.mysql.com/17379
http://bugs.mysql.com/18940
http://bugs.mysql.com/16501
http://bugs.mysql.com/19564
http://bugs.mysql.com/16372
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-0903
http://bugs.mysql.com/17667
http://bugs.mysql.com/19083
http://bugs.mysql.com/18068
http://bugs.mysql.com/11081
http://bugs.mysql.com/14292
http://bugs.mysql.com/19080
http://bugs.mysql.com/15860
http://bugs.mysql.com/18455
http://bugs.mysql.com/18930
http://bugs.mysql.com/10405

on the slave. (Bug#18607 [http://bugs.mysql.com/18607])

• The binary log would create an incorrect DROP query when creating temporary tables during replica-
tion. (Bug#17263 [http://bugs.mysql.com/17263])

• The IN-to-EXISTS transformation was making a reference to a parse tree fragment that was left out
of the parse tree. This caused problems with prepared statements. (Bug#18492
[http://bugs.mysql.com/18492])

• In mysqltest, --sleep=0 had no effect. Now it correctly causes sleep commands in test case
files to sleep for 0 seconds. (Bug#18312 [http://bugs.mysql.com/18312])

• Attempting to set the default value of an ENUM or SET column to NULL caused a server crash.
(Bug#19145 [http://bugs.mysql.com/19145])

• The sql_notes and sql_warnings system variables were not always displayed correctly by
SHOW VARIABLES (for example, they were displayed as ON after being set to OFF). (Bug#16195
[http://bugs.mysql.com/16195])

• The sql_big_selects system variable was not displayed by SHOW VARIABLES. (Bug#17849
[http://bugs.mysql.com/17849])

• The system_time_zone and version_* system variables could not be accessed via SELECT
@@var_name syntax. (Bug#12792 [http://bugs.mysql.com/12792], Bug#15684
[http://bugs.mysql.com/15684])

• Flushing the compression buffer (via FLUSH TABLE) no longer increases the size of an unmodified
ARCHIVE table. (Bug#19204 [http://bugs.mysql.com/19204])

• RPM packages had spurious dependencies on Perl modules and other programs. (Bug#13634
[http://bugs.mysql.com/13634])

• SHOW CREATE TABLE did not display the AUTO_INCREMENT column attribute if the SQL mode
was MYSQL323 or MYSQL40. This also affected mysqldump, which uses SHOW CREATE TA-
BLE to get table definitions. (Bug#14515 [http://bugs.mysql.com/14515])

D.1.6. Changes in release 5.0.22 (24 May 2006)
This is a security fix release for the previous production release family.

This release includes the security fix described later in this section and a few other changes to resolve
build problems, relative to the last official MySQL release (5.0.21). If you would like to receive more
fine-grained and personalized update alerts about fixes that are relevant to the version and features you
use, please consider subscribing to MySQL Network (a commercial MySQL offering). For more details
please see http://www.mysql.com/network/advisors.html.

Bugs fixed:

• Security fix: An SQL-injection security hole has been found in multi-byte encoding processing. The
bug was in the server, incorrectly parsing the string escaped with the
mysql_real_escape_string() C API function. (CVE-2006-2753
[http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2753], Bug#8378
[http://bugs.mysql.com/8378])

This vulnerability was discovered and reported by Josh Berkus <josh@postgresql.org> and
Tom Lane <tgl@sss.pgh.pa.us> as part of the inter-project security collaboration of the OS-

MySQL Change History

1745

http://bugs.mysql.com/18607
http://bugs.mysql.com/17263
http://bugs.mysql.com/18492
http://bugs.mysql.com/18312
http://bugs.mysql.com/19145
http://bugs.mysql.com/16195
http://bugs.mysql.com/17849
http://bugs.mysql.com/12792
http://bugs.mysql.com/15684
http://bugs.mysql.com/19204
http://bugs.mysql.com/13634
http://bugs.mysql.com/14515
http://www.mysql.com/network/advisors.html
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-2753
http://bugs.mysql.com/8378

DB consortium. For more information about SQL injection, please see the following text.

Discussion: An SQL-injection security hole has been found in multi-byte encoding processing. An
SQL-injection security hole can include a situation whereby when a user supplied data to be inserted
into a database, the user might inject SQL statements into the data that the server will execute. With
regards to this vulnerability, when character set unaware-escaping is used (for example, add-
slashes() in PHP), it is possible to bypass the escaping in some multi-byte character sets (for ex-
ample, SJIS, BIG5 and GBK). As a result, a function such as addslashes() is not able to prevent
SQL-injection attacks. It is impossible to fix this on the server side. The best solution is for applica-
tions to use character set-aware escaping offered by a function such
mysql_real_escape_string().

However, a bug was detected in how the MySQL server parses the output of
mysql_real_escape_string(). As a result, even when the character set-aware function
mysql_real_escape_string() was used, SQL injection was possible. This bug has been
fixed.

Workarounds: If you are unable to upgrade MySQL to a version that includes the fix for the bug in
mysql_real_escape_string() parsing, but run MySQL 5.0.1 or higher, you can use the
NO_BACKSLASH_ESCAPES SQL mode as a workaround. (This mode was introduced in MySQL
5.0.1.) NO_BACKSLASH_ESCAPES enables an SQL standard compatibility mode, where backslash
is not considered a special character. The result will be that queries will fail.

To set this mode for the current connection, enter the following SQL statement:

SET sql_mode='NO_BACKSLASH_ESCAPES';

You can also set the mode globally for all clients:

SET GLOBAL sql_mode='NO_BACKSLASH_ESCAPES';

This SQL mode also can be enabled automatically when the server starts by using the command-line
option --sql-mode=NO_BACKSLASH_ESCAPES or by setting sql-
mode=NO_BACKSLASH_ESCAPES in the server option file (for example, my.cnf or my.ini,
depending on your system).

• The dropping of a temporary table whose name contained a backtick ('`') character was not correctly
replicated. (Bug#19188 [http://bugs.mysql.com/19188])

• The patch for Bug#8303 [http://bugs.mysql.com/8303] broke the fix for Bug#8378
[http://bugs.mysql.com/8378] and was undone. (In string literals with an escape character (\) fol-
lowed by a multi-byte character that has a second byte of (\), the literal was not interpreted cor-
rectly. The next byte now is escaped, not the entire multi-byte character. This means it a strict re-
verse of the mysql_real_escape_string() function.)

• The client libraries had not been compiled for position-indpendent code on Solaris-SPARC and
AMD x86_64 platforms. (Bug#13159 [http://bugs.mysql.com/13159], Bug#14202
[http://bugs.mysql.com/14202], Bug#18091 [http://bugs.mysql.com/18091])

• Running myisampack followed by myisamchk with the --unpack option would corrupt the
auto_increment key. (Bug#12633 [http://bugs.mysql.com/12633])

D.1.7. Changes in release 5.0.21 (02 May 2006)
This is a bugfix release for the current production release family.

MySQL Change History

1746

http://bugs.mysql.com/19188
http://bugs.mysql.com/8303
http://bugs.mysql.com/8378
http://bugs.mysql.com/13159
http://bugs.mysql.com/14202
http://bugs.mysql.com/18091
http://bugs.mysql.com/12633

This MySQL 5.0.21 release includes the patches for recently reported security vulnerabilites in the
MySQL client-server protocol. We would like to thank Stefano Di Paola
<stefano.dipaola@wisec.it> for finding and reporting these to us.

This section documents all changes and bug fixes that have been applied since the last official MySQL
release. If you would like to receive more fine-grained and personalized update alerts about fixes that
are relevant to the version and features you use, please consider subscribing to MySQL Network (a com-
mercial MySQL offering). For more details please see http://www.mysql.com/network/advisors.html.

Functionality added or changed:

• Security enhancement: Added the global max_prepared_stmt_count system variable to lim-
it the total number of prepared statements in the server. This limits the potential for denial-of-service
attacks based on running the server out of memory by preparing huge numbers of statements. The
current number of prepared statements is available through the prepared_stmt_count system
variable. (Bug#16365 [http://bugs.mysql.com/16365])

• The MySQL-shared-compat-5.0.X-.i386.rpm shared compatibility RPMs no longer con-
tain libraries for MySQL 5.1. This avoids a conflict because the 5.0 and 5.1 libraries share the same
soname number. It contains libraries for 3.23, 4.0, 4.1, and 5.0. (Bug#19288
[http://bugs.mysql.com/19288])

• Creating a table in an InnoDB database with a column name that matched the name of an internal In-
noDB column (including DB_ROW_ID, DB_TRX_ID, DB_ROLL_PTR and DB_MIX_ID) would
cause a crash. MySQL now returns error 1005 (cannot create table) with errno set to -1.
(Bug#18934 [http://bugs.mysql.com/18934])

• NDB Cluster: It is now possible to perform a partial start of a cluster. That is, it is now possible
to bring up the cluster without running ndbd --initial on all configured data nodes first. (Bug#18606
[http://bugs.mysql.com/18606])

• NDB Cluster: A new --nowait-nodes startup option for ndbd makes it possible to “skip”
specific nodes without waiting for them to start when starting the cluster. See Section 15.6.5.2,
“Command Options for ndbd”.

• NDB Cluster: It is now possible to install MySQL with Cluster support to a non-default location
and change the search path for font description files using either the --basedir or -
-character-sets-dir options. (Previously in MySQL 5.0, ndbd searched only the default
path for character sets.)

• In result set metadata, the MYSQL_FIELD.length value for BIT columns now is reported in
number of bits. For example, the value for a BIT(9) column is 9. (Formerly, the value was related
to number of bytes.) (Bug#13601 [http://bugs.mysql.com/13601])

• The default for the innodb_thread_concurrency system variable was changed to 8.
(Bug#15868 [http://bugs.mysql.com/15868])

Bugs fixed:

• Security fix: A malicious client, using specially crafted invalid login or COM_TABLE_DUMP pack-
ets was able to read uninitialized memory, which potentially, though unlikely in MySQL, could have
led to an information disclosure. (CVE-2006-1516
[http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1516], CVE-2006-1517
[http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1517]) Thanks to Stefano Di Paola
<stefano.dipaola@wisec.it> for finding and reporting this bug.

MySQL Change History

1747

http://www.mysql.com/network/advisors.html
http://bugs.mysql.com/16365
http://bugs.mysql.com/19288
http://bugs.mysql.com/18934
http://bugs.mysql.com/18606
http://bugs.mysql.com/13601
http://bugs.mysql.com/15868
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1516
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1517

• Security fix: A malicious client, using specially crafted invalid COM_TABLE_DUMP packets was
able to trigger an exploitable buffer overflow on the server. (CVE-2006-1518
[http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1518]) Thanks to Stefano Di Paola
<stefano.dipaola@wisec.it> for finding and reporting this bug.

• Security fix: Invalid arguments to DATE_FORMAT() caused a server crash. (CVE-2006-3469
[http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3469], Bug#20729
[http://bugs.mysql.com/20729]) Thanks to Jean-David Maillefer for discovering and reporting this
problem to the Debian project and to Christian Hammers from the Debian Team for notifying us of
it.

• NDB Cluster: A simultaneous DROP TABLE and table update operation utilising a table scan
could trigger a node failure. (Bug#18597 [http://bugs.mysql.com/18597])

• mysql-test-run could not be run as root. (Bug#17002 [http://bugs.mysql.com/17002])

• MySQL-shared-compat-5.0.13-0.i386.rpm, MySQL-
shared-compat-5.0.15-0.i386.rpm, MySQL-
shared-compat-5.0.18-0.i386.rpm, MySQL-
shared-compat-5.0.19-0.i386.rpm, MySQL-
shared-compat-5.0.20-0.i386.rpm, and MySQL-
shared-compat-5.0.20a-0.i386.rpm incorrectly depended on glibc 2.3 and could not
be installed on a glibc 2.2 system. (Bug#16539 [http://bugs.mysql.com/16539])

• IA-64 RPM packages for Red Hat and SuSE Linux that were built with the icc compiler incorrectly
depended on icc runtime libraries. (Bug#16662 [http://bugs.mysql.com/16662])

• After calling FLUSH STATUS, the max_used_connections variable did not increment for ex-
isting connections and connections which use the thread cache. (Bug#15933
[http://bugs.mysql.com/15933])

• MySQL would not compile on Linux distributions that use the tinfo library. (Bug#18912
[http://bugs.mysql.com/18912])

• Within a trigger, CONNECTION_ID() did not return the connection ID of the thread that caused the
trigger to be activated. (Bug#16461 [http://bugs.mysql.com/16461])

• The yaSSL library returned a cipher list in a manner incompatible with OpenSSL. (Bug#18399
[http://bugs.mysql.com/18399])

• For single-SELECT union constructs of the form (SELECT ... ORDER BY order_list1 [LIMIT
n]) ORDER BY order_list2, the ORDER BY lists were concatenated and the LIMIT clause
was ignored. (Bug#18767 [http://bugs.mysql.com/18767])

• CREATE VIEW statements would not be replicated to the slave if the -
-replicate-wild-ignore-table rule was enabled. (Bug#18715
[http://bugs.mysql.com/18715])

• Index corruption could occur in cases when key_cache_block_size was not a multiple of my-
isam_block_size (for example, with key_cache_block_size=1536 and myis-
am_block_size=1024). (Bug#19079 [http://bugs.mysql.com/19079])

• LAST_INSERT_ID() in a stored function or trigger returned zero. . (Bug#15728
[http://bugs.mysql.com/15728])

• Use of CONVERT_TZ() in a view definition could result in spurious syntax or access errors.
(Bug#15153 [http://bugs.mysql.com/15153])

• UNCOMPRESS(NULL) could cause subsequent UNCOMPRESS() calls to return NULL for legal

MySQL Change History

1748

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-1518
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3469
http://bugs.mysql.com/20729
http://bugs.mysql.com/18597
http://bugs.mysql.com/17002
http://bugs.mysql.com/16539
http://bugs.mysql.com/16662
http://bugs.mysql.com/15933
http://bugs.mysql.com/18912
http://bugs.mysql.com/16461
http://bugs.mysql.com/18399
http://bugs.mysql.com/18767
http://bugs.mysql.com/18715
http://bugs.mysql.com/19079
http://bugs.mysql.com/15728
http://bugs.mysql.com/15153

non-NULL arguments. (Bug#18643 [http://bugs.mysql.com/18643])

• Conversion of a number to a CHAR UNICODE string returned an invalid result. (Bug#18691
[http://bugs.mysql.com/18691])

• DELETE and UPDATE statements that used large NOT IN (value_list) clauses could use
large amounts of memory. (Bug#15872 [http://bugs.mysql.com/15872])

• Prevent recursive views caused by using RENAME TABLE on a view after creating it. (Bug#14308
[http://bugs.mysql.com/14308])

• A LOCK TABLES statement that failed could cause MyISAM not to update table statistics properly,
causing a subsequent CHECK TABLE to report table corruption. (Bug#18544
[http://bugs.mysql.com/18544])

• For a reference to a non-existent stored function in a stored routine that had a CONTINUE handler,
the server continued as though a useful result had been returned, possibly resulting in a server crash.
(Bug#18787 [http://bugs.mysql.com/18787])

• InnoDB did not use a consistent read for CREATE ... SELECT when in-
nodb_locks_unsafe_for_binlog was set. (Bug#18350 [http://bugs.mysql.com/18350])

• InnoDB could read a delete mark from its system tables incorrectly. (Bug#19217
[http://bugs.mysql.com/19217])

• Corrected a syntax error in mysql-test-run.sh. (Bug#19190 [http://bugs.mysql.com/19190])

• A missing DBUG_RETURN() caused the server to emit a spurious error message: missing
DBUG_RETURN or DBUG_VOID_RETURN macro in function "open_table".
(Bug#18964 [http://bugs.mysql.com/18964])

• DROP DATABASE did not drop stored routines associated with the database if the database name
was longer than 21 characters. (Bug#18344 [http://bugs.mysql.com/18344])

• Avoid trying to include <asm/atomic.h> when it doesn't work in C++ code. (Bug#13621
[http://bugs.mysql.com/13621])

• Executing SELECT on a large table that had been compressed within myisampack could cause a
crash. (Bug#17917 [http://bugs.mysql.com/17917])

• NDB Cluster: When attempting to create an index on a BIT or BLOB column, Error 743: Unsup-
ported character set in table or index was returned instead of Error 906: Unsupported attribute type
in index.

• Within stored routines, usernames were parsed incorrectly if they were enclosed within quotes.
(Bug#13310 [http://bugs.mysql.com/13310])

• Casting a string to DECIMAL worked, but casting a trimmed string (using LTRIM() or RTRIM())
resulted in loss of decimal digits. (Bug#17043 [http://bugs.mysql.com/17043])

• NDB Cluster: On slow networks or CPUs, the management client SHOW command could some-
times erroneously show all data nodes as being master nodes belonging to nodegroup 0. (Bug#15530
[http://bugs.mysql.com/15530])

• If the second or third argument to BETWEEN was a constant expression such as '2005-09-01 -
INTERVAL 6 MONTH and the other two arguments were columns, BETWEEN was evaluated incor-
rectly. (Bug#18618 [http://bugs.mysql.com/18618])

• If the first argument to BETWEEN was a DATE or TIME column of a view and the other arguments

MySQL Change History

1749

http://bugs.mysql.com/18643
http://bugs.mysql.com/18691
http://bugs.mysql.com/15872
http://bugs.mysql.com/14308
http://bugs.mysql.com/18544
http://bugs.mysql.com/18787
http://bugs.mysql.com/18350
http://bugs.mysql.com/19217
http://bugs.mysql.com/19190
http://bugs.mysql.com/18964
http://bugs.mysql.com/18344
http://bugs.mysql.com/13621
http://bugs.mysql.com/17917
http://bugs.mysql.com/13310
http://bugs.mysql.com/17043
http://bugs.mysql.com/15530
http://bugs.mysql.com/18618

were constants, BETWEEN did not perform conversion of the constants to the appropriate temporary
type, resulting in incorrect evaluation. (Bug#16069 [http://bugs.mysql.com/16069])

• Server and clients ignored the --sysconfdir option that was passed to configure.
(Bug#15069 [http://bugs.mysql.com/15069])

• NDB Cluster: In a 2-node cluster with a node failure, restarting the node with a low value for
StartPartialTimeout could cause the cluster to come up partitioned (“split-brain” issue).
(Bug#16447 [http://bugs.mysql.com/16447])

A similar issue could occur when the cluster was first started with a sufficiently low value for this
parameter. (Bug#18612 [http://bugs.mysql.com/18612])

• NDB Cluster: On systems with multiple network interfaces, data nodes would get “stuck” in star-
tup phase 2 if the interface connecting them to the management server was working on node startup
while the interface interconnecting the data nodes experienced a temporary outage. (Bug#15695
[http://bugs.mysql.com/15695])

• NDB Cluster: Unused open handlers for tables in which the metadata had changed were not prop-
erly closed. This could result in stale results from Cluster tables following an ALTER TABLE.
(Bug#13228 [http://bugs.mysql.com/13228])

• NDB Cluster: Uninitialized internal variables could lead to unexpected results. (Bug#11033
[http://bugs.mysql.com/11033], Bug#11034 [http://bugs.mysql.com/11034])

• For InnoDB tables, an expression of the form col_name BETWEEN col_name2 - INTER-
VAL x DAY AND col_name2 + INTERVAL x DAY when used in a join returned incorrect
results. (Bug#14360 [http://bugs.mysql.com/14360])

• INSERT DELAYED into a view caused an infinite loop. (Bug#13683
[http://bugs.mysql.com/13683])

• Lettercase in database name qualifiers was not consistently handled properly in queries when
lower_case_table_names was set to 1. (Bug#15917 [http://bugs.mysql.com/15917])

• The optimizer could cause a server crash or use a non-optimal subset of indexes when evaluating
whether to use Index Merge/Intersection variant of index_merge optimization.
(Bug#19021 [http://bugs.mysql.com/19021])

• The presence of multiple equalities in a condition after reading a constant table could cause the op-
timizer not to use an index. This resulted in certain queries being much slower than in MySQL 4.1.
(Bug#16504 [http://bugs.mysql.com/16504])

• A recent change caused the mysql client not to display NULL values correctly and to display nu-
meric columns left-justified rather than right-justified. The problems have been corrected.
(Bug#18265 [http://bugs.mysql.com/18265])

• mysql_reconnect() sent a SET NAMES statement to the server, even for pre-4.1 servers that
do not understand the statement. (Bug#18830 [http://bugs.mysql.com/18830])

• COUNT(*) on a MyISAM table could return different results for the base table and a view on the
base table. (Bug#18237 [http://bugs.mysql.com/18237])

• DELETE with LEFT JOIN for InnoDB tables could crash the server if in-
nodb_locks_unsafe_for_binlog was enabled. (Bug#15650 [http://bugs.mysql.com/15650])

• InnoDB failure to release an adaptive hash index latch could cause a server crash if the query cache
was enabled. (Bug#15758 [http://bugs.mysql.com/15758])

MySQL Change History

1750

http://bugs.mysql.com/16069
http://bugs.mysql.com/15069
http://bugs.mysql.com/16447
http://bugs.mysql.com/18612
http://bugs.mysql.com/15695
http://bugs.mysql.com/13228
http://bugs.mysql.com/11033
http://bugs.mysql.com/11034
http://bugs.mysql.com/14360
http://bugs.mysql.com/13683
http://bugs.mysql.com/15917
http://bugs.mysql.com/19021
http://bugs.mysql.com/16504
http://bugs.mysql.com/18265
http://bugs.mysql.com/18830
http://bugs.mysql.com/18237
http://bugs.mysql.com/15650
http://bugs.mysql.com/15758

• For mysql.server, if the basedir option was specified after datadir in an option file, the
setting for datadir was ignored and assumed to be located under basedir. (Bug#16240
[http://bugs.mysql.com/16240])

• The euro sign () was not stored correctly in columns using the latin1_german1_ci or lat-
in1_general_ci collation. (Bug#18321 [http://bugs.mysql.com/18321])

• EXTRACT(QUARTER FROM date) returned unexpected results. (Bug#18100
[http://bugs.mysql.com/18100])

• TRUNCATE did not reset the AUTO_INCREMENT counter for MyISAM tables when issued inside a
stored procedure. (Bug#14945 [http://bugs.mysql.com/14945])

Note: This bug did not affect InnoDB tables. Also, TRUNCATE does not reset the
AUTO_INCREMENT counter for NDBCluster tables regardless of when it is called (see
Bug#18864 [http://bugs.mysql.com/18864]).

• The server was always built as though --with-extra-charsets=complex had been spe-
cified. (Bug#12076 [http://bugs.mysql.com/12076])

• A query using WHERE (column_1, column_2) IN ((value_1, value_2)[, (..., ...), ...]) would
return incorrect results. (Bug#16248 [http://bugs.mysql.com/16248])

• Queries of the form SELECT DISTINCT timestamp_column WHERE
date_function(timestamp_col) = constant did not return all matching rows.
(Bug#16710 [http://bugs.mysql.com/16710])

• When running a query that contained a GROUP_CONCAT(SELECT GROUP_CONCAT(...)),
the result was NULL except in the ROLLUP part of the result, if there was one. (Bug#15560
[http://bugs.mysql.com/15560])

• For tables created in a MySQL 4.1 installation upgraded to MySQL 5.0 and up, multiple-table up-
dates could update only the first matching row. (Bug#16281 [http://bugs.mysql.com/16281])

• NDB Cluster: When multiple node restarts were attempted without allowing each restart to com-
plete, the error message returned was Array index out of bounds rather than Too many crashed rep-
licas. (Bug#18349 [http://bugs.mysql.com/18349])

• CASTdouble AS SIGNED INT) for large double values outside the signed integer range trun-
cates the result to be within range, but the result sometimes had the wrong sign, and no warning was
generated. (Bug#15098 [http://bugs.mysql.com/15098])

• Updating a field value when also requesting a lock with GET_LOCK() would cause slave servers in
a replication environment to terminate. (Bug#17284 [http://bugs.mysql.com/17284])

D.1.8. Changes in release 5.0.20a (18 April 2006)
This is a bugfix release for the current production release family. It replaces MySQL 5.0.20.

Changes from 5.0.20 to 5.0.20a:

• The fix for “Command line options are ignored for mysql client” (Bug#16855
[http://bugs.mysql.com/16855]) has been revoked because it introduced an incompatible change in
the way the mysql command-line client selects the server to connect to. In the worst case, this
might have led to a client issuing commands to a server for which they were not intended, and this
must not happen. To help all users in understanding this subject, Section 4.2, “Invoking MySQL

MySQL Change History

1751

http://bugs.mysql.com/16240
http://bugs.mysql.com/18321
http://bugs.mysql.com/18100
http://bugs.mysql.com/14945
http://bugs.mysql.com/18864
http://bugs.mysql.com/12076
http://bugs.mysql.com/16248
http://bugs.mysql.com/16710
http://bugs.mysql.com/15560
http://bugs.mysql.com/16281
http://bugs.mysql.com/18349
http://bugs.mysql.com/15098
http://bugs.mysql.com/17284
http://bugs.mysql.com/16855

Programs” now includes additional explanation of how command options with regard to host selec-
tion.

• The code of the yaSSL library has been improved to avoid the dependency on a C++ runtime lib-
rary, so a link with pure C applications is now possible on additional (but not yet all) platforms. We
are working on fixing the remaining issues.

Additional information about SSL support:

• With version 5.0.20a, SSL support is contained in all binaries for all Unix (including Linux) and
Windows platforms except AIX, HP-UX, OpenServer 6, and the RPMs specific for
RHAS3/RHAS4/SLES9 on Itanium CPUs (ia64); It is also not contained in those for Novell Net-
ware. We are trying to add these platforms in future versions.

• Please note that the original 5.0.20 announcement included inexact wording: SSL support is
“included” in both server and client, but by default not “enabled”. SSL can be enabled by passing the
SSL-related options (--ssl, --ssl-key=..., --ssl-cert=..., --ssl-ca=...) when
starting the server and the client or by specifying these options in an option file. For more informa-
tion, see Section 5.9.7, “Using Secure Connections”.

D.1.9. Changes in release 5.0.20 (31 March 2006)
Functionality added or changed:

• Added the --sysdate-is-now option to mysqld to enable SYSDATE() to be treated as an ali-
as for NOW(). See Section 12.5, “Date and Time Functions”. (Bug#15101
[http://bugs.mysql.com/15101])

• InnoDB: The InnoDB storage engine now provides a descriptive error message if ibdata file in-
formation is omitted from my.cnf. (Bug#16827 [http://bugs.mysql.com/16827])

• The NDBCluster storage engine now supports INSERT IGNORE and REPLACE statements. Pre-
viously, these statements failed with an error. (Bug#17431 [http://bugs.mysql.com/17431])

• Builds for Windows, Linux, and Unix (except AIX) platforms now have SSL support enabled, in the
server as well as in the client libraries. Because part of the SSL code is written in C++, this does in-
troduce dependencies on the system's C++ runtime libraries in several cases, depending on compiler
specifics. (Bug#18195 [http://bugs.mysql.com/18195])

• The syntax for CREATE PROCEDURE and CREATE FUNCTION statements now includes a
DEFINER clause. The DEFINER value specifies the security context to be used when checking ac-
cess privileges at routine invocation time if the routine has the SQL SECURITY DEFINER charac-
teristic. See Section 17.2.1, “CREATE PROCEDURE and CREATE FUNCTION Syntax”, for more
information.

When mysqldump is invoked with the --routines option, it now dumps the DEFINER value
for stored routines.

• Large file support added to build for QNX platform. (Bug#17336 [http://bugs.mysql.com/17336])

• Large file support was re-enabled for the MySQL server binary for the AIX 5.2 platform.
(Bug#13571 [http://bugs.mysql.com/13571])

Bugs fixed:

MySQL Change History

1752

http://bugs.mysql.com/15101
http://bugs.mysql.com/16827
http://bugs.mysql.com/17431
http://bugs.mysql.com/18195
http://bugs.mysql.com/17336
http://bugs.mysql.com/13571

• If the WHERE condition of a query contained an OR-ed FALSE term, the set of tables whose rows
cannot serve for null-complements in outer joins was determined incorrectly. This resulted in block-
ing possible conversions of outer joins into joins by the optimizer for such queries. (Bug#17164
[http://bugs.mysql.com/17164])

• mysql_config returned incorrect libraries on x86_64 systems. (Bug#13158
[http://bugs.mysql.com/13158])

• Stored routine names longer than 64 characters were silently truncated. Now the limit is properly en-
forced and an error occurs. (Bug#17015 [http://bugs.mysql.com/17015])

• During conversion from one character set to ucs2, multi-byte characters with no ucs2 equivalent
were converted to multiple characters, rather than to 0x003F QUESTION MARK. (Bug#15375
[http://bugs.mysql.com/15375])

• The mysql_close() C API function leaked handles for shared-memory connections on Win-
dows. (Bug#15846 [http://bugs.mysql.com/15846])

• Checks for permissions on database operations could be performed in a case-insensitive manner (a
user with permissions on database MYDATABASE could by accident get permissions on database
myDataBase), if the privilege data were still cached from a previous check. (Bug#17279
[http://bugs.mysql.com/17279])

• If InnoDB ran out of buffer space for row locks and adaptive hashes, the server would crash. Now
InnoDB rolls back the transaction. (Bug#18238 [http://bugs.mysql.com/18238])

• InnoDB tables with an adaptive hash blocked other queries during CHECK TABLE statements
while the entire hash was checked. This could be a long time for a large hash. (Bug#17126
[http://bugs.mysql.com/17126])

• For InnoDB tables created in MySQL 4.1 or earlier, or created in 5.0 or later with compact format,
updating a row so that a long column is updated or the length of some column changes, InnoDB
later would fail to reclaim the BLOB storage space if the row was deleted. (Bug#18252
[http://bugs.mysql.com/18252])

• InnoDB had a memory leak for duplicate-key errors with tables having 90 columns or more.
(Bug#18384 [http://bugs.mysql.com/18384])

• InnoDB: The LATEST FOREIGN KEY ERROR section in the output of SHOW INNODB
STATUS was sometimes formatted incorrectly, causing problems with scripts that parsed the output
of this statement. (Bug#16814 [http://bugs.mysql.com/16814])

• When using ORDER BY with a non-string column inside GROUP_CONCAT() the result's character
set was converted to binary. (Bug#18281 [http://bugs.mysql.com/18281])

See also Bug#14169 [http://bugs.mysql.com/14169].

• SELECT ... WHERE column LIKE 'A%', when column had a key and used the lat-
in2_czech_cs collation, caused the wrong number of rows to be returned. (Bug#17374
[http://bugs.mysql.com/17374])

• Complex queries with nested joins could cause a server crash. (Bug#18279
[http://bugs.mysql.com/18279])

• The server could deadlock under heavy load while writing to the binary log. (Bug#18116
[http://bugs.mysql.com/18116])

• A SELECT ... ORDER BY ... from a view defined using a function could crash the server.
An example of such a view might be CREATE VIEW AS SELECT SQRT(c1) FROM t1.

MySQL Change History

1753

http://bugs.mysql.com/17164
http://bugs.mysql.com/13158
http://bugs.mysql.com/17015
http://bugs.mysql.com/15375
http://bugs.mysql.com/15846
http://bugs.mysql.com/17279
http://bugs.mysql.com/18238
http://bugs.mysql.com/17126
http://bugs.mysql.com/18252
http://bugs.mysql.com/18384
http://bugs.mysql.com/16814
http://bugs.mysql.com/18281
http://bugs.mysql.com/14169
http://bugs.mysql.com/17374
http://bugs.mysql.com/18279
http://bugs.mysql.com/18116

Bug#18386 [http://bugs.mysql.com/18386])

• A DELETE using a subquery could crash the server. (Bug#18306 [http://bugs.mysql.com/18306])

• REPAIR TABLE, OPTIMIZE TABLE, and ALTER TABLE operations on transactional tables (or
on tables of any type on Windows) could corrupt triggers associated with those tables. (Bug#18153
[http://bugs.mysql.com/18153])

• MyISAM: Performing a bulk insert on a table referenced by a trigger would crash the table.
(Bug#17764 [http://bugs.mysql.com/17764])

• MyISAM: Keys for which the first part of the key was a CHAR or VARCHAR column using the UTF-8
character set and longer than 254 bytes could become corrupted. (Bug#17705
[http://bugs.mysql.com/17705])

• Using ORDER BY intvar within a stored procedure (where intvar is an integer variable or ex-
pression) would crash the server. (Bug#16474 [http://bugs.mysql.com/16474])

Note: The use of an integer i in an ORDER BY i clause for sorting the result by the ith column is
deprecated (and non-standard). It should not be used in new applications. See Section 13.2.7, “SE-
LECT Syntax”.

• Triggers created in MySQL 5.0.16 and earlier could not be dropped after upgrading the server to
5.0.17 or later. (Bug#15921 [http://bugs.mysql.com/15921])

• A SELECT using a function against a nested view would crash the server. (Bug#15683
[http://bugs.mysql.com/15683])

• NDB Cluster: Certain queries using ORDER BY ... ASC in the WHERE clause could return in-
correct results. (Bug#17729 [http://bugs.mysql.com/17729])

• NDB Cluster: A timeout in the handling of an ABORT condition with more that 32 operations
could yield a node failure. (Bug#18414 [http://bugs.mysql.com/18414])

• NDB Cluster: A node restart immediately following a CREATE TABLE would fail. Important:
This fix supports 2-node Clusters only. (Bug#18385 [http://bugs.mysql.com/18385])

• NDB Cluster: In event of a node failure during a rollback, a “false” lock could be established on
the backup for that node, which lock could not be removed without restarting the node. (Bug#18352
[http://bugs.mysql.com/18352])

• NDB Cluster: The cluster created a crashed replica of a table having an ordered index — or when
logging was not enabled, of a table having a table or unique index — leading to a crash of the cluster
following 8 successibe restarts. (Bug#18298 [http://bugs.mysql.com/18298])

• NDB Cluster: When replacing a failed master node, the replacement node could cause the cluster
to crash from a buffer overflow if it had an excessively large amount of data to write to the cluster
log. (Bug#18118 [http://bugs.mysql.com/18118])

• NDB Cluster: If a mysql or other client could not parse the result set returned from a mysqld
process acting as an SQL node in a cluster, the client would crash instead of returning the appropri-
ate error. For example, this could happen when the client attempted to use a character set was not
available to the mysqld. (Bug#17380 [http://bugs.mysql.com/17380])

• NDB Cluster: Restarting nodes were allowed to start and join the cluster too early. (Bug#16772
[http://bugs.mysql.com/16772])

• If a row was inserted inside a stored procedure using the parameters passed to the procedure in the
INSERT statement, the resulting binlog entry was not escaped properly. (Bug#18293

MySQL Change History

1754

http://bugs.mysql.com/18386
http://bugs.mysql.com/18306
http://bugs.mysql.com/18153
http://bugs.mysql.com/17764
http://bugs.mysql.com/17705
http://bugs.mysql.com/16474
http://bugs.mysql.com/15921
http://bugs.mysql.com/15683
http://bugs.mysql.com/17729
http://bugs.mysql.com/18414
http://bugs.mysql.com/18385
http://bugs.mysql.com/18352
http://bugs.mysql.com/18298
http://bugs.mysql.com/18118
http://bugs.mysql.com/17380
http://bugs.mysql.com/16772
http://bugs.mysql.com/18293

[http://bugs.mysql.com/18293])

• If InnoDB encountered a HA_ERR_LOCK_TABLE_FULL error and rolled-back a transaction, the
transaction was still written to the binary log. (Bug#18283 [http://bugs.mysql.com/18283])

• Stored procedures that call UDFs and pass local string variables caused server crashes. (Bug#17261
[http://bugs.mysql.com/17261])

• Connecting to a server with a UCS2 default character set with a client using a non-UCS2 character
set crashed the server. (Bug#18004 [http://bugs.mysql.com/18004])

• Loading of UDFs in a statically linked MySQL caused a server crash. UDF loading is now blocked
if the MySQL server is statically linked. (Bug#11835 [http://bugs.mysql.com/11835])

• Views that incorporate tables from the INFORMATION_SCHEMA resulted in a server crash when
queried. (Bug#18224 [http://bugs.mysql.com/18224])

• A SELECT * query on an INFORMATION_SCHEMA table by a user with limited privileges res-
ulted in a server crash. (Bug#18113 [http://bugs.mysql.com/18113])

• Attempting to access an InnoDB table after starting the server with --skip-innodb caused a
server crash. (Bug#14575 [http://bugs.mysql.com/14575])

• InnoDB used table locks (not row locks) within stored functions. (Bug#18077
[http://bugs.mysql.com/18077])

• Replication slaves could not replicate triggers from older servers that included no DEFINER clause
in the trigger definition. Now the trigger executes with the privileges of the invoker (which on the
slave is the slave SQL thread). (Bug#16266 [http://bugs.mysql.com/16266])

• Character set conversion of string constants for UNION of constant and table column was not done
when it was safe to do so. (Bug#15949 [http://bugs.mysql.com/15949])

• The DEFINER value for stored routines was not replicated. (Bug#15963
[http://bugs.mysql.com/15963])

• Use of stored functions with DISTINCT or GROUP BY can produce incorrect results when ORDER
BY is also used. (Bug#13575 [http://bugs.mysql.com/13575])

• Use of TRUNCATE TABLE for a TEMPORARY table on a master server was propagated to slaves
properly, but slaves did not decrement the Slave_open_temp_tables counter properly.
(Bug#17137 [http://bugs.mysql.com/17137])

• SELECT COUNT(*) for a MyISAM table could return different results depending on whether an
index was used. (Bug#14980 [http://bugs.mysql.com/14980])

• A LEFT JOIN with a UNION that selects literal values could crash the server. (Bug#17366
[http://bugs.mysql.com/17366])

• Large file support did not work in AIX server binaries. (Bug#10776 [http://bugs.mysql.com/10776])

• Updating a view that filters certain rows to set a filtered out row to be included in the table caused
infinite loop. For example, if the view has a WHERE clause of salary > 100 then issuing an
UPDATE statement of SET salary = 200 WHERE id = 10, caused an infinite loop.
(Bug#17726 [http://bugs.mysql.com/17726])

• Certain combinations of joins with mixed ON and USING clauses caused unknown column errors.
(Bug#15229 [http://bugs.mysql.com/15229])

MySQL Change History

1755

http://bugs.mysql.com/18283
http://bugs.mysql.com/17261
http://bugs.mysql.com/18004
http://bugs.mysql.com/11835
http://bugs.mysql.com/18224
http://bugs.mysql.com/18113
http://bugs.mysql.com/14575
http://bugs.mysql.com/18077
http://bugs.mysql.com/16266
http://bugs.mysql.com/15949
http://bugs.mysql.com/15963
http://bugs.mysql.com/13575
http://bugs.mysql.com/17137
http://bugs.mysql.com/14980
http://bugs.mysql.com/17366
http://bugs.mysql.com/10776
http://bugs.mysql.com/17726
http://bugs.mysql.com/15229

• NDB Cluster: Inserting and deleting BLOB column values while a backup was in process could
cause the loss of an ndbd node. (Bug#14028 [http://bugs.mysql.com/14028])

• If the server was started with the --skip-grant-tables option, it was impossible to create a
trigger or a view without explicitly specifying a DEFINER clause. (Bug#16777
[http://bugs.mysql.com/16777])

• COUNT(DISTINCT col1, col2) and COUNT(DISTINCT CONCAT(col1, col2)) oper-
ations produced different results if one of the columns was an indexed DECIMAL column.
(Bug#15745 [http://bugs.mysql.com/15745])

• The server displayed garbage in the error message warning about bad assignments to DECIMAL
columns or routine variables. (Bug#15480 [http://bugs.mysql.com/15480])

• The server would execute stored routines that had a non-existent definer. (Bug#13198
[http://bugs.mysql.com/13198])

• For FEDERATED tables, a SELECT statement with an ORDER BY clause did not return rows in the
proper order. (Bug#17377 [http://bugs.mysql.com/17377])

• The FORMAT() function returned an incorrect result when the client's charac-
ter_set_connection value was utf8. (Bug#16678 [http://bugs.mysql.com/16678])

• NDB Cluster: Some query cache statistics were not always correctly reported for Cluster tables.
(Bug#16795 [http://bugs.mysql.com/16795])

• Updating the value of a Unicode VARCHAR column with the result returned by a stored function
would cause the insertion of ASCII characters into the column instead of Unicode, even where the
function's return type was also declared as Unicode. (Bug#17615 [http://bugs.mysql.com/17615])

D.1.10. Changes in release 5.0.19 (04 March 2006)
Functionality added or changed:

• Incompatible change: The InnoDB storage engine no longer ignores trailing spaces when compar-
ing BINARY or VARBINARY column values. This means that (for example) the binary values 'a'
and 'a ' are now regarded as unequal any time they are compared, as they are in MyISAM tables.
(Bug#14189 [http://bugs.mysql.com/14189])

See Section 11.4.2, “The BINARY and VARBINARY Types” for more information about the BIN-
ARY and VARBINARY types.

• Several changes were made to make upgrades easier:

• Added the mysql_upgrade program that checks all tables for incompatibilities with the cur-
rent version of MySQL Server and repairs them if necessary. This program should be run for
each MySQL upgrade (rather than mysql_fix_privilege_tables). See Section 5.6.2,
“mysql_upgrade — Check Tables for MySQL Upgrade”.

• Added the FOR UPGRADE option for the CHECK TABLE statement. This option checks wheth-
er tables are incompatible with the current version of MySQL Server.

• Added the --check-upgrade to mysqlcheck that invokes CHECK TABLE with the FOR
UPGRADE option.

• NDB Cluster: The ndb_mgm client commands node_id START and node_id STOP now
work with management nodes as well as data nodes. (However, using ALL for the node_id contin-

MySQL Change History

1756

http://bugs.mysql.com/14028
http://bugs.mysql.com/16777
http://bugs.mysql.com/15745
http://bugs.mysql.com/15480
http://bugs.mysql.com/13198
http://bugs.mysql.com/17377
http://bugs.mysql.com/16678
http://bugs.mysql.com/16795
http://bugs.mysql.com/17615
http://bugs.mysql.com/14189

ues to affect all data nodes only.)

• When using the GROUP_CONCAT() function where the group_concat_max_len system vari-
able was greater than 512, the type of the result was BLOB only if the query included an ORDER BY
clause; otherwise the result was a VARCHAR.

The result type of the GROUP_CONCAT() function is now VARCHAR only if the value of the
group_concat_max_len system variable is less than or equal to 512. Otherwise, this function
returns a BLOB. (Bug#14169 [http://bugs.mysql.com/14169])

• mysql no longer terminates data value display when it encounters a NUL byte. Instead, it displays
NUL bytes as spaces. (Bug#16859 [http://bugs.mysql.com/16859])

• Added the --wait-timeout option to mysqlmanager to allow configuration of the timeout for
dropping an inactive connection, and increased the default timeout from 30 seconds to 28,800
seconds (8 hours). (Bug#12674 [http://bugs.mysql.com/12674], Bug#15980
[http://bugs.mysql.com/15980])

• A number of performance issues were resolved that had previously been encountered when using
statements that repeatedly invoked stored functions. For example, calling BENCHMARK() using a
stored function executed much more slowly than when invoking it with inline code that accom-
plished the same task. In most cases the two should now execute with approximately the same speed.
(Bug#15014 [http://bugs.mysql.com/15014], Bug#14946 [http://bugs.mysql.com/14946])

• libmysqlclient now uses versioned symbols with GNU ld. (Bug#3074
[http://bugs.mysql.com/3074])

• NDB Cluster: More descriptive warnings are now issued when inappropriate logging parameters
are set in config.ini. (Formerly, the warning issued was simply Could not add logfile destina-
tion.) (Bug#11331 [http://bugs.mysql.com/11331])

• Added the --port-open-timeout option to mysqld to control how many seconds the server
should wait for the TCP/IP port to become free if it cannot be opened. (Bug#15591
[http://bugs.mysql.com/15591])

• Repeated invocation of my_init() and my_end() caused corruption of character set data and
connection failure. (Bug#6536 [http://bugs.mysql.com/6536])

• Two new Hungarian collations are included: utf8_hungarian_ci and
ucs2_hungarian_ci. These support the correct sort order for Hungarian vowels. However, they
do not support the correct order for sorting Hungarian consonant contractions; this issue will be
fixed in a future release.

• Wording of error 1329 changed to No data - zero rows fetched, selected, or processed. (Bug#15206
[http://bugs.mysql.com/15206])

• The INFORMATION_SCHEMA now skips data contained in unlistable/unreadable directories rather
than returning an error. (Bug#15851 [http://bugs.mysql.com/15851])

• InnoDB now caches a list of unflushed files instead of scanning for unflushed files during a table
flush operation. This improves performance when --innodb-file-per-table is set on a sys-
tem with a large number of InnoDB tables. (Bug#15653 [http://bugs.mysql.com/15653])

• The message for error 1109 changed from Unknown table ... in order clause to Unknown table ... in
field list. (Bug#15091 [http://bugs.mysql.com/15091])

• The mysqltest utility now converts all CR/LF combinations to LF to allow test cases intended
for Windows to work properly on UNIX-like systems. (Bug#13809 [http://bugs.mysql.com/13809])

MySQL Change History

1757

http://bugs.mysql.com/14169
http://bugs.mysql.com/16859
http://bugs.mysql.com/12674
http://bugs.mysql.com/15980
http://bugs.mysql.com/15014
http://bugs.mysql.com/14946
http://bugs.mysql.com/3074
http://bugs.mysql.com/11331
http://bugs.mysql.com/15591
http://bugs.mysql.com/6536
http://bugs.mysql.com/15206
http://bugs.mysql.com/15851
http://bugs.mysql.com/15653
http://bugs.mysql.com/15091
http://bugs.mysql.com/13809

• The mysql_ping function will now retry if the reconnect flag is set and error
CR_SERVER_LOST is encountered during the first attempt to ping the server. (Bug#14057
[http://bugs.mysql.com/14057])

• mysqldump now surrounds the DEFINER, SQL SECURITY DEFINER and WITH CHECK OP-
TION clauses of a CREATE VIEW statement with "not in version" comments to prevent errors in
earlier versions of MySQL. (Bug#14871 [http://bugs.mysql.com/14871])

• New charset command added to mysql command-line client. By typing charset name or \C
name (such as \C UTF8), the client character set can be changed without reconnecting.
(Bug#16217 [http://bugs.mysql.com/16217])

• Client API will now attempt reconnect on TCP/IP if the reconnect flag is set, as is the case with
sockets. (Bug#2845 [http://bugs.mysql.com/2845])

Bugs fixed:

• Generating an AUTO_INCREMENT value through a FEDERATED table did not set the value returned
by LAST_INSERT_ID(). (Bug#14768 [http://bugs.mysql.com/14768])

• Cursors in stored routines could cause a server crash. (Bug#16887 [http://bugs.mysql.com/16887])

• Setting the myisam_repair_threads system variable to a value larger than 1 could cause cor-
ruption of large MyISAM tables. (Bug#11527 [http://bugs.mysql.com/11527])

• The length of a VARCHAR() column that used the utf8 character set would increase each time the
table was re-created in a stored procedure or prepared statement, eventually causing the CREATE
TABLE statement to fail. (Bug#13134 [http://bugs.mysql.com/13134])

• type_decimal failed with the prepared statement protocol. (Bug#17826
[http://bugs.mysql.com/17826])

• The MySQL server could crash with out of memory errors when performing aggregate functions on
a DECIMAL column. (Bug#17602 [http://bugs.mysql.com/17602])

• A stored procedure failed to return data the first time it was called per connection. (Bug#17476
[http://bugs.mysql.com/17476])

• Using DROP FUNCTION IF EXISTS func_name to drop a user-defined function caused a
server crash if the server was running with the --skip-grant-tables option. (Bug#17595
[http://bugs.mysql.com/17595])

• Using ALTER TABLE to increase the length of a BINARY(M) column caused column values to be
padded with spaces rather than 0x00 bytes. (Bug#16857 [http://bugs.mysql.com/16857])

• A large BIGINT value specified in a WHERE clause could be treated differently depending on
whether it is specified as a quoted string. (For example, WHERE bigint_col =
17666000000000000000 versus WHERE bigint_col = '17666000000000000000').
(Bug#9088 [http://bugs.mysql.com/9088])

• A natural join between INFORMATION_SCHEMA tables failed. (Bug#17523
[http://bugs.mysql.com/17523])

• A memory leak caused warnings on slaves for certain statements that executed without warning on
the master. (Bug#16175 [http://bugs.mysql.com/16175])

• The embedded server did not allow binding of columns to the MYSQL_TYPE_VAR_STRING data

MySQL Change History

1758

http://bugs.mysql.com/14057
http://bugs.mysql.com/14871
http://bugs.mysql.com/16217
http://bugs.mysql.com/2845
http://bugs.mysql.com/14768
http://bugs.mysql.com/16887
http://bugs.mysql.com/11527
http://bugs.mysql.com/13134
http://bugs.mysql.com/17826
http://bugs.mysql.com/17602
http://bugs.mysql.com/17476
http://bugs.mysql.com/17595
http://bugs.mysql.com/16857
http://bugs.mysql.com/9088
http://bugs.mysql.com/17523
http://bugs.mysql.com/16175

type in prepared statements. (Bug#12070 [http://bugs.mysql.com/12070])

• The embedded server failed various tests in the automated test suite. (Bug#9630
[http://bugs.mysql.com/9630], Bug#9631 [http://bugs.mysql.com/9631], Bug#9633
[http://bugs.mysql.com/9633], Bug#10801 [http://bugs.mysql.com/10801], Bug#10911
[http://bugs.mysql.com/10911], Bug#10924 [http://bugs.mysql.com/10924], Bug#10925
[http://bugs.mysql.com/10925], Bug#10926 [http://bugs.mysql.com/10926], Bug#10930
[http://bugs.mysql.com/10930], Bug#15433 [http://bugs.mysql.com/15433])

• Instance Manager erroneously accepted a list of instance identifiers for the START INSTANCE and
STOP INSTANCE commands (should accept only a single identifier). (Bug#12813
[http://bugs.mysql.com/12813])

• For a transaction that used MyISAM and InnoDB tables, interruption of the transaction due to a
dropped connection on a master server caused slaves to lose synchrony. (Bug#16559
[http://bugs.mysql.com/16559])

• SELECT with GROUP BY on a view can cause a server crash. (Bug#16382
[http://bugs.mysql.com/16382])

• If the query optimizer transformed a GROUP BY clause in a subquery, it did not also transform the
HAVING clause if there was one, producing incorrect results. (Bug#16603
[http://bugs.mysql.com/16603])

• SUBSTRING_INDEX() could yield inconsistent results when applied with the same arguments to
consecutive rows in a query. (Bug#14676 [http://bugs.mysql.com/14676])

• The parser allowed CREATE AGGREGATE FUNCTION for creating stored functions, even though
AGGREGATE does not apply. (It is used only for CREATE FUNCTION only when creating user-
defined functions.) (Bug#16896 [http://bugs.mysql.com/16896])

• Data truncations on non-UNIQUE indexes could crash InnoDB when using multi-byte character
sets. (Bug#17530 [http://bugs.mysql.com/17530])

• Triggers created without BEGIN and END clauses could not be properly restored from a mysql-
dump file. (Bug#16878 [http://bugs.mysql.com/16878])

• The RENAME TABLE statement did not move triggers to the new table. (Bug#13525
[http://bugs.mysql.com/13525])

• Clients compiled from source with the --without-readline did not save command history
from session to session. (Bug#16557 [http://bugs.mysql.com/16557])

• Stored routines that contained only a single statement were not written properly to the dumpfile
when using mysqldump. (Bug#14857 [http://bugs.mysql.com/14857])

• For certain MERGE tables, the optimizer wrongly assumed that using in-
dex_merge/intersection was too expensive. (Bug#17314 [http://bugs.mysql.com/17314])

• Executing a SHOW CREATE VIEW query of an invalid view caused the mysql_next_result
function of libMySQL.dll to hang. (Bug#15943 [http://bugs.mysql.com/15943])

• BIT fields were not properly handled when using row-based replication. (Bug#13418
[http://bugs.mysql.com/13418])

• Issuing GRANT EXECUTE on a procedure would display any warnings related to the creation of the
procedure. (Bug#7787 [http://bugs.mysql.com/7787])

• NDB Cluster: ndb_delete_all would run out of memory on tables containing BLOB

MySQL Change History

1759

http://bugs.mysql.com/12070
http://bugs.mysql.com/9630
http://bugs.mysql.com/9631
http://bugs.mysql.com/9633
http://bugs.mysql.com/10801
http://bugs.mysql.com/10911
http://bugs.mysql.com/10924
http://bugs.mysql.com/10925
http://bugs.mysql.com/10926
http://bugs.mysql.com/10930
http://bugs.mysql.com/15433
http://bugs.mysql.com/12813
http://bugs.mysql.com/16559
http://bugs.mysql.com/16382
http://bugs.mysql.com/16603
http://bugs.mysql.com/14676
http://bugs.mysql.com/16896
http://bugs.mysql.com/17530
http://bugs.mysql.com/16878
http://bugs.mysql.com/13525
http://bugs.mysql.com/16557
http://bugs.mysql.com/14857
http://bugs.mysql.com/17314
http://bugs.mysql.com/15943
http://bugs.mysql.com/13418
http://bugs.mysql.com/7787

columns. (Bug#16693 [http://bugs.mysql.com/16693])

• NDB Cluster: UNIQUE keys in Cluster tables were limited to 225 bytes in length. (Bug#15918
[http://bugs.mysql.com/15918])

• In a highly concurrent environment, a server crash or deadlock could result from execution of a
statement that used stored functions or activated triggers coincident with alteration of the tables used
by these functions or triggers. (Bug#16593 [http://bugs.mysql.com/16593])

• Previously, a stored function invocation was written to the binary log as DO func_name() if the
invocation changes data and occurs within a non-logged statement, or if the function invokes a
stored procedure that produces an error. These invocations now are logged as SELECT
func_name() instead for better control over error code checking (slave servers could stop due to
detecting a different error than occurred on the master). (Bug#14769 [http://bugs.mysql.com/14769])

• CHECKSUM TABLE returned different values on MyISAM table depending on whether the QUICK
or EXTENDED options were used. (Bug#8841 [http://bugs.mysql.com/8841])

• MySQL server dropped client connection for certain SELECT statements against views defined that
used MERGE algorithm. (Bug#16260 [http://bugs.mysql.com/16260])

• A call to the IF() function using decimal arguments could return incorrect results. (Bug#16272
[http://bugs.mysql.com/16272])

• A statement containing GROUP BY and HAVING clauses could return incorrect results when the
HAVING clause contained logic that returned FALSE for every row. (Bug#14927
[http://bugs.mysql.com/14927])

• Using GROUP BY on column used in WHERE clause could cause empty set to be returned.
(Bug#16203 [http://bugs.mysql.com/16203])

• For a MySQL 5.0 server, using MySQL 4.1 tables in queries with a GROUP BY clause could result
in buffer overrun or a server crash. (Bug#16752 [http://bugs.mysql.com/16752])

• SET sql_mode = N, where N > 31, did not work properly. (Bug#13897
[http://bugs.mysql.com/13897])

• NDB Cluster: Cluster log file paths were truncated to 128 characters. They may now be as long
as MAX_PATH (the maximum path length permitted by the operating system). (Bug#17411
[http://bugs.mysql.com/17411])

• The mysql_stmt_store_result() C API function could not be used for a prepared statement
if a cursor had been opened for the statement. (Bug#14013 [http://bugs.mysql.com/14013])

• The mysql_stmt_sqlstate() C API function incorrectly returned an empty string rather than
'00000' when no error occurred. (Bug#16143 [http://bugs.mysql.com/16143])

• Using the TRUNCATE() function with a negative number for the second argument on a BIGINT
column returned incorrect results. (Bug#8461 [http://bugs.mysql.com/8461])

• Instance Manager searched wrong location for password file on some platforms. (Bug#16499
[http://bugs.mysql.com/16499])

• NDB Cluster: Following multiple forced shutdowns and restarts of data nodes, DROP DATA-
BASE could fail. (Bug#17325 [http://bugs.mysql.com/17325])

• NDB Cluster: An UPDATE with an inner join failed to match any records if both tables in the join
did not have a primary key. (Bug#17257 [http://bugs.mysql.com/17257])

MySQL Change History

1760

http://bugs.mysql.com/16693
http://bugs.mysql.com/15918
http://bugs.mysql.com/16593
http://bugs.mysql.com/14769
http://bugs.mysql.com/8841
http://bugs.mysql.com/16260
http://bugs.mysql.com/16272
http://bugs.mysql.com/14927
http://bugs.mysql.com/16203
http://bugs.mysql.com/16752
http://bugs.mysql.com/13897
http://bugs.mysql.com/17411
http://bugs.mysql.com/14013
http://bugs.mysql.com/16143
http://bugs.mysql.com/8461
http://bugs.mysql.com/16499
http://bugs.mysql.com/17325
http://bugs.mysql.com/17257

• NDB Cluster: A DELETE with a join in the WHERE clause failed to retrieve any records if both
tables in the join did not have a primary key. (Bug#17249 [http://bugs.mysql.com/17249])

• The error message returned by perror --ndb was prefixed with OS error code: instead of NDB
error code:. (Bug#17235 [http://bugs.mysql.com/17235])

• NDB Cluster: In some cases, LOAD DATA INFILE did not load all data into NDB tables.
(Bug#17081 [http://bugs.mysql.com/17081])

• NDB Cluster: The REDO log would become corrupted (and thus unreadable) in some circum-
stances, due to a failure in the query handler. (Bug#17295 [http://bugs.mysql.com/17295])

• NDB Cluster: No error message was generated for setting NoOfFragmentLogFiles too low.
(Bug#13966 [http://bugs.mysql.com/13966])

• NDB Cluster: No error message was generated for setting MaxNoOfAttributes too low.
(Bug#13965 [http://bugs.mysql.com/13965])

• Binary distributions for Solaris contained files with group ownership set to the non-existing wheel
group. Now the bin group is used. (Bug#15562 [http://bugs.mysql.com/15562])

• The DECIMAL data type was not being handled correctly with prepared statements. (Bug#16511
[http://bugs.mysql.com/16511])

• The SELECT privilege was required for triggers that performed no selects. (Bug#15196
[http://bugs.mysql.com/15196])

• The UPDATE privilege was required for triggers that performed no updates. (Bug#15166
[http://bugs.mysql.com/15166])

• CAST(... AS TIME) operations returned different results when using versus not using prepared-
statement protocol. (Bug#15805 [http://bugs.mysql.com/15805])

• Improper memory handling for stored routine variables could cause memory overruns and binary log
corruption. (Bug#15588 [http://bugs.mysql.com/15588])

• Killing a long-running query containing a subquery could cause a server crash. (Bug#14851
[http://bugs.mysql.com/14851])

• A FULLTEXT query in a prepared statement could result in unexpected behavior. (Bug#14496
[http://bugs.mysql.com/14496])

• A RETURN statement within a trigger caused a server crash. RETURN now is disallowed within trig-
gers. To exit immediately, use LEAVE. (Bug#16829 [http://bugs.mysql.com/16829])

• STR_TO_DATE(1,NULL) caused a server crash. (CVE-2006-3081
[http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3081], Bug#15828
[http://bugs.mysql.com/15828])

• An invalid stored routine could not be dropped. (Bug#16303 [http://bugs.mysql.com/16303])

• When evaluation of the test in a CASE failed in a stored procedure that contained a CONTINUE
handler, execution resumed at the beginning of the CASE statement instead of at the end.
(Bug#16568 [http://bugs.mysql.com/16568])

• An INSERT statement in a stored procedure corrupted the binary log. (Bug#16621
[http://bugs.mysql.com/16621])

• When MyODBC or any other client called my_init()/my_end() several times, it caused corrup-

MySQL Change History

1761

http://bugs.mysql.com/17249
http://bugs.mysql.com/17235
http://bugs.mysql.com/17081
http://bugs.mysql.com/17295
http://bugs.mysql.com/13966
http://bugs.mysql.com/13965
http://bugs.mysql.com/15562
http://bugs.mysql.com/16511
http://bugs.mysql.com/15196
http://bugs.mysql.com/15166
http://bugs.mysql.com/15805
http://bugs.mysql.com/15588
http://bugs.mysql.com/14851
http://bugs.mysql.com/14496
http://bugs.mysql.com/16829
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2006-3081
http://bugs.mysql.com/15828
http://bugs.mysql.com/16303
http://bugs.mysql.com/16568
http://bugs.mysql.com/16621

tion of charset data stored in once_mem_pool. (Bug#11892 [http://bugs.mysql.com/11892])

• When multiple handlers are created for the same MySQL error number within nested blocks, the out-
ermost handler took precedence. (Bug#15011 [http://bugs.mysql.com/15011])

• Certain LEAVE statements in stored procedures were not properly optimized. (Bug#15737
[http://bugs.mysql.com/15737])

• Setting InnoDB path settings to an empty string caused InnoDB storage engine to crash upon server
startup. (Bug#16157 [http://bugs.mysql.com/16157])

• InnoDB used full explicit table locks in trigger processing. (Bug#16229
[http://bugs.mysql.com/16229])

• Server crash when dropping InnoDB constraints named TABLENAME_ibfk_0. (Bug#16387
[http://bugs.mysql.com/16387])

• Corrected race condition when dropping the adaptive hash index for a B-tree page in InnoDB.
(Bug#16582 [http://bugs.mysql.com/16582])

• The mysql_real_connect() C API function incorrectly reset the MYSQL_OPT_RECONNECT
option to its default value. (Bug#15719 [http://bugs.mysql.com/15719])

• InnoDB: After upgrading an InnoDB table having a VARCHAR BINARY column created in
MySQL 4.0 to MySQL 5.0, update operations on the table would cause the server to crash.
(Bug#16298 [http://bugs.mysql.com/16298])

• Trying to compile the server on Windows generated a stack overflow warning due to a recursive
definition of the internal Field_date::store() method. (Bug#15634
[http://bugs.mysql.com/15634])

• The use of LOAD INDEX within a stored routine was permitted and caused the server to crash.
Note: LOAD INDEX statements within stored routines are not supported, and now yield an error if
attempted. This behavior is intended. (Bug#14270 [http://bugs.mysql.com/14270])

• The mysqlbinlog utility did not output DELIMITER statements, causing syntax errors for stored
routine creation statements. (Bug#11312 [http://bugs.mysql.com/11312])

• NDB Cluster returned incorrect Can't find file error for OS error 24, changed to Too many
open files. (Bug#15020 [http://bugs.mysql.com/15020])

• Performing a RENAME TABLE on an InnoDB table when the server is started with the -
-innodb-file-per-table and the data directory is a symlink caused a server crash.
(Bug#15991 [http://bugs.mysql.com/15991])

• Multi-byte path names for LOAD DATA and SELECT ... INTO OUTFILE caused errors. Ad-
ded the character_set_filesystem system variable, which controls the interpretation of
string literals that refer to filenames. (Bug#12448 [http://bugs.mysql.com/12448])

• Certain subqueries where the inner query is the result of a aggregate function would return different
results on MySQL 5.0 than on MySQL 4.1. (Bug#15347 [http://bugs.mysql.com/15347])

• Attempts to create FULLTEXT indexes on VARCHAR columns larger than 1000 bytes resulted in
error. (Bug#13835 [http://bugs.mysql.com/13835])

• Characters in the gb2312 and euckr character sets which did not have Unicode mappings were
truncated. (Bug#15377 [http://bugs.mysql.com/15377])

• Certain nested LEFT JOIN operations were not properly optimized. (Bug#16393

MySQL Change History

1762

http://bugs.mysql.com/11892
http://bugs.mysql.com/15011
http://bugs.mysql.com/15737
http://bugs.mysql.com/16157
http://bugs.mysql.com/16229
http://bugs.mysql.com/16387
http://bugs.mysql.com/16582
http://bugs.mysql.com/15719
http://bugs.mysql.com/16298
http://bugs.mysql.com/15634
http://bugs.mysql.com/14270
http://bugs.mysql.com/11312
http://bugs.mysql.com/15020
http://bugs.mysql.com/15991
http://bugs.mysql.com/12448
http://bugs.mysql.com/15347
http://bugs.mysql.com/13835
http://bugs.mysql.com/15377
http://bugs.mysql.com/16393

[http://bugs.mysql.com/16393])

• GRANT statements specifying schema names that included underscore characters (i.e. my_schema)
did not match if the underscore was escaped in the GRANT statement (i.e. GRANT ALL ON
`my_schema` ...). (Bug#14834 [http://bugs.mysql.com/14834])

• Running out of diskspace in the location specified by the tmpdir option resulted in incorrect error
message. (Bug#14634 [http://bugs.mysql.com/14634])

• Test suite sp test left behind tables when the test failed that could cause future tests to fail.
(Bug#15866 [http://bugs.mysql.com/15866])

• UPDATE statement crashed multi-byte character set FULLTEXT index if update value was almost
identical to initial value only differing in some spaces being changed to . (Bug#16489
[http://bugs.mysql.com/16489])

• A SELECT query which contained a GROUP_CONCAT() and an ORDER BY clause against the
INFORMATION_SCHEMA resulted in an empty result set. (Bug#15307
[http://bugs.mysql.com/15307])

• The --replicate-do and --replicate-ignore options were not being enforced on mul-
tiple-table statements. (Bug#15699 [http://bugs.mysql.com/15699], Bug#16487
[http://bugs.mysql.com/16487])

• A prepared statement created from a SELECT ... LIKE query (such as PREPARE stmt1
FROM 'SELECT col_1 FROM tedd_test WHERE col_1 LIKE ?';) would begin to
produce erratic results after being executed repeatedly numerous (thousands) of times. (Bug#12734
[http://bugs.mysql.com/12734])

• The server would crash when the size of an ARCHIVE table grew beyond 2GB. (Bug#15787
[http://bugs.mysql.com/15787])

• Created a user function with an empty string (that is, CREATE FUNCTION ''()), was accepted
by the server. Following this, calling SHOW FUNCTION STATUS would cause the server to crash.
(Bug#15658 [http://bugs.mysql.com/15658])

• In some cases the query optimizer did not properly perform multiple joins where inner joins fol-
lowed left joins, resulting in corrupted result sets. (Bug#15633 [http://bugs.mysql.com/15633])

• The absence of a table in the left part of a left or right join was not checked prior to name resolution,
which resulted in a server crash. (Bug#15538 [http://bugs.mysql.com/15538])

• NDBCluster: A bitfield whose offset and length totaled 32 would crash the cluster. (Bug#16125
[http://bugs.mysql.com/16125])

• NDBCluster: Upon the completion of a scan where a key request remained outstanding on the
primary replica and a starting node died, the scan did not terminate. This caused incompleted error
handling of the failed node. (Bug#15908 [http://bugs.mysql.com/15908])

• NDBCluster: The ndb_autodiscover test failed sporadically due to a node not being permit-
ted to connect to the cluster. (Bug#15619 [http://bugs.mysql.com/15619])

• NDBCluster: When running more than one management process in a cluster:

• ndb_mgm -c host:port -e "node_id stop" would stop a management process run-
ning only on the same system on which the command was issued.

• ndb_mgm -e "shutdown" failed to shut down any management processes at all.

MySQL Change History

1763

http://bugs.mysql.com/14834
http://bugs.mysql.com/14634
http://bugs.mysql.com/15866
http://bugs.mysql.com/16489
http://bugs.mysql.com/15307
http://bugs.mysql.com/15699
http://bugs.mysql.com/16487
http://bugs.mysql.com/12734
http://bugs.mysql.com/15787
http://bugs.mysql.com/15658
http://bugs.mysql.com/15633
http://bugs.mysql.com/15538
http://bugs.mysql.com/16125
http://bugs.mysql.com/15908
http://bugs.mysql.com/15619

(Bug#12045 [http://bugs.mysql.com/12045], Bug#12124 [http://bugs.mysql.com/12124])

• The contents of fill_help_tables.sql could not be loaded in strict SQL mode. (Bug#15760
[http://bugs.mysql.com/15760])

• fill_help_tables.sql was not included in binary distributions for several platforms.
(Bug#15759 [http://bugs.mysql.com/15759])

• An INSERT ... SELECT statement between tables in a MERGE set can return errors when state-
ment involves insert into child table from merge table or vice-versa. (Bug#5390
[http://bugs.mysql.com/5390])

• Certain permission management statements could create a NULL hostname for a user, resulting in a
server crash. (Bug#15598 [http://bugs.mysql.com/15598])

• A COMMIT statement followed by a ALTER TABLE statement on a BDB table caused server crash.
(Bug#14212 [http://bugs.mysql.com/14212])

• A DELETE statement involving a LEFT JOIN and an IS NULL test on the right-hand table of the
join crashed the server when the innodb_locks_unsafe_for_binlog option was enabled.
(Bug#15650 [http://bugs.mysql.com/15650])

• Performing an ORDER BY on an indexed ENUM column returned error. (Bug#15308
[http://bugs.mysql.com/15308])

• The NOT FOUND condition handler for stored procedures did not distinguish between a NOT
FOUND condition and an exception or warning. (Bug#15231 [http://bugs.mysql.com/15231])

• A stored procedure with an undefined variable and an exception handler would hang the client when
called. (Bug#14498 [http://bugs.mysql.com/14498])

• Subselect could return wrong results when records cache and grouping was involved. (Bug#15347
[http://bugs.mysql.com/15347])

• Temporary table aliasing did not work inside stored functions. (Bug#12198
[http://bugs.mysql.com/12198])

• MIN() and MAX() operations were not optimized for views. (Bug#16016
[http://bugs.mysql.com/16016])

• Using an aggregate function as the argument for a HAVING clause would result in the aggregate
function always returning FALSE. (Bug#14274 [http://bugs.mysql.com/14274])

• Parallel builds occasionally failed on Solaris. (Bug#16282 [http://bugs.mysql.com/16282])

• The FORCE INDEX keyword in a query would prevent an index merge from being used where an
index merge would normally be chosen by the optimizer. (Bug#16166
[http://bugs.mysql.com/16166])

• The COALESCE() function truncated data in a TINYTEXT column. (Bug#15581
[http://bugs.mysql.com/15581])

• InnoDB: Comparison of indexed VARCHAR CHARACTER SET ucs2 COLLATE ucs2_bin
columns using LIKE could fail. (Bug#14583 [http://bugs.mysql.com/14583])

• An attempt to open a table that requires a disabled storage engine could cause a server crash.
(Bug#15185 [http://bugs.mysql.com/15185])

MySQL Change History

1764

http://bugs.mysql.com/12045
http://bugs.mysql.com/12124
http://bugs.mysql.com/15760
http://bugs.mysql.com/15759
http://bugs.mysql.com/5390
http://bugs.mysql.com/15598
http://bugs.mysql.com/14212
http://bugs.mysql.com/15650
http://bugs.mysql.com/15308
http://bugs.mysql.com/15231
http://bugs.mysql.com/14498
http://bugs.mysql.com/15347
http://bugs.mysql.com/12198
http://bugs.mysql.com/16016
http://bugs.mysql.com/14274
http://bugs.mysql.com/16282
http://bugs.mysql.com/16166
http://bugs.mysql.com/15581
http://bugs.mysql.com/14583
http://bugs.mysql.com/15185

• Issuing a DROP USER command could cause some users to encounter a hostname is not
allowed to connect to this MySQL server error. (Bug#15775
[http://bugs.mysql.com/15775])

• Setting innodb_log_file_size to a value greater than 4G crashed the server. (Bug#15108
[http://bugs.mysql.com/15108])

• A SELECT of a stored function that references the INFORMATION_SCHEMA could crash the serv-
er. (Bug#15533 [http://bugs.mysql.com/15533])

• Tarball install package was missing a proper fill_help_tables.sql file. (Bug#15151
[http://bugs.mysql.com/15151])

D.1.11. Changes in release 5.0.18 (21 December 2005)
Functionality added or changed:

• It is now possible to build the server such that MyISAM tables can support up to 128 keys rather than
the standard 64. This can be done by configuring the build using the option -
-with-max-indexes=N, where N 128 is the maximum number of indexes to permit per table.
(Bug#10932 [http://bugs.mysql.com/10932])

• The server treats stored routine parameters and local variables (and stored function return values) ac-
cording to standard SQL. Previously, parameters, variables, and return values were treated as items
in expressions and were subject to automatic (silent) conversion and truncation. Now the data type is
observed. Data type conversion and overflow problems that occur in assignments result in warnings,
or errors in strict mode. The CHARACTER SET clause for character data type declarations is used.
Parameters, variables, and return values must be scalars; it is no longer possible to assign a row
value. Also, stored functions execute using the sql_mode value in force at function creation time
rather than ignoring it. For more information, see Section 17.2.1, “CREATE PROCEDURE and
CREATE FUNCTION Syntax”. (Bug#8702 [http://bugs.mysql.com/8702], Bug#8768
[http://bugs.mysql.com/8768], Bug#8769 [http://bugs.mysql.com/8769], Bug#9078
[http://bugs.mysql.com/9078], Bug#9572 [http://bugs.mysql.com/9572], Bug#12903
[http://bugs.mysql.com/12903], Bug#13705 [http://bugs.mysql.com/13705], Bug#13808
[http://bugs.mysql.com/13808], Bug#13909 [http://bugs.mysql.com/13909], Bug#14161
[http://bugs.mysql.com/14161], Bug#15148 [http://bugs.mysql.com/15148])

Bugs fixed:

• API function mysql_stmt_prepare returned wrong field length for TEXT columns.
(Bug#15613 [http://bugs.mysql.com/15613])

• The output of mysqldump --triggers did not contain the DEFINER clause in dumped trigger
definitions. (Bug#15110 [http://bugs.mysql.com/15110])

• The output of SHOW TRIGGERS contained extraneous whitespace. (Bug#15103
[http://bugs.mysql.com/15103])

• Creating a trigger caused a server crash if the table or trigger database was not known because no de-
fault database had been selected. (Bug#14863 [http://bugs.mysql.com/14863])

• SHOW [FULL] COLUMNS and SHOW INDEX FROM did not function with temporary tables.
(Bug#14271 [http://bugs.mysql.com/14271], Bug#14387 [http://bugs.mysql.com/14387],
Bug#15224 [http://bugs.mysql.com/15224])

MySQL Change History

1765

http://bugs.mysql.com/15775
http://bugs.mysql.com/15108
http://bugs.mysql.com/15533
http://bugs.mysql.com/15151
http://bugs.mysql.com/10932
http://bugs.mysql.com/8702
http://bugs.mysql.com/8768
http://bugs.mysql.com/8769
http://bugs.mysql.com/9078
http://bugs.mysql.com/9572
http://bugs.mysql.com/12903
http://bugs.mysql.com/13705
http://bugs.mysql.com/13808
http://bugs.mysql.com/13909
http://bugs.mysql.com/14161
http://bugs.mysql.com/15148
http://bugs.mysql.com/15613
http://bugs.mysql.com/15110
http://bugs.mysql.com/15103
http://bugs.mysql.com/14863
http://bugs.mysql.com/14271
http://bugs.mysql.com/14387
http://bugs.mysql.com/15224

• The INFORMATION_SCHEMA.COLUMNS table did not report the size of BINARY or VARBIN-
ARY columns. (Bug#14271 [http://bugs.mysql.com/14271])

• The server would not compile under Cygwin. (Bug#13640 [http://bugs.mysql.com/13640])

• DESCRIBE did not function with temporary tables. (Bug#12770 [http://bugs.mysql.com/12770])

• Reversing the order of operands in a WHERE clause testing a simple equality (such as WHERE
t1.col1 = t2.col2) would produce different output from EXPLAIN. (Bug#15106
[http://bugs.mysql.com/15106])

• Column aliases were displayed incorrectly in a SELECT from a view following an update to a base
table of the view. (Bug#14861 [http://bugs.mysql.com/14861])

• Set functions could not be aggregated in outer subqueries. (Bug#12762
[http://bugs.mysql.com/12762])

• When a connection using yaSSL was aborted, the server would continue to try to read the closed
socket, and the thread continued to appear in the output of SHOW PROCESSLIST. Note that this is-
sue did not affect secure connection attempts using OpenSSL. (Bug#15772
[http://bugs.mysql.com/15772])

• InnoDB: Having two tables in a parent-child relationship enforced by a foreign key where one table
used ROW_FORMAT=COMPACT and the other used ROW_FORMAT=REDUNDANT could result in a
MySQL server crash. Note that this problem did not exist prior to MySQL 5.0.3, when the compact
row format for InnoDB was introduced. (Bug#15550 [http://bugs.mysql.com/15550])

• BDB: A DELETE, INSERT, or UPDATE of a BDB table could cause the server to crash where the
query contained a subquery using an index read. (Bug#15536 [http://bugs.mysql.com/15536])

• A left join on a column that having a NULL value could cause the server to crash. (Bug#15268
[http://bugs.mysql.com/15268])

• A replication slave server could sometimes crash on a BEFORE UPDATE trigger if the UPDATE
query was not executed in the same database as the table with the trigger. (Bug#14614
[http://bugs.mysql.com/14614])

• A race condition when creating temporary files caused a deadlock on Windows with threads in
Opening tables or Waiting for table states. (Bug#12071
[http://bugs.mysql.com/12071])

• InnoDB: If FOREIGN_KEY_CHECKS was 0, InnoDB allowed inconsistent foreign keys to be cre-
ated. (Bug#13778 [http://bugs.mysql.com/13778])

• NDB Cluster: Under some circumstances, it was possible for a restarting node to undergo a
forced shutdown. (Bug#15632 [http://bugs.mysql.com/15632])

• NDB Cluster: If an abort by the Transaction Coordinator timed out, the abort condition was in-
correctly handled, causing the transaction record to be released prematurely. (Bug#15685
[http://bugs.mysql.com/15685])

• NDB Cluster: The ndb_read_multi_range.test script failed to drop a table, causing the
test to fail. (Bug#15675 [http://bugs.mysql.com/15675]) (See also Bug#15401
[http://bugs.mysql.com/15401].)

• NDB Cluster: A node which failed during cluster startup was sometimes not removed from the
internal list of active nodes. (Bug#15587 [http://bugs.mysql.com/15587])

• Resolution of the argument to the VALUES() function to a variable inside a stored routine caused a

MySQL Change History

1766

http://bugs.mysql.com/14271
http://bugs.mysql.com/13640
http://bugs.mysql.com/12770
http://bugs.mysql.com/15106
http://bugs.mysql.com/14861
http://bugs.mysql.com/12762
http://bugs.mysql.com/15772
http://bugs.mysql.com/15550
http://bugs.mysql.com/15536
http://bugs.mysql.com/15268
http://bugs.mysql.com/14614
http://bugs.mysql.com/12071
http://bugs.mysql.com/13778
http://bugs.mysql.com/15632
http://bugs.mysql.com/15685
http://bugs.mysql.com/15675
http://bugs.mysql.com/15401
http://bugs.mysql.com/15587

server crash. The argument must be a table column. (Bug#15441 [http://bugs.mysql.com/15441])

D.1.12. Changes in release 5.0.17 (14 December 2005)
Functionality added or changed:

• The original Linux RPM packages (5.0.17-0) had an issue with a zlib dependency that would res-
ult in an error during an install or upgrade. They were replaced by new binaries, 5.0.17-1.
(Bug#15223 [http://bugs.mysql.com/15223]) Here is a list of the new RPM binaries:

• MySQL-{Max,client,devel,server,shared,ndb*}-5.0.17-1.i386.rpm

• MySQL-*-standard-5.0.17-1.rhel3.i386.rpm, MySQL-*-standard-5.0.17-1.rhel3.ia64.rpm,
MySQL-*-standard-5.0.17-1.rhel3.x86_64.rpm

• MySQL-*-pro-5.0.17-1.rhel3.i386.rpm, MySQL-*-pro-5.0.17-1.rhel3.ia64.rpm, MySQL-
*-pro-5.0.17-1.rhel3.x86_64.rpm

• MySQL-*-pro-gpl-5.0.17-1.rhel3.i386.rpm, MySQL-*-pro-gpl-5.0.17-1.rhel3.ia64.rpm,
MySQL-*-pro-gpl-5.0.17-1.rhel3.x86_64.rpm

• The syntax for CREATE TRIGGER now includes a DEFINER clause for specifying which access
privileges to check at trigger invocation time. See Section 18.1, “CREATE TRIGGER Syntax”, for
more information.

Known issue: If you attempt to replicate from a master server older than MySQL 5.0.17 to a slave
running MySQL 5.0.17 through 5.0.19, replication of CREATE TRIGGER statements fails on the
slave with a Definer not fully qualified error. A workaround is to create triggers on the
master using a version-specific comment embedded in each CREATE TRIGGER statement:

CREATE /*!50017 DEFINER = 'root'@'localhost' */ TRIGGER ... ;

CREATE TRIGGER statements written this way will replicate to newer slaves, which pick up the
DEFINER clause from the comment and execute successfully. (Bug#16266
[http://bugs.mysql.com/16266])

• Added a DEFINER column to the INFORMATION_SCHEMA.TRIGGERS table.

• Invoking a stored function or trigger creates a new savepoint level. When the function or trigger fin-
ishes, the previous savepoint level is restored. (See Bug#13825 [http://bugs.mysql.com/13825] for
more information.)

• Recursion is allowed in stored procedures. Recursive stored functions and triggers still are disal-
lowed. (Bug#10100 [http://bugs.mysql.com/10100])

• In the latin5_turkish_ci collation, the order of the characters A WITH CIRCUMFLEX, I
WITH CIRCUMLEX, and U WITH CIRCUMFLEX was changed. If you have used these characters
in any indexed columns, you should rebuild those indexes. (Bug#13421
[http://bugs.mysql.com/13421])

• Support files for compiling with Visual Studio 6 have been removed. (Bug#15094
[http://bugs.mysql.com/15094])

Bugs fixed:

MySQL Change History

1767

http://bugs.mysql.com/15441
http://bugs.mysql.com/15223
http://bugs.mysql.com/16266
http://bugs.mysql.com/13825
http://bugs.mysql.com/10100
http://bugs.mysql.com/13421
http://bugs.mysql.com/15094

• RPM packages had an incorrect zlib dependency. (Bug#15223 [http://bugs.mysql.com/15223])

• NDB Cluster: REPLACE failed when attempting to update a primary key value in a Cluster table.
(Bug#14007 [http://bugs.mysql.com/14007])

• make failed when attempting to build MySQL in different directory than source. (Bug#11827
[http://bugs.mysql.com/11827])

• Corrected an error-handling problem within stored routines on 64-bit platforms. (Bug#15630
[http://bugs.mysql.com/15630])

• Slave SQL thread cleanup was not handled properly on Mac OS X when a statement was killed, res-
ulting in a slave crash. (Bug#15623 [http://bugs.mysql.com/15623], Bug#15668
[http://bugs.mysql.com/15668])

• Symbolic links did not function properly on Windows platforms. (Bug#14960
[http://bugs.mysql.com/14960], Bug#14310 [http://bugs.mysql.com/14310])

• mysqld would not start on Windows 9X operating systems including Windows Me. (Bug#15209
[http://bugs.mysql.com/15209])

• InnoDB: During replication, There was a failure to record events in the binary log that still occurred
even in the event of a ROLLBACK. For example, this sequence of commands:

BEGIN;
CREATE TEMPORARY TABLE t1 (a INT) ENGINE=INNODB;
ROLLBACK;
INSERT INTO t1 VALUES (1);

would succeed on the replication master as expected. However, the INSERT would fail on the slave
because the ROLLBACK would (erroneously) cause the CREATE TEMPORARY TABLE statement
not to be written to the binlog. (Bug#7947 [http://bugs.mysql.com/7947])

• A bug in mysql-test/t/mysqltest.test caused that test to fail. (Bug#15605
[http://bugs.mysql.com/15605])

• The CREATE test case in mysql-test-run.pl failed on AIX and SCO. (Bug#15607
[http://bugs.mysql.com/15607])

• NDB Cluster: Creating a table with packed keys failed silently. NDB now supports the
PACK_KEYS option to CREATE TABLE correctly. (Bug#14514 [http://bugs.mysql.com/14514])

• NDB Cluster: Using ORDER BY primary_key_column when selecting from a table having
the primary key on a VARCHAR column caused a forced shutdown of the cluster. (Bug#14828
[http://bugs.mysql.com/14828], Bug#15240 [http://bugs.mysql.com/15240], Bug#15682
[http://bugs.mysql.com/15682], Bug#15517 [http://bugs.mysql.com/15517])

• NDB Cluster: Under certain circumstances, when mysqld connects to a cluster management
server, the connection would fail before a node ID could be allocated. (Bug#15215
[http://bugs.mysql.com/15215])

• NDB Cluster: There was a small window for a node failure to occur during a backup without an
error being reported. (Bug#15425 [http://bugs.mysql.com/15425])

• mysql --help was missing a newline after the version string when the bundled readline lib-
rary was not used. (Bug#15097 [http://bugs.mysql.com/15097])

• Implicit versus explicit conversion of float to integer (such as inserting a float value into an integer
column versus using CAST(... AS UNSIGNED before inserting the value) could produce differ-

MySQL Change History

1768

http://bugs.mysql.com/15223
http://bugs.mysql.com/14007
http://bugs.mysql.com/11827
http://bugs.mysql.com/15630
http://bugs.mysql.com/15623
http://bugs.mysql.com/15668
http://bugs.mysql.com/14960
http://bugs.mysql.com/14310
http://bugs.mysql.com/15209
http://bugs.mysql.com/7947
http://bugs.mysql.com/15605
http://bugs.mysql.com/15607
http://bugs.mysql.com/14514
http://bugs.mysql.com/14828
http://bugs.mysql.com/15240
http://bugs.mysql.com/15682
http://bugs.mysql.com/15517
http://bugs.mysql.com/15215
http://bugs.mysql.com/15425
http://bugs.mysql.com/15097

ent results. Implicit and explicit typecasts now are done the same way, with a value equal to the
nearest integer according to the prevailing rounding mode. (Bug#12956
[http://bugs.mysql.com/12956])

• GROUP BY on a view column did not correctly account for the possibility that the column could
contain NULL values. (Bug#14850 [http://bugs.mysql.com/14850])

• ANALYZE TABLE did not properly update table statistics for a MyISAM table with a FULLTEXT
index containing stopwords, so a subsequent ANALYZE TABLE would not recognize the table as
having already been analyzed. (Bug#14902 [http://bugs.mysql.com/14902])

• The maximum value of MAX_ROWS was handled incorrectly on 64-bit systems. (Bug#14155
[http://bugs.mysql.com/14155])

• NDB Cluster: A forced cluster shutdown occurred when the management daemon was restarted
with a changed config.ini file that added an API/SQL node. (Bug#15512
[http://bugs.mysql.com/15512])

• Multiple-table update operations were counting updates and not updated rows. As a result, if a row
had several updates it was counted several times for the “rows matched” value but updated only
once. (Bug#15028 [http://bugs.mysql.com/15028])

• A statement that produced a warning, when fetched via mysql_stmt_fetch(), did not produce
a warning count according to mysql_warning_count(). (Bug#15510
[http://bugs.mysql.com/15510])

• Manual manipulation of the mysql.proc table could cause a server crash. This should not happen,
but it is also not supported that the server will notice such changes. (Bug#14233
[http://bugs.mysql.com/14233])

• Revised table locking to allow proper assessment of view security. (Bug#11555
[http://bugs.mysql.com/11555])

• Within a stored procedure, inserting with INSERT ... SELECT into a table with an
AUTO_INCREMENT column did not generate the correct sequence number. (Bug#14304
[http://bugs.mysql.com/14304])

• SELECT queries that began with an opening parenthesis were not being placed in the query cache.
(Bug#14652 [http://bugs.mysql.com/14652])

• Space truncation was being ignored when inserting into BINARY or VARBINARY columns. Now
space truncation results in a warning, or an error in strict mode. (Bug#14299
[http://bugs.mysql.com/14299])

• The database-changing code for stored routine handling caused an error-handling problem resulting
in a server crash. (Bug#15392 [http://bugs.mysql.com/15392])

• Selecting from a view processed with the temptable algorithm caused a server crash if the query
cache was enabled. (Bug#15119 [http://bugs.mysql.com/15119])

• REPAIR TABLES, BACKUP TABLES, RESTORE TABLES within a stored procedure caused a
server crash. (Bug#13012 [http://bugs.mysql.com/13012])

• Creating a view that referenced a stored function that selected from a view caused a crash upon se-
lection from the view. (Bug#15096 [http://bugs.mysql.com/15096])

• ALTER TABLE ... SET DEFAULT had no effect. (Bug#14693 [http://bugs.mysql.com/14693])

• Creating a view within a stored procedure could result in an out of memory error or a server crash.

MySQL Change History

1769

http://bugs.mysql.com/12956
http://bugs.mysql.com/14850
http://bugs.mysql.com/14902
http://bugs.mysql.com/14155
http://bugs.mysql.com/15512
http://bugs.mysql.com/15028
http://bugs.mysql.com/15510
http://bugs.mysql.com/14233
http://bugs.mysql.com/11555
http://bugs.mysql.com/14304
http://bugs.mysql.com/14652
http://bugs.mysql.com/14299
http://bugs.mysql.com/15392
http://bugs.mysql.com/15119
http://bugs.mysql.com/13012
http://bugs.mysql.com/15096
http://bugs.mysql.com/14693

Bug#14885 [http://bugs.mysql.com/14885])

• InnoDB: A race condition allowed two threads to drop a hash index simultaneously. (Bug#14747
[http://bugs.mysql.com/14747])

• mysqlhotcopy tried to copy INFORMATION_SCHEMA tables. (Bug#14610
[http://bugs.mysql.com/14610])

• CHAR(... USING ...) and CONVERT(CHAR(...) USING ...), though logically equi-
valent, could produce different results. (Bug#14146 [http://bugs.mysql.com/14146])

• The value of INFORMATION_SCHEMA.TABLES.TABLE_TYPE sometimes was reported as
empty. (Bug#14476 [http://bugs.mysql.com/14476])

• InnoDB: Activity on an InnoDB table caused execution time for SHOW CREATE TABLE for the
table to increase. (Bug#13762 [http://bugs.mysql.com/13762])

• DELETE from CSV tables reported an incorrect rows-affected value. (Bug#13406
[http://bugs.mysql.com/13406])

• The server crashed if compiled without any transactional storage engines. (Bug#15047
[http://bugs.mysql.com/15047])

• Declaring a stored routine variable to have a DEFAULT value that referred to a variable of the same
name caused a server crash. (For example: DECLARE x INT DEFAULT x) Now the DEFAULT
variable is interpreted as referring to a variable in an outer scope, if there is one. (Bug#14376
[http://bugs.mysql.com/14376])

• Perform character set conversion of constant values whenever possible without data loss.
(Bug#10446 [http://bugs.mysql.com/10446])

• mysql ignored the MYSQL_TCP_PORT environment variable. (Bug#5792
[http://bugs.mysql.com/5792])

• ROW_COUNT() returned an incorrect result after EXECUTE of a prepared statement. (Bug#14956
[http://bugs.mysql.com/14956])

• A UNION of DECIMAL columns could produce incorrect results. (Bug#14216
[http://bugs.mysql.com/14216])

• Queries that select records based on comparisons to a set of column could crash the server if there
was one index covering the columns, and a set of other non-covering indexes that taken together
cover the columns. (Bug#15204 [http://bugs.mysql.com/15204])

• When using an aggregate function to select from a table that has a multiple-column primary key,
adding ORDER BY to the query could produce an incorrect result. (Bug#14920
[http://bugs.mysql.com/14920])

• SHOW CREATE TABLE for a view could fail if the client had locked the view. (Bug#14726
[http://bugs.mysql.com/14726])

• For binary string data types, mysqldump --hex-blob produced an illegal output value of 0x
rather than ''. (Bug#13318 [http://bugs.mysql.com/13318])

• Some comparisons for the IN() operator were inconsistent with equivalent comparisons for the =
operator. (Bug#12612 [http://bugs.mysql.com/12612])

• In a stored procedure, continuing (via a condition handler) after a failed variable initialization caused
a server crash. (Bug#14643 [http://bugs.mysql.com/14643])

MySQL Change History

1770

http://bugs.mysql.com/14885
http://bugs.mysql.com/14747
http://bugs.mysql.com/14610
http://bugs.mysql.com/14146
http://bugs.mysql.com/14476
http://bugs.mysql.com/13762
http://bugs.mysql.com/13406
http://bugs.mysql.com/15047
http://bugs.mysql.com/14376
http://bugs.mysql.com/10446
http://bugs.mysql.com/5792
http://bugs.mysql.com/14956
http://bugs.mysql.com/14216
http://bugs.mysql.com/15204
http://bugs.mysql.com/14920
http://bugs.mysql.com/14726
http://bugs.mysql.com/13318
http://bugs.mysql.com/12612
http://bugs.mysql.com/14643

• Within a stored procedure, exception handling for UPDATE statements that caused a duplicate-key
error caused a Packets out of order error for the following statement. (Bug#13729
[http://bugs.mysql.com/13729])

• Creating a table containing an ENUM or SET column from within a stored procedure or prepared
statement caused a server crash later when executing the procedure or statement. (Bug#14410
[http://bugs.mysql.com/14410])

• Selecting from a view used filesort retrieval when faster retrieval was possible. (Bug#14816
[http://bugs.mysql.com/14816])

• Warnings from a previous command were not being reset when fetching from a cursor. (Bug#13524
[http://bugs.mysql.com/13524])

• RESET MASTER failed to delete log files on Windows. (Bug#13377
[http://bugs.mysql.com/13377])

• Using ORDER BY on a column from a view, when also selecting the column normally, and via an
alias, caused a mistaken Column 'x' in order clause is ambiguous error.
(Bug#14662 [http://bugs.mysql.com/14662])

• Invoking a stored procedure within another stored procedure caused the server to crash. (Bug#13549
[http://bugs.mysql.com/13549])

• Stored functions making use of cursors were not replicated. (Bug#14077
[http://bugs.mysql.com/14077])

• CAST(expr AS BINARY(N)) did not pad with 0x00 to a length of N bytes. (Bug#14255
[http://bugs.mysql.com/14255])

• Casting a FLOAT or DOUBLE whose value was less than 1.0E-06 to DECIMAL would yield an in-
appropriate value. (Bug#14268 [http://bugs.mysql.com/14268])

• In some cases, a left outer join could yield an invalid result or cause the server to crash, due to a
MYSQL_DATA_TRUNCATED error. (Bug#13488 [http://bugs.mysql.com/13488])

• For a invalid view definition, selecting from the INFORMATION_SCHEMA.VIEWS table or using
SHOW CREATE VIEW failed, making it difficult to determine what part of the definition was inval-
id. Now the server returns the definition and issues a warning. (Bug#13818
[http://bugs.mysql.com/13818])

• The server could misinterpret old trigger definition files created before MySQL 5.0.17. Now they are
interpreted correctly, but this takes more time and the server issues a warning that the trigger should
be re-created. (Bug#14090 [http://bugs.mysql.com/14090])

• mysqldump --triggers did not account for the SQL mode and could dump trigger definitions
with missing whitespace if the IGNORE_SPACE mode was enabled. (Bug#14554
[http://bugs.mysql.com/14554])

• Within a trigger definition the CURRENT_USER() function evaluated to the user whose actions
caused the trigger to be activated. Now that triggers have a DEFINER value, CURRENT_USER()
evaluates to the trigger definer. (Bug#5861 [http://bugs.mysql.com/5861])

• CREATE TABLE tbl_name (...) SELECT ... could crash the server and write invalid
data into the .frm file if the CREATE TABLE and SELECT both contained a column with the same
name. Also, if a default value is specified in the column definition, it is now actually used.
(Bug#14480 [http://bugs.mysql.com/14480])

• A newline character in a column alias in a view definition caused an error when selecting from the

MySQL Change History

1771

http://bugs.mysql.com/13729
http://bugs.mysql.com/14410
http://bugs.mysql.com/14816
http://bugs.mysql.com/13524
http://bugs.mysql.com/13377
http://bugs.mysql.com/14662
http://bugs.mysql.com/13549
http://bugs.mysql.com/14077
http://bugs.mysql.com/14255
http://bugs.mysql.com/14268
http://bugs.mysql.com/13488
http://bugs.mysql.com/13818
http://bugs.mysql.com/14090
http://bugs.mysql.com/14554
http://bugs.mysql.com/5861
http://bugs.mysql.com/14480

view later. (Bug#13622 [http://bugs.mysql.com/13622])

• mysql_fix_privilege_tables.sql contained an erroneous comment that resulted in an er-
ror when the file contents were processed. (Bug#14469 [http://bugs.mysql.com/14469])

• On Windows, the server could crash during shutdown if both replication threads and normal client
connection threads were active. (Re-fix of Bug#11796 [http://bugs.mysql.com/11796])

• The grammar for supporting the DEFINER = CURRENT_USER clause in CREATE VIEW and
ALTER VIEW was incorrect. (Bug#14719 [http://bugs.mysql.com/14719])

• Queries on ARCHIVE tables that used the filesort sorting method could result in a server crash.
(Bug#14433 [http://bugs.mysql.com/14433])

• The mysql_stmt_fetch() C APP function could return MYSQL_NO_DATA for a SELECT
COUNT(*) FROM tbl_name WHERE 1 = 0 statement, which should return 1 row.
(Bug#14845 [http://bugs.mysql.com/14845])

• A LIMIT-related optimization failed to take into account that MyISAM table indexes can be dis-
abled, causing Error 124 when it tried to use such an index. (Bug#14616
[http://bugs.mysql.com/14616])

• A server crash resulted from the following sequence of events: 1) With no default database selected,
create a stored procedure with the procedure name explicitly qualified with a database name (CRE-
ATE PROCEDURE db_name.proc_name ...). 2) Create another stored procedure with no
database name qualifier. 3) Execute SHOW PROCEDURE STATUS. (Bug#14569
[http://bugs.mysql.com/14569])

• Complex subqueries could cause improper internal query execution environment initialization and
crash the server. (Bug#14342 [http://bugs.mysql.com/14342])

• For a table that had been opened with HANDLER OPEN, issuing OPTIMIZE TABLE, ALTER TA-
BLE, or REPAIR TABLE caused a server crash. (Bug#14397 [http://bugs.mysql.com/14397])

• A server crash could occur if a prepared statement invoked a stored procedure that existed when the
statement was prepared but had been dropped and re-created prior to statement execution.
(Bug#12329 [http://bugs.mysql.com/12329])

• A server crash could occur if a prepared statement updated a table for which a trigger existed when
the statement was prepared but had been dropped prior to statement execution. (Bug#13399
[http://bugs.mysql.com/13399])

• Statements that implicitly commit a transaction are prohibited in stored functions and triggers. An at-
tempt to create a function or trigger containing such a statement produces an error. (Bug#13627
[http://bugs.mysql.com/13627]) (The originally reported symptom was that a trigger that dropped
another trigger could cause a server crash. That problem was fixed by the patch for Bug#13343
[http://bugs.mysql.com/13343].)

D.1.13. Changes in release 5.0.16 (10 November 2005)
Functionality added or changed:

• When trying to run the server with yaSSL enabled, MySQL now tries to open /dev/random auto-
matically if /dev/urandom is not available. (Bug#13164 [http://bugs.mysql.com/13164])

• The read_only system variable no longer applies to TEMPORARY tables. (Bug#4544

MySQL Change History

1772

http://bugs.mysql.com/13622
http://bugs.mysql.com/14469
http://bugs.mysql.com/11796
http://bugs.mysql.com/14719
http://bugs.mysql.com/14433
http://bugs.mysql.com/14845
http://bugs.mysql.com/14616
http://bugs.mysql.com/14569
http://bugs.mysql.com/14342
http://bugs.mysql.com/14397
http://bugs.mysql.com/12329
http://bugs.mysql.com/13399
http://bugs.mysql.com/13627
http://bugs.mysql.com/13343
http://bugs.mysql.com/13164
http://bugs.mysql.com/4544

[http://bugs.mysql.com/4544])

• Due to changes in binary logging, the restrictions on which stored routine creators can be trusted not
to create unsafe routines have been lifted for stored procedures (but not stored functions). Con-
sequently, the log_bin_trust_routine_creators system variable and the corresponding -
-log-bin-trust-routine-creators server option were renamed to
log_bin_trust_function_creators and
--log-bin-trust-function-creators. For backward compatibility, the old names are re-
cognized but result in a warning. See Section 17.5, “Binary Logging of Stored Routines and Trig-
gers”.

• Added the Compression status variable, which indicates whether the client connection uses com-
pression in the client/server protocol.

• In MySQL 5.0.13, syntax for DEFINER and SQL SECURITY clauses was added to the CREATE
VIEW and ALTER VIEW statements, but the clauses had no effect. They now are enabled. They
specify the security context to be used when checking access privileges at view invocation time. See
Section 19.2, “CREATE VIEW Syntax”, for more information.

• The InnoDB, NDB, BDB, and ARCHIVE storage engines now support spatial columns. See
Chapter 16, Spatial Extensions.

• The CHECK TABLE statement now works for ARCHIVE tables.

• You must now declare a prefix for an index on any column of any Geometry class, the only excep-
tion being when the column is a POINT. (Bug#12267 [http://bugs.mysql.com/12267])

• Added a --hexdump option to mysqlbinlog that displays a hex dump of the log in comments.
This output can be helpful for replication debugging.

• MySQL 5.0 now supports character set conversion for seven additional cp950 characters into the
big5 character set: 0xF9D6, 0xF9D7, 0xF9D8, 0xF9D9, 0xF9DA, 0xF9DB, and 0xF9DC.
Note: If you move data containing these additional characters to an older MySQL installation which
does not support them, you may encounter errors. (Bug#12476 [http://bugs.mysql.com/12476])

• When a date column is set NOT NULL and contains 0000-00-00, it will be updated for UPDATE
statements that contains columnname IS NULL in the WHERE clause. (Bug#14186
[http://bugs.mysql.com/14186])

Bugs fixed:

• When the DATE_FORMAT() function appeared in both the SELECT and ORDER BY clauses of a
query but with arguments that differ by case (i.e. %m and %M), incorrect sorting may have oc-
curred. (Bug#14016 [http://bugs.mysql.com/14016])

• For InnoDB tables, using a column prefix for a utf8 column in a primary key caused Cannot
find record errors when attempting to locate records. (Bug#14056
[http://bugs.mysql.com/14056])

• NDB Cluster: A memory leak occurred when performing ordered index scans using indexes a
columns larger than 32 bytes, which would eventually lead to the forced shutdown of all mysqld
server processes used with the cluster. (Bug#13078 [http://bugs.mysql.com/13078])

• InnoDB: Large innobase_buffer_pool_size and innobase_log_file_size values
were displayed incorrectly on 64-bit systems. (Bug#12701 [http://bugs.mysql.com/12701])

• InnoDB: When dropping and adding a PRIMARY KEY, if a loose index scan using only the second

MySQL Change History

1773

http://bugs.mysql.com/12267
http://bugs.mysql.com/12476
http://bugs.mysql.com/14186
http://bugs.mysql.com/14016
http://bugs.mysql.com/14056
http://bugs.mysql.com/13078
http://bugs.mysql.com/12701

part of multiple-part index was chosen, incorrect keys were created and an endless loop resulted.
(Bug#13293 [http://bugs.mysql.com/13293])

• NDB Cluster: Repeated transactions using unique index lookups could cause a memory leak
leading to error 288, Out of index operations in transaction coordinator.
(Bug#14199 [http://bugs.mysql.com/14199])

• Selecting from a table in both an outer query and a subquery could cause a server crash. (Bug#14482
[http://bugs.mysql.com/14482])

• SHOW CREATE TABLE did not display the CONNECTION string for FEDERATED tables.
(Bug#13724 [http://bugs.mysql.com/13724])

• For some stored functions dumped by mysqldump --routines, the function definition could
not be reloaded later due to a parsing error. (Bug#14723 [http://bugs.mysql.com/14723])

• For a MyISAM table originally created in MySQL 4.1, INSERT DELAYED could cause a server
crash. (Bug#13707 [http://bugs.mysql.com/13707])

• The --exit-info=65536 option conflicted with --temp-pool and caused problems with the
server's use of temporary files. Now --temp-pool is ignored if --exit-info=65536 is spe-
cified. (Bug#9551 [http://bugs.mysql.com/9551])

• ORDER BY DESC within the GROUP_CONCAT() function was not honored when used in a view.
(Bug#14466 [http://bugs.mysql.com/14466])

• A comparison with an invalid date (such as WHERE col_name > '2005-09-31') caused any
index on col_name not to be used and a string comparison for each row, resulting in slow perform-
ance. (Bug#14093 [http://bugs.mysql.com/14093])

• Within stored routines, REPLACE() could return an empty string (rather than the original string)
when no replacement was done, and IFNULL() could return garbage results. (Bug#13941
[http://bugs.mysql.com/13941])

• Inserts of too-large DECIMAL values were handled inconsistently (sometimes set to the maximum
DECIMAL value, sometimes set to 0). (Bug#13573 [http://bugs.mysql.com/13573])

• Executing REPAIR TABLE, ANALYZE TABLE, or OPTIMIZE TABLE on a view for which an
underlying table had been dropped caused a server crash. (Bug#14540
[http://bugs.mysql.com/14540])

• A prepared statement that selected from a view processed using the merge algorithm could crash on
the second execution. (Bug#14026 [http://bugs.mysql.com/14026])

• Deletes from a CSV table could cause table corruption. (Bug#14672 [http://bugs.mysql.com/14672])

• An update of a CSV table could cause a server crash. (Bug#13894 [http://bugs.mysql.com/13894])

• For queries with nested outer joins, the optimizer could choose join orders that query execution
could not handle. The fix is that now the optimizer avoids choosing such join orders. (Bug#13126
[http://bugs.mysql.com/13126])

• Starting mysqld with the --skip-innodb and --default-storage-engine=innodb
(or --default-table-type=innodb caused a server crash. (Bug#9815
[http://bugs.mysql.com/9815], re-fix of bug from 5.0.5)

• mysqlmanager did not start up correctly on Windows 2003. (Bug#14537
[http://bugs.mysql.com/14537])

MySQL Change History

1774

http://bugs.mysql.com/13293
http://bugs.mysql.com/14199
http://bugs.mysql.com/14482
http://bugs.mysql.com/13724
http://bugs.mysql.com/14723
http://bugs.mysql.com/13707
http://bugs.mysql.com/9551
http://bugs.mysql.com/14466
http://bugs.mysql.com/14093
http://bugs.mysql.com/13941
http://bugs.mysql.com/13573
http://bugs.mysql.com/14540
http://bugs.mysql.com/14026
http://bugs.mysql.com/14672
http://bugs.mysql.com/13894
http://bugs.mysql.com/13126
http://bugs.mysql.com/9815
http://bugs.mysql.com/14537

• The parser did not correctly recognize wildcards in the host part of the DEFINER user in CREATE
VIEW statements. (Bug#14256 [http://bugs.mysql.com/14256])

• Memory corruption and a server crash could be caused by statements that used a cursor and gener-
ated a result set larger than max_heap_table_size. (Bug#14210
[http://bugs.mysql.com/14210])

• mysqld_safe did not correctly start the -max version of the server (if it was present) if the -
-ledir option was given. (Bug#13774 [http://bugs.mysql.com/13774])

• The mysql parser did not properly strip the delimiter from input lines less than nine characters long.
For example, this could cause USE abc; to result in an Unknown database: abc; error.
(Bug#14358 [http://bugs.mysql.com/14358])

• Statements of the form CREATE TABLE ... SELECT ... that created a column with a multi-
byte character set could incorrectly calculate the maximum length of the column, resulting in a
Specified key was too long error. (Bug#14139 [http://bugs.mysql.com/14139])

• Some updatable views could not be updated. (Bug#14027 [http://bugs.mysql.com/14027])

• Running OPTIMIZE TABLE and other data-updating statements concurrently on an InnoDB table
could cause a crash or the following warnings in the error log: Warning: Found locks from
different threads in write: enter write_lock, Warning: Found locks
from different threads in write: start of release lock. (Bug#11704
[http://bugs.mysql.com/11704])

• Indexes for BDB tables were being limited incorrectly to 255 bytes. (Bug#14381
[http://bugs.mysql.com/14381])

• Use of col_name = VALUES(col_name) in the ON DUPLICATE KEY UPDATE clause of
an INSERT statement failed with an Column 'col_name' in field list is ambigu-
ous error. (Bug#13392 [http://bugs.mysql.com/13392])

• On Windows, the server was not ignoring hidden or system directories that Windows may have cre-
ated in the data directory, and would treat them as available databases. (Bug#4375
[http://bugs.mysql.com/4375])

• mysqldump could not dump views if the -x option was given. (Bug#12838
[http://bugs.mysql.com/12838])

• mysqlimport now issues a SET @@character_set_database = binary statement be-
fore loading data so that a file containing mixed character sets (columns with different character
sets) can be loaded properly. (Bug#12123 [http://bugs.mysql.com/12123])

• Use of the deprecated --sql-bin-update-same option caused a server crash. (Bug#12974
[http://bugs.mysql.com/12974])

• Maximum values were handled incorrectly for command-line options of type GET_LL. (Bug#12925
[http://bugs.mysql.com/12925])

• For a user that has the SELECT privilege on a view, the server erroneously was also requiring the
user to have the EXECUTE privilege at view execution time for stored functions used in the view
definition. (Bug#9505 [http://bugs.mysql.com/9505])

• Use of WITH ROLLUP PROCEDURE ANALYSE() could hang the server. (Bug#14138
[http://bugs.mysql.com/14138])

• TIMEDIFF(), ADDTIME(), and STR_TO_DATE() were not reporting that they could return
NULL, so functions that invoked them might misinterpret their results. (Bug#14009

MySQL Change History

1775

http://bugs.mysql.com/14256
http://bugs.mysql.com/14210
http://bugs.mysql.com/13774
http://bugs.mysql.com/14358
http://bugs.mysql.com/14139
http://bugs.mysql.com/14027
http://bugs.mysql.com/11704
http://bugs.mysql.com/14381
http://bugs.mysql.com/13392
http://bugs.mysql.com/4375
http://bugs.mysql.com/12838
http://bugs.mysql.com/12123
http://bugs.mysql.com/12974
http://bugs.mysql.com/12925
http://bugs.mysql.com/9505
http://bugs.mysql.com/14138
http://bugs.mysql.com/14009

[http://bugs.mysql.com/14009])

• The example configuration files supplied with MySQL distributions listed the
thread_cache_size variable as thread_cache. (Bug#13811
[http://bugs.mysql.com/13811])

• Using ALTER TABLE to add an index could fail if the operation ran out of temporary file space.
Now it automatically makes a second attempt that uses a slower method but no temporary file. In
this case, problems that occurred during the first attempt can be displayed with SHOW WARNINGS.
(Bug#12166 [http://bugs.mysql.com/12166])

• The input polling loop for Instance Manager did not sleep properly. Instance Manager used up too
much CPU as a result. (Bug#14388 [http://bugs.mysql.com/14388])

• Trying to take the logarithm of a negative value is now handled in the same fashion as division by
zero. That is, it produces a warning when ERROR_FOR_DIVISION_BY_ZERO is set, and an error
in strict mode. (Bug#13820 [http://bugs.mysql.com/13820])

• LOAD DATA INFILE would not accept the same character for both the ESCAPED BY and the
ENCLOSED BY clauses. (Bug#11203 [http://bugs.mysql.com/11203])

• The value of Last_query_cost was not updated for queries served from the query cache.
(Bug#10303 [http://bugs.mysql.com/10303])

• TIMESTAMPDIFF() returned an incorrect result if one argument but not the other was a leap year
and a date was from March or later. (Bug#13534 [http://bugs.mysql.com/13534])

• The server incorrectly accepted column definitions of the form DECIMAL(0,D) for D less than 11.
(Bug#13667 [http://bugs.mysql.com/13667])

• The displayed value for the CHARACTER_MAXIMUM_LENGTH column in the INFORMA-
TION_SCHEMA.COLUMNS table was not adjusted for multi-byte character sets. (Bug#14290
[http://bugs.mysql.com/14290])

• A bugfix in MySQL 5.0.15 caused the displayed values for the CHARACTER_MAXIMUM_LENGTH
and CHARACTER_OCTET_LENGTH columns in the INFORMATION_SCHEMA.COLUMNS table to
be reversed. (Bug#14207 [http://bugs.mysql.com/14207])

• On Windows, the value of character_sets_dir in SHOW VARIABLES output was displayed
inconsistently (using both ‘/’ and ‘\’ as pathname component separators). (Bug#14137
[http://bugs.mysql.com/14137])

• Subqueries in the FROM clause failed if the current database was INFORMATION_SCHEMA.
(Bug#14089 [http://bugs.mysql.com/14089])

• Corrected a parser precedence problem that resulted in an Unknown column ... in 'on
clause' error for some joins. (Bug#13832 [http://bugs.mysql.com/13832])

• For LIKE ... ESCAPE, an escape sequence longer than one character was accepted as valid.
Now the sequence must be empty or one character long. If the NO_BACKSLASH_ESCAPES SQL
mode is enabled, the sequence must be one character long. (Bug#12595
[http://bugs.mysql.com/12595])

• SELECT DISTINCT CHAR(col_name) returned incorrect results after SET NAMES utf8.
(Bug#13233 [http://bugs.mysql.com/13233])

• A prepared statement failed with Illegal mix of collations if the client character set was
utf8 and the statement used a table that had a character set of latin1. (Bug#12371
[http://bugs.mysql.com/12371])

MySQL Change History

1776

http://bugs.mysql.com/13811
http://bugs.mysql.com/12166
http://bugs.mysql.com/14388
http://bugs.mysql.com/13820
http://bugs.mysql.com/11203
http://bugs.mysql.com/10303
http://bugs.mysql.com/13534
http://bugs.mysql.com/13667
http://bugs.mysql.com/14290
http://bugs.mysql.com/14207
http://bugs.mysql.com/14137
http://bugs.mysql.com/14089
http://bugs.mysql.com/13832
http://bugs.mysql.com/12595
http://bugs.mysql.com/13233
http://bugs.mysql.com/12371

• Inserting a new row into an InnoDB table could cause DATETIME values already stored in the table
to change. (Bug#13900 [http://bugs.mysql.com/13900])

• The default value of query_prealloc_size was set to 8192, lower than its minimum of 16384.
The minimum has been lowered to 8192. (Bug#13334 [http://bugs.mysql.com/13334])

• The server did not take character set into account in checking the width of the
mysql.user.Password column. As a result, it could incorrectly generate long password hashes
even if the column was not long enough to hold them. (Bug#13064 [http://bugs.mysql.com/13064])

• Inserting cp932 strings into a VARCHAR column caused a server crash rather than string truncation
if the string was longer than the column definition. (Bug#12547 [http://bugs.mysql.com/12547])

• Two threads that were creating triggers on an InnoDB table at the same time could deadlock.
(Bug#12739 [http://bugs.mysql.com/12739])

• mysqladmin and mysqldump would hang on SCO OpenServer. (Bug#13238
[http://bugs.mysql.com/13238])

• Where one stored procedure called another stored procedure: If the second stored procedure gener-
ated an exception, the exception was not caught by the calling stored procedure. For example, if
stored procedure A used an EXIT statement to handle an exception, subsequent statements in A
would be executed regardless when A was called by another stored procedure B, even if an exception
that should have been handled by the EXIT was generated in A. (Bug#7049
[http://bugs.mysql.com/7049])

• Trying to create a stored routine with no database selected would crash the server. (Bug#13514
[http://bugs.mysql.com/13514], Bug#13587 [http://bugs.mysql.com/13587])

• Specifying --default-character-set=cp-932 for mysqld would cause SQL scripts con-
taining comments written using that character set to fail with a syntax error. (Bug#13487
[http://bugs.mysql.com/13487])

• Trying to compile the server using the --without-geometry option caused the build to fail.
(Bug#12991 [http://bugs.mysql.com/12991])

D.1.14. Changes in release 5.0.15 (19 October 2005: Produc-
tion)

Functionality added or changed:

• Warning: Incompatible change. For BINARY columns, the pad value and how it is handled has
changed. The pad value for inserts now is 0x00 rather than space, and there is no stripping of the
pad value for selects. For details, see Section 11.4.2, “The BINARY and VARBINARY Types”.

• Warning: Incompatible change. The CHAR() function now returns a binary string rather than a
string in the connection character set. An optional USING charset clause may be used to produce
a result in a specific character set instead. Also, arguments larger than 256 produce multiple charac-
ters. They are no longer interpreted modulo 256 to produce a single character each. These changes
may cause some incompatibilities, as noted in Section 2.11.2, “Upgrading from MySQL 4.1 to 5.0”.

• NDB Cluster: The perror utility included with the MySQL-Server RPM now provides sup-
port for the --ndb option, and so can be used to obtain error message text for MySQL Cluster error
codes. (Bug#13740 [http://bugs.mysql.com/13740])

• NDB Cluster: The ndb_mgm client now reports node startup phases automatically. (Bug#16197

MySQL Change History

1777

http://bugs.mysql.com/13900
http://bugs.mysql.com/13334
http://bugs.mysql.com/13064
http://bugs.mysql.com/12547
http://bugs.mysql.com/12739
http://bugs.mysql.com/13238
http://bugs.mysql.com/7049
http://bugs.mysql.com/13514
http://bugs.mysql.com/13587
http://bugs.mysql.com/13487
http://bugs.mysql.com/12991
http://bugs.mysql.com/13740
http://bugs.mysql.com/16197

[http://bugs.mysql.com/16197])

• When executing single-table UPDATE or DELETE queries containing an ORDER BY ... LIMIT
N clause, but not having any WHERE clause, MySQL can now take advantage of an index to read the
first N rows in the ordering specified in the query. If an index is used, only the first N records will be
read, as opposed to scanning the entire table. (Bug#12915 [http://bugs.mysql.com/12915])

• The MySQL-server RPM now explicitly assigns the mysql system user to the mysql user group
during the postinstallation process. This corrects an issue with upgrading the server on some Linux
distributions whereby a previously existing mysql user was not changed to the mysql group, res-
ulting in wrong groups for files created following the installation. (Bug#12823
[http://bugs.mysql.com/12823])

• Added the --tz-utc option to mysqldump. This option adds SET TIME_ZONE='+00:00' to
the dump file so that TIMESTAMP columns can be dumped and reloaded between servers in differ-
ent time zones and protected from changes due to daylight saving time. (Bug#13052
[http://bugs.mysql.com/13052])

• When declaring a local variable (or parameter) named password or name, and setting it with SET
(for example, SET password = ''), the new error message ERROR 42000: Variable
'nnn' must be quoted with `...`, or renamed is returned (where 'nnn' is 'pass-
word' or 'names'). This means there is a syntax conflict with special sentences like SET PASSWORD
= PASSWORD(...) (for setting a user's password) and set names default (for setting char-
set and collation).

This must be resolved either by quoting the variable name: SET `password` = ..., which
will set the local variable `password`, or by renaming the variable to something else (if setting
the user's password is the desired effect).

• The following statements now cause an implicit COMMIT:

• CREATE VIEW

• ALTER VIEW

• DROP VIEW

• CREATE TRIGGER

• DROP TRIGGER

• CREATE USER

• RENAME USER

• DROP USER

(Bug#13343 [http://bugs.mysql.com/13343])

• NDBCluster: A number of new or improved error messages have been implemented in this release
in order to provide better and more accurate diagnostic information regarding cluster configuration
issues and problems. (Bug#11739 [http://bugs.mysql.com/11739], Bug#11749
[http://bugs.mysql.com/11749], Bug#12044 [http://bugs.mysql.com/12044], Bug#12786
[http://bugs.mysql.com/12786], Bug#13197 [http://bugs.mysql.com/13197])

• NDBCluster: A new “smart” node allocation algorithm means that it is no longer necessary to use
sequential IDs for cluster nodes, and that nodes not explicitly assigned IDs should now have IDs al-
located automatically in most cases. In practical terms, this means that it is now possible to assign a
set of node IDs such as 1, 2, 4, 5 without an error being generated due to the missing 3.

MySQL Change History

1778

http://bugs.mysql.com/12915
http://bugs.mysql.com/12823
http://bugs.mysql.com/13052
http://bugs.mysql.com/13343
http://bugs.mysql.com/11739
http://bugs.mysql.com/11749
http://bugs.mysql.com/12044
http://bugs.mysql.com/12786
http://bugs.mysql.com/13197

Bug#13009 [http://bugs.mysql.com/13009])

Bugs fixed:

• Issuing STOP SLAVE after having acquired a global read lock with FLUSH TABLES WITH
READ LOCK caused a deadlock. Now STOP SLAVE is generates an error in such circumstances.
(Bug#10942 [http://bugs.mysql.com/10942])

• An expression in an ORDER BY clause failed with Unknown column 'col_name' in 'or-
der clause' if the expression referred to a column alias. (Bug#11694
[http://bugs.mysql.com/11694])

• mysqldump could not dump views. (Bug#14061 [http://bugs.mysql.com/14061])

• Using an undefined variable in an IF or SET clause inside a stored routine produced an incorrect
unknown column ... in 'order clause' error message. (Bug#13037
[http://bugs.mysql.com/13037])

• Trying to create a view dynamically using a prepared statement within a stored procedure failed with
error 1295. (Bug#13095 [http://bugs.mysql.com/13095])

• mysqldump --triggers did not quote identifiers properly if the --compatible option was
given, so the dump output could not be reloaded. (Bug#13146 [http://bugs.mysql.com/13146])

• Character set conversion was not being done for FIND_IN_SET(). (Bug#13751
[http://bugs.mysql.com/13751])

• CAST(1E+300 TO SIGNED INT) produced an incorrect result on little-endian machines.
(Bug#13344 [http://bugs.mysql.com/13344])

• Corrected a memory-copying problem for big5 values when using icc compiler on Linux IA-64
systems. (Bug#10836 [http://bugs.mysql.com/10836])

• On BSD systems, the system crypt() call could return an error for some salt values. The error was
not handled, resulting in a server crash. (Bug#13619 [http://bugs.mysql.com/13619])

• Character set file parsing during mysql_real_connect() read past the end of a memory buffer.
(Bug#6413 [http://bugs.mysql.com/6413])

• InnoDB: Queries that were executed using an index_merge union or intersection could produce
incorrect results if the underlying table used the InnoDB storage engine and had a primary key con-
taining VARCHAR members. (Bug#13484 [http://bugs.mysql.com/13484])

• CREATE DEFINER=... VIEW ... caused the server to crash when run with -
-skip-grant-tables. (Bug#13504 [http://bugs.mysql.com/13504])

• The --interactive-timeout and --slave-net-timeout options for mysqld were not
being obeyed on Mac OS X and other BSD-based platforms. (Bug#8731
[http://bugs.mysql.com/8731])

• Queries of the form (SELECT ...) ORDER BY ... were being treated as a UNION. This im-
properly resulted in only distinct values being returned (because UNION by default eliminates du-
plicate results). Also, references to column aliases in ORDER BY clauses following parenthesized
SELECT statements were not resolved properly. (Bug#7672 [http://bugs.mysql.com/7672])

• If special characters such as '_' , '%', or the escape character were included within the prefix of a
column index, LIKE pattern matching on the indexed column did not return the correct result.

MySQL Change History

1779

http://bugs.mysql.com/13009
http://bugs.mysql.com/10942
http://bugs.mysql.com/11694
http://bugs.mysql.com/14061
http://bugs.mysql.com/13037
http://bugs.mysql.com/13095
http://bugs.mysql.com/13146
http://bugs.mysql.com/13751
http://bugs.mysql.com/13344
http://bugs.mysql.com/10836
http://bugs.mysql.com/13619
http://bugs.mysql.com/6413
http://bugs.mysql.com/13484
http://bugs.mysql.com/13504
http://bugs.mysql.com/8731
http://bugs.mysql.com/7672

Bug#13046 [http://bugs.mysql.com/13046], Bug#13919 [http://bugs.mysql.com/13919])

• An UPDATE query using a join would be executed incorrectly on a replication slave. (Bug#12618
[http://bugs.mysql.com/12618])

• Server crashed during a SELECT statement, writing a message like this to the error log:

InnoDB: Error: MySQL is trying to perform a SELECT
InnoDB: but it has not locked any tables in ::external_lock()!

(Bug#12736 [http://bugs.mysql.com/12736])

• NDBCluster: ndb_mgmd would allow a node to be stopped or restarted while another node was
still starting up, which could crash the cluster. It should now not be possible to issue a node stop or
restart while a different node is still restarting, and the cluster management client issues an error if an
attempt is made to do so. (Bug#13461 [http://bugs.mysql.com/13461])

• NDBCluster: Placing multiple [TCP DEFAULT] sections in the cluster config.ini file
crashed ndb_mgmd. (The ndb_mgmd process now exits gracefully with an appropriate error mes-
sage instead.) (Bug#13611 [http://bugs.mysql.com/13611])

• NDBCluster: Trying to run ndbd as system root when connecting to a mysqld process run-
ning as the mysql system user via SHM caused the ndbd process to crash. (ndbd should now exit
gracefully with an appropriate error message instead.) (Bug#9249 [http://bugs.mysql.com/9249])

• Server may over-allocate memory when performing a FULLTEXT search for stopwords only.
(Bug#13582 [http://bugs.mysql.com/13582])

• Queries that use indexes in normal SELECT statements may cause range scans in VIEWs.
(Bug#13327 [http://bugs.mysql.com/13327])

• When calling a stored procedure with the syntax CALL schema.procedurename and no de-
fault schema selected, ERROR 1046 was displayed after the procedure returned. (Bug#13616
[http://bugs.mysql.com/13616])

• With --log-slave-updates Exec_master_log_pos of SQL thread lagged IO
(Bug#13023 [http://bugs.mysql.com/13023])

• SHOW CREATE TABLE did not display any FOREIGN KEY clauses if a temporary file could not
be created. Now SHOW CREATE TABLE displays an error message in an SQL comment if this oc-
curs. (Bug#13002 [http://bugs.mysql.com/13002])

• A column in the ON condition of a join that referenced a table in a nested join could not be resolved
if the nested join was a right join. (Bug#13597 [http://bugs.mysql.com/13597])

• A qualified reference to a view column in the HAVING clause could not be resolved. (Bug#13410
[http://bugs.mysql.com/13410])

• comp_err did not detect when multiple error messages for a language were given for an error sym-
bol. (Bug#13071 [http://bugs.mysql.com/13071])

• For XA transaction IDs (gtrid.bqual.formatID), uniqueness is supposed to be assessed
based on gtrid and bqual. MySQL was also including formatID in the uniqueness check.
(Bug#13143 [http://bugs.mysql.com/13143])

• Local (non-XA) and XA transactions are supposed to be mutually exclusive within a given client
connection, but this prohibition was not always enforced. (Bug#12935
[http://bugs.mysql.com/12935])

• mysqlcheck --all-databases --analyze --optimize failed because it also tried to

MySQL Change History

1780

http://bugs.mysql.com/13046
http://bugs.mysql.com/13919
http://bugs.mysql.com/12618
http://bugs.mysql.com/12736
http://bugs.mysql.com/13461
http://bugs.mysql.com/13611
http://bugs.mysql.com/9249
http://bugs.mysql.com/13582
http://bugs.mysql.com/13327
http://bugs.mysql.com/13616
http://bugs.mysql.com/13023
http://bugs.mysql.com/13002
http://bugs.mysql.com/13597
http://bugs.mysql.com/13410
http://bugs.mysql.com/13071
http://bugs.mysql.com/13143
http://bugs.mysql.com/12935

analyze and optimize the INFORMATION_SCHEMA tables which it can't. (Bug#13783
[http://bugs.mysql.com/13783])

• SELECT * INTO OUTFILE ... FROM INFORMATION_SCHEMA.schemata failed with
an Access denied error. (Bug#13202 [http://bugs.mysql.com/13202])

• A table or view named Ç (C-cedilla) couldn't be dropped. (Bug#13145
[http://bugs.mysql.com/13145])

• Tests containing SHOW TABLE STATUS or INFORMATION_SCHEMA failed on opnsrv6c. (Bug,
#14064, Bug#14065 [http://bugs.mysql.com/14065])

D.1.15. Changes in release 5.0.14 (Not released)
Functionality added or changed:

The limit of 255 characters on the input buffer for mysql on Windows has been lifted. The exact limit
depends on what the system allows, but can be up to 64K characters. A typical limit is 16K characters.
(Bug#12929 [http://bugs.mysql.com/12929])

Re-enabled the --delayed-inserts option for mysqldump, which now checks for each table
dumped whether its storage engine supports DELAYED inserts. (Bug#7815
[http://bugs.mysql.com/7815])

Added the myisam_stats_method, which controls whether NULL values in indexes are considered
the same or different when collecting statistics for MyISAM tables. This influences the query optimizer
as described in Section 7.4.7, “MyISAM Index Statistics Collection”. (Bug#12232
[http://bugs.mysql.com/12232])

• When an InnoDB foreign key constraint is violated, the error message now indicates which table,
column, and constraint names are involved. (Bug#3443 [http://bugs.mysql.com/3443])

• Configure-time checking for the availability of multi-byte macros and functions in the bundled
readline library. This improves handling of multi-byte character sets in the mysql client.
(Bug#3982 [http://bugs.mysql.com/3982])

• The CHAR() function now takes into account the character set and collation given by the charac-
ter_set_connection and collation_connection system variables. For an argument n
to CHAR(), the result is n mod 256 for single-byte character sets. For multi-byte character sets, n
must be a valid code point in the character set. Also, the result string from CHAR() is checked for
well-formedness. For invalid arguments, or a result that is not well-formed, MySQL generates a
warning (or, in strict SQL mode, an error). (Bug#10504 [http://bugs.mysql.com/10504])

• RENAME TABLE now works for views as well, as long as you do not try to rename a view into a
different database. (Bug#5508 [http://bugs.mysql.com/5508])

• Multiple-table UPDATE and DELETE statements that do not affect any rows are now written to the
binary log and will replicate. (Bug#13348 [http://bugs.mysql.com/13348], Bug#12844
[http://bugs.mysql.com/12844])

• Range scans can now be performed for queries on VIEWs such as column IN (<constants>)
and column BETWEEN ConstantA AND ConstantB. (Bug#13317
[http://bugs.mysql.com/13317])

Bugs fixed:

MySQL Change History

1781

http://bugs.mysql.com/13783
http://bugs.mysql.com/13202
http://bugs.mysql.com/13145
http://bugs.mysql.com/14065
http://bugs.mysql.com/12929
http://bugs.mysql.com/7815
http://bugs.mysql.com/12232
http://bugs.mysql.com/3443
http://bugs.mysql.com/3982
http://bugs.mysql.com/10504
http://bugs.mysql.com/5508
http://bugs.mysql.com/13348
http://bugs.mysql.com/12844
http://bugs.mysql.com/13317

• NDBCluster: A trigger updating the value of an AUTO_INCREMENT column in a Cluster table
would insert an error code rather than the expected value into the column. (Bug#13961
[http://bugs.mysql.com/13961])

• NDBCluster: When performing a delete of a great many (tens of thousands of) rows at once from
a Cluster table, an improperly dereferenced pointer could cause the mysqld process to crash.
(Bug#9282 [http://bugs.mysql.com/9282])

• CHECKSUM TABLE locked InnoDB tables and did not use a consistent read. (Bug#12669
[http://bugs.mysql.com/12669])

• The --skip-innodb-doublewrite option disables use of the InnoDB doublewrite buffer.
However, having this option in effect when creating a new MySQL installation prevented the buffer
from even being created, resulting in a server crash later. (Bug#13367
[http://bugs.mysql.com/13367])

• MySQL programs in binary distributions for Solaris 8/9/10 x86 systems would not run on Pentium
III machines. (Bug#6772 [http://bugs.mysql.com/6772])

• When SELECT ... FOR UPDATE or SELECT ... LOCK IN SHARE MODE for an InnoDB
table were executed from within a stored function or a trigger, they were converted to a non-locking
consistent read. (Bug#11238 [http://bugs.mysql.com/11238])

• NDB Cluster: If ndb_restore could not find a free mysqld process, it crashed. (Bug#13512
[http://bugs.mysql.com/13512])

• NDB Cluster: Receipt of several enter single user mode commands by multiple
ndb_mgmd processes within a short period of time resulted in cluster shutdown. (Bug#13053
[http://bugs.mysql.com/13053])

• NDB Cluster: Multiple ndb_mgmd processes in a cluster would not know each other's IP ad-
dresses. (Bug#12037 [http://bugs.mysql.com/12037])

• NDB Cluster: With two mgmd processes in a cluster, ndb_mgmd output for SHOW would display
the same IP address for both processes, even when they were on different hosts. (Bug#11595
[http://bugs.mysql.com/11595])

• NDB Cluster: Queries on NDB tables that are executed using index_merge/union or in-
dex_merge/intersection could produce incorrect results. (Bug#13081
[http://bugs.mysql.com/13081])

• The --replicate-rewrite-db and --replicate-do-table options did not work for
statements in which tables were aliased to names other than those listed by the options. (Bug#11139
[http://bugs.mysql.com/11139])

• After running configure with the --with-embedded-privilege-control option, the
embedded server failed to build. (Bug#13501 [http://bugs.mysql.com/13501])

• Nested handlers within stored procedures didn't work. (Bug#6127 [http://bugs.mysql.com/6127])

• The optimizer chose a less efficient execution plan for col_name BETWEEN const AND
const than for col_name = const, even though the two expressions are logically equivalent.
Now the optimizer can use the ref access method for both expressions. (Bug#13455
[http://bugs.mysql.com/13455])

• Incorrect creation of DECIMAL local variables in a stored procedure could cause a server crash.
(Bug#12589 [http://bugs.mysql.com/12589])

• Queries against a MERGE table that has a composite index could produce incorrect results.

MySQL Change History

1782

http://bugs.mysql.com/13961
http://bugs.mysql.com/9282
http://bugs.mysql.com/12669
http://bugs.mysql.com/13367
http://bugs.mysql.com/6772
http://bugs.mysql.com/11238
http://bugs.mysql.com/13512
http://bugs.mysql.com/13053
http://bugs.mysql.com/12037
http://bugs.mysql.com/11595
http://bugs.mysql.com/13081
http://bugs.mysql.com/11139
http://bugs.mysql.com/13501
http://bugs.mysql.com/6127
http://bugs.mysql.com/13455
http://bugs.mysql.com/12589

Bug#9112 [http://bugs.mysql.com/9112])

• The server was not rejecting FLOAT(M,D) or DOUBLE(M,D) columns specifications when M was
less than D. (Bug#12694 [http://bugs.mysql.com/12694])

• After running configure with the --without-server option, the distribution failed to build.
(Bug#11680 [http://bugs.mysql.com/11680], Bug#13550 [http://bugs.mysql.com/13550])

• Joins nested under NATURAL or USING joins were sometimes not initialized properly, causing a
server crash. (Bug#13545 [http://bugs.mysql.com/13545])

• Locking a view with the query cache enabled and query_cache_wlock_invalidate enabled
could cause a server crash. (Bug#13424 [http://bugs.mysql.com/13424])

• A HAVING clause that references an unqualified view column name could crash the server.
(Bug#13411 [http://bugs.mysql.com/13411])

• Comparisons involving row constructors containing constants could cause a server crash.
(Bug#13356 [http://bugs.mysql.com/13356])

• NDB Cluster: LOAD DATA INFILE with a large data file failed. (Bug#10694
[http://bugs.mysql.com/10694])

• NDB Cluster: Adding an index to a table with a large number of columns (more then 100)
crashed the storage node. (Bug#13316 [http://bugs.mysql.com/13316])

• Calling the FORMAT() function with a DECIMAL column value caused a server crash when the
value was NULL. (Bug#13361 [http://bugs.mysql.com/13361])

• Aggregate functions sometimes incorrectly were allowed in the WHERE clause of UPDATE and DE-
LETE statements. (Bug#13180 [http://bugs.mysql.com/13180])

• It was possible to create a view that executed a stored function for which you did not have the EX-
ECUTE privilege. (Bug#12812 [http://bugs.mysql.com/12812])

• BIT columns and following columns in NDB tables were corrupt when dumped by mysqldump.
(Bug#13152 [http://bugs.mysql.com/13152])

• NATURAL joins and joins with USING against a view could return NULL rather than the correct
value. (Bug#13127 [http://bugs.mysql.com/13127])

• Use of a user-defined function within the HAVING clause of a query resulted in an Unknown
column error. (Bug#11553 [http://bugs.mysql.com/11553])

• For queries for which the optimizer determined a join type of “Range checked for each record” (as
shown by EXPLAIN, the query sometimes could cause a server crash, depending on the data distri-
bution. (Bug#12291 [http://bugs.mysql.com/12291])

• For queries with DISTINCT and WITH ROLLUP, the DISTINCT should be applied after the rollup
operation, but was not always. (Bug#12887 [http://bugs.mysql.com/12887])

• The server crashed when processing a view that invoked the CONVERT_TZ() function.
(Bug#11416 [http://bugs.mysql.com/11416])

• Shared-memory connections were not working on Windows. (Bug#12723
[http://bugs.mysql.com/12723])

D.1.16. Changes in release 5.0.13 (22 September 2005: Re-

MySQL Change History

1783

http://bugs.mysql.com/9112
http://bugs.mysql.com/12694
http://bugs.mysql.com/11680
http://bugs.mysql.com/13550
http://bugs.mysql.com/13545
http://bugs.mysql.com/13424
http://bugs.mysql.com/13411
http://bugs.mysql.com/13356
http://bugs.mysql.com/10694
http://bugs.mysql.com/13316
http://bugs.mysql.com/13361
http://bugs.mysql.com/13180
http://bugs.mysql.com/12812
http://bugs.mysql.com/13152
http://bugs.mysql.com/13127
http://bugs.mysql.com/11553
http://bugs.mysql.com/12291
http://bugs.mysql.com/12887
http://bugs.mysql.com/11416
http://bugs.mysql.com/12723

lease Candidate)
Functionality added or changed:

• The syntax for CREATE VIEW and ALTER VIEW statements now includes DEFINER and SQL
SECURITY clauses for specifying the security context to be used when checking access privileges at
view invocation time. (The syntax is present in 5.0.13, but these clauses have no effect until 5.0.16.)
See Section 19.2, “CREATE VIEW Syntax”, for more information.

• The --hex-dump option for mysqldump now also applies to BIT columns.

• Added a --routines option for mysqldump that enables dumping of stored routines.
(Bug#9056 [http://bugs.mysql.com/9056])

• The connection string for FEDERATED tables now is specified using a CONNECTION table option
rather than a COMMENT table option.

• Better detection of connection timeout for replication servers on Windows allows elimination of ex-
traneous Lost connection errors in the error log. (Bug#5588 [http://bugs.mysql.com/5588])

• The counters for the Key_read_requests, Key_reads, Key_write_requests, and
Key_writes status variables were changed from unsigned long to unsigned longlong
to accommodate larger values before the variables roll over and restart from 0. (Bug#12920
[http://bugs.mysql.com/12920])

• The restriction on the use of PREPARE, EXECUTE, and DEALLOCATE PREPARE within stored
procedures was lifted. The restriction still applies to stored functions and triggers. (Bug#10975
[http://bugs.mysql.com/10975], Bug#7115 [http://bugs.mysql.com/7115], Bug#10605
[http://bugs.mysql.com/10605])

• A new command line argument was added to mysqld to ignore client character set information sent
during handshake, and use server side settings instead, to reproduce 4.0 behavior (Bug#9948
[http://bugs.mysql.com/9948]):

mysqld --skip-character-set-client-handshake

• OPTIMIZE TABLE and HANDLER now are prohibited in stored procedures and functions and in
triggers. (Bug#12953 [http://bugs.mysql.com/12953], Bug#12995 [http://bugs.mysql.com/12995])

• InnoDB: The TRUNCATE TABLE statement for InnoDB tables always resets the counter for an
AUTO_INCREMENT column now, regardless of whether there is a foreign key constraint on the ta-
ble. (Beginning with 5.0.3, TRUNCATE TABLE reset the counter, but only if there was no such con-
straint.) (Bug#11946 [http://bugs.mysql.com/11946])

• The LEAST() and GREATEST() functions used to return NULL only if all arguments were NULL.
Now they return NULL if any argument is NULL, the same as Oracle. (Bug#12791
[http://bugs.mysql.com/12791])

• Two new collations have been added for Esperanto: utf8_esperanto_ci and
ucs2_esperanto_ci.

• Reorder network startup to come after all other initialization, particularly storage engine startup
which can take a long time. This also prevents MySQL from being run on a privileged port (any port
under 1024) unless run as the root user. (Bug#11707 [http://bugs.mysql.com/11707])

• The Windows binary packages are now compiled with the Microsoft Visual Studio 2003 compiler
instead of Microsoft Visual C++ 6.0.

MySQL Change History

1784

http://bugs.mysql.com/9056
http://bugs.mysql.com/5588
http://bugs.mysql.com/12920
http://bugs.mysql.com/10975
http://bugs.mysql.com/7115
http://bugs.mysql.com/10605
http://bugs.mysql.com/9948
http://bugs.mysql.com/12953
http://bugs.mysql.com/12995
http://bugs.mysql.com/11946
http://bugs.mysql.com/12791
http://bugs.mysql.com/11707

• The binaries compiled with the Intel icc compiler are now built using icc 9.0 instead of icc 8.1. You
will have to install new versions of the Intel icc runtime libraries, which are available from here: (
http://dev.mysql.com/downloads/os-linux.html [http://dev.mysql.com/downloads/os-linux.html])

Bugs fixed:

• Incompatible change: A lock wait timeout caused InnoDB to roll back the entire current transac-
tion. Now it rolls back only the most recent SQL statement. (Bug#12308
[http://bugs.mysql.com/12308])

• The FEDERATED storage engine does not support ALTER TABLE, but no appropriate error mes-
sage was issued. (Bug#13108 [http://bugs.mysql.com/13108])

• mysqldump did not dump triggers properly. (Bug#12597 [http://bugs.mysql.com/12597])

• NDBCluster: The average row size for Cluster tables was being calculated incorrectly. This af-
fected the values shown for the Data_length and Avg_row_length columns in the output
generated by SHOW TABLE STATUS as well as the values for the data_length and
data_length/table_rows columns shown in the TABLES table of the INFORMA-
TION_SCHEMA database with respect to Cluster tables (tables using other storage engines were not
affected by this bug). (Bug#9896 [http://bugs.mysql.com/9896])

• Within a stored procedure, fetching a large number of rows in a loop using a cursor could result in a
server crash or an out of memory error. Also, values inserted within a stored procedure using a curs-
or were interpreted as latin1 even if character set variables had been set to a different character
set. (Bug#6513 [http://bugs.mysql.com/6513], Bug#9819 [http://bugs.mysql.com/9819])

• For a server compiled with yaSSL, clients that used MySQL Connector/J were not able to establish
SSH connections. (Bug#13029 [http://bugs.mysql.com/13029])

• When used in view definitions, DAYNAME(expr), DAYOFWEEK(expr), WEEKDAY(expr)
were incorrectly treated as though the expression was TO_DAYS(expr) or
TO_DAYS(TO_DAYS(expr)). (Bug#13000 [http://bugs.mysql.com/13000])

• Incorrect implicit nesting of joins caused the parser to fail on queries of the form SELECT ...
FROM t1 JOIN t2 JOIN t3 ON t1.t1col = t3.t3col with an Unknown column
't1.t1col' in 'on clause' error. (Bug#12943 [http://bugs.mysql.com/12943])

• NDB: A cluster shutdown following the crash of a data node would fail to terminate the remaining
node processes, even though ndb_mgm showed the shutdown request as having been completed.
(Bug#10938 [http://bugs.mysql.com/10938], Bug#9996 [http://bugs.mysql.com/9996], Bug#11623
[http://bugs.mysql.com/11623])

• A column that can be NULL was not handled properly for WITH ROLLUP in a subquery or view.
(Bug#12885 [http://bugs.mysql.com/12885])

• Within a transaction, the following statements now cause an implicit commit: CREATE
FUNCTION, DROP FUNCTION, DROP PROCEDURE, ALTER FUNCTION, ALTER
PROCEDURE, CREATE PROCEDURE. This corrects a problem where these statements followed by
ROLLBACK might not be replicated properly. (Bug#12870 [http://bugs.mysql.com/12870])

• Simultaneous execution of DML statements and CREATE TRIGGER or DROP TRIGGER state-
ments on the same table could cause server crashes or errors. (Bug#12704
[http://bugs.mysql.com/12704])

• If a stored function invoked from a SELECT failed with an error, it could cause the client connection
to be dropped. Now such errors generate warnings instead so as not to interrupt the SELECT.

MySQL Change History

1785

http://dev.mysql.com/downloads/os-linux.html
http://dev.mysql.com/downloads/os-linux.html
http://bugs.mysql.com/12308
http://bugs.mysql.com/13108
http://bugs.mysql.com/12597
http://bugs.mysql.com/9896
http://bugs.mysql.com/6513
http://bugs.mysql.com/9819
http://bugs.mysql.com/13029
http://bugs.mysql.com/13000
http://bugs.mysql.com/12943
http://bugs.mysql.com/10938
http://bugs.mysql.com/9996
http://bugs.mysql.com/11623
http://bugs.mysql.com/12885
http://bugs.mysql.com/12870
http://bugs.mysql.com/12704

Bug#12379 [http://bugs.mysql.com/12379])

• A concurrency problem for CREATE ... SELECT could cause a server crash. (Bug#12845
[http://bugs.mysql.com/12845])

• The server incorrectly generated an Unknown table error message when for attempts to drop
tables in the INFORMATION_SCHEMA database. Now it issues an Access denied message.
(Bug#9846 [http://bugs.mysql.com/9846])

• The server allowed privileges to be granted explicitly for the INFORMATION_SCHEMA database.
Such privileges are always implicit and should not be grantable. (Bug#10734
[http://bugs.mysql.com/10734])

• The server allowed TEMPORARY tables and stored procedures to be created in the INFORMA-
TION_SCHEMA database. (Bug#9683 [http://bugs.mysql.com/9683], Bug#10708
[http://bugs.mysql.com/10708])

• The server failed to disallow SET AUTOCOMMIT in stored functions and triggers. It is allowed to
change the value of AUTOCOMMIT in stored procedures, but a runtime error might occur if the pro-
cedure is invoked from a stored function or trigger. (Bug#12712 [http://bugs.mysql.com/12712])

• Using an INOUT parameter with a DECIMAL data type in a stored procedure caused a server crash.
(Bug#12979 [http://bugs.mysql.com/12979])

• Performing an IS NULL check on the MIN() or MAX() of an indexed column in a complex query
could produce incorrect results. (Bug#12695 [http://bugs.mysql.com/12695])

• The mysql.server script contained incorrect path for the libexec directory. (Bug#12550
[http://bugs.mysql.com/12550])

• The NDB START BACKUP command could be interrupted by a SHOW command. (Bug#13054
[http://bugs.mysql.com/13054])

• The LIKE ... ESCAPE syntax produced invalid results when escape character was larger than
one byte. (Bug#12611 [http://bugs.mysql.com/12611])

• A client connection thread cleanup problem caused the server to crash when closing the connection
if the binary log was enabled. (Bug#12517 [http://bugs.mysql.com/12517])

• Using AS to rename a column selected from a view in a subquery made it not possible to refer to that
column in the outer query. (Bug#12993 [http://bugs.mysql.com/12993])

• The character_set_system system variable could not be selected with SELECT
@@character_set_system. (Bug#11775 [http://bugs.mysql.com/11775])

• A view-creation statement of the form CREATE VIEW name AS SELECT ... FROM
tbl_name AS name failed with a Not unique table/alias: 'name' error. (Bug#6808
[http://bugs.mysql.com/6808])

• UNION [DISTINCT] was not removing all duplicates for multi-byte character values.
(Bug#12891 [http://bugs.mysql.com/12891])

• Multiplying a DECIMAL value within a loop in a stored routine could incorrectly result in a value of
NULL. (Bug#12938 [http://bugs.mysql.com/12938])

• mysql and mysqldump were ignoring the --defaults-extra-file option. (Bug#12917
[http://bugs.mysql.com/12917])

• Columns named in the USING() clause of JOIN ... USING() were incorrectly resolved in

MySQL Change History

1786

http://bugs.mysql.com/12379
http://bugs.mysql.com/12845
http://bugs.mysql.com/9846
http://bugs.mysql.com/10734
http://bugs.mysql.com/9683
http://bugs.mysql.com/10708
http://bugs.mysql.com/12712
http://bugs.mysql.com/12979
http://bugs.mysql.com/12695
http://bugs.mysql.com/12550
http://bugs.mysql.com/13054
http://bugs.mysql.com/12611
http://bugs.mysql.com/12517
http://bugs.mysql.com/12993
http://bugs.mysql.com/11775
http://bugs.mysql.com/6808
http://bugs.mysql.com/12891
http://bugs.mysql.com/12938
http://bugs.mysql.com/12917

case-sensitive fashion. (Bug#13067 [http://bugs.mysql.com/13067])

• Local variables in stored routines were not always initialized correctly. (Bug#13133
[http://bugs.mysql.com/13133])

• SHOW FIELDS FROM schemaname.viewname caused error 1046 when no default schema
was set. (Bug#12905 [http://bugs.mysql.com/12905])

• The value of character_set_results could be set to NULL, but returned the string "NULL"
when retrieved. (Bug#12363 [http://bugs.mysql.com/12363])

• InnoDB: Limit recursion depth to 200 in deadlock detection to avoid running out of stack space.
(Bug#12588 [http://bugs.mysql.com/12588])

• GROUP_CONCAT() ignored an empty string if it was the first value to occur in the result.
(Bug#12863 [http://bugs.mysql.com/12863])

• Outer join elimination was erroneously applied for some queries that used a NOT BETWEEN condi-
tion, an IN(value_list) condition, or an IF() condition. (Bug#12101
[http://bugs.mysql.com/12101], Bug#12102 [http://bugs.mysql.com/12102])

• SHOW FIELDS truncated the TYPE column to 40 characters. (Bug#7142
[http://bugs.mysql.com/7142])

• Use of PREPARE and EXECUTE with a statement that selected from a view in a subquery could
cause a server crash. (Bug#12651 [http://bugs.mysql.com/12651])

• On HP-UX 11.x (PA-RISC), the -L option caused mysqlimport to crash. (Bug#12958
[http://bugs.mysql.com/12958])

• If the binary log is enabled, execution of a stored procedure that modifies table data and uses user
variables could cause a server crash or incorrect information to be written to the binary log.
(Bug#12637 [http://bugs.mysql.com/12637])

• Queries with subqueries, where the inner subquery uses the range or index_merge access meth-
od, could return incorrect results. (Bug#12720 [http://bugs.mysql.com/12720])

• After changing the character set with SET CHARACTER SET, the result of the
GROUP_CONCAT() function was not converted to the proper character set. (Bug#12829
[http://bugs.mysql.com/12829])

• A bug introduced in MySQL 5.0.12 caused SHOW TABLE STATUS to display an
Auto_increment value of 0 for InnoDB tables. (Bug#12973 [http://bugs.mysql.com/12973])

• Foreign keys were not properly enforced in TEMPORARY tables. Foreign keys now are disallowed in
TEMPORARY tables. (Bug#12084 [http://bugs.mysql.com/12084])

• Replication of LOAD DATA INFILE failed between systems that use different pathname syntax
(such as delimiter characters). (Bug#11815 [http://bugs.mysql.com/11815])

• Within a stored procedure, a server crash was caused by assigning to a VARCHAR INOUT parameter
the value of an expression that included the variable itself. (For example, SET c = c.)
(Bug#12849 [http://bugs.mysql.com/12849])

• SELECT ... JOIN ... ON ... JOIN ... USING caused a server crash. (Bug#12977
[http://bugs.mysql.com/12977])

• Using GROUP BY when selecting from a view in some cases could cause incorrect results to be re-
turned. (Bug#12922 [http://bugs.mysql.com/12922])

MySQL Change History

1787

http://bugs.mysql.com/13067
http://bugs.mysql.com/13133
http://bugs.mysql.com/12905
http://bugs.mysql.com/12363
http://bugs.mysql.com/12588
http://bugs.mysql.com/12863
http://bugs.mysql.com/12101
http://bugs.mysql.com/12102
http://bugs.mysql.com/7142
http://bugs.mysql.com/12651
http://bugs.mysql.com/12958
http://bugs.mysql.com/12637
http://bugs.mysql.com/12720
http://bugs.mysql.com/12829
http://bugs.mysql.com/12973
http://bugs.mysql.com/12084
http://bugs.mysql.com/11815
http://bugs.mysql.com/12849
http://bugs.mysql.com/12977
http://bugs.mysql.com/12922

• myisampack did not properly pack BLOB values larger than 224 bytes. (Bug#4214
[http://bugs.mysql.com/4214])

• Incorrect results could be returned from a view processed using a temporary table. (Bug#12941
[http://bugs.mysql.com/12941])

• The server crashed when one thread resized the query cache while another thread was using it.
(Bug#12848 [http://bugs.mysql.com/12848])

• mysqld_multi now quotes arguments on command lines that it constructs to avoid problems with
arguments that contain shell metacharacters. (Bug#11280 [http://bugs.mysql.com/11280])

• InnoDB: A consistent read could return inconsistent results due to a bug introduced in MySQL
5.0.5. (Bug#12947 [http://bugs.mysql.com/12947])

• Deadlock occurred when several account management statements were run (particularly between
FLUSH PRIVILEGES/SET PASSWORD and GRANT/REVOKE statements). (Bug#12423
[http://bugs.mysql.com/12423])

• The Windows installer made a change to one of the mysql.proc table files, causing stored routine
functionality to be compromised. The Windows installer now never overwrites files in the MySQL
data directory. During an upgrade from one version to another, a file in the data directory will not be
overwritten even if it has not been modified since it was put there by an older installer.

If you have already lost access to stored routines because of this problem, you can get them back us-
ing the following procedure:

• Stop the server.

• In the mysql\data directory under your MySQL installation directory, and replace the
proc.frm file with corresponding file from the version of MySQL that you were using before
you upgraded.

• Start the server

• Start the mysql command-line client (use the root account or another account that has full
database privileges) and execute the mysql_fix_privilege_tables.sql script that up-
grades the grant tables to the current structure. Instructions for doing this are given in Sec-
tion 5.6.1, “mysql_fix_privilege_tables — Upgrade MySQL System Tables”.

After this, all stored routine functionality should work. (Bug#12820 [http://bugs.mysql.com/12820])

• On Windows, the server was preventing tables from being created if the table name was a prefix of a
forbidden name. For example, nul is a forbidden name because it's the same as a Windows device
name, but a table with the name of n or nu was being forbidden as well. (Bug#12325
[http://bugs.mysql.com/12325])

• InnoDB was too permissive with LOCK TABLE ... READ LOCAL and allowed new inserts into
the table. Now READ LOCAL is equivalent to READ for InnoDB. This will cause slightly more
locking in mysqldump, but makes InnoDB table dumps consistent with MyISAM table dumps.
(Bug#12410 [http://bugs.mysql.com/12410])

• Use of the mysql client HELP command from within a stored routine caused a “packets out of or-
der” error and a lost connection. Now HELP is detected and disallowed within stored routines.
(Bug#12490 [http://bugs.mysql.com/12490])

• Use of yaSSL for a secure client connection caused LOAD DATA LOCAL INFILE to fail.
(Bug#11286 [http://bugs.mysql.com/11286])

MySQL Change History

1788

http://bugs.mysql.com/4214
http://bugs.mysql.com/12941
http://bugs.mysql.com/12848
http://bugs.mysql.com/11280
http://bugs.mysql.com/12947
http://bugs.mysql.com/12423
http://bugs.mysql.com/12820
http://bugs.mysql.com/12325
http://bugs.mysql.com/12410
http://bugs.mysql.com/12490
http://bugs.mysql.com/11286

• SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION no longer qualify the routine
name with the database name, for consistency with the behavior of SHOW CREATE TABLE.
(Bug#10362 [http://bugs.mysql.com/10362])

• A UNION of long utf8 VARCHAR columns was sometimes returned as a column with a LONG-
TEXT data type rather than VARCHAR. This could prevent such queries from working at all if selec-
ted into a MEMORY table because the MEMORY storage engine does not support the TEXT data types.
(Bug#12537 [http://bugs.mysql.com/12537])

• If a client has opened an InnoDB table for which the .ibd file is missing, InnoDB would not hon-
or a DROP TABLE statement for the table. (Bug#12852 [http://bugs.mysql.com/12852])

• ALTER TABLE ... DISCARD TABLESPACE for non-InnoDB table caused the client to lose
the connection. (The server was not returning the error properly.) (Bug#12207
[http://bugs.mysql.com/12207])

• DO IFNULL(NULL, NULL) and SELECT CAST(IFNULL(NULL, NULL) AS DECIMAL)
caused a server crash. (Bug#12841 [http://bugs.mysql.com/12841])

• When using a cursor, a SELECT statement that uses a GROUP BY clause could return incorrect res-
ults. (Bug#11904 [http://bugs.mysql.com/11904])

• The SYSDATE() function now returns the time at which it was invoked. In particular, within a
stored routine or trigger, SYSDATE() returns the time at which it executes, not the time at which
the stored routine or triggering statement began to execute. (Bug#12480
[http://bugs.mysql.com/12480])

• CREATE VIEW inside a stored procedure caused a server crash if the table underlying the view had
been deleted. (Bug#12468 [http://bugs.mysql.com/12468])

• A memory leak resulting from repeated SELECT ... INTO statements inside a stored procedure
could cause the server to crash. (Bug#11333 [http://bugs.mysql.com/11333])

D.1.17. Changes in release 5.0.12 (02 September 2005)
Functionality added or changed:

• Incompatible change: Beginning with MySQL 5.0.12, natural joins and joins with USING, includ-
ing outer join variants, are processed according to the SQL:2003 standard. The changes include
elimination of redundant output columns for NATURAL joins and joins specified with a USING
clause and proper ordering of output columns. (Bug#6136 [http://bugs.mysql.com/6136], Bug#6276
[http://bugs.mysql.com/6276], Bug#6489 [http://bugs.mysql.com/6489], Bug#6495
[http://bugs.mysql.com/6495], Bug#6558 [http://bugs.mysql.com/6558], Bug#9067
[http://bugs.mysql.com/9067], Bug#9978 [http://bugs.mysql.com/9978], Bug#10428
[http://bugs.mysql.com/10428], Bug#10646 [http://bugs.mysql.com/10646], Bug#10972
[http://bugs.mysql.com/10972].) The precedence of the comma operator also now is lower compared
to JOIN. (Bug#4789 [http://bugs.mysql.com/4789], Bug#12065 [http://bugs.mysql.com/12065],
Bug#13551 [http://bugs.mysql.com/13551].)

These changes make MySQL more compliant with standard SQL. However, they can result in differ-
ent output columns for some joins. Also, some queries that appeared to work correctly prior to 5.0.12
must be rewritten to comply with the standard. For details about the scope of the changes and ex-
amples that show what query rewrites are necessary, see Section 13.2.7.1, “JOIN Syntax”.

• Recursive triggers are detected and disallowed. Also, within a stored function or trigger, it is not al-
lowable to modify a table that is already being used (for reading or writing) by the statement that in-

MySQL Change History

1789

http://bugs.mysql.com/10362
http://bugs.mysql.com/12537
http://bugs.mysql.com/12852
http://bugs.mysql.com/12207
http://bugs.mysql.com/12841
http://bugs.mysql.com/11904
http://bugs.mysql.com/12480
http://bugs.mysql.com/12468
http://bugs.mysql.com/11333
http://bugs.mysql.com/6136
http://bugs.mysql.com/6276
http://bugs.mysql.com/6489
http://bugs.mysql.com/6495
http://bugs.mysql.com/6558
http://bugs.mysql.com/9067
http://bugs.mysql.com/9978
http://bugs.mysql.com/10428
http://bugs.mysql.com/10646
http://bugs.mysql.com/10972
http://bugs.mysql.com/4789
http://bugs.mysql.com/12065
http://bugs.mysql.com/13551

voked the function or trigger. (Bug#11896 [http://bugs.mysql.com/11896], Bug#12644
[http://bugs.mysql.com/12644])

• SHOW TABLE STATUS for a view now shows VIEW in uppercase, consistent with SHOW
TABLES and INFORMATION_SCHEMA. (Bug#5501 [http://bugs.mysql.com/5501])

• An optimizer estimate of zero rows for a non-empty InnoDB table used in a left or right join could
cause incomplete rollback for the table. (Bug#12779 [http://bugs.mysql.com/12779])

• Calls to stored procedures were written to the binary log even within transactions that were rolled
back, causing them to be executed on replication slaves. (Bug#12334
[http://bugs.mysql.com/12334])

• Interleaved execution of stored procedures and functions could be written to the binary log incor-
rectly, causing replication slaves to get out of sync. (Bug#12335 [http://bugs.mysql.com/12335])

• A query of the form SHOW TABLE STATUS FROM db_name WHERE name IN (se-
lect_query) would crash the server. (Bug#12636 [http://bugs.mysql.com/12636])

• Users created using an IP address or other alias rather than a hostname listed in /etc/hosts could
not set their own passwords. (Bug#12302 [http://bugs.mysql.com/12302])

• Using DESCRIBE on a view after renaming a column in one of the view's base tables caused the
server to crash. (Bug#12533 [http://bugs.mysql.com/12533])

• SHOW OPEN TABLES now supports FROM and LIKE clauses. (Bug#12183
[http://bugs.mysql.com/12183])

• SHOW TABLE STATUS FROM INFORMATION_SCHEMA now sorts output by table name the
same as it does for other databases. (Bug#12315 [http://bugs.mysql.com/12315])

• SHOW ENGINE INNODB STATUS now can display longer query strings. (Bug#7819
[http://bugs.mysql.com/7819])

• Added the SLEEP() function, which pauses for the number of seconds given by its argument.
(Bug#6760 [http://bugs.mysql.com/6760])

• Trying to drop the default keycache by setting @@global.key_buffer_size to zero now re-
turns a warning that the default keycache cannot be dropped. (Bug#10473
[http://bugs.mysql.com/10473])

• The stability of cursors when used with InnoDB tables was greatly improved. (Bug#11832
[http://bugs.mysql.com/11832], Bug#12243 [http://bugs.mysql.com/12243], Bug#11309
[http://bugs.mysql.com/11309])

• It is no longer possible to issue FLUSH commands from within stored functions or triggers. See Sec-
tion I.1, “Restrictions on Stored Routines and Triggers”, for details. (Bug#12280
[http://bugs.mysql.com/12280], Bug#12307 [http://bugs.mysql.com/12307])

• INFORMATION_SCHEMA objects are now reported as a SYSTEM VIEW table type. (Bug#11711
[http://bugs.mysql.com/11711])

Bugs fixed:

• CHECKSUM TABLE command returned incorrect results for tables with deleted rows. After upgrad-
ing, users who used stored checksum information to detect table changes should rebuild their check-
sum data. (Bug#12296 [http://bugs.mysql.com/12296])

MySQL Change History

1790

http://bugs.mysql.com/11896
http://bugs.mysql.com/12644
http://bugs.mysql.com/5501
http://bugs.mysql.com/12779
http://bugs.mysql.com/12334
http://bugs.mysql.com/12335
http://bugs.mysql.com/12636
http://bugs.mysql.com/12302
http://bugs.mysql.com/12533
http://bugs.mysql.com/12183
http://bugs.mysql.com/12315
http://bugs.mysql.com/7819
http://bugs.mysql.com/6760
http://bugs.mysql.com/10473
http://bugs.mysql.com/11832
http://bugs.mysql.com/12243
http://bugs.mysql.com/11309
http://bugs.mysql.com/12280
http://bugs.mysql.com/12307
http://bugs.mysql.com/11711
http://bugs.mysql.com/12296

• A data type of CHAR BINARY was not recognized as valid for stored routine parameters.
(Bug#9048 [http://bugs.mysql.com/9048])

• SET GLOBAL TRANSACTION ISOLATION LEVEL was not working. (Bug#11207
[http://bugs.mysql.com/11207])

• NDB Cluster: Corrected the parsing of the CLUSTERLOG command by ndb_mgm to allow mul-
tiple items. (Bug#12833 [http://bugs.mysql.com/12833])

• NDB Cluster: Improved error messages related to filesystem issues. (Bug#11218
[http://bugs.mysql.com/11218])

• NDB Cluster: When a schema was detected to be corrupt, ndb neglected to close it, resulting in a
“file already open” error if the schema was opened again later. written. (Bug#12027
[http://bugs.mysql.com/12027])

• NDB Cluster: When it could not copy a fragment, ndbd exited without printing a message about
the condition to the error log. Now the message is written. (Bug#12900
[http://bugs.mysql.com/12900])

• NDB Cluster: When a disk full condition occurred, ndbd exited without printing a message
about the condition to the error log. Now the message is written. (Bug#12716
[http://bugs.mysql.com/12716])

• mysql_fix_privilege_tables.sql was missing a comma, causing a syntax error when ex-
ecuted. (Bug#12705 [http://bugs.mysql.com/12705])

• STRCMP() was not handled correctly in views. (Bug#12489 [http://bugs.mysql.com/12489])

• NDB Cluster: Bad values in config.ini caused ndb_mdmd to crash. (Bug#12043
[http://bugs.mysql.com/12043])

• TRUNCATE TABLE did not work with TEMPORARY InnoDB tables. (Bug#11816
[http://bugs.mysql.com/11816])

• Built-in commands for the mysql client, such as delimiter and \d are now always parsed with-
in files that are read using the \. and source commands. (Bug#11523
[http://bugs.mysql.com/11523])

• ALTER TABLE db_name.t RENAME t did not move the table to default database unless the
new name was qualified with the database name. (Bug#11493 [http://bugs.mysql.com/11493])

• It was not possible to create a stored function with a spatial return value data type. (Bug#10499
[http://bugs.mysql.com/10499])

• The only valid values for the PACK_KEYS table option are 0 and 1, but other values were being ac-
cepted. (Bug#10056 [http://bugs.mysql.com/10056])

• If a DROP DATABASE fails on a master server due to the presence of a non-database file in the
database directory, the master have the database tables deleted, but not the slaves. To deal with
failed database drops, we now write DROP TABLE statements to the binary log for the tables so that
they are dropped on slaves. (Bug#4680 [http://bugs.mysql.com/4680])

• Improper use of loose index scan in InnoDB sometimes caused incorrect query results. (Bug#12672
[http://bugs.mysql.com/12672])

• DELETE or UPDATE for an indexed MyISAM table could fail. This was due to a change in end-
space comparison behavior from 4.0 to 4.1. (Bug#12565 [http://bugs.mysql.com/12565])

MySQL Change History

1791

http://bugs.mysql.com/9048
http://bugs.mysql.com/11207
http://bugs.mysql.com/12833
http://bugs.mysql.com/11218
http://bugs.mysql.com/12027
http://bugs.mysql.com/12900
http://bugs.mysql.com/12716
http://bugs.mysql.com/12705
http://bugs.mysql.com/12489
http://bugs.mysql.com/12043
http://bugs.mysql.com/11816
http://bugs.mysql.com/11523
http://bugs.mysql.com/11493
http://bugs.mysql.com/10499
http://bugs.mysql.com/10056
http://bugs.mysql.com/4680
http://bugs.mysql.com/12672
http://bugs.mysql.com/12565

• Joins on VARCHAR columns of different lengths could produce incorrect results. (Bug#11398
[http://bugs.mysql.com/11398])

• A “Duplicate column name” error no longer occurs when selecting from a view defined as SELECT
* from a join that uses a USING clause on tables that have a common column name. (Bug#6558
[http://bugs.mysql.com/6558])

• Invocations of the SLEEP() function incorrectly could get optimized away for statements in which
it occurs. Statements containing SLEEP() incorrectly could be stored in the query cache.
(Bug#12689 [http://bugs.mysql.com/12689])

• NDB Cluster: An ALTER TABLE command caused loss of data stored prior to the issuing of the
command. (Bug#12118 [http://bugs.mysql.com/12118])

• Query cache is switched off if a thread (connection) has tables locked. This prevents invalid results
where the locking thread inserts values between a second thread connecting and selecting from the
table. (Bug#12385 [http://bugs.mysql.com/12385])

• NOW(), CURRENT_TIME and values generated by timestamp columns are now constant for the dur-
ation of a stored function or trigger. This prevents the breaking of statements-based replication.
(Bug#12480 [http://bugs.mysql.com/12480], Bug#12481 [http://bugs.mysql.com/12481])

• Some statements executed on a master server caused the SQL thread on a slave to run out of
memory. (Bug#12532 [http://bugs.mysql.com/12532])

• A SELECT DISTINCT query with a constant value for one of the columns would return only a
single row. (Bug#12625 [http://bugs.mysql.com/12625])

• NDB Cluster: Cluster failed to take character set data into account when recomputing hashes
(and thus could not locate records for updating or deletion) following a configuration change and
node restart. (Bug#12220 [http://bugs.mysql.com/12220])

• NDB Cluster: Wrong error message displayed when cluster management server closed port while
mysqld was connecting. (Bug#10950 [http://bugs.mysql.com/10950])

• A view was allowed to depend on a function that referred to a temporary table. (Bug#10970
[http://bugs.mysql.com/10970])

• Prepared statement parameters could cause errors in the binary log if the character set was cp932.
(Bug#11338 [http://bugs.mysql.com/11338])

• The CREATE_OPTIONS column of INFORMATION_SCHEMA.TABLES showed incorrect options
for tables in INFORMATION_SCHEMA. (Bug#12397 [http://bugs.mysql.com/12397])

• MEMORY tables using B-Tree index on 64-bit platforms could produce false table is full errors.
(Bug#12460 [http://bugs.mysql.com/12460])

• Issuing FLUSH INSTANCES followed by STOP INSTANCE caused instance manager to crash.
(Bug#10957 [http://bugs.mysql.com/10957])

• Duplicate instructions in stored procedures resulted in incorrect execution when the optimizer optim-
ized the duplicate code away. (Bug#12168 [http://bugs.mysql.com/12168])

• SHOW TABLES FROM returned wrong error message if the schema specified did not exist.
(Bug#12591 [http://bugs.mysql.com/12591])

• The ROW() function returned an incorrect result when comparison involved NULL values.
(Bug#12509 [http://bugs.mysql.com/12509])

MySQL Change History

1792

http://bugs.mysql.com/11398
http://bugs.mysql.com/6558
http://bugs.mysql.com/12689
http://bugs.mysql.com/12118
http://bugs.mysql.com/12385
http://bugs.mysql.com/12480
http://bugs.mysql.com/12481
http://bugs.mysql.com/12532
http://bugs.mysql.com/12625
http://bugs.mysql.com/12220
http://bugs.mysql.com/10950
http://bugs.mysql.com/10970
http://bugs.mysql.com/11338
http://bugs.mysql.com/12397
http://bugs.mysql.com/12460
http://bugs.mysql.com/10957
http://bugs.mysql.com/12168
http://bugs.mysql.com/12591
http://bugs.mysql.com/12509

• Views with multiple UNION and UNION ALL produced incorrect results. (Bug#10624
[http://bugs.mysql.com/10624])

• Stored procedures with particularly long loops could crash server due to memory leak. (Bug#12297
[http://bugs.mysql.com/12297], Bug#11247 [http://bugs.mysql.com/11247])

• Trigger and stored procedure execution could break replication. (Bug#12482
[http://bugs.mysql.com/12482])

• A server crash could result from an update of a view defined as a join, even though the update up-
dated only a single table. (Bug#12569 [http://bugs.mysql.com/12569])

• On Windows when the --innodb_buffer_pool_awe_mem_mb option has been given, the
server detects whether AWE support is available and has been compiled into the server, and displays
an appropriate error message if not. (Bug#6581 [http://bugs.mysql.com/6581])

• The NUMERIC_SCALE column of the INFORMATION_SCHEMA.COLUMNS table should be re-
turned as 0 for integer columns. It was being returned as NULL. (Bug#12301
[http://bugs.mysql.com/12301])

• The COLUMN_DEFAULT column of the INFORMATION_SCHEMA.COLUMNS table should be re-
turned as NULL if a column has no default value. An empty string was being returned if the column
was defined as NOT NULL. (Bug#12518 [http://bugs.mysql.com/12518])

• Slave I/O threads were considered to be in the running state when launched (rather than after suc-
cessfully connecting to the master server), resulting in incorrect SHOW SLAVE STATUS output.
(Bug#10780 [http://bugs.mysql.com/10780])

• Column names in subqueries must be unique, but were not being checked for uniqueness.
(Bug#11864 [http://bugs.mysql.com/11864])

• On Windows, the server could crash during shutdown if both replication threads and normal client
connection threads were active. (Bug#11796 [http://bugs.mysql.com/11796])

• Some subqueries of the form SELECT ... WHERE ROW(...) IN (subquery) were being
handled incorrectly. (Bug#11867 [http://bugs.mysql.com/11867])

• Selecting from a view after INSERT statements for the view's underlying table yielded different res-
ults than subsequent selects. (Bug#12382 [http://bugs.mysql.com/12382])

• The mysql_info() C API function could return incorrect data when executed as part of a multi-
statement that included a mix of statements that do and do not return information. (Bug#11688
[http://bugs.mysql.com/11688])

• When restoring INFORMATION_SCHEMA as the default database after failing to execute a stored
procedure in an inaccessible database, the server returned a spurious ERROR 42000: Unknown
database 'information_schema' message. (Bug#12318 [http://bugs.mysql.com/12318])

• Renamed the rest() macro in my_list.h to list_rest() to avoid name clashes with user
code. (Bug#12327 [http://bugs.mysql.com/12327])

• DATE_ADD() and DATE_SUB() were converting invalid dates to NULL in TRADITIONAL SQL
mode rather than rejecting them with an error. (Bug#10627 [http://bugs.mysql.com/10627])

• A trigger that included a SELECT statement could cause a server crash. (Bug#11587
[http://bugs.mysql.com/11587])

• An incorrect conversion from double to ulonglong caused indexes not to be used for BDB
tables on HP-UX. (Bug#10802 [http://bugs.mysql.com/10802])

MySQL Change History

1793

http://bugs.mysql.com/10624
http://bugs.mysql.com/12297
http://bugs.mysql.com/11247
http://bugs.mysql.com/12482
http://bugs.mysql.com/12569
http://bugs.mysql.com/6581
http://bugs.mysql.com/12301
http://bugs.mysql.com/12518
http://bugs.mysql.com/10780
http://bugs.mysql.com/11864
http://bugs.mysql.com/11796
http://bugs.mysql.com/11867
http://bugs.mysql.com/12382
http://bugs.mysql.com/11688
http://bugs.mysql.com/12318
http://bugs.mysql.com/12327
http://bugs.mysql.com/10627
http://bugs.mysql.com/11587
http://bugs.mysql.com/10802

• myisampack failed to delete .TMD temporary files when run with -T option. (Bug#12235
[http://bugs.mysql.com/12235])

• Added portability check for Intel compiler to address a problem compiling InnoDB code.
(Bug#11510 [http://bugs.mysql.com/11510])

• XA allowed two active transactions to be started with the same XID. (Bug#12162
[http://bugs.mysql.com/12162])

• Concatenating USER() or DATEBASE() with a column produced invalid results. (Bug#12351
[http://bugs.mysql.com/12351])

• Creating a view that included the TIMESTAMPDIFF() function resulted in a invalid view.
(Bug#12298 [http://bugs.mysql.com/12298])

• Comparison of InnoDB multi-part primary keys that include VARCHAR columns can result in incor-
rect results. (Bug#12340 [http://bugs.mysql.com/12340])

• For PKG installs on Mac OS X, the preinstallation and postinstallation scripts were being run only
for new installations and not for upgrade installations, resulting in an incomplete installation process.
(Bug#11380 [http://bugs.mysql.com/11380])

• Using cursors and nested queries for the same table, corrupted results were returned for the outer
query. (Bug#11909 [http://bugs.mysql.com/11909])

• User variables were not automatically cast for comparisons, causing queries to fail if the column and
connection character sets differed. Now when mixing strings with different character sets but the
same coercibility, allow conversion if one character set is a superset of the other. (Bug#10892
[http://bugs.mysql.com/10892])

• Selecting from a view defined as a join over many tables could result in a server crash due to miscal-
culation of the number of conditions in the WHERE clause. (Bug#12470
[http://bugs.mysql.com/12470])

• Pathame values for options such as ---basedir or --datadir didn't work on Japanese Win-
dows machines for directory names containing multi-byte characters having a second byte of 0x5C
(‘\’). (Bug#5439 [http://bugs.mysql.com/5439])

• A race condition between server threads could cause a crash if one thread deleted a stored routine
while another thread was executing a stored routine. (Bug#12228 [http://bugs.mysql.com/12228])

• Mishandling of comparison for rows containing NULL values against rows produced by an IN sub-
query could cause a server crash. (Bug#12392 [http://bugs.mysql.com/12392])

• Inserting NULL into a GEOMETRY column for a table that has a trigger could result in a server crash
if the table was subsequently dropped. (Bug#12281 [http://bugs.mysql.com/12281])

• A failure to obtain a lock for an IN SHARE MODE query could result in a server crash. (Bug#12082
[http://bugs.mysql.com/12082])

• SELECT ... INTO var_name within a trigger could cause a server crash. (Bug#11973
[http://bugs.mysql.com/11973])

• INSERT ... SELECT ... ON DUPLICATE KEY UPDATE could fail with an erroneous
“Column 'col_name' specified twice” error. (Bug#10109 [http://bugs.mysql.com/10109])

• SHOW TABLE STATUS sometimes reported a Row_format value of Dynamic for MEMORY
tables, though such tables always have a format of Fixed. (Bug#3094
[http://bugs.mysql.com/3094])

MySQL Change History

1794

http://bugs.mysql.com/12235
http://bugs.mysql.com/11510
http://bugs.mysql.com/12162
http://bugs.mysql.com/12351
http://bugs.mysql.com/12298
http://bugs.mysql.com/12340
http://bugs.mysql.com/11380
http://bugs.mysql.com/11909
http://bugs.mysql.com/10892
http://bugs.mysql.com/12470
http://bugs.mysql.com/5439
http://bugs.mysql.com/12228
http://bugs.mysql.com/12392
http://bugs.mysql.com/12281
http://bugs.mysql.com/12082
http://bugs.mysql.com/11973
http://bugs.mysql.com/10109
http://bugs.mysql.com/3094

• A query using a LEFT JOIN, an IN subquery on the outer table, and an ORDER BY clause, caused
the server to crash when cursors were enabled. (Bug#11901 [http://bugs.mysql.com/11901])

• Using a stored procedure that referenced tables in the INFORMATION_SCHEMA database would re-
turn an empty result set. (Bug#10055 [http://bugs.mysql.com/10055], Bug#12278
[http://bugs.mysql.com/12278])

• Columns defined as TINYINT(1) were redefined as TINYINT(4) when incorporated into a
VIEW. (Bug#11335 [http://bugs.mysql.com/11335])

• ISO-8601 formatted dates were not being parsed correctly. (Bug#7308
[http://bugs.mysql.com/7308])

• FLUSH TABLES WITH READ LOCK combined with LOCK TABLE .. WRITE caused dead-
lock. (Bug#9459 [http://bugs.mysql.com/9459])

• NULL column definitions read incorrectly for inner tables of nested outer joins. (Bug#12154
[http://bugs.mysql.com/12154])

• GROUP_CONCAT ignores the DISTINCT modifier when used in a query joining multiple tables
where one of the tables has a single row. (Bug#12095 [http://bugs.mysql.com/12095])

• UNION query with FULLTEXT could cause server crash. (Bug#11869
[http://bugs.mysql.com/11869])

D.1.18. Changes in release 5.0.11 (06 August 2005)
Functionality added or changed:

• Security improvement: Applied a patch that addresses a potential zlib data vulnerability that could
result in an application crash. (CVE-2005-1849
[http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1849]) This only affects the binaries for
platforms that are linked statically against the bundled zlib (most notably Microsoft Windows and
HP-UX).

• SHOW CHARACTER SET and INFORMATION_SCHEMA now properly report the Latin1 charac-
ter set as cp1252. (Bug#11216 [http://bugs.mysql.com/11216])

• mysqldump now dumps triggers for each dumped table. This can be suppressed with the -
-skip-triggers option. (Bug#10431 [http://bugs.mysql.com/10431])

• Added new ER_STACK_OVERRUN_NEED_MORE error message to indicate that, while the stack is
not completely full, more stack space is required. (Bug#11213 [http://bugs.mysql.com/11213])

• NDB: Improved handling of the configuration variables NoOfPagesToDiskDuringRe-
startACC, NoOfPagesToDiskAfterRestartACC, NoOfPagesToDiskDuringRe-
startTUP, and NoOfPagesToDiskAfterRestartTUP should result in noticeably faster star-
tup times for MySQL Cluster. (Bug#12149 [http://bugs.mysql.com/12149])

• Added support of where clause for queries with FROM DUAL. (Bug#11745
[http://bugs.mysql.com/11745])

• Added an optimization that avoids key access with NULL keys for the ref method when used in
outer joins. (Bug#12144 [http://bugs.mysql.com/12144])

• Maximum size of stored procedures increased from 64k to 4Gb. (Bug#11602
[http://bugs.mysql.com/11602])

MySQL Change History

1795

http://bugs.mysql.com/11901
http://bugs.mysql.com/10055
http://bugs.mysql.com/12278
http://bugs.mysql.com/11335
http://bugs.mysql.com/7308
http://bugs.mysql.com/9459
http://bugs.mysql.com/12154
http://bugs.mysql.com/12095
http://bugs.mysql.com/11869
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-1849
http://bugs.mysql.com/11216
http://bugs.mysql.com/10431
http://bugs.mysql.com/11213
http://bugs.mysql.com/12149
http://bugs.mysql.com/11745
http://bugs.mysql.com/12144
http://bugs.mysql.com/11602

• Added error message for users who attempt CREATE TABLE ... LIKE and specify a non-table
in the LIKE clause. (Bug#6859 [http://bugs.mysql.com/6859])

Bugs fixed:

• DDL statements now are allowed in stored procedures if the procedure is not invoked from a stored
function or a trigger. Also fixed problems where a TEMPORARY statement created by one stored
routine was inaccessible to another routine invoked during the same connection. (Bug#11126
[http://bugs.mysql.com/11126])

• Creation of the mysql group account failed during the RPM installation. (Bug#12348
[http://bugs.mysql.com/12348])

• big5 strings were not being stored in FULLTEXT index. (Bug#12075
[http://bugs.mysql.com/12075])

• When DROP DATABASE was called concurrently with a DROP TABLE of any table, the MySQL
Server crashed. (Bug#12212 [http://bugs.mysql.com/12212])

• max_connections_per_hour setting was being capped by unrelated
max_user_connections setting. (Bug#9947 [http://bugs.mysql.com/9947])

• SELECT @@local... returned @@session... in the column header. (Bug#10724
[http://bugs.mysql.com/10724])

• Multiplying ABS() output by a negative number would return incorrect results. (Bug#11402
[http://bugs.mysql.com/11402])

• Updated dependency list for RPM builds to include missing dependencies such as useradd and
groupadd. (Bug#12233 [http://bugs.mysql.com/12233])

• mysql_install_db used static localhost value in GRANT tables even when server hostname
is not localhost, such as localhost.localdomain. This change is applied to version
5.0.10b on Windows. (Bug#11822 [http://bugs.mysql.com/11822])

• Multiple SELECT SQL_CACHE queries in a stored procedure causes error and client hang.
(Bug#6897 [http://bugs.mysql.com/6897])

• Added checks to prevent error when allocating memory when there was insufficient memory avail-
able. (Bug#7003 [http://bugs.mysql.com/7003])

• Character data truncated when GBK characters 0xA3A0 and 0xA1 are present. (Bug#11987
[http://bugs.mysql.com/11987])

• Comparisons like SELECT "A\\" LIKE "A\\"; fail when using SET NAMES utf8;.
(Bug#11754 [http://bugs.mysql.com/11754])

• When used in a SELECT query against a view, the GROUP_CONCAT() function returned only a
single row. (Bug#11412 [http://bugs.mysql.com/11412])

• Calling the C API function mysql_stmt_fetch() after all rows of a result set were exhausted
would return an error instead of MYSQL_NO_DATA. (Bug#11037 [http://bugs.mysql.com/11037])

• Information about a trigger was not displayed in the output of SELECT ... FROM INFORMA-
TION_SCHEMA.TRIGGERS when the selected database was INFORMATION_SCHEMA, prior to
the trigger's first invocation. (Bug#12127 [http://bugs.mysql.com/12127])

MySQL Change History

1796

http://bugs.mysql.com/6859
http://bugs.mysql.com/11126
http://bugs.mysql.com/12348
http://bugs.mysql.com/12075
http://bugs.mysql.com/12212
http://bugs.mysql.com/9947
http://bugs.mysql.com/10724
http://bugs.mysql.com/11402
http://bugs.mysql.com/12233
http://bugs.mysql.com/11822
http://bugs.mysql.com/6897
http://bugs.mysql.com/7003
http://bugs.mysql.com/11987
http://bugs.mysql.com/11754
http://bugs.mysql.com/11412
http://bugs.mysql.com/11037
http://bugs.mysql.com/12127

• Issuing successive FLUSH TABLES WITH READ LOCK would cause the mysql client to hang.
(Bug#11934 [http://bugs.mysql.com/11934])

• In stored procedures, a cursor that fetched an empty string into a variable would set the variable to
NULL instead. (Bug#8692 [http://bugs.mysql.com/8692])

• A trigger dependent on a feature of one SQL_MODE setting would cause an error when invoked after
the SQL_MODE was changed. (Bug#5891 [http://bugs.mysql.com/5891])

• A delayed insert that would duplicate an existing record crashed the server instead. (Bug#12226
[http://bugs.mysql.com/12226])

• ALTER TABLE when SQL_MODE = 'TRADITIONAL' gave rise to an invalid error message.
(Bug#11964 [http://bugs.mysql.com/11964])

• Attempting to repair a table having a fulltext index on a column containing words whose length ex-
ceeded 21 characters and where myisam_repair_threads was greater than 1 would crash the
server. (Bug#11684 [http://bugs.mysql.com/11684])

• The MySQL Cluster backup log was invalid where the number of Cluster nodes was not equal to a
power of 2. (Bug#11675 [http://bugs.mysql.com/11675])

• GROUP_CONCAT() sometimes returned a result with a different collation from that of its argu-
ments. (Bug#10201 [http://bugs.mysql.com/10201])

• The LPAD() and RPAD() functions returned the wrong length to mysql_fetch_fields().
(Bug#11311 [http://bugs.mysql.com/11311])

• A UNIQUE VARCHAR column would be mis-identified as MUL in table descriptions. (Bug#11227
[http://bugs.mysql.com/11227])

• Incorrect error message displayed if user attempted to create a table in a non-existing database using
CREATE database_name.table_name syntax. (Bug#10407 [http://bugs.mysql.com/10407])

• InnoDB: Do not flush after each write, not even before setting up the doublewrite buffer. Flushing
can be extremely slow on some systems. (Bug#12125 [http://bugs.mysql.com/12125])

• InnoDB: True VARCHAR: Return NULL columns in the format expected by MySQL. (Bug#12186
[http://bugs.mysql.com/12186])

• Two threads could potentially initialize different characters sets and overwrite each other.
(Bug#12109 [http://bugs.mysql.com/12109])

• Unsigned LONG system variables may return incorrect value when retrieved with a SELECT for cer-
tain values. (Bug#10351 [http://bugs.mysql.com/10351])

• Prepared statements were not being written to the Slow Query log. (Bug#9968
[http://bugs.mysql.com/9968])

D.1.19. Changes in release 5.0.10 (27 July 2005)
Functionality added or changed:

• Security improvement: Applied a patch that addresses a zlib data vulnerability that could result in
a buffer overflow and code execution. (CVE-2005-2096
[http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2096]) (Bug#11844
[http://bugs.mysql.com/11844])

MySQL Change History

1797

http://bugs.mysql.com/11934
http://bugs.mysql.com/8692
http://bugs.mysql.com/5891
http://bugs.mysql.com/12226
http://bugs.mysql.com/11964
http://bugs.mysql.com/11684
http://bugs.mysql.com/11675
http://bugs.mysql.com/10201
http://bugs.mysql.com/11311
http://bugs.mysql.com/11227
http://bugs.mysql.com/10407
http://bugs.mysql.com/12125
http://bugs.mysql.com/12186
http://bugs.mysql.com/12109
http://bugs.mysql.com/10351
http://bugs.mysql.com/9968
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-2096
http://bugs.mysql.com/11844

• Incompatible change: The namespace for triggers has changed. Previously, trigger names had to be
unique per table. Now they must be unique within the schema (database). An implication of this
change is that DROP TRIGGER syntax now uses a schema name instead of a table name (schema
name is optional and, if omitted, the current schema will be used). (Bug#5892
[http://bugs.mysql.com/5892])

Note: When upgrading from a previous version of MySQL 5 to MySQL 5.0.10 or newer, you must
drop all triggers and re-create them or DROP TRIGGER will not work after the upgrade. A sugges-
ted procedure for doing this is given in Section 2.11.2, “Upgrading from MySQL 4.1 to 5.0”.

• The viewing of triggers and trigger metadata has been enhanced as follows:

• An extension to the SHOW command has been added: SHOW TRIGGERS can be used to view a
listing of triggers. See Section 13.5.4.24, “SHOW TRIGGERS Syntax”, for details.

• The INFORMATION_SCHEMA database now includes a TRIGGERS table. See Section 20.16,
“The INFORMATION_SCHEMA TRIGGERS Table”, for details. (Bug#9586
[http://bugs.mysql.com/9586])

• Triggers can now reference tables by name. See Section 18.1, “CREATE TRIGGER Syntax”, for
more information.

• The output of perror --help now displays the --ndb option. (Bug#11999
[http://bugs.mysql.com/11999])

• On Windows, the search path used by MySQL applications for my.ini now includes ..\my.ini
(that is, the application's parent directory, and hence, the installation directory). (Bug#10419
[http://bugs.mysql.com/10419])

• Add the --defaults-group-suffix option. See Section 4.3.2, “Using Option Files”.

• Added mysql_get_character_set_info() C API function for obtaining information about
the default character set of the current connection.

• The bundled version of the readline library was upgraded to version 5.0.

• It is no longer necessary to issue an explicit LOCK TABLES for any tables accessed by a trigger pri-
or to executing any statements that might invoke the trigger. (Bug#9581
[http://bugs.mysql.com/9581], Bug#8406 [http://bugs.mysql.com/8406])

• MySQL Cluster: A new -P option is available for use with the ndb_mgmd client. When called
with this option, ndb_mgmd prints all configuration data to stdout, then exits.

• Add table_lock_wait_timeout global server system variable.

Bugs fixed:

• NDB: Trying to use a greater number of tables then specified by the value of MaxNoOfTables
caused table corruption such that data nodes could not be restarted. (Bug#9994
[http://bugs.mysql.com/9994])

• NDB: Attempting to create or drop tables during a backup would cause the cluster to shut down.
(Bug#11942 [http://bugs.mysql.com/11942])

• When attempting to drop a table with a broken unique index, NDB failed to drop the table and erro-
neously report that the table was unknown. (Bug#11355 [http://bugs.mysql.com/11355])

MySQL Change History

1798

http://bugs.mysql.com/5892
http://bugs.mysql.com/9586
http://bugs.mysql.com/11999
http://bugs.mysql.com/10419
http://bugs.mysql.com/9581
http://bugs.mysql.com/8406
http://bugs.mysql.com/9994
http://bugs.mysql.com/11942
http://bugs.mysql.com/11355

• SELECT ... NOT IN() gave unexpected results when only static value present between the ().
(Bug#11885 [http://bugs.mysql.com/11885])

• Fixed compile error when using GCC4 on AMD64. (Bug#12040 [http://bugs.mysql.com/12040])

• NDB ignored the Hostname option in the NDBD DEFAULT section of the Cluster configuration
file. (Bug#12028 [http://bugs.mysql.com/12028])

• SHOW PROCEDURE/FUNCTION STATUS didn't work for users with limited access. (Bug#11577
[http://bugs.mysql.com/11577])

• MySQL server would crash is a fetch was performed after a ROLLBACK when cursors were in-
volved. (Bug#10760 [http://bugs.mysql.com/10760])

• The temporary tables created by an ALTER TABLE on a cluster table were visible to all MySQL
servers. (Bug#12055 [http://bugs.mysql.com/12055])

• NDB_MGMD was leaking file descriptors. (Bug#11898 [http://bugs.mysql.com/11898])

• IP addresses not shown in ndb_mgm SHOW command on second ndb_mgmd (or on ndb_mgmd re-
start). (Bug#11596 [http://bugs.mysql.com/11596])

• Functions that evaluate to constants (such as NOW() and CURRENT_USER() were being evaluated
in the definition of a VIEW rather than included verbatim. (Bug#4663 [http://bugs.mysql.com/4663])

• Execution of SHOW TABLES failed to increment the Com_show_tables status variable.
(Bug#11685 [http://bugs.mysql.com/11685])

• For execution of a stored procedure that refers to a view, changes to the view definition were not
seen. The procedure continued to see the old contents of the view. (Bug#6120
[http://bugs.mysql.com/6120])

• For prepared statements, the SQL parser did not disallow ‘?’ parameter markers immediately adja-
cent to other tokens, which could result in malformed statements in the binary log. (For example,
SELECT * FROM t WHERE? = 1 could become SELECT * FROM t WHERE0 = 1.)
(Bug#11299 [http://bugs.mysql.com/11299])

• When two threads compete for the same table, a deadlock could occur if one thread has also a lock
on another table through LOCK TABLES and the thread is attempting to remove the table in some
manner and the other thread want locks on both tables. (Bug#10600 [http://bugs.mysql.com/10600])

• Aliasing the column names in a VIEW did not work when executing a SELECT query on the VIEW.
(Bug#11399 [http://bugs.mysql.com/11399])

• Performing an ORDER BY on a SELECT from a VIEW produced unexpected results when VIEW
and underlying table had the same column name on different columns. Bug#11709
[http://bugs.mysql.com/11709])

• The C API function mysql_statement_reset() did not clear error information. (Bug#11183
[http://bugs.mysql.com/11183])

• When used within a subquery, SUBSTRING() returned an empty string. (Bug#10269
[http://bugs.mysql.com/10269])

• Multiple-table UPDATE queries using CONVERT_TZ() would fail with an error. (Bug#9979
[http://bugs.mysql.com/9979])

• mysql_fetch_fields() returned incorrect length information for MEDIUM and LONG TEXT
and BLOB columns. (Bug#9735 [http://bugs.mysql.com/9735])

MySQL Change History

1799

http://bugs.mysql.com/11885
http://bugs.mysql.com/12040
http://bugs.mysql.com/12028
http://bugs.mysql.com/11577
http://bugs.mysql.com/10760
http://bugs.mysql.com/12055
http://bugs.mysql.com/11898
http://bugs.mysql.com/11596
http://bugs.mysql.com/4663
http://bugs.mysql.com/11685
http://bugs.mysql.com/6120
http://bugs.mysql.com/11299
http://bugs.mysql.com/10600
http://bugs.mysql.com/11399
http://bugs.mysql.com/11709
http://bugs.mysql.com/11183
http://bugs.mysql.com/10269
http://bugs.mysql.com/9979
http://bugs.mysql.com/9735

• mysqlbinlog was failing the test suite on Windows due to BOOL being incorrectly cast to INT.
(Bug#11567 [http://bugs.mysql.com/11567])

• NDBCLuster: Server left core files following shutdown if data nodes had failed. (Bug#11516
[http://bugs.mysql.com/11516])

• Creating a trigger in one database that references a table in another database was being allowed
without generating errors. (Bug#8751 [http://bugs.mysql.com/8751])

• Duplicate trigger names were allowed within a single schema. (Bug#6182
[http://bugs.mysql.com/6182])

• Server did not accept some fully-qualified trigger names. (Bug#8758 [http://bugs.mysql.com/8758])

• The traditional SQL mode accepted invalid dates if the date value provided was the result of
an implicit type conversion. (Bug#5906 [http://bugs.mysql.com/5906])

• The MySQL server had issues with certain combinations of basedir and datadir. (Bug#7249
[http://bugs.mysql.com/7249])

• INFORMATION_SCHEMA.COLUMNS had some inaccurate values for some data types. (Bug#11057
[http://bugs.mysql.com/11057])

• LIKE pattern matching using prefix index didn't return correct result. (Bug#11650
[http://bugs.mysql.com/11650])

• For several character sets, MySQL incorrectly converted the character code for the division sign to
the eucjpms character set. (Bug#11717 [http://bugs.mysql.com/11717])

• When invoked within a view, SUBTIME() returned incorrect values. (Bug#11760
[http://bugs.mysql.com/11760])

• SHOW BINARY LOGS displayed a file size of 0 for all log files but the current one if the files were
not located in the data directory. (Bug#12004 [http://bugs.mysql.com/12004])

• Server-side prepared statements failed for columns with a character set of ucs2. (Bug#9442
[http://bugs.mysql.com/9442])

• References to system variables in an SQL statement prepared with PREPARE were evaluated during
EXECUTE to their values at prepare time, not to their values at execution time. (Bug#9359
[http://bugs.mysql.com/9359])

• For server shutdown on Windows, error messages of the form Forcing close of thread n
user: 'name' were being written to the error log. Now connections are closed more gracefully
without generating error messages. (Bug#7403 [http://bugs.mysql.com/7403])

• Increased the version number of the libmysqlclient shared library from 14 to 15 because it is
binary incompatible with the MySQL 4.1 client library. (Bug#11893 [http://bugs.mysql.com/11893])

• A recent optimizer change caused DELETE ... WHERE ... NOT LIKE and DELETE ...
WHERE ... NOT BETWEEN to not properly identify the rows to be deleted. (Bug#11853
[http://bugs.mysql.com/11853])

• Within a stored procedure that selects from a table, invoking another procedure that requires a write
lock for the table caused that procedure to fail with a message that the table was read-locked.
(Bug#9565 [http://bugs.mysql.com/9565])

• Within a stored procedure, selecting from a table through a view caused subsequent updates to the
table to fail with a message that the table was read-locked. (Bug#9597

MySQL Change History

1800

http://bugs.mysql.com/11567
http://bugs.mysql.com/11516
http://bugs.mysql.com/8751
http://bugs.mysql.com/6182
http://bugs.mysql.com/8758
http://bugs.mysql.com/5906
http://bugs.mysql.com/7249
http://bugs.mysql.com/11057
http://bugs.mysql.com/11650
http://bugs.mysql.com/11717
http://bugs.mysql.com/11760
http://bugs.mysql.com/12004
http://bugs.mysql.com/9442
http://bugs.mysql.com/9359
http://bugs.mysql.com/7403
http://bugs.mysql.com/11893
http://bugs.mysql.com/11853
http://bugs.mysql.com/9565
http://bugs.mysql.com/9597

)

• For a stored procedure defined with SQL SECURITY DEFINER characteristic, CUR-
RENT_USER() incorrectly reported the use invoking the procedure, not the user who defined it.
(Bug#7291 [http://bugs.mysql.com/7291])

• Creating a table with a SET or ENUM column with the DEFAULT 0 clause caused a server crash if
the table's character set was utf8. (Bug#11819 [http://bugs.mysql.com/11819])

• With strict SQL mode enabled, ALTER TABLE reported spurious “Invalid default value” messages
for columns that had no DEFAULT clause. (Bug#9881 [http://bugs.mysql.com/9881])

• In SQL prepared statements, comparisons could fail for values not equally space-padded. For ex-
ample, SELECT 'a' = 'a '; returns 1, but PREPARE s FROM 'SELECT ?=?'; SET
@a = 'a', @b = 'a '; PREPARE s FROM 'SELECT ?=?'; EXECUTE s USING
@a, @b; incorrectly returned 0. (Bug#9379 [http://bugs.mysql.com/9379])

• Labels in stored routines did not work if the character set was not latin1. (Bug#7088
[http://bugs.mysql.com/7088])

• Invoking the DES_ENCRYPT() function could cause a server crash if the server was started without
the --des-key-file option. (Bug#11643 [http://bugs.mysql.com/11643])

• The server crashed upon execution of a statement that used a stored function indirectly (via a view)
if the function was not yet in the connection-specific stored routine cache and the statement would
update a Handler_xxx status variable. This fix allows the use of stored routines under LOCK
TABLES without explicitly locking the mysql.lock table. However, you cannot use
mysql.proc in statements that will combine locking of it with modifications for other tables.
(Bug#11554 [http://bugs.mysql.com/11554])

• The server crashed when dropping a trigger that invoked a stored procedure, if the procedure was not
yet in the connection-specific stored routine cache. (Bug#11889 [http://bugs.mysql.com/11889])

• Selecting the result of an aggregate function for an ENUM or SET column within a subquery could
result in a server crash. (Bug#11821 [http://bugs.mysql.com/11821])

• Incorrect column values could be retrieved from views defined using statements of the form SE-
LECT * FROM tbl_name. (Bug#11771 [http://bugs.mysql.com/11771])

• The mysql.proc table was not being created properly with the proper utf8 character set and col-
lation, causing server crashes for stored procedure operations if the server was using a multi-byte
character set. To take advantage of the bug fix, mysql_fix_privilege_tables should be run
to correct the structure of the mysql.proc table. (Bug#11365 [http://bugs.mysql.com/11365])

Note that it is necessary to run mysql_fix_privileges_tables when upgrading from a pre-
vious installation that contains the mysql.proc table (that is, from a previous 5.0 installation).
Otherwise, creating stored procedures might not work.

• Execution of a prepared statement that invoked a non-existent or dropped stored routine would crash
the server. (Bug#11834 [http://bugs.mysql.com/11834])

• Executing a statement that invoked a trigger would cause problems unless a LOCK TABLES was
first issued for any tables accessed by the trigger. Note: The exact nature of the problem depended
upon the MySQL 5.0 release being used: prior to 5.0.3, this resulted in a crash; from 5.0.3 to 5.0.7,
MySQL would issue a warning; in 5.0.9, the server would issue an error. (Bug#8406
[http://bugs.mysql.com/8406])

The same issue caused LOCK TABLES to fail following UNLOCK TABLES if triggers were in-
volved. (Bug#9581 [http://bugs.mysql.com/9581])

MySQL Change History

1801

http://bugs.mysql.com/7291
http://bugs.mysql.com/11819
http://bugs.mysql.com/9881
http://bugs.mysql.com/9379
http://bugs.mysql.com/7088
http://bugs.mysql.com/11643
http://bugs.mysql.com/11554
http://bugs.mysql.com/11889
http://bugs.mysql.com/11821
http://bugs.mysql.com/11771
http://bugs.mysql.com/11365
http://bugs.mysql.com/11834
http://bugs.mysql.com/8406
http://bugs.mysql.com/9581

• In a shared Windows environment, MySQL could not find its configuration file unless the file was in
the C:\ directory. (Bug#5354 [http://bugs.mysql.com/5354])

D.1.20. Changes in release 5.0.9 (15 July 2005)
Functionality added or changed:

• An attempt to create a TIMESTAMP column with a display width (for example, TIMESTAMP(6))
now results in a warning. Display widths have not been supported for TIMESTAMP since MySQL
4.1. (Bug#10466 [http://bugs.mysql.com/10466])

• InnoDB: When creating or extending an InnoDB data file, at most one megabyte at a time is alloc-
ated for initializing the file. Previously, InnoDB allocated and initialized 1 or 8 megabytes of
memory, even if only a few 16-kilobyte pages were to be written. This improves the performance of
CREATE TABLE in innodb_file_per_table mode.

• InnoDB: Various optimizations. Removed unreachable debug code from non-debug builds. Added
hints for the branch predictor in gcc. Made assertions occupy less space.

• InnoDB: Make innodb_thread_concurrency=20 by default. Bypass the concurrency
checking if the setting is greater than or equal to 20.

• InnoDB: Make CHECK TABLE killable. (Bug#9730 [http://bugs.mysql.com/9730])

• Recursion in stored routines is now disabled because it was crashing the server. We plan to modify
stored routines to allow this to operate safely in a future release. (Bug#11394
[http://bugs.mysql.com/11394])

• The handling of BIT columns has been improved, and should now be much more reliable in a num-
ber of cases. (Bug#10617 [http://bugs.mysql.com/10617], Bug#11091
[http://bugs.mysql.com/11091], Bug#11572 [http://bugs.mysql.com/11572])

• mysql_real_escape_string() API function now respects NO_BACKSLASH_ESCAPES
SQL mode. (Bug#10214 [http://bugs.mysql.com/10214])

Bugs fixed:

• SHOW CREATE VIEW did not take the ANSI MODE into account when quoting identifiers.
(Bug#6903 [http://bugs.mysql.com/6903])

• The mysql_config script did not handle symbolic linking properly. (Bug#10986
[http://bugs.mysql.com/10986])

• Incorrect results when using GROUP BY ... WITH ROLLUP on a VIEW. (Bug#11639
[http://bugs.mysql.com/11639])

• Instances of the VAR_SAMP() function in view definitions were converted to VARIANCE(). This
is incorrect because VARIANCE() is the same as VAR_POP(), not VAR_SAMP(). (Bug#10651
[http://bugs.mysql.com/10651])

• mysqldump failed when reloading a view if the view was defined in terms of a different view that
had not yet been reloaded. mysqldump now creates a dummy table to handle this case. (Bug#10927
[http://bugs.mysql.com/10927])

• mysqldump could crash for illegal or non-existent table names. (Bug#9358

MySQL Change History

1802

http://bugs.mysql.com/5354
http://bugs.mysql.com/10466
http://bugs.mysql.com/9730
http://bugs.mysql.com/11394
http://bugs.mysql.com/10617
http://bugs.mysql.com/11091
http://bugs.mysql.com/11572
http://bugs.mysql.com/10214
http://bugs.mysql.com/6903
http://bugs.mysql.com/10986
http://bugs.mysql.com/11639
http://bugs.mysql.com/10651
http://bugs.mysql.com/10927
http://bugs.mysql.com/9358

[http://bugs.mysql.com/9358])

• The --no-data option for mysqldump was being ignored if table names were given after the
database name. (Bug#9558 [http://bugs.mysql.com/9558])

• The --master-data option for mysqldump resulted in no error if the binary log was not en-
abled. Now an error occurs unless the --force option is given. (Bug#11678
[http://bugs.mysql.com/11678])

• DES_ENCRYPT() and DES_DECRYPT() require SSL support to be enabled, but were not check-
ing for it. Checking for incorrect arguments or resource exhaustion was also improved for these
functions. (Bug#10589 [http://bugs.mysql.com/10589])

• When used in joins, SUBSTRING() failed to truncate to zero any string values that could not be
converted to numbers. (Bug#10124 [http://bugs.mysql.com/10124])

• mysqldump --xml did not format NULL column values correctly. (Bug#9657
[http://bugs.mysql.com/9657])

• There was a compression algorithm issue with myisampack for very large datasets (where the total
size of all records in a single column was on the order of 3 GB or more) on 64-bit platforms. (A fix
for other platforms was made in MySQL 5.0.6.) (Bug#8321 [http://bugs.mysql.com/8321])

• Temporary tables were created in the data directory instead of tmpdir. (Bug#11440
[http://bugs.mysql.com/11440])

• MySQL would not compile correctly on QNX due to missing rint() function. (Bug#11544
[http://bugs.mysql.com/11544])

• A SELECT DISTINCT col_name would work correctly with a MyISAM table only when there
was an index on col_name. (Bug#11484 [http://bugs.mysql.com/11484])

• The server would lose table-level CREATE VIEW and SHOW VIEW privileges following a FLUSH
PRIVILEGES or server restart. (Bug#9795 [http://bugs.mysql.com/9795])

• In strict mode, an INSERT into a view that did not include a value for a NOT NULL column but that
did include a WHERE test on the same column would succeed, This happened even though the IN-
SERT should have been prevented due to the failure to supply a value for the NOT NULL column.
(Bug#6443 [http://bugs.mysql.com/6443])

• Running a CHECK TABLES on multiple views crashed the server. (Bug#11337
[http://bugs.mysql.com/11337])

• When a table had a primary key containing a BLOB column, creation of another index failed with the
error BLOB/TEXT column used in key specification without keylength,
even when the new index did not contain a BLOB column. (Bug#11657
[http://bugs.mysql.com/11657])

• NDB Cluster: When trying to open a table that could not be discovered or unpacked, cluster would
return error codes which the MySQL server falsely interpreted as operating system errors.
(Bug#103651 [http://bugs.mysql.com/103651])

• Manually inserting a row with host='' into mysql.tables_priv and performing a FLUSH
PRIVILEGES would cause the server to crash. (Bug#11330 [http://bugs.mysql.com/11330])

• A cursor using a query with a filter on a DATE or DATETIME column would cause the server to
crash server after the data was fetched. (Bug#11172 [http://bugs.mysql.com/11172])

• Closing a cursor that was already closed would cause MySQL to hang. (Bug#9814

MySQL Change History

1803

http://bugs.mysql.com/9558
http://bugs.mysql.com/11678
http://bugs.mysql.com/10589
http://bugs.mysql.com/10124
http://bugs.mysql.com/9657
http://bugs.mysql.com/8321
http://bugs.mysql.com/11440
http://bugs.mysql.com/11544
http://bugs.mysql.com/11484
http://bugs.mysql.com/9795
http://bugs.mysql.com/6443
http://bugs.mysql.com/11337
http://bugs.mysql.com/11657
http://bugs.mysql.com/103651
http://bugs.mysql.com/11330
http://bugs.mysql.com/11172
http://bugs.mysql.com/9814

[http://bugs.mysql.com/9814])

• Using CONCAT_WS on a column set NOT NULL caused incorrect results when used in a LEFT
JOIN. (Bug#11469 [http://bugs.mysql.com/11469])

• Signed BIGINT would not accept -9223372036854775808 as a DEFAULT value. (Bug#11215
[http://bugs.mysql.com/11215])

• Views did not use indexes on all appropriate queries. (Bug#10031 [http://bugs.mysql.com/10031])

• For MEMORY tables, it was possible for updates to be performed using outdated key statistics when
the updates involved only very small changes in a very few rows. This resulted in the random fail-
ures of queries such as UPDATE t SET col = col + 1 WHERE col_key = 2; where the
same query with no WHERE clause would succeed. (Bug#10178 [http://bugs.mysql.com/10178])

• Optimizer performed range check when comparing unsigned integers to negative constants, could
cause errors. (Bug#11185 [http://bugs.mysql.com/11185])

• Wrong comparison method used in VIEW when relaxed date syntax used (for example,
2005.06.10). (Bug#11325 [http://bugs.mysql.com/11325])

• The ENCRYPT() and SUBSTRING_INDEX() functions would cause errors when used with a
VIEW. (Bug#7024 [http://bugs.mysql.com/7024])

• Clients would hang following some errors with stored procedures. (Bug#9503
[http://bugs.mysql.com/9503])

• Combining cursors and subqueries could cause server crash or memory leaks. (Bug#10736
[http://bugs.mysql.com/10736])

• If a prepared statement cursor is opened but not completely fetched, attempting to open a cursor for a
second prepared statement will fail. (Bug#10794 [http://bugs.mysql.com/10794])

D.1.21. Changes in release 5.0.8 (Not released)
Note: Starting with version 5.0.8, changes for MySQL Cluster can be found in the combined Change
History.

Functionality added or changed:

• Warning: Incompatible change: Previously, conversion of DATETIME values to numeric form by
adding zero produced a result in YYYYMMDDHHMMSS format. The result of DATETIME+0 is now in
YYYYMMDDHHMMSS.000000 format. (Bug#12268 [http://bugs.mysql.com/12268])

• MEMORY tables now support indexes of up to 500 bytes. See Section 14.4, “The MEMORY (HEAP)
Storage Engine”. (Bug#10566 [http://bugs.mysql.com/10566])

• New SQL_MODE - NO_ENGINE_SUBSTITUTION Prevents automatic substitution of storage en-
gine when the requested storage engine is disabled or not compiled in. (Bug#6877
[http://bugs.mysql.com/6877])

• The statements CREATE TABLE, TRUNCATE TABLE, DROP DATABASE, and CREATE DATA-
BASE cause an implicit commit. (Bug#6883 [http://bugs.mysql.com/6883])

• Expanded on information provided in general log and slow query log for prepared statements.
(Bug#8367 [http://bugs.mysql.com/8367], Bug#9334 [http://bugs.mysql.com/9334])

MySQL Change History

1804

http://bugs.mysql.com/11469
http://bugs.mysql.com/11215
http://bugs.mysql.com/10031
http://bugs.mysql.com/10178
http://bugs.mysql.com/11185
http://bugs.mysql.com/11325
http://bugs.mysql.com/7024
http://bugs.mysql.com/9503
http://bugs.mysql.com/10736
http://bugs.mysql.com/10794
http://bugs.mysql.com/12268
http://bugs.mysql.com/10566
http://bugs.mysql.com/6877
http://bugs.mysql.com/6883
http://bugs.mysql.com/8367
http://bugs.mysql.com/9334

• Where a GROUP BY query uses a grouping column from the query's SELECT clause, MySQL now
issues a warning. This is done because the SQL standard states that any grouping column must un-
ambiguously reference a column of the table resulting from the query's FROM clause, and allowing
columns from the SELECT clause to be used as grouping columns is a MySQL extension to the
standard.

By way of example, consider the following table:

CREATE TABLE users (
userid INT NOT NULL PRIMARY KEY,
username VARCHAR(25),
usergroupid INT NOT NULL

);

MySQL allows you to use the alias in this query:

SELECT usergroupid AS id, COUNT(userid) AS number_of_users
FROM users
GROUP BY id;

However, the SQL standard requires that the column name be used, as shown here:

SELECT usergroupid AS id, COUNT(userid) AS number_of_users
FROM users
GROUP BY usergroupid;

Queries such as the first of the two shown above will continue to be supported in MySQL; however,
beginning with MySQL 5.0.8, using a column alias in this fashion will generate a warning. Note that
in the event of a collision between column names and/or aliases used in joins, MySQL attempts to
resolve the conflict by giving preference to columns arising from tables named in the query's FROM
clause. (Bug#11211 [http://bugs.mysql.com/11211])

• The granting or revocation of privileges on a stored routine is no longer performed when running the
server with --skip-grant-tables even after the statement SET
@@global.automatic_sp_privileges=1; has been executed. (Bug#9993
[http://bugs.mysql.com/9993])

• Added support for B'10' syntax for bit literal. (Bug#10650 [http://bugs.mysql.com/10650])

Bugs fixed:

• Security fix: On Windows systems, a user with any of the following privileges

• REFERENCES

• CREATE TEMPORARY TABLES

• GRANT OPTION

• CREATE

• SELECT

on *.* could crash mysqld by issuing a USE LPT1; or USE PRN; command. In addition, any
of the commands USE NUL;, USE CON;, USE COM1;, or USE AUX; would report success even
though the database was not in fact changed. Note: Although this bug was thought to be fixed previ-
ously, it was later discovered to be present in the MySQL 5.0.7-beta release for Windows.
(Bug#9148 [http://bugs.mysql.com/9148], CVE-2005-0799

MySQL Change History

1805

http://bugs.mysql.com/11211
http://bugs.mysql.com/9993
http://bugs.mysql.com/10650
http://bugs.mysql.com/9148
http://cve.mitre.org/cvename.cgi?name=CVE-2005-0799

[http://cve.mitre.org/cvename.cgi?name=CVE-2005-0799]

• A CREATE TABLE db_name.tbl_name LIKE ... statement would crash the server when
no database was selected. (Bug#11028 [http://bugs.mysql.com/11028])

• SELECT DISTINCT queries or GROUP BY queries without MIN() or MAX() could return incon-
sistent results for indexed columns. (Bug#11044 [http://bugs.mysql.com/11044])

• The SHOW INSTANCE OPTIONS command in MySQL Instance Manager displayed option values
incorrectly for options for which no value had been given. (Bug#11200
[http://bugs.mysql.com/11200])

• An outer join with an empty derived table (a result from a subquery) returned no result. (Bug#11284
[http://bugs.mysql.com/11284])

• An outer join with an ON condition that evaluated to false could return an incorrect result.
(Bug#11285 [http://bugs.mysql.com/11285])

• mysqld_safe would sometimes fail to remove the pid file for the old mysql process after a
crash. As a result, the server would fail to start due to a false A mysqld process already
exists... error. (Bug#11122 [http://bugs.mysql.com/11122])

• CAST(... AS DECIMAL) didn't work for strings. (Bug#11283
[http://bugs.mysql.com/11283])

• NULLIF() function could produce incorrect results if first argument is NULL. (Bug#11142
[http://bugs.mysql.com/11142])

• Setting @@SQL_MODE = NULL caused an erroneous error message. (Bug#10732
[http://bugs.mysql.com/10732])

• Converting a VARCHAR column having an index to a different type (such as TINYTEXT) gave rise
to an incorrect error message. (Bug#10543 [http://bugs.mysql.com/10543])

Note that this bugfix induces a slight change in the behavior of indexes: If an index is defined to be
the same length as a field (or is left to default to that field's length), and the length of the field is later
changed, then the index will adopt the new length of the field. Previously, the size of the index did
not change for some field types (such as VARCHAR) when the field type was changed.

• sql_data_access column of routines table of INFORMATION_SCHEMA was empty.
(Bug#11055 [http://bugs.mysql.com/11055])

• A CAST() value could not be included in a VIEW. (Bug#11387 [http://bugs.mysql.com/11387])

• Server crashed when using GROUP BY on the result of a DIV operation on a DATETIME value.
(Bug#11385 [http://bugs.mysql.com/11385])

• Possible NULL values in BLOB columns could crash the server when a BLOB was used in a GROUP
BY query. (Bug#11295 [http://bugs.mysql.com/11295])

• Fixed 64 bit compiler warning for packet length in replication. (Bug#11064
[http://bugs.mysql.com/11064])

• Multiple range accesses in a subquery cause server crash. (Bug#11487
[http://bugs.mysql.com/11487])

• An issue with index merging could cause suboptimal index merge plans to be chosen when search-
ing by indexes created on DATE columns. The same issue caused the InnoDB storage engine to issue
the warning using a partial-field key prefix in search. (Bug#8441

MySQL Change History

1806

http://bugs.mysql.com/11028
http://bugs.mysql.com/11044
http://bugs.mysql.com/11200
http://bugs.mysql.com/11284
http://bugs.mysql.com/11285
http://bugs.mysql.com/11122
http://bugs.mysql.com/11283
http://bugs.mysql.com/11142
http://bugs.mysql.com/10732
http://bugs.mysql.com/10543
http://bugs.mysql.com/11055
http://bugs.mysql.com/11387
http://bugs.mysql.com/11385
http://bugs.mysql.com/11295
http://bugs.mysql.com/11064
http://bugs.mysql.com/11487
http://bugs.mysql.com/8441

[http://bugs.mysql.com/8441])

• The mysqlhotcopy script was not parsing the output of SHOW SLAVE STATUS correctly when
called with the --record_log_pos option. (Bug#7967 [http://bugs.mysql.com/7967])

• SELECT * FROM table returned incorrect results when called from a stored procedure, where
table had a primary key. (Bug#10136 [http://bugs.mysql.com/10136])

• When used in defining a view, the TIME_FORMAT() function failed with calculated values, for ex-
ample, when passed the value returned by SEC_TO_TIME(). (Bug#7521
[http://bugs.mysql.com/7521])

• SELECT DISTINCT ... GROUP BY constant returned multiple rows (it should return a
single row). (Bug#8614 [http://bugs.mysql.com/8614])

• INSERT INTO SELECT FROM view produced incorrect result when using ORDER BY.
(Bug#11298 [http://bugs.mysql.com/11298])

• Fixed hang/crash with Boolean full-text search where a query contained more query terms that one-
third of the query length (it could be achieved with truncation operator: 'a*b*c*d*'). (Bug#7858
[http://bugs.mysql.com/7858])

• Fixed column name generation in VIEW creation to ensure there are no duplicate column names.
(Bug#7448 [http://bugs.mysql.com/7448])

• An ORDER BY clause sometimes had no effect on the ordering of a result when selecting specific
columns (as opposed to using SELECT *) from a view. (Bug#7422 [http://bugs.mysql.com/7422])

• Some data definition statements (CREATE TABLE where the table was not a temporary table,
TRUNCATE TABLE, DROP DATABASE, and CREATE DATABASE) were not being written to the
binary log after a ROLLBACK. This also caused problems with replication. (Bug#6883
[http://bugs.mysql.com/6883])

• Calling a stored procedure that made use of an INSERT ... SELECT ... UNION SELECT
... query caused a server crash. (Bug#11060 [http://bugs.mysql.com/11060])

• Selecting from a view defined using SELECT SUM(DISTINCT ...) caused an error; attempting
to execute a SELECT * FROM INFORMATION_SCHEMA.TABLES query after defining such a
view crashed the server. (Bug#7015 [http://bugs.mysql.com/7015])

• The mysql client would output a prompt twice following input of very long strings, because it in-
correctly assumed that a call to the _cgets() function would clear the input buffer. (Bug#10840
[http://bugs.mysql.com/10840])

• A three byte buffer overflow in the client functions caused improper exiting of the client when read-
ing a command from the user. (Bug#10841 [http://bugs.mysql.com/10841])

• Fixed a problem where a stored procedure caused a server crash if the query cache was enabled.
(Bug#9715 [http://bugs.mysql.com/9715])

• SHOW CREATE DATABASE INFORMATION_SCHEMA returned an “unknown database” error.
(Bug#9434 [http://bugs.mysql.com/9434])

• Corrected a problem with IFNULL() returning an incorrect result on 64-bit systems. (Bug#11235
[http://bugs.mysql.com/11235])

• Fixed a problem resolving table names with lower_case_table_names=2 when the table
name lettercase differed in the FROM and WHERE clauses. (Bug#9500 [http://bugs.mysql.com/9500])

MySQL Change History

1807

http://bugs.mysql.com/7967
http://bugs.mysql.com/10136
http://bugs.mysql.com/7521
http://bugs.mysql.com/8614
http://bugs.mysql.com/11298
http://bugs.mysql.com/7858
http://bugs.mysql.com/7448
http://bugs.mysql.com/7422
http://bugs.mysql.com/6883
http://bugs.mysql.com/11060
http://bugs.mysql.com/7015
http://bugs.mysql.com/10840
http://bugs.mysql.com/10841
http://bugs.mysql.com/9715
http://bugs.mysql.com/9434
http://bugs.mysql.com/11235
http://bugs.mysql.com/9500

• Fixed server crash due to some internal functions not taking into account that for multi-byte charac-
ter sets, CHAR columns could exceed 255 bytes and VARCHAR columns could exceed 65,535 bytes.
(Bug#11167 [http://bugs.mysql.com/11167])

• Fixed locking problems for multiple-statement DELETE statements performed within a stored
routine, such as incorrectly locking a to-be-modified table with a read lock rather than a write lock.
(Bug#11158 [http://bugs.mysql.com/11158])

• Fixed a portability problem testing for crypt() support that caused compilation problems when
using OpenSSL/yaSSL on HP-UX and Mac OS X. (Bug#10675 [http://bugs.mysql.com/10675],
Bug#11150 [http://bugs.mysql.com/11150])

• The hostname cache was not working. (Bug#10931 [http://bugs.mysql.com/10931])

• On Windows, mysqlshow did not interpret wildcard characters properly if they were given in the
table name argument. (Bug#10947 [http://bugs.mysql.com/10947])

• The default hostname for MySQL server was always mysql. (Bug#11174
[http://bugs.mysql.com/11174])

• Using PREPARE to prepare a statement that invoked a stored routine that deallocated the prepared
statement caused a server crash. This is prevented by disabling dynamic SQL within stored routines.
(Bug#10975 [http://bugs.mysql.com/10975]) (Note: This restriction was lifted in 5.0.13 for stored
procedures, but not stored functions or triggers.)

• Using PREPARE to prepare a statement that invoked a stored routine that executed the prepared
statement caused a Packets out of order error the second time the routine was invoked.
This is prevented by disabling dynamic SQL within stored routines. (Bug#7115
[http://bugs.mysql.com/7115]) (Note: This restriction was lifted in 5.0.13 for stored procedures, but
not stored functions or triggers.)

• Using prepared statements within a stored routine (PREPARE, EXECUTE, DEALLOCATE) could
cause the client connection to be dropped after the routine returned. This is prevented by disabling
dynamic SQL within stored routines. (Bug#10605 [http://bugs.mysql.com/10605]) (Note: This re-
striction was lifted in 5.0.13 for stored procedures, but not stored functions or triggers.)

• When using a cursor with a prepared statement, the first execution returned the correct result but was
not cleaned up properly, causing subsequent executions to return incorrect results. (Bug#10729
[http://bugs.mysql.com/10729])

• MySQL Cluster: Connections between data nodes and management nodes were not being closed fol-
lowing shutdown of ndb_mgmd. (Bug#11132 [http://bugs.mysql.com/11132])

• MySQL Cluster: mysqld processes would not reconnect to cluster following restart of ndb_mgmd.
(Bug#11221 [http://bugs.mysql.com/11221])

• MySQL Cluster: Fixed problem whereby data nodes would fail to restart on 64-bit Solaris
(Bug#9025 [http://bugs.mysql.com/9025])

• MySQL Cluster: Calling ndb_select_count() crashed the cluster when running on Red Hat
Enterprise 4/64-bit/Opteron. (Bug#10058 [http://bugs.mysql.com/10058])

• MySQL Cluster: Insert records were incorrectly applied by ndb_restore, thus making restoration
from backup inconsistent if the binlog contained inserts. (Bug#11166
[http://bugs.mysql.com/11166])

• MySQL Cluster: Cluster would time out and crash after first query on 64-bit Solaris 9. (Bug#8918
[http://bugs.mysql.com/8918])

MySQL Change History

1808

http://bugs.mysql.com/11167
http://bugs.mysql.com/11158
http://bugs.mysql.com/10675
http://bugs.mysql.com/11150
http://bugs.mysql.com/10931
http://bugs.mysql.com/10947
http://bugs.mysql.com/11174
http://bugs.mysql.com/10975
http://bugs.mysql.com/7115
http://bugs.mysql.com/10605
http://bugs.mysql.com/10729
http://bugs.mysql.com/11132
http://bugs.mysql.com/11221
http://bugs.mysql.com/9025
http://bugs.mysql.com/10058
http://bugs.mysql.com/11166
http://bugs.mysql.com/8918

• MySQL Cluster: ndb_mgm client show command displayed incorrect output after master data node
failure. (Bug#11050 [http://bugs.mysql.com/11050])

• MySQL Cluster: A delete performed as part of a transaction caused an erroneous result. (Bug#11133
[http://bugs.mysql.com/11133])

• MySQL Cluster: Not allowing sufficient parallelism in cluster configuration (for example,
NoOfTransactions too small) caused ndb_restore to fail without providing any error mes-
sages. (Bug#10294 [http://bugs.mysql.com/10294])

• MySQL Cluster: When using dynamically allocated ports on Linux, cluster would hang on initial
startup. (Bug#10893 [http://bugs.mysql.com/10893])

• MySQL Cluster: Setting TransactionInactiveTimeout= 0 did not result in an infinite timeout.
(Bug#11290 [http://bugs.mysql.com/11290])

• InnoDB: Enforce maximum CHAR_LENGTH() of UTF-8 data in ON UPDATE CASCADE.
(Bug#10409 [http://bugs.mysql.com/10409])

• InnoDB: Pad UTF-8 VARCHAR columns with 0x20. Pad UCS2 CHAR columns with 0x0020.
(Bug#10511 [http://bugs.mysql.com/10511])

D.1.22. Changes in release 5.0.7 (10 June 2005)
Functionality added or changed:

• Security improvement: Applied a patch to fix a UDF library-loading vulnerability that could result in
a buffer overflow and code execution. (ht-
tp://www.appsecinc.com/resources/alerts/mysql/2005-002.html)

• Added mysql_set_character_set() C API function for setting the default character set of
the current connection. This allows clients to affect the character set used by
mysql_real_escape_string(). (Bug#8317 [http://bugs.mysql.com/8317])

• The behavior of the Last_query_cost system variable has been changed. The default value is
now 0 (rather than -1) and it now has session-level scope (rather than being global). See Sec-
tion 5.2.5, “Status Variables”, for additional information.

• All characters occurring on the same line following the DELIMITER keyword will be set as delim-
iter. For example, DELIMITER :; will set :; as the delimiter. This behavior is now consistent
between MySQL 5.1 and MySQL 5.0. (Bug#9879 [http://bugs.mysql.com/9879])

• The table, type, and rows columns of EXPLAIN output can now be NULL. This is required for
using EXPLAIN on SELECT queries that use no tables (for example, EXPLAIN SELECT 1).
(Bug#9899 [http://bugs.mysql.com/9899])

• Placeholders now can be used for LIMIT in prepared statements. (Bug#7306
[http://bugs.mysql.com/7306])

• SHOW BINARY LOGS now displays a File_size column that indicates the size of each file.

• The --delayed-insert option for mysqldump has been disabled to avoid causing problems
with storage engines that do not support INSERT DELAYED. (Bug#7815
[http://bugs.mysql.com/7815])

• Improved the optimizer to be able to use indexes for expressions of the form indexed_col NOT
IN (val1, val2, ...) and indexed_col NOT BETWEEN val1 AND val2..

MySQL Change History

1809

http://bugs.mysql.com/11050
http://bugs.mysql.com/11133
http://bugs.mysql.com/10294
http://bugs.mysql.com/10893
http://bugs.mysql.com/11290
http://bugs.mysql.com/10409
http://bugs.mysql.com/10511
http://www.appsecinc.com/resources/alerts/mysql/2005-002.html
http://www.appsecinc.com/resources/alerts/mysql/2005-002.html
http://bugs.mysql.com/8317
http://bugs.mysql.com/9879
http://bugs.mysql.com/9899
http://bugs.mysql.com/7306
http://bugs.mysql.com/7815

Bug#10561 [http://bugs.mysql.com/10561])

• Removed mysqlshutdown.exe and mysqlwatch.exe from the Windows “No Installer” dis-
tribution (they had already been removed from the “With Installer” distribution before). Removed
those programs from the source distribution.

• Removed WinMySQLAdmin from the source distribution and from the “No Installer” Windows dis-
tribution (it had already been removed from the “With Installer” distribution before).

• InnoDB: In stored procedures and functions, InnoDB no longer takes full explicit table locks for
every involved table. Only `intention' locks are taken, similar to those in the execution of an ordinary
SQL statement. This greatly reduces the number of deadlocks.

Bugs fixed:

• Security update: A user with limited privileges could obtain information about the privileges of oth-
er users by querying objects in the INFORMATION_SCHEMA database for which that user did not
have the requisite privileges. (Bug#10964 [http://bugs.mysql.com/10964])

• Triggers with dropped functions caused crashes. (Bug#5893 [http://bugs.mysql.com/5893])

• Failure of a BEFORE trigger did not prevent the triggering statement from performing its operation
on the row for which the trigger error occurred. Now the triggering statement fails as described in
Section 18.3, “Using Triggers”. (Bug#10902 [http://bugs.mysql.com/10902])

• Issuing a write lock for a table from one client prevented other clients from accessing the table's
metadata. For example, if one client issued a LOCK TABLES mydb.mytable WRITE, then a
second client attempting to execute a USE mydb; would hang. (Bug#9998
[http://bugs.mysql.com/9998])

• The LAST_DAY() failed to return NULL when supplied with an invalid argument. See Section 12.5,
“Date and Time Functions”. (Bug#10568 [http://bugs.mysql.com/10568])

• The functions COALESCE(), IF(), and IFNULL() performed incorrect conversions of their argu-
ments. (Bug#9939 [http://bugs.mysql.com/9939])

• The TIME_FORMAT() function returned incorrect results with some format specifiers. See Sec-
tion 12.5, “Date and Time Functions”. (Bug#10590 [http://bugs.mysql.com/10590])

• Dropping stored routines when the MySQL server had been started with -
-skip-grant-tables generated extraneous warnings. (Bug#9993
[http://bugs.mysql.com/9993])

• A problem with the my_global.h file caused compilation of MySQL to fail on single-processor
Linux systems running 2.6 kernels. (Bug#10364 [http://bugs.mysql.com/10364])

• The ucs2_turkish_ci collation failed with upper('i'). UPPER/LOWER now can return a string with
different length. (Bug#8610 [http://bugs.mysql.com/8610])

• OPTIMIZE of InnoDB table does not return 'Table is full' if out of tablespace. (Bug#8135
[http://bugs.mysql.com/8135])

• GROUP BY queries with ROLLUP returned wrong results for expressions containing group by
columns. (Bug#7894 [http://bugs.mysql.com/7894])

• Fixed bug in FIELD() function where value list contains NULL. (Bug#10944
[http://bugs.mysql.com/10944])

MySQL Change History

1810

http://bugs.mysql.com/10561
http://bugs.mysql.com/10964
http://bugs.mysql.com/5893
http://bugs.mysql.com/10902
http://bugs.mysql.com/9998
http://bugs.mysql.com/10568
http://bugs.mysql.com/9939
http://bugs.mysql.com/10590
http://bugs.mysql.com/9993
http://bugs.mysql.com/10364
http://bugs.mysql.com/8610
http://bugs.mysql.com/8135
http://bugs.mysql.com/7894
http://bugs.mysql.com/10944

• Corrected a problem where an incorrect data type was returned in the result set metadata when using
a prepared SELECT DISTINCT statement to select from a view. (Bug#11111
[http://bugs.mysql.com/11111])

• Fixed bug in the MySQL Instance manager that caused the version to always be unknown when
SHOW INSTANCE STATUS was issued. (Bug#10229 [http://bugs.mysql.com/10229])

• Using ORDER BY to sort the results of an IF() that contained a FROM_UNIXTIME() expression
returned incorrect results due to integer overflow. (Bug#9669 [http://bugs.mysql.com/9669])

• Fixed a server crash resulting from accessing InnoDB tables within stored functions. This is
handled by prohibiting statements that do an implicit or explicit commit or rollback within stored
functions or triggers. (Bug#10015 [http://bugs.mysql.com/10015])

• Fixed a server crash resulting from the second invocation of a stored procedure that selected from a
view defined as a join that used ON in the join conditions. (Bug#6866 [http://bugs.mysql.com/6866])

• Using ALTER TABLE for a table that had a trigger caused a crash when executing a statement that
activated the trigger, and also a crash later with USE db_name for the database containing the ta-
ble. (Bug#5894 [http://bugs.mysql.com/5894])

• Fixed a server crash resulting from an attempt to allocate too much memory when GROUP BY
blob_col and COUNT(DISTINCT) were used. (Bug#11088 [http://bugs.mysql.com/11088])

• Fixed a portability problem for compiling on Windows with Visual Studio 6. (Bug#11153
[http://bugs.mysql.com/11153])

• The incorrect sequence of statements HANDLER tbl_name READ index_name NEXT
without a preceding HANDLER tbl_name READ index_name = (value_list) for an
InnoDB table resulted in a server crash rather than an error. (Bug#5373
[http://bugs.mysql.com/5373])

• On Windows, with lower_case_table_names set to 2, using ALTER TABLE to alter a
MEMORY or InnoDB table that had a mixed-case name also improperly changed the name to lower-
case. (Bug#9660 [http://bugs.mysql.com/9660])

• The server timed out SSL connections too quickly on Windows. (Bug#8572
[http://bugs.mysql.com/8572])

• Executing LOAD INDEX INTO CACHE for a table while other threads where selecting from the
table caused a deadlock. (Bug#10602 [http://bugs.mysql.com/10602])

• Fixed a server crash resulting from CREATE TABLE ... SELECT that selected from a table be-
ing altered by ALTER TABLE. (Bug#10224 [http://bugs.mysql.com/10224])

• The FEDERATED storage engine properly handled outer joins, but not inner joins. (Bug#10848
[http://bugs.mysql.com/10848])

• Consistently report INFORMATION_SCHEMA table names in uppercase in SHOW TABLE STATUS
output. (Bug#10059 [http://bugs.mysql.com/10059])

• Fixed a failure of WITH ROLLUP to sum values properly. (Bug#10982
[http://bugs.mysql.com/10982])

• Triggers were not being activated for multiple-table UPDATE or DELETE statements. (Bug#5860
[http://bugs.mysql.com/5860])

• INSERT BEFORE triggers were not being activated for INSERT ... SELECT statements.
(Bug#6812 [http://bugs.mysql.com/6812])

MySQL Change History

1811

http://bugs.mysql.com/11111
http://bugs.mysql.com/10229
http://bugs.mysql.com/9669
http://bugs.mysql.com/10015
http://bugs.mysql.com/6866
http://bugs.mysql.com/5894
http://bugs.mysql.com/11088
http://bugs.mysql.com/11153
http://bugs.mysql.com/5373
http://bugs.mysql.com/9660
http://bugs.mysql.com/8572
http://bugs.mysql.com/10602
http://bugs.mysql.com/10224
http://bugs.mysql.com/10848
http://bugs.mysql.com/10059
http://bugs.mysql.com/10982
http://bugs.mysql.com/5860
http://bugs.mysql.com/6812

• INSERT BEFORE triggers were not being activated for implicit inserts (LOAD DATA). (Bug#8755
[http://bugs.mysql.com/8755])

• If a stored function contained a FLUSH statement, the function crashed when invoked. FLUSH now
is disallowed within stored functions. (Bug#8409 [http://bugs.mysql.com/8409])

• Multiple-row REPLACE could fail on a duplicate-key error when having one AUTO_INCREMENT
key and one unique key. (Bug#11080 [http://bugs.mysql.com/11080])

• Fixed a server crash resulting from invalid string pointer when inserting into the mysql.host ta-
ble. (Bug#10181 [http://bugs.mysql.com/10181])

• Multiple-table DELETE did always delete on the fly from the first table that was to be deleted from.
In some cases, when using many tables and it was necessary to access the same row twice in the first
table, we could miss some rows-to-be-deleted from other tables. This is now fixed.

• The mysql_next_result() function could hang if you were executing many statements in a
mysql_real_query() call and one of those statements raised an error. (Bug#9992
[http://bugs.mysql.com/9992])

• The combination of COUNT(), DISTINCT, and CONCAT() sometimes triggered a memory deal-
location bug on Windows resulting in a server crash. (Bug#9593 [http://bugs.mysql.com/9593])

• InnoDB: Do very fast shutdown only if innodb_fast_shutdown=2, but wait for threads to
exit and release allocated memory if innodb_fast_shutdown=1. Starting with MySQL/In-
noDB 5.0.5, InnoDB would do brutal shutdown also when innodb_fast_shutdown=1.
(Bug#9673 [http://bugs.mysql.com/9673])

• InnoDB: Fixed InnoDB: Error: stored_select_lock_type is 0 inside
::start_stmt()! in a stored procedure call if innodb_locks_unsafe_for_binlog was
set in my.cnf. (Bug#10746 [http://bugs.mysql.com/10746])

• InnoDB: Fixed a duplicate key error that occurred with REPLACE in a table with an AUTO-INC
column. (Bug#11005 [http://bugs.mysql.com/11005])

• MySQL would pass an incorrect key length to storage engines for MIN(). This could cause warn-
ings InnoDB: Warning: using a partial-field key prefix in search. in the
.err log. (Bug#11039 [http://bugs.mysql.com/11039], same as Bug#13218
[http://bugs.mysql.com/13218] in MySQL 4.1.15)

• Fixed a server crash for INSERT or UPDATE when the WHERE clause contained a correlated sub-
query that referred to a column of the table being modified. (Bug#6384
[http://bugs.mysql.com/6384])

• Fixed a problem causing an incorrect result for columns that include an aggregate function as part of
an expression when WITH ROLLUP is added to GROUP BY. (Bug#7914
[http://bugs.mysql.com/7914])

• Fixed a problem with returning an incorrect result from a view that selected a COALESCE() expres-
sion from the result of an outer join. (Bug#9938 [http://bugs.mysql.com/9938])

• MySQL was adding a DEFAULT clause to ENUM columns that included no explicit DEFAULT and
were defined as NOT NULL. (This is supposed to happen only for columns that are NULL.)
(Bug#6267 [http://bugs.mysql.com/6267])

• Corrected inappropriate error messages that were displayed when attempting to set the read-only
warning_count and error_count system variables. (Bug#10339
[http://bugs.mysql.com/10339])

MySQL Change History

1812

http://bugs.mysql.com/8755
http://bugs.mysql.com/8409
http://bugs.mysql.com/11080
http://bugs.mysql.com/10181
http://bugs.mysql.com/9992
http://bugs.mysql.com/9593
http://bugs.mysql.com/9673
http://bugs.mysql.com/10746
http://bugs.mysql.com/11005
http://bugs.mysql.com/11039
http://bugs.mysql.com/13218
http://bugs.mysql.com/6384
http://bugs.mysql.com/7914
http://bugs.mysql.com/9938
http://bugs.mysql.com/6267
http://bugs.mysql.com/10339

D.1.23. Changes in release 5.0.6 (26 May 2005)
Functionality added or changed:

• Incompatible change: MyISAM and InnoDB tables created with DECIMAL columns in MySQL
5.0.3 to 5.0.5 will appear corrupt after an upgrade to MySQL 5.0.6. Dump such tables with mysql-
dump before upgrading, and then reload them after upgrading. (The same incompatibility will occur
for these tables created in MySQL 5.0.6 after a downgrade to MySQL 5.0.3 to 5.0.5.) (Bug#10465
[http://bugs.mysql.com/10465], Bug#10625 [http://bugs.mysql.com/10625])

• Incompatible change: The behavior of LOAD DATA INFILE and SELECT ... INTO OUT-
FILE has changed when the FIELDS TERMINATED BY and FIELDS ENCLOSED BY values
both are empty. Formerly, a column was read or written the display width of the column. For ex-
ample, INT(4) was read or written using a field with a width of 4. Now columns are read and writ-
ten using a field width wide enough to hold all values in the field. However, data files written before
this change was made might not be reloaded correctly with LOAD DATA INFILE for MySQL
4.1.12 and up. This change also affects data files read by mysqlimport and written by mysql-
dump --tab, which use LOAD DATA INFILE and SELECT ... INTO OUTFILE. For more
information, see Section 13.2.5, “LOAD DATA INFILE Syntax”. (Bug#12564
[http://bugs.mysql.com/12564])

• The precision of the DECIMAL data type has been increased from 64 to 65 decimal digits.

• Added the div_precision_increment system variable, which indicates the number of digits
of precision by which to increase the result of division operations performed with the / operator.

• Added the log_bin_trust_routine_creators system variable, which applies when binary
logging is enabled. It controls whether stored routine creators can be trusted not to create stored
routines that will cause unsafe events to be written to the binary log.

• Added the --log-bin-trust-routine-creators server option for setting the
log_bin_trust_routine_creators system variable from the command line.

• Implemented the STMT_ATTR_PREFETCH_ROWS option for the mysql_stmt_attr_set() C
API function. This sets how many rows to fetch at a time when using cursors with prepared state-
ments.

• The GRANT and REVOKE statements now support an object_type clause to be used for disam-
biguating whether the grant object is a table, a stored function, or a stored procedure. Use of this
clause requires that you upgrade your grant tables. See Section 5.6.1,
“mysql_fix_privilege_tables — Upgrade MySQL System Tables”. (Bug#10246
[http://bugs.mysql.com/10246])

• Added REFERENCED_TABLE_SCHEMA, REFERENCED_TABLE_NAME, and REFER-
ENCED_COLUMN_NAME columns to the KEY_COLUMN_USAGE table of INFORMA-
TION_SCHEMA. (Bug#9587 [http://bugs.mysql.com/9587])

• Added a --show-warnings option to mysql to cause warnings to be shown after each statement
if there are any. This option applies to interactive and batch mode. In interactive mode, \w and \W
may be used to enable and disable warning display. (Bug#8684 [http://bugs.mysql.com/8684])

• Removed a limitation that prevented use of FIFOs as logging targets (such as for the general query
log). This modification does not apply to the binary log and the relay log. (Bug#8271
[http://bugs.mysql.com/8271])

• Added a --debug option to my_print_defaults.

• When the server cannot read a table because it cannot read the .frm file, print a message that the ta-

MySQL Change History

1813

http://bugs.mysql.com/10465
http://bugs.mysql.com/10625
http://bugs.mysql.com/12564
http://bugs.mysql.com/10246
http://bugs.mysql.com/9587
http://bugs.mysql.com/8684
http://bugs.mysql.com/8271

ble was created with a different version of MySQL. (This can happen if you create tables that use
new features and then downgrade to an older version of MySQL.) (Bug#10435
[http://bugs.mysql.com/10435])

• SHOW VARIABLES now shows the slave_compressed_protocol,
slave_load_tmpdir and slave_skip_errors system variables. (Bug#7800
[http://bugs.mysql.com/7800])

• Removed unused system variable myisam_max_extra_sort_file_size.

• Changed default value of myisam_data_pointer_size from 4 to 6. This allows us to avoid
table is full errors for most cases.

• The variable concurrent_insert now takes 3 values. Setting this to 2 changes MyISAM to do
concurrent inserts to end of table if table is in use by another thread.

• New /*> prompt for mysql. This prompt indicates that a /* ... */ comment was begun on an
earlier line and the closing */ sequence has not yet been seen. (Bug#9186
[http://bugs.mysql.com/9186])

• If strict SQL mode is enabled, VARCHAR and VARBINARY columns with a length greater than
65,535 no longer are silently converted to TEXT or BLOB columns. Instead, an error occurs.
(Bug#8295 [http://bugs.mysql.com/8295], Bug#8296 [http://bugs.mysql.com/8296])

• The INFORMATION_SCHEMA.SCHEMATA table now has a DEFAULT_COLLATION_NAME
column. (Bug#8998 [http://bugs.mysql.com/8998])

• InnoDB: When the maximum length of SHOW INNODB STATUS output would be exceeded, trun-
cate the beginning of the list of active transactions, instead of truncating the end of the output.
(Bug#5436 [http://bugs.mysql.com/5436])

• InnoDB: If innodb_locks_unsafe_for_binlog option is set and the isolation level of the
transaction is not set to serializable then InnoDB uses a consistent read for select in clauses like
INSERT INTO ... SELECT and UPDATE ... (SELECT) that do not specify FOR UPDATE
or IN SHARE MODE. Thus no locks are set to rows read from selected table.

• Updated version of libedit to 2.9. (Bug#2596 [http://bugs.mysql.com/2596])

• Removed mysqlshutdown.exe and mysqlwatch.exe from the Windows “With Installer”
distribution.

Bugs fixed:

• An error in the implementation of the MyISAM compression algorithm caused myisampack to fail
with very large sets of data (total size of all the records in a single column needed to be >= 3 GB in
order to trigger this issue). (Bug#8321 [http://bugs.mysql.com/8321])

• Statements that create and use stored routines were not being written to the binary log, which affects
replication and data recovery options. (Bug#2610 [http://bugs.mysql.com/2610]) Stored routine-re-
lated statements now are logged, subject to the issues and limitations discussed in Section 17.5,
“Binary Logging of Stored Routines and Triggers”.

• Disabled binary logging within stored routines to avoid writing spurious extra statements to the bin-
ary log. For example, if a routine p() executes an INSERT statement, then for CALL p(), the
CALL statement appears in the binary log, but not the INSERT statement. (Bug#9100
[http://bugs.mysql.com/9100])

MySQL Change History

1814

http://bugs.mysql.com/10435
http://bugs.mysql.com/7800
http://bugs.mysql.com/9186
http://bugs.mysql.com/8295
http://bugs.mysql.com/8296
http://bugs.mysql.com/8998
http://bugs.mysql.com/5436
http://bugs.mysql.com/2596
http://bugs.mysql.com/8321
http://bugs.mysql.com/2610
http://bugs.mysql.com/9100

• Statements that create and drop triggers were not being written to the binary log, which affects rep-
lication and data recovery options. (Bug#10417 [http://bugs.mysql.com/10417]) Trigger-related
statements now are logged, subject to the issues and limitations discussed in Section 17.5, “Binary
Logging of Stored Routines and Triggers”.

• The mysql_stmt_execute() and mysql_stmt_reset() C API functions now close any
cursor that is open for the statement, which prevents a server crash. (Bug#9478
[http://bugs.mysql.com/9478])

• The mysql_stmt_attr_set() C API function now returns an error for option values that are
defined in mysql.h but not yet implemented, such as CURSOR_TYPE_SCROLLABLE. (Bug#9643
[http://bugs.mysql.com/9643])

• MERGE tables could fail on Windows due to incorrect interpretation of pathname separator charac-
ters for filenames in the .MRG file. (Bug#10687 [http://bugs.mysql.com/10687])

• Fixed a server crash for INSERT ... ON DUPLICATE KEY UPDATE with MERGE tables,
which do not have unique indexes. (Bug#10400 [http://bugs.mysql.com/10400])

• Fix FORMAT() to do better rounding for double values (for example, FORMAT(4.55,1) returns
4.6, not 4.5). (Bug#9060 [http://bugs.mysql.com/9060])

• Disallow use of SESSION or GLOBAL for user variables or local variables in stored routines.
(Bug#9286 [http://bugs.mysql.com/9286])

• Fixed a server crash when using GROUP BY ... WITH ROLLUP on an indexed column in an
InnoDB table. (Bug#9798 [http://bugs.mysql.com/9798])

• In strict SQL mode, some assignments to numeric columns that should have been rejected were not
(such as the result of an arithmetic expression or an explicit CAST() operation). (Bug#6961
[http://bugs.mysql.com/6961])

• CREATE TABLE t AS SELECT UUID() created a VARCHAR(12) column, which is too small
to hold the 36-character result from UUID(). (Bug#9535 [http://bugs.mysql.com/9535])

• Fixed a server crash in the BLACKHOLE storage engine. (Bug#10175
[http://bugs.mysql.com/10175])

• Fixed a server crash resulting from repeated calls to ABS() when the argument evaluated to NULL.
(Bug#10599 [http://bugs.mysql.com/10599])

• For a user-defined function invoked from within a prepared statement, the UDF's initialization
routine was invoked for each execution of the statement, but the deinitialization routine was not. (It
was invoked only when the statement was closed.) Similarly, when invoking a UDF from within a
trigger, the initialization routine was invoked but the deinitialization routine was not. For UDFs that
have an expensive deinit function (such as myperl, this bugfix will have negative performance
consequences. (Bug#9913 [http://bugs.mysql.com/9913])

• Portability fix for Cygwin: Don't use #pragma interface in source files. (Bug#10241
[http://bugs.mysql.com/10241])

• Fix CREATE TABLE ... LIKE to work when lower_case_table_names is set on a case-
sensitive filesystem and the source table name is not given in lowercase. (Bug#9761
[http://bugs.mysql.com/9761])

• Fixed a server crash resulting from a CHECK TABLE statement where the arguments were a view
name followed by a table name. (Bug#9897 [http://bugs.mysql.com/9897])

• Within a stored procedure, attempting to update a view defined as an inner join failed with a Table

MySQL Change History

1815

http://bugs.mysql.com/10417
http://bugs.mysql.com/9478
http://bugs.mysql.com/9643
http://bugs.mysql.com/10687
http://bugs.mysql.com/10400
http://bugs.mysql.com/9060
http://bugs.mysql.com/9286
http://bugs.mysql.com/9798
http://bugs.mysql.com/6961
http://bugs.mysql.com/9535
http://bugs.mysql.com/10175
http://bugs.mysql.com/10599
http://bugs.mysql.com/9913
http://bugs.mysql.com/10241
http://bugs.mysql.com/9761
http://bugs.mysql.com/9897

'tbl_name' was locked with a READ lock and can't be updated error.
(Bug#9481 [http://bugs.mysql.com/9481])

• Fixed a problem with INFORMATION_SCHEMA tables being inaccessible depending on lettercase
used to refer to them. (Bug#10018 [http://bugs.mysql.com/10018])

• my_print_defaults was ignoring the --defaults-extra-file option or crashing when
the option was given. (Bug#9136 [http://bugs.mysql.com/9136], Bug#9851
[http://bugs.mysql.com/9851])

• The INFORMATION_SCHEMA.COLUMNS table was missing columns of views for which the user
has access. (Bug#9838 [http://bugs.mysql.com/9838])

• Fixed a mysqldump crash that occurred with the --complete-insert option when dumping
tables with a large number of long column names. (Bug#10286 [http://bugs.mysql.com/10286])

• Corrected a problem where DEFAULT values where not assigned properly to BIT(1) or CHAR(1)
columns if certain other columns preceded them in the table definition. (Bug#10179
[http://bugs.mysql.com/10179])

• For MERGE tables, avoid writing absolute pathnames in the .MRG file for the names of the constitu-
ent MyISAM tables so that if the data directory is moved, MERGE tables will not break. For mysqld,
write just the MyISAM table name if it is in the same database as the MERGE table, and a path relat-
ive to the data directory otherwise. For the embedded servers, absolute pathnames may still be used.
(Bug#5964 [http://bugs.mysql.com/5964])

• Corrected a problem resolving outer column references in correlated subqueries when using the pre-
pared statements. (Bug#10041 [http://bugs.mysql.com/10041])

• Corrected the error message for exceeding the MAX_CONNECTIONS_PER_HOUR limit to say
max_connections_per_hour instead of max_connections. (Bug#9947
[http://bugs.mysql.com/9947])

• Fixed incorrect memory block allocation for the query cache in the embedded server. (Bug#9549
[http://bugs.mysql.com/9549])

• Corrected an inability to select from a view within a stored procedure. (Bug#9758
[http://bugs.mysql.com/9758])

• Fixed a server crash resulting from use of AVG(DISTINCT) with GROUP BY ... WITH ROL-
LUP. (Bug#9799 [http://bugs.mysql.com/9799])

• Fixed a server crash resulting from use of DISTINCT AVG() with GROUP BY ... WITH
ROLLUP. (Bug#9800 [http://bugs.mysql.com/9800])

• Fixed a server crash resulting from use of a CHAR or VARCHAR column with MIN() or MAX() and
GROUP BY ... WITH ROLLUP. (Bug#9820 [http://bugs.mysql.com/9820])

• Fixed a server crash resulting from use of SELECT DISTINCT with a prepared statement that uses
a cursor. (Bug#9520 [http://bugs.mysql.com/9520])

• Fixed server crash resulting from multiple calls to a stored procedure that assigned the result of a
subquery to a variable or compared it to a value with IN. (Bug#5963 [http://bugs.mysql.com/5963])

• Selecting from a single-table view defined on multiple-table views caused a server crash. (Bug#8528
[http://bugs.mysql.com/8528])

• If the file named by a --defaults-extra-file option does not exist or is otherwise inaccess-
ible, an error now occurs. (Bug#5056 [http://bugs.mysql.com/5056])

MySQL Change History

1816

http://bugs.mysql.com/9481
http://bugs.mysql.com/10018
http://bugs.mysql.com/9136
http://bugs.mysql.com/9851
http://bugs.mysql.com/9838
http://bugs.mysql.com/10286
http://bugs.mysql.com/10179
http://bugs.mysql.com/5964
http://bugs.mysql.com/10041
http://bugs.mysql.com/9947
http://bugs.mysql.com/9549
http://bugs.mysql.com/9758
http://bugs.mysql.com/9799
http://bugs.mysql.com/9800
http://bugs.mysql.com/9820
http://bugs.mysql.com/9520
http://bugs.mysql.com/5963
http://bugs.mysql.com/8528
http://bugs.mysql.com/5056

• net_read_timeout and net_write_timeout were not being respected on Windows.
(Bug#9721 [http://bugs.mysql.com/9721])

• SELECT from INFORMATION_SCHEMA tables failed if the statement has a GROUP BY clause and
an aggregate function in the select list. (Bug#9404 [http://bugs.mysql.com/9404])

• Corrected some failures of prepared statements for SQL (PREPARE plus EXECUTE) to return all
rows for some SELECT statements. (Bug#9096 [http://bugs.mysql.com/9096], Bug#9777
[http://bugs.mysql.com/9777])

• Remove extra slashes in --tmpdir value (for example, convert /var//tmp to /var/tmp, be-
cause they caused various errors. (Bug#8497 [http://bugs.mysql.com/8497])

• Added Create_routine_priv, Alter_routine_priv, and Execute_priv privileges to
the mysql.host privilege table. (They had been added to mysql.db in MySQL 5.0.3 but not to
the host table.) (Bug#8166 [http://bugs.mysql.com/8166])

• Fixed configure to properly recognize whether NTPL is available on Linux. (Bug#2173
[http://bugs.mysql.com/2173])

• Incomplete results were returned from INFORMATION_SCHEMA.COLUMNS for INFORMA-
TION_SCHEMA tables for non-root users. (Bug#10261 [http://bugs.mysql.com/10261])

• Fixed a portability problem in compiling mysql.cc with VC++ on Windows. (Bug#10245
[http://bugs.mysql.com/10245])

• SELECT 0/0 returned 0 rather than NULL. (Bug#10404 [http://bugs.mysql.com/10404])

• MAX() for an INT UNSIGNED (unsigned 4-byte integer) column could return negative values if
the column contained values larger than 231. (Bug#9298 [http://bugs.mysql.com/9298])

• SHOW CREATE VIEW got confused and could not find the view if there was a temporary table with
the same name as the view. (Bug#8921 [http://bugs.mysql.com/8921])

• Fixed a deadlock resulting from use of FLUSH TABLES WITH READ LOCK while an INSERT
DELAYED statement is in progress. (Bug#7823 [http://bugs.mysql.com/7823])

• The optimizer was choosing suboptimal execution plans for certain outer joins where the right table
of a left join (or left table of a right join) had both ON and WHERE conditions. (Bug#10162
[http://bugs.mysql.com/10162])

• RENAME TABLE for an ARCHIVE table failed if the .arn file was not present. (Bug#9911
[http://bugs.mysql.com/9911])

• Invoking a stored function that executed a SHOW statement resulted in a server crash. (Bug#8408
[http://bugs.mysql.com/8408])

• Fixed problems with static variables and do not link with libsupc++ to allow building on
FreeBSD 5.3. (Bug#9714 [http://bugs.mysql.com/9714])

• Fixed some awk script portability problems in cmd-line-utils/libedit/makelist.sh.
(Bug#9954 [http://bugs.mysql.com/9954])

• Fixed a problem with mishandling of NULL key parts in hash indexes on VARCHAR columns, result-
ing in incorrect query results. (Bug#9489 [http://bugs.mysql.com/9489], Bug#10176
[http://bugs.mysql.com/10176])

• InnoDB: Fixed a critical bug in InnoDB AUTO_INCREMENT: it could assign the same value for
several rows. (Bug#10359 [http://bugs.mysql.com/10359]) InnoDB: All InnoDB bug fixes from

MySQL Change History

1817

http://bugs.mysql.com/9721
http://bugs.mysql.com/9404
http://bugs.mysql.com/9096
http://bugs.mysql.com/9777
http://bugs.mysql.com/8497
http://bugs.mysql.com/8166
http://bugs.mysql.com/2173
http://bugs.mysql.com/10261
http://bugs.mysql.com/10245
http://bugs.mysql.com/10404
http://bugs.mysql.com/9298
http://bugs.mysql.com/8921
http://bugs.mysql.com/7823
http://bugs.mysql.com/10162
http://bugs.mysql.com/9911
http://bugs.mysql.com/8408
http://bugs.mysql.com/9714
http://bugs.mysql.com/9954
http://bugs.mysql.com/9489
http://bugs.mysql.com/10176
http://bugs.mysql.com/10359

4.1.12 and earlier versions, and also the fixes to bugs #10335 and #10607 listed in the 4.1.13 change
notes.

D.1.24. Changes in release 5.0.5 (Not released)
No public release of MySQL 5.0.5 was made. The changes described in this section are available in
MySQL 5.0.6.

Functionality added or changed:

• Added support for the BIT data type to the MEMORY, InnoDB, and BDB storage engines.

• SHOW VARIABLES no longer displays the deprecated log_update system variable. (Bug#9738
[http://bugs.mysql.com/9738])

• The behavior controlled by the --innodb-fast-shutdown option now can be changed at
runtime by setting the value of the global innodb_fast_shutdown system variable. It now ac-
cepts values 0, 1 and 2 (except on Netware where 2 is disabled). If set to 2, then when the MySQL
server shuts down, InnoDB will just flush its logs and shut down brutally (and quickly) as if a
MySQL crash had occurred; no committed transaction will be lost, but a crash recovery will be done
at next startup.

Bugs fixed:

• Security fix: If mysqld was started with --user=non_existent_user, it would run using
the privileges of the account it was invoked from, even if that was root. (Bug#9833
[http://bugs.mysql.com/9833])

• Corrected a failure to resolve a column reference correctly for a LEFT JOIN that compared a join
column to an IN subquery. (Bug#9338 [http://bugs.mysql.com/9338])

• Fixed a problem where, after an internal temporary table in memory became too large and had to be
converted to an on-disk table, the error indicator was not cleared and the query failed with error 1023
(Can't find record in ''). (Bug#9703 [http://bugs.mysql.com/9703])

• Multiple-table updates could produce spurious data-truncation warnings if they used a join across
columns that are indexed using a column prefix. (Bug#9103 [http://bugs.mysql.com/9103])

• Fixed a string-length comparison problem that caused mysql to fail loading dump files containing
certain ‘\’-sequences. (Bug#9756 [http://bugs.mysql.com/9756])

• Fixed a failure to resolve a column reference properly when an outer join involving a view contained
a subquery and the column was used in the subquery and the outer query. (Bug#6106
[http://bugs.mysql.com/6106], Bug#6107 [http://bugs.mysql.com/6107])

• Use of a subquery that used WITH ROLLUP in the FROM clause of the main query sometimes resul-
ted in a Column cannot be null error. (Bug#9681 [http://bugs.mysql.com/9681])

• Fixed a memory leak that occurred when selecting from a view that contained a subquery.
(Bug#10107 [http://bugs.mysql.com/10107])

• Fixed an optimizer bug in computing the union of two ranges for the OR operator. (Bug#9348
[http://bugs.mysql.com/9348])

• Fixed a segmentation fault in mysqlcheck that occurred when the last table checked in -

MySQL Change History

1818

http://bugs.mysql.com/9738
http://bugs.mysql.com/9833
http://bugs.mysql.com/9338
http://bugs.mysql.com/9703
http://bugs.mysql.com/9103
http://bugs.mysql.com/9756
http://bugs.mysql.com/6106
http://bugs.mysql.com/6107
http://bugs.mysql.com/9681
http://bugs.mysql.com/10107
http://bugs.mysql.com/9348

-auto-repair mode returned an error (such as the table being a MERGE table). (Bug#9492
[http://bugs.mysql.com/9492])

• SET @var= CAST(NULL AS [INTEGER|CHAR]) now sets the result type of the variable to
INTEGER/CHAR. (Bug#6598 [http://bugs.mysql.com/6598])

• Incorrect results were returned for queries of the form SELECT ... LEFT JOIN ... WHERE
EXISTS (subquery), where the subquery selected rows based on an IS NULL condition.
(Bug#9516 [http://bugs.mysql.com/9516])

• Executing LOCK TABLES and then calling a stored procedure caused an error and resulting in the
server thinking that no stored procedures exist. (Bug#9566 [http://bugs.mysql.com/9566])

• Selecting from a view containing a subquery caused the server to hang. (Bug#8490
[http://bugs.mysql.com/8490])

• Within a stored procedure, attempting to execute a multiple-table UPDATE failed with a Table
'tbl_name' was locked with a READ lock and can't be updated error.
(Bug#9486 [http://bugs.mysql.com/9486])

• Starting mysqld with the --skip-innodb and --default-storage-engine=innodb
(or --default-table-type=innodb caused a server crash. (Bug#9815
[http://bugs.mysql.com/9815])

• Queries containing CURRENT_USER() incorrectly were registered in the query cache. (Bug#9796
[http://bugs.mysql.com/9796])

• Setting the storage_engine system variable to MEMORY succeeded, but retrieving the variable
resulted in a value of HEAP (the old name for the MEMORY storage engine) rather than MEMORY.
(Bug#10039 [http://bugs.mysql.com/10039])

• mysqlshow displayed an incorrect row count for tables. (Bug#9391 [http://bugs.mysql.com/9391])

• The server died with signal 11 if a non-existent location was specified for the location of the binary
log. Now the server exits after printing an appropriate error message. (Bug#9542
[http://bugs.mysql.com/9542])

• Fixed a problem in the client/server protocol where the server closed the connection before sending
the final error message. The problem could show up as a Lost connection to MySQL
server during query when attempting to connect to access a non-existent database.
(Bug#6387 [http://bugs.mysql.com/6387], Bug#9455 [http://bugs.mysql.com/9455])

• Fixed a readline-related crash in mysql when the user pressed Control-R. (Bug#9568
[http://bugs.mysql.com/9568])

• For stored functions that should return a YEAR value, corrected a failure of the value to be in YEAR
format. (Bug#8861 [http://bugs.mysql.com/8861])

• Fixed a server crash resulting from invocation of a stored function that returned a value having an
ENUM or SET data type. (Bug#9775 [http://bugs.mysql.com/9775])

• Fixed a server crash resulting from invocation of a stored function that returned a value having a
BLOB data type. (Bug#9102 [http://bugs.mysql.com/9102])

• Fixed a server crash resulting from invocation of a stored function that returned a value having a
BIT data type. (Bug#7648 [http://bugs.mysql.com/7648])

• TIMEDIFF() with a negative time first argument and positive time second argument produced in-
correct results. (Bug#8068 [http://bugs.mysql.com/8068])

MySQL Change History

1819

http://bugs.mysql.com/9492
http://bugs.mysql.com/6598
http://bugs.mysql.com/9516
http://bugs.mysql.com/9566
http://bugs.mysql.com/8490
http://bugs.mysql.com/9486
http://bugs.mysql.com/9815
http://bugs.mysql.com/9796
http://bugs.mysql.com/10039
http://bugs.mysql.com/9391
http://bugs.mysql.com/9542
http://bugs.mysql.com/6387
http://bugs.mysql.com/9455
http://bugs.mysql.com/9568
http://bugs.mysql.com/8861
http://bugs.mysql.com/9775
http://bugs.mysql.com/9102
http://bugs.mysql.com/7648
http://bugs.mysql.com/8068

• Fixed a problem with OPTIMIZE TABLE for InnoDB tables being written twice to the binary log.
(Bug#9149 [http://bugs.mysql.com/9149])

• InnoDB: Prevent ALTER TABLE from changing the storage engine if there are foreign key con-
straints on the table. (Bug#5574 [http://bugs.mysql.com/5574], Bug#5670
[http://bugs.mysql.com/5670])

• InnoDB: Fixed a bug where next-key locking doesn't allow the insert which does not produce a
phantom. (Bug#9354 [http://bugs.mysql.com/9354]) If the range is of type 'a' <= unique-
column, InnoDB lock only the RECORD, if the record with the column value 'a' exists in a
CLUSTERED index. This allows inserts before a range.

• InnoDB: When FOREIGN_KEY_CHECKS=0, ALTER TABLE and RENAME TABLE will ignore
any type incompatibilities between referencing and referenced columns. Thus, it will be possible to
convert the character sets of columns that participate in a foreign key. Be sure to convert all tables
before modifying any data! (Bug#9802 [http://bugs.mysql.com/9802])

• Provide more informative error messages in clustered setting when a query is issued against a table
that has been modified by another mysqld server. (Bug#6762 [http://bugs.mysql.com/6762])

D.1.25. Changes in release 5.0.4 (16 April 2005)
Functionality added or changed:

• Added ENGINE=MyISAM table option when creating mysql.proc table in
mysql_create_system_tables script to make sure the table is created as a MyISAM table
even if the default storage engine has been changed. (Bug#9496 [http://bugs.mysql.com/9496])

• SHOW CREATE TABLE for an INFORMATION_SCHEMA table no longer prints a MAX_ROWS
value because the value has no meaning. (Bug#8941 [http://bugs.mysql.com/8941])

• Invalid DEFAULT values for CREATE TABLE now generate errors. (Bug#5902
[http://bugs.mysql.com/5902])

• Added --show-table-type option to mysqlshow, to display a column indicating the table
type, as in SHOW FULL TABLES. (Bug#5036 [http://bugs.mysql.com/5036])

• The way the time zone information is stored in the binary log was changed, so that it is now possible
to have a replication master and slave running with different global time zones. A drawback is that
replication from 5.0.4 masters to pre-5.0.4 slaves is impossible.

• Added --with-big-tables compilation option to configure. (Previously it was necessary
to pass -DBIG_TABLES to the compiler manually in order to enable large table support.) See Sec-
tion 2.9.2, “Typical configure Options”, for details.

• New configuration directives !include and !includedir implemented for including option
files and searching directories for option files. See Section 4.3.2, “Using Option Files”, for usage.

Bugs fixed:

• The use of XOR together with NOT ISNULL() erroneously resulted in some outer joins being con-
verted to inner joins by the optimizer. (Bug#9017 [http://bugs.mysql.com/9017])

• Fixed an optimizer problem where extraneous comparisons between NULL values in indexed
columns were being done for operators such as = that are never true for NULL. (Bug#8877

MySQL Change History

1820

http://bugs.mysql.com/9149
http://bugs.mysql.com/5574
http://bugs.mysql.com/5670
http://bugs.mysql.com/9354
http://bugs.mysql.com/9802
http://bugs.mysql.com/6762
http://bugs.mysql.com/9496
http://bugs.mysql.com/8941
http://bugs.mysql.com/5902
http://bugs.mysql.com/5036
http://bugs.mysql.com/9017
http://bugs.mysql.com/8877

[http://bugs.mysql.com/8877])

• Fixed the client/server protocol for prepared statements so that reconnection works properly when
the connection is killed while reconnect is enabled. (Bug#8866 [http://bugs.mysql.com/8866])

• A server installed as a Windows service and started with --shared-memory could not be
stopped. (Bug#9665 [http://bugs.mysql.com/9665])

• Fixed a server crash resulting from multiple executions of a prepared statement involving a join of
an INFORMATION_SCHEMA table with another table. (Bug#9383 [http://bugs.mysql.com/9383])

• Fixed utf8_spanish2_ci and ucs2_spanish2_ci collations to not consider ‘r’ equal to
‘rr’. If you upgrade to this version from an earlier version, you should rebuild the indexes of af-
fected tables. (Bug#9269 [http://bugs.mysql.com/9269])

• mysqldump dumped core when invoked with --tmp and --single-transaction options
and a non-existent table name. (Bug#9175 [http://bugs.mysql.com/9175])

• Allow extra HKSCS and cp950 characters (big5 extension characters) to be accepted in big5
columns. (Bug#9357 [http://bugs.mysql.com/9357])

• mysql.server no longer uses non-portable alias command or LSB functions. (Bug#9852
[http://bugs.mysql.com/9852])

• Fixed a server crash resulting from GROUP BY on a decimal expression. (Bug#9210
[http://bugs.mysql.com/9210])

• In prepared statements, subqueries containing parameters were erroneously treated as const tables
during preparation, resulting in a server crash. (Bug#8807 [http://bugs.mysql.com/8807])

• InnoDB: ENUM and SET columns were treated incorrectly as character strings. This bug did not
manifest itself with latin1 collations if there were less than about 100 elements in an ENUM, but it
caused malfunction with UTF-8. Old tables will continue to work. In new tables, ENUM and SET
will be internally stored as unsigned integers. (Bug#9526 [http://bugs.mysql.com/9526])

• InnoDB: Avoid test suite failures caused by a locking conflict between two server instances at server
shutdown/startup. This conflict on advisory locks appears to be the result of a bug in the operating
system; these locks should be released when the files are closed, but somehow that does not always
happen immediately in Linux. (Bug#9381 [http://bugs.mysql.com/9381])

• InnoDB: True VARCHAR: InnoDB stored the 'position' of a row wrong in a column prefix primary
key index; this could cause MySQL to complain ERROR 1032: Can't find record in
an update of the primary key, and also some ORDER BY or DISTINCT queries. (Bug#9314
[http://bugs.mysql.com/9314])

• InnoDB: Fix bug in MySQL/InnoDB 5.0.3: SQL statements were not rolled back on error.
(Bug#8650 [http://bugs.mysql.com/8650])

• Fixed a Commands out of sync error when two prepared statements for single-row result sets
were open simultaneously. (Bug#8880 [http://bugs.mysql.com/8880])

• Fixed a server crash after a call to mysql_stmt_close() for single-row result set. (Bug#9159
[http://bugs.mysql.com/9159])

• Fixed server crashes for CREATE TABLE ... SELECT or INSERT INTO ... SELECT
when selecting from multiple-table view. (Bug#8703 [http://bugs.mysql.com/8703], Bug#9398
[http://bugs.mysql.com/9398])

• TRADITIONAL SQL mode should prevent inserts where a column with no default value is omitted

MySQL Change History

1821

http://bugs.mysql.com/8866
http://bugs.mysql.com/9665
http://bugs.mysql.com/9383
http://bugs.mysql.com/9269
http://bugs.mysql.com/9175
http://bugs.mysql.com/9357
http://bugs.mysql.com/9852
http://bugs.mysql.com/9210
http://bugs.mysql.com/8807
http://bugs.mysql.com/9526
http://bugs.mysql.com/9381
http://bugs.mysql.com/9314
http://bugs.mysql.com/8650
http://bugs.mysql.com/8880
http://bugs.mysql.com/9159
http://bugs.mysql.com/8703
http://bugs.mysql.com/9398

or set to a value of DEFAULT. Fixed cases where this restriction was not enforced. (Bug#5986
[http://bugs.mysql.com/5986])

• Fixed a server crash when creating a PRIMARY KEY for a table, if the table contained a BIT
column. (Bug#9571 [http://bugs.mysql.com/9571])

• Warning message from GROUP_CONCAT() did not always indicate correct number of lines.
(Bug#8681 [http://bugs.mysql.com/8681])

• The commit count cache for NDB was not properly invalidated when deleting a record using a cursor.
(Bug#8585 [http://bugs.mysql.com/8585])

• Fixed option-parsing code for the embedded server to understand K, M, and G suffixes for the
net_buffer_length and max_allowed_packet options. (Bug#9472
[http://bugs.mysql.com/9472])

• Selecting a BIT column failed if the binary client/server protocol was used. (Bug#9608
[http://bugs.mysql.com/9608])

• Fixed a permissions problem whereby information in INFORMATION_SCHEMA could be exposed
to a user with insufficient privileges. (Bug#7214 [http://bugs.mysql.com/7214])

• An error now occurs if you try to insert an invalid value via a stored procedure in STRICT mode.
(Bug#5907 [http://bugs.mysql.com/5907])

• Link with libsupc++ on Fedora Core 3 to get language support functions. (Bug#6554
[http://bugs.mysql.com/6554])

• The value of the CHARACTER_MAXIMUM_LENGTH and CHARACTER_OCTET_LENGTH columns
of the INFORMATION_SCHEMA.COLUMNS table must be NULL for numeric columns, but were
not. (Bug#9344 [http://bugs.mysql.com/9344])

• DROP TABLE did not drop triggers that were defined for the table. DROP DATABASE did not drop
triggers in the database. (Bug#5859 [http://bugs.mysql.com/5859], Bug#6559
[http://bugs.mysql.com/6559])

• CREATE OR REPLACE VIEW and ALTER VIEW now require the CREATE VIEW and DROP
privileges, not CREATE VIEW and DELETE. (DELETE is a row-level privilege, not a table-level
privilege.) (Bug#9260 [http://bugs.mysql.com/9260])

• Some user variables were not being handled with “implicit” coercibility. (Bug#9425
[http://bugs.mysql.com/9425])

• Setting the max_error_count system variable to 0 resulted in a setting of 1. (Bug#9072
[http://bugs.mysql.com/9072])

• Fixed a collation coercibility problem that caused a union between binary and non-binary columns to
fail. (Bug#6519 [http://bugs.mysql.com/6519])

• Fixed a bug in division of floating point numbers. It could cause nine zeros (000000000) to be in-
serted in the middle of the quotient. (Bug#9501 [http://bugs.mysql.com/9501])

• INFORMATION_SCHEMA tables had an implicit upper limit for the number of rows. As a result, not
all data could be returned for some queries. (Bug#9317 [http://bugs.mysql.com/9317])

• Fixed a problem with the tee command in mysql that resulted in mysql crashing. (Bug#8499
[http://bugs.mysql.com/8499])

• CAST() now produces warnings when casting incorrect INTEGER and CHAR values. This also ap-

MySQL Change History

1822

http://bugs.mysql.com/5986
http://bugs.mysql.com/9571
http://bugs.mysql.com/8681
http://bugs.mysql.com/8585
http://bugs.mysql.com/9472
http://bugs.mysql.com/9608
http://bugs.mysql.com/7214
http://bugs.mysql.com/5907
http://bugs.mysql.com/6554
http://bugs.mysql.com/9344
http://bugs.mysql.com/5859
http://bugs.mysql.com/6559
http://bugs.mysql.com/9260
http://bugs.mysql.com/9425
http://bugs.mysql.com/9072
http://bugs.mysql.com/6519
http://bugs.mysql.com/9501
http://bugs.mysql.com/9317
http://bugs.mysql.com/8499

plies to implicit string to number casts. (Bug#5912 [http://bugs.mysql.com/5912])

• ALTER TABLE now fails in STRICT mode if the alteration generates warnings.

• Using CONVERT('0000-00-00',date) or CAST('0000-00-00' as date) with the
NO_ZERO_DATE SQL mode enabled now produces a warning. (Bug#6145
[http://bugs.mysql.com/6145])

• Inserting a zero date in a DATE, DATETIME or TIMESTAMP column during TRADITIONAL mode
now produces an error. (Bug#5933 [http://bugs.mysql.com/5933])

• Inserting a zero date into a DATETIME column in TRADITIONAL mode now produces an error.

• STR_TO_DATE() now produces errors in strict mode (and warnings otherwise) when given an il-
legal argument. (Bug#5902 [http://bugs.mysql.com/5902])

• Fixed a problem with ORDER BY that sometimes caused incorrect sorting of utf8 data. (Bug#9309
[http://bugs.mysql.com/9309])

• Fixed server crash resulting from queries that combined SELECT DISTINCT, SUM(), and ROL-
LUP. (Bug#8615 [http://bugs.mysql.com/8615])

• Incorrect results were returned from queries that combined SELECT DISTINCT, GROUP BY ,
and ROLLUP. (Bug#8616 [http://bugs.mysql.com/8616])

• Too many rows were returned from queries that combined ROLLUP and LIMIT if
SQL_CALC_FOUND_ROWS was given. (Bug#8617 [http://bugs.mysql.com/8617])

• If on replication master a LOAD DATA INFILE is interrupted in the middle (integrity constraint
violation, killed connection...), the slave used to skip this LOAD DATA INFILE entirely, thus
missing some changes if this command permanently inserted/updated some table records before be-
ing interrupted. This is now fixed. (Bug#3247 [http://bugs.mysql.com/3247])

D.1.26. Changes in release 5.0.3 (23 March 2005: Beta)
Note: This Beta release, as any other pre-production release, should not be installed on “production”
level systems or systems with critical data. It is good practice to back up your data before installing any
new version of software. Although MySQL worked very hard to ensure a high level of quality, protect
your data by making a backup as you would for any software beta release.

Functionality added or changed:

• Security improvement: The server creates .frm, .MYD, .MYI, .MRG, .ISD, and .ISM table files
only if a file with the same name does not already exist. Thanks to Stefano Di Paola
<stefano.dipaola@wisec.it> for finding and informing us about this issue. (CVE-
2005-0711 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0711])

• Security improvement: User-defined functions should have at least one symbol defined in addition to
the xxx symbol that corresponds to the main xxx() function. These auxiliary symbols correspond
to the xxx_init(), xxx_deinit(), xxx_reset(), xxx_clear(), and xxx_add() func-
tions. mysqld by default no longer loads UDFs unless they have at least one auxiliary symbol
defined in addition to the main symbol. The --allow-suspicious-udfs option controls
whether UDFs that have only an xxx symbol can be loaded. By default, the option is off. mysqld
also checks UDF filenames when it reads them from the mysql.func table and rejects those that
contain directory pathname separator characters. (It already checked names as given in CREATE
FUNCTION statements.) See Section 24.2.4.1, “UDF Calling Sequences for Simple Functions”, Sec-

MySQL Change History

1823

http://bugs.mysql.com/5912
http://bugs.mysql.com/6145
http://bugs.mysql.com/5933
http://bugs.mysql.com/5902
http://bugs.mysql.com/9309
http://bugs.mysql.com/8615
http://bugs.mysql.com/8616
http://bugs.mysql.com/8617
http://bugs.mysql.com/3247
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0711
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0711

tion 24.2.4.2, “UDF Calling Sequences for Aggregate Functions”, and Section 24.2.4.6,
“User-Defined Function Security Precautions”. Thanks to Stefano Di Paola
<stefano.dipaola@wisec.it> for finding and informing us about this issue. (CVE-
2005-0709 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0709], CVE-2005-0710
[http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0710])

• The DECIMAL and NUMERIC data types now are handled with a fixed-point library that allows for
precision math handling that results in more accurate results. See Chapter 21, Precision Math.

Warning: Incompatible change: A consequence of the change in handling of the DECIMAL and
NUMERIC fixed-point data types is that the server is more strict to follow standard SQL. For ex-
ample, a data type of DECIMAL(3,1) stores a maximum value of 99.9. Previously, the server al-
lowed larger numbers to be stored. That is, it stored a value such as 100.0 as 100.0. Now the server
clips 100.0 to the maximum allowable value of 99.9. If you have tables that were created before
MySQL 5.0.3 and that contain floating-point data not strictly legal for the data type, you should alter
the data types of those columns. For example:

ALTER TABLE tbl_name MODIFY col_name DECIMAL(4,1);

Warning: Incompatible change: For user-defined functions, exact-value decimal arguments such
as 1.3 or DECIMAL column values were passed as REAL_RESULT values prior to MySQL 5.0.3.
As of 5.0.3, they are passed as strings with a type of DECIMAL_RESULT. If you upgrade to 5.0.3
and find that your UDF now receives string values, use the initialization function to coerce the argu-
ments to numbers as described in Section 24.2.4.3, “UDF Argument Processing”.

• Incompatible change: The C API ER_WARN_DATA_TRUNCATED warning symbol was renamed to
WARN_DATA_TRUNCATED.

• InnoDB: Upgrading from 4.1: The sorting order for end-space in TEXT columns for InnoDB tables
has changed. Starting from 5.0.3, InnoDB compares TEXT columns as space-padded at the end. If
you have a non-unique index on a TEXT column, you should run CHECK TABLE on it, and run OP-
TIMIZE TABLE if the check reports errors. If you have a UNIQUE INDEX on a TEXT column,
you should rebuild the table with OPTIMIZE TABLE.

• Implemented support for XA transactions. See Section 13.4.7, “XA Transactions”. The implementa-
tion make the innodb_safe_binlog system variable obsolete, so it has been removed.

• mysqlbinlog now prints a ROLLBACK statement at the end of its output, in case the server
crashed while it was in the process of writing the final entry into the last binary log named on the
command line. This causes any half-written transaction to be rolled back when the output is ex-
ecuted. The ROLLBACK is harmless if the binary log file was written and closed normally.

• Added the engine_condition_pushdown system variable. For NDB, setting this variable to 1
allows processing of some WHERE clause conditions to be processed in NDB nodes before rows are
sent to the MySQL server, rather than having rows sent to the server for evaluation.

• Additional control over transaction completion was implemented. The COMMIT and ROLLBACK
statements support AND [NO] CHAIN and RELEASE clauses. There is a new RELEASE SAVE-
POINT statement. The completion_type system variable was added for setting the global and
session default completion type.

• A new CREATE USER privilege was added.

• my.cnf in the compile-time datadir (usually /usr/local/mysql/data/ in the binary tarball
distributions) is not being read anymore. The value of the environment variable MYSQL_HOME is
used instead of the hard-coded path.

• Support for the ISAM storage engine has been removed. If you have ISAM tables, you should con-

MySQL Change History

1824

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0709
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0709
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0710

vert them before upgrading. See Section 2.11.2, “Upgrading from MySQL 4.1 to 5.0”.

• Support for RAID options in MyISAM tables has been removed. If you have tables that use these op-
tions, you should convert them before upgrading. See Section 2.11.2, “Upgrading from MySQL 4.1
to 5.0”.

• Added support for AVG(DISTINCT).

• ONLY_FULL_GROUP_BY no longer is included in the ANSI composite SQL mode. (Bug#8510
[http://bugs.mysql.com/8510])

• mysqld_safe will create the directory where the UNIX socket file is to be located if the directory
does not exist. This applies only to the last component of the directory pathname. (Bug#8513
[http://bugs.mysql.com/8513])

• The coercibility for the return value of functions such as USER() or VERSION() now is “system
constant” rather than “implicit.” This makes these functions more coercible than column values so
that comparisons of the two do not result in Illegal mix of collations errors. COER-
CIBILITY() was modified to accommodate this new coercibility value. See Section 12.9.3,
“Information Functions”.

• User variable coercibility has been changed from “coercible” to “implicit.” That is, user variables
have the same coercibility as column values.

• Boolean full-text phrase searching now requires only that matches contain exactly the same words as
the phrase and in the same order. Non-word characters no longer need match exactly.

• CHECKSUM TABLE returns a warning for non-existing tables. The checksum value remains NULL
as before. (Bug#8256 [http://bugs.mysql.com/8256])

• The server now includes a timestamp in the Ready for connections message that is written
to the error log at startup. (Bug#8444 [http://bugs.mysql.com/8444])

• Added SQL_NOTES session variable to cause Note-level warnings not to be recorded. (Bug#6662
[http://bugs.mysql.com/6662])

• Allowed the service-installation command for Windows servers to specify a single option other than
--defaults-file following the service name. This is for compatibility with MySQL 4.1.
(Bug#7856 [http://bugs.mysql.com/7856])

• InnoDB: Commit after every 10,000 copied rows when executing ALTER TABLE, CREATE IN-
DEX, DROP INDEX or OPTIMIZE TABLE. This makes it much faster to recover from an aborted
operation.

• Added VAR_POP() and STDDEV_POP() as standard SQL aliases for the VARIANCE() and
STDDEV() functions that compute population variance and standard deviation. Added new
VAR_SAMP() and STDDEV_SAMP() functions to compute sample variance and standard devi-
ation. (Bug#3190 [http://bugs.mysql.com/3190])

• Fixed a problem with out-of-order packets being sent (ERROR after OK or EOF) following a KILL
QUERY statement. (Bug#6804 [http://bugs.mysql.com/6804])

• Retrieving from a view defined as a SELECT that mixed UNION ALL and UNION DISTINCT res-
ulted in a different result than retrieving from the original SELECT. (Bug#6565
[http://bugs.mysql.com/6565])

• Fixed a problem with non-optimal index_merge query execution plans being chosen on IRIX.
(Bug#8578 [http://bugs.mysql.com/8578])

MySQL Change History

1825

http://bugs.mysql.com/8510
http://bugs.mysql.com/8513
http://bugs.mysql.com/8256
http://bugs.mysql.com/8444
http://bugs.mysql.com/6662
http://bugs.mysql.com/7856
http://bugs.mysql.com/3190
http://bugs.mysql.com/6804
http://bugs.mysql.com/6565
http://bugs.mysql.com/8578

• BIT in column definitions now is a distinct data type; it no longer is treated as a synonym for
TINYINT(1).

• Bit-field values can be written using b'value' notation. value is a binary value written using 0s
and 1s.

• From the Windows distribution, predefined accounts without passwords for remote users
("root@%", "@%") were removed (other distributions never had them).

• Added mysql_library_init() and mysql_library_end() as synonyms for the
mysql_server_init() and mysql_server_end() C API functions.
mysql_library_init() and mysql_library_end() are #define symbols, but the
names more clearly indicate that they should be called when beginning and ending use of a MySQL
C API library no matter whether the application uses libmysqlclient or libmysqld.
(Bug#6149 [http://bugs.mysql.com/6149])

• SHOW COLUMNS now displays NO rather than blank in the Null output column if the correspond-
ing table column cannot be NULL.

• Changed XML format for mysql from <col_name>col_value</col_name> to <field
name="col_name">col_value</field> to allow for proper encoding of column names that
are not legal as element names. (Bug#7811 [http://bugs.mysql.com/7811])

• Added --innodb-checksums and --innodb-doublewrite options for mysqld.

• Added --large-pages option for mysqld.

• Added multi_read_range system variable.

• SHOW DATABASES, SHOW TABLES, SHOW COLUMNS, and so forth display information about
the INFORMATION_SCHEMA database. Also, several SHOW statements now accept a WHERE clause
specifying which output rows to display. See Chapter 20, The INFORMATION_SCHEMA Database.

• Added the CREATE ROUTINE and ALTER ROUTINE privileges, and made the EXECUTE priv-
ilege operational.

• InnoDB: Corrected a bug in the crash recovery of ROW_FORMAT=COMPACT tables that caused cor-
ruption. (Bug#7973 [http://bugs.mysql.com/7973]) There may still be bugs in the crash recovery, es-
pecially in COMPACT tables.

• When the MyISAM storage engine detects corruption of a MyISAM table, a message describing the
problem now is written to the error log.

• InnoDB: When MySQL/InnoDB is compiled on Mac OS X 10.2 or earlier, detect the operating sys-
tem version at run time and use the fcntl() file flush method on Mac OS X versions 10.3 and
later. In Mac OS X, fsync() does not flush the write cache in the disk drive, but the special
fcntl() does; however, the flush request is ignored by some external devices. Failure to flush the
buffers may cause severe database corruption at power outages.

• InnoDB: Implemented fast TRUNCATE TABLE. The old approach (deleting rows one by one) may
be used if the table is being referenced by foreign keys. (Bug#7150 [http://bugs.mysql.com/7150])

• Added cp932 (SJIS for Windows Japanese) and eucjpms (UJIS for Windows Japanese) character
sets.

• Added several InnoDB status variables. See Section 5.2.5, “Status Variables”.

• Added the FEDERATED storage engine. See Section 14.7, “The FEDERATED Storage Engine”.

MySQL Change History

1826

http://bugs.mysql.com/6149
http://bugs.mysql.com/7811
http://bugs.mysql.com/7973
http://bugs.mysql.com/7150

• SHOW CREATE TABLE now uses USING index_type rather than TYPE index_type to
specify an index type. (Bug#7233 [http://bugs.mysql.com/7233])

• InnoDB now supports a fast TRUNCATE TABLE. One visible change from this is that auto-in-
crement values for this table are reset on TRUNCATE.

• Added an error member to the MYSQL_BIND data structure that is used in the C API for prepared
statements. This member is used for reporting data truncation errors. Truncation reporting is enabled
via the new MYSQL_REPORT_DATA_TRUNCATION option for the mysql_options() C API
function.

• API change: the reconnect flag in the MYSQL structure is now set to 0 by
mysql_real_connect(). Only those client programs which didn't explicitly set this flag to 0 or
1 after mysql_real_connect() experience a change. Having automatic reconnection enabled
by default was considered too dangerous (after reconnection, table locks, temporary tables, user and
session variables are lost).

• FLUSH TABLES WITH READ LOCK is now killable while it's waiting for running COMMIT state-
ments to finish.

• MEMORY (HEAP) can have VARCHAR() fields.

• VARCHAR columns now remember end space. A VARCHAR() column can now contain up to 65535
bytes. For more details, see Section D.1, “Changes in release 5.0.x (Production)”. If the table handler
doesn't support the new VARCHAR type, then it's converted to a CHAR column. Currently this hap-
pens for NDB tables.

• InnoDB: Introduced a compact record format that does not store the number of columns or the
lengths of fixed-size columns. The old format can be requested by specifying
ROW_FORMAT=REDUNDANT. The new format (ROW_FORMAT=COMPACT) is the default. The new
format typically saves 20 % of disk space and memory.

• InnoDB: Setting the initial AUTO_INCREMENT value for an InnoDB table using CREATE TA-
BLE ... AUTO_INCREMENT = n now works, and ALTER TABLE ... AUTO_INCREMENT
= n resets the current value.

• Seconds_Behind_Master is NULL (which means “unknown”) if the slave SQL thread is not
running, or if the slave I/O thread is not running or not connected to master. It is zero if the SQL
thread has caught up to the I/O thread. It no longer grows indefinitely if the master is idle.

• The MySQL server aborts immediately instead of simply issuing a warning if it is started with the -
-log-bin option but cannot initialize the binary log at startup (that is, an error occurs when writ-
ing to the binary log file or binary log index file).

• The binary log file and binary log index file now are handled the same way as MyISAM tables when
there is a “disk full” or “quota exceeded” error. See Section A.4.3, “How MySQL Handles a Full
Disk”.

• The MySQL server now aborts when started with the option --log-bin-index and without -
-log-bin, and when started with --log-slave-updates and without --log-bin.

• If the MySQL server is started without an argument to --log-bin and without -
-log-bin-index, thus not providing a name for the binary log index file, a warning is issued be-
cause MySQL falls back to using the hostname for that name, and this is prone to replication issues
if the server's hostname's gets changed later. See Section A.8.1, “Open Issues in MySQL”.

• Added account-specific MAX_USER_CONNECTIONS limit, which allows you to specify the maxim-
um number of concurrent connections for the account. Also, all limited resources now are counted
per account (instead of being counted per user + host pair as it was before). Use the -

MySQL Change History

1827

http://bugs.mysql.com/7233

-old-style-user-limits option to get the old behavior.

• InnoDB: A shared record lock (LOCK_REC_NOT_GAP) is now taken for a matching record in the
foreign key check because inserts can be allowed into gaps.

• InnoDB: Relaxed locking in INSERT SELECT, single table UPDATE SELECT and single table
DELETE SELECT clauses when innodb_locks_unsafe_for_binlog is used and isolation
level of the transaction is not serializable. InnoDB uses consistent read in these cases for a selected
table.

• Added a new global system variable slave_transaction_retries: if the replication slave
SQL thread fails to execute a transaction because of an InnoDB deadlock or exceeded InnoDB's
innodb_lock_wait_timeout or NDBCluster's TransactionDeadlockDetection-
Timeout or TransactionInactiveTimeout, it automatically retries
slave_transaction_retries times before stopping with an error. The default is 10.
(Bug#8325 [http://bugs.mysql.com/8325])

• When a client releases a user-level lock, DO RELEASE_LOCK() will not be written to the binary
log anymore (this makes the binary log smaller); as a counterpart, the slave does not actually take the
lock when it executes GET_LOCK(). This is mainly an optimization and should not affect existing
setups. (Bug#7998 [http://bugs.mysql.com/7998])

• The way the character set information is stored into the binary log was changed, so that it's now pos-
sible to have a replication master and slave running with different global character sets. A drawback
is that replication from 5.0.3 masters to pre-5.0.3 slaves is impossible.

• The LOAD DATA statement was extended to support user variables in the target column list, and an
optional SET clause. Now one can perform some transformations on data after they have been read
and before they are inserted into the table. For example:

LOAD DATA INFILE 'file.txt'
INTO TABLE t1
(column1, @var1)
SET column2 = @var1/100;

Also, replication of LOAD DATA was changed, so you can't replicate such statements from a 5.0.3
master to pre-5.0.3 slaves.

• NDB Cluster: When using this storage engine, the output of SHOW TABLE STATUS now dis-
plays properly-calculated values in the Avg_row_length and Data_length columns. (Note
that BLOB columns are not yet taken into account.) In addition, the number of replicas is now shown
in the Comment column (as number_of_replicas).

Bugs fixed:

• If a MyISAM table on Windows had INDEX DIRECTORY or DATA DIRECTORY table options,
mysqldump dumped the directory pathnames with single-backslash pathname separators. This
would cause syntax errors when importing the dump file. mysqldump now changes ‘\’ to ‘/’ in
the pathnames on Windows. (Bug#6660 [http://bugs.mysql.com/6660])

• mysql_fix_privilege_tables now fixes that the mysql privilege tables can be used in
MySQL 4.1. This allows one to easily downgrade to 4.1 or run MySQL 5.0 and 4.1 with the same
privilege files for testing purposes.

• Fixed bug creating user with GRANT fails with password but works without, (Bug#7905
[http://bugs.mysql.com/7905])

MySQL Change History

1828

http://bugs.mysql.com/8325
http://bugs.mysql.com/7998
http://bugs.mysql.com/6660
http://bugs.mysql.com/7905

• mysqldump misinterpreted ‘_’ and ‘%’ characters in the names of tables to be dumped as wildcard
characters. (Bug#9123 [http://bugs.mysql.com/9123])

• The definition of the enumeration-valued sql_mode column of the mysql.proc table was miss-
ing some of the current allowable SQL modes, so stored routines would not necessarily execute with
the SQL mode in effect at the time of routine definition. (Bug#8902 [http://bugs.mysql.com/8902])

• REPAIR TABLE did not invalidate query results in the query cache that were generated from the ta-
ble. (Bug#8480 [http://bugs.mysql.com/8480])

• In strict or traditional SQL mode, too-long string values assigned to string columns (CHAR,
VARCHAR, BINARY, VARBINARY, TEXT, or BLOB) were correctly truncated, but the server re-
turned an SQLSTATE value of 01000 (should be 22001). (Bug#6999
[http://bugs.mysql.com/6999], Bug#9029 [http://bugs.mysql.com/9029])

• Stored functions that used cursors could return incorrect results. (Bug#8386
[http://bugs.mysql.com/8386])

• AES_DECRYPT(col_name,key) could fail to return NULL for invalid values in col_name, if
col_name was declared as NOT NULL. (Bug#8669 [http://bugs.mysql.com/8669])

• Ordering by unsigned expression (more complex than a column reference) was treating the value as
signed, producing incorrectly sorted results. (Bug#7425 [http://bugs.mysql.com/7425])

• HAVING was treating unsigned columns as signed. (Bug#7425 [http://bugs.mysql.com/7425])

• Fixed a problem with boolean full-text searches on utf8 columns where a double quote in the
search string caused a server crash. (Bug#8351 [http://bugs.mysql.com/8351])

• For a query with both GROUP BY and COUNT(DISTINCT) clauses and a FROM clause with a sub-
query, NULL was returned for any VARCHAR column selected by the subquery. (Bug#8218
[http://bugs.mysql.com/8218])

• Fixed a bug in TRUNCATE, which did not work within stored procedures. A workaround has been
made so that within stored procedures, TRUNCATE is executed like DELETE. This was necessary
because TRUNCATE is implicitly locking tables. (Bug#8850 [http://bugs.mysql.com/8850])

• Fixed an optimizer bug that caused incorrectly ordered result from a query that used a FULLTEXT
index to retrieve rows and there was another index that was usable for ORDER BY. For such a query,
EXPLAIN showed fulltext join type, but regular (not FULLTEXT) index in the Key column.
(Bug#6635 [http://bugs.mysql.com/6635])

• If SELECT DISTINCT named an index column multiple times in the select list, the server tried to
access different key fields for each instance of the column, which could result in a crash. (Bug#8532
[http://bugs.mysql.com/8532])

• For a stored function that refers to a given table, invoking the function while selecting from the same
table resulted in a server crash. (Bug#8405 [http://bugs.mysql.com/8405])

• Comparison of a DECIMAL column containing NULL to a subquery that produced DECIMAL values
resulted in a server crash. (Bug#8397 [http://bugs.mysql.com/8397])

• The --set-character-set option for myisamchk was changed to --set-collation.
The value needed for specifying how to sort indexes is a collation name, not a character set name.
(Bug#8349 [http://bugs.mysql.com/8349])

• Hostname matching didn't work if a netmask was specified for table-specific privileges. (Bug#3309
[http://bugs.mysql.com/3309])

MySQL Change History

1829

http://bugs.mysql.com/9123
http://bugs.mysql.com/8902
http://bugs.mysql.com/8480
http://bugs.mysql.com/6999
http://bugs.mysql.com/9029
http://bugs.mysql.com/8386
http://bugs.mysql.com/8669
http://bugs.mysql.com/7425
http://bugs.mysql.com/7425
http://bugs.mysql.com/8351
http://bugs.mysql.com/8218
http://bugs.mysql.com/8850
http://bugs.mysql.com/6635
http://bugs.mysql.com/8532
http://bugs.mysql.com/8405
http://bugs.mysql.com/8397
http://bugs.mysql.com/8349
http://bugs.mysql.com/3309

• Corruption of MyISAM table indexes could occur with TRUNCATE TABLE if the table had already
been opened. For example, this was possible if the table had been opened implicitly by selecting
from a MERGE table that mapped to the MyISAM table. The server now issues an error message for
TRUNCATE TABLE under these conditions. (Bug#8306 [http://bugs.mysql.com/8306])

• Setting the connection collation to a value different from the server collation followed by a CREATE
TABLE statement that included a quoted default value resulted in a server crash. (Bug#8235
[http://bugs.mysql.com/8235])

• Fixed handling of table-name matching in mysqlhotcopy to accommodate DBD::mysql 2.9003
and up (which implement identifier quoting). (Bug#8136 [http://bugs.mysql.com/8136])

• Selecting from a view defined as a join caused a server crash if the query cache was enabled.
(Bug#8054 [http://bugs.mysql.com/8054])

• Results in the query cache generated from a view were not properly invalidated after ALTER VIEW
or DROP VIEW on that view. (Bug#8050 [http://bugs.mysql.com/8050])

• FOUND_ROWS() returned an incorrect value after a SELECT SQL_CALC_FOUND_ROWS DIS-
TINCT statement that selected constants and included GROUP BY and LIMIT clauses. (Bug#7945
[http://bugs.mysql.com/7945])

• Selecting from an INFORMATION_SCHEMA table combined with a subquery on an INFORMA-
TION_SCHEMA table caused an error with the message Table tbl_name is corrupted.
(Bug#8164 [http://bugs.mysql.com/8164])

• Fixed a problem with equality propagation optimization for prepared statements and stored proced-
ures that caused a server crash upon re-execution of the prepared statement or stored procedure.
(Bug#8115 [http://bugs.mysql.com/8115], Bug#8849 [http://bugs.mysql.com/8849])

• LEFT OUTER JOIN between an empty base table and a view on an empty base table caused a
server crash. (Bug#7433 [http://bugs.mysql.com/7433])

• Use of GROUP_CONCAT() in the select list when selecting from a view caused a server crash.
(Bug#7116 [http://bugs.mysql.com/7116])

• Use of a view in a correlated subquery that contains HAVING but no GROUP BY caused a server
crash. (Bug#6894 [http://bugs.mysql.com/6894])

• Handling by mysql_list_fields() of references to stored functions within views was incor-
rect and could result in a server crash. (Bug#6814 [http://bugs.mysql.com/6814])

• mysqldump now avoids writing SET NAMES to the dump output if the server is older than version
4.1 and would not understand that statement. (Bug#7997 [http://bugs.mysql.com/7997])

• Fixed problems when selecting from a view that had an EXISTS or NOT EXISTS subquery. Se-
lecting columns by name caused a server crash. With SELECT *, a crash did not occur, but
columns in outer query were not resolved properly. (Bug#6394 [http://bugs.mysql.com/6394])

• DDL statements for views were not being written to the binary log (and thus not subject to replica-
tion). (Bug#4838 [http://bugs.mysql.com/4838])

• The CHAR() function was not ignoring NULL arguments, contrary to the documentation.
(Bug#6317 [http://bugs.mysql.com/6317])

• Creating a table using a name containing a character that is illegal in character_set_client
resulted in the character being stripped from the name and no error. The character now is considered
an error. (Bug#8041 [http://bugs.mysql.com/8041])

MySQL Change History

1830

http://bugs.mysql.com/8306
http://bugs.mysql.com/8235
http://bugs.mysql.com/8136
http://bugs.mysql.com/8054
http://bugs.mysql.com/8050
http://bugs.mysql.com/7945
http://bugs.mysql.com/8164
http://bugs.mysql.com/8115
http://bugs.mysql.com/8849
http://bugs.mysql.com/7433
http://bugs.mysql.com/7116
http://bugs.mysql.com/6894
http://bugs.mysql.com/6814
http://bugs.mysql.com/7997
http://bugs.mysql.com/6394
http://bugs.mysql.com/4838
http://bugs.mysql.com/6317
http://bugs.mysql.com/8041

• Fixed a problem with the Cyrillic letters I and SHORT I being treated the same by the
utf8_general_ci collation. (Bug#8385 [http://bugs.mysql.com/8385])

• Some INFORMATION_SCHEMA columns that contained catalog identifiers were of type LONG-
TEXT. These were changed to VARCHAR(N, where N is the appropriate maximum identifier length.
(Bug#7215 [http://bugs.mysql.com/7215])

• Some INFORMATION_SCHEMA columns that contained timestamp values were of type VARBIN-
ARY. These were changed to TIMESTAMP. (Bug#7217 [http://bugs.mysql.com/7217])

• An expression that tested a case-insensitive character column against string constants that differed in
lettercase could fail because the constants were treated as having a binary collation. (For example,
WHERE city='London' AND city='london' could fail.) (Bug#7098
[http://bugs.mysql.com/7098], Bug#8690 [http://bugs.mysql.com/8690])

• The output of the STATUS (\s) command in mysql had the values for the server and client charac-
ter sets reversed. (Bug#7571 [http://bugs.mysql.com/7571])

• If the slave was running with --replicate-*-table options which excluded one temporary ta-
ble and included another, and the two tables were used in a single DROP TEMPORARY TABLE IF
EXISTS statement, as the ones the master automatically writes to its binary log upon client's discon-
nection when client has not explicitly dropped these, the slave could forget to delete the included
replicated temporary table. Only the slave needs to be upgraded. (Bug#8055
[http://bugs.mysql.com/8055])

• When setting integer system variables to a negative value with SET VARIABLES, the value was
treated as a positive value modulo 232. (Bug#6958 [http://bugs.mysql.com/6958])

• Corrected a problem with references to DUAL where statements such as SELECT 1 AS a FROM
DUAL would succeed but statements such as SELECT 1 AS a FROM DUAL LIMIT 1 would
fail. (Bug#8023 [http://bugs.mysql.com/8023])

• Fixed a server crash caused by DELETE FROM tbl_name ... WHERE ... ORDER BY
tbl_name.col_name when the ORDER BY column was qualified with the table name.
(Bug#8392 [http://bugs.mysql.com/8392])

• Fixed a bug in MATCH ... AGAINST in natural language mode that could cause a server crash if
the FULLTEXT index was not used in a join (EXPLAIN did not show fulltext join mode) and
the search query matched no rows in the table (Bug#8522 [http://bugs.mysql.com/8522]).

• InnoDB: Honor the --tmpdir startup option when creating temporary files. Previously, InnoDB
temporary files were always created in the temporary directory of the operating system. On Netware,
InnoDB will continue to ignore --tmpdir. (Bug#5822 [http://bugs.mysql.com/5822])

• Platform and architecture information in version information produced for --version option on
Windows was always Win95/Win98 (i32). More accurately determine platform as Win32 or
Win64 for 32-bit or 64-bit Windows, and architecture as ia32 for x86, ia64 for Itanium, and axp
for Alpha. (Bug#4445 [http://bugs.mysql.com/4445])

• If multiple semicolon-separated statements were received in a single packet, they were written to the
binary log as a single event rather than as separate per-statement events. For a server serving as a
replication master, this caused replication to fail when the event was sent to slave servers.
(Bug#8436 [http://bugs.mysql.com/8436])

• Fixed LOAD INDEX statement to actually load index in memory. (Bug#8452
[http://bugs.mysql.com/8452])

• Fixed a failure of multiple-table updates to replicate properly on slave servers when -
-replicate-*-table options had been specified. (Bug#7011 [http://bugs.mysql.com/7011])

MySQL Change History

1831

http://bugs.mysql.com/8385
http://bugs.mysql.com/7215
http://bugs.mysql.com/7217
http://bugs.mysql.com/7098
http://bugs.mysql.com/8690
http://bugs.mysql.com/7571
http://bugs.mysql.com/8055
http://bugs.mysql.com/6958
http://bugs.mysql.com/8023
http://bugs.mysql.com/8392
http://bugs.mysql.com/8522
http://bugs.mysql.com/5822
http://bugs.mysql.com/4445
http://bugs.mysql.com/8436
http://bugs.mysql.com/8452
http://bugs.mysql.com/7011

• Fixed failure of CREATE TABLE ... LIKE Windows when the source or destination table was
located in a symlinked database directory. (Bug#6607 [http://bugs.mysql.com/6607])

• With lower_case_table_names set to 1, mysqldump on Windows could write the same ta-
ble name in different lettercase for different SQL statements. Fixed so that consistent lettercase is
used. (Bug#5185 [http://bugs.mysql.com/5185])

• mysqld_safe now understands the --help option. Previously, it ignored the option and attemp-
ted to start the server anyway. (Bug#7931 [http://bugs.mysql.com/7931])

• Fixed problem in NO_BACKSLASH_ESCAPES SQL mode for strings that contained both the string
quoting character and backslash. (Bug#6368 [http://bugs.mysql.com/6368])

• Fixed some portability issues with overflow in floating point values.

• Prepared statements now gives warnings on prepare.

• Fixed bug in prepared statements with SUM(DISTINCT...).

• Fixed bug in prepared statements with OUTER JOIN.

• Fixed a bug in CONV() function returning unsigned BIGINT number (third argument is positive,
and return value does not fit in 32 bits). (Bug#7751 [http://bugs.mysql.com/7751])

• Fixed a failure of the IN() operator to return correct result if all values in the list were constants
and some of them were using substring functions, for example, LEFT(), RIGHT(), or MID().
(Bug#7716 [http://bugs.mysql.com/7716])

• Fixed a crash in CONVERT_TZ() function when its second or third argument was from a const
table (see Section 7.2.1, “Optimizing Queries with EXPLAIN”). (Bug#7705
[http://bugs.mysql.com/7705])

• Fixed a problem with calculation of number of columns in row comparison against subquery.
(Bug#8020 [http://bugs.mysql.com/8020])

• Fixed erroneous output resulting from SELECT DISTINCT combined with a subquery and GROUP
BY. (Bug#7946 [http://bugs.mysql.com/7946])

• Fixed server crash in comparing a nested row expression (for example row(1,(2,3))) with a
subquery. (Bug#8022 [http://bugs.mysql.com/8022])

• Fixed server crash resulting from certain correlated subqueries with forward references (references
to an alias defined later in the outer query). (Bug#8025 [http://bugs.mysql.com/8025])

• Fixed server crash resulting from re-execution of prepared statements containing subqueries.
(Bug#8125 [http://bugs.mysql.com/8125])

• Fixed a bug where ALTER TABLE improperly would accept an index on a TIMESTAMP column
that CREATE TABLE would reject. (Bug#7884 [http://bugs.mysql.com/7884])

• SHOW CREATE TABLE now reports ENGINE=MEMORY rather than ENGINE=HEAP for a
MEMORY table (unless the MYSQL323 SQL mode is enabled). (Bug#6659
[http://bugs.mysql.com/6659])

• Fixed a bug where the use of GROUP_CONCAT() with HAVING caused a server crash. (Bug#7769
[http://bugs.mysql.com/7769])

• Fixed a bug where comparing the result of a subquery to a non-existent column caused a server crash
on Windows. (Bug#7885 [http://bugs.mysql.com/7885])

MySQL Change History

1832

http://bugs.mysql.com/6607
http://bugs.mysql.com/5185
http://bugs.mysql.com/7931
http://bugs.mysql.com/6368
http://bugs.mysql.com/7751
http://bugs.mysql.com/7716
http://bugs.mysql.com/7705
http://bugs.mysql.com/8020
http://bugs.mysql.com/7946
http://bugs.mysql.com/8022
http://bugs.mysql.com/8025
http://bugs.mysql.com/8125
http://bugs.mysql.com/7884
http://bugs.mysql.com/6659
http://bugs.mysql.com/7769
http://bugs.mysql.com/7885

• Fixed a bug in a combination of -not and trunc* operators of full-text search. Using more than
one truncated negative search term, was causing empty result set.

• InnoDB: Corrected the handling of trailing spaces in the ucs2 character set. (Bug#7350
[http://bugs.mysql.com/7350], Bug#8771 [http://bugs.mysql.com/8771])

• InnoDB: Use native tmpfile() function on Netware. All InnoDB temporary files are created un-
der sys:\tmp. Previously, InnoDB temporary files were never deleted on Netware.

• Fixed a bug in max_heap_table_size handling, that resulted in Table is full error when
the table was still smaller than the limit. (Bug#7791 [http://bugs.mysql.com/7791]).

• Fixed a symlink vulnerability in the mysqlaccess script. Reported by Javier Fernandez-Sanguino
Pena and Debian Security Audit Team [http://www.debian.org/security/audit]. (CVE-2005-0004
[http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0004])

• Fixed a bug that caused server crash if some error occurred during filling of temporary table created
for derived table or view handling. (Bug#7413 [http://bugs.mysql.com/7413])

• Fixed a bug which caused server crash if query containing CONVERT_TZ() function with constant
arguments was prepared. (Bug#6849 [http://bugs.mysql.com/6849])

• Prevent adding CREATE TABLE .. SELECT query to the binary log when the insertion of new
records partially failed. (Bug#6682 [http://bugs.mysql.com/6682])

• Fixed a bug which caused a crash when only the slave I/O thread was stopped and started.
(Bug#6148 [http://bugs.mysql.com/6148])

• Giving mysqld a SIGHUP caused it to crash.

• Changed semantics of CREATE/ALTER/DROP DATABASE statements so that replication of CRE-
ATE DATABASE is possible when using --binlog-do-db and --binlog-ignore-db.
(Bug#6391 [http://bugs.mysql.com/6391])

• A sequence of BEGIN (or SET AUTOCOMMIT=0), FLUSH TABLES WITH READ LOCK, trans-
actional update, COMMIT, FLUSH TABLES WITH READ LOCK could hang the connection
forever and possibly the MySQL server itself. This happened for example when running the inno-
backup script several times. (Bug#6732 [http://bugs.mysql.com/6732])

• mysqlbinlog did not print SET PSEUDO_THREAD_ID statements in front of LOAD DATA
INFILE statements inserting into temporary tables, thus causing potential problems when rolling
forward these statements after restoring a backup. (Bug#6671 [http://bugs.mysql.com/6671])

• InnoDB: Fixed a bug no error message for ALTER with InnoDB and AUTO_INCREMENT
(Bug#7061 [http://bugs.mysql.com/7061]). InnoDB now supports ALTER TA-
BLE...AUTO_INCREMENT = x query to set auto increment value for a table.

• Made the MySQL server accept executing SHOW CREATE DATABASE even if the connection has
an open transaction or locked tables; refusing it made mysqldump --single-transaction
sometimes fail to print a complete CREATE DATABASE statement for some dumped databases.
(Bug#7358 [http://bugs.mysql.com/7358])

• Fixed that, when encountering a “disk full” or “quota exceeded” write error, MyISAM sometimes
didn't sleep and retry the write, thus resulting in a corrupted table. (Bug#7714
[http://bugs.mysql.com/7714])

• Fixed that --expire-log-days was not honored if using only transactions. (Bug#7236
[http://bugs.mysql.com/7236])

MySQL Change History

1833

http://bugs.mysql.com/7350
http://bugs.mysql.com/8771
http://bugs.mysql.com/7791
http://www.debian.org/security/audit
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2005-0004
http://bugs.mysql.com/7413
http://bugs.mysql.com/6849
http://bugs.mysql.com/6682
http://bugs.mysql.com/6148
http://bugs.mysql.com/6391
http://bugs.mysql.com/6732
http://bugs.mysql.com/6671
http://bugs.mysql.com/7061
http://bugs.mysql.com/7358
http://bugs.mysql.com/7714
http://bugs.mysql.com/7236

• Fixed that a slave could crash after replicating many ANALYZE TABLE, OPTIMIZE TABLE, or
REPAIR TABLE statements from the master. (Bug#6461 [http://bugs.mysql.com/6461], Bug#7658
[http://bugs.mysql.com/7658])

• mysqlbinlog forgot to add backquotes around the collation of user variables (causing later pars-
ing problems as BINARY is a reserved word). (Bug#7793 [http://bugs.mysql.com/7793])

• Ensured that mysqldump --single-transaction sets its transaction isolation level to RE-
PEATABLE READ before proceeding (otherwise if the MySQL server was configured to run with a
default isolation level lower than REPEATABLE READ it could give an inconsistent dump).
(Bug#7850 [http://bugs.mysql.com/7850])

• Fixed that when using the RPAD() function (or any function adding spaces to the right) in a query
that had to be resolved by using a temporary table, all resulting strings had rightmost spaces re-
moved (that is, RPAD() did not work) (Bug#4048 [http://bugs.mysql.com/4048])

• Fixed that a 5.0.3 slave can connect to a master < 3.23.50 without hanging (the reason for the hang is
a bug in these quite old masters -- SELECT @@unknown_var hangs them -- which was fixed in
MySQL 3.23.50). (Bug#7965 [http://bugs.mysql.com/7965])

• InnoDB: Fixed a deadlock without any locking, simple select and update (Bug#7975
[http://bugs.mysql.com/7975]). InnoDB now takes an exclusive lock when INSERT ON DU-
PLICATE KEY UPDATE is checking duplicate keys.

• Fixed a bug where MySQL was allowing concurrent updates (inserts, deletes) to a table if binary
logging is enabled. Changed to ensure that all updates are executed in a serialized fashion, because
they are executed serialized when binlog is replayed. (Bug#7879 [http://bugs.mysql.com/7879])

• Fixed a rare race condition which could lead to FLUSH TABLES WITH READ LOCK hanging.
(Bug#8682 [http://bugs.mysql.com/8682])

• Fixed a bug in replication that caused the master to stamp generated statements (such as SET com-
mands) with an error_code intended only for another statement. This could happen, for example,
when a statements generates a duplicate key error on the master but must be replicated. (Bug#8412
[http://bugs.mysql.com/8412])

D.1.27. Changes in release 5.0.2 (01 December 2004)
Functionality added or changed:

• Warning: Incompatible change! The precedence of NOT operator has changed so that expressions
such as NOT a BETWEEN b AND c are parsed correctly as NOT (a BETWEEN b AND c)
rather than as (NOT a) BETWEEN b AND c. The pre-5.0 higher-precedence behavior can be ob-
tained by enabling the new HIGH_NOT_PRECEDENCE SQL mode.

• Warning: Incompatible change! SHOW STATUS now shows the session (thread-specific) status
variables and SHOW GLOBAL STATUS shows the status variables for the whole server.

Before MySQL 5.0.2, SHOW STATUS returned global status values. Because the default as of 5.0.2
is to return session values, this is incompatible with previous versions. To issue a SHOW STATUS
statement that will retrieve global status values for all versions of MySQL, write it like this:

SHOW /*!50002 GLOBAL */ STATUS;

• Added support for the INFORMATION_SCHEMA “information database” that provides database
metadata. See Chapter 20, The INFORMATION_SCHEMA Database.

MySQL Change History

1834

http://bugs.mysql.com/6461
http://bugs.mysql.com/7658
http://bugs.mysql.com/7793
http://bugs.mysql.com/7850
http://bugs.mysql.com/4048
http://bugs.mysql.com/7965
http://bugs.mysql.com/7975
http://bugs.mysql.com/7879
http://bugs.mysql.com/8682
http://bugs.mysql.com/8412

• A HAVING clause in a SELECT statement now can refer to columns in the GROUP BY clause, as re-
quired by standard SQL.

• Added the CREATE USER and RENAME USER statements.

• Modify DROP USER so that it drops the account, including all its privileges. Formerly, it removed
the account record only for an account that had had all privileges revoked.

• Added IS [NOT] boolean_value syntax, where boolean_value is TRUE, FALSE, or UN-
KNOWN.

• Added several InnoDB status variables. See Section 5.2.5, “Status Variables”.

• Implemented the WITH CHECK OPTION clause for CREATE VIEW.

• CHECK TABLE now works for views.

• The SCHEMA and SCHEMAS keywords are now accepted as synonyms for DATABASE and DATA-
BASES.

• Added initial support for rudimentary triggers (the CREATE TRIGGER and DROP TRIGGER state-
ments).

• Added basic support for read-only server side cursors.

• mysqldump --single-transaction --master-data is now able to take an online
(non-blocking) dump of InnoDB and report the corresponding binary log coordinates, which makes a
backup suitable for point-in-time recovery, roll-forward or replication slave creation. See Sec-
tion 8.12, “mysqldump — A Database Backup Program”.

• Added --start-datetime, --stop-datetime, --start-position, -
-stop-position options to mysqlbinlog (makes point-in-time recovery easier).

• Made the MySQL server not react to signals SIGHUP and SIGQUIT on Mac OS X 10.3. This is
needed because under this OS, the MySQL server receives lots of these signals (reported as
Bug#2030 [http://bugs.mysql.com/2030]).

• New --auto-increment-increment and --auto-increment-offset startup options.
These allow you to set up a server to generate auto-increment values that don't conflict with another
server.

• MySQL now by default checks dates and in strict mode allows only fully correct dates. If you want
MySQL to behave as before, you should enable the new ALLOW_INVALID_DATES SQL mode.

• Added STRICT_TRANS_TABLES, STRICT_ALL_TABLES, NO_ZERO_IN_DATE,
NO_ZERO_DATE, ERROR_FOR_DIVISION_BY_ZERO, and TRADITIONAL SQL modes. The
TRADITIONAL mode is shorthand for all the preceding modes. When using mode TRADITIONAL,
MySQL generates an error if you try to insert a wrong value in a column. It does not adjust the value
to the closest possible legal value.

• MySQL now remembers which columns were declared to have default values. In
STRICT_TRANS_TABLES/STRICT_ALL_TABLES mode, you now get an error if you do an IN-
SERT without specifying all columns that don't have a default value. A side effect of this is that
when you do SHOW CREATE for a new table, you no longer see a DEFAULT value for a column for
which you didn't specify a default value.

• The compilation flag DONT_USE_DEFAULT_FIELDS was removed because you can get the same
behavior by setting the sql_mode system variable to STRICT_TRANS_TABLES.

MySQL Change History

1835

http://bugs.mysql.com/2030

• Added NO_AUTO_CREATE_USER SQL mode to prevent GRANT from automatically creating new
users if it would otherwise do so, unless a password also is specified.

• We now detect too-large floating point numbers during statement parsing and generate an error mes-
sages for them.

• Renamed the sql_updatable_view_key system variable to updat-
able_views_with_limit. This variable now can have only two values:

• 1 or YES: Don't issue an error message (warning only) if a VIEW without presence of a key in
the underlying table is used in queries with a LIMIT clause for updating. (This is the default
value.)

• 0 or NO: Prohibit update of a VIEW, which does not contain a key in the underlying table and
the query uses a LIMIT clause (usually get from GUI tools).

• Reverted output format of SHOW TABLES to old pre-5.0.1 format that did not include a table type
column. To get the additional column that lists the table type, use SHOW FULL TABLES now.

• The mysql_fix_privilege_tables script now initializes the global CREATE VIEW and
SHOW VIEW privileges in the user table to the value of the CREATE privilege in that table.

• If the server finds that the user table has not been upgraded to include the view-related privilege
columns, it treats each account as having view privileges that are the same as its CREATE privilege.

• InnoDB: If you specify the option innodb_locks_unsafe_for_binlog in my.cnf, InnoDB
in an UPDATE or a DELETE only locks the rows that it updates or deletes. This greatly reduces the
probability of deadlocks.

• A connection doing a rollback now displays "Rolling back" in the State column of SHOW PRO-
CESSLIST.

• mysqlbinlog now prints an informative commented line (thread id, timestamp, server id, and so
forth) before each LOAD DATA INFILE, like it does for other queries; unless --short-form is
used.

• Two new server system variables were introduced. auto_increment_increment and
auto_increment_offset can be set locally or globally, and are intended for use in controlling
the behavior of AUTO_INCREMENT columns in master-to-master replication. Note that these vari-
ables are not intended to take the place of sequences. See Section 5.2.3, “System Variables”.

Bugs fixed:

• Fixed that mysqlbinlog --read-from-remote-server sometimes couldn't accept two
binary log files on the command line. (Bug#4507 [http://bugs.mysql.com/4507])

• Fixed that mysqlbinlog --position --read-from-remote-server had incorrect #
at lines. (Bug#4506 [http://bugs.mysql.com/4506])

• Fixed that CREATE TABLE ... TYPE=HEAP ... AS SELECT... caused replication slave
to stop. (Bug#4971 [http://bugs.mysql.com/4971])

• Fixed that mysql_options(...,MYSQL_OPT_LOCAL_INFILE,...) failed to disable
LOAD DATA LOCAL INFILE. (Bug#5038 [http://bugs.mysql.com/5038])

• Fixed that disable-local-infile option had no effect if client read it from a configuration
file using mysql_options(...,MYSQL_READ_DEFAULT,...). (Bug#5073

MySQL Change History

1836

http://bugs.mysql.com/4507
http://bugs.mysql.com/4506
http://bugs.mysql.com/4971
http://bugs.mysql.com/5038
http://bugs.mysql.com/5073

[http://bugs.mysql.com/5073])

• Fixed that SET GLOBAL SYNC_BINLOG did not work on some platforms (Mac OS X).
(Bug#5064 [http://bugs.mysql.com/5064])

• Fixed that mysql-test-run failed on the rpl_trunc_binlog test if running test from the in-
stalled (the target of 'make install') directory. (Bug#5050 [http://bugs.mysql.com/5050])

• Fixed that mysql-test-run failed on the grant_cache test when run as Unix user 'root'.
(Bug#4678 [http://bugs.mysql.com/4678])

• Fixed an unlikely deadlock which could happen when using KILL. (Bug#4810
[http://bugs.mysql.com/4810])

• Fixed a crash when one connection got KILLed while it was doing START SLAVE. (Bug#4827
[http://bugs.mysql.com/4827])

• Made FLUSH TABLES WITH READ LOCK block COMMIT if server is running with binary log-
ging; this ensures that the binary log position can be trusted when doing a full backup of tables and
the binary log. (Bug#4953 [http://bugs.mysql.com/4953])

• Fixed that the counter of an auto_increment column was not reset by TRUNCATE TABLE is
the table was a temporary one. (Bug#5033 [http://bugs.mysql.com/5033])

• Fixed slave SQL thread so that the SET COLLATION_SERVER... statements it replicates don't
advance its position (so that if it gets interrupted before the actual update query, it later redoes the
SET). (Bug#5705 [http://bugs.mysql.com/5705])

• Fixed that if the slave SQL thread found a syntax error in a query (which should be rare, as the mas-
ter parsed it successfully), it stops. (Bug#5711 [http://bugs.mysql.com/5711])

• Fixed that if a write to a MyISAM table fails because of a full disk or an exceeded disk quota, it
prints a message to the error log every 10 minutes, and waits until disk becomes free. (Bug#3248
[http://bugs.mysql.com/3248])

• Fixed problem introduced in 4.0.21 where a connection starting a transaction, doing updates, then
FLUSH TABLES WITH READ LOCK, then COMMIT, would cause replication slaves to stop
(complaining about error 1223). Bug surfaced when using the InnoDB innobackup script.
(Bug#5949 [http://bugs.mysql.com/5949])

• OPTIMIZE TABLE, REPAIR TABLE, and ANALYZE TABLE are now replicated without any er-
ror code in the binary log. (Bug#5551 [http://bugs.mysql.com/5551])

• If a connection had an open transaction but had done no updates to transactional tables (for example
if had just done a SELECT FOR UPDATE then executed a non-transactional update, that update
automatically committed the transaction (thus releasing InnoDB's row-level locks etc). (Bug#5714
[http://bugs.mysql.com/5714])

• If a connection was interrupted by a network error and did a rollback, the network error code got
stored into the BEGIN and ROLLBACK binary log events; that caused superfluous slave stops.
(Bug#6522 [http://bugs.mysql.com/6522])

• Fixed a bug which prevented mysqlbinlog from being able to read from stdin, for example,
when piping the output from zcat to mysqlbinlog. (Bug#7853 [http://bugs.mysql.com/7853])

D.1.28. Changes in release 5.0.1 (27 July 2004)

MySQL Change History

1837

http://bugs.mysql.com/5064
http://bugs.mysql.com/5050
http://bugs.mysql.com/4678
http://bugs.mysql.com/4810
http://bugs.mysql.com/4827
http://bugs.mysql.com/4953
http://bugs.mysql.com/5033
http://bugs.mysql.com/5705
http://bugs.mysql.com/5711
http://bugs.mysql.com/3248
http://bugs.mysql.com/5949
http://bugs.mysql.com/5551
http://bugs.mysql.com/5714
http://bugs.mysql.com/6522
http://bugs.mysql.com/7853

Note: This build passes our test suite and fixes a lot of reported bugs found in the previous 5.0.0 release.
However, please be aware that this is not a “standard MySQL build” in the sense that there are still some
open critical bugs in our bugs database at http://bugs.mysql.com/ that affect this release as well. We are
actively fixing these and will make a new release where these are fixed as soon as possible. However,
this binary should be a good candidate for testing new MySQL 5.0 features for future products.

Functionality added or changed:

• Warning: Incompatible change! C API change: mysql_shutdown() now requires a second ar-
gument. This is a source-level incompatibility that affects how you compile client programs; it does
not affect the ability of compiled clients to communicate with older servers. See Section 22.2.3.64,
“mysql_shutdown()”.

• When installing a MySQL server as a Windows service, the installation command can include a -
-local-service option following the service name to cause the server to run using the Loc-
alService Windows account that has limited privileges. This is in addition to the -
-defaults-file option that also can be given following the service name.

• Added support for read-only and updatable views based on a single table or other updatable views.
View use requires that you upgrade your grant tables to add the view-related privileges. See Sec-
tion 5.6.1, “mysql_fix_privilege_tables — Upgrade MySQL System Tables”.

• Implemented a new “greedy search” optimizer that can significantly reduce the time spent on query
optimization for some many-table joins. (You are affected if not only some particular SELECT is
slow, but even using EXPLAIN for it takes a noticeable amount of time.) Two new system variables,
optimizer_search_depth and optimizer_prune_level, can be used to fine-tune op-
timizer behavior.

• A stored procedure is no longer “global.” That is, it now belongs to a specific database:

• When a database is dropped, all routines belonging to that database are also dropped.

• Procedure names may be qualified, for example, db.p()

• When executed from another database, an implicit USE db_name is in effect.

• Explicit USE db_name statements no longer are allowed in a stored procedure.

See Chapter 17, Stored Procedures and Functions.

• Fixed SHOW TABLES output field name and values according to standard. Field name changed
from Type to table_type, values are BASE TABLE, VIEW and ERROR. (Bug#4603
[http://bugs.mysql.com/4603])

• Added the sql_updatable_view_key system variable.

• Added the --replicate-same-server-id server option.

• Added Last_query_cost status variable that reports optimizer cost for last compiled query.

• Added the --to-last-log option to mysqlbinlog, for use in conjunction with -
-read-from-remote-server.

• Added the --innodb-safe-binlog server option, which adds consistency guarantees between
the content of InnoDB tables and the binary log. See Section 5.12.3, “The Binary Log”.

• OPTIMIZE TABLE for InnoDB tables is now mapped to ALTER TABLE instead of ANALYZE
TABLE. This rebuilds the table, which updates index statistics and frees space in the clustered index.

MySQL Change History

1838

http://bugs.mysql.com/
http://bugs.mysql.com/4603

• sync_frm is now a settable global variable (not only a startup option).

• For replication of MEMORY (HEAP) tables: Made the master automatically write a DELETE FROM
statement to its binary log when a MEMORY table is opened for the first time since master's startup.
This is for the case where the slave has replicated a non-empty MEMORY table, then the master is
shut down and restarted: the table is now empty on master; the DELETE FROM empties it on slave
too. Note that even with this fix, between the master's restart and the first use of the table on master,
the slave still has out-of-date data in the table. But if you use the --init-file option to populate
the MEMORY table on the master at startup, it ensures that the failing time interval is zero. (Bug#2477
[http://bugs.mysql.com/2477])

• When a session having open temporary tables terminates, the statement automatically written to the
binary log is now DROP TEMPORARY TABLE IF EXISTS instead of DROP TEMPORARY TA-
BLE, for more robustness.

• The MySQL server now returns an error if SET SQL_LOG_BIN is issued by a user without the
SUPER privilege (in previous versions it just silently ignored the statement in this case).

• Changed that when the MySQL server has binary logging disabled (that is, no --log-bin option
was used), then no transaction binary log cache is allocated for connections. This should save bin-
log_cache_size bytes of memory (32KB by default) for every connection.

• Added the sync_binlog=N global variable and startup option, which makes the MySQL server
synchronize its binary log to disk (fdatasync()) after every Nth write to the binary log.

• Changed the slave SQL thread to print less useless error messages (no more message duplication; no
more messages when an error is skipped because of slave-skip-errors).

• DROP DATABASE IF EXISTS, DROP TABLE IF EXISTS, single-table DELETE, and single-
table UPDATE now are written to the binary log even if they changed nothing on the master (for ex-
ample, even if a DELETE matched no rows). The old behavior sometimes caused bad surprises in
replication setups.

• Replication and mysqlbinlog now have better support for the case that the session character set
and collation variables are changed within a given session. See Section 6.7, “Replication Features
and Known Problems”.

• Killing a CHECK TABLE statement does not result in the table being marked as “corrupted” any
more; the table remains as if CHECK TABLE had not even started. See Section 13.5.5.3, “KILL
Syntax”.

Bugs fixed:

• Strange results with index (x, y) ... WHERE x=val_1 AND y>=val_2 ORDER BY pk;
(Bug#3155 [http://bugs.mysql.com/3155])

• Adding ORDER BY to a query that uses a subquery can cause incorrect results. (Bug#3118
[http://bugs.mysql.com/3118])

• ALTER DATABASE caused the client to hang if the database did not exist. (Bug#2333
[http://bugs.mysql.com/2333])

• SLAVE START (which is a deprecated syntax, START SLAVE should be used instead) could crash
the slave. (Bug#2516 [http://bugs.mysql.com/2516])

• Multiple-table DELETE statements were never replicated by the slave if there were any -
-replicate-*-table options. (Bug#2527 [http://bugs.mysql.com/2527])

MySQL Change History

1839

http://bugs.mysql.com/2477
http://bugs.mysql.com/3155
http://bugs.mysql.com/3118
http://bugs.mysql.com/2333
http://bugs.mysql.com/2516
http://bugs.mysql.com/2527

• The MySQL server did not report any error if a statement (submitted through
mysql_real_query() or mysql_stmt_prepare()) was terminated by garbage characters.
This can happen if you pass a wrong length parameter to these functions. The result was that the
garbage characters were written into the binary log. (Bug#2703 [http://bugs.mysql.com/2703])

• Replication: If a client connects to a slave server and issues an administrative statement for a table
(for example, OPTIMIZE TABLE or REPAIR TABLE), this could sometimes stop the slave SQL
thread. This does not lead to any corruption, but you must use START SLAVE to get replication go-
ing again. (Bug#1858 [http://bugs.mysql.com/1858])

• Made clearer the error message that one gets when an update is refused because of the -
-read-only option. (Bug#2757 [http://bugs.mysql.com/2757])

• Fixed that --replicate-wild-*-table rules apply to ALTER DATABASE when the table
pattern is %, as is the case for CREATE DATABASE and DROP DATABASE. (Bug#3000
[http://bugs.mysql.com/3000])

• Fixed that when a Rotate event is found by the slave SQL thread in the middle of a transaction, the
value of Relay_Log_Pos in SHOW SLAVE STATUS remains correct. (Bug#3017
[http://bugs.mysql.com/3017])

• Corrected the master's binary log position that InnoDB reports when it is doing a crash recovery on
a slave server. (Bug#3015 [http://bugs.mysql.com/3015])

• Changed the column Seconds_Behind_Master in SHOW SLAVE STATUS to never show a
value of -1. (Bug#2826 [http://bugs.mysql.com/2826])

• Changed that when a DROP TEMPORARY TABLE statement is automatically written to the binary
log when a session ends, the statement is recorded with an error code of value zero (this ensures that
killing a SELECT on the master does not result in a superfluous error on the slave). (Bug#3063
[http://bugs.mysql.com/3063])

• Changed that when a thread handling INSERT DELAYED (also known as a delayed_insert
thread) is killed, its statements are recorded with an error code of value zero (killing such a thread
does not endanger replication, so we thus avoid a superfluous error on the slave). (Bug#3081
[http://bugs.mysql.com/3081])

• Fixed deadlock when two START SLAVE commands were run at the same time. (Bug#2921
[http://bugs.mysql.com/2921])

• Fixed that a statement never triggers a superfluous error on the slave, if it must be excluded given
the --replicate-* options. The bug was that if the statement had been killed on the master, the
slave would stop. (Bug#2983 [http://bugs.mysql.com/2983])

• The --local-load option of mysqlbinlog now requires an argument.

• Fixed a segmentation fault when running LOAD DATA FROM MASTER after RESET SLAVE.
(Bug#2922 [http://bugs.mysql.com/2922])

• mysqlbinlog --read-from-remote-server read all binary logs following the one that
was requested. It now stops at the end of the requested file, the same as it does when reading a local
binary log. There is an option --to-last-log to get the old behavior. (Bug#3204
[http://bugs.mysql.com/3204])

• Fixed mysqlbinlog --read-from-remote-server to print the exact positions of events
in the "at #" lines. (Bug#3214 [http://bugs.mysql.com/3214])

• Fixed a rare error condition that caused the slave SQL thread spuriously to print the message Bin-
log has bad magic number and stop when it was not necessary to do so. (Bug#3401

MySQL Change History

1840

http://bugs.mysql.com/2703
http://bugs.mysql.com/1858
http://bugs.mysql.com/2757
http://bugs.mysql.com/3000
http://bugs.mysql.com/3017
http://bugs.mysql.com/3015
http://bugs.mysql.com/2826
http://bugs.mysql.com/3063
http://bugs.mysql.com/3081
http://bugs.mysql.com/2921
http://bugs.mysql.com/2983
http://bugs.mysql.com/2922
http://bugs.mysql.com/3204
http://bugs.mysql.com/3214
http://bugs.mysql.com/3401

[http://bugs.mysql.com/3401])

• Fixed mysqlbinlog not to forget to print a USE statement under rare circumstances where the
binary log contained a LOAD DATA INFILE statement. (Bug#3415 [http://bugs.mysql.com/3415])

• Fixed a memory corruption when replicating a LOAD DATA INFILE when the master had version
3.23. (Bug#3422 [http://bugs.mysql.com/3422])

• Multiple-table DELETE statements were always replicated by the slave if there were some -
-replicate-*-ignore-table options and no --replicate-*-do-table options.
(Bug#3461 [http://bugs.mysql.com/3461])

• Fixed a crash of the MySQL slave server when it was built with --with-debug and replicating it-
self. (Bug#3568 [http://bugs.mysql.com/3568])

• Fixed that in some replication error messages, a very long query caused the rest of the message to be
invisible (truncated), by putting the query last in the message. (Bug#3357
[http://bugs.mysql.com/3357])

• If server-id was not set using startup options but with SET GLOBAL, the replication slave still
complained that it was not set. (Bug#3829 [http://bugs.mysql.com/3829])

• mysql_fix_privilege_tables didn't correctly handle the argument of its
--password=password_val option. (Bug#4240 [http://bugs.mysql.com/4240])

• Fixed potential memory overrun in mysql_real_connect() (which required a compromised
DNS server and certain operating systems). (Bug#4017 [http://bugs.mysql.com/4017], CVE-
2004-0836 [http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0836])

• During the installation process of the server RPM on Linux, mysqld was run as the root system
user, and if you had --log-bin=somewhere_out_of_var_lib_mysql it created binary log
files owned by root in this directory, which remained owned by root after the installation. This is
now fixed by starting mysqld as the mysql system user instead. (Bug#4038
[http://bugs.mysql.com/4038])

• Made DROP DATABASE honor the value of lower_case_table_names. (Bug#4066
[http://bugs.mysql.com/4066])

• The slave SQL thread refused to replicate INSERT ... SELECT if it examined more than 4 bil-
lion rows. (Bug#3871 [http://bugs.mysql.com/3871])

• mysqlbinlog didn't escape the string content of user variables, and did not deal well when these
variables were in non-ASCII character sets; this is now fixed by always printing the string content of
user variables in hexadecimal. The character set and collation of the string is now also printed.
(Bug#3875 [http://bugs.mysql.com/3875])

• Fixed incorrect destruction of expression that led to a server crash on complex AND/OR expressions
if query was ignored (either by a replication server because of --replicate-*-table rules, or
by any MySQL server because of a syntax error). (Bug#3969 [http://bugs.mysql.com/3969],
Bug#4494 [http://bugs.mysql.com/4494])

• If CREATE TEMPORARY TABLE t SELECT failed while loading the data, the temporary table
was not dropped. (Bug#4551 [http://bugs.mysql.com/4551])

• Fixed that when a multiple-table DROP TABLE failed to drop a table on the master server, the error
code was not written to the binary log. (Bug#4553 [http://bugs.mysql.com/4553])

• When the slave SQL thread was replicating a LOAD DATA INFILE statement, it didn't show the
statement in the output of SHOW PROCESSLIST. (Bug#4326 [http://bugs.mysql.com/4326])

MySQL Change History

1841

http://bugs.mysql.com/3415
http://bugs.mysql.com/3422
http://bugs.mysql.com/3461
http://bugs.mysql.com/3568
http://bugs.mysql.com/3357
http://bugs.mysql.com/3829
http://bugs.mysql.com/4240
http://bugs.mysql.com/4017
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0836
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-0836
http://bugs.mysql.com/4038
http://bugs.mysql.com/4066
http://bugs.mysql.com/3871
http://bugs.mysql.com/3875
http://bugs.mysql.com/3969
http://bugs.mysql.com/4494
http://bugs.mysql.com/4551
http://bugs.mysql.com/4553
http://bugs.mysql.com/4326

D.1.29. Changes in release 5.0.0 (22 December 2003: Alpha)
Functionality added or changed:

• The output of the SHOW BINLOG EVENTS statement has been modified. The Orig_log_pos
column has been renamed to End_log_pos and now represents the offset of the last byte of the
event, plus one.

• Important note: If you upgrade to MySQL 4.1.1 or higher, it is difficult to downgrade back to 4.0
or 4.1.0! That is because, for earlier versions, InnoDB is not aware of multiple tablespaces.

• Added support for SUM(DISTINCT), MIN(DISTINCT), and MAX(DISTINCT).

• The KILL statement now takes CONNECTION and QUERY modifiers. The first is the same as KILL
with no modifier (it kills a given connection thread). The second kills only the statement currently
being executed by the connection.

• Added TIMESTAMPADD() and TIMESTAMPDIFF() functions.

• Added WEEK and QUARTER values as INTERVAL arguments for the DATE_ADD() and
DATE_SUB() functions.

• New binary log format that enables replication of these session variables: sql_mode,
SQL_AUTO_IS_NULL, FOREIGN_KEY_CHECKS (which was replicated since 4.0.14, but here it's
done more efficiently and takes less space in the binary logs), UNIQUE_CHECKS. Other variables
(like character sets, SQL_SELECT_LIMIT, ...) will be replicated in upcoming 5.0.x releases.

• Implemented Index Merge optimization for OR clauses. See Section 7.2.6, “Index Merge Optimiza-
tion”.

• Basic support for stored procedures (SQL:2003 style). See Chapter 17, Stored Procedures and Func-
tions.

• Added SELECT INTO list_of_vars, which can be of mixed (that is, global and local) types.
See Section 17.2.7.3, “SELECT ... INTO Statement”.

• Easier replication upgrade (5.0.0 masters can read older binary logs and 5.0.0 slaves can read older
relay logs). See Section 6.5, “Replication Compatibility Between MySQL Versions”, for more de-
tails). The format of the binary log and relay log is changed compared to that of MySQL 4.1 and
older.

Bugs fixed:

D.2. Changes in MySQL Cluster
Starting from 4.1.13 and 5.0.7, all Cluster changes are included in the MySQL Change History,
and this manual section is no longer separately maintained.

D.2.1. Changes in MySQL Cluster-5.0.7 (10 June 2005)
Note: Starting with version 5.0.8, changes for MySQL Cluster can be found in the combined MySQL
Change History.

Functionality added or changed:

Bugs fixed:

MySQL Change History

1842

• (Bug#11019 [http://bugs.mysql.com/11019]) mgmapi start backup in some cases returns wrong
backupid

• (Bug#10190 [http://bugs.mysql.com/10190]) Backup from cluster wih NoOfReplica=1 is corrupt

• (Bug#9246 [http://bugs.mysql.com/9246]) Condition pushdown and left join, wrong result

• (Bug#10956 [http://bugs.mysql.com/10956]) More than 7 node restarts with --initial caused
cluster to fail.

• (Bug#9945 [http://bugs.mysql.com/9945]) ALTER TABLE caused server crash. (Linux/390)

• (Bug#9826 [http://bugs.mysql.com/9826]) (Bug#10948 [http://bugs.mysql.com/10948]) Schema
change (DROP TABLE, ALTER TABLE) crashed HPUX and PPC32.

• (Bug#10711 [http://bugs.mysql.com/10711]) (Bug#9363 [http://bugs.mysql.com/9363]) (Bug#8918
[http://bugs.mysql.com/8918]) (Bug#10058 [http://bugs.mysql.com/10058]) (Bug#9025
[http://bugs.mysql.com/9025]) Cluster would time out and crash after first query; setting
DataMemory to more than 2GB prevented cluster from starting; calling ndb_select_count()
crashed the cluster. (64-bit Unix OSes)

D.2.2. Changes in MySQL Cluster-5.0.6 (26 May 2005)
Functionality added or changed:

• Limit on number of metadata objects (number of tables, indexes and BLOBs) now increased to
20,320

Bugs fixed:

• The server would hang on successive calls to an INSERT ... ON DUPLICATE KEY UPDATE
query. (Bug#9725 [http://bugs.mysql.com/9725])

• (Bug#10193 [http://bugs.mysql.com/10193]) Invalid DataDir in config causes ndbd segmentation
fault

• (Bug#10813 [http://bugs.mysql.com/10813]) Build with SCI Transporter fails

• (Bug#10831 [http://bugs.mysql.com/10831]) ndb mgmd LogDestination maxfiles does not rotate
logs properly

D.2.3. Changes in MySQL Cluster-5.0.5 (Not released)
Functionality added or changed:

• Decreased IndexMemory Usage

• Parallel key lookup (read-multi-range) for queries like SELECT * FROM t1 WHERE
primary_key IN (1,2,3,4,5,6,7,8,9,10);

Bugs fixed:

MySQL Change History

1843

http://bugs.mysql.com/11019
http://bugs.mysql.com/10190
http://bugs.mysql.com/9246
http://bugs.mysql.com/10956
http://bugs.mysql.com/9945
http://bugs.mysql.com/9826
http://bugs.mysql.com/10948
http://bugs.mysql.com/10711
http://bugs.mysql.com/9363
http://bugs.mysql.com/8918
http://bugs.mysql.com/10058
http://bugs.mysql.com/9025
http://bugs.mysql.com/9725
http://bugs.mysql.com/10193
http://bugs.mysql.com/10813
http://bugs.mysql.com/10831

Patches merged from versions 4.1.11 and 4.1.12

• (Bug#8315 [http://bugs.mysql.com/8315]) NdbScanFilter cmp method only works for strings of ex-
act word boundary length

• (Bug#8103 [http://bugs.mysql.com/8103]) Configuration handling error

• (Bug#8035 [http://bugs.mysql.com/8035]) mysqld signal 10 when ndbd is shutdown

• (Bug#7631 [http://bugs.mysql.com/7631]) NDB$EVENT contains unreadable event and table names

• (Bug#7628 [http://bugs.mysql.com/7628]) Filtered event types are ignored

• (Bug#7627 [http://bugs.mysql.com/7627]) Drop Event operation fails

• (Bug#7424 [http://bugs.mysql.com/7424]) create index on datetime fails

D.2.4. Changes in MySQL Cluster-5.0.4 (16 April 2005)
Functionality added or changed:

• Condition pushdown to storage engine now works for update and delete as well

Bugs fixed:

• (Bug#9675 [http://bugs.mysql.com/9675]) Auto-increment not working with INSERT..SELECT and
NDB storage

• (Bug#9517 [http://bugs.mysql.com/9517]) Condition pushdown to storage engine does not work for
update/delete

• (Bug#9282 [http://bugs.mysql.com/9282]) API Node Crashes/Reloads on 'DELETE FROM'

• (Bug#9280 [http://bugs.mysql.com/9280]) Memory leak in cluster when dependent sub-queries are
used

• (Bug#8585 [http://bugs.mysql.com/8585]) ndb_cache2 fails on aix52

D.2.5. Changes in MySQL Cluster-5.0.3 (23 March 2005: Beta)
Functionality added or changed:

• Condition pushdown to storage engine

• Query cache enabled for cluster

Bugs fixed:

• Patches merged from version 4.1.10

MySQL Change History

1844

http://bugs.mysql.com/8315
http://bugs.mysql.com/8103
http://bugs.mysql.com/8035
http://bugs.mysql.com/7631
http://bugs.mysql.com/7628
http://bugs.mysql.com/7627
http://bugs.mysql.com/7424
http://bugs.mysql.com/9675
http://bugs.mysql.com/9517
http://bugs.mysql.com/9282
http://bugs.mysql.com/9280
http://bugs.mysql.com/8585

D.2.6. Changes in MySQL Cluster-5.0.1 (27 July 2004)
Functionality added or changed:

• This was the first MySQL Cluster release in the 5.0 series. As nearly all attention was still focused
on getting 4.1 stable, it is not recommended to use MySQL 5.0.1 for MySQL Cluster.

Bugs fixed:

• N/A

D.2.7. Changes in MySQL Cluster-4.1.13 (15 July 2005)
Functionality added or changed:

Bugs fixed:

• (Bug#11132 [http://bugs.mysql.com/11132]) Connections between data nodes and management
nodes were not being closed following shutdown of ndb_mgmd.

• (Bug#11050 [http://bugs.mysql.com/11050]) ndb_mgm> show printed incorrectly after master
data node failure.

• (Bug#10956 [http://bugs.mysql.com/10956]) More than 7 node restarts with --initial caused
cluster to fail.

• (Bug#9826 [http://bugs.mysql.com/9826]) (Bug#10948 [http://bugs.mysql.com/10948]) Schema
change (DROP TABLE, ALTER TABLE) crashed HPUX and PPC32.

• (Bug#9025 [http://bugs.mysql.com/9025]) Data nodes failed to restart on 64-bit Solaris.

• (Bug#11166 [http://bugs.mysql.com/11166]) Insert records were incorrectly applied by
ndb_restore, thus making restoration from backup inconsistent if the binlog contained inserts.

• (Bug#8918 [http://bugs.mysql.com/8918]) (Bug#9363 [http://bugs.mysql.com/9363]) (Bug#10711
[http://bugs.mysql.com/10711]) (Bug#10058 [http://bugs.mysql.com/10058]) (Bug#9025
[http://bugs.mysql.com/9025]) Cluster would time out and crash after first query; setting
DataMemory to more than 2GB prevented cluster from starting; calling ndb_select_count()
crashed the cluster. (64-bit Unix OSes)

• (Bug#10190 [http://bugs.mysql.com/10190]) When making a backup of a cluster where NumberO-
fReplicas was equal to 1, the backup's metadata was corrupted. (Linux)

• (Bug#9945 [http://bugs.mysql.com/9945]) ALTER TABLE caused server crash. (Linux/390)

• (Bug#11133 [http://bugs.mysql.com/11133]) A delete operation performed as part of a transaction
caused an erroneous result.

• (Bug#10294 [http://bugs.mysql.com/10294]) Not allowing sufficient parallelism in cluster configur-
ation (for example, NoOfTransactions too small) caused ndb_restore to fail without gener-
ating any error messages.

• (Bug#11290 [http://bugs.mysql.com/11290]) Setting TransactionInactiveTimeout= 0 did not result
in an infinite timeout.

MySQL Change History

1845

http://bugs.mysql.com/11132
http://bugs.mysql.com/11050
http://bugs.mysql.com/10956
http://bugs.mysql.com/9826
http://bugs.mysql.com/10948
http://bugs.mysql.com/9025
http://bugs.mysql.com/11166
http://bugs.mysql.com/8918
http://bugs.mysql.com/9363
http://bugs.mysql.com/10711
http://bugs.mysql.com/10058
http://bugs.mysql.com/9025
http://bugs.mysql.com/10190
http://bugs.mysql.com/9945
http://bugs.mysql.com/11133
http://bugs.mysql.com/10294
http://bugs.mysql.com/11290

D.2.8. Changes in MySQL Cluster-4.1.12 (13 May 2005)
Functionality added or changed:

Bugs fixed:

• (Bug#10471 [http://bugs.mysql.com/10471]) Backup can become inconsistent with certain combina-
tions of multiple-row updates

• (Bug#10287 [http://bugs.mysql.com/10287]) ndb_select_all "delimiter" option non functional

• (Bug#10142 [http://bugs.mysql.com/10142]) Unhandled resource shortage in UNIQUE index code

• (Bug#10029 [http://bugs.mysql.com/10029]) crash in ordered index scan after db full

• (Bug#10001 [http://bugs.mysql.com/10001]) 2 NDB nodes get signal 6 (abort) in DBTC

• (Bug#9969 [http://bugs.mysql.com/9969]) 4012 - has misleading error message

• (Bug#9960 [http://bugs.mysql.com/9960]) START BACKUP reports failure albeit succeeding

• (Bug#9924 [http://bugs.mysql.com/9924]) ABORT BACKUP 1 crashes 4 node cluster

• (Bug#9892 [http://bugs.mysql.com/9892]) Index activation file during node recovery

• (Bug#9891 [http://bugs.mysql.com/9891]) Crash in DBACC (line 7004) during commit

• (Bug#9865 [http://bugs.mysql.com/9865]) SELECT does not function properly

• (Bug#9839 [http://bugs.mysql.com/9839]) Column with AUTOINC contains -1 Value on node stop

• (Bug#9757 [http://bugs.mysql.com/9757]) Uncompleted node failure after gracefully stopping node

• (Bug#9749 [http://bugs.mysql.com/9749]) Transactions causes deadlock in ACC

• (Bug#9724 [http://bugs.mysql.com/9724]) Node fails to start: Message: File has already been
opened

• (Bug#9691 [http://bugs.mysql.com/9691]) UPDATE fails on attempt to update primary key

• (Bug#9675 [http://bugs.mysql.com/9675]) Auto-increment not working with INSERT..SELECT and
NDB storage

• (Bug#9318 [http://bugs.mysql.com/9318]) drop database does not drop ndb tables

• (Bug#9280 [http://bugs.mysql.com/9280]) Memory leak in cluster when dependent sub-queries are
used

• (Bug#8928 [http://bugs.mysql.com/8928]) create table with keys will shutdown the cluster

• Creating a table did not work for a cluster with 6 nodes. (Bug#8928 [http://bugs.mysql.com/8928])
Databases with 1, 2, 4, 8, ... (2n nodes) did not have the problem. After a rolling upgrade, restart
each node manually by restarting it with the --initial option. Otherwise, use dump and restore
after an upgrade.

D.2.9. Changes in MySQL Cluster-4.1.11 (01 April 2005)
Functionality added or changed:

MySQL Change History

1846

http://bugs.mysql.com/10471
http://bugs.mysql.com/10287
http://bugs.mysql.com/10142
http://bugs.mysql.com/10029
http://bugs.mysql.com/10001
http://bugs.mysql.com/9969
http://bugs.mysql.com/9960
http://bugs.mysql.com/9924
http://bugs.mysql.com/9892
http://bugs.mysql.com/9891
http://bugs.mysql.com/9865
http://bugs.mysql.com/9839
http://bugs.mysql.com/9757
http://bugs.mysql.com/9749
http://bugs.mysql.com/9724
http://bugs.mysql.com/9691
http://bugs.mysql.com/9675
http://bugs.mysql.com/9318
http://bugs.mysql.com/9280
http://bugs.mysql.com/8928
http://bugs.mysql.com/8928

Bugs fixed:

• (Bug#9916 [http://bugs.mysql.com/9916]) DbaccMain.cpp / DBACC (Line: 4876) / Pointer too
large

• (Bug#9435 [http://bugs.mysql.com/9435]) TIMESTAMP columns don't update

• (Bug#9052 [http://bugs.mysql.com/9052]) Uninitialized data during unique index build, potential
cluster crash

• (Bug#8876 [http://bugs.mysql.com/8876]) Timeout when committing aborted transaction after node
failure

• (Bug#8786 [http://bugs.mysql.com/8786]) ndb_autodiscover, drop index can fail, wait 2 minutes
timeout

• (Bug#8853 [http://bugs.mysql.com/8853]) Transaction aborted after long time during node failure
(4012)

• (Bug#8753 [http://bugs.mysql.com/8753]) Invalid schema object version after dropping index (crash
fixed, currently retry required)

• (Bug#8645 [http://bugs.mysql.com/8645]) Assertion failure with multiple management servers

• (Bug#8557 [http://bugs.mysql.com/8557]) ndbd does not get same nodeid on restart

• (Bug#8556 [http://bugs.mysql.com/8556]) corrupt ndb_mgm show printout for certain configura-
tions

• (Bug#8167 [http://bugs.mysql.com/8167]) cluster shared memory and mysqld signal usage clash

D.2.10. Changes in MySQL Cluster-4.1.10 (12 February 2005)
Bugs fixed:

• (Bug#8284 [http://bugs.mysql.com/8284]) Out of fragment memory in DBACC

• (Bug#8262 [http://bugs.mysql.com/8262]) Node crash due to bug in DBLQH

• (Bug#8208 [http://bugs.mysql.com/8208]) node restart fails on Aix 5.2

• (Bug#8167 [http://bugs.mysql.com/8167]) cluster shared memory and mysqld signal usage clash

• (Bug#8101 [http://bugs.mysql.com/8101]) unique index and error 4209 while selecting

• (Bug#8070 [http://bugs.mysql.com/8070]) (Bug#7937 [http://bugs.mysql.com/7937]) (Bug#6716
[http://bugs.mysql.com/6716]) various ndb_restore core dumps on HP-UX

• (Bug#8010 [http://bugs.mysql.com/8010]) 4006 forces MySQL Node Restart

• (Bug#7928 [http://bugs.mysql.com/7928]) out of connection objects

• (Bug#7898 [http://bugs.mysql.com/7898]) mysqld crash with ndb (solaris)

• (Bug#7864 [http://bugs.mysql.com/7864]) Not possible to have more than 4.5G data memory

MySQL Change History

1847

http://bugs.mysql.com/9916
http://bugs.mysql.com/9435
http://bugs.mysql.com/9052
http://bugs.mysql.com/8876
http://bugs.mysql.com/8786
http://bugs.mysql.com/8853
http://bugs.mysql.com/8753
http://bugs.mysql.com/8645
http://bugs.mysql.com/8557
http://bugs.mysql.com/8556
http://bugs.mysql.com/8167
http://bugs.mysql.com/8284
http://bugs.mysql.com/8262
http://bugs.mysql.com/8208
http://bugs.mysql.com/8167
http://bugs.mysql.com/8101
http://bugs.mysql.com/8070
http://bugs.mysql.com/7937
http://bugs.mysql.com/6716
http://bugs.mysql.com/8010
http://bugs.mysql.com/7928
http://bugs.mysql.com/7898
http://bugs.mysql.com/7864

D.2.11. Changes in MySQL Cluster-4.1.9 (13 January 2005)
Functionality added or changed:

• New implementation of shared memory transporter.

• Cluster automatically configures shared memory transporter if possible.

• Cluster prioritizes usage of transporters with shared memory and localhost TCP

• Added switches to control the above functions, ndb-shm and ndb-optim-
ized-node-selection.

Bugs fixed:

• (Bug#7805 [http://bugs.mysql.com/7805]) config.ini parsing error

• (Bug#7798 [http://bugs.mysql.com/7798]) Running range scan after alter table in different thread
causes node failure

• (Bug#7761 [http://bugs.mysql.com/7761]) Alter table does not autocommit

• (Bug#7725 [http://bugs.mysql.com/7725]) Indexed DATETIME Columns Return Random Results

• (Bug#7660 [http://bugs.mysql.com/7660]) START BACKUP does not increment BACKUP-ID (Big
Endian machines)

• (Bug#7593 [http://bugs.mysql.com/7593]) Cannot Create A Large NDB Data Warehouse

• (Bug#7480 [http://bugs.mysql.com/7480]) Mysqld crash in ha_ndbcluster using Query Browser

• (Bug#7470 [http://bugs.mysql.com/7470]) shared memory transporter does not connect

• (Bug#7396 [http://bugs.mysql.com/7396]) Primary Key not working in NDB Mysql Clustered table
(solaris)

• (Bug#7379 [http://bugs.mysql.com/7379]) ndb restore fails to handle blobs and multiple databases

• (Bug#7346 [http://bugs.mysql.com/7346]) ndb_restore enters infinite loop

• (Bug#7340 [http://bugs.mysql.com/7340]) Problem for inserting data into the Text field on utf8

• (Bug#7124 [http://bugs.mysql.com/7124]) ndb_mgmd is aborted on startup when using SHM con-
nection

D.2.12. Changes in MySQL Cluster-4.1.8 (14 December 2004)
Functionality added or changed:

• Default port for ndb_mgmd was changed to 1186 (from 2200) as this port number was officially as-
signed to MySQL Cluster by IANA.

• New command in ndb_mgm, PURGE STALE SESSIONS, as a workaround for cases where nodes
fail to allocate a node id even if it is free to use.

MySQL Change History

1848

http://bugs.mysql.com/7805
http://bugs.mysql.com/7798
http://bugs.mysql.com/7761
http://bugs.mysql.com/7725
http://bugs.mysql.com/7660
http://bugs.mysql.com/7593
http://bugs.mysql.com/7480
http://bugs.mysql.com/7470
http://bugs.mysql.com/7396
http://bugs.mysql.com/7379
http://bugs.mysql.com/7346
http://bugs.mysql.com/7340
http://bugs.mysql.com/7124

• New command in ndb_mgm, CONNECT.

• The ndb executables have been changed to make use of the regular MySQL command line option
parsing features. See Section 15.6.5, “Command Options for MySQL Cluster Processes”, for notes
on changes.

• As bonus of the above you can now specify all command line options in my.cnf using the execut-
able names as sections, that is, [ndbd], [ndb_mgmd], [ndb_mgm], [ndb_restore], and so
forth.

[ndbd]
ndb-connectstring=myhost.domain.com:1234
[ndb_mgm]
ndb-connectstring=myhost.domain.com:1234

• Added use of section [mysql_cluster] in my.cnf. All cluster executables, including mysqld,
parse this section. For example, this is a convenient place to put ndb-connectstring so that it
need be specified only once.

• Added cluster log info events on allocation and deallocation of nodeid's.

• Added cluster log info events on connection refuse as a result of version mismatch.

• Extended connectstring syntax to allow for leaving the port number out. For example, ndb-
connectstring|connect-string=myhost1,myhost2,myhost3 is a valid connect-
string and connect occurs on default port 1186.

• Clear text ndb error messages provided also for error codes that are mapped to corresponding mysql
error codes, by executing SHOW WARNINGS after an error has occurred which relates to the ndb
storage engine.

• Significant performance improvements done for read performance, especially for blobs.

• Added some variables for performance tuning, ndb_force_send and
ndb_use_exact_count. Do show variables like 'ndb%'; in mysql client for listing.
Use set command to alter variables.

• Added variables to set some options, ndb_use_transactions and
ndb_autoincrement_prefetch_sz.

Bugs fixed:

• (Bug#7303 [http://bugs.mysql.com/7303]) ndb_mgm: Trying to set CLUSTERLOG for a specific
node id core dumps

• (Bug#7193 [http://bugs.mysql.com/7193]) start backup gives false error printout

• (Bug#7153 [http://bugs.mysql.com/7153]) Cluster nodes don't report error on endianness mismatch

• (Bug#7152 [http://bugs.mysql.com/7152]) ndb_mgmd segmentation fault on incorrect HostName in
configuration

• (Bug#7104 [http://bugs.mysql.com/7104]) clusterlog filtering and level setting broken

• (Bug#6995 [http://bugs.mysql.com/6995]) ndb_recover on varchar fields results in changing case of
data

• (Bug#6919 [http://bugs.mysql.com/6919]) all status only shows 2 nodes on a 8-node cluster

MySQL Change History

1849

http://bugs.mysql.com/7303
http://bugs.mysql.com/7193
http://bugs.mysql.com/7153
http://bugs.mysql.com/7152
http://bugs.mysql.com/7104
http://bugs.mysql.com/6995
http://bugs.mysql.com/6919

• (Bug#6871 [http://bugs.mysql.com/6871]) DBD execute failed: Got error 897 'Unknown error code'
from ndbcluster

• (Bug#6794 [http://bugs.mysql.com/6794]) Wrong outcome of update operation of ndb table

• (Bug#6791 [http://bugs.mysql.com/6791]) Segmentation fault when config.ini is not correctly set

• (Bug#6775 [http://bugs.mysql.com/6775]) failure in acc when running many mysql clients

• (Bug#6696 [http://bugs.mysql.com/6696]) ndb_mgm command line options inconsistent with beha-
vior

• (Bug#6684 [http://bugs.mysql.com/6684]) ndb_restore doesn't give error messages if improper com-
mand given

• (Bug#6677 [http://bugs.mysql.com/6677]) ndb_mgm can crash on "ALL CLUSTERLOG"

• (Bug#6538 [http://bugs.mysql.com/6538]) Error code returned when select max() on empty table
with index

• (Bug#6451 [http://bugs.mysql.com/6451]) failing create table givers "ghost" tables which are im-
possible to remove

• (Bug#6435 [http://bugs.mysql.com/6435]) strange behavior of left join

• (Bug#6426 [http://bugs.mysql.com/6426]) update with long pk fails

• (Bug#6398 [http://bugs.mysql.com/6398]) update of primary key fails

• (Bug#6354 [http://bugs.mysql.com/6354]) mysql does not complain about --ndbcluster option when
NDB is not compiled in

• (Bug#6331 [http://bugs.mysql.com/6331]) INSERT IGNORE .. SELECT breaks subsequent inserts

• (Bug#6288 [http://bugs.mysql.com/6288]) cluster nodes crash on data import

• (Bug#6031 [http://bugs.mysql.com/6031]) To drop database you have to execute DROP DATA-
BASE command twice

• (Bug#6020 [http://bugs.mysql.com/6020]) LOCK TABLE + delete returns error 208

• (Bug#6018 [http://bugs.mysql.com/6018]) REPLACE does not work for BLOBs + NDB

• (Bug#6016 [http://bugs.mysql.com/6016]) Strange crash with blobs + different DATABASES

• (Bug#5973 [http://bugs.mysql.com/5973]) ndb table belonging to different database shows up in
show tables

• (Bug#5872 [http://bugs.mysql.com/5872]) ALTER TABLE with blob from ndb table to myisam
fails

• (Bug#5844 [http://bugs.mysql.com/5844]) Failing mysql-test-run leaves stray NDB processes behind

• (Bug#5824 [http://bugs.mysql.com/5824]) HELP text messed up in ndb_mgm

• (Bug#5786 [http://bugs.mysql.com/5786]) Duplicate key error after restore

• (Bug#5785 [http://bugs.mysql.com/5785]) lock timeout during concurrent update

• (Bug#5782 [http://bugs.mysql.com/5782]) Unknown error when using LIMIT with ndb table

MySQL Change History

1850

http://bugs.mysql.com/6871
http://bugs.mysql.com/6794
http://bugs.mysql.com/6791
http://bugs.mysql.com/6775
http://bugs.mysql.com/6696
http://bugs.mysql.com/6684
http://bugs.mysql.com/6677
http://bugs.mysql.com/6538
http://bugs.mysql.com/6451
http://bugs.mysql.com/6435
http://bugs.mysql.com/6426
http://bugs.mysql.com/6398
http://bugs.mysql.com/6354
http://bugs.mysql.com/6331
http://bugs.mysql.com/6288
http://bugs.mysql.com/6031
http://bugs.mysql.com/6020
http://bugs.mysql.com/6018
http://bugs.mysql.com/6016
http://bugs.mysql.com/5973
http://bugs.mysql.com/5872
http://bugs.mysql.com/5844
http://bugs.mysql.com/5824
http://bugs.mysql.com/5786
http://bugs.mysql.com/5785
http://bugs.mysql.com/5782

• (Bug#5756 [http://bugs.mysql.com/5756]) RESTART node from ndb_mgm fails

• A few more not reported bugs fixed

D.2.13. Changes in MySQL Cluster-4.1.7 (23 October 2004)
Functionality added or changed:

• Optimization 1: Improved performance on index scans. Measured 30% performance increase on
query which do large amounts of index scans.

• Optimization 2: Improved performance on primary key lookups. Around double performance for
autocommitted primary key lookups.

• Optimization 3: Improved performance when using blobs by avoiding usage of exclusive locks for
blobs.

Bugs fixed:

• A few bugs fixed.

D.2.14. Changes in MySQL Cluster-4.1.6 (10 October 2004)
Functionality added or changed:

• Limited character set support for storage engine NDBCLUSTER:

Char set Collation

big5 big5_chinese_ci

big5_bin

binary binary

euckr euckr_korean_ci

euckr_bin

gb2312 gb2312_chinese_ci

gb2312_bin

gbk gbk_chinese_ci

gbk_bin

latin1 latin1_swedish_ci

latin1_bin

sjis sjis_japanese_ci

sjis_bin

tis620 tis620_bin

ucs2 ucs2_general_ci

ucs2_bin

ujis ujis_japanese_ci

MySQL Change History

1851

http://bugs.mysql.com/5756

ujis_bin

utf8 utf8_general_ci

utf8_bin

• The SCI Transporter has been brought up-to-date with all changes and now works and has been doc-
umented as well.

• Optimizations when several clients to a MySQL Server access ndb tables.

• Added more checks and warnings for erroneous and inappropriate cluster configurations.

• SHOW TABLES now directly shows ndb tables created on a different MySQL server, that is, without
a prior table access.

• Enhanced support for starting MySQL Server independently of ndbd and ndb_mgmd.

• Clear text ndb error messages provided by executing SHOW WARNINGS after an error has occurred
which relates to the ndb storage engine.

Bugs fixed:

• Quite a few bugs fixed.

D.2.15. Changes in MySQL Cluster-4.1.5 (16 September 2004)
Functionality added or changed:

• Many queries in MySQL Cluster are executed as range scans or full table scans. All queries that
don't use a unique hash index or the primary hash index use this access method. In a distributed sys-
tem it is crucial that batching is properly performed.

In previous versions, the batch size was fixed to 16 per data node. In this version it is configurable
per MySQL Server. So for queries using lots of large scans it is appropriate to set this parameter
rather large and for queries using many small scans only fetching a small amount of records it is ap-
propriate to set it low.

The performance of queries can easily change as much as 40% based on how this variable is set.

In future versions more logic will be implemented for assessing the batch size on a per-query basis.
Thus, the semantics of the new configuration variable ScanBatchSize are likely to change.

• The fixed size overhead of the ndbd process has been greatly decreased. This is also true for the
overhead per operation record as well as overhead per table and index.

A number of new configuration variables have been introduced to enable configuration of system
buffers. Configuration variables for specifying the numbers of tables, unique hash indexes, and
ordered indexes have also been introduced.

New configuration variables: MaxNoOfOrderedIndexes, MaxNoOfUniqueHashIndexes

Configuration variables no longer used: MaxNoOfIndexes (split into the two above).

MySQL Change History

1852

• In previous versions ALTER TABLE, TRUNCATE TABLE, and LOAD DATA were performed as
one big transaction. In this version, all of these statements are automatically separated into several
distinct transactions.

This removes the limitation that one could not change very large tables due to the MaxNoOfCon-
currentOperations parameter.

• MySQL CLuster's online backup feature now backs up indexes so that both data and indexes are re-
stored.

• In previous versions it was not possible to use NULL in indexes. This is now possible for all suppor-
ted index types.

• Much work has been put onto making AUTO_INCREMENT features work as for other table handlers.
Autoincrements as a partial key is still only supported by MyISAM.

• In earlier versions, mysqld would crash if the cluster wasn't started with the --ndbcluster op-
tion. Now mysqld handles cluster crashes and starts without crashing.

• The -i option for initial startup of ndbd has been removed. Initial startup still can be specified by
using the --initial option. The reason for this is to ensure that it is clear what takes place when
using --initial: this option completely removes all data from the disk and should only be used
at initial start, in certain software upgrade cases, and in some cases as a workaround when nodes
cannot be restarted successfully.

• The management client (ndb_mgm) now has additional commands and more information is printed
for some commands such as show.

• In previous versions, the files were called ndb_0.. when it wasn't possible to allocate a node ID
when starting the node. To ensure that files are not so easily overwritten, these files are now named
ndb_pid.., where pid is the process ID assigned by the OS.

• The default parameters have changed for ndb_mgmd and ndbd. In particular, they are now started
as daemons by default. The -n option has been removed since it could cause confusion as to its
meaning (nostart or nodaemon).

• In the configuration file, you can now use [NDBD] as an alias for [DB], [MYSQLD] as an alias for
[API], and [NDB_MGMD] as an alias for [MGM]. Note: In fact, [NDBD], [MYSQLD], and
[NDB_MGMD] are now the preferred designations, although the older ones will continue to be sup-
ported for some time to come in order to maintain backward compatibility.

• Many more checks for consistency in configuration have been introduced to in order to provide
quicker feedback on configuration errors.

• In the connect string, it is now possible to use both ‘;’ and ‘,’ as the separator between entries.
Thus, "nodeid=2,host=localhost:2200" is equivalent to "nodeid=2;host=localhost:2200".

In the configuration file, it is also possible to use ‘:’ or ‘=’ for assignment values. For example,
MaxNoOfOrderedIndexes : 128 and MaxNoOfOrderedIndexes = 128 are equivalent
expressions.

• The configuration variable names are now case insensitive, so MaxNoOfOrderedIndexes:
128 is equivalent to MAXNOOFORDEREDINDEXES = 128.

• It is possible now to set the backup directory separately from the FileSystemPath by using the
BackupDir configuration variable.

Log files and trace files can now be placed in any directory by setting the DataDir configuration
variable.

MySQL Change History

1853

FileSystemPath is no longer mandatory and defaults to DataDir.

• Queries involving tables from different databases are now supported.

• It is now possible to update the primary key.

• The performance of ordered indexes has been greatly improved, particularly the maintenance of in-
dexes on updates, inserts and deletes.

Bugs fixed:

• Quite a few bugs fixed.

D.2.16. Changes in MySQL Cluster-4.1.4 (31 August 2004)
Functionality added or changed:

• The names of the log files and trace files created by the ndbd and ndb_mgmd processes have
changed.

• Support for the many BLOB data types was introduced in this version.

Bugs fixed:

• Quite a few bugs were fixed in the 4.1.4 release.

D.2.17. Changes in MySQL Cluster-4.1.3 (28 June 2004)
Functionality added or changed:

• This was the first MySQL Cluster release so all functionality was new.

Bugs fixed:

• Various bugs fixed in the development process leading up to 4.1.3.

D.3. MySQL Connector/ODBC (MyODBC) Change His-
tory

D.3.1. Changes in MyODBC 3.51.13
Functionality added or changed:

• N/A

MySQL Change History

1854

Bugs fixed:

• Using Connector/ODBC, with SQLBindCol and binding the length to the return value from
SQL_LEN_DATA_AT_EXEC fails with a memory allocation error. (Bug#20547
[http://bugs.mysql.com/20547])

• The SQLDriverConnect() ODBC method did not work with recent MyODBC releases.
(Bug#12393 [http://bugs.mysql.com/12393])

D.3.2. Changes in MyODBC 3.51.12
Functionality added or changed:

• N/A

Bugs fixed:

• File DSNs could not be saved. (Bug#12019 [http://bugs.mysql.com/12019])

• SQLColumns() returned no information for tables that had a column named using a reserved
word. (Bug#9539 [http://bugs.mysql.com/9539])

D.3.3. Changes in MyODBC 3.51.11
Functionality added or changed: No changes.

Bugs fixed:

• mysql_list_dbcolumns() and insert_fields() were retrieving all rows from a table.
Fixed the queries generated by these functions to return no rows. (Bug#8198
[http://bugs.mysql.com/8198])

• SQLGetTypoInfo() returned tinyblob for SQL_VARBINARY and nothing for
SQL_BINARY. Fixed to return varbinary for SQL_VARBINARY, binary for SQL_BINARY,
and longblob for SQL_LONGVARBINARY. (Bug#8138 [http://bugs.mysql.com/8138])

D.4. MySQL Connector/NET Change History

D.4.1. Version 5.0.1 (not yet released)
Functionality added or changed:

• You can now install the Connector/NET MSI package from the command line using the /passive,
/quiet, /q options. (Bug#19994 [http://bugs.mysql.com/19994])

• The MySqlexception class is now derived from the DbException class. (Bug#21874
[http://bugs.mysql.com/21874])

MySQL Change History

1855

http://bugs.mysql.com/20547
http://bugs.mysql.com/12393
http://bugs.mysql.com/12019
http://bugs.mysql.com/9539
http://bugs.mysql.com/8198
http://bugs.mysql.com/8138
http://bugs.mysql.com/19994
http://bugs.mysql.com/21874

Bugs fixed:

• Executing multiple queries as part of a transaction returns There is already an
openDataReader associated with this Connection which must be closed
first. (Bug#7248 [http://bugs.mysql.com/7248])

• The # would not be accepted within column/table names, even though it was valid. (Bug#21521
[http://bugs.mysql.com/21521])

D.4.2. Version 5.0.0
This is a new Alpha development release, fixing recently discovered bugs.

NOTE: This Alpha release, as any other pre-production release, should not be installed on production
level systems or systems with critical data. It is good practice to back up your data before installing any
new version of software. Although MySQL has worked very hard to ensure a high level of quality, pro-
tect your data by making a backup as you would for any software beta release. Please refer to our bug
database at http://bugs.mysql.com/ for more details about the individual bugs fixed in this version.

Bugs fixed:

• CommandText: Question mark in comment line is being parsed as a parameter. (Bug#6214
[http://bugs.mysql.com/6214])

Functionality added or changed:

• Implemented Usage Advisor.

• Added Async query methods.

• Reimplemented PacketReader/PacketWriter support into MySqlStream class.

• Added internal implemention of SHA1 so we don't have to distribute the OpenNetCF on mobile
devices.

• Added usage advisor warnings for requesting column values by the wrong type.

• Reworked connection string classes to be simpler and faster.

• Added procedure metadata caching.

• Added perfmon hooks for stored procedure cache hits and misses.

• Implemented MySqlConnectionBuilder class.

• Implemented MySqlClientFactory class.

• Implemented classes and interfaces for ADO.Net 2.0 support.

• Replaced use of ICSharpCode with .NET 2.0 internal deflate support.

• Refactored test suite to test all protocols in a single pass.

• Completely refactored how column values are handled to avoid boxing in some cases.

MySQL Change History

1856

http://bugs.mysql.com/7248
http://bugs.mysql.com/21521
http://bugs.mysql.com/
http://bugs.mysql.com/6214

D.4.3. Version 1.0.8 (not yet released)
Bugs fixed:

• You can now install the Connector/NET MSI package from the command line using the /passive,
/quiet, /q options. (Bug#19994 [http://bugs.mysql.com/19994])

• Executing multiple queries as part of a transaction returns There is already an
openDataReader associated with this Connection which must be closed
first. (Bug#7248 [http://bugs.mysql.com/7248])

• Called MySqlCommandBuilder.DeriveParameters for a stored procedure that has no para-
mers would cause an application crash. (Bug#15077 [http://bugs.mysql.com/15077])

• A SELECT query on a table with a date with a value of '0000-00-00' would hang the applica-
tion. (Bug#17736 [http://bugs.mysql.com/17736])

• The # would not be accepted within column/table names, even though it was valid. (Bug#21521
[http://bugs.mysql.com/21521])

• Calling Close on a connection after calling a stored procedure would trigger a NullRefer-
enceException. (Bug#20581 [http://bugs.mysql.com/20581])

• IDataRecord.GetString would raise NullPointerException for null values in returned
rows. Method now throws SqlNullValueException. (Bug#19294
[http://bugs.mysql.com/19294])

• An exception would be raised when using an output parameter to a System.String value.
(Bug#17814 [http://bugs.mysql.com/17814])

• The DiscoverParameters function would fail when a stored procedure used a NUMERIC parameter
type. (Bug#19515 [http://bugs.mysql.com/19515])

• When running a query that included a date comparison, a DateReader error would be raised.
(Bug#19481 [http://bugs.mysql.com/19481])

• Parameter substitution in queries where the order of parameters and table fields did not match would
substitute incorrect values. (Bug#19261 [http://bugs.mysql.com/19261])

• When working with multiple threads, character set initialization would generate errors. (Bug#17106
[http://bugs.mysql.com/17106])

• When using an unsigned 64-bit integer in a stored procedure, the unsigned bit would be lost stored.
(Bug#16934 [http://bugs.mysql.com/16934])

• The connection string parser did not allow single or double quotes in the password. (Bug#16659
[http://bugs.mysql.com/16659])

• The CommandBuilder ignored Unsigned flag at Parameter creation. (Bug#17375
[http://bugs.mysql.com/17375])

• CHAR type added to MySqlDbType. (Bug#17749 [http://bugs.mysql.com/17749])

• Unsigned data types were not properly supported. (Bug#16788 [http://bugs.mysql.com/16788])

Functionality added or changed:

MySQL Change History

1857

http://bugs.mysql.com/19994
http://bugs.mysql.com/7248
http://bugs.mysql.com/15077
http://bugs.mysql.com/17736
http://bugs.mysql.com/21521
http://bugs.mysql.com/20581
http://bugs.mysql.com/19294
http://bugs.mysql.com/17814
http://bugs.mysql.com/19515
http://bugs.mysql.com/19481
http://bugs.mysql.com/19261
http://bugs.mysql.com/17106
http://bugs.mysql.com/16934
http://bugs.mysql.com/16659
http://bugs.mysql.com/17375
http://bugs.mysql.com/17749
http://bugs.mysql.com/16788

• Stored procedures are now cached.

• The method for retrieving stored procedured metadata has been changed so that users without SE-
LECT privileges on the mysql.proc table can use a stored procedure.

D.4.4. Version 1.0.7

• Unsigned tinyint (NET byte) would lead to and incorrectly determined parameter type from the
parameter value. (Bug#18570 [http://bugs.mysql.com/18570])

• The parameter collection object's Add() method added parameters to the list without first checking
to see whether they already existed. Now it updates the value of the existing parameter object if it
exists. (Bug#13927 [http://bugs.mysql.com/13927])

• A #42000Query was empty exception occurred when executing a query built with MySql-
CommandBuilder, if the query string ended with a semicolon. (Bug#14631
[http://bugs.mysql.com/14631])

• Implemented the MySqlCommandBuilder.DeriveParameters method that is used to dis-
cover the parameters for a stored procedure. (Bug#13632 [http://bugs.mysql.com/13632])

• Added support for the cp932 character set. (Bug#13806 [http://bugs.mysql.com/13806])

• Calling a stored procedure where a parameter contained special characters (such as '@') would pro-
duce an exception. Note that ANSI_QUOTES had to be enabled to make this possible. (Bug#13753
[http://bugs.mysql.com/13753])

• A statement that contained multiple references to the same parameter could not be prepared.
(Bug#13541 [http://bugs.mysql.com/13541])

• The Ping() method did not update the State property of the Connection object. (Bug#13658
[http://bugs.mysql.com/13658])

D.4.5. Version 1.0.6

• The nant build sequence had problems. (Bug#12978 [http://bugs.mysql.com/12978])

• Serializing a parameter failed if the first value passed in was NULL. (Bug#13276
[http://bugs.mysql.com/13276])

• Field names that contained the following characters caused errors: ()%<>/ (Bug#13036
[http://bugs.mysql.com/13036])

• The MySQL Connector/NET 1.0.5 installer would not install alongside MySQL Connector/NET
1.0.4. (Bug#12835 [http://bugs.mysql.com/12835])

• MySQL Connector/NET 1.0.5 could not connect on Mono. (Bug#13345
[http://bugs.mysql.com/13345])

D.4.6. Version 1.0.5

• With multiple hosts in the connection string, MySQL Connector/NET would not connect to the last

MySQL Change History

1858

http://bugs.mysql.com/18570
http://bugs.mysql.com/13927
http://bugs.mysql.com/14631
http://bugs.mysql.com/13632
http://bugs.mysql.com/13806
http://bugs.mysql.com/13753
http://bugs.mysql.com/13541
http://bugs.mysql.com/13658
http://bugs.mysql.com/12978
http://bugs.mysql.com/13276
http://bugs.mysql.com/13036
http://bugs.mysql.com/12835
http://bugs.mysql.com/13345

host in the list. (Bug#12628 [http://bugs.mysql.com/12628])

• MySQL Connector/NET interpreted the new decimal data type as a byte array. (Bug#11294
[http://bugs.mysql.com/11294])

• The cp1250 character set was not supported. (Bug#11621 [http://bugs.mysql.com/11621])

• Connection could fail when .NET thread pool had no available worker threads. (Bug#10637
[http://bugs.mysql.com/10637])

• Decimal parameters caused syntax errors. (Bug#11550 [http://bugs.mysql.com/11550], Bug#10486
[http://bugs.mysql.com/10486], Bug#10152 [http://bugs.mysql.com/10152])

• A call to a stored procedure caused an exception if the stored procedure had no parameters.
(Bug#11542 [http://bugs.mysql.com/11542])

• Certain malformed queries would trigger a Connection must be valid and open error
message. (Bug#11490 [http://bugs.mysql.com/11490])

• The MySqlCommandBuilder class could not handle queries that referenced tables in a database
other than the default database. (Bug#8382 [http://bugs.mysql.com/8382])

• MySQL Connector/NET could not work properly with certain regional settings. (WL#8228)

• Trying to use a stored procedure when Connection.Database was not populated generated an
exception. (Bug#11450 [http://bugs.mysql.com/11450])

• Trying to read a TIMESTAMP column generated an exception. (Bug#7951
[http://bugs.mysql.com/7951])

• Parameters were not recognized when they were separated by linefeeds. (Bug#9722
[http://bugs.mysql.com/9722])

• Calling MySqlConnection.clone when a connection string had not yet been set on the original
connection would generate an error. (Bug#10281 [http://bugs.mysql.com/10281])

• Added support to call a stored function from MySQL Connector/NET. (Bug#10644
[http://bugs.mysql.com/10644])

• MySQL Connector/NET could not connect to MySQL 4.1.14. (Bug#12771
[http://bugs.mysql.com/12771])

• The ConnectionString property could not be set when a MySqlConnection object was ad-
ded with the designer. (Bug#12551 [http://bugs.mysql.com/12551], Bug#8724
[http://bugs.mysql.com/8724])

D.4.7. Version 1.0.4 1-20-05

• Bug#7243 [http://bugs.mysql.com/7243] calling prepare causing exception [fixed]

• Fixed another small problem with prepared statements

• Bug#7258 [http://bugs.mysql.com/7258] MySqlCommand.Connection returns an IDbConnection
[fixed]

• Bug#7345 [http://bugs.mysql.com/7345] MySqlAdapter.Fill method throws Error message : Non-
negative number required [fixed]

MySQL Change History

1859

http://bugs.mysql.com/12628
http://bugs.mysql.com/11294
http://bugs.mysql.com/11621
http://bugs.mysql.com/10637
http://bugs.mysql.com/11550
http://bugs.mysql.com/10486
http://bugs.mysql.com/10152
http://bugs.mysql.com/11542
http://bugs.mysql.com/11490
http://bugs.mysql.com/8382
http://bugs.mysql.com/11450
http://bugs.mysql.com/7951
http://bugs.mysql.com/9722
http://bugs.mysql.com/10281
http://bugs.mysql.com/10644
http://bugs.mysql.com/12771
http://bugs.mysql.com/12551
http://bugs.mysql.com/8724
http://bugs.mysql.com/7243
http://bugs.mysql.com/7258
http://bugs.mysql.com/7345

• Bug#7478 [http://bugs.mysql.com/7478] Clone method bug in MySqlCommand [fixed]

• Bug#7612 [http://bugs.mysql.com/7612] MySqlDataReader.GetString(index) returns non-Null value
when field is Null [fixed]

• Bug#7755 [http://bugs.mysql.com/7755] MySqlReader.GetInt32 throws exception if column is un-
signed [fixed]

• Bug#7704 [http://bugs.mysql.com/7704] GetBytes is working no more [fixed]

• Bug#7724 [http://bugs.mysql.com/7724] Quote character \222 not quoted in EscapeString [fixed]

• Fixed problem that causes named pipes to not work with some blob functionality

• Fixed problem with shared memory connections

• Bug#7436 [http://bugs.mysql.com/7436] Problem with Multiple resultsets... [fixed]

• Added or filled out several more topics in the API reference documentation

D.4.8. Version 1.0.3-gamma 12-10-04

• Made MySQL the default named pipe name

• Now SHOW COLLATION is used upon connection to retrieve the full list of charset ids

• Fixed Invalid character set index: 200 (Bug#6547 [http://bugs.mysql.com/6547])

• Installer now includes options to install into GAC and create Start Menu items

• Bug#6863 [http://bugs.mysql.com/6863] - Int64 Support in MySqlCommand Parameters [fixed]

• Connections now do not have to give a database on the connection string

• Bug#6770 [http://bugs.mysql.com/6770] - MySqlDataReader.GetChar(int i) throws IndexOutO-
fRange Exception [fixed]

• Fixed problem where multiple resultsets having different numbers of columns would cause a prob-
lem

• Bug#6983 [http://bugs.mysql.com/6983] Exception stack trace lost when re-throwing exceptions
[fixed]

• Fixed major problem with detecting null values when using prepared statements

• Bug#6902 [http://bugs.mysql.com/6902] Errors in parsing stored procedure parameters [fixed]

• Bug#6668 [http://bugs.mysql.com/6668] Integer "out" parameter from stored procedure returned as
string [fixed]

• Bug#7032 [http://bugs.mysql.com/7032] MySqlDateTime in Datatables sorting by Text, not Date.
[fixed]

• Bug#7133 [http://bugs.mysql.com/7133] Invalid query string when using inout parameters [fixed]

• Bug#6831 [http://bugs.mysql.com/6831] Test suite fails with MySQL 4.0 because of case sensitivity
of table names [fixed]

MySQL Change History

1860

http://bugs.mysql.com/7478
http://bugs.mysql.com/7612
http://bugs.mysql.com/7755
http://bugs.mysql.com/7704
http://bugs.mysql.com/7724
http://bugs.mysql.com/7436
http://bugs.mysql.com/6547
http://bugs.mysql.com/6863
http://bugs.mysql.com/6770
http://bugs.mysql.com/6983
http://bugs.mysql.com/6902
http://bugs.mysql.com/6668
http://bugs.mysql.com/7032
http://bugs.mysql.com/7133
http://bugs.mysql.com/6831

• Bug#7132 [http://bugs.mysql.com/7132] Inserting DateTime causes System.InvalidCastException to
be thrown [fixed]

• Bug#6879 [http://bugs.mysql.com/6879] InvalidCast when using DATE_ADD-function [fixed]

• Bug#6634 [http://bugs.mysql.com/6634] An Open Connection has been Closed by the Host System
[fixed]

• Added ServerThread property to MySqlConnection to expose server thread id

• Added Ping method to MySqlConnection

• Changed the name of the test suite to MySql.Data.Tests.dll

D.4.9. Version 1.0.2-gamma 04-11-15

• Fixed problem with MySqlBinary where string values could not be used to update extended text
columns

• Fixed Installation directory ignored using custom installation (Bug#6329
[http://bugs.mysql.com/6329])

• Fixed problem where setting command text leaves the command in a prepared state

• Fixed double type handling in MySqlParameter(string parameterName, object value) (Bug#6428
[http://bugs.mysql.com/6428])

• Fixed Zero date "0000-00-00" is returned wrong when filling Dataset (Bug#6429
[http://bugs.mysql.com/6429])

• Fixed problem where calling stored procedures might cause an "Illegal mix of collations" problem.

• Added charset connection string option

• Fixed #HY000 Illegal mix of collations (latin1_swedish_ci,IMPLICIT) and (utf8_general_
(Bug#6322 [http://bugs.mysql.com/6322])

• Added the TableEditor CS and VB sample

• Fixed Charset-map for UCS-2 (Bug#6541 [http://bugs.mysql.com/6541])

• Updated the installer to include the new samples

• Fixed Long inserts take very long time (Bu #5453)

• Fixed Objects not being disposed (Bug#6649 [http://bugs.mysql.com/6649])

• Provider is now using character set specified by server as default

D.4.10. Version 1.0.1-beta2 04-10-27

• Fixed Bug#5602 [http://bugs.mysql.com/5602] Possible bug in MySqlParameter(string, object) con-
structor

• Fixed Bug#5458 [http://bugs.mysql.com/5458] Calling GetChars on a longtext column throws an ex-

MySQL Change History

1861

http://bugs.mysql.com/7132
http://bugs.mysql.com/6879
http://bugs.mysql.com/6634
http://bugs.mysql.com/6329
http://bugs.mysql.com/6428
http://bugs.mysql.com/6429
http://bugs.mysql.com/6322
http://bugs.mysql.com/6541
http://bugs.mysql.com/6649
http://bugs.mysql.com/5602
http://bugs.mysql.com/5458

ception

• Fixed Bug#5474 [http://bugs.mysql.com/5474] cannot run a stored procedure populating mysqlcom-
mand.parameters

• Fixed Bug#5469 [http://bugs.mysql.com/5469] Setting DbType throws NullReferenceException

• Fixed problem where connector was not issuing a CMD_QUIT before closing the socket

• Fixed Bug#5392 [http://bugs.mysql.com/5392] MySqlCommand sees "?" as parameters in string lit-
erals

• Fixed problem with ConnectionInternal where a key might be added more than once

• CP1252 is now used for Latin1 only when the server is 4.1.2 and later

• Fixed Bug#5388 [http://bugs.mysql.com/5388] DataReader reports all rows as NULL if one row is
NULL

• Virtualized driver subsystem so future releases could easily support client or embedded server sup-
port

• Field buffers being reused to decrease memory allocations and increase speed

• Fixed problem where using old syntax while using the interfaces caused problems

• Using PacketWriter instead of Packet for writing to streams

• Refactored compression code into CompressedStream to clean up NativeDriver

• Added test case for resetting the command text on a prepared command

• Fixed problem where MySqlParameterCollection.Add() would throw unclear exception when given
a null value (Bug#5621 [http://bugs.mysql.com/5621])

• Fixed construtor initialize problems in MySqlCommand() (Bug#5613 [http://bugs.mysql.com/5613])

• Fixed Parsing the ';' char (Bug#5876 [http://bugs.mysql.com/5876])

• Fixed missing Reference in DbType setter (Bug#5897 [http://bugs.mysql.com/5897])

• Fixed System.OverflowException when using YEAR datatype (Bug#6036
[http://bugs.mysql.com/6036])

• Added Aggregate function test (wasn't really a bug)

• Fixed serializing of floating point parameters (double, numeric, single, decimal) (Bug#5900
[http://bugs.mysql.com/5900])

• IsNullable error (Bug#5796 [http://bugs.mysql.com/5796])

• Fixed problem where connection lifetime on the connect string was not being respected

• Fixed problem where Min Pool Size was not being respected

• Fixed MySqlDataReader and 'show tables from ...' behavior (Bug#5256
[http://bugs.mysql.com/5256])

• Implemented SequentialAccess

MySQL Change History

1862

http://bugs.mysql.com/5474
http://bugs.mysql.com/5469
http://bugs.mysql.com/5392
http://bugs.mysql.com/5388
http://bugs.mysql.com/5621
http://bugs.mysql.com/5613
http://bugs.mysql.com/5876
http://bugs.mysql.com/5897
http://bugs.mysql.com/6036
http://bugs.mysql.com/5900
http://bugs.mysql.com/5796
http://bugs.mysql.com/5256

• Fixed MySqlDateTime sets IsZero property on all subseq.records after first zero found (Bug#6006
[http://bugs.mysql.com/6006])

• Fixed Can't display Chinese correctly (Bug#5288 [http://bugs.mysql.com/5288])

• Fixed Russian character support as well

• Fixed Method TokenizeSql() uses only a limited set of valid characters for parameters (Bug#6217
[http://bugs.mysql.com/6217])

• Fixed NET Connector source missing resx files (Bug#6216 [http://bugs.mysql.com/6216])

• Fixed DBNull Values causing problems with retrieving/updating queries. (Bug#5798
[http://bugs.mysql.com/5798])

• Fixed Yet Another "object reference not set to an instance of an object" (Bug#5496
[http://bugs.mysql.com/5496])

• Fixed problem in PacketReader where it could try to allocate the wrong buffer size in EnsureCapa-
city

• Fixed GetBoolean returns wrong values (Bug#6227 [http://bugs.mysql.com/6227])

• Fixed IndexOutOfBounds when reading BLOB with DataReader with GetString(index) (Bug#6230
[http://bugs.mysql.com/6230])

D.4.11. Version 1.0.0 04-09-01

• Fixed BUG# 3889 Thai encoding not correctly supported

• Updated many of the test cases

• Fixed problem with using compression

• Bumped version number to 1.0.0 for beta 1 release

• Added COPYING.rtf file for use in installer

• Removed all of the XML comment warnings (I'll clean them up better later)

• Removed some last references to ByteFX

D.4.12. Version 0.9.0 04-08-30

• Added test fixture for prepared statements

• All type classes now implement a SerializeBinary method for sending their data to a PacketWriter

• Added PacketWriter class that will enable future low-memory large object handling

• Fixed many small bugs in running prepared statements and stored procedures

• Changed command so that an exception will not be throw in executing a stored procedure with para-
meters in old syntax mode

MySQL Change History

1863

http://bugs.mysql.com/6006
http://bugs.mysql.com/5288
http://bugs.mysql.com/6217
http://bugs.mysql.com/6216
http://bugs.mysql.com/5798
http://bugs.mysql.com/5496
http://bugs.mysql.com/6227
http://bugs.mysql.com/6230

• SingleRow behavior now working right even with limit

• GetBytes now only works on binary columns

• Logger now truncates long sql commands so blob columns don't blow out our log

• host and database now have a default value of "" unless otherwise set

• FIXED BUG# 5214 Connection Timeout seems to be ignored

• Added test case for bug# 5051: GetSchema not working correctly

• Fixed problem where GetSchema would return false for IsUnique when the column is key

• MySqlDataReader GetXXX methods now using the field level MySqlValue object and not perform-
ing conversions

• FIXED BUG# 5097: DataReader returning NULL for time column

• Added test case for LOAD DATA LOCAL INFILE

• Added replacetext custom nant task

• Added CommandBuilderTest fixture

• Added Last One Wins feature to CommandBuilder

• Fixed persist security info case problem

• Fixed GetBool so that 1, true, "true", and "yes" all count as trueWL# 2024 Make parameter mark
configurable

• Added the "old syntax" connection string parameter to allow use of @ parameter marker

• Fixed Bug#4658 [http://bugs.mysql.com/4658] MySqlCommandBuilder

• Fixed Bug#4864 [http://bugs.mysql.com/4864] ByteFX.MySqlClient caches passwords if 'Persist
Security Info' is false

• Updated license banner in all source files to include FLOSS exception

• Added new .Types namespace and implementations for most current MySql types

• Added MySqlField41 as a subclass of MySqlField

• Changed many classes to now use the new .Types types

• Changed type enum int to Int32, short to Int16, and bigint to Int64

• Added dummy types UInt16, UInt32, and UInt64 to allow an unsigned parameter to be made

• Connections are now reset when they are pulled from the connection pool

• Refactored auth code in driver so it can be used for both auth and reset

• Added UserReset test in PoolingTests.cs

• Connections are now reset using COM_CHANGE_USER when pulled from the pool

• Implemented SingleResultSet behavior

MySQL Change History

1864

http://bugs.mysql.com/4658
http://bugs.mysql.com/4864

• Implemented support of unicode

• Added char set mappings for utf-8 and ucs-2

• fixed Bug#4520 [http://bugs.mysql.com/4520] time fields overflow using bytefx .net mysql driver

• Modified time test in data type test fixture to check for time spans where hours > 24

• Fixed Bug#4505 [http://bugs.mysql.com/4505] Wrong string with backslash escaping in Byte-
Fx.Data.MySqlClient.MySqlParameter

• Added code to Parameter test case TestQuoting to test for backslashes

• Fixed Bug#4486 [http://bugs.mysql.com/4486] mysqlcommandbuilder fails with multi-word column
names

• Fixed bug in TokenizeSql where underscore would terminate character capture in parameter name

• Added test case for spaces in column names

• Fixed bug# 4324 - MySqlDataReader.GetBytes don't works correctly

• Added GetBytes() test case to DataReader test fixture

• Now reading all server variables in InternalConnection.Configure into Hashtable

• Now using string[] for index map in CharSetMap

• Added CRInSQL test case for carriage returns in SQL

• setting maxPacketSize to default value in Driver.ctor

• Fixed Bug#4442 [http://bugs.mysql.com/4442] - Setting MySqlDbType on a parameter doesn't set
generic type

• Removed obsolete data types Long and LongLong

• Fixed bug# 4071 - Overflow exception thrown when using "use pipe" on connection string

• Changed "use pipe" keyword to "pipe name" or just "pipe"

• Allow reading multiple resultsets from a single query

• Added flags attribute to ServerStatusFlags enum

• Changed name of ServerStatus enum to ServerStatusFlags

• Fixed Bug#4386 [http://bugs.mysql.com/4386] - Inserted data row doesn't update properly

• Fixed Bug#4074 [http://bugs.mysql.com/4074] - Error processing show create table

• Change Packet.ReadLenInteger to ReadPackedLong and added packet.ReadPackedInteger that al-
wasy reads integers packed with 2,3,4

• Added syntax.cs test fixture to test various SQL syntax bugs

• Fixed bug# 4149 Improper handling of time values. Now time value of 00:00:00 is not treated as
null.

• Moved all test suite files into TestSuite folder

MySQL Change History

1865

http://bugs.mysql.com/4520
http://bugs.mysql.com/4505
http://bugs.mysql.com/4486
http://bugs.mysql.com/4442
http://bugs.mysql.com/4386
http://bugs.mysql.com/4074

• Fixed bug where null column would move the result packet pointer backward

• Added new nant build script

• Fixed Bug#3917 [http://bugs.mysql.com/3917] - clear tablename so it will be regen'ed properly dur-
ing the next GenerateSchema.

• Fixed Bug#3915 [http://bugs.mysql.com/3915] - GetValues was always returning zero and was also
always trying to copy all fields rather than respecting the size of the array passed in.

• Implemented shared memory access protocol

• Implemented prepared statements for MySQL 4.1

• Implemented stored procedures for MySQL 5.0

• Renamed MySqlInternalConnection to InternalConnection

• SQL is now parsed as chars, fixes problems with other languages

• Added logging and allow batch connection string options

• Fixed Bug#3888 [http://bugs.mysql.com/3888] - RowUpdating event not set when setting the
DataAdapter property

• Fixed bug in char set mapping

• Implemented 4.1 authentication

• Improved open/auth code in driver

• Improved how connection bits are set during connection

• Database name is now passed to server during initial handshake

• Changed namespace for client to MySql.Data.MySqlClient

• Changed assembly name of client to MySql.Data.dll

• Changed license text in all source files to GPL

• Added the MySqlClient.build Nant file

• Removed the mono batch files

• Moved some of the unused files into notused folder so nant build file can use wildcards

• Implemented shared memory accesss

• Major revamp in code structure

• Prepared statements now working for MySql 4.1.1 and later

• Finished implementing auth for 4.0, 4.1.0, and 4.1.1

• Changed namespace from MySQL.Data.MySQLClient back to MySql.Data.MySqlClient

• Fixed bug in CharSetMapping where it was trying to use text names as ints

• Changed namespace to MySQL.Data.MySQLClient

MySQL Change History

1866

http://bugs.mysql.com/3917
http://bugs.mysql.com/3915
http://bugs.mysql.com/3888

• Integrated auth changes from UC2004

• Fixed bug where calling any of the GetXXX methods on a datareader before or after reading data
would not throw the appropriate exception (thanks Luca Morelli <morelli.luca@iol.it>)

• Added TimeSpan code in parameter.cs to properly serialize a timespan object to mysql time format
(thanks Gianluca Colombo <g.colombo@alfi.it>)

• Added TimeStamp to parameter serialization code. Prevented DataAdatper updates from working
right (thanks MIchael King)

• Fixed a misspelling in MySqlHelper.cs (thanks Patrick Kristiansen)

D.4.13. Version 0.76

• Driver now using charset number given in handshake to create encoding

• Changed command editor to point to MySqlClient.Design

• Fixed bug in Version.isAtLeast

• Changed DBConnectionString to support changes done to MySqlConnectionString

• Removed SqlCommandEditor and DataAdapterPreviewDialog

• Using new long return values in many places

• Integrated new CompressedStream class

• Changed ConnectionString and added attributes to allow it to be used in MySqlClient.Design

• Changed packet.cs to support newer lengths in ReadLenInteger

• changed other classes to use new properties and fields of MySqlConnectionString

• ConnectionInternal is now using PING to see whether the server is alive

• Moved toolbox bitmaps into resource/

• Changed field.cs to allow values to come directly from row buffer

• Changed to use the new driver.Send syntax

• Using a new packet queueing system

• started work handling the "broken" compression packet handling

• Fixed bug in StreamCreator where failure to connect to a host would continue to loop infinitly
(thanks Kevin Casella)

• Improved connectstring handling

• Moved designers into Pro product

• Removed some old commented out code from command.cs

• Fixed a problem with compression

MySQL Change History

1867

• Fixed connection object where an exception throw prior to the connection opening would not leave
the connection in the connecting state (thanks Chris Cline)

• Added GUID support

• Fixed sequence out of order bug (thanks Mark Reay)

D.4.14. Version 0.75

• Enum values now supported as parameter values (thanks Philipp Sumi)

• Year datatype now supported

• fixed compression

• Fixed bug where a parameter with a TimeSpan as the value would not serialize properly

• Fixed bug where default ctor would not set default connection string values

• Added some XML comments to some members

• Work to fix/improve compression handling

• Improved ConnectionString handling so that it better matches the standard set by SqlClient.

• A MySqlException is now thrown if a username is not included in the connection string

• Localhost is now used as the default if not specified on the connection string

• An exception is now thrown if an attempt is made to set the connection string while the connection is
open

• Small changes to ConnectionString docs

• Removed MultiHostStream and MySqlStream. Replaced it with Common/StreamCreator

• Added support for Use Pipe connection string value

• Added Platform class for easier access to platform utility functions

• Fixed small pooling bug where new connection was not getting created after IsAlive fails

• Added Platform.cs and StreamCreator.cs

• Fixed Field.cs to properly handle 4.1 style timestamps

• Changed Common.Version to Common.DBVersion to avoid name conflict

• Fixed field.cs so that text columns return the right field type (thanks beni27@gmx.net)

• Added MySqlError class to provide some reference for error codes (thanks Geert Veenstra)

D.4.15. Version 0.74

• Added Unix socket support (thanks Mohammad DAMT [md@mt.web.id])

MySQL Change History

1868

• only calling Thread.Sleep when no data is available

• improved escaping of quote characters in parameter data

• removed misleading comments from parameter.cs

• fixed pooling bug

• same pooling bug fixed again!! ;-)

• Fixed ConnectionSTring editor dialog (thanks marco p (pomarc))

• UserId now supported in connection strings (thanks Jeff Neeley)

• Attempting to create a parameter that is not input throws an exception (thanks Ryan Gregg)

• Added much documentation

• checked in new MultiHostStream capability. Big thanks to Dan Guisinger for this. he originally sub-
mitted the code and idea of supporting multiple machines on the connect string.

• Added alot of documentation. Still alot to do.

• Fixed speed issue with 0.73

• changed to Thread.Sleep(0) in MySqlDataStream to help optimize the case where it doesn't need to
wait (thanks Todd German)

• Prepopulating the idlepools to MinPoolSize

• Fixed MySqlPool deadlock condition as well as stupid bug where CreateNewPooledConnection was
not ever adding new connections to the pool. Also fixed MySqlStream.ReadBytes and ReadByte to
not use TicksPerSecond which does not appear to always be right. (thanks Matthew J. Peddlesden)

• Fix for precision and scale (thanks Matthew J. Peddlesden)

• Added Thread.Sleep(1) to stream reading methods to be more cpu friendly (thanks Sean McGinnis)

• Fixed problem where ExecuteReader would sometime return null (thanks Lloyd Dupont)

• Fixed major bug with null field handling (thanks Naucki)

• enclosed queries for max_allowed_packet and characterset inside try catch (and set defaults)

• fixed problem where socket was not getting closed properly (thanks Steve!)

• Fixed problem where ExecuteNonQuery was not always returning the right value

• Fixed InternalConnection to not use @@session.max_allowed_packet but use
@@max_allowed_packet. (Thanks Miguel)

• Added many new XML doc lines

• Fixed sql parsing to not send empty queries (thanks Rory)

• Fixed problem where the reader was not unpeeking the packet on close

• Fixed problem where user variables were not being handled (thanks Sami Vaaraniemi)

• Fixed loop checking in the MySqlPool (thanks Steve M. Brown)

MySQL Change History

1869

• Fixed ParameterCollection.Add method to match SqlClient (thanks Joshua Mouch)

• Fixed ConnectionSTring parsing to handle no and yes for boolean and not lowercase values (thanks
Naucki)

• Added InternalConnection class, changes to pooling

• Implemented Persist Security Info

• Added security.cs and version.cs to project

• Fixed DateTime handling in Parameter.cs (thanks Burkhard Perkens-Golomb)

• Fixed parameter serialization where some types would throw a cast exception

• Fixed DataReader to convert all returned values to prevent casting errors (thanks Keith Murray)

• Added code to Command.ExecuteReader to return null if the initial SQL command throws an excep-
tion (thanks Burkhard Perkens-Golomb)

• Fixed ExecuteScalar bug introduced with restructure

• Restructure to allow for LOCAL DATA INFILE and better sequencing of packets

• Fixed several bugs related to restructure.

• Early work done to support more secure passwords in Mysql 4.1. Old passwords in 4.1 not supported
yet

• Parameters appearing after system parameters are now handled correctly (Adam M. (adammil))

• strings can now be assigned directly to blob fields (Adam M.)

• Fixed float parameters (thanks Pent)

• Improved Parameter ctor and ParameterCollection.Add methods to better match SqlClient (thx
Joshua Mouch)

• Corrected Connection.CreateCommand to return a MySqlCommand type

• Fixed connection string designer dialog box problem (thanks Abraham Guyt)

• Fixed problem with sending commands not always reading the response packet (thanks Joshua
Mouch)

• Fixed parameter serialization where some blobs types were not being handled (thanks Sean McGin-
nis)

• Removed spurious MessageBox.show from DataReader code (thanks Joshua Mouch)

• Fixed a nasty bug in the split sql code (thanks everyone! :-))

D.4.16. Version 0.71

• Fixed bug in MySqlStream where too much data could attempt to be read (thanks Peter Belbin)

• Implemented HasRows (thanks Nash Pherson)

MySQL Change History

1870

• Fixed bug where tables with more than 252 columns cause an exception (thanks Joshua Kessler)

• Fixed bug where SQL statements ending in ; would cause a problem (thanks Shane Krueger)

• Fixed bug in driver where error messages were getting truncated by 1 character (thanks Shane
Krueger)

• Made MySqlException serializable (thanks Mathias Hasselmann)

D.4.17. Version 0.70

• Updated some of the character code pages to be more accurate

• Fixed problem where readers could be opened on connections that had readers open

• Release of 0.70

• Moved test to separate assembly MySqlClientTests

• Fixed stupid problem in driver with sequence out of order (Thanks Peter Belbin)

• Added some pipe tests

• Increased default max pool size to 50

• Compiles with Mono 0-24

• Fixed connection and data reader dispose problems

• Added String datatype handling to parameter serialization

• Fixed sequence problem in driver that occurred after thrown exception (thanks Burkhard Perkens-
Golomb)

• Added support for CommandBehavior.SingleRow to DataReader

• Fixed command sql processing so quotes are better handled (thanks Theo Spears)

• Fixed parsing of double, single, and decimal values to account for non-English separators. You still
have to use the right syntax if you using hard coded sql, but if you use parameters the code will con-
vert floating point types to use '.' appropriately internal both into the server and out. [Thanks an-
onymous]

• Added MySqlStream class to simplify timeOuts and driver coding.

• Fixed DataReader so that it is closed properly when the associated connection is closed. [thanks
smishra]

• Made client more SqlClient compliant so that DataReaders have to be closed before the connection
can be used to run another command

• Improved DBNull.Value handling in the fields

• Added several unit tests

• Fixed MySqlException so that the base class is actually called :-o

MySQL Change History

1871

• Improved driver coding

• Fixed bug where NextResult was returning false on the last resultset

• Added more tests for MySQL

• Improved casting problems by equating unsigned 32bit values to Int64 and usigned 16bit values to
Int32, and so forth.

• Added new ctor for MySqlParameter for (name, type, size, srccol)

• Fixed bug in MySqlDataReader where it didn't check for null fieldlist before returning field count

• Started adding MySqlClient unit tests (added MySqlClient/Tests folder and some test cases)

• Fixed some things in Connection String handling

• Moved INIT_DB to MySqlPool. I may move it again, this is in preparation of the conference.

• Fixed bug inside CommandBuilder that prevented inserts from happening properly

• Reworked some of the internals so that all three execute methods of Command worked properly

• FIxed many small bugs found during benchmarking

• The first cut of CoonectionPooling is working. "min pool size" and "max pool size" are respected.

• Work to enable multiple resultsets to be returned

• Character sets are handled much more intelligently now. The driver queries MySQL at startup for
the default character set. That character set is then used for conversions if that code page can be
loaded. If not, then the default code page for the current OS is used.

• Added code to save the inferred type in the name,value ctor of Parameter

• Also, inferred type if value of null parameter is changed using Value property

• Converted all files to use proper Camel case. MySQL is now MySql in all files. PgSQL is now Pg-
Sql

• Added attribute to PgSql code to prevent designer from trying to show

• Added MySQLDbType property to Parameter object and added proper conversion code to convert
from DbType to MySQLDbType)

• Removed unused ObjectToString method from MySQLParameter.cs

• Fixed Add(..) method in ParameterCollection so that it doesn't use Add(name, value) instead.

• Fixed IndexOf and Contains in ParameterCollection to be aware that parameter names are now
stored without @

• Fixed Command.ConvertSQLToBytes so it only allows characters that can be in MySQL variable
names

• Fixed DataReader and Field so that blob fields read their data from Field.cs and GetBytes works
right

• Added simple query builder editor to CommandText property of MySQLCommand

MySQL Change History

1872

• Fixed CommandBuilder and Parameter serialization to account for Parameters not storing @ in their
names

• Removed MySQLFieldType enum from Field.cs. Now using MySQLDbType enum

• Added Designer attribute to several classes to prevent designer view when using VS.Net

• Fixed Initial catalog typo in ConnectionString designer

• Removed 3 parameter ctor for MySQLParameter that conflicted with (name, type, value)

• changed MySQLParameter so paramName is now stored without leading @ (this fixed null inserts
when using designer)

• Changed TypeConverter for MySQLParameter to use the ctor with all properties

D.4.18. Version 0.68

• Fixed sequence issue in driver

• Added DbParametersEditor to make parameter editing more like SqlClient

• Fixed Command class so that parameters can be edited using the designer

• Update connection string designer to support Use Compression flag

• Fixed string encoding so that European characters like ä will work correctly

• Creating base classes to aid in building new data providers

• Added support for UID key in connection string

• Field, parameter, command now using DBNull.Value instead of null

• CommandBuilder using DBNull.Value

• CommandBuilder now builds insert command correctly when an auto_insert field is not present

• Field now uses typeof keyword to return System.Types (performance)

D.4.19. Version 0.65

• MySQLCommandBuilder now implemented

• Transaction support now implemented (not all table types support this)

• GetSchemaTable fixed to not use xsd (for Mono)

• Driver is now Mono-compatible!!

• TIME data type now supported

• More work to improve Timestamp data type handling

• Changed signatures of all classes to match corresponding SqlClient classes

MySQL Change History

1873

D.4.20. Version 0.60

• Protocol compression using SharpZipLib (www.icsharpcode.net)

• Named pipes on Windows now working properly

• Work done to improve Timestamp data type handling

• Implemented IEnumerable on DataReader so DataGrid would work

D.4.21. Version 0.50

• Speed increased dramatically by removing bugging network sync code

• Driver no longer buffers rows of data (more ADO.Net compliant)

• Conversion bugs related to TIMESTAMP and DATETIME fields fixed

D.5. MySQL Connector/J Change History

D.5.1. Changes in MySQL Connector/J 5.0.3 (26 July 2006)

• Fixed Statement.cancel() causes NullPointerException if underlying connection has
been closed due to server failure. (Bug#20650 [http://bugs.mysql.com/20650])

• Added configuration option noAccessToProcedureBodies which will cause the driver to cre-
ate basic parameter metadata for CallableStatements when the user does not have access to
procedure bodies via SHOW CREATE PROCEDURE or selecting from mysql.proc instead of
throwing an exception. The default value for this option is false

D.5.2. Changes in MySQL Connector/J 5.0.2-beta (11 July
2006)

• Fixed can't use XAConnection for local transactions when no global transaction is in progress.
(Bug#17401 [http://bugs.mysql.com/17401])

• Fixed driver fails on non-ASCII platforms. The driver was assuming that the platform character set
would be a superset of MySQL's latin1 when doing the handshake for authentication, and when
reading error messages. We now use Cp1252 for all strings sent to the server during the handshake
phase, and a hard-coded mapping of the language systtem variable to the character set that is used
for error messages. (Bug#18086 [http://bugs.mysql.com/18086])

• Fixed ConnectionProperties (and thus some subclasses) are not serializable, even though
some J2EE containers expect them to be. (Bug#19169 [http://bugs.mysql.com/19169])

• Fixed MysqlValidConnectionChecker for JBoss doesn't work with MySQLXAData-
Sources. (Bug#20242 [http://bugs.mysql.com/20242])

• Better caching of character set converters (per-connection) to remove a bottleneck for multibyte
character sets.

MySQL Change History

1874

http://bugs.mysql.com/20650
http://bugs.mysql.com/17401
http://bugs.mysql.com/18086
http://bugs.mysql.com/19169
http://bugs.mysql.com/20242

• Added connection/datasource property pinGlobalTxToPhysicalConnection (defaults to
false). When set to true, when using XAConnections, the driver ensures that operations on a
given XID are always routed to the same physical connection. This allows the XAConnection to
support XA START ... JOIN after XA END has been called, and is also a workaround for trans-
action managers that don't maintain thread affinity for a global transaction (most either always main-
tain thread affinity, or have it as a configuration option).

• MysqlXaConnection.recover(int flags) now allows combinations of XARe-
source.TMSTARTRSCAN and TMENDRSCAN. To simulate the “scanning” nature of the interface,
we return all prepared XIDs for TMSTARTRSCAN, and no new XIDs for calls with TMNOFLAGS, or
TMENDRSCAN when not in combination with TMSTARTRSCAN. This change was made for API
compliance, as well as integration with IBM WebSphere's transaction manager.

D.5.3. Changes in MySQL Connector/J 5.0.1-beta (Not Re-
leased)

Not released due to a packaging error

D.5.4. Changes in MySQL Connector/J 5.0.0-beta (22 Decem-
ber 2005)

• XADataSource implemented (ported from 3.2 branch which won't be released as a product). Use
com.mysql.jdbc.jdbc2.optional.MysqlXADataSource as your datasource class
name in your application server to utilize XA transactions in MySQL-5.0.10 and newer.

• PreparedStatement.setString() didn't work correctly when sql_mode on server con-
tained NO_BACKSLASH_ESCAPES and no characters that needed escaping were present in the
string.

• Attempt detection of the MySQL type BINARY (it's an alias, so this isn't always reliable), and use
the java.sql.Types.BINARY type mapping for it.

• Moved -bin-g.jar file into separate debug subdirectory to avoid confusion.

• Don't allow .setAutoCommit(true), or .commit() or .rollback() on an XA-managed
connection as per the JDBC specification.

• If the connection useTimezone is set to true, then also respect time zone conversions in escape-
processed string literals (for example, "{ts ...}" and "{t ...}").

• Return original column name for RSMD.getColumnName() if the column was aliased, alias
name for .getColumnLabel() (if aliased), and original table name for .getTableName().
Note this only works for MySQL-4.1 and newer, as older servers don't make this information avail-
able to clients.

• Setting useJDBCCompliantTimezoneShift=true (it's not the default) causes the driver to
use GMT for all TIMESTAMP/DATETIME time zones, and the current VM time zone for any other
type that refers to time zones. This feature can not be used when useTimezone=true to convert
between server and client time zones.

• Add one level of indirection of internal representation of CallableStatement parameter
metadata to avoid class not found issues on JDK-1.3 for ParameterMetadata interface (which
doesn't exist prior to JDBC-3.0).

MySQL Change History

1875

• Added unit tests for XADatasource, as well as friendlier exceptions for XA failures compared to
the "stock" XAException (which has no messages).

• Idle timeouts cause XAConnections to whine about rolling themselves back. (Bug#14729
[http://bugs.mysql.com/14729])

• Added support for Connector/MXJ integration via url subprotocol jdbc:mysql:mxj://....

• Moved all SQLException constructor usage to a factory in SQLError (ground-work for JDBC-
4.0 SQLState-based exception classes).

• Removed Java5-specific calls to BigDecimal constructor (when result set value is '', (int)0
was being used as an argument indirectly via method return value. This signature doesn't exist prior
to Java5.)

• Added service-provider entry to META-INF/services/java.sql.Driver for JDBC-4.0
support.

• Return "[VAR]BINARY" for RSMD.getColumnTypeName() when that is actually the type, and
it can be distinguished (MySQL-4.1 and newer).

• When fix for Bug#14562 [http://bugs.mysql.com/14562] was merged from 3.1.12, added functional-
ity for CallableStatement's parameter metadata to return correct information for
.getParameterClassName().

• Fuller synchronization of Connection to avoid deadlocks when using multithreaded frameworks
that multithread a single connection (usually not recommended, but the JDBC spec allows it any-
ways), part of fix to Bug#14972 [http://bugs.mysql.com/14972]).

• Implementation of Statement.cancel() and Statement.setQueryTimeout(). Both re-
quire MySQL-5.0.0 or newer server, require a separate connection to issue the KILL QUERY state-
ment, and in the case of setQueryTimeout() creates an additional thread to handle the timeout
functionality.

Note: Failures to cancel the statement for setQueryTimeout() may manifest themselves as
RuntimeExceptions rather than failing silently, as there is currently no way to unblock the
thread that is executing the query being cancelled due to timeout expiration and have it throw the ex-
ception instead.

D.5.5. Changes in MySQL Connector/J 3.1.14 (not yet re-
leased)

• Fixed updatable result set throws ClassCastException when there is row data and moveToInser-
tRow() is called. (Fixes Bug#20479 [http://bugs.mysql.com/20479])

• Fixed Updatable result set that contains a BIT column fails when server-side prepared statements are
used. (Fixes Bug#20485 [http://bugs.mysql.com/20485])

• Fixed memory leak with profileSQL=true. (Fixes Bug#16987 [http://bugs.mysql.com/16987])

• Connection fails to localhost when using timeout and IPv6 is configured. (Fixes Bug#19726
[http://bugs.mysql.com/19726])

• Fixed NullPointerException in MysqlDataSourceFactory due to Reference containing RefAddrs with
null content. (Fixes Bug#16791 [http://bugs.mysql.com/16791])

MySQL Change History

1876

http://bugs.mysql.com/14729
http://bugs.mysql.com/14562
http://bugs.mysql.com/14972
http://bugs.mysql.com/20479
http://bugs.mysql.com/20485
http://bugs.mysql.com/16987
http://bugs.mysql.com/19726
http://bugs.mysql.com/16791

• Fixed ResultSet.getShort() for UNSIGNED TINYINT returns incorrect values when using server-
side prepared statements. (Fixes Bug#20306 [http://bugs.mysql.com/20306])

• Fixed can't pool server-side prepared statements, exception raised when re-using them. (Fixes
Bug#20687 [http://bugs.mysql.com/20687])

• Fixed Bug#21062 [http://bugs.mysql.com/21062] - ResultSet.getSomeInteger() doesn't work for
BIT(>1).

• Fixed Bug#18880 [http://bugs.mysql.com/18880] - ResultSet.getFloatFromString() can't retrieve
values near Float.MIN/MAX_VALUE.

• Fixed Bug#20888 [http://bugs.mysql.com/20888] - escape of quotes in client-side prepared state-
ments parsing not respected. Patch covers more than bug report, including
NO_BACKSLASH_ESCAPES being set, and stacked quote characters forms of escaping (i.e. '' or
"").

• Fixed Bug#19993 [http://bugs.mysql.com/19993] - ReplicationDriver does not always round-robin
load balance depending on URL used for slaves list.

D.5.6. Changes in MySQL Connector/J 3.1.13 (26 May 2006)

• INOUT parameter does not store IN value. (Bug#15464 [http://bugs.mysql.com/15464])

• Exception thrown for new decimal type when using updatable result sets. (Bug#14609
[http://bugs.mysql.com/14609])

• No "dos" character set in MySQL > 4.1.0. (Bug#15544 [http://bugs.mysql.com/15544])

• PreparedStatement.setObject() serializes BigInteger as object, rather than sending
as numeric value (and is thus not complementary to .getObject() on an UNSIGNED LONG
type). (Bug#15383 [http://bugs.mysql.com/15383])

• ResultSet.getShort() for UNSIGNED TINYINT returned wrong values. (Bug#11874
[http://bugs.mysql.com/11874])

• lib-nodist directory missing from package breaks out-of-box build. (Bug#15676
[http://bugs.mysql.com/15676])

• DBMD.getColumns() returns wrong type for BIT. (Bug#15854 [http://bugs.mysql.com/15854])

• Fixed issue where driver was unable to initialize character set mapping tables. Removed reliance on
.properties files to hold this information, as it turns out to be too problematic to code around
class loader hierarchies that change depending on how an application is deployed. Moved informa-
tion back into the CharsetMapping class. (Bug#14938 [http://bugs.mysql.com/14938])

• Fixed updatable result set doesn't return AUTO_INCREMENT values for insertRow() when mul-
tiple column primary keys are used. (the driver was checking for the existence of single-column
primary keys and an autoincrement value > 0 instead of a straightforward isAutoIncrement()
check). (Bug#16841 [http://bugs.mysql.com/16841])

• Fixed Statement.getGeneratedKeys() throws NullPointerException when no
query has been processed. (Bug#17099 [http://bugs.mysql.com/17099])

• Fixed driver trying to call methods that don't exist on older and newer versions of Log4j. The fix is
not trying to auto-detect presense of log4j, too many different incompatible versions out there in the
wild to do this reliably. (Bug#13469 [http://bugs.mysql.com/13469])

MySQL Change History

1877

http://bugs.mysql.com/20306
http://bugs.mysql.com/20687
http://bugs.mysql.com/21062
http://bugs.mysql.com/18880
http://bugs.mysql.com/20888
http://bugs.mysql.com/19993
http://bugs.mysql.com/15464
http://bugs.mysql.com/14609
http://bugs.mysql.com/15544
http://bugs.mysql.com/15383
http://bugs.mysql.com/11874
http://bugs.mysql.com/15676
http://bugs.mysql.com/15854
http://bugs.mysql.com/14938
http://bugs.mysql.com/16841
http://bugs.mysql.com/17099
http://bugs.mysql.com/13469

If you relied on autodetection before, you will need to add "log-
ger=com.mysql.jdbc.log.Log4JLogger" to your JDBC URL to enable Log4J usage, or alternatively
use the new "CommonsLogger" class to take care of this.

• Added support for Apache Commons logging, use "com.mysql.jdbc.log.CommonsLogger" as the
value for the "logger" configuration property.

• LogFactory now prepends "com.mysql.jdbc.log" to log class name if it can't be found as-specified.
This allows you to use "short names" for the built-in log factories, for example "log-
ger=CommonsLogger" instead of "logger=com.mysql.jdbc.log.CommonsLogger".

• Fixed issue with ReplicationConnection incorrectly copying state, doesn't transfer connec-
tion context correctly when transitioning between the same read-only states. (Bug#15570
[http://bugs.mysql.com/15570])

• Fixed issue where server-side prepared statements don't cause truncation exceptions to be thrown
when truncation happens. (Bug#18041 [http://bugs.mysql.com/18041])

• Added performance feature, re-writing of batched executes for Statement.executeBatch()
(for all DML statements) and PreparedStatement.executeBatch() (for INSERTs with
VALUE clauses only). Enable by using "rewriteBatchedStatements=true" in your JDBC URL.

• Fixed CallableStatement.registerOutParameter() not working when some paramet-
ers pre-populated. Still waiting for feedback from JDBC experts group to determine what correct
parameter count from getMetaData() should be, however. (Bug#17898
[http://bugs.mysql.com/17898])

• Fixed calling clearParameters() on a closed prepared statement causes NPE. (Bug#17587
[http://bugs.mysql.com/17587])

• Map "latin1" on MySQL server to CP1252 for MySQL > 4.1.0.

• Added additional accessor and mutator methods on ConnectionProperties so that DataSource users
can use same naming as regular URL properties.

• Fixed data truncation and getWarnings() only returns last warning in set. (Bug#18740
[http://bugs.mysql.com/18740])

• Improved performance of retrieving BigDecimal, Time, Timestamp and Date values from
server-side prepared statements by creating fewer short-lived instances of Strings when the native
type is not an exact match for the requested type. Fixes Bug#18496 [http://bugs.mysql.com/18496]
for BigDecimals.

• Fixed aliased column names where length of name > 251 are corrupted. (Bug#18554
[http://bugs.mysql.com/18554])

• Fixed ResultSet.wasNull() not always reset correctly for booleans when done via conversion
for server-side prepared statements. (Bug#17450 [http://bugs.mysql.com/17450])

• Fixed invalid classname returned for ResultSetMetaData.getColumnClassName() for
BIGINT type. (Bug#19282 [http://bugs.mysql.com/19282])

• Fixed case where driver wasn't reading server status correctly when fetching server-side prepared
statement rows, which in some cases could cause warning counts to be off, or multiple result sets to
not be read off the wire.

• Driver now aware of fix for BIT type metadata that went into MySQL-5.0.21 for server not report-
ing length consistently (Bug#13601 [http://bugs.mysql.com/13601]).

MySQL Change History

1878

http://bugs.mysql.com/15570
http://bugs.mysql.com/18041
http://bugs.mysql.com/17898
http://bugs.mysql.com/17587
http://bugs.mysql.com/18740
http://bugs.mysql.com/18496
http://bugs.mysql.com/18554
http://bugs.mysql.com/17450
http://bugs.mysql.com/19282
http://bugs.mysql.com/13601

• Fixed PreparedStatement.setObject(int, Object, int) doesn't respect scale of
BigDecimals. (Bug#19615 [http://bugs.mysql.com/19615])

• Fixed ResultSet.wasNull() returns incorrect value when extracting native string from server-
side prepared statement generated result set. (Bug#19282 [http://bugs.mysql.com/19282])

D.5.7. Changes in MySQL Connector/J 3.1.12 (30 November
2005)

• Fixed client-side prepared statement bug with embedded ? characters inside quoted identifiers (it
was recognized as a placeholder, when it was not).

• Don't allow executeBatch() for CallableStatements with registered OUT/INOUT para-
meters (JDBC compliance).

• Fall back to platform-encoding for URLDecoder.decode() when parsing driver URL properties
if the platform doesn't have a two-argument version of this method.

• Java type conversion may be incorrect for MEDIUMINT. (Bug#14562
[http://bugs.mysql.com/14562])

• Added configuration property useGmtMillisForDatetimes which when set to true causes
ResultSet.getDate(), .getTimestamp() to return correct millis-since GMT when
.getTime() is called on the return value (currently default is false for legacy behavior).

• Fixed DatabaseMetaData.stores*Identifiers():

• If lower_case_table_names=0 (on server):

• storesLowerCaseIdentifiers() returns false

• storesLowerCaseQuotedIdentifiers() returns false

• storesMixedCaseIdentifiers() returns true

• storesMixedCaseQuotedIdentifiers() returns true

• storesUpperCaseIdentifiers() returns false

• storesUpperCaseQuotedIdentifiers() returns true

• If lower_case_table_names=1 (on server):

• storesLowerCaseIdentifiers() returns true

• storesLowerCaseQuotedIdentifiers() returns true

• storesMixedCaseIdentifiers() returns false

• storesMixedCaseQuotedIdentifiers() returns false

• storesUpperCaseIdentifiers() returns false

• storesUpperCaseQuotedIdentifiers() returns true

• DatabaseMetaData.getColumns() doesn't return TABLE_NAME correctly. (Bug#14815

MySQL Change History

1879

http://bugs.mysql.com/19615
http://bugs.mysql.com/19282
http://bugs.mysql.com/14562
http://bugs.mysql.com/14815

[http://bugs.mysql.com/14815])

• Escape processor replaces quote character in quoted string with string delimiter. (Bug#14909
[http://bugs.mysql.com/14909])

• OpenOffice expects DBMD.supportsIntegrityEnhancementFacility() to return true
if foreign keys are supported by the datasource, even though this method also covers support for
check constraints, which MySQL doesn't have. Setting the configuration property overrideSup-
portsIntegrityEnhancementFacility to true causes the driver to return true for this
method. (Bug#12975 [http://bugs.mysql.com/12975])

• Added com.mysql.jdbc.testsuite.url.default system property to set default JDBC
url for testsuite (to speed up bug resolution when I'm working in Eclipse).

• Unable to initialize character set mapping tables (due to J2EE classloader differences). (Bug#14938
[http://bugs.mysql.com/14938])

• Deadlock while closing server-side prepared statements from multiple threads sharing one connec-
tion. (Bug#14972 [http://bugs.mysql.com/14972])

• logSlowQueries should give better info. (Bug#12230 [http://bugs.mysql.com/12230])

• Extraneous sleep on autoReconnect. (Bug#13775 [http://bugs.mysql.com/13775])

• Driver incorrectly closes streams passed as arguments to PreparedStatements. Reverts to leg-
acy behavior by setting the JDBC configuration property autoClosePStmtStreams to true
(also included in the 3-0-Compat configuration “bundle”). (Bug#15024
[http://bugs.mysql.com/15024])

• maxQuerySizeToLog is not respected. Added logging of bound values for execute() phase of
server-side prepared statements when profileSQL=true as well. (Bug#13048
[http://bugs.mysql.com/13048])

• Usage advisor complains about unreferenced columns, even though they've been referenced.
(Bug#15065 [http://bugs.mysql.com/15065])

• Don't increase timeout for failover/reconnect. (Bug#6577 [http://bugs.mysql.com/6577])

• Process escape tokens in Connection.prepareStatement(...). (Bug#15141
[http://bugs.mysql.com/15141]) You can disable this behavior by setting the JDBC URL configura-
tion property processEscapeCodesForPrepStmts to false.

• Reconnect during middle of executeBatch() should not occur if autoReconnect is enabled.
(Bug#13255 [http://bugs.mysql.com/13255])

D.5.8. Changes in MySQL Connector/J 3.1.11-stable (07 Octo-
ber 2005)

• Spurious ! on console when character encoding is utf8. (Bug#11629
[http://bugs.mysql.com/11629])

• Fixed statements generated for testcases missing ; for “plain” statements.

• Incorrect generation of testcase scripts for server-side prepared statements. (Bug#11663
[http://bugs.mysql.com/11663])

MySQL Change History

1880

http://bugs.mysql.com/14909
http://bugs.mysql.com/12975
http://bugs.mysql.com/14938
http://bugs.mysql.com/14972
http://bugs.mysql.com/12230
http://bugs.mysql.com/13775
http://bugs.mysql.com/15024
http://bugs.mysql.com/13048
http://bugs.mysql.com/15065
http://bugs.mysql.com/6577
http://bugs.mysql.com/15141
http://bugs.mysql.com/13255
http://bugs.mysql.com/11629
http://bugs.mysql.com/11663

• Fixed regression caused by fix for Bug#11552 [http://bugs.mysql.com/11552] that caused driver to
return incorrect values for unsigned integers when those integers where within the range of the posit-
ive signed type.

• Moved source code to Subversion repository.

• Escape tokenizer doesn't respect stacked single quotes for escapes. (Bug#11797
[http://bugs.mysql.com/11797])

• GEOMETRY type not recognized when using server-side prepared statements.

• ReplicationConnection won't switch to slave, throws “Catalog can't be null” exception.
(Bug#11879 [http://bugs.mysql.com/11879])

• Properties shared between master and slave with replication connection. (Bug#12218
[http://bugs.mysql.com/12218])

• Statement.getWarnings() fails with NPE if statement has been closed. (Bug#10630
[http://bugs.mysql.com/10630])

• Only get char[] from SQL in PreparedStatement.ParseInfo() when needed.

• Geometry types not handled with server-side prepared statements. (Bug#12104
[http://bugs.mysql.com/12104])

• StringUtils.getBytes() doesn't work when using multi-byte character encodings and a
length in characters is specified. (Bug#11614 [http://bugs.mysql.com/11614])

• Pstmt.setObject(...., Types.BOOLEAN) throws exception. (Bug#11798
[http://bugs.mysql.com/11798])

• maxPerformance.properties mis-spells “elideSetAutoCommits”. (Bug#11976
[http://bugs.mysql.com/11976])

• DBMD.storesLower/Mixed/UpperIdentifiers() reports incorrect values for servers de-
ployed on Windows. (Bug#11575 [http://bugs.mysql.com/11575])

• ResultSet.moveToCurrentRow() fails to work when preceded by a call to Result-
Set.moveToInsertRow(). (Bug#11190 [http://bugs.mysql.com/11190])

• VARBINARY data corrupted when using server-side prepared statements and .setBytes().
(Bug#11115 [http://bugs.mysql.com/11115])

• explainSlowQueries hangs with server-side prepared statements. (Bug#12229
[http://bugs.mysql.com/12229])

• Escape processor didn't honor strings demarcated with double quotes. (Bug#11498
[http://bugs.mysql.com/11498])

• Lifted restriction of changing streaming parameters with server-side prepared statements. As long as
all streaming parameters were set before execution, .clearParameters() does not have to be
called. (due to limitation of client/server protocol, prepared statements can not reset individual
stream data on the server side).

• Reworked Field class, *Buffer, and MysqlIO to be aware of field lengths > In-
teger.MAX_VALUE.

• Updated DBMD.supportsCorrelatedQueries() to return true for versions > 4.1, sup-
portsGroupByUnrelated() to return true and getResultSetHoldability() to re-

MySQL Change History

1881

http://bugs.mysql.com/11552
http://bugs.mysql.com/11797
http://bugs.mysql.com/11879
http://bugs.mysql.com/12218
http://bugs.mysql.com/10630
http://bugs.mysql.com/12104
http://bugs.mysql.com/11614
http://bugs.mysql.com/11798
http://bugs.mysql.com/11976
http://bugs.mysql.com/11575
http://bugs.mysql.com/11190
http://bugs.mysql.com/11115
http://bugs.mysql.com/12229
http://bugs.mysql.com/11498

turn HOLD_CURSORS_OVER_COMMIT.

• Handling of catalog argument in DatabaseMetaData.getIndexInfo(), which also means
changes to the following methods in DatabaseMetaData: (Bug#12541
[http://bugs.mysql.com/12541])

• getBestRowIdentifier()

• getColumns()

• getCrossReference()

• getExportedKeys()

• getImportedKeys()

• getIndexInfo()

• getPrimaryKeys()

• getProcedures() (and thus indirectly getProcedureColumns())

• getTables()

The catalog argument in all of these methods now behaves in the following way:

• Specifying NULL means that catalog will not be used to filter the results (thus all databases will
be searched), unless you've set nullCatalogMeansCurrent=true in your JDBC URL
properties.

• Specifying "" means “current” catalog, even though this isn't quite JDBC spec compliant, it's
there for legacy users.

• Specifying a catalog works as stated in the API docs.

• Made Connection.clientPrepare() available from “wrapped” connections in the jd-
bc2.optional package (connections built by ConnectionPoolDataSource instances).

• Added Connection.isMasterConnection() for clients to be able to determine if a multi-
host master/slave connection is connected to the first host in the list.

• Tokenizer for = in URL properties was causing sessionVariables=.... to be parameterized
incorrectly. (Bug#12753 [http://bugs.mysql.com/12753])

• Foreign key information that is quoted is parsed incorrectly when DatabaseMetaData methods
use that information. (Bug#11781 [http://bugs.mysql.com/11781])

• The sendBlobChunkSize property is now clamped to max_allowed_packet with consider-
ation of stream buffer size and packet headers to avoid PacketTooBigExceptions when
max_allowed_packet is similar in size to the default sendBlobChunkSize which is 1M.

• CallableStatement.clearParameters() now clears resources associated with
INOUT/OUTPUT parameters as well as INPUT parameters.

• Connection.prepareCall() is database name case-sensitive (on Windows systems).
(Bug#12417 [http://bugs.mysql.com/12417])

• cp1251 incorrectly mapped to win1251 for servers newer than 4.0.x. (Bug#12752
[http://bugs.mysql.com/12752])

MySQL Change History

1882

http://bugs.mysql.com/12541
http://bugs.mysql.com/12753
http://bugs.mysql.com/11781
http://bugs.mysql.com/12417
http://bugs.mysql.com/12752

• java.sql.Types.OTHER returned for BINARY and VARBINARY columns when using Data-
baseMetaData.getColumns(). (Bug#12970 [http://bugs.mysql.com/12970])

• ServerPreparedStatement.getBinding() now checks if the statement is closed before
attempting to reference the list of parameter bindings, to avoid throwing a NullPointerExcep-
tion.

• ResultSetMetaData from Statement.getGeneratedKeys() caused a NullPoint-
erException to be thrown whenever a method that required a connection reference was called.
(Bug#13277 [http://bugs.mysql.com/13277])

• Backport of Field class, ResultSetMetaData.getColumnClassName(), and Result-
Set.getObject(int) changes from 5.0 branch to fix behavior surrounding VARCHAR BIN-
ARY/VARBINARY and related types.

• Fixed NullPointerException when converting catalog parameter in many Database-
MetaDataMethods to byte[]s (for the result set) when the parameter is null. (null isn't
technically allowed by the JDBC specification, but we've historically allowed it).

• Backport of VAR[BINARY|CHAR] [BINARY] types detection from 5.0 branch.

• Read response in MysqlIO.sendFileToServer(), even if the local file can't be opened, other-
wise next query issued will fail, because it's reading the response to the empty LOAD DATA IN-
FILE packet sent to the server.

• Workaround for Bug#13374 [http://bugs.mysql.com/13374]: ResultSet.getStatement() on
closed result set returns NULL (as per JDBC 4.0 spec, but not backward-compatible). Set the connec-
tion property retainStatementAfterResultSetClose to true to be able to retrieve a
ResultSet's statement after the ResultSet has been closed via .getStatement() (the de-
fault is false, to be JDBC-compliant and to reduce the chance that code using JDBC leaks
Statement instances).

• URL configuration parameters don't allow ‘&’ or ‘=’ in their values. The JDBC driver now parses
configuration parameters as if they are encoded using the application/x-www-form-urlencoded
format as specified by java.net.URLDecoder (ht-
tp://java.sun.com/j2se/1.5.0/docs/api/java/net/URLDecoder.html). (Bug#13453
[http://bugs.mysql.com/13453])

If the ‘%’ character is present in a configuration property, it must now be represented as %25, which
is the encoded form of ‘%’ when using application/x-www-form-urlencoded encoding.

• The configuration property sessionVariables now allows you to specify variables that start
with the ‘@’ sign.

• When gatherPerfMetrics is enabled for servers older than 4.1.0, a NullPointerExcep-
tion is thrown from the constructor of ResultSet if the query doesn't use any tables.
(Bug#13043 [http://bugs.mysql.com/13043])

D.5.9. Changes in MySQL Connector/J 3.1.10-stable (23 June
2005)

• Fixed connecting without a database specified raised an exception in
MysqlIO.changeDatabaseTo().

• Initial implemention of ParameterMetadata for PreparedState-
ment.getParameterMetadata(). Only works fully for CallableStatements, as current

MySQL Change History

1883

http://bugs.mysql.com/12970
http://bugs.mysql.com/13277
http://bugs.mysql.com/13374
http://java.sun.com/j2se/1.5.0/docs/api/java/net/URLDecoder.html
http://java.sun.com/j2se/1.5.0/docs/api/java/net/URLDecoder.html
http://bugs.mysql.com/13453
http://bugs.mysql.com/13043

server-side prepared statements return every parameter as a VARCHAR type.

D.5.10. Changes in MySQL Connector/J 3.1.9-stable (22 June
2005)

• Overhaul of character set configuration, everything now lives in a properties file.

• Driver now correctly uses CP932 if available on the server for Windows-31J, CP932 and MS932
java encoding names, otherwise it resorts to SJIS, which is only a close approximation. Currently
only MySQL-5.0.3 and newer (and MySQL-4.1.12 or .13, depending on when the character set gets
backported) can reliably support any variant of CP932.

• com.mysql.jdbc.PreparedStatement.ParseInfo does unnecessary call to
toCharArray(). (Bug#9064 [http://bugs.mysql.com/9064])

• Memory leak in ServerPreparedStatement if serverPrepare() fails. (Bug#10144
[http://bugs.mysql.com/10144])

• Actually write manifest file to correct place so it ends up in the binary jar file.

• Added createDatabaseIfNotExist property (default is false), which will cause the driver
to ask the server to create the database specified in the URL if it doesn't exist. You must have the ap-
propriate privileges for database creation for this to work.

• Unsigned SMALLINT treated as signed for ResultSet.getInt(), fixed all cases for UN-
SIGNED integer values and server-side prepared statements, as well as Result-
Set.getObject() for UNSIGNED TINYINT. (Bug#10156 [http://bugs.mysql.com/10156])

• Double quotes not recognized when parsing client-side prepared statements. (Bug#10155
[http://bugs.mysql.com/10155])

• Made enableStreamingResults() visible on
com.mysql.jdbc.jdbc2.optional.StatementWrapper.

• Made ServerPreparedStatement.asSql() work correctly so auto-explain functionality
would work with server-side prepared statements.

• Made JDBC2-compliant wrappers public in order to allow access to vendor extensions.

• Cleaned up logging of profiler events, moved code to dump a profiler event as a string to
com.mysql.jdbc.log.LogUtils so that third parties can use it.

• DatabaseMetaData.supportsMultipleOpenResults() now returns true. The driver
has supported this for some time, DBMD just missed that fact.

• Driver doesn't support {?=CALL(...)} for calling stored functions. This involved adding support
for function retrieval to DatabaseMetaData.getProcedures() and getProcedure-
Columns() as well. (Bug#10310 [http://bugs.mysql.com/10310])

• SQLException thrown when retrieving YEAR(2) with ResultSet.getString(). The
driver will now always treat YEAR types as java.sql.Dates and return the correct values for
getString(). Alternatively, the yearIsDateType connection property can be set to false
and the values will be treated as SHORTs. (Bug#10485 [http://bugs.mysql.com/10485])

• The datatype returned for TINYINT(1) columns when tinyInt1isBit=true (the default) can
be switched between Types.BOOLEAN and Types.BIT using the new configuration property

MySQL Change History

1884

http://bugs.mysql.com/9064
http://bugs.mysql.com/10144
http://bugs.mysql.com/10156
http://bugs.mysql.com/10155
http://bugs.mysql.com/10310
http://bugs.mysql.com/10485

transformedBitIsBoolean, which defaults to false. If set to false (the default), Data-
baseMetaData.getColumns() and ResultSetMetaData.getColumnType() will re-
turn Types.BOOLEAN for TINYINT(1) columns. If true, Types.BOOLEAN will be returned
instead. Regardless of this configuration property, if tinyInt1isBit is enabled, columns with
the type TINYINT(1) will be returned as java.lang.Boolean instances from Result-
Set.getObject(...), and ResultSetMetaData.getColumnClassName() will return
java.lang.Boolean.

• SQLException is thrown when using property characterSetResults with cp932 or eu-
cjpms. (Bug#10496 [http://bugs.mysql.com/10496])

• Reorganized directory layout. Sources now are in src folder. Don't pollute parent directory when
building, now output goes to ./build, distribution goes to ./dist.

• Added support/bug hunting feature that generates .sql test scripts to STDERR when autoGener-
ateTestcaseScript is set to true.

• 0-length streams not sent to server when using server-side prepared statements. (Bug#10850
[http://bugs.mysql.com/10850])

• Setting cachePrepStmts=true now causes the Connection to also cache the check the
driver performs to determine if a prepared statement can be server-side or not, as well as caches
server-side prepared statements for the lifetime of a connection. As before, the prepStmt-
CacheSize parameter controls the size of these caches.

• Try to handle OutOfMemoryErrors more gracefully. Although not much can be done, they will
in most cases close the connection they happened on so that further operations don't run into a con-
nection in some unknown state. When an OOM has happened, any further operations on the connec-
tion will fail with a “Connection closed” exception that will also list the OOM exception as the reas-
on for the implicit connection close event.

• Don't send COM_RESET_STMT for each execution of a server-side prepared statement if it isn't re-
quired.

• Driver detects if you're running MySQL-5.0.7 or later, and does not scan for LIMIT ?[,?] in
statements being prepared, as the server supports those types of queries now.

• VARBINARY data corrupted when using server-side prepared statements and Result-
Set.getBytes(). (Bug#11115 [http://bugs.mysql.com/11115])

• Connection.setCatalog() is now aware of the useLocalSessionState configuration
property, which when set to true will prevent the driver from sending USE ... to the server if the
requested catalog is the same as the current catalog.

• Added the following configuration bundles, use one or many via the useConfigs configuration
property:

• maxPerformance — maximum performance without being reckless

• solarisMaxPerformance — maximum performance for Solaris, avoids syscalls where it
can

• 3-0-Compat — Compatibility with Connector/J 3.0.x functionality

• Added maintainTimeStats configuration property (defaults to true), which tells the driver
whether or not to keep track of the last query time and the last successful packet sent to the server's
time. If set to false, removes two syscalls per query.

• autoReconnect ping causes exception on connection startup. (Bug#11259

MySQL Change History

1885

http://bugs.mysql.com/10496
http://bugs.mysql.com/10850
http://bugs.mysql.com/11115
http://bugs.mysql.com/11259

[http://bugs.mysql.com/11259])

• Connector/J dumping query into SQLException twice. (Bug#11360
[http://bugs.mysql.com/11360])

• Fixed PreparedStatement.setClob() not accepting null as a parameter.

• Production package doesn't include JBoss integration classes. (Bug#11411
[http://bugs.mysql.com/11411])

• Removed nonsensical “costly type conversion” warnings when using usage advisor.

D.5.11. Changes in MySQL Connector/J 3.1.8-stable (14 April
2005)

• Fixed DatabaseMetaData.getTables() returning views when they were not asked for as
one of the requested table types.

• Added support for new precision-math DECIMAL type in MySQL 5.0.3 and up.

• Fixed ResultSet.getTime() on a NULL value for server-side prepared statements throws
NPE.

• Made Connection.ping() a public method.

• DATE_FORMAT() queries returned as BLOBs from getObject(). (Bug#8868
[http://bugs.mysql.com/8868])

• ServerPreparedStatements now correctly “stream” BLOB/CLOB data to the server. You can
configure the threshold chunk size using the JDBC URL property blobSendChunkSize (the de-
fault is 1MB).

• BlobFromLocator now uses correct identifier quoting when generating prepared statements.

• Server-side session variables can be preset at connection time by passing them as a comma-delimited
list for the connection property sessionVariables.

• Fixed regression in ping() for users using autoReconnect=true.

• PreparedStatement.addBatch() doesn't work with server-side prepared statements and
streaming BINARY data. (Bug#9040 [http://bugs.mysql.com/9040])

• DBMD.supportsMixedCase*Identifiers() returns wrong value on servers running on
case-sensitive filesystems. (Bug#8800 [http://bugs.mysql.com/8800])

• Cannot use UTF-8 for characterSetResults configuration property. (Bug#9206
[http://bugs.mysql.com/9206])

• A continuation of Bug#8868 [http://bugs.mysql.com/8868], where functions used in queries that
should return non-string types when resolved by temporary tables suddenly become opaque binary
strings (work-around for server limitation). Also fixed fields with type of CHAR(n) CHARACTER
SET BINARY to return correct/matching classes for RSMD.getColumnClassName() and
ResultSet.getObject(). (Bug#9236 [http://bugs.mysql.com/9236])

• DBMD.supportsResultSetConcurrency() not returning true for forward-only/read-only
result sets (we obviously support this). (Bug#8792 [http://bugs.mysql.com/8792])

MySQL Change History

1886

http://bugs.mysql.com/11360
http://bugs.mysql.com/11411
http://bugs.mysql.com/8868
http://bugs.mysql.com/9040
http://bugs.mysql.com/8800
http://bugs.mysql.com/9206
http://bugs.mysql.com/8868
http://bugs.mysql.com/9236
http://bugs.mysql.com/8792

• DATA_TYPE column from DBMD.getBestRowIdentifier() causes ArrayIndexOutOf-
BoundsException when accessed (and in fact, didn't return any value). (Bug#8803
[http://bugs.mysql.com/8803])

• Check for empty strings ('') when converting CHAR/VARCHAR column data to numbers, throw ex-
ception if emptyStringsConvertToZero configuration property is set to false (for back-
ward-compatibility with 3.0, it is now set to true by default, but will most likely default to false
in 3.2).

• PreparedStatement.getMetaData() inserts blank row in database under certain conditions
when not using server-side prepared statements. (Bug#9320 [http://bugs.mysql.com/9320])

• Connection.canHandleAsPreparedStatement() now makes “best effort” to distinguish
LIMIT clauses with placeholders in them from ones without in order to have fewer false positives
when generating work-arounds for statements the server cannot currently handle as server-side pre-
pared statements.

• Fixed build.xml to not compile log4j logging if log4j not available.

• Added support for the c3p0 connection pool's (http://c3p0.sf.net/) validation/connection checker in-
terface which uses the lightweight COM_PING call to the server if available. To use it, configure
your c3p0 connection pool's connectionTesterClassName property to use
com.mysql.jdbc.integration.c3p0.MysqlConnectionTester.

• Better detection of LIMIT inside/outside of quoted strings so that the driver can more correctly de-
termine whether a prepared statement can be prepared on the server or not.

• Stored procedures with same name in different databases confuse the driver when it tries to determ-
ine parameter counts/types. (Bug#9319 [http://bugs.mysql.com/9319])

• Added finalizers to ResultSet and Statement implementations to be JDBC spec-compliant,
which requires that if not explicitly closed, these resources should be closed upon garbage collection.

• Stored procedures with DECIMAL parameters with storage specifications that contained ‘,’ in them
would fail. (Bug#9682 [http://bugs.mysql.com/9682])

• PreparedStatement.setObject(int, Object, int type, int scale) now
uses scale value for BigDecimal instances.

• Statement.getMoreResults() could throw NPE when existing result set was .close()d.
(Bug#9704 [http://bugs.mysql.com/9704])

• The performance metrics feature now gathers information about number of tables referenced in a
SELECT.

• The logging system is now automatically configured. If the value has been set by the user, via the
URL property logger or the system property com.mysql.jdbc.logger, then use that, other-
wise, autodetect it using the following steps:

1. Log4j, if it's available,

2. Then JDK1.4 logging,

3. Then fallback to our STDERR logging.

• DBMD.getTables() shouldn't return tables if views are asked for, even if the database version
doesn't support views. (Bug#9778 [http://bugs.mysql.com/9778])

• Fixed driver not returning true for -1 when ResultSet.getBoolean() was called on result

MySQL Change History

1887

http://bugs.mysql.com/8803
http://bugs.mysql.com/9320
http://c3p0.sf.net/
http://bugs.mysql.com/9319
http://bugs.mysql.com/9682
http://bugs.mysql.com/9704
http://bugs.mysql.com/9778

sets returned from server-side prepared statements.

• Added a Manifest.MF file with implementation information to the .jar file.

• More tests in Field.isOpaqueBinary() to distinguish opaque binary (that is, fields with type
CHAR(n) and CHARACTER SET BINARY) from output of various scalar and aggregate functions
that return strings.

• Should accept null for catalog (meaning use current) in DBMD methods, even though it's not JD-
BC-compliant for legacy's sake. Disable by setting connection property nullCatalog-
MeansCurrent to false (which will be the default value in C/J 3.2.x). (Bug#9917
[http://bugs.mysql.com/9917])

• Should accept null for name patterns in DBMD (meaning ‘%’), even though it isn't JDBC compli-
ant, for legacy's sake. Disable by setting connection property nullNamePatternMatchesAll
to false (which will be the default value in C/J 3.2.x). (Bug#9769 [http://bugs.mysql.com/9769])

D.5.12. Changes in MySQL Connector/J 3.1.7-stable (18 Feb-
ruary 2005)

• Timestamp key column data needed _binary stripped for UpdatableResult-
Set.refreshRow(). (Bug#7686 [http://bugs.mysql.com/7686])

• Timestamps converted incorrectly to strings with server-side prepared statements and updatable res-
ult sets. (Bug#7715 [http://bugs.mysql.com/7715])

• Detect new sql_mode variable in string form (it used to be integer) and adjust quoting method for
strings appropriately.

• Added holdResultsOpenOverStatementClose property (default is false), that keeps res-
ult sets open over statement.close() or new execution on same statement (suggested by Kevin Bur-
ton).

• Infinite recursion when “falling back” to master in failover configuration. (Bug#7952
[http://bugs.mysql.com/7952])

• Disable multi-statements (if enabled) for MySQL-4.1 versions prior to version 4.1.10 if the query
cache is enabled, as the server returns wrong results in this configuration.

• Fixed duplicated code in configureClientCharset() that prevented useOl-
dUTF8Behavior=true from working properly.

• Removed dontUnpackBinaryResults functionality, the driver now always stores results from
server-side prepared statements as is from the server and unpacks them on demand.

• Emulated locators corrupt binary data when using server-side prepared statements. (Bug#8096
[http://bugs.mysql.com/8096])

• Fixed synchronization issue with ServerPreparedStatement.serverPrepare() that
could cause deadlocks/crashes if connection was shared between threads.

• By default, the driver now scans SQL you are preparing via all variants of Connec-
tion.prepareStatement() to determine if it is a supported type of statement to prepare on
the server side, and if it is not supported by the server, it instead prepares it as a client-side emulated
prepared statement. You can disable this by passing emulateUnsupportedPstmts=false in
your JDBC URL. (Bug#4718 [http://bugs.mysql.com/4718])

MySQL Change History

1888

http://bugs.mysql.com/9917
http://bugs.mysql.com/9769
http://bugs.mysql.com/7686
http://bugs.mysql.com/7715
http://bugs.mysql.com/7952
http://bugs.mysql.com/8096
http://bugs.mysql.com/4718

• Remove _binary introducer from parameters used as in/out parameters in CallableState-
ment.

• Always return byte[]s for output parameters registered as *BINARY.

• Send correct value for “boolean” true to server for PreparedStatement.setObject(n,
"true", Types.BIT).

• Fixed bug with Connection not caching statements from prepareStatement() when the state-
ment wasn't a server-side prepared statement.

• Choose correct “direction” to apply time adjustments when both client and server are in GMT time
zone when using ResultSet.get(..., cal) and PreparedStatement.set(....,
cal).

• Added dontTrackOpenResources option (default is false, to be JDBC compliant), which
helps with memory use for non-well-behaved apps (that is, applications that don't close State-
ment objects when they should).

• ResultSet.getString() doesn't maintain format stored on server, bug fix only enabled when
noDatetimeStringSync property is set to true (the default is false). (Bug#8428
[http://bugs.mysql.com/8428])

• Fixed NPE in ResultSet.realClose() when using usage advisor and result set was already
closed.

• PreparedStatements not creating streaming result sets. (Bug#8487
[http://bugs.mysql.com/8487])

• Don't pass NULL to String.valueOf() in Result-
Set.getNativeConvertToString(), as it stringifies it (that is, returns null), which is not
correct for the method in question.

• ResultSet.getBigDecimal() throws exception when rounding would need to occur to set
scale. The driver now chooses a rounding mode of “half up” if non-rounding BigDecim-
al.setScale() fails. (Bug#8424 [http://bugs.mysql.com/8424])

• Added useLocalSessionState configuration property, when set to true the JDBC driver
trusts that the application is well-behaved and only sets autocommit and transaction isolation levels
using the methods provided on java.sql.Connection, and therefore can manipulate these val-
ues in many cases without incurring round-trips to the database server.

• Added enableStreamingResults() to Statement for connection pool implementations
that check Statement.setFetchSize() for specification-compliant values. Call State-
ment.setFetchSize(>=0) to disable the streaming results for that statement.

• Added support for BIT type in MySQL-5.0.3. The driver will treat BIT(1-8) as the JDBC stand-
ard BIT type (which maps to java.lang.Boolean), as the server does not currently send
enough information to determine the size of a bitfield when < 9 bits are declared. BIT(>9) will be
treated as VARBINARY, and will return byte[] when getObject() is called.

D.5.13. Changes in MySQL Connector/J 3.1.6-stable (23
December 2004)

• Fixed hang on SocketInputStream.read() with Statement.setMaxRows() and mul-
tiple result sets when driver has to truncate result set directly, rather than tacking a LIMIT n on the

MySQL Change History

1889

http://bugs.mysql.com/8428
http://bugs.mysql.com/8487
http://bugs.mysql.com/8424

end of it.

• DBMD.getProcedures() doesn't respect catalog parameter. (Bug#7026
[http://bugs.mysql.com/7026])

D.5.14. Changes in MySQL Connector/J 3.1.5-gamma (02
December 2004)

• Fix comparisons made between string constants and dynamic strings that are converted with either
toUpperCase() or toLowerCase() to use Locale.ENGLISH, as some locales “override”
case rules for English. Also use StringUtils.indexOfIgnoreCase() instead of
.toUpperCase().indexOf(), avoids creating a very short-lived transient String instance.

• Server-side prepared statements did not honor zeroDateTimeBehavior property, and would
cause class-cast exceptions when using ResultSet.getObject(), as the all-zero string was al-
ways returned. (Bug#5235 [http://bugs.mysql.com/5235])

• Fixed batched updates with server prepared statements weren't looking if the types had changed for a
given batched set of parameters compared to the previous set, causing the server to return the error
“Wrong arguments to mysql_stmt_execute()”.

• Handle case when string representation of timestamp contains trailing ‘.’ with no numbers follow-
ing it.

• Inefficient detection of pre-existing string instances in ResultSet.getNativeString().
(Bug#5706 [http://bugs.mysql.com/5706])

• Don't throw exceptions for Connection.releaseSavepoint().

• Use a per-session Calendar instance by default when decoding dates from ServerPrepared-
Statements (set to old, less performant behavior by setting property dynamicCalen-
dars=true).

• Added experimental configuration property dontUnpackBinaryResults, which delays un-
packing binary result set values until they're asked for, and only creates object instances for non-
numerical values (it is set to false by default). For some usecase/jvm combinations, this is friend-
lier on the garbage collector.

• UNSIGNED BIGINT unpacked incorrectly from server-side prepared statement result sets.
(Bug#5729 [http://bugs.mysql.com/5729])

• ServerSidePreparedStatement allocating short-lived objects unnecessarily. (Bug#6225
[http://bugs.mysql.com/6225])

• Removed unwanted new Throwable() in ResultSet constructor due to bad merge (caused a
new object instance that was never used for every result set created). Found while profiling for
Bug#6359 [http://bugs.mysql.com/6359].

• Fixed too-early creation of StringBuffer in EscapeProcessor.escapeSQL(), also return
String when escaping not needed (to avoid unnecessary object allocations). Found while profiling
for Bug#6359 [http://bugs.mysql.com/6359].

• Use null-safe-equals for key comparisons in updatable result sets.

• SUM() on DECIMAL with server-side prepared statement ignores scale if zero-padding is needed
(this ends up being due to conversion to DOUBLE by server, which when converted to a string to

MySQL Change History

1890

http://bugs.mysql.com/7026
http://bugs.mysql.com/5235
http://bugs.mysql.com/5706
http://bugs.mysql.com/5729
http://bugs.mysql.com/6225
http://bugs.mysql.com/6359
http://bugs.mysql.com/6359

parse into BigDecimal, loses all “padding” zeros). (Bug#6537 [http://bugs.mysql.com/6537])

• Use DatabaseMetaData.getIdentifierQuoteString() when building DBMD queries.

• Use 1MB packet for sending file for LOAD DATA LOCAL INFILE if that is <
max_allowed_packet on server.

• ResultSetMetaData.getColumnDisplaySize() returns incorrect values for multi-byte
charsets. (Bug#6399 [http://bugs.mysql.com/6399])

• Make auto-deserialization of java.lang.Objects stored in BLOB columns configurable via
autoDeserialize property (defaults to false).

• Re-work Field.isOpaqueBinary() to detect CHAR(n) CHARACTER SET BINARY to
support fixed-length binary fields for ResultSet.getObject().

• Use our own implementation of buffered input streams to get around blocking behavior of
java.io.BufferedInputStream. Disable this with useReadAheadInput=false.

• Failing to connect to the server when one of the addresses for the given host name is IPV6 (which
the server does not yet bind on). The driver now loops through all IP addresses for a given host, and
stops on the first one that accepts() a socket.connect(). (Bug#6348
[http://bugs.mysql.com/6348])

D.5.15. Changes in MySQL Connector/J 3.1.4-beta (04
September 2004)

• Connector/J 3.1.3 beta does not handle integers correctly (caused by changes to support unsigned
reads in Buffer.readInt() -> Buffer.readShort()). (Bug#4510
[http://bugs.mysql.com/4510])

• Added support in DatabaseMetaData.getTables() and getTableTypes() for views,
which are now available in MySQL server 5.0.x.

• ServerPreparedStatement.execute*() sometimes threw ArrayIndexOutOfBound-
sException when unpacking field metadata. (Bug#4642 [http://bugs.mysql.com/4642])

• Optimized integer number parsing, enable “old” slower integer parsing using JDK classes via use-
FastIntParsing=false property.

• Added useOnlyServerErrorMessages property, which causes message text in exceptions
generated by the server to only contain the text sent by the server (as opposed to the SQLState's
“standard” description, followed by the server's error message). This property is set to true by de-
fault.

• ResultSet.wasNull() does not work for primatives if a previous null was returned.
(Bug#4689 [http://bugs.mysql.com/4689])

• Track packet sequence numbers if enablePacketDebug=true, and throw an exception if pack-
ets received out-of-order.

• ResultSet.getObject() returns wrong type for strings when using prepared statements.
(Bug#4482 [http://bugs.mysql.com/4482])

• Calling MysqlPooledConnection.close() twice (even though an application error), caused
NPE. Fixed.

MySQL Change History

1891

http://bugs.mysql.com/6537
http://bugs.mysql.com/6399
http://bugs.mysql.com/6348
http://bugs.mysql.com/4510
http://bugs.mysql.com/4642
http://bugs.mysql.com/4689
http://bugs.mysql.com/4482

• ServerPreparedStatements dealing with return of DECIMAL type don't work. (Bug#5012
[http://bugs.mysql.com/5012])

• ResultSet.getObject() doesn't return type Boolean for pseudo-bit types from prepared
statements on 4.1.x (shortcut for avoiding extra type conversion when using binary-encoded result
sets obscured test in getObject() for “pseudo” bit type). (Bug#5032
[http://bugs.mysql.com/5032])

• You can now use URLs in LOAD DATA LOCAL INFILE statements, and the driver will use
Java's built-in handlers for retreiving the data and sending it to the server. This feature is not enabled
by default, you must set the allowUrlInLocalInfile connection property to true.

• The driver is more strict about truncation of numerics on ResultSet.get*(), and will throw an
SQLException when truncation is detected. You can disable this by setting jdbcCompliant-
Truncation to false (it is enabled by default, as this functionality is required for JDBC compli-
ance).

• Added three ways to deal with all-zero datetimes when reading them from a ResultSet: excep-
tion (the default), which throws an SQLException with an SQLState of S1009; con-
vertToNull, which returns NULL instead of the date; and round, which rounds the date to the
nearest closest value which is '0001-01-01'.

• Fixed ServerPreparedStatement to read prepared statement metadata off the wire, even
though it's currently a placeholder instead of using MysqlIO.clearInputStream() which
didn't work at various times because data wasn't available to read from the server yet. This fixes
sporadic errors users were having with ServerPreparedStatements throwing ArrayIn-
dexOutOfBoundExceptions.

• Use com.mysql.jdbc.Message's classloader when loading resource bundle, should fix sporad-
ic issues when the caller's classloader can't locate the resource bundle.

D.5.16. Changes in MySQL Connector/J 3.1.3-beta (07 July
2004)

• Mangle output parameter names for CallableStatements so they will not clash with user vari-
able names.

• Added support for INOUT parameters in CallableStatements.

• Null bitmask sent for server-side prepared statements was incorrect. (Bug#4119
[http://bugs.mysql.com/4119])

• Use SQL Standard SQL states by default, unless useSqlStateCodes property is set to false.

• Added packet debuging code (see the enablePacketDebug property documentation).

• Added constants for MySQL error numbers (publicly accessible, see
com.mysql.jdbc.MysqlErrorNumbers), and the ability to generate the mappings of vendor
error codes to SQLStates that the driver uses (for documentation purposes).

• Externalized more messages (on-going effort).

• Error in retrieval of mediumint column with prepared statements and binary protocol. (Bug#4311
[http://bugs.mysql.com/4311])

• Support new time zone variables in MySQL-4.1.3 when useTimezone=true.

MySQL Change History

1892

http://bugs.mysql.com/5012
http://bugs.mysql.com/5032
http://bugs.mysql.com/4119
http://bugs.mysql.com/4311

• Support for unsigned numerics as return types from prepared statements. This also causes a change
in ResultSet.getObject() for the bigint unsigned type, which used to return Big-
Decimal instances, it now returns instances of java.lang.BigInteger.

D.5.17. Changes in MySQL Connector/J 3.1.2-alpha (09 June
2004)

• Fixed stored procedure parameter parsing info when size was specified for a parameter (for example,
char(), varchar()).

• Enabled callable statement caching via cacheCallableStmts property.

• Fixed case when no output parameters specified for a stored procedure caused a bogus query to be
issued to retrieve out parameters, leading to a syntax error from the server.

• Fixed case when no parameters could cause a NullPointerException in CallableState-
ment.setOutputParameters().

• Removed wrapping of exceptions in MysqlIO.changeUser().

• Fixed sending of split packets for large queries, enabled nio ability to send large packets as well.

• Added .toString() functionality to ServerPreparedStatement, which should help if
you're trying to debug a query that is a prepared statement (it shows SQL as the server would pro-
cess).

• Added gatherPerformanceMetrics property, along with properties to control when/where
this info gets logged (see docs for more info).

• ServerPreparedStatements weren't actually de-allocating server-side resources when
.close() was called.

• Added logSlowQueries property, along with slowQueriesThresholdMillis property to
control when a query should be considered “slow.”

• Correctly map output parameters to position given in prepareCall() versus. order implied dur-
ing registerOutParameter(). (Bug#3146 [http://bugs.mysql.com/3146])

• Correctly detect initial character set for servers >= 4.1.0.

• Cleaned up detection of server properties.

• Support placeholder for parameter metadata for server >= 4.1.2.

• getProcedures() does not return any procedures in result set. (Bug#3539
[http://bugs.mysql.com/3539])

• getProcedureColumns() doesn't work with wildcards for procedure name. (Bug#3540
[http://bugs.mysql.com/3540])

• DBMD.getSQLStateType() returns incorrect value. (Bug#3520 [http://bugs.mysql.com/3520])

• Added connectionCollation property to cause driver to issue set colla-
tion_connection=... query on connection init if default collation for given charset is not ap-
propriate.

MySQL Change History

1893

http://bugs.mysql.com/3146
http://bugs.mysql.com/3539
http://bugs.mysql.com/3540
http://bugs.mysql.com/3520

• Fixed DatabaseMetaData.getProcedures() when run on MySQL-5.0.0 (output of SHOW
PROCEDURE STATUS changed between 5.0.0 and 5.0.1.

• getWarnings() returns SQLWarning instead of DataTruncation. (Bug#3804
[http://bugs.mysql.com/3804])

• Don't enable server-side prepared statements for server version 5.0.0 or 5.0.1, as they aren't compat-
ible with the '4.1.2+' style that the driver uses (the driver expects information to come back that isn't
there, so it hangs).

D.5.18. Changes in MySQL Connector/J 3.1.1-alpha (14 Feb-
ruary 2004)

• Fixed bug with UpdatableResultSets not using client-side prepared statements.

• Fixed character encoding issues when converting bytes to ASCII when MySQL doesn't provide the
character set, and the JVM is set to a multi-byte encoding (usually affecting retrieval of numeric val-
ues).

• Unpack “unknown” data types from server prepared statements as Strings.

• Implemented long data (Blobs, Clobs, InputStreams, Readers) for server prepared statements.

• Implemented Statement.getWarnings() for MySQL-4.1 and newer (using SHOW WARN-
INGS).

• Default result set type changed to TYPE_FORWARD_ONLY (JDBC compliance).

• Centralized setting of result set type and concurrency.

• Refactored how connection properties are set and exposed as DriverPropertyInfo as well as
Connection and DataSource properties.

• Support for NIO. Use useNIO=true on platforms that support NIO.

• Support for transaction savepoints (MySQL >= 4.0.14 or 4.1.1).

• Support for mysql_change_user(). See the changeUser() method in
com.mysql.jdbc.Connection.

• Reduced number of methods called in average query to be more efficient.

• Prepared Statements will be re-prepared on auto-reconnect. Any errors encountered are post-
poned until first attempt to re-execute the re-prepared statement.

• Ensure that warnings are cleared before executing queries on prepared statements, as-per JDBC spec
(now that we support warnings).

• Support “old” profileSql capitalization in ConnectionProperties. This property is de-
precated, you should use profileSQL if possible.

• Optimized Buffer.readLenByteArray() to return shared empty byte array when length is 0.

• Allow contents of PreparedStatement.setBlob() to be retained between calls to
.execute*().

MySQL Change History

1894

http://bugs.mysql.com/3804

• Deal with 0-length tokens in EscapeProcessor (caused by callable statement escape syntax).

• Check for closed connection on delete/update/insert row operations in UpdatableResultSet.

• Fix support for table aliases when checking for all primary keys in UpdatableResultSet.

• Removed useFastDates connection property.

• Correctly initialize datasource properties from JNDI Refs, including explicitly specified URLs.

• DatabaseMetaData now reports supportsStoredProcedures() for MySQL versions >=
5.0.0

• Fixed stack overflow in Connection.prepareCall() (bad merge).

• Fixed IllegalAccessError to Calendar.getTimeInMillis() in DateTimeValue
(for JDK < 1.4).

• DatabaseMetaData.getColumns() is not returning correct column ordinal info for non-'%'
column name patterns. (Bug#1673 [http://bugs.mysql.com/1673])

• Merged fix of datatype mapping from MySQL type FLOAT to java.sql.Types.REAL from 3.0
branch.

• Detect collation of column for RSMD.isCaseSensitive().

• Fixed sending of queries larger than 16M.

• Added named and indexed input/output parameter support to CallableStatement. MySQL-
5.0.x or newer.

• Fixed NullPointerException in ServerPreparedStatement.setTimestamp(), as
well as year and month descrepencies in ServerPreparedStatement.setTimestamp(),
setDate().

• Added ability to have multiple database/JVM targets for compliance and regression/unit tests in
build.xml.

• Fixed NPE and year/month bad conversions when accessing some datetime functionality in
ServerPreparedStatements and their resultant result sets.

• Display where/why a connection was implicitly closed (to aid debugging).

• CommunicationsException implemented, that tries to determine why communications was
lost with a server, and displays possible reasons when .getMessage() is called.

• NULL values for numeric types in binary encoded result sets causing
NullPointerExceptions. (Bug#2359 [http://bugs.mysql.com/2359])

• Implemented Connection.prepareCall(), and DatabaseMetaData. getProced-
ures() and getProcedureColumns().

• Reset long binary parameters in ServerPreparedStatement when clearParamet-
ers() is called, by sending COM_RESET_STMT to the server.

• Merged prepared statement caching, and .getMetaData() support from 3.0 branch.

• Fixed off-by-1900 error in some cases for years in TimeUtil.fastDate/TimeCreate() when
unpacking results from server-side prepared statements.

MySQL Change History

1895

http://bugs.mysql.com/1673
http://bugs.mysql.com/2359

• Fixed charset conversion issue in getTables(). (Bug#2502 [http://bugs.mysql.com/2502])

• Implemented multiple result sets returned from a statement or stored procedure.

• Server-side prepared statements were not returning datatype YEAR correctly. (Bug#2606
[http://bugs.mysql.com/2606])

• Enabled streaming of result sets from server-side prepared statements.

• Class-cast exception when using scrolling result sets and server-side prepared statements.
(Bug#2623 [http://bugs.mysql.com/2623])

• Merged unbuffered input code from 3.0.

• Fixed ConnectionProperties that weren't properly exposed via accessors, cleaned up Con-
nectionProperties code.

• NULL fields were not being encoded correctly in all cases in server-side prepared statements.
(Bug#2671 [http://bugs.mysql.com/2671])

• Fixed rare buffer underflow when writing numbers into buffers for sending prepared statement exe-
cution requests.

• Use DocBook version of docs for shipped versions of drivers.

D.5.19. Changes in MySQL Connector/J 3.1.0-alpha (18 Feb-
ruary 2003)

• Added requireSSL property.

• Added useServerPrepStmts property (default false). The driver will use server-side pre-
pared statements when the server version supports them (4.1 and newer) when this property is set to
true. It is currently set to false by default until all bind/fetch functionality has been implemen-
ted. Currently only DML prepared statements are implemented for 4.1 server-side prepared state-
ments.

• Track open Statements, close all when Connection.close() is called (JDBC compliance).

D.5.20. Changes in MySQL Connector/J 3.0.17-ga (23 June
2005)

• Timestamp/Time conversion goes in the wrong “direction” when useTimeZone=true and
server time zone differs from client time zone. (Bug#5874 [http://bugs.mysql.com/5874])

• DatabaseMetaData.getIndexInfo() ignored unique parameter. (Bug#7081
[http://bugs.mysql.com/7081])

• Support new protocol type MYSQL_TYPE_VARCHAR.

• Added useOldUTF8Behavior' configuration property, which causes JDBC driver to act like it
did with MySQL-4.0.x and earlier when the character encoding is utf-8 when connected to
MySQL-4.1 or newer.

MySQL Change History

1896

http://bugs.mysql.com/2502
http://bugs.mysql.com/2606
http://bugs.mysql.com/2623
http://bugs.mysql.com/2671
http://bugs.mysql.com/5874
http://bugs.mysql.com/7081

• Statements created from a pooled connection were returning physical connection instead of logical
connection when getConnection() was called. (Bug#7316 [http://bugs.mysql.com/7316])

• PreparedStatements don't encode Big5 (and other multi-byte) character sets correctly in static
SQL strings. (Bug#7033 [http://bugs.mysql.com/7033])

• Connections starting up failed-over (due to down master) never retry master. (Bug#6966
[http://bugs.mysql.com/6966])

• PreparedStatement.fixDecimalExponent() adding extra +, making number unpar-
seable by MySQL server. (Bug#7061 [http://bugs.mysql.com/7061])

• Timestamp key column data needed _binary stripped for UpdatableResult-
Set.refreshRow(). (Bug#7686 [http://bugs.mysql.com/7686])

• Backported SQLState codes mapping from Connector/J 3.1, enable with useSqlState-
Codes=true as a connection property, it defaults to false in this release, so that we don't break
legacy applications (it defaults to true starting with Connector/J 3.1).

• PreparedStatement.fixDecimalExponent() adding extra +, making number unpar-
seable by MySQL server. (Bug#7601 [http://bugs.mysql.com/7601])

• Escape sequence {fn convert(..., type)} now supports ODBC-style types that are prepended by
SQL_.

• Fixed duplicated code in configureClientCharset() that prevented useOl-
dUTF8Behavior=true from working properly.

• Handle streaming result sets with more than 2 billion rows properly by fixing wraparound of row
number counter.

• MS932, SHIFT_JIS, and Windows_31J not recognized as aliases for sjis. (Bug#7607
[http://bugs.mysql.com/7607])

• Adding CP943 to aliases for sjis. (Bug#6549 [http://bugs.mysql.com/6549], fixed while fixing
Bug#7607 [http://bugs.mysql.com/7607])

• Which requires hex escaping of binary data when using multi-byte charsets with prepared state-
ments. (Bug#8064 [http://bugs.mysql.com/8064])

• NON_UNIQUE column from DBMD.getIndexInfo() returned inverted value. (Bug#8812
[http://bugs.mysql.com/8812])

• Workaround for server Bug#9098 [http://bugs.mysql.com/9098]: Default values of CURRENT_* for
DATE, TIME, DATETIME, and TIMESTAMP columns can't be distinguished from string values,
so UpdatableResultSet.moveToInsertRow() generates bad SQL for inserting default
values.

• EUCKR charset is sent as SET NAMES euc_kr which MySQL-4.1 and newer doesn't understand.
(Bug#8629 [http://bugs.mysql.com/8629])

• DatabaseMetaData.supportsSelectForUpdate() returns correct value based on server
version.

• Use hex escapes for PreparedStatement.setBytes() for double-byte charsets including
“aliases” Windows-31J, CP934, MS932.

• Added support for the EUC_JP_Solaris character encoding, which maps to a MySQL encoding
of eucjpms (backported from 3.1 branch). This only works on servers that support eucjpms,

MySQL Change History

1897

http://bugs.mysql.com/7316
http://bugs.mysql.com/7033
http://bugs.mysql.com/6966
http://bugs.mysql.com/7061
http://bugs.mysql.com/7686
http://bugs.mysql.com/7601
http://bugs.mysql.com/7607
http://bugs.mysql.com/6549
http://bugs.mysql.com/7607
http://bugs.mysql.com/8064
http://bugs.mysql.com/8812
http://bugs.mysql.com/9098
http://bugs.mysql.com/8629

namely 5.0.3 or later.

D.5.21. Changes in MySQL Connector/J 3.0.16-ga (15 Novem-
ber 2004)

• Re-issue character set configuration commands when re-using pooled connections and/or Connec-
tion.changeUser() when connected to MySQL-4.1 or newer.

• Fixed ResultSetMetaData.isReadOnly() to detect non-writable columns when connected
to MySQL-4.1 or newer, based on existence of “original” table and column names.

• ResultSet.updateByte() when on insert row throws ArrayOutOfBoundsException.
(Bug#5664 [http://bugs.mysql.com/5664])

• Fixed DatabaseMetaData.getTypes() returning incorrect (this is, non-negative) scale for
the NUMERIC type.

• Off-by-one bug in Buffer.readString(string). (Bug#5664 [http://bugs.mysql.com/5664])

• Made TINYINT(1) -> BIT/Boolean conversion configurable via tinyInt1isBit property
(default true to be JDBC compliant out of the box).

• Only set character_set_results during connection establishment if server version >= 4.1.1.

• Fixed regression where useUnbufferedInput was defaulting to false.

• ResultSet.getTimestamp() on a column with TIME in it fails. (Bug#5664
[http://bugs.mysql.com/5664])

D.5.22. Changes in MySQL Connector/J 3.0.15-production (04
September 2004)

• StringUtils.escapeEasternUnicodeByteStream was still broken for GBK.
(Bug#4010 [http://bugs.mysql.com/4010])

• Failover for autoReconnect not using port numbers for any hosts, and not retrying all hosts.
(Warning: This required a change to the SocketFactory connect() method signature, which
is now public Socket connect(String host, int portNumber, Properties
props); therefore, any third-party socket factories will have to be changed to support this signa-
ture. (Bug#4334 [http://bugs.mysql.com/4334])

• Logical connections created by MysqlConnectionPoolDataSource will now issue a roll-
back() when they are closed and sent back to the pool. If your application server/connection pool
already does this for you, you can set the rollbackOnPooledClose property to false to
avoid the overhead of an extra rollback().

• Removed redundant calls to checkRowPos() in ResultSet.

• DOUBLE mapped twice in DBMD.getTypeInfo(). (Bug#4742 [http://bugs.mysql.com/4742])

• Added FLOSS license exemption.

• Calling .close() twice on a PooledConnection causes NPE. (Bug#4808

MySQL Change History

1898

http://bugs.mysql.com/5664
http://bugs.mysql.com/5664
http://bugs.mysql.com/5664
http://bugs.mysql.com/4010
http://bugs.mysql.com/4334
http://bugs.mysql.com/4742
http://bugs.mysql.com/4808

[http://bugs.mysql.com/4808])

• DBMD.getColumns() returns incorrect JDBC type for unsigned columns. This affects type map-
pings for all numeric types in the RSMD.getColumnType() and
RSMD.getColumnTypeNames() methods as well, to ensure that “like” types from DB-
MD.getColumns() match up with what RSMD.getColumnType() and getColumnType-
Names() return. (Bug#4138 [http://bugs.mysql.com/4138], Bug#4860
[http://bugs.mysql.com/4860])

• “Production” is now “GA” (General Availability) in naming scheme of distributions.

• RSMD.getPrecision() returning 0 for non-numeric types (should return max length in chars
for non-binary types, max length in bytes for binary types). This fix also fixes mapping of
RSMD.getColumnType() and RSMD.getColumnTypeName() for the BLOB types based on
the length sent from the server (the server doesn't distinguish between TINYBLOB, BLOB, MEDI-
UMBLOB or LONGBLOB at the network protocol level). (Bug#4880 [http://bugs.mysql.com/4880])

• ResultSet should release Field[] instance in .close(). (Bug#5022
[http://bugs.mysql.com/5022])

• ResultSet.getMetaData() should not return incorrectly initialized metadata if the result set
has been closed, but should instead throw an SQLException. Also fixed for getRow() and
getWarnings() and traversal methods by calling checkClosed() before operating on in-
stance-level fields that are nullified during .close(). (Bug#5069 [http://bugs.mysql.com/5069])

• Parse new time zone variables from 4.1.x servers.

• Use _binary introducer for PreparedStatement.setBytes() and set*Stream() when
connected to MySQL-4.1.x or newer to avoid misinterpretation during character conversion.

D.5.23. Changes in MySQL Connector/J 3.0.14-production (28
May 2004)

• Fixed URL parsing error.

D.5.24. Changes in MySQL Connector/J 3.0.13-production (27
May 2004)

• Using a MySQLDatasource without server name fails. (Bug#3848 [http://bugs.mysql.com/3848])

• No Database Selected when using MysqlConnectionPoolDataSource. (Bug#3920
[http://bugs.mysql.com/3920])

• PreparedStatement.getGeneratedKeys() method returns only 1 result for batched inser-
tions. (Bug#3873 [http://bugs.mysql.com/3873])

D.5.25. Changes in MySQL Connector/J 3.0.12-production (18
May 2004)

• Add unsigned attribute to DatabaseMetaData.getColumns() output in the TYPE_NAME

MySQL Change History

1899

http://bugs.mysql.com/4138
http://bugs.mysql.com/4860
http://bugs.mysql.com/4880
http://bugs.mysql.com/5022
http://bugs.mysql.com/5069
http://bugs.mysql.com/3848
http://bugs.mysql.com/3920
http://bugs.mysql.com/3873

column.

• Added failOverReadOnly property, to allow end-user to configure state of connection
(read-only/writable) when failed over.

• Backported “change user” and “reset server state” functionality from 3.1 branch, to allow clients of
MysqlConnectionPoolDataSource to reset server state on getConnection() on a
pooled connection.

• Don't escape SJIS/GBK/BIG5 when using MySQL-4.1 or newer.

• Allow url parameter for MysqlDataSource and MysqlConnectionPool DataSource so
that passing of other properties is possible from inside appservers.

• Map duplicate key and foreign key errors to SQLState of 23000.

• Backport documentation tooling from 3.1 branch.

• Return creating statement for ResultSets created by getGeneratedKeys(). (Bug#2957
[http://bugs.mysql.com/2957])

• Allow java.util.Date to be sent in as parameter to
PreparedStatement.setObject(), converting it to a Timestamp to maintain full preci-
sion. (Bug#103 [http://bugs.mysql.com/103]).

• Don't truncate BLOB or CLOB values when using setBytes() and/or setBinary/
CharacterStream(). (Bug#2670 [http://bugs.mysql.com/2670]).

• Dynamically configure character set mappings for field-level character sets on MySQL-4.1.0 and
newer using SHOW COLLATION when connecting.

• Map binary character set to US-ASCII to support DATETIME charset recognition for servers >=
4.1.2.

• Use SET character_set_results during initialization to allow any charset to be returned to
the driver for result sets.

• Use charsetnr returned during connect to encode queries before issuing SET NAMES on
MySQL >= 4.1.0.

• Add helper methods to ResultSetMetaData (getColumnCharacterEncoding() and
getColumnCharacterSet()) to allow end-users to see what charset the driver thinks it should
be using for the column.

• Only set character_set_results for MySQL >= 4.1.0.

• StringUtils.escapeSJISByteStream() not covering all eastern double-byte charsets cor-
rectly. (Bug#3511 [http://bugs.mysql.com/3511])

• Renamed StringUtils.escapeSJISByteStream() to more appropriate es-
capeEasternUnicodeByteStream().

• Not specifying database in URL caused MalformedURL exception. (Bug#3554
[http://bugs.mysql.com/3554])

• Auto-convert MySQL encoding names to Java encoding names if used for characterEncoding
property.

• Added encoding names that are recognized on some JVMs to fix case where they were reverse-

MySQL Change History

1900

http://bugs.mysql.com/2957
http://bugs.mysql.com/103
http://bugs.mysql.com/2670
http://bugs.mysql.com/3511
http://bugs.mysql.com/3554

mapped to MySQL encoding names incorrectly.

• Use junit.textui.TestRunner for all unit tests (to allow them to be run from the command
line outside of Ant or Eclipse).

• UpdatableResultSet not picking up default values for moveToInsertRow(). (Bug#3557
[http://bugs.mysql.com/3557])

• Inconsistent reporting of data type. The server still doesn't return all types for *BLOBs *TEXT cor-
rectly, so the driver won't return those correctly. (Bug#3570 [http://bugs.mysql.com/3570])

• DBMD.getSQLStateType() returns incorrect value. (Bug#3520 [http://bugs.mysql.com/3520])

• Fixed regression in PreparedStatement.setString() and eastern character encodings.

• Made StringRegressionTest 4.1-unicode aware.

D.5.26. Changes in MySQL Connector/J 3.0.11-stable (19 Feb-
ruary 2004)

• Trigger a SET NAMES utf8 when encoding is forced to utf8 or utf-8 via the character-
Encoding property. Previously, only the Java-style encoding name of utf-8 would trigger this.

• AutoReconnect time was growing faster than exponentially. (Bug#2447
[http://bugs.mysql.com/2447])

• Fixed failover always going to last host in list. (Bug#2578 [http://bugs.mysql.com/2578])

• Added useUnbufferedInput parameter, and now use it by default (due to JVM issue ht-
tp://developer.java.sun.com/developer/bugParade/bugs/4401235.html)

• Detect on/off or 1, 2, 3 form of lower_case_table_names value on server.

• Return java.lang.Integer for TINYINT and SMALLINT types from ResultSet-
MetaData.getColumnClassName(). (Bug#2852 [http://bugs.mysql.com/2852])

• Return java.lang.Double for FLOAT type from ResultSet-
MetaData.getColumnClassName(). (Bug#2855 [http://bugs.mysql.com/2855])

• Return [B instead of java.lang.Object for BINARY, VARBINARY and LONGVARBINARY
types from ResultSetMetaData.getColumnClassName() (JDBC compliance).

• Issue connection events on all instances created from a ConnectionPoolDataSource.

D.5.27. Changes in MySQL Connector/J 3.0.10-stable (13
January 2004)

• Don't count quoted IDs when inside a 'string' in PreparedStatement parsing. (Bug#1511
[http://bugs.mysql.com/1511])

• “Friendlier” exception message for PacketTooLargeException. (Bug#1534
[http://bugs.mysql.com/1534])

MySQL Change History

1901

http://bugs.mysql.com/3557
http://bugs.mysql.com/3570
http://bugs.mysql.com/3520
http://bugs.mysql.com/2447
http://bugs.mysql.com/2578
http://developer.java.sun.com/developer/bugParade/bugs/4401235.html
http://developer.java.sun.com/developer/bugParade/bugs/4401235.html
http://bugs.mysql.com/2852
http://bugs.mysql.com/2855
http://bugs.mysql.com/1511
http://bugs.mysql.com/1534

• Backported fix for aliased tables and UpdatableResultSets in checkUpdatability()
method from 3.1 branch.

• Fix for ArrayIndexOutOfBounds exception when using Statement.setMaxRows().
(Bug#1695 [http://bugs.mysql.com/1695])

• Barge blobs and split packets not being read correctly. (Bug#1576 [http://bugs.mysql.com/1576])

• Fixed regression of Statement.getGeneratedKeys() and REPLACE statements.

• Subsequent call to ResultSet.updateFoo() causes NPE if result set is not updatable.
(Bug#1630 [http://bugs.mysql.com/1630])

• Fix for 4.1.1-style authentication with no password.

• Foreign Keys column sequence is not consistent in Database-
MetaData.getImported/Exported/CrossReference(). (Bug#1731
[http://bugs.mysql.com/1731])

• DatabaseMetaData.getSystemFunction() returning bad function VResultsSion.
(Bug#1775 [http://bugs.mysql.com/1775])

• Cross-database updatable result sets are not checked for updatability correctly. (Bug#1592
[http://bugs.mysql.com/1592])

• DatabaseMetaData.getColumns() should return Types.LONGVARCHAR for MySQL
LONGTEXT type.

• ResultSet.getObject() on TINYINT and SMALLINT columns should return Java type In-
teger. (Bug#1913 [http://bugs.mysql.com/1913])

• Added alwaysClearStream connection property, which causes the driver to always empty any
remaining data on the input stream before each query.

• Added more descriptive error message Server Configuration Denies Access to
DataSource, as well as retrieval of message from server.

• Autoreconnect code didn't set catalog upon reconnect if it had been changed.

• Implement ResultSet.updateClob().

• ResultSetMetaData.isCaseSensitive() returned wrong value for CHAR/VARCHAR
columns.

• Connection property maxRows not honored. (Bug#1933 [http://bugs.mysql.com/1933])

• Statements being created too many times in DB-
MD.extractForeignKeyFromCreateTable(). (Bug#1925 [http://bugs.mysql.com/1925])

• Support escape sequence {fn convert ... }. (Bug#1914 [http://bugs.mysql.com/1914])

• ArrayIndexOutOfBounds when parameter number == number of parameters + 1. (Bug#1958
[http://bugs.mysql.com/1958])

• ResultSet.findColumn() should use first matching column name when there are duplicate
column names in SELECT query (JDBC-compliance). (Bug#2006 [http://bugs.mysql.com/2006])

• Removed static synchronization bottleneck from PreparedStatement.setTimestamp().

MySQL Change History

1902

http://bugs.mysql.com/1695
http://bugs.mysql.com/1576
http://bugs.mysql.com/1630
http://bugs.mysql.com/1731
http://bugs.mysql.com/1775
http://bugs.mysql.com/1592
http://bugs.mysql.com/1913
http://bugs.mysql.com/1933
http://bugs.mysql.com/1925
http://bugs.mysql.com/1914
http://bugs.mysql.com/1958
http://bugs.mysql.com/2006

• Removed static synchronization bottleneck from instance factory method of SingleByteChar-
setConverter.

• Enable caching of the parsing stage of prepared statements via the cachePrepStmts, prepSt-
mtCacheSize, and prepStmtCacheSqlLimit properties (disabled by default).

• Speed up parsing of PreparedStatements, try to use one-pass whenever possible.

• Fixed security exception when used in Applets (applets can't read the system property
file.encoding which is needed for LOAD DATA LOCAL INFILE).

• Use constants for SQLStates.

• Map charset ko18_ru to ko18r when connected to MySQL-4.1.0 or newer.

• Ensure that Buffer.writeString() saves room for the \0.

• Fixed exception Unknown character set 'danish' on connect with JDK-1.4.0

• Fixed mappings in SQLError to report deadlocks with SQLStates of 41000.

• maxRows property would affect internal statements, so check it for all statement creation internal to
the driver, and set to 0 when it is not.

D.5.28. Changes in MySQL Connector/J 3.0.9-stable (07 Octo-
ber 2003)

• Faster date handling code in ResultSet and PreparedStatement (no longer uses Date
methods that synchronize on static calendars).

• Fixed test for end of buffer in Buffer.readString().

• Fixed ResultSet.previous() behavior to move current position to before result set when on
first row of result set. (Bug#496 [http://bugs.mysql.com/496])

• Fixed Statement and PreparedStatement issuing bogus queries when setMaxRows() had
been used and a LIMIT clause was present in the query.

• refreshRow didn't work when primary key values contained values that needed to be escaped
(they ended up being doubly escaped). (Bug#661 [http://bugs.mysql.com/661])

• Support InnoDB contraint names when extracting foreign key information in Database-
MetaData (implementing ideas from Parwinder Sekhon). (Bug#517 [http://bugs.mysql.com/517],
Bug#664 [http://bugs.mysql.com/664])

• Backported 4.1 protocol changes from 3.1 branch (server-side SQL states, new field information,
larger client capability flags, connect-with-database, and so forth).

• Fix UpdatableResultSet to return values for getXXX() when on insert row. (Bug#675
[http://bugs.mysql.com/675])

• The insertRow in an UpdatableResultSet is now loaded with the default column values
when moveToInsertRow() is called. (Bug#688 [http://bugs.mysql.com/688])

• DatabaseMetaData.getColumns() wasn't returning NULL for default values that are spe-
cified as NULL.

MySQL Change History

1903

http://bugs.mysql.com/496
http://bugs.mysql.com/661
http://bugs.mysql.com/517
http://bugs.mysql.com/664
http://bugs.mysql.com/675
http://bugs.mysql.com/688

• Change default statement type/concurrency to TYPE_FORWARD_ONLY and CONCUR_READ_ONLY
(spec compliance).

• Don't try and reset isolation level on reconnect if MySQL doesn't support them.

• Don't wrap SQLExceptions in RowDataDynamic.

• Don't change timestamp TZ twice if useTimezone==true. (Bug#774
[http://bugs.mysql.com/774])

• Fixed regression in large split-packet handling. (Bug#848 [http://bugs.mysql.com/848])

• Better diagnostic error messages in exceptions for “streaming” result sets.

• Issue exception on ResultSet.getXXX() on empty result set (wasn't caught in some cases).

• Don't hide messages from exceptions thrown in I/O layers.

• Don't fire connection closed events when closing pooled connections, or on PooledConnec-
tion.getConnection() with already open connections. (Bug#884
[http://bugs.mysql.com/884])

• Clip +/- INF (to smallest and largest representative values for the type in MySQL) and NaN (to 0)
for setDouble/setFloat(), and issue a warning on the statement when the server does not sup-
port +/- INF or NaN.

• Double-escaping of '\' when charset is SJIS or GBK and '\' appears in non-escaped input.
(Bug#879 [http://bugs.mysql.com/879])

• When emptying input stream of unused rows for “streaming” result sets, have the current thread
yield() every 100 rows in order to not monopolize CPU time.

• DatabaseMetaData.getColumns() getting confused about the keyword “set” in character
columns. (Bug#1099 [http://bugs.mysql.com/1099])

• Fixed deadlock issue with Statement.setMaxRows().

• Fixed CLOB.truncate(). (Bug#1130 [http://bugs.mysql.com/1130])

• Optimized CLOB.setChracterStream(). (Bug#1131 [http://bugs.mysql.com/1131])

• Made databaseName, portNumber, and serverName optional parameters for MysqlData-
SourceFactory. (Bug#1246 [http://bugs.mysql.com/1246])

• ResultSet.get/setString mashing char 127. (Bug#1247 [http://bugs.mysql.com/1247])

• Backported authentication changes for 4.1.1 and newer from 3.1 branch.

• Added com.mysql.jdbc.util.BaseBugReport to help creation of testcases for bug reports.

• Added property to “clobber” streaming results, by setting the clobberStreamingResults
property to true (the default is false). This will cause a “streaming” ResultSet to be automat-
ically closed, and any oustanding data still streaming from the server to be discarded if another query
is executed before all the data has been read from the server.

D.5.29. Changes in MySQL Connector/J 3.0.8-stable (23 May
2003)

MySQL Change History

1904

http://bugs.mysql.com/774
http://bugs.mysql.com/848
http://bugs.mysql.com/884
http://bugs.mysql.com/879
http://bugs.mysql.com/1099
http://bugs.mysql.com/1130
http://bugs.mysql.com/1131
http://bugs.mysql.com/1246
http://bugs.mysql.com/1247

• Allow bogus URLs in Driver.getPropertyInfo().

• Return list of generated keys when using multi-value INSERTS with State-
ment.getGeneratedKeys().

• Use JVM charset with filenames and LOAD DATA [LOCAL] INFILE.

• Fix infinite loop with Connection.cleanup().

• Changed Ant target compile-core to compile-driver, and made testsuite compilation a sep-
arate target.

• Fixed result set not getting set for Statement.executeUpdate(), which affected getGen-
eratedKeys() and getUpdateCount() in some cases.

• Unicode character 0xFFFF in a string would cause the driver to throw an ArrayOutOfBound-
sException. (Bug#378 [http://bugs.mysql.com/378]).

• Return correct number of generated keys when using REPLACE statements.

• Fix problem detecting server character set in some cases.

• Fix row data decoding error when using very large packets.

• Optimized row data decoding.

• Issue exception when operating on an already closed prepared statement.

• Fixed SJIS encoding bug, thanks to Naoto Sato.

• Optimized usage of EscapeProcessor.

• Allow multiple calls to Statement.close().

D.5.30. Changes in MySQL Connector/J 3.0.7-stable (08 April
2003)

• Fixed MysqlPooledConnection.close() calling wrong event type.

• Fixed StringIndexOutOfBoundsException in PreparedStatement.setClob().

• 4.1 Column Metadata fixes.

• Remove synchronization from Driver.connect() and Driver.acceptsUrl().

• IOExceptions during a transaction now cause the Connection to be closed.

• Fixed missing conversion for YEAR type in ResultSetMetaData.getColumnTypeName().

• Don't pick up indexes that start with pri as primary keys for DBMD.getPrimaryKeys().

• Throw SQLExceptions when trying to do operations on a forcefully closed Connection (that
is, when a communication link failure occurs).

• You can now toggle profiling on/off using Connection.setProfileSql(boolean).

• Fixed charset issues with database metadata (charset was not getting set correctly).

MySQL Change History

1905

http://bugs.mysql.com/378

• Updatable ResultSets can now be created for aliased tables/columns when connected to
MySQL-4.1 or newer.

• Fixed LOAD DATA LOCAL INFILE bug when file > max_allowed_packet.

• Fixed escaping of 0x5c ('\') character for GBK and Big5 charsets.

• Fixed ResultSet.getTimestamp() when underlying field is of type DATE.

• Ensure that packet size from alignPacketSize() does not exceed max_allowed_packet
(JVM bug)

• Don't reset Connection.isReadOnly() when autoReconnecting.

D.5.31. Changes in MySQL Connector/J 3.0.6-stable (18 Feb-
ruary 2003)

• Fixed ResultSetMetaData to return "" when catalog not known. Fixes NullPointerEx-
ceptions with Sun's CachedRowSet.

• Fixed DBMD.getTypeInfo() and DBMD.getColumns() returning different value for preci-
sion in TEXT and BLOB types.

• Allow ignoring of warning for “non transactional tables” during rollback (compliance/usability) by
setting ignoreNonTxTables property to true.

• Fixed SQLExceptions getting swallowed on initial connect.

• Fixed Statement.setMaxRows() to stop sending LIMIT type queries when not needed
(performance).

• Clean up Statement query/method mismatch tests (that is, INSERT not allowed with
.executeQuery()).

• More checks added in ResultSet traversal method to catch when in closed state.

• Fixed ResultSetMetaData.isWritable() to return correct value.

• Add “window” of different NULL sorting behavior to DBMD.nullsAreSortedAtStart (4.0.2
to 4.0.10, true; otherwise, no).

• Implemented Blob.setBytes(). You still need to pass the resultant Blob back into an updat-
able ResultSet or PreparedStatement to persist the changes, because MySQL does not sup-
port “locators”.

• Backported 4.1 charset field info changes from Connector/J 3.1.

D.5.32. Changes in MySQL Connector/J 3.0.5-gamma (22
January 2003)

• Fixed Buffer.fastSkipLenString() causing ArrayIndexOutOfBounds exceptions
with some queries when unpacking fields.

MySQL Change History

1906

• Implemented an empty TypeMap for Connection.getTypeMap() so that some third-party
apps work with MySQL (IBM WebSphere 5.0 Connection pool).

• Added missing LONGTEXT type to DBMD.getColumns().

• Retrieve TX_ISOLATION from database for Connection.getTransactionIsolation()
when the MySQL version supports it, instead of an instance variable.

• Quote table names in DatabaseMetaData.getColumns(), getPrimaryKeys(), getIn-
dexInfo(), getBestRowIdentifier().

• Greatly reduce memory required for setBinaryStream() in PreparedStatements.

• Fixed ResultSet.isBeforeFirst() for empty result sets.

• Added update options for foreign key metadata.

D.5.33. Changes in MySQL Connector/J 3.0.4-gamma (06
January 2003)

• Added quoted identifiers to database names for Connection.setCatalog.

• Added support for quoted identifiers in PreparedStatement parser.

• Streamlined character conversion and byte[] handling in PreparedStatements for set-
Byte().

• Reduce memory footprint of PreparedStatements by sharing outbound packet with
MysqlIO.

• Added strictUpdates property to allow control of amount of checking for “correctness” of up-
datable result sets. Set this to false if you want faster updatable result sets and you know that you
create them from SELECT statements on tables with primary keys and that you have selected all
primary keys in your query.

• Added support for 4.0.8-style large packets.

• Fixed PreparedStatement.executeBatch() parameter overwriting.

D.5.34. Changes in MySQL Connector/J 3.0.3-dev (17 Decem-
ber 2002)

• Changed charsToByte in SingleByteCharConverter to be non-static.

• Changed SingleByteCharConverter to use lazy initialization of each converter.

• Fixed charset handling in Fields.java.

• Implemented Connection.nativeSQL().

• More robust escape tokenizer: Recognize -- comments, and allow nested escape sequences (see
testsuite.EscapeProcessingTest).

MySQL Change History

1907

• DBMD.getImported/ExportedKeys() now handles multiple foreign keys per table.

• Fixed ResultSetMetaData.getPrecision() returning incorrect values for some floating-
point types.

• Fixed ResultSetMetaData.getColumnTypeName() returning BLOB for TEXT and TEXT
for BLOB types.

• Fixed Buffer.isLastDataPacket() for 4.1 and newer servers.

• Added CLIENT_LONG_FLAG to be able to get more column flags (isAutoIncrement() being
the most important).

• Because of above, implemented ResultSetMetaData.isAutoIncrement() to use
Field.isAutoIncrement().

• Honor lower_case_table_names when enabled in the server when doing table name compar-
isons in DatabaseMetaData methods.

• Some MySQL-4.1 protocol support (extended field info from selects).

• Use non-aliased table/column names and database names to fullly qualify tables and columns in Up-
datableResultSet (requires MySQL-4.1 or newer).

• Allow user to alter behavior of Statement/ PreparedStatement.executeBatch() via
continueBatchOnError property (defaults to true).

• Check for connection closed in more Connection methods (createStatement, pre-
pareStatement, setTransactionIsolation, setAutoCommit).

• More robust implementation of updatable result sets. Checks that all primary keys of the table have
been selected.

• LOAD DATA LOCAL INFILE ... now works, if your server is configured to allow it. Can be
turned off with the allowLoadLocalInfile property (see the README).

• Substitute '?' for unknown character conversions in single-byte character sets instead of '\0'.

• NamedPipeSocketFactory now works (only intended for Windows), see README for instruc-
tions.

D.5.35. Changes in MySQL Connector/J 3.0.2-dev (08 Novem-
ber 2002)

• Fixed issue with updatable result sets and PreparedStatements not working.

• Fixed ResultSet.setFetchDirection(FETCH_UNKNOWN).

• Fixed issue when calling Statement.setFetchSize() when using arbitrary values.

• Fixed incorrect conversion in ResultSet.getLong().

• Implemented ResultSet.updateBlob().

• Removed duplicate code from UpdatableResultSet (it can be inherited from ResultSet, the
extra code for each method to handle updatability I thought might someday be necessary has not

MySQL Change History

1908

been needed).

• Fixed UnsupportedEncodingException thrown when “forcing” a character encoding via
properties.

• Fixed various non-ASCII character encoding issues.

• Added driver property useHostsInPrivileges. Defaults to true. Affects whether or not
@hostname will be used in DBMD.getColumn/TablePrivileges.

• All DBMD result set columns describing schemas now return NULL to be more compliant with the
behavior of other JDBC drivers for other database systems (MySQL does not support schemas).

• Added SSL support. See README for information on how to use it.

• Properly restore connection properties when autoReconnecting or failing-over, including auto-
Commit state, and isolation level.

• Use SHOW CREATE TABLE when possible for determining foreign key information for Data-
baseMetaData. Also allows cascade options for DELETE information to be returned.

• Escape 0x5c character in strings for the SJIS charset.

• Fixed start position off-by-1 error in Clob.getSubString().

• Implemented Clob.truncate().

• Implemented Clob.setString().

• Implemented Clob.setAsciiStream().

• Implemented Clob.setCharacterStream().

• Added com.mysql.jdbc.MiniAdmin class, which allows you to send shutdown command to
MySQL server. This is intended to be used when “embedding” Java and MySQL server together in
an end-user application.

• Added connectTimeout parameter that allows users of JDK-1.4 and newer to specify a maxium
time to wait to establish a connection.

• Failover and autoReconnect work only when the connection is in an autoCommit(false)
state, in order to stay transaction-safe.

• Added queriesBeforeRetryMaster property that specifies how many queries to issue when
failed over before attempting to reconnect to the master (defaults to 50).

• Fixed DBMD.supportsResultSetConcurrency() so that it returns true for Result-
Set.TYPE_SCROLL_INSENSITIVE and ResultSet.CONCUR_READ_ONLY or Result-
Set.CONCUR_UPDATABLE.

• Fixed ResultSet.isLast() for empty result sets (should return false).

• PreparedStatement now honors stream lengths in setBinary/Ascii/Character Stream() unless
you set the connection property useStreamLengthsInPrepStmts to false.

• Removed some not-needed temporary object creation by smarter use of Strings in EscapePro-
cessor, Connection and DatabaseMetaData classes.

MySQL Change History

1909

D.5.36. Changes in MySQL Connector/J 3.0.1-dev (21 Septem-
ber 2002)

• Fixed ResultSet.getRow() off-by-one bug.

• Fixed RowDataStatic.getAt() off-by-one bug.

• Added limited Clob functionality (ResultSet.getClob(), Prepared-
Statemtent.setClob(), PreparedStatement.setObject(Clob).

• Added socketTimeout parameter to URL.

• Connection.isClosed() no longer “pings” the server.

• Connection.close() issues rollback() when getAutoCommit() is false.

• Added paranoid parameter, which sanitizes error messages by removing “sensitive” information
from them (such as hostnames, ports, or usernames), as well as clearing “sensitive” data structures
when possible.

• Fixed ResultSetMetaData.isSigned() for TINYINT and BIGINT.

• Charsets now automatically detected. Optimized code for single-byte character set conversion.

• Implemented ResultSet.getCharacterStream().

• Added LOCAL TEMPORARY to table types in DatabaseMetaData.getTableTypes().

• Massive code clean-up to follow Java coding conventions (the time had come).

D.5.37. Changes in MySQL Connector/J 3.0.0-dev (31 July
2002)

• !!! LICENSE CHANGE !!! The driver is now GPL. If you need non-GPL licenses, please contact
me <mark@mysql.com>.

• JDBC-3.0 functionality including Statement/PreparedState-
ment.getGeneratedKeys() and ResultSet.getURL().

• Performance enchancements: Driver is now 50–100% faster in most situations, and creates fewer
temporary objects.

• Repackaging: New driver name is com.mysql.jdbc.Driver, old name still works, though (the
driver is now provided by MySQL-AB).

• Better checking for closed connections in Statement and PreparedStatement.

• Support for streaming (row-by-row) result sets (see README) Thanks to Doron.

• Support for large packets (new addition to MySQL-4.0 protocol), see README for more information.

• JDBC Compliance: Passes all tests besides stored procedure tests.

• Fix and sort primary key names in DBMetaData (SF bugs 582086 and 582086).

MySQL Change History

1910

• Float types now reported as java.sql.Types.FLOAT (SF bug 579573).

• ResultSet.getTimestamp() now works for DATE types (SF bug 559134).

• ResultSet.getDate/Time/Timestamp now recognizes all forms of invalid values that have
been set to all zeros by MySQL (SF bug 586058).

• Testsuite now uses Junit (which you can get from http://www.junit.org.

• The driver now only works with JDK-1.2 or newer.

• Added multi-host failover support (see README).

• General source-code cleanup.

• Overall speed improvements via controlling transient object creation in MysqlIO class when read-
ing packets.

• Performance improvements in string handling and field metadata creation (lazily instantiated) con-
tributed by Alex Twisleton-Wykeham-Fiennes.

D.5.38. Changes in MySQL Connector/J 2.0.14 (16 May 2002)

• More code cleanup.

• PreparedStatement now releases resources on .close(). (SF bug 553268)

• Quoted identifiers not used if server version does not support them. Also, if server started with -
-ansi or --sql-mode=ANSI_QUOTES, ‘"’ will be used as an identifier quote character, other-
wise ‘'’ will be used.

• ResultSet.getDouble() now uses code built into JDK to be more precise (but slower).

• LogicalHandle.isClosed() calls through to physical connection.

• Added SQL profiling (to STDERR). Set profileSql=true in your JDBC URL. See README for
more information.

• Fixed typo for relaxAutoCommit parameter.

D.5.39. Changes in MySQL Connector/J 2.0.13 (24 April 2002)

• More code cleanup.

• Fixed unicode chars being read incorrectly. (SF bug 541088)

• Faster blob escaping for PrepStmt.

• Added set/getPortNumber() to DataSource(s). (SF bug 548167)

• Added setURL() to MySQLXADataSource. (SF bug 546019)

• PreparedStatement.toString() fixed. (SF bug 534026)

• ResultSetMetaData.getColumnClassName() now implemented.

MySQL Change History

1911

http://www.junit.org

• Rudimentary version of Statement.getGeneratedKeys() from JDBC-3.0 now implemented
(you need to be using JDK-1.4 for this to work, I believe).

• DBMetaData.getIndexInfo() - bad PAGES fixed. (SF BUG 542201)

D.5.40. Changes in MySQL Connector/J 2.0.12 (07 April 2002)

• General code cleanup.

• Added getIdleFor() method to Connection and MysqlLogicalHandle.

• Relaxed synchronization in all classes, should fix 520615 and 520393.

• Added getTable/ColumnPrivileges() to DBMD (fixes 484502).

• Added new types to getTypeInfo(), fixed existing types thanks to Al Davis and Kid Kalanon.

• Added support for BIT types (51870) to PreparedStatement.

• Fixed getRow() bug (527165) in ResultSet.

• Fixes for ResultSet updatability in PreparedStatement.

• Fixed time zone off-by-1-hour bug in PreparedStatement (538286, 528785).

• ResultSet: Fixed updatability (values being set to null if not updated).

• DataSources - fixed setUrl bug (511614, 525565), wrong datasource class name (532816,
528767).

• Added identifier quoting to all DatabaseMetaData methods that need them (should fix 518108).

• Added support for YEAR type (533556).

• ResultSet.insertRow() should now detect auto_increment fields in most cases and use that
value in the new row. This detection will not work in multi-valued keys, however, due to the fact
that the MySQL protocol does not return this information.

• ResultSet.refreshRow() implemented.

• Fixed testsuite.Traversal afterLast() bug, thanks to Igor Lastric.

D.5.41. Changes in MySQL Connector/J 2.0.11 (27 January
2002)

• Fixed missing DELETE_RULE value in DBMD.getImported/ExportedKeys() and
getCrossReference().

• Full synchronization of Statement.java.

• More changes to fix Unexpected end of input stream errors when reading BLOB values.
This should be the last fix.

MySQL Change History

1912

D.5.42. Changes in MySQL Connector/J 2.0.10 (24 January
2002)

• Fixed spurious Unexpected end of input stream errors in MysqlIO (bug 507456).

• Fixed null-pointer-exceptions when using MysqlConnectionPoolDataSource with Web-
sphere 4 (bug 505839).

D.5.43. Changes in MySQL Connector/J 2.0.9 (13 January
2002)

• Ant build was corrupting included jar files, fixed (bug 487669).

• Fixed extra memory allocation in MysqlIO.readPacket() (bug 488663).

• Implementation of DatabaseMetaData.getExported/ImportedKeys() and
getCrossReference().

• Full synchronization on methods modifying instance and class-shared references, driver should be
entirely thread-safe now (please let me know if you have problems).

• DataSource implementations moved to org.gjt.mm.mysql.jdbc2.optional package,
and (initial) implementations of PooledConnectionDataSource and XADataSource are in
place (thanks to Todd Wolff for the implementation and testing of PooledConnectionData-
Source with IBM WebSphere 4).

• Added detection of network connection being closed when reading packets (thanks to Todd Lizam-
bri).

• Fixed quoting error with escape processor (bug 486265).

• Report batch update support through DatabaseMetaData (bug 495101).

• Fixed off-by-one-hour error in PreparedStatement.setTimestamp() (bug 491577).

• Removed concatenation support from driver (the || operator), as older versions of VisualAge seem
to be the only thing that use it, and it conflicts with the logical || operator. You will need to start
mysqld with the --ansi flag to use the || operator as concatenation (bug 491680).

• Fixed casting bug in PreparedStatement (bug 488663).

D.5.44. Changes in MySQL Connector/J 2.0.8 (25 November
2001)

• Batch updates now supported (thanks to some inspiration from Daniel Rall).

• XADataSource/ConnectionPoolDataSource code (experimental)

• PreparedStatement.setAnyNumericType() now handles positive exponents correctly
(adds + so MySQL can understand it).

• DatabaseMetaData.getPrimaryKeys() and getBestRowIdentifier() are now

MySQL Change History

1913

more robust in identifying primary keys (matches regardless of case or abbreviation/full spelling of
Primary Key in Key_type column).

D.5.45. Changes in MySQL Connector/J 2.0.7 (24 October
2001)

• PreparedStatement.setCharacterStream() now implemented

• Fixed dangling socket problem when in high availability (autoReconnect=true) mode, and fi-
nalizer for Connection will close any dangling sockets on GC.

• Fixed ResultSetMetaData.getPrecision() returning one less than actual on newer ver-
sions of MySQL.

• ResultSet.getBlob() now returns null if column value was null.

• Character sets read from database if useUnicode=true and characterEncoding is not set.
(thanks to Dmitry Vereshchagin)

• Initial transaction isolation level read from database (if avaialable). (thanks to Dmitry Vereshchagin)

• Fixed DatabaseMetaData.supportsTransactions(), and supportsTransaction-
IsolationLevel() and getTypeInfo() SQL_DATETIME_SUB and SQL_DATA_TYPE
fields not being readable.

• Fixed PreparedStatement generating SQL that would end up with syntax errors for some quer-
ies.

• Fixed ResultSet.isAfterLast() always returning false.

• Fixed time zone issue in PreparedStatement.setTimestamp(). (thanks to Erik Olofsson)

• Captialize type names when captializeTypeNames=true is passed in URL or properties (for
WebObjects. (thanks to Anjo Krank)

• Updatable result sets now correctly handle NULL values in fields.

• PreparedStatement.setDouble() now uses full-precision doubles (reverting a fix made earlier to trun-
cate them).

• PreparedStatement.setBoolean() will use 1/0 for values if your MySQL version is 3.21.23 or higher.

D.5.46. Changes in MySQL Connector/J 2.0.6 (16 June 2001)

• Fixed PreparedStatement parameter checking.

• Fixed case-sensitive column names in ResultSet.java.

D.5.47. Changes in MySQL Connector/J 2.0.5 (13 June 2001)

• Fixed ResultSet.getBlob() ArrayIndex out-of-bounds.

MySQL Change History

1914

• Fixed ResultSetMetaData.getColumnTypeName for TEXT/BLOB.

• Fixed ArrayIndexOutOfBounds when sending large BLOB queries. (Max size packet was not
being set)

• Added ISOLATION level support to Connection.setIsolationLevel()

• Fixed NPE on PreparedStatement.executeUpdate() when all columns have not been set.

• Fixed data parsing of TIMESTAMP values with 2-digit years.

• Added Byte to PreparedStatement.setObject().

• ResultSet.getBoolean() now recognizes -1 as true.

• ResultSet has +/-Inf/inf support.

• ResultSet.insertRow() works now, even if not all columns are set (they will be set to
NULL).

• DataBaseMetaData.getCrossReference() no longer ArrayIndexOOB.

• getObject() on ResultSet correctly does TINYINT->Byte and SMALLINT->Short.

D.5.48. Changes in MySQL Connector/J 2.0.3 (03 December
2000)

• Implemented getBigDecimal() without scale component for JDBC2.

• Fixed composite key problem with updatable result sets.

• Added detection of -/+INF for doubles.

• Faster ASCII string operations.

• Fixed incorrect detection of MAX_ALLOWED_PACKET, so sending large blobs should work now.

• Fixed off-by-one error in java.sql.Blob implementation code.

• Added ultraDevHack URL parameter, set to true to allow (broken) Macromedia UltraDev to
use the driver.

D.5.49. Changes in MySQL Connector/J 2.0.1 (06 April 2000)

• Fixed RSMD.isWritable() returning wrong value. Thanks to Moritz Maass.

• Cleaned up exception handling when driver connects.

• Columns that are of type TEXT now return as Strings when you use getObject().

• DatabaseMetaData.getPrimaryKeys() now works correctly with respect to key_seq.
Thanks to Brian Slesinsky.

• No escape processing is done on PreparedStatements anymore per JDBC spec.

MySQL Change History

1915

• Fixed many JDBC-2.0 traversal, positioning bugs, especially with respect to empty result sets.
Thanks to Ron Smits, Nick Brook, Cessar Garcia and Carlos Martinez.

• Fixed some issues with updatability support in ResultSet when using multiple primary keys.

D.5.50. Changes in MySQL Connector/J 2.0.0pre5 (21 Febru-
ary 2000)

• Fixed Bad Handshake problem.

D.5.51. Changes in MySQL Connector/J 2.0.0pre4 (10 January
2000)

• Fixes to ResultSet for insertRow() - Thanks to Cesar Garcia

• Fix to Driver to recognize JDBC-2.0 by loading a JDBC-2.0 class, instead of relying on JDK version
numbers. Thanks to John Baker.

• Fixed ResultSet to return correct row numbers

• Statement.getUpdateCount() now returns rows matched, instead of rows actually updated, which is
more SQL-92 like.

10-29-99

• Statement/PreparedStatement.getMoreResults() bug fixed. Thanks to Noel J. Bergman.

• Added Short as a type to PreparedStatement.setObject(). Thanks to Jeff Crowder

• Driver now automagically configures maximum/preferred packet sizes by querying server.

• Autoreconnect code uses fast ping command if server supports it.

• Fixed various bugs with respect to packet sizing when reading from the server and when alloc'ing to
write to the server.

D.5.52. Changes in MySQL Connector/J 2.0.0pre (17 August
1999)

• Now compiles under JDK-1.2. The driver supports both JDK-1.1 and JDK-1.2 at the same time
through a core set of classes. The driver will load the appropriate interface classes at runtime by fig-
uring out which JVM version you are using.

• Fixes for result sets with all nulls in the first row. (Pointed out by Tim Endres)

• Fixes to column numbers in SQLExceptions in ResultSet (Thanks to Blas Rodriguez Somoza)

• The database no longer needs to specified to connect. (Thanks to Christian Motschke)

MySQL Change History

1916

D.5.53. Changes in MySQL Connector/J 1.2b (04 July 1999)

• Better Documentation (in progress), in doc/mm.doc/book1.html

• DBMD now allows null for a column name pattern (not in spec), which it changes to '%'.

• DBMD now has correct types/lengths for getXXX().

• ResultSet.getDate(), getTime(), and getTimestamp() fixes. (contributed by Alan Wilken)

• EscapeProcessor now handles \{ \} and { or } inside quotes correctly. (thanks to Alik for some ideas
on how to fix it)

• Fixes to properties handling in Connection. (contributed by Juho Tikkala)

• ResultSet.getObject() now returns null for NULL columns in the table, rather than bombing out.
(thanks to Ben Grosman)

• ResultSet.getObject() now returns Strings for types from MySQL that it doesn't know about.
(Suggested by Chris Perdue)

• Removed DataInput/Output streams, not needed, 1/2 number of method calls per IO operation.

• Use default character encoding if one is not specified. This is a work-around for broken JVMs, be-
cause according to spec, EVERY JVM must support "ISO8859_1", but they don't.

• Fixed Connection to use the platform character encoding instead of "ISO8859_1" if one isn't expli-
citly set. This fixes problems people were having loading the character- converter classes that didn't
always exist (JVM bug). (thanks to Fritz Elfert for pointing out this problem)

• Changed MysqlIO to re-use packets where possible to reduce memory usage.

• Fixed escape-processor bugs pertaining to {} inside quotes.

D.5.54. Changes in MySQL Connector/J 1.2a (14 April 1999)

• Fixed character-set support for non-Javasoft JVMs (thanks to many people for pointing it out)

• Fixed ResultSet.getBoolean() to recognize 'y' & 'n' as well as '1' & '0' as boolean flags. (thanks to
Tim Pizey)

• Fixed ResultSet.getTimestamp() to give better performance. (thanks to Richard Swift)

• Fixed getByte() for numeric types. (thanks to Ray Bellis)

• Fixed DatabaseMetaData.getTypeInfo() for DATE type. (thanks to Paul Johnston)

• Fixed EscapeProcessor for "fn" calls. (thanks to Piyush Shah at locomotive.org)

• Fixed EscapeProcessor to not do extraneous work if there are no escape codes. (thanks to Ryan
Gustafson)

• Fixed Driver to parse URLs of the form "jdbc:mysql://host:port" (thanks to Richard Lobb)

D.5.55. Changes in MySQL Connector/J 1.1i (24 March 1999)

MySQL Change History

1917

• Fixed Timestamps for PreparedStatements

• Fixed null pointer exceptions in RSMD and RS

• Re-compiled with jikes for valid class files (thanks ms!)

D.5.56. Changes in MySQL Connector/J 1.1h (08 March 1999)

• Fixed escape processor to deal with unmatched { and } (thanks to Craig Coles)

• Fixed escape processor to create more portable (between DATETIME and TIMESTAMP types) rep-
resentations so that it will work with BETWEEN clauses. (thanks to Craig Longman)

• MysqlIO.quit() now closes the socket connection. Before, after many failed connections some OS's
would run out of file descriptors. (thanks to Michael Brinkman)

• Fixed NullPointerException in Driver.getPropertyInfo. (thanks to Dave Potts)

• Fixes to MysqlDefs to allow all *text fields to be retrieved as Strings. (thanks to Chris at Leverage)

• Fixed setDouble in PreparedStatement for large numbers to avoid sending scientific notation to the
database. (thanks to J.S. Ferguson)

• Fixed getScale() and getPrecision() in RSMD. (contrib'd by James Klicman)

• Fixed getObject() when field was DECIMAL or NUMERIC (thanks to Bert Hobbs)

• DBMD.getTables() bombed when passed a null table-name pattern. Fixed. (thanks to Richard Lobb)

• Added check for "client not authorized" errors during connect. (thanks to Hannes Wallnoefer)

D.5.57. Changes in MySQL Connector/J 1.1g (19 February
1999)

• Result set rows are now byte arrays. Blobs and Unicode work bidriectonally now. The useUnicode
and encoding options are implemented now.

• Fixes to PreparedStatement to send binary set by setXXXStream to be sent untouched to the MySQL
server.

• Fixes to getDriverPropertyInfo().

D.5.58. Changes in MySQL Connector/J 1.1f (31 December
1998)

• Changed all ResultSet fields to Strings, this should allow Unicode to work, but your JVM must be
able to convert between the character sets. This should also make reading data from the server be a
bit quicker, because there is now no conversion from StringBuffer to String.

• Changed PreparedStatement.streamToString() to be more efficient (code from Uwe Schaefer).

MySQL Change History

1918

• URL parsing is more robust (throws SQL exceptions on errors rather than NullPointerExceptions)

• PreparedStatement now can convert Strings to Time/Date values via setObject() (code from Robert
Currey).

• IO no longer hangs in Buffer.readInt(), that bug was introduced in 1.1d when changing to all byte-
arrays for result sets. (Pointed out by Samo Login)

D.5.59. Changes in MySQL Connector/J 1.1b (03 November
1998)

• Fixes to DatabaseMetaData to allow both IBM VA and J-Builder to work. Let me know how it goes.
(thanks to Jac Kersing)

• Fix to ResultSet.getBoolean() for NULL strings (thanks to Barry Lagerweij)

• Beginning of code cleanup, and formatting. Getting ready to branch this off to a parallel JDBC-2.0
source tree.

• Added "final" modifier to critical sections in MysqlIO and Buffer to allow compiler to inline meth-
ods for speed.

9-29-98

• If object references passed to setXXX() in PreparedStatement are null, setNull() is automatically
called for you. (Thanks for the suggestion goes to Erik Ostrom)

• setObject() in PreparedStatement will now attempt to write a serialized representation of the object
to the database for objects of Types.OTHER and objects of unknown type.

• Util now has a static method readObject() which given a ResultSet and a column index will re-
instantiate an object serialized in the above manner.

D.5.60. Changes in MySQL Connector/J 1.1 (02 September
1998)

• Got rid of "ugly hack" in MysqlIO.nextRow(). Rather than catch an exception, Buf-
fer.isLastDataPacket() was fixed.

• Connection.getCatalog() and Connection.setCatalog() should work now.

• Statement.setMaxRows() works, as well as setting by property maxRows. Statement.setMaxRows()
overrides maxRows set via properties or url parameters.

• Automatic re-connection is available. Because it has to "ping" the database before each query, it is
turned off by default. To use it, pass in "autoReconnect=true" in the connection URL. You may also
change the number of reconnect tries, and the initial timeout value via "maxReconnects=n" (default
3) and "initialTimeout=n" (seconds, default 2) parameters. The timeout is an exponential backoff
type of timeout; for example, if you have initial timeout of 2 seconds, and maxReconnects of 3, then
the driver will timeout 2 seconds, 4 seconds, then 16 seconds between each re-connection attempt.

MySQL Change History

1919

D.5.61. Changes in MySQL Connector/J 1.0 (24 August 1998)

• Fixed handling of blob data in Buffer.java

• Fixed bug with authentication packet being sized too small.

• The JDBC Driver is now under the LPGL

8-14-98

• Fixed Buffer.readLenString() to correctly read data for BLOBS.

• Fixed PreparedStatement.stringToStream to correctly read data for BLOBS.

• Fixed PreparedStatement.setDate() to not add a day. (above fixes thanks to Vincent Partington)

• Added URL parameter parsing (?user=... and so forth).

D.5.62. Changes in MySQL Connector/J 0.9d (04 August
1998)

• Big news! New package name. Tim Endres from ICE Engineering is starting a new source tree for
GNU GPL'd Java software. He's graciously given me the org.gjt.mm package directory to use, so
now the driver is in the org.gjt.mm.mysql package scheme. I'm "legal" now. Look for more informa-
tion on Tim's project soon.

• Now using dynamically sized packets to reduce memory usage when sending commands to the DB.

• Small fixes to getTypeInfo() for parameters, and so forth.

• DatabaseMetaData is now fully implemented. Let me know if these drivers work with the various
IDEs out there. I've heard that they're working with JBuilder right now.

• Added JavaDoc documentation to the package.

• Package now available in .zip or .tar.gz.

D.5.63. Changes in MySQL Connector/J 0.9 (28 July 1998)

• Implemented getTypeInfo(). Connection.rollback() now throws an SQLException per the JDBC
spec.

• Added PreparedStatement that supports all JDBC API methods for PreparedStatement including In-
putStreams. Please check this out and let me know if anything is broken.

• Fixed a bug in ResultSet that would break some queries that only returned 1 row.

• Fixed bugs in DatabaseMetaData.getTables(), DatabaseMetaData.getColumns() and Database-
MetaData.getCatalogs().

• Added functionality to Statement that allows executeUpdate() to store values for IDs that are auto-

MySQL Change History

1920

matically generated for AUTO_INCREMENT fields. Basically, after an executeUpdate(), look at the
SQLWarnings for warnings like "LAST_INSERTED_ID = 'some number', COMMAND = 'your
SQL query'". If you are using AUTO_INCREMENT fields in your tables and are executing a lot of
executeUpdate()s on one Statement, be sure to clearWarnings() every so often to save memory.

D.5.64. Changes in MySQL Connector/J 0.8 (06 July 1998)

• Split MysqlIO and Buffer to separate classes. Some ClassLoaders gave an IllegalAccess error for
some fields in those two classes. Now mm.mysql works in applets and all classloaders. Thanks to
Joe Ennis <jce@mail.boone.com> for pointing out the problem and working on a fix with me.

D.5.65. Changes in MySQL Connector/J 0.7 (01 July 1998)

• Fixed DatabaseMetadata problems in getColumns() and bug in switch statement in the Field con-
structor. Thanks to Costin Manolache <costin@tdiinc.com> for pointing these out.

D.5.66. Changes in MySQL Connector/J 0.6 (21 May 1998)

• Incorporated efficiency changes from Richard Swift <Richard.Swift@kanatek.ca> in
MysqlIO.java and ResultSet.java:

• We're now 15% faster than gwe's driver.

• Started working on DatabaseMetaData.

• The following methods are implemented:

• getTables()

• getTableTypes()

• getColumns

• getCatalogs()

MySQL Change History

1921

Appendix E. Porting to Other Systems
This appendix helps you port MySQL to other operating systems. Do check the list of currently suppor-
ted operating systems first. See Section 2.1.1, “Operating Systems Supported by MySQL”. If you have
created a new port of MySQL, please let us know so that we can list it here and on our Web site (ht-
tp://www.mysql.com/), recommending it to other users.

Note: If you create a new port of MySQL, you are free to copy and distribute it under the GPL license,
but it does not make you a copyright holder of MySQL.

A working POSIX thread library is needed for the server. On Solaris 2.5 we use Sun PThreads (the nat-
ive thread support in 2.4 and earlier versions is not good enough), on Linux we use LinuxThreads by
Xavier Leroy, <Xavier.Leroy@inria.fr>.

The hard part of porting to a new Unix variant without good native thread support is probably to port
MIT-pthreads. See mit-pthreads/README and Programming POSIX Threads (ht-
tp://www.humanfactor.com/pthreads/).

Up to MySQL 4.0.2, the MySQL distribution included a patched version of Chris Provenzano's Pthreads
from MIT (see the MIT Pthreads Web page at http://www.mit.edu/afs/sipb/project/pthreads/ and a pro-
gramming introduction at http://www.mit.edu:8001/people/proven/IAP_2000/). These can be used for
some operating systems that do not have POSIX threads. See Section 2.9.5, “MIT-pthreads Notes”.

It is also possible to use another user level thread package named FSU Pthreads (see ht-
tp://moss.csc.ncsu.edu/~mueller/pthreads/). This implementation is being used for the SCO port.

See the thr_lock.c and thr_alarm.c programs in the mysys directory for some tests/examples
of these problems.

Both the server and the client need a working C++ compiler. We use gcc on many platforms. Other
compilers that are known to work are SPARCworks, Sun Forte, Irix cc, HP-UX aCC, IBM AIX
xlC_r), Intel ecc/icc and Compaq cxx).

Important: If you are trying to build MySQL 5.0.23 or later on the IA64 platform with icc, and need
support for MySQL Cluster, you should first ensure that you are using icc version 9.1.043 or later. (For
details, see Bug#21875 [http://bugs.mysql.com/21875].)

To compile only the client use ./configure --without-server.

There is currently no support for only compiling the server, nor is it likely to be added unless someone
has a good reason for it.

If you want/need to change any Makefile or the configure script you also need GNU Automake and
Autoconf. See Section 2.9.3, “Installing from the Development Source Tree”.

All steps needed to remake everything from the most basic files.

/bin/rm */.deps/*.P
/bin/rm -f config.cache
aclocal
autoheader
aclocal
automake
autoconf
./configure --with-debug=full --prefix='your installation directory'

The makefiles generated above need GNU make 3.75 or newer.
(called gmake below)
gmake clean all install init-db

1922

http://www.mysql.com/
http://www.mysql.com/
http://www.humanfactor.com/pthreads/
http://www.humanfactor.com/pthreads/
http://www.mit.edu/afs/sipb/project/pthreads/
http://www.mit.edu:8001/people/proven/IAP_2000/
http://moss.csc.ncsu.edu/~mueller/pthreads/
http://moss.csc.ncsu.edu/~mueller/pthreads/
http://bugs.mysql.com/21875

If you run into problems with a new port, you may have to do some debugging of MySQL! See Sec-
tion E.1, “Debugging a MySQL Server”.

Note: Before you start debugging mysqld, first get the test programs mysys/thr_alarm and
mysys/thr_lock to work. This ensures that your thread installation has even a remote chance to
work!

E.1. Debugging a MySQL Server
If you are using some functionality that is very new in MySQL, you can try to run mysqld with the -
-skip-new (which disables all new, potentially unsafe functionality) or with --safe-mode which
disables a lot of optimization that may cause problems. See Section A.4.2, “What to Do If MySQL
Keeps Crashing”.

If mysqld doesn't want to start, you should verify that you don't have any my.cnf files that interfere
with your setup! You can check your my.cnf arguments with mysqld --print-defaults and
avoid using them by starting with mysqld --no-defaults

If mysqld starts to eat up CPU or memory or if it “hangs,” you can use mysqladmin process-
list status to find out if someone is executing a query that takes a long time. It may be a good idea
to run mysqladmin -i10 processlist status in some window if you are experiencing per-
formance problems or problems when new clients can't connect.

The command mysqladmin debug dumps some information about locks in use, used memory and
query usage to the MySQL log file. This may help solve some problems. This command also provides
some useful information even if you haven't compiled MySQL for debugging!

If the problem is that some tables are getting slower and slower you should try to optimize the table with
OPTIMIZE TABLE or myisamchk. See Chapter 5, Database Administration. You should also check
the slow queries with EXPLAIN.

You should also read the OS-specific section in this manual for problems that may be unique to your en-
vironment. See Section 2.13, “Operating System-Specific Notes”.

E.1.1. Compiling MySQL for Debugging
If you have some very specific problem, you can always try to debug MySQL. To do this you must con-
figure MySQL with the --with-debug or the --with-debug=full option. You can check
whether MySQL was compiled with debugging by doing: mysqld --help. If the --debug flag is
listed with the options then you have debugging enabled. mysqladmin ver also lists the mysqld
version as mysql ... --debug in this case.

If you are using gcc or egcs, the recommended configure line is:

CC=gcc CFLAGS="-O2" CXX=gcc CXXFLAGS="-O2 -felide-constructors \
-fno-exceptions -fno-rtti" ./configure --prefix=/usr/local/mysql \
--with-debug --with-extra-charsets=complex

This avoids problems with the libstdc++ library and with C++ exceptions (many compilers have
problems with C++ exceptions in threaded code) and compile a MySQL version with support for all
character sets.

If you suspect a memory overrun error, you can configure MySQL with --with-debug=full,
which installs a memory allocation (SAFEMALLOC) checker. However, running with SAFEMALLOC is
quite slow, so if you get performance problems you should start mysqld with the -
-skip-safemalloc option. This disables the memory overrun checks for each call to malloc()
and free().

Porting to Other Systems

1923

If mysqld stops crashing when you compile it with --with-debug, you probably have found a com-
piler bug or a timing bug within MySQL. In this case, you can try to add -g to the CFLAGS and
CXXFLAGS variables above and not use --with-debug. If mysqld dies, you can at least attach to it
with gdb or use gdb on the core file to find out what happened.

When you configure MySQL for debugging you automatically enable a lot of extra safety check func-
tions that monitor the health of mysqld. If they find something “unexpected,” an entry is written to
stderr, which mysqld_safe directs to the error log! This also means that if you are having some
unexpected problems with MySQL and are using a source distribution, the first thing you should do is to
configure MySQL for debugging! (The second thing is to send mail to a MySQL mailing list and ask for
help. See Section 1.7.1, “MySQL Mailing Lists”. If you believe that you have found a bug, please use
the instructions at Section 1.8, “How to Report Bugs or Problems”.

In the Windows MySQL distribution, mysqld.exe is by default compiled with support for trace files.

E.1.2. Creating Trace Files
If the mysqld server doesn't start or if you can cause it to crash quickly, you can try to create a trace
file to find the problem.

To do this, you must have a mysqld that has been compiled with debugging support. You can check
this by executing mysqld -V. If the version number ends with -debug, it's compiled with support for
trace files. (On Windows, the debugging server is named mysqld-debug rather than mysqld as of
MySQL 4.1.)

Start the mysqld server with a trace log in /tmp/mysqld.trace on Unix or C:\mysqld.trace
on Windows:

shell> mysqld --debug

On Windows, you should also use the --standalone flag to not start mysqld as a service. In a con-
sole window, use this command:

C:\> mysqld-debug --debug --standalone

After this, you can use the mysql.exe command-line tool in a second console window to reproduce
the problem. You can stop the mysqld server with mysqladmin shutdown.

Note that the trace file become very big! If you want to generate a smaller trace file, you can use debug-
ging options something like this:

mysqld --debug=d,info,error,query,general,where:O,/tmp/mysqld.trace

This only prints information with the most interesting tags to the trace file.

If you make a bug report about this, please only send the lines from the trace file to the appropriate mail-
ing list where something seems to go wrong! If you can't locate the wrong place, you can ftp the trace
file, together with a full bug report, to ftp://ftp.mysql.com/pub/mysql/upload/ so that a MySQL de-
veloper can take a look at it.

The trace file is made with the DBUG package by Fred Fish. See Section E.3, “The DBUG Package”.

E.1.3. Debugging mysqld under gdb
On most systems you can also start mysqld from gdb to get more information if mysqld crashes.

With some older gdb versions on Linux you must use run --one-thread if you want to be able to

Porting to Other Systems

1924

ftp://ftp.mysql.com/pub/mysql/upload/

debug mysqld threads. In this case, you can only have one thread active at a time. We recommend you
to upgrade to gdb 5.1 ASAP as thread debugging works much better with this version!

NTPL threads (the new thread library on Linux) may cause problems while running mysqld under
gdb. Some symptoms are:

• mysqld hangs during startup (before it writes ready for connections).

• mysqld crashes during a pthread_mutex_lock() or pthread_mutex_unlock() call.

In this case, you should set the following environment variable in the shell before starting gdb:

LD_ASSUME_KERNEL=2.4.1
export LD_ASSUME_KERNEL

When running mysqld under gdb, you should disable the stack trace with --skip-stack-trace
to be able to catch segfaults within gdb.

In MySQL 4.0.14 and above you should use the --gdb option to mysqld. This installs an interrupt
handler for SIGINT (needed to stop mysqld with ^C to set breakpoints) and disable stack tracing and
core file handling.

It's very hard to debug MySQL under gdb if you do a lot of new connections the whole time as gdb
doesn't free the memory for old threads. You can avoid this problem by starting mysqld with -
-thread_cache_size='max_connections+1'. In most cases just using -
-thread_cache_size=5' helps a lot!

If you want to get a core dump on Linux if mysqld dies with a SIGSEGV signal, you can start
mysqld with the --core-file option. This core file can be used to make a backtrace that may help
you find out why mysqld died:

shell> gdb mysqld core
gdb> backtrace full
gdb> quit

See Section A.4.2, “What to Do If MySQL Keeps Crashing”.

If you are using gdb 4.17.x or above on Linux, you should install a .gdb file, with the following in-
formation, in your current directory:

set print sevenbit off
handle SIGUSR1 nostop noprint
handle SIGUSR2 nostop noprint
handle SIGWAITING nostop noprint
handle SIGLWP nostop noprint
handle SIGPIPE nostop
handle SIGALRM nostop
handle SIGHUP nostop
handle SIGTERM nostop noprint

If you have problems debugging threads with gdb, you should download gdb 5.x and try this instead.
The new gdb version has very improved thread handling!

Here is an example how to debug mysqld:

shell> gdb /usr/local/libexec/mysqld
gdb> run
...
backtrace full # Do this when mysqld crashes

Porting to Other Systems

1925

Include the above output in a bug report, which you can file using the instructions in Section 1.8, “How
to Report Bugs or Problems”.

If mysqld hangs you can try to use some system tools like strace or /usr/proc/bin/pstack
to examine where mysqld has hung.

strace /tmp/log libexec/mysqld

If you are using the Perl DBI interface, you can turn on debugging information by using the trace
method or by setting the DBI_TRACE environment variable.

E.1.4. Using a Stack Trace
On some operating systems, the error log contains a stack trace if mysqld dies unexpectedly. You can
use this to find out where (and maybe why) mysqld died. See Section 5.12.1, “The Error Log”. To get
a stack trace, you must not compile mysqld with the -fomit-frame-pointer option to gcc. See
Section E.1.1, “Compiling MySQL for Debugging”.

If the error file contains something like the following:

mysqld got signal 11;
The manual section 'Debugging a MySQL server' tells you how to use a
stack trace and/or the core file to produce a readable backtrace that may
help in finding out why mysqld died
Attempting backtrace. You can use the following information to find out
where mysqld died. If you see no messages after this, something went
terribly wrong...
stack range sanity check, ok, backtrace follows
0x40077552
0x81281a0
0x8128f47
0x8127be0
0x8127995
0x8104947
0x80ff28f
0x810131b
0x80ee4bc
0x80c3c91
0x80c6b43
0x80c1fd9
0x80c1686

you can find where mysqld died by doing the following:

1. Copy the preceding numbers to a file, for example mysqld.stack.

2. Make a symbol file for the mysqld server:

nm -n libexec/mysqld > /tmp/mysqld.sym

Note that most MySQL binary distributions (except for the "debug" packages, where this informa-
tion is included inside of the binaries themselves) ship with the above file, named
mysqld.sym.gz. In this case, you can simply unpack it by doing:

gunzip < bin/mysqld.sym.gz > /tmp/mysqld.sym

3. Execute resolve_stack_dump -s /tmp/mysqld.sym -n mysqld.stack.

This prints out where mysqld died. If this doesn't help you find out why mysqld died, you
should make a bug report and include the output from the above command with the bug report.

Porting to Other Systems

1926

Note however that in most cases it does not help us to just have a stack trace to find the reason for
the problem. To be able to locate the bug or provide a workaround, we would in most cases need to
know the query that killed mysqld and preferable a test case so that we can repeat the problem!
See Section 1.8, “How to Report Bugs or Problems”.

E.1.5. Using Server Logs to Find Causes of Errors in mysqld

Note that before starting mysqld with --log you should check all your tables with myisamchk. See
Chapter 5, Database Administration.

If mysqld dies or hangs, you should start mysqld with --log. When mysqld dies again, you can
examine the end of the log file for the query that killed mysqld.

If you are using --log without a file name, the log is stored in the database directory as
host_name.log In most cases it is the last query in the log file that killed mysqld, but if possible
you should verify this by restarting mysqld and executing the found query from the mysql command-
line tools. If this works, you should also test all complicated queries that didn't complete.

You can also try the command EXPLAIN on all SELECT statements that takes a long time to ensure that
mysqld is using indexes properly. See Section 7.2.1, “Optimizing Queries with EXPLAIN”.

You can find the queries that take a long time to execute by starting mysqld with -
-log-slow-queries. See Section 5.12.4, “The Slow Query Log”.

If you find the text mysqld restarted in the error log file (normally named hostname.err) you
probably have found a query that causes mysqld to fail. If this happens, you should check all your
tables with myisamchk (see Chapter 5, Database Administration), and test the queries in the MySQL
log files to see whether one fails. If you find such a query, try first upgrading to the newest MySQL ver-
sion. If this doesn't help and you can't find anything in the mysql mail archive, you should report the
bug to a MySQL mailing list. The mailing lists are described at http://lists.mysql.com/, which also has
links to online list archives.

If you have started mysqld with myisam-recover, MySQL automatically checks and tries to repair
MyISAM tables if they are marked as 'not closed properly' or 'crashed'. If this happens, MySQL writes an
entry in the hostname.err file 'Warning: Checking table ...' which is followed by
Warning: Repairing table if the table needs to be repaired. If you get a lot of these errors,
without mysqld having died unexpectedly just before, then something is wrong and needs to be invest-
igated further. See Section 5.2.2, “Command Options”.

It is not a good sign if mysqld did die unexpectedly, but in this case, you should not investigate the
Checking table... messages, but instead try to find out why mysqld died.

E.1.6. Making a Test Case If You Experience Table Corruption
If you get corrupted tables or if mysqld always fails after some update commands, you can test wheth-
er this bug is reproducible by doing the following:

• Take down the MySQL daemon (with mysqladmin shutdown).

• Make a backup of the tables (to guard against the very unlikely case that the repair does something
bad).

• Check all tables with myisamchk -s database/*.MYI. Repair any wrong tables with myis-
amchk -r database/table.MYI.

Porting to Other Systems

1927

http://lists.mysql.com/

• Make a second backup of the tables.

• Remove (or move away) any old log files from the MySQL data directory if you need more space.

• Start mysqld with --log-bin. See Section 5.12.3, “The Binary Log”. If you want to find a query
that crashes mysqld, you should use --log --log-bin.

• When you have gotten a crashed table, stop the mysqld server.

• Restore the backup.

• Restart the mysqld server without --log-bin

• Re-execute the commands with mysqlbinlog update-log-file | mysql. The update log
is saved in the MySQL database directory with the name hostname-bin.#.

• If the tables are corrupted again or you can get mysqld to die with the above command, you have
found reproducible bug that should be easy to fix! FTP the tables and the binary log to
ftp://ftp.mysql.com/pub/mysql/upload/ and report it in our bugs database using the instructions given
in Section 1.8, “How to Report Bugs or Problems”. (Please note that the /pub/mysql/upload/
FTP directory is not listable, so you'll not see what you've uploaded in your FTP client.) If you are a
support customer, you can use the MySQL Customer Support Center https://support.mysql.com/ to
alert the MySQL team about the problem and have it fixed as soon as possible.

You can also use the script mysql_find_rows to just execute some of the update statements if you
want to narrow down the problem.

E.2. Debugging a MySQL Client
To be able to debug a MySQL client with the integrated debug package, you should configure MySQL
with --with-debug or --with-debug=full. See Section 2.9.2, “Typical configure Options”.

Before running a client, you should set the MYSQL_DEBUG environment variable:

shell> MYSQL_DEBUG=d:t:O,/tmp/client.trace
shell> export MYSQL_DEBUG

This causes clients to generate a trace file in /tmp/client.trace.

If you have problems with your own client code, you should attempt to connect to the server and run
your query using a client that is known to work. Do this by running mysql in debugging mode
(assuming that you have compiled MySQL with debugging on):

shell> mysql --debug=d:t:O,/tmp/client.trace

This provides useful information in case you mail a bug report. See Section 1.8, “How to Report Bugs or
Problems”.

If your client crashes at some 'legal' looking code, you should check that your mysql.h include file
matches your MySQL library file. A very common mistake is to use an old mysql.h file from an old
MySQL installation with new MySQL library.

E.3. The DBUG Package
The MySQL server and most MySQL clients are compiled with the DBUG package originally created
by Fred Fish. When you have configured MySQL for debugging, this package makes it possible to get a

Porting to Other Systems

1928

ftp://ftp.mysql.com/pub/mysql/upload/
https://support.mysql.com/

trace file of what the program is debugging. See Section E.1.2, “Creating Trace Files”.

This section summaries the argument values that you can specify in debug options on the command line
for MySQL programs that have been built with debugging support. For more information about pro-
gramming with the DBUG package, see the DBUG manual in the dbug directory of MySQL source dis-
tributions. It's best to use a recent distribution for MySQL 5.0 to get the most updated DBUG manual.

You use the debug package by invoking a program with the --debug="..." or the -#... option.

Most MySQL programs have a default debug string that is used if you don't specify an option to -
-debug. The default trace file is usually /tmp/program_name.trace on Unix and
\program_name.trace on Windows.

The debug control string is a sequence of colon-separated fields as follows:

<field_1>:<field_2>:...:<field_N>

Each field consists of a mandatory flag character followed by an optional ‘,’ and comma-separated list
of modifiers:

flag[,modifier,modifier,...,modifier]

The currently recognized flag characters are:

Fla
g

Description

d Enable output from DBUG_<N> macros for the current state. May be followed by a list of
keywords which selects output only for the DBUG macros with that keyword. An empty list of
keywords implies output for all macros.

D Delay after each debugger output line. The argument is the number of tenths of seconds to delay,
subject to machine capabilities. For example, -#D,20 specifies a delay of two seconds.

f Limit debugging, tracing, and profiling to the list of named functions. Note that a null list disables
all functions. The appropriate d or t flags must still be given; this flag only limits their actions if
they are enabled.

F Identify the source file name for each line of debug or trace output.

i Identify the process with the PID or thread ID for each line of debug or trace output.

g Enable profiling. Create a file called dbugmon.out containing information that can be used to
profile the program. May be followed by a list of keywords that select profiling only for the func-
tions in that list. A null list implies that all functions are considered.

L Identify the source file line number for each line of debug or trace output.

n Print the current function nesting depth for each line of debug or trace output.

N Number each line of debug output.

o Redirect the debugger output stream to the specified file. The default output is stderr.

O Like o, but the file is really flushed between each write. When needed, the file is closed and re-
opened between each write.

p Limit debugger actions to specified processes. A process must be identified with the
DBUG_PROCESS macro and match one in the list for debugger actions to occur.

P Print the current process name for each line of debug or trace output.

r When pushing a new state, do not inherit the previous state's function nesting level. Useful when
the output is to start at the left margin.

S Do function _sanity(_file_,_line_) at each debugged function until _sanity() re-
turns something that differs from 0. (Mostly used with safemalloc to find memory leaks)

Porting to Other Systems

1929

t Enable function call/exit trace lines. May be followed by a list (containing only one modifier) giv-
ing a numeric maximum trace level, beyond which no output occurs for either debugging or tra-
cing macros. The default is a compile time option.

Some examples of debug control strings that might appear on a shell command line (the -# is typically
used to introduce a control string to an application program) are:

-#d:t
-#d:f,main,subr1:F:L:t,20
-#d,input,output,files:n
-#d:t:i:O,\\mysqld.trace

In MySQL, common tags to print (with the d option) are enter, exit, error, warning, info, and
loop.

E.4. Comments about RTS Threads
I have tried to use the RTS thread packages with MySQL but stumbled on the following problems:

They use old versions of many POSIX calls and it is very tedious to make wrappers for all functions. I
am inclined to think that it would be easier to change the thread libraries to the newest POSIX specifica-
tion.

Some wrappers are currently written. See mysys/my_pthread.c for more info.

At least the following should be changed:

pthread_get_specific should use one argument. sigwait should take two arguments. A lot of
functions (at least pthread_cond_wait, pthread_cond_timedwait()) should return the er-
ror code on error. Now they return -1 and set errno.

Another problem is that user-level threads use the ALRM signal and this aborts a lot of functions (read,
write, open...). MySQL should do a retry on interrupt on all of these but it is not that easy to verify it.

The biggest unsolved problem is the following:

To get thread-level alarms I changed mysys/thr_alarm.c to wait between alarms with
pthread_cond_timedwait(), but this aborts with error EINTR. I tried to debug the thread library
as to why this happens, but couldn't find any easy solution.

If someone wants to try MySQL with RTS threads I suggest the following:

• Change functions MySQL uses from the thread library to POSIX. This shouldn't take that long.

• Compile all libraries with the -DHAVE_rts_threads.

• Compile thr_alarm.

• If there are some small differences in the implementation, they may be fixed by changing
my_pthread.h and my_pthread.c.

• Run thr_alarm. If it runs without any “warning,” “error,” or aborted messages, you are on the
right track. Here is a successful run on Solaris:

Main thread: 1
Thread 0 (5) started
Thread: 5 Waiting
process_alarm

Porting to Other Systems

1930

Thread 1 (6) started
Thread: 6 Waiting
process_alarm
process_alarm
thread_alarm
Thread: 6 Slept for 1 (1) sec
Thread: 6 Waiting
process_alarm
process_alarm
thread_alarm
Thread: 6 Slept for 2 (2) sec
Thread: 6 Simulation of no alarm needed
Thread: 6 Slept for 0 (3) sec
Thread: 6 Waiting
process_alarm
process_alarm
thread_alarm
Thread: 6 Slept for 4 (4) sec
Thread: 6 Waiting
process_alarm
thread_alarm
Thread: 5 Slept for 10 (10) sec
Thread: 5 Waiting
process_alarm
process_alarm
thread_alarm
Thread: 6 Slept for 5 (5) sec
Thread: 6 Waiting
process_alarm
process_alarm

...
thread_alarm
Thread: 5 Slept for 0 (1) sec
end

E.5. Differences Between Thread Packages
MySQL is very dependent on the thread package used. So when choosing a good platform for MySQL,
the thread package is very important.

There are at least three types of thread packages:

• User threads in a single process. Thread switching is managed with alarms and the threads library
manages all non-thread-safe functions with locks. Read, write and select operations are usually man-
aged with a thread-specific select that switches to another thread if the running threads have to wait
for data. If the user thread packages are integrated in the standard libs (FreeBSD and BSDI threads)
the thread package requires less overhead than thread packages that have to map all unsafe calls
(MIT-pthreads, FSU Pthreads and RTS threads). In some environments (for example, SCO), all sys-
tem calls are thread-safe so the mapping can be done very easily (FSU Pthreads on SCO). Downside:
All mapped calls take a little time and it's quite tricky to be able to handle all situations. There are
usually also some system calls that are not handled by the thread package (like MIT-pthreads and
sockets). Thread scheduling isn't always optimal.

• User threads in separate processes. Thread switching is done by the kernel and all data are shared
between threads. The thread package manages the standard thread calls to allow sharing data
between threads. LinuxThreads is using this method. Downside: Lots of processes. Thread creating
is slow. If one thread dies the rest are usually left hanging and you must kill them all before restart-
ing. Thread switching is somewhat expensive.

• Kernel threads. Thread switching is handled by the thread library or the kernel and is very fast.
Everything is done in one process, but on some systems, ps may show the different threads. If one
thread aborts, the whole process aborts. Most system calls are thread-safe and should require very
little overhead. Solaris, HP-UX, AIX and OSF/1 have kernel threads.

Porting to Other Systems

1931

In some systems kernel threads are managed by integrating user level threads in the system libraries. In
such cases, the thread switching can only be done by the thread library and the kernel isn't really “thread
aware.”

Porting to Other Systems

1932

Appendix F. Environment Variables
This appendix lists all the environment variables that are used directly or indirectly by MySQL. Most of
these can also be found in other places in this manual.

Note that any options on the command line take precedence over values specified in option files and en-
vironment variables, and values in option files take precedence over values in environment variables.

In many cases, it is preferable to use an option file instead of environment variables to modify the beha-
vior of MySQL. See Section 4.3.2, “Using Option Files”.

Variable Description

CXX The name of your C++ compiler (for running configure).

CC The name of your C compiler (for running configure).

CFLAGS Flags for your C compiler (for running configure).

CXXFLAGS Flags for your C++ compiler (for running configure).

DBI_USER The default username for Perl DBI.

DBI_TRACE Trace options for Perl DBI.

HOME The default path for the mysql history file is
$HOME/.mysql_history.

LD_RUN_PATH Used to specify the location of libmysqlclient.so.

MYSQL_DEBUG Debug trace options when debugging.

MYSQL_GROUP_SUFFI
X

Option group suffix value (like specifying -
-defaults-group-suffix).

MYSQL_HISTFILE The path to the mysql history file. If this variable is set, its value overrides
the default for $HOME/.mysql_history.

MYSQL_HOME The path to the directory in which the server-specific my.cnf file resides
(as of MySQL 5.0.3).

MYSQL_HOST The default hostname used by the mysql command-line client.

MYSQL_PS1 The command prompt to use in the mysql command-line client.

MYSQL_PWD The default password when connecting to mysqld. Note that using this is
insecure. See Section 5.9.6, “Keeping Your Password Secure”.

MYSQL_TCP_PORT The default TCP/IP port number.

MYSQL_UNIX_PORT The default Unix socket filename; used for connections to localhost.

PATH Used by the shell to find MySQL programs.

TMPDIR The directory where temporary files are created.

TZ This should be set to your local time zone. See Section A.4.6, “Time Zone
Problems”.

UMASK_DIR The user-directory creation mask when creating directories. Note that this is
ANDed with UMASK.

UMASK The user-file creation mask when creating files.

USER The default username on Windows and NetWare used when connecting to
mysqld.

1933

Appendix G. Regular Expressions
A regular expression is a powerful way of specifying a pattern for a complex search.

MySQL uses Henry Spencer's implementation of regular expressions, which is aimed at conformance
with POSIX 1003.2. See Appendix C, Credits. MySQL uses the extended version to support pattern-
matching operations performed with the REGEXP operator in SQL statements. See Section 3.3.4.7,
“Pattern Matching”, and Section 12.3.1, “String Comparison Functions”.

This appendix is a summary, with examples, of the special characters and constructs that can be used in
MySQL for REGEXP operations. It does not contain all the details that can be found in Henry Spencer's
regex(7) manual page. That manual page is included in MySQL source distributions, in the
regex.7 file under the regex directory.

A regular expression describes a set of strings. The simplest regular expression is one that has no special
characters in it. For example, the regular expression hello matches hello and nothing else.

Non-trivial regular expressions use certain special constructs so that they can match more than one
string. For example, the regular expression hello|word matches either the string hello or the string
word.

As a more complex example, the regular expression B[an]*s matches any of the strings Bananas,
Baaaaas, Bs, and any other string starting with a B, ending with an s, and containing any number of a
or n characters in between.

A regular expression for the REGEXP operator may use any of the following special characters and con-
structs:

• ^

Match the beginning of a string.

mysql> SELECT 'fo\nfo' REGEXP '^fo$'; -> 0
mysql> SELECT 'fofo' REGEXP '^fo'; -> 1

• $

Match the end of a string.

mysql> SELECT 'fo\no' REGEXP '^fo\no$'; -> 1
mysql> SELECT 'fo\no' REGEXP '^fo$'; -> 0

• .

Match any character (including carriage return and newline).

mysql> SELECT 'fofo' REGEXP '^f.*$'; -> 1
mysql> SELECT 'fo\r\nfo' REGEXP '^f.*$'; -> 1

• a*

Match any sequence of zero or more a characters.

mysql> SELECT 'Ban' REGEXP '^Ba*n'; -> 1
mysql> SELECT 'Baaan' REGEXP '^Ba*n'; -> 1
mysql> SELECT 'Bn' REGEXP '^Ba*n'; -> 1

1934

• a+

Match any sequence of one or more a characters.

mysql> SELECT 'Ban' REGEXP '^Ba+n'; -> 1
mysql> SELECT 'Bn' REGEXP '^Ba+n'; -> 0

• a?

Match either zero or one a character.

mysql> SELECT 'Bn' REGEXP '^Ba?n'; -> 1
mysql> SELECT 'Ban' REGEXP '^Ba?n'; -> 1
mysql> SELECT 'Baan' REGEXP '^Ba?n'; -> 0

• de|abc

Match either of the sequences de or abc.

mysql> SELECT 'pi' REGEXP 'pi|apa'; -> 1
mysql> SELECT 'axe' REGEXP 'pi|apa'; -> 0
mysql> SELECT 'apa' REGEXP 'pi|apa'; -> 1
mysql> SELECT 'apa' REGEXP '^(pi|apa)$'; -> 1
mysql> SELECT 'pi' REGEXP '^(pi|apa)$'; -> 1
mysql> SELECT 'pix' REGEXP '^(pi|apa)$'; -> 0

• (abc)*

Match zero or more instances of the sequence abc.

mysql> SELECT 'pi' REGEXP '^(pi)*$'; -> 1
mysql> SELECT 'pip' REGEXP '^(pi)*$'; -> 0
mysql> SELECT 'pipi' REGEXP '^(pi)*$'; -> 1

• {1}, {2,3}

{n} or {m,n} notation provides a more general way of writing regular expressions that match
many occurrences of the previous atom (or “piece”) of the pattern. m and n are integers.

• a*

Can be written as a{0,}.

• a+

Can be written as a{1,}.

• a?

Can be written as a{0,1}.

To be more precise, a{n} matches exactly n instances of a. a{n,} matches n or more instances of
a. a{m,n} matches m through n instances of a, inclusive.

m and n must be in the range from 0 to RE_DUP_MAX (default 255), inclusive. If both m and n are
given, m must be less than or equal to n.

mysql> SELECT 'abcde' REGEXP 'a[bcd]{2}e'; -> 0
mysql> SELECT 'abcde' REGEXP 'a[bcd]{3}e'; -> 1
mysql> SELECT 'abcde' REGEXP 'a[bcd]{1,10}e'; -> 1

Regular Expressions

1935

• [a-dX], [^a-dX]

Matches any character that is (or is not, if ^ is used) either a, b, c, d or X. A - character between
two other characters forms a range that matches all characters from the first character to the second.
For example, [0-9] matches any decimal digit. To include a literal] character, it must immedi-
ately follow the opening bracket [. To include a literal - character, it must be written first or last.
Any character that does not have a defined special meaning inside a [] pair matches only itself.

mysql> SELECT 'aXbc' REGEXP '[a-dXYZ]'; -> 1
mysql> SELECT 'aXbc' REGEXP '^[a-dXYZ]$'; -> 0
mysql> SELECT 'aXbc' REGEXP '^[a-dXYZ]+$'; -> 1
mysql> SELECT 'aXbc' REGEXP '^[^a-dXYZ]+$'; -> 0
mysql> SELECT 'gheis' REGEXP '^[^a-dXYZ]+$'; -> 1
mysql> SELECT 'gheisa' REGEXP '^[^a-dXYZ]+$'; -> 0

• [.characters.]

Within a bracket expression (written using [and]), matches the sequence of characters of that col-
lating element. characters is either a single character or a character name like newline. You
can find the full list of character names in the regexp/cname.h file.

mysql> SELECT '~' REGEXP '[[.~.]]'; -> 1
mysql> SELECT '~' REGEXP '[[.tilde.]]'; -> 1

• [=character_class=]

Within a bracket expression (written using [and]), [=character_class=] represents an equi-
valence class. It matches all characters with the same collation value, including itself. For example,
if o and (+) are the members of an equivalence class, then [[=o=]], [[=(+)=]], and [o(+)]
are all synonymous. An equivalence class may not be used as an endpoint of a range.

• [:character_class:]

Within a bracket expression (written using [and]), [:character_class:] represents a char-
acter class that matches all characters belonging to that class. The following table lists the standard
class names. These names stand for the character classes defined in the ctype(3) manual page. A
particular locale may provide other class names. A character class may not be used as an endpoint of
a range.

alnum Alphanumeric characters

alpha Alphabetic characters

blank Whitespace characters

cntrl Control characters

digit Digit characters

graph Graphic characters

lower Lowercase alphabetic characters

print Graphic or space characters

punct Punctuation characters

space Space, tab, newline, and carriage return

upper Uppercase alphabetic characters

xdigit Hexadecimal digit characters

mysql> SELECT 'justalnums' REGEXP '[[:alnum:]]+'; -> 1
mysql> SELECT '!!' REGEXP '[[:alnum:]]+'; -> 0

Regular Expressions

1936

• [[:<:]], [[:>:]]

These markers stand for word boundaries. They match the beginning and end of words, respectively.
A word is a sequence of word characters that is not preceded by or followed by word characters. A
word character is an alphanumeric character in the alnum class or an underscore (_).

mysql> SELECT 'a word a' REGEXP '[[:<:]]word[[:>:]]'; -> 1
mysql> SELECT 'a xword a' REGEXP '[[:<:]]word[[:>:]]'; -> 0

To use a literal instance of a special character in a regular expression, precede it by two backslash (\)
characters. The MySQL parser interprets one of the backslashes, and the regular expression library inter-
prets the other. For example, to match the string 1+2 that contains the special + character, only the last
of the following regular expressions is the correct one:

mysql> SELECT '1+2' REGEXP '1+2'; -> 0
mysql> SELECT '1+2' REGEXP '1\+2'; -> 0
mysql> SELECT '1+2' REGEXP '1\\+2'; -> 1

Regular Expressions

1937

Appendix H. Limits in MySQL
This Appendix lists current limits in MySQL 5.0.

H.1. Limits of Joins
The maximum number of tables that can be referenced in a single join is 61. This also applies to the
number of tables that can be referenced in the definition of a view.

1938

Appendix I. Feature Restrictions
The discussion here describes restrictions that apply to the use of MySQL features such as subqueries or
views.

I.1. Restrictions on Stored Routines and Triggers
Some of the restrictions noted here apply to all stored routines; that is, both to stored procedures and
stored functions. Some of restrictions apply only to stored functions, and not to stored procedures.

All of the restrictions for stored functions also apply to triggers.

Stored routines cannot contain arbitrary SQL statements. The following statements are disallowed:

• The table-maintenance statements CHECK TABLES and OPTIMIZE TABLES. Note: This restric-
tion is lifted beginning with MySQL 5.0.17.

• The locking statements LOCK TABLES, UNLOCK TABLES.

• LOAD DATA and LOAD TABLE.

• SQL prepared statements (PREPARE, EXECUTE, DEALLOCATE PREPARE). Implication: You
cannot use dynamic SQL within stored routines (where you construct dynamically statements as
strings and then execute them). This restriction is lifted as of MySQL 5.0.13 for stored procedures; it
still applies to stored functions and triggers.

For stored functions (but not stored procedures), the following additional statements or operations are
disallowed:

• Statements that do explicit or implicit commit or rollback.

• Statements that return a result set. This includes SELECT statements that do not have an INTO
var_list clause and SHOW statements. A function can process a result set either with SELECT
... INTO var_list or by using a cursor and FETCH statements. See Section 17.2.7.3, “SE-
LECT ... INTO Statement”.

• FLUSH statements.

• Note: Before MySQL 5.0.10, stored functions created with CREATE FUNCTION must not contain
references to tables, with limited exceptions. They may include some SET statements that contain ta-
ble references, for example SET a:= (SELECT MAX(id) FROM t), and SELECT statements
that fetch values directly into variables, for example SELECT i INTO var1 FROM t.

• Recursive statements. That is, stored functions cannot be used recursively.

• Within a stored function or trigger, it is not permitted to modify a table that is already being used
(for reading or writing) by the statement that invoked the function or trigger.

Note that although some restrictions normally apply to stored functions and triggers but not to stored
procedures, those restrictions do apply to stored procedures if they are invoked from within a stored
function or trigger. For example, although you can use FLUSH in a stored procedure, such a stored pro-
cedure cannot be called from a stored function or trigger.

1939

It is possible for the same identifier to be used for a routine parameter, a local variable, and a table
column. Also, the same local variable name can be used in nested blocks. For example:

CREATE PROCEDURE p (i INT)
BEGIN

DECLARE i INT DEFAULT 0;
SELECT i FROM t;
BEGIN
DECLARE i INT DEFAULT 1;
SELECT i FROM t;

END;
END;

In such cases the identifier is ambiguous and the following precedence rules apply:

• A local variable takes precedence over a routine parameter or table column

• A routine parameter takes precedence over a table column

• A local variable in an inner block takes precedence over a local variable in an outer block

The behavior that table columns do not take precedence over variables is non-standard.

Use of stored routines can cause replication problems. This issue is discussed further in Section 17.5,
“Binary Logging of Stored Routines and Triggers”.

INFORMATION_SCHEMA does not yet have a PARAMETERS table, so applications that need to acquire
routine parameter information at runtime must use workarounds such as parsing the output of SHOW
CREATE statements.

There are no stored routine debugging facilities.

CALL statements cannot be prepared. This true both for server-side prepared statements and for SQL
prepared statements.

UNDO handlers are not supported.

FOR loops are not supported.

To prevent problems of interaction between server threads, when a client issues a statement, the server
uses a snapshot of routines and triggers available for execution of the statement. That is, the server cal-
culates a list of procedures, functions, and triggers that may be used during execution of the statement,
loads them, and then proceeds to execute the statement. This means that while the statement executes, it
will not see changes to routines performed by other threads.

For triggers, the following additional statements or operations are disallowed:

• Triggers currently are not activated by foreign key actions.

• The RETURN statement is disallowed in triggers, which cannot return a value. To exit a trigger im-
mediately, use the LEAVE statement.

• Triggers are not allowed on tables in the mysql database.

I.2. Restrictions on Server-Side Cursors

Feature Restrictions

1940

Server-side cursors are implemented beginning with the C API in MySQL 5.0.2 via the
mysql_stmt_attr_set() function. A server-side cursor allows a result set to be generated on the
server side, but not transferred to the client except for those rows that the client requests. For example, if
a client executes a query but is only interested in the first row, the remaining rows are not transferred.

In MySQL, a server-side cursor is materialized into a temporary table. Initially, this is a MEMORY table,
but is converted to a MyISAM table if its size reaches the value of the max_heap_table_size sys-
tem variable. (Beginning with MySQL 5.0.14, the same temporary-table implementation also is used for
cursors in stored routines.) One limitation of the implementation is that for a large result set, retrieving
its rows through a cursor might be slow.

Cursors are read-only; you cannot use a cursor to update rows.

UPDATE WHERE CURRENT OF and DELETE WHERE CURRENT OF are not implemented, because
updatable cursors are not supported.

Cursors are non-holdable (not held open after a commit).

Cursors are asensitive.

Cursors are non-scrollable.

Cursors are not named. The statement handler acts as the cursor ID.

You can have open only a single cursor per prepared statement. If you need several cursors, you must
prepare several statements.

You cannot use a cursor for a statement that generates a result set if the statement is not supported in
prepared mode. This includes statements such as CHECK TABLES, HANDLER READ, and SHOW
BINLOG EVENTS.

I.3. Restrictions on Subqueries

• Known bug to be fixed later: If you compare a NULL value to a subquery using ALL, ANY, or SOME,
and the subquery returns an empty result, the comparison might evaluate to the non-standard result
of NULL rather than to TRUE or FALSE.

• A subquery's outer statement can be any one of: SELECT, INSERT, UPDATE, DELETE, SET, or
DO.

• Subquery optimization for IN is not as effective as for the = operator or for IN(value_list)
constructs.

A typical case for poor IN subquery performance is when the subquery returns a small number of
rows but the outer query returns a large number of rows to be compared to the subquery result.

The problem is that, for a statement that uses an IN subquery, the optimizer rewrites it as a correl-
ated subquery. Consider the following statement that uses an uncorrelated subquery:

SELECT ... FROM t1 WHERE t1.a IN (SELECT b FROM t2);

The optimizer rewrites the statement to a correlated subquery:

SELECT ... FROM t1 WHERE EXISTS (SELECT 1 FROM t2 WHERE t2.b = t1.a);

If the inner and outer queries return M and N rows, respectively, the execution time becomes on the

Feature Restrictions

1941

order of O(M×N), rather than O(M+N) as it would be for an uncorrelated subquery.

An implication is that an IN subquery can be much slower than a query written using an
IN(value_list) construct that lists the same values that the subquery would return.

• In general, you cannot modify a table and select from the same table in a subquery. For example, this
limitation applies to statements of the following forms:

DELETE FROM t WHERE ... (SELECT ... FROM t ...);
UPDATE t ... WHERE col = (SELECT ... FROM t ...);
{INSERT|REPLACE} INTO t (SELECT ... FROM t ...);

Exception: The preceding prohibition does not apply if you are using a subquery for the modified ta-
ble in the FROM clause. Example:

UPDATE t ... WHERE col = (SELECT (SELECT ... FROM t...) AS _t ...);

Here the prohibition does not apply because the result from a subquery in the FROM clause is stored
as a temporary table, so the relevant rows in t have already been selected by the time the update to t
takes place.

• Row comparison operations are only partially supported:

• For expr IN (subquery), expr can be an n-tuple (specified via row constructor syntax)
and the subquery can return rows of n-tuples.

• For expr op {ALL|ANY|SOME} (subquery), expr must be a scalar value and the sub-
query must be a column subquery; it cannot return multiple-column rows.

In other words, for a subquery that returns rows of n-tuples, this is supported:

(val_1, ..., val_n) IN (subquery)

But this is not supported:

(val_1, ..., val_n) op {ALL|ANY|SOME} (subquery)

The reason for supporting row comparisons for IN but not for the others is that IN is implemented
by rewriting it as a sequence of = comparisons and AND operations. This approach cannot be used
for ALL, ANY, or SOME.

• Row constructors are not well optimized. The following two expressions are equivalent, but only the
second can be optimized:

(col1, col2, ...) = (val1, val2, ...)
col1 = val1 AND col2 = val2 AND ...

• Subqueries in the FROM clause cannot be correlated subqueries. They are materialized (executed to
produce a result set) before evaluating the outer query, so they cannot be evaluated per row of the
outer query.

• The optimizer is more mature for joins than for subqueries, so in many cases a statement that uses a
subquery can be executed more efficiently if you rewrite it as a join.

An exception occurs for the case where an IN subquery can be rewritten as a SELECT DISTINCT
join. Example:

SELECT col FROM t1 WHERE id_col IN (SELECT id_col2 FROM t2 WHERE condition);

Feature Restrictions

1942

That statement can be rewritten as follows:

SELECT DISTINCT col FROM t1, t2 WHERE t1.id_col = t2.id_col AND condition;

But in this case, the join requires an extra DISTINCT operation and is not more efficient than the
subquery.

• Possible future optimization: MySQL does not rewrite the join order for subquery evaluation. In
some cases, a subquery could be executed more efficiently if MySQL rewrote it as a join. This
would give the optimizer a chance to choose between more execution plans. For example, it could
decide whether to read one table or the other first.

Example:

SELECT a FROM outer_table AS ot
WHERE a IN (SELECT a FROM inner_table AS it WHERE ot.b = it.b);

For that query, MySQL always scans outer_table first and then executes the subquery on in-
ner_table for each row. If outer_table has a lot of rows and inner_table has few rows,
the query probably will not be as fast as it could be.

The preceding query could be rewritten like this:

SELECT a FROM outer_table AS ot, inner_table AS it
WHERE ot.a = it.a AND ot.b = it.b;

In this case, we can scan the small table (inner_table) and look up rows in outer_table,
which will be fast if there is an index on (ot.a,ot.b).

• Possible future optimization: A correlated subquery is evaluated for each row of the outer query. A
better approach is that if the outer row values do not change from the previous row, do not evaluate
the subquery again. Instead, use its previous result.

• Possible future optimization: A subquery in the FROM clause is evaluated by materializing the result
into a temporary table, and this table does not use indexes. This does not allow the use of indexes in
comparison with other tables in the query, although that might be useful.

• Possible future optimization: If a subquery in the FROM clause resembles a view to which the merge
algorithm can be applied, rewrite the query and apply the merge algorithm so that indexes can be
used. The following statement contains such a subquery:

SELECT * FROM (SELECT * FROM t1 WHERE t1.t1_col) AS _t1, t2 WHERE t2.t2_col;

The statement can be rewritten as a join like this:

SELECT * FROM t1, t2 WHERE t1.t1_col AND t2.t2_col;

This type of rewriting would provide two benefits:

• It avoids the use of a temporary table for which no indexes can be used. In the rewritten query,
the optimizer can use indexes on t1.

• It gives the optimizer more freedom to choose between different execution plans. For example,
rewriting the query as a join allows the optimizer to use t1 or t2 first.

• Possible future optimization: For IN, = ANY, <> ANY, = ALL, and <> ALL with non-correlated
subqueries, use an in-memory hash for a result or a temporary table with an index for larger results.

Feature Restrictions

1943

Example:

SELECT a FROM big_table AS bt
WHERE non_key_field IN (SELECT non_key_field FROM table WHERE condition)

In this case, we could create a temporary table:

CREATE TABLE t (key (non_key_field))
(SELECT non_key_field FROM table WHERE condition)

Then, for each row in big_table, do a key lookup in t based on bt.non_key_field.

I.4. Restrictions on Views
View processing is not optimized:

• It is not possible to create an index on a view.

• Indexes can be used for views processed using the merge algorithm. However, a view that is pro-
cessed with the temptable algorithm is unable to take advantage of indexes on its underlying tables
(although indexes can be used during generation of the temporary tables).

Subqueries cannot be used in the FROM clause of a view. This limitation will be lifted in the future.

There is a general principle that you cannot modify a table and select from the same table in a subquery.
See Section I.3, “Restrictions on Subqueries”.

The same principle also applies if you select from a view that selects from the table, if the view selects
from the table in a subquery and the view is evaluated using the merge algorithm. Example:

CREATE VIEW v1 AS
SELECT * FROM t2 WHERE EXISTS (SELECT 1 FROM t1 WHERE t1.a = t2.a);

UPDATE t1, v2 SET t1.a = 1 WHERE t1.b = v2.b;

If the view is evaluated using a temporary table, you can select from the table in the view subquery and
still modify that table in the outer query. In this case the view will be stored in a temporary table and
thus you are not really selecting from the table in a subquery and modifying it “at the same time.” (This
is another reason you might wish to force MySQL to use the temptable algorithm by specifying AL-
GORITHM = TEMPTABLE in the view definition.)

You can use DROP TABLE or ALTER TABLE to drop or alter a table that is used in a view definition
(which invalidates the view) and no warning results from the drop or alter operation. An error occurs
later when the view is used.

A view definition is “frozen” by certain statements:

• If a statement prepared by PREPARE refers to a view, the view contents seen each time the state-
ment is executed later will be the contents of the view at the time it was prepared. This is true even if
the view definition is changed after the statement is prepared and before it is executed. Example:

CREATE VIEW v AS SELECT 1;
PREPARE s FROM 'SELECT * FROM v';
ALTER VIEW v AS SELECT 2;
EXECUTE s;

Feature Restrictions

1944

The result returned by the EXECUTE statement is 1, not 2.

• If a statement in a stored routine refers to a view, the view contents seen by the statement are its con-
tents the first time that statement is executed. For example, this means that if the statement is ex-
ecuted in a loop, further iterations of the statement see the same view contents, even if the view
definition is changed later in the loop. Example:

CREATE VIEW v AS SELECT 1;
delimiter //
CREATE PROCEDURE p ()
BEGIN

DECLARE i INT DEFAULT 0;
WHILE i < 5 DO
SELECT * FROM v;
SET i = i + 1;
ALTER VIEW v AS SELECT 2;

END WHILE;
END;
//
delimiter ;
CALL p();

When the procedure p() is called, the SELECT returns 1 each time through the loop, even though
the view definition is changed within the loop.

With regard to view updatability, the overall goal for views is that if any view is theoretically updatable,
it should be updatable in practice. This includes views that have UNION in their definition. Currently,
not all views that are theoretically updatable can be updated. The initial view implementation was delib-
erately written this way to get usable, updatable views into MySQL as quickly as possible. Many theor-
etically updatable views can be updated now, but limitations still exist:

• Updatable views with subqueries anywhere other than in the WHERE clause. Some views that have
subqueries in the SELECT list may be updatable.

• You cannot use UPDATE to update more than one underlying table of a view that is defined as a join.

• You cannot use DELETE to update a view that is defined as a join.

There exists a shortcoming with the current implementation of views. If a user is granted the basic priv-
ileges necessary to create a view (the CREATE VIEW and SELECT privileges), that user will be unable
to call SHOW CREATE VIEW on that object unless the user is also granted the SHOW VIEW privilege.

That shortcoming can lead to problems backing up a database with mysqldump, which may fail due to
insufficient privileges. This problem is described in Bug#22062 [http://bugs.mysql.com/22062].

The workaround to the problem is for the administrator to manually grant the SHOW VIEW privilege to
users who are granted CREATE VIEW, since MySQL doesn't grant it implicitly when views are created.

I.5. Restrictions on XA Transactions
XA transaction support is limited to the InnoDB storage engine.

The MySQL XA implementation is for “external XA,” where a MySQL server acts as a Resource Man-
ager and client programs act as Transaction Managers. “Internal XA” is not implemented. This would
allow individual storage engines within a MySQL server to act as RMs, and the server itself to act as a
TM. Internal XA is required for handling XA transactions that involve more than one storage engine.
The implementation of internal XA is incomplete because it requires that a storage engine support two-

Feature Restrictions

1945

http://bugs.mysql.com/22062

phase commit at the table handler level, and currently this is true only for InnoDB.

For XA START, the JOIN and RESUME clauses are not supported.

For XA END, the SUSPEND [FOR MIGRATE] clause is not supported.

The requirement that the bqual part of the xid value be different for each XA transaction within a
global transaction is a limitation of the current MySQL XA implementation. It is not part of the XA spe-
cification.

If an XA transaction has reached the PREPARED state and the MySQL server is killed (for example,
with kill -9 on Unix) or shuts down abnormally, the transaction can be continued after the server re-
starts. However, if the client reconnects and commits the transaction, the transaction will be absent from
the binary log even though it has been committed. This means the data and the binary log have gone out
of synchrony. An implication is that XA cannot be used safely together with replication.

It is possible that the server will roll back a pending XA transaction, even one that has reached the PRE-
PARED state. This happens if a client connection terminates and the server continues to run, or if clients
are connected and the server shuts down gracefully. (In the latter case, the server marks each connection
to be terminated, and then rolls back the PREPARED XA transaction associated with it.) It should be
possible to commit or roll back a PREPARED XA transaction, but this cannot be done without changes
to the binary logging mechanism.

Feature Restrictions

1946

Appendix J. GNU General Public License
Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By con-
trast, the GNU General Public License is intended to guarantee your freedom to share and change free
software---to make sure the software is free for all its users. This General Public License applies to most
of the Free Software Foundation's software and to any other program whose authors commit to using it.
(Some other Free Software Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so that any problems introduced by
others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free
use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION
AND MODIFICATION

1. This License applies to any program or other work which contains a notice placed by the copyright
holder saying it may be distributed under the terms of this General Public License. The ``Program'',
below, refers to any such program or work, and a ``work based on the Program'' means either the
Program or any derivative work under copyright law: that is to say, a work containing the Program
or a portion of it, either verbatim or with modifications and/or translated into another language.
(Hereinafter, translation is included without limitation in the term ``modification''.) Each licensee is

1947

addressed as ``you''.

Activities other than copying, distribution and modification are not covered by this License; they
are outside its scope. The act of running the Program is not restricted, and the output from the Pro-
gram is covered only if its contents constitute a work based on the Program (independent of having
been made by running the Program). Whether that is true depends on what the Program does.

2. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and
to the absence of any warranty; and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

3. You may modify your copy or copies of the Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such modifications or work under the terms of Sec-
tion 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all
third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you must cause it,
when started running for such interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement, your work
based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute
them as separate works. But when you distribute the same sections as part of a whole which is a
work based on the Program, the distribution of the whole must be on the terms of this License,
whose permissions for other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with
a work based on the Program) on a volume of a storage or distribution medium does not bring the
other work under the scope of this License.

4. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the fol-
lowing:

a. Accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for soft-
ware interchange; or,

GNU General Public License

1948

b. Accompany it with a written offer, valid for at least three years, to give any third-party, for a
charge no more than your cost of physically performing source distribution, a complete ma-
chine-readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it.
For an executable work, complete source code means all the source code for all modules it con-
tains, plus any associated interface definition files, plus the scripts used to control compilation and
installation of the executable. However, as a special exception, the source code distributed need not
include anything that is normally distributed (in either source or binary form) with the major com-
ponents (compiler, kernel, and so on) of the operating system on which the executable runs, unless
that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts as distri-
bution of the source code, even though third parties are not compelled to copy the source along
with the object code.

5. You may not copy, modify, sublicense, or distribute the Program except as expressly provided un-
der this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License. However, parties who have
received copies, or rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.

6. You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to modify or distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of this License to do
so, and all its terms and conditions for copying, distributing or modifying the Program or works
based on it.

7. Each time you redistribute the Program (or any work based on the Program), the recipient automat-
ically receives a license from the original licensor to copy, distribute or modify the Program subject
to these terms and conditions. You may not impose any further restrictions on the recipients' exer-
cise of the rights granted herein. You are not responsible for enforcing compliance by third parties
to this License.

8. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not excuse you from the condi-
tions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under
this License and any other pertinent obligations, then as a consequence you may not distribute the
Program at all. For example, if a patent license would not permit royalty-free redistribution of the
Program by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the
balance of the section is intended to apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting the

GNU General Public License

1949

integrity of the free software distribution system, which is implemented by public license practices.
Many people have made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the author/donor to de-
cide if he or she is willing to distribute software through any other system and a licensee cannot im-
pose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest
of this License.

9. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding those countries, so that distribu-
tion is permitted only in or among countries not thus excluded. In such case, this License incorpor-
ates the limitation as if written in the body of this License.

10. The Free Software Foundation may publish revised and/or new versions of the General Public Li-
cense from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number
of this License which applies to it and ``any later version'', you have the option of following the
terms and conditions either of that version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of this License, you may choose any
version ever published by the Free Software Foundation.

11. If you wish to incorporate parts of the Program into other free programs whose distribution condi-
tions are different, write to the author to ask for permission. For software which is copyrighted by
the Free Software Foundation, write to the Free Software Foundation; we sometimes make excep-
tions for this. Our decision will be guided by the two goals of preserving the free status of all deriv-
atives of our free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

12. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT
WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM ``AS IS'' WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

13. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/
OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED IN-
ACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

GNU General Public License

1950

If you develop a new program, and you want it to be of the greatest possible use to the public, the best
way to achieve this is to make it free software which everyone can redistribute and change under these
terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively convey the exclusion of warranty; and each file should have at least the
``copyright'' line and a pointer to where the full notice is found.

one line to give the program's name and a brief idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands 'show w' and 'show c' should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than 'show w' and
'show c'; they could even be mouse-clicks or menu items---whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a
``copyright disclaimer'' for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If
your program is a subroutine library, you may consider it more useful to permit linking proprietary ap-
plications with the library. If this is what you want to do, use the GNU Library General Public License
instead of this License.

GNU General Public License

1951

Appendix K. MySQL FLOSS License Exception
The MySQL AB Exception for Free/Libre and Open Source Software-only Applications Using MySQL
Client Libraries (the “FLOSS Exception”).

Version 0.5, 30 August 2006

Exception Intent

We want specified Free/Libre and Open Source Software (``FLOSS'') applications to be able to use spe-
cified GPL-licensed MySQL client libraries (the ``Program'') despite the fact that not all FLOSS licenses
are compatible with version 2 of the GNU General Public License (the ``GPL'').

Legal Terms and Conditions

As a special exception to the terms and conditions of version 2.0 of the GPL:

1. You are free to distribute a Derivative Work that is formed entirely from the Program and one or
more works (each, a “FLOSS Work”) licensed under one or more of the licenses listed below in
section 1, as long as:

a. You obey the GPL in all respects for the Program and the Derivative Work, except for identi-
fiable sections of the Derivative Work which are not derived from the Program, and which can
reasonably be considered independent and separate works in themselves,

b. all identifiable sections of the Derivative Work which are not derived from the Program, and
which can reasonably be considered independent and separate works in themselves,

i. are distributed subject to one of the FLOSS licenses listed below, and

ii. the object code or executable form of those sections are accompanied by the complete
corresponding machine-readable source code for those sections on the same medium and
under the same FLOSS license as the corresponding object code or executable forms of
those sections, and

c. any works which are aggregated with the Program or with a Derivative Work on a volume of a
storage or distribution medium in accordance with the GPL, can reasonably be considered in-
dependent and separate works in themselves which are not derivatives of either the Program, a
Derivative Work or a FLOSS Work.

If the above conditions are not met, then the Program may only be copied, modified, distributed or
used under the terms and conditions of the GPL or another valid licensing option from MySQL AB.

2. FLOSS License List

License name Version(s)/Copyright Date

Academic Free License 2.0

Apache Software License 1.0/1.1/2.0

Apple Public Source License 2.0

Artistic license From Perl 5.8.0

BSD license "July 22 1999"

Common Public License 1.0

GNU Library or "Lesser" General Public License (LGPL) 2.0/2.1

Jabber Open Source License 1.0

1952

MIT license —

Mozilla Public License (MPL) 1.0/1.1

Open Software License 2.0

OpenSSL license (with original SSLeay license) "2003" ("1998")

PHP License 3.0

Python license (CNRI Python License) —

Python Software Foundation License 2.1.1

Sleepycat License "1999"

University of Illinois/NCSA Open Source License —

W3C License "2001"

X11 License "2001"

Zlib/libpng License —

Zope Public License 2.0

Due to the many variants of some of the above licenses, we require that any version follow the
2003 version of the Free Software Foundation's Free Software Definition (ht-
tp://www.gnu.org/philosophy/free-sw.html) or version 1.9 of the Open Source Definition by the
Open Source Initiative (http://www.opensource.org/docs/definition.php).

3. Definitions

a. Terms used, but not defined, herein shall have the meaning provided in the GPL.

b. Derivative Work means a derivative work under copyright law.

4. Applicability: This FLOSS Exception applies to all Programs that contain a notice placed by
MySQL AB saying that the Program may be distributed under the terms of this FLOSS Exception.
If you create or distribute a work which is a Derivative Work of both the Program and any other
work licensed under the GPL, then this FLOSS Exception is not available for that work; thus, you
must remove the FLOSS Exception notice from that work and comply with the GPL in all respects,
including by retaining all GPL notices. You may choose to redistribute a copy of the Program ex-
clusively under the terms of the GPL by removing the FLOSS Exception notice from that copy of
the Program, provided that the copy has never been modified by you or any third party.

Appendix A. Qualified Libraries and Packages

The following is a non-exhaustive list of libraries and packages which are covered by the FLOSS Li-
cense Exception. Please note that this appendix is provided merely as an additional service to specific
FLOSS projects wishing to simplify licensing information for their users. Compliance with one of the li-
censes noted under the “FLOSS license list” section remains a prerequisite.

Package
Name

Qualify-
ing Li-
cense
and
Version

Apache Port-
able Runtime
(APR)

Apache
Soft-
ware Li-
cense

MySQL FLOSS License Exception

1953

http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/philosophy/free-sw.html
http://www.opensource.org/docs/definition.php

2.0

MySQL FLOSS License Exception

1954

Index
Symbols
! (logical NOT), 675
!= (not equal), 671
", 585
% (modulo), 694
% (wildcard character), 582
& (bitwise AND), 727
&& (logical AND), 675
() (parentheses), 669
(Control-Z) \Z, 582
* (multiplication), 690
+ (addition), 690
- (subtraction), 690
- (unary minus), 690
--password option, 357
-p option, 357
.my.cnf file, 207, 207, 333, 341, 357, 402
.mysql_history file, 537
.pid (process ID) file, 382
/ (division), 690
/etc/passwd, 321, 795
< (less than), 671
<<, 195
<< (left shift), 728
<= (less than or equal), 671
<=> (equal to), 671
<> (not equal), 671
= (equal), 670
> (greater than), 671
>= (greater than or equal), 671
>> (right shift), 728
[API] (MySQL Cluster), 1035
[MGM] (MySQL Cluster), 1033
[NDBD] (MySQL Cluster), 1026
[NDBD_DEFAULT] (MySQL Cluster), 1026
[NDB_MGMD] (MySQL Cluster), 1033
[SQL] (MySQL Cluster), 1035
\" (double quote), 582
\' (single quote), 582
\0 (ASCII 0), 581
\b (backspace), 582
\n (linefeed), 582
\n (newline), 582
\r (carriage return), 582
\t (tab), 582
\Z (Control-Z) ASCII 26, 582
\\ (escape), 582
^ (bitwise XOR), 728
_ (wildcard character), 582
_rowid, 761
`, 585
| (bitwise OR), 727
|| (logical OR), 675
~, 728

A
aborted clients, 1640
aborted connection, 1640
ABS(), 691
access control, 334
access denied errors, 1632
access privileges, 324
account privileges

adding, 351
accounts

anonymous user, 118
root, 118

ACID, 31, 904
ACLs, 324
ACOS(), 691
Active Server Pages (ASP), 1361
ActiveState Perl, 165
add-drop-database option

mysqldump, 562
add-drop-table option

mysqldump, 563
add-locks option

mysqldump, 563
ADDDATE(), 698
adding

character sets, 384
native functions, 1628
new account privileges, 351
new functions, 1617
new user privileges, 351
new users, 89, 92
procedures, 1630
user-defined functions, 1619

addition (+), 690
ADDTIME(), 698
addtodest option

mysqlhotcopy, 571
administration of MySQL Cluster, 1044
AES_DECRYPT(), 729
AES_ENCRYPT(), 729
age

calculating, 181
alias, 1656
alias names

case sensitivity, 586
aliases

for expressions, 749
for tables, 793
in GROUP BY clauses, 749
names, 584
on expressions, 792

ALL, 797
all-databases option

mysqlcheck, 559
mysqldump, 563

all-in-1 option
mysqlcheck, 559

1955

allow-keywords option
mysqldump, 563

allow-suspicious-udfs option
mysqld, 231, 321

allowold option
mysqlhotcopy, 571

ALLOW_INVALID_DATES SQL mode, 289
ALTER COLUMN, 752
ALTER DATABASE, 750
ALTER FUNCTION, 1137
ALTER PROCEDURE, 1137
ALTER SCHEMA, 750
ALTER TABLE, 750, 753, 1660
ALTER VIEW, 1163
altering

database, 750
schema, 750

analyze option
myisamchk, 524
mysqlcheck, 559

ANALYZE TABLE, 841
AND

bitwise, 727
logical, 675

angel-pid-file option
mysqlmanager, 306

anonymous user, 118, 118, 335, 337
ANSI mode

running, 27
ansi option

mysqld, 231
ANSI SQL mode, 288, 293
ANSI_QUOTES SQL mode, 289
answering questions

etiquette, 20
Apache, 200
API node (MySQL Cluster)

defined, 979
API nodes, 1041
API's

list of, 1716
APIs, 1197

Perl, 1291
approximate-value literals, 1187
ArbitrationDelay, 1002, 1020
ArbitrationRank, 1001, 1020
ArbitrationTimeout (MySQL Cluster configuration para-
meter), 1016
arbitrator, 1095
ARCHIVE storage engine, 894, 973
Area(), 1122, 1123
argument processing, 1624
arithmetic expressions, 690
arithmetic functions, 727
AS, 793, 797
AsBinary(), 1118
ASCII(), 678
ASIN(), 691

AsText(), 1118
ATAN(), 692
ATAN2(), 692
attackers

security against, 320
AUTO-INCREMENT

ODBC, 1357
auto-rehash option

mysql, 533
auto-repair option

mysqlcheck, 560
autoclose option

mysqld_safe, 298
AUTO_INCREMENT, 196

and NULL values, 1656
AVG(), 742
AVG(DISTINCT), 742

B
backslash

escape character, 581
backspace (\b), 582
backup option

myisamchk, 522
myisampack, 527

BACKUP TABLE, 842
BackupDataBufferSize, 1063
BackupDataBufferSize (MySQL Cluster configuration
parameter), 1019
BackupDataDir, 1003
BackupLogBufferSize, 1019, 1064
BackupMaxWriteSize, 1019, 1064
BackupMemory, 1019, 1064
backups, 365

database, 842
in MySQL Cluster, 1059, 1059, 1060, 1061, 1063

backups, troubleshooting
in MySQL Cluster, 1064

BackupWriteSize, 1019, 1064
basedir option

mysqld, 231
mysqld_safe, 298
mysql_upgrade, 316

batch mode, 190
batch option

mysql, 533
BatchByteSize, 1020
BatchSize, 1021
BatchSizePerLocalScan, 1009
BDB storage engine, 894, 965
BDB tables, 31
bdb-home option

mysqld, 967
bdb-lock-detect option

mysqld, 967
bdb-logdir option

mysqld, 967
bdb-no-recover option

Index

1956

mysqld, 967
bdb-no-sync option

mysqld, 967
bdb-shared-data option

mysqld, 967
bdb-tmpdir option

mysqld, 967
BdMPolyFromText(), 1114
BdMPolyFromWKB(), 1115
BdPolyFromText(), 1114
BdPolyFromWKB(), 1115
BEGIN, 821, 1138

XA transactions, 829
benchmark suite, 445
BENCHMARK(), 733
benchmarks, 446
BerkeleyDB storage engine, 894, 965
BETWEEN ... AND, 672
big5, 625
Big5 Chinese character encoding, 1653
BIGINT data type, 637
BIN(), 678
BINARY, 725
BINARY data type, 642, 656
binary distributions, 47

installing, 87
on Linux, 133

binary log, 390
bind-address option

mysqld, 231
mysqlmanager, 306

binlog-do-db option
mysqld, 391

binlog-ignore-db option
mysqld, 391

BIT data type, 635
BitKeeper tree, 96
BIT_AND(), 743
BIT_COUNT, 195
BIT_COUNT(), 728
bit_functions

example, 195
BIT_LENGTH(), 678
BIT_OR, 195
BIT_OR(), 743
BIT_XOR(), 743
BLACKHOLE storage engine, 894, 975
BLOB

inserting binary data, 583
size, 665

BLOB columns
default values, 658
indexing, 491, 762

BLOB data type, 642, 657
block-search option

myisamchk, 524
BOOL data type, 636
BOOLEAN data type, 636

bootstrap option
mysqld, 231

Borland Builder 4, 1362
Borland C++ compiler, 1292
Boundary(), 1120
brackets

square, 635
brief option

mysqlaccess, 545
buffer sizes

client, 1197
mysqld server, 503

Buffer(), 1125
bug reports

criteria for, 21
bugs

known, 1662
MySQL Cluster

reporting, 1068
reporting, 21

bugs database, 21
bugs.mysql.com, 21
building

client programs, 1288

C
C API

data types, 1197
functions, 1202
linking problems, 1288

C Prepared statement API
functions, 1257

C++ APIs, 1292
C++ Builder, 1362
C++ compiler

gcc, 94
C++ compiler cannot create executables, 99
C:\my.cnf file, 402
CACHE INDEX, 875
caches

clearing, 876
calculating

dates, 181
calendar, 713
CALL, 1138
calling sequences for aggregate functions

UDF, 1622
calling sequences for simple functions

UDF, 1621
can't create/write to file, 1642
carriage return (\r), 582
CASE, 676, 1144
case sensitivity

in access checking, 328
in identifiers, 586
in names, 586
in searches, 1653
in string comparisons, 687

Index

1957

case-sensitivity
of database names, 27
of table names, 27

CAST, 725
cast functions, 725
cast operators, 725
casts, 669, 670, 725
CC environment variable, 94, 94, 100, 1933
cc1plus problems, 99
CEILING(), 692
Centroid(), 1124
CFLAGS environment variable, 94, 100, 1933
CHANGE MASTER TO, 882
ChangeLog, 1718
changes

Cluster, 1842
log, 1718
MySQL 5.0, 1718

changes to privileges, 339
changing

column, 752
column order, 1661
field, 752
table, 750, 753, 1660

changing socket location, 93, 115, 1652
CHAR data type, 641, 654
CHAR VARYING data type, 641
CHAR(), 678
CHARACTER data type, 641
character sets, 95, 382

adding, 384
Character sets, 594
CHARACTER VARYING data type, 641
character-set-client-handshake option

mysqld, 232
character-set-filesystem option

mysqld, 232
character-set-server option

mysqld, 232
character-sets-dir option

myisamchk, 522
myisampack, 527
mysql, 533
mysqladmin, 550
mysqlbinlog, 553
mysqlcheck, 560
mysqld, 232
mysqldump, 563
mysqlimport, 573
mysqlshow, 576

characters
multi-byte, 387

CHARACTER_LENGTH(), 679
CHARACTER_SETS

INFORMATION_SCHEMA table, 1178
CHARSET(), 733
CHAR_LENGTH(), 679
check option

myisamchk, 521
mysqlcheck, 560

check options
myisamchk, 521

CHECK TABLE, 842
check-only-changed option

myisamchk, 521
mysqlcheck, 560

check-upgrade option
mysqlcheck, 560

checking
tables for errors, 373

CHECKPOINT Events (MySQL Cluster), 1054
checkpoint option

mysqlhotcopy, 571
Checksum, 1022
Checksum (MySQL Cluster), 1024, 1025
checksum errors, 140
CHECKSUM TABLE, 844
Chinese, 1653
Chinese, Japanese, Korean character sets

frequently asked questions, 623
choosing

a MySQL version, 43
choosing types, 666
chroot option

mysqld, 232
mysqlhotcopy, 571

CJK
FAQ, 623

CJK (Chinese, Japanese, Korean)
Access, Perl, PHP, etc., 627
availability of specific characters, 630
available character sets, 629
big5, 625
character sets available, 629
characters displayed as question marks, 623
CJKV, 632
collations, 631, 632
conversion problems with Japanese character sets,
625
data truncation, 626
documentation in Chinese, 633
documentation in Japanese, 633
documentation in Korean, 633
gb2312, gbk, 624
Japanese character sets, 625
Korean character set, 626
LIKE and FULLTEXT, 629
MySQL 4.0 behaviour, 628
ORDER BY treatment, 631, 632
problems with Access, Perl, PHP, etc., 627
problems with Big5 character sets (Chinese), 625
problems with data truncation, 626
problems with euckr character set (Korean), 626
problems with GB character sets (Chinese), 624
problems with great Yen sign (Japanese), 626
problems with LIKE and FULLTEXT, 629

Index

1958

rejected characters, 632
sort order problems, 631, 632
sorting problems, 631, 632
testing if specific characters are available, 630
Unicode collations, 632
using the right collation, 631
Vietnamese, 632
Yen sign, 626

clearing
caches, 876

client programs, 515
building, 1288

client tools, 1197
clients

debugging, 1928
threaded, 1288

CLOSE, 1143
closing

tables, 501
cluster logs, 1052, 1052
Clustering, 977
CLUSTERLOG commands (MySQL Cluster), 1052
CLUSTERLOG STATISTICS command (MySQL
Cluster), 1057
COALESCE(), 672
COERCIBILITY(), 733
ColdFusion, 1362
collating

strings, 386
COLLATION(), 734
collation-server option

mysqld, 232
COLLATIONS

INFORMATION_SCHEMA table, 1178
COLLATION_CHARACTER_SET_APPLICABILITY

INFORMATION_SCHEMA table, 1179
column

changing, 752
types, 635

column comments, 761
column names

case sensitivity, 586
column-names option

mysql, 533
columns

changing, 1661
indexes, 491
names, 584
other types, 666
selecting, 179
storage requirements, 663

COLUMNS
INFORMATION_SCHEMA table, 1174

columns option
mysqlimport, 573

COLUMN_PRIVILEGES
INFORMATION_SCHEMA table, 1177

comma-separate values data, reading, 785, 796

command options
mysql, 533
MySQL Cluster, 1044, 1045, 1045, 1047, 1047
mysqladmin, 550
mysqld, 230

command syntax, 4
command-line history

mysql, 537
commands

for binary distribution, 87
commands out of sync, 1643
Comment syntax, 589
comments

adding, 589
starting, 35

comments option
mysqldump, 563

COMMIT, 31, 821
XA transactions, 829

commit option
mysqlaccess, 545

compact option
mysqldump, 563

comparison operators, 670
compatibility

between MySQL versions, 122
with mSQL, 689
with ODBC, 586, 638, 669, 672, 760, 799
with Oracle, 28, 745, 819
with PostgreSQL, 30
with standard SQL, 26
with Sybase, 821

compatible option
mysqldump, 563

compiler
C++ gcc, 94

compiling
on Windows, 106
optimizing, 503
problems, 98
speed, 507
statically, 94
user-defined functions, 1626

complete-insert option
mysqldump, 563

compliance
Y2K, 11

compress option
mysql, 533
mysqladmin, 550
mysqlcheck, 560
mysqldump, 563
mysqlimport, 573
mysqlshow, 576

COMPRESS(), 729
compressed tables, 901
CONCAT(), 679
CONCAT_WS(), 679

Index

1959

concurrent inserts, 486, 489
Conditions, 1140
config-file option

mysqld_multi, 302
config.cache, 98
config.cache file, 98
config.ini (MySQL Cluster), 987, 996, 997, 1043
configuration

MySQL Cluster, 1025
configuration files, 341
configuration options, 93
configure

running after prior invocation, 98
configure option

--with-charset, 95
--with-collation, 95
--with-extra-charsets, 95
--with-low-memory, 99

configure script, 93
configuring backups

in MySQL Cluster, 1063
configuring MySQL Cluster, 982, 993, 1041, 1043
Configuring MySQL Cluster (concepts), 979
connecting

remotely with SSH, 364
to the server, 169, 332
verification, 334

connection
aborted, 1640

CONNECTION Events (MySQL Cluster), 1054
CONNECTION_ID(), 734
Connector/JDBC, 1295
Connector/MXJ, 1295
Connector/NET, 1295, 1368

reporting problems, 1556
Connector/ODBC, 1295, 1295

reporting problems, 1367
Connectors

MySQL, 1295
connectstring, 999
connect_timeout variable, 537, 552
console option

mysqld, 232
constant table, 449, 458
constraints, 36
CONSTRAINTS

INFORMATION_SCHEMA table, 1179
Contains(), 1127
contributing companies

list of, 1717
contributors

list of, 1709
control access, 334
control flow functions, 676
CONV(), 680
conventions

typographical, 2
CONVERT, 725

CONVERT TO, 753
CONVERT_TZ(), 698
ConvexHull(), 1125
copy option

mysqlaccess, 546
copying databases, 130
copying tables, 766
core-file option

mysqld, 232
core-file-size option

mysqld_safe, 299
correct-checksum option

myisamchk, 522
COS(), 692
COT(), 692
count option

myisam_ftdump, 517
mysqladmin, 550
mysqlshow, 576

COUNT(), 743
COUNT(DISTINCT), 743
counting

table rows, 186
crash, 1923

recovery, 372
repeated, 1649

crash-me, 446
crash-me program, 444, 445
CRC32(), 692
CREATE DATABASE, 756
CREATE FUNCTION, 1133, 1618
CREATE INDEX, 756
CREATE PROCEDURE, 1133
CREATE SCHEMA, 756
CREATE TABLE, 758
CREATE TRIGGER, 1156
CREATE USER, 832
CREATE VIEW, 1163
create-options option

mysqldump, 563
creating

bug reports, 21
database, 756
databases, 173
default startup options, 207
function, 1618
schema, 756
tables, 175

creating user accounts, 832
CROSS JOIN, 797
Crosses(), 1127
CR_SERVER_GONE_ERROR, 1638
CR_SERVER_LOST_ERROR, 1638
CSV data, reading, 785, 796
CSV storage engine, 894, 974
CURDATE(), 699
CURRENT_DATE, 699
CURRENT_TIME, 699

Index

1960

CURRENT_TIMESTAMP, 699
CURRENT_USER(), 734
Cursors, 1142
CURTIME(), 699
customers

of MySQL, 445
CXX environment variable, 94, 94, 99, 99, 100, 1933
CXXFLAGS environment variable, 94, 100, 1933

D
data

character sets, 382
loading into tables, 176
retrieving, 177
size, 490

data node (MySQL Cluster)
defined, 979

data nodes (MySQL Cluster), 1042
Data truncation with CJK characters, 626
data type

BIGINT, 637
BINARY, 642, 656
BIT, 635
BLOB, 642, 657
BOOL, 636, 666
BOOLEAN, 636, 666
CHAR, 641, 654
CHAR VARYING, 641
CHARACTER, 641
CHARACTER VARYING, 641
DATE, 639, 648
DATETIME, 639, 648
DEC, 639
DECIMAL, 638, 1187
DOUBLE, 637
DOUBLE PRECISION, 638
ENUM, 643, 659
FIXED, 639
FLOAT, 637, 637, 638
GEOMETRY, 1112
GEOMETRYCOLLECTION, 1112
INT, 637
INTEGER, 637
LINESTRING, 1112
LONG, 657
LONGBLOB, 642
LONGTEXT, 642
MEDIUMBLOB, 642
MEDIUMINT, 636
MEDIUMTEXT, 642
MULTILINESTRING, 1112
MULTIPOINT, 1112
MULTIPOLYGON, 1112
NATIONAL CHAR, 641
NCHAR, 641
NUMERIC, 639
POINT, 1112
POLYGON, 1112

REAL, 638
SET, 643, 661
SMALLINT, 636
TEXT, 642, 657
TIME, 639, 653
TIMESTAMP, 639, 648
TINYBLOB, 642
TINYINT, 635
TINYTEXT, 642
VARBINARY, 642, 656
VARCHAR, 641, 654
VARCHARACTER, 641
YEAR, 640, 653

data types, 635
C API, 1197
overview, 635

data-file-length option
myisamchk, 522

database
altering, 750
creating, 756
deleting, 768

database design, 490
Database information

obtaining, 853
database metadata, 1171
database names

case sensitivity, 586
case-sensitivity, 27

database option
mysql, 533
mysqlbinlog, 553

DATABASE(), 735
databases

backups, 365
copying, 130
creating, 173
defined, 5
information about, 189
names, 584
replicating, 408
selecting, 174
symbolic links, 511
using, 173

databases option
mysqlcheck, 560
mysqldump, 563

DataDir, 1002, 1003
datadir option

mysqld, 232
mysqld_safe, 299
mysql_upgrade, 317

DataJunction, 1363
DataMemory, 1004, 1035
DATE, 1654
date and time functions, 697
Date and Time types, 647
date calculations, 181

Index

1961

DATE columns
problems, 1654

DATE data type, 639, 648
date functions

Y2K compliance, 11
date option

mysql_explain_log, 545
date types, 664

Y2K issues, 654
date values

problems, 649
DATE(), 699
DATEDIFF(), 699
DATETIME data type, 639, 648
DATE_ADD(), 700
DATE_FORMAT(), 702
DATE_SUB(), 700
DAY(), 703
DAYNAME(), 703
DAYOFMONTH(), 703
DAYOFWEEK(), 703
DAYOFYEAR(), 703
db option

mysqlaccess, 546
db table

sorting, 338
DB2 SQL mode, 293
DBI interface, 1291
DBI->quote, 583
DBI->trace, 1926
DBI/DBD interface, 1291
DBI_TRACE environment variable, 1926, 1933
DBI_USER environment variable, 1933
DBUG package, 1928
DEALLOCATE PREPARE, 890, 892
debug option

myisamchk, 519
myisampack, 527
mysql, 533
mysqlaccess, 546
mysqladmin, 550
mysqlbinlog, 553
mysqlcheck, 560
mysqld, 232
mysqldump, 564
mysqlhotcopy, 571
mysqlimport, 573
mysqlshow, 576

debug-info option
mysql, 533

debugging
client, 1928
server, 1923

debugging support, 93
DEC data type, 639
decimal arithmetic, 1187
DECIMAL data type, 638, 1187
decimal point, 635

DECLARE, 1139
DECODE(), 730
decode_bits myisamchk variable, 520
DEFAULT

constraint, 37
default

privileges, 118
default hostname, 332
default installation location, 56
default options, 207
DEFAULT value clause, 643, 761
default values, 443, 643, 761, 776

BLOB and TEXT columns, 658
explicit, 643
implicit, 643
suppression, 37

DEFAULT(), 739
default-character-set option

mysql, 533
mysqladmin, 550
mysqlcheck, 560
mysqld, 232
mysqldump, 564
mysqlimport, 573
mysqlshow, 576

default-collation option
mysqld, 233

default-mysqld-path option
mysqlmanager, 306

default-storage-engine option
mysqld, 233

default-table-type option
mysqld, 233

default-time-zone option
mysqld, 233

defaults-extra-file option, 211
mysqld_safe, 299

defaults-file option, 210
mysqld_safe, 299
mysqlmanager, 306

defaults-group-suffix option, 211
DEGREES(), 693
delay-key-write option

mysqld, 233, 898
DELAYED, 779
delayed-insert option

mysqldump, 564
delayed_insert_limit, 780
DELETE, 771
delete option

mysqlimport, 573
delete-master-logs option

mysqldump, 564
deleting

database, 768
foreign key, 753, 924
function, 1619
index, 752, 769

Index

1962

primary key, 752
rows, 1657
schema, 768
table, 769
user, 354, 832
users, 354, 832

deletion
mysql.sock, 1652

delimiter option
mysql, 533

Delphi, 1362
derived tables, 811
des-key-file option

mysqld, 233
DESC, 818
DESCRIBE, 189, 818
description option

myisamchk, 524
design

choices, 490
issues, 1662
limitations, 443

DES_DECRYPT(), 730
DES_ENCRYPT(), 730
developers

list of, 1704
development source tree, 96
Difference(), 1125
digits, 635
Dimension(), 1119
directory structure

default, 56
disable-keys option

mysqldump, 564
disable-log-bin option

mysqlbinlog, 553
DISCARD TABLESPACE, 754, 909
disconnecting

from the server, 169
Disjoint(), 1127
disk full, 1651
disk issues, 510
Diskless, 1012
disks

splitting data across, 513
display size, 635
display triggers, 871
display width, 635
displaying

information
Cardinality, 859
Collation, 859
SHOW, 853, 854, 859, 861, 871

table status, 869
Distance(), 1127
DISTINCT, 179, 466, 797

AVG(), 742
COUNT(), 743

MAX(), 744
MIN(), 744
SUM(), 745

DISTINCTROW, 797
DIV, 691
division (/), 690
DNS, 510
DO, 773
DocBook XML

documentation source format, 2
Documentation

in Chinese, 633
in Japanese, 633
in Korean, 633

Documenters
list of, 1713

DOUBLE data type, 637
DOUBLE PRECISION data type, 638
double quote (\"), 582
downgrades

MySQL Cluster, 1037, 1037, 1038
downgrading, 131
downloading, 53
DROP DATABASE, 768
DROP FOREIGN KEY, 753, 924
DROP FUNCTION, 1137, 1619
DROP INDEX, 752, 769
DROP PREPARE, 892
DROP PRIMARY KEY, 752
DROP PROCEDURE, 1137
DROP SCHEMA, 768
DROP TABLE, 769
DROP TRIGGER, 1159
DROP USER, 832
DROP VIEW, 1170
dropping

user, 354, 832
dryrun option

mysqlhotcopy, 571
DUAL, 792
dump option

myisam_ftdump, 518
DUMPFILE, 796
dynamic table characteristics, 900

E
Eiffel Wrapper, 1292
ELT(), 680
email lists, 18
embedded MySQL server library, 1197
enable-named-pipe option

mysqld, 233
ENCODE(), 730
ENCRYPT(), 731
encryption, 358
encryption functions, 728
END, 1138
EndPoint(), 1121

Index

1963

ENTER SINGLE USER MODE command (MySQL
Cluster), 1051
entering

queries, 170
ENUM

size, 666
ENUM data type, 643, 659
Envelope(), 1119
environment variable

CC, 94, 94, 100
CFLAGS, 94, 100
CXX, 94, 94, 100
CXXFLAGS, 94, 100
HOME, 537
LD_RUN_PATH, 135, 142
MYSQL_DEBUG, 516
MYSQL_HISTFILE, 537
MYSQL_HOST, 333
MYSQL_PWD, 333, 516
MYSQL_TCP_PORT, 401, 401, 516
MYSQL_UNIX_PORT, 401, 401, 516
PATH, 88, 204
USER, 333

Environment variable
CC, 1933
CFLAGS, 1933
CXX, 99, 1933
CXXFLAGS, 1933
DBI_TRACE, 1926, 1933
DBI_USER, 1933
HOME, 1933
LD_LIBRARY_PATH, 166
LD_RUN_PATH, 166, 1933
MYSQL_DEBUG, 1928, 1933
MYSQL_GROUP_SUFFIX, 1933
MYSQL_HISTFILE, 1933
MYSQL_HOME, 1933
MYSQL_HOST, 1933
MYSQL_PS1, 1933
MYSQL_PWD, 1933
MYSQL_TCP_PORT, 1933
MYSQL_UNIX_PORT, 112, 1933
PATH, 1933
TMPDIR, 112, 1933
TZ, 1653, 1933
UMASK, 1646, 1933
UMASK_DIR, 1646, 1933
USER, 1933

Environment variables
CXX, 99

environment variables, 211, 341, 516
list of, 1933

equal (=), 670
Equals(), 1127
ERROR Events (MySQL Cluster), 1057
error logs (MySQL Cluster), 1042
error messages

can't find file, 1646

languages, 384, 384
errors

access denied, 1632
checking tables for, 373
common, 1631
directory checksum, 140
handling for UDFs, 1625
known, 1662
linking, 1645
list of, 1632
reporting, 1, 21, 21

ERROR_FOR_DIVISION_BY_ZERO SQL mode, 289
escape (\\), 582
escape characters, 581
estimating

query performance, 456
event log format (MySQL Cluster), 1054
event logs (MySQL Cluster), 1052, 1052, 1053
event severity levels (MySQL Cluster), 1053
event types (MySQL Cluster), 1052, 1054
exact-value literals, 1187
example option

mysqld_multi, 302
EXAMPLE storage engine, 894, 970
examples

compressed tables, 528
myisamchk output, 377
queries, 192

EXECUTE, 890
execute option

mysql, 534
EXECUTE statement, 891
ExecuteOnComputer, 1000, 1002, 1020
EXIT command (MySQL Cluster), 1052
EXIT SINGLE USER MODE command (MySQL
Cluster), 1051
exit-info option

mysqld, 233
EXP(), 693
EXPLAIN, 447
explicit default values, 643
EXPORT_SET(), 680
expression aliases, 749, 792
expressions

extended, 184
extend-check option

myisamchk, 521, 522
extended option

mysqlcheck, 560
extended-insert option

mysqldump, 564
extensions

to standard SQL, 26
ExteriorRing(), 1123
external locking, 233, 238, 263, 372, 867
external-locking option

mysqld, 233
EXTRACT(), 703

Index

1964

extracting
dates, 181

F
FALSE, 583, 584

testing for, 671
fast option

myisamchk, 521
mysqlcheck, 560

fatal signal 11, 99
features of MySQL, 6
FEDERATED storage engine, 894, 971
FETCH, 1143
field

changing, 752
FIELD(), 680
FILE, 682
files

binary log, 390
config.cache, 98
error messages, 384
general query log, 389
log, 93, 394
my.cnf, 419
not found message, 1646
permissions, 1646
repairing, 522
script, 190
size limits, 10
slow query log, 394
tmp, 112
update log (obsolete), 390

filesort optimization, 476
FileSystemPath, 1003
FIND_IN_SET(), 681
first-slave option

mysqldump, 564
FIXED data type, 639
fixed-point arithmetic, 1187
FLOAT data type, 637, 637, 638
floating-point number, 638
floats, 583
FLOOR(), 693
FLUSH, 876
flush option

mysqld, 234
flush tables, 550
flush-logs option

mysqldump, 564
flush-privileges option

mysqldump, 564
flushlog option

mysqlhotcopy, 571
FOR UPDATE, 796
FORCE INDEX, 793, 799, 1660
FORCE KEY, 793, 800
force option

myisamchk, 521, 522

myisampack, 527
mysql, 534
mysqladmin, 551
mysqlcheck, 560
mysqldump, 565
mysqlimport, 574
mysql_upgrade, 317

force-read option
mysqlbinlog, 553

foreign key
constraint, 36
deleting, 753, 924

foreign keys, 33, 194, 753
FORMAT(), 681
Forums, 21
FOUND_ROWS(), 735
FreeBSD troubleshooting, 100
frequently-asked questions about MySQL Cluster, 1090
FROM, 793
FROM_DAYS(), 704
FROM_UNIXTIME(), 704
ft_max_word_len myisamchk variable, 520
ft_min_word_len myisamchk variable, 520
ft_stopword_file myisamchk variable, 520
full disk, 1651
full-text search, 714
FULLTEXT, 714
fulltext

stopword list, 723
function

creating, 1618
deleting, 1619

functions, 668
arithmetic, 727
bit, 727
C API, 1202
C Prepared statement API, 1257
cast, 725
control flow, 676
date and time, 697
encryption, 728
GROUP BY, 742
grouping, 669
information, 733
mathematical, 691
miscellaneous, 739
native

adding, 1628
new, 1617
string, 678
string comparison, 687
user-defined, 1617

adding, 1619
Functions

user-defined, 1618, 1619
functions for SELECT and WHERE clauses, 668
Future development of MySQL Cluster, 1088

Index

1965

G
gb2312, gbk, 624
gcc, 94
gdb

using, 1924
general information, 1
General Public License, 5
general query log, 389
geographic feature, 1103
GeomCollFromText(), 1113
GeomCollFromWKB(), 1114
geometry, 1104
GEOMETRY data type, 1112
GEOMETRYCOLLECTION data type, 1112
GeometryCollection(), 1115
GeometryCollectionFromText(), 1113
GeometryCollectionFromWKB(), 1114
GeometryFromText(), 1113
GeometryFromWKB(), 1114
GeometryN(), 1124
GeometryType(), 1119
GeomFromText(), 1113, 1118
GeomFromWKB(), 1114, 1118
geospatial feature, 1104
getting MySQL, 53
GET_FORMAT(), 704
GET_LOCK(), 739
GIS, 1103, 1103
GLength(), 1121, 1122
global privileges, 833, 840
goals of MySQL, 6
GPL

General Public License, 1947
GNU General Public License, 1947
MySQL FLOSS License Exception, 1952

GRANT, 833
GRANT statement, 351
grant tables, 339

re-creating, 112
sorting, 336, 338

granting
privileges, 833

GRANTS, 858
greater than (>), 671
greater than or equal (>=), 671
GREATEST(), 673
GROUP BY, 477

aliases in, 749
extensions to standard SQL, 748, 793

GROUP BY functions, 742
grouping

expressions, 669
GROUP_CONCAT(), 744

H
HANDLER, 773
Handlers, 1141

handling
errors, 1625

HAVING, 794
HEAP storage engine, 894, 963
HeartbeatIntervalDbApi (MySQL Cluster configuration
parameter), 1013
HeartbeatIntervalDbDb (MySQL Cluster configuration
parameter), 1013
HELP command (MySQL Cluster), 1050
help option

myisamchk, 519
myisampack, 527
myisam_ftdump, 517
mysql, 533
mysqlaccess, 545
mysqladmin, 550
mysqlbinlog, 553
mysqlcheck, 559
mysqld, 231
mysqldump, 562
mysqld_multi, 302
mysqld_safe, 298
mysqlhotcopy, 571
mysqlimport, 573
mysqlmanager, 306
mysqlshow, 576
mysql_upgrade, 316
perror, 579

HELP statement, 819
HEX(), 681
hex-blob option

mysqldump, 565
hexadecimal values, 583
hexdump option

mysqlbinlog, 553
HIGH_NOT_PRECEDENCE SQL mode, 289
HIGH_PRIORITY, 797
hints, 27

index, 793, 799
history of MySQL, 6
HOME environment variable, 537, 1933
host option

mysql, 534
mysqlaccess, 546
mysqladmin, 551
mysqlbinlog, 553
mysqlcheck, 560
mysqldump, 565
mysqlhotcopy, 571
mysqlimport, 574
mysqlshow, 576
mysql_explain_log, 545

host table, 339
sorting, 338

Host*SciId* parameters, 1024
host.frm

problems finding, 109
hostname

Index

1966

default, 332
HostName, 1000, 1002, 1020
hostname caching, 510
HOUR(), 705
howto option

mysqlaccess, 546
html option

mysql, 534

I
i-am-a-dummy option

mysql, 535
icc

and MySQL Cluster support>, 1922
Id, 1000, 1002, 1020
ID

unique, 1287
identifiers, 584

case sensitivity, 586
quoting, 585

IF, 1143
IF(), 676
IFNULL(), 677
IGNORE INDEX, 793, 799
IGNORE KEY, 793, 800
ignore option

mysqlimport, 574
ignore-lines option

mysqlimport, 574
ignore-spaces option

mysql, 534
ignore-table option

mysqldump, 565
IGNORE_SPACE SQL mode, 289
implicit default values, 643
IMPORT TABLESPACE, 754, 909
IN, 673
increasing

performance, 436
increasing with replication

speed, 408
index

deleting, 752, 769
index hints, 793, 799
indexes, 756

and BLOB columns, 491, 762
and IS NULL, 494
and LIKE, 494
and NULL values, 762
and TEXT columns, 491, 762
assigning to key cache, 875
block size, 252
columns, 491
leftmost prefix of, 493
multi-column, 492
multiple-part, 756
names, 584
use of, 492

IndexMemory, 1005, 1035
INET_ATON(), 740
INET_NTOA(), 740
INFO Events (MySQL Cluster), 1057
information functions, 733
information option

myisamchk, 522
INFORMATION_SCHEMA, 1171
init-file option

mysqld, 234
INNER JOIN, 797
InnoDB, 904

Solaris 10 x86_64 issues, 140
innodb option

mysqld, 911
InnoDB storage engine, 894, 904
InnoDB tables, 31
innodb-safe-binlog option

mysqld, 234
innodb_status_file option

mysqld, 911
INSERT, 480, 775
INSERT ... SELECT, 778
INSERT DELAYED, 779, 779
INSERT statement

grant privileges, 352
INSERT(), 681
insert-ignore option

mysqldump, 565
inserting

speed of, 480
inserts

concurrent, 486, 489
install option

mysqlmanager, 307
installation layouts, 56
installation overview, 89
installing

binary distribution, 87
Linux RPM packages, 79
Mac OS X PKG packages, 81
overview, 40
Perl, 164
Perl on Windows, 165
Solaris PKG packages, 84
source distribution, 89
user-defined functions, 1626

installing MySQL Cluster, 982, 985, 994
INSTR(), 681
INT data type, 637
integer arithmetic, 1187
INTEGER data type, 637
integers, 583
InteriorRingN(), 1123
internal compiler errors, 99
internal locking, 485
internals, 1616
Internet Relay Chat, 21

Index

1967

Intersection(), 1125
Intersects(), 1127
INTERVAL(), 674
introducer

string literal, 581, 599
invalid data

constraint, 37
IRC, 21
IS boolean_value, 671
IS NOT boolean_value, 671
IS NOT NULL, 672
IS NULL, 465, 672

and indexes, 494
IsClosed(), 1122
IsEmpty(), 1120
ISNULL(), 673
ISOLATION LEVEL, 827
IsRing(), 1122
IsSimple(), 1120
IS_FREE_LOCK(), 740
IS_USED_LOCK(), 740
ITERATE, 1144

J
Japanese character sets

conversion, 625
Japanese, Korean, Chinese character sets

frequently asked questions, 623
JOIN, 797
join option

myisampack, 527

K
keepold option

mysqlhotcopy, 571
Key cache

MyISAM, 495
key cache

assigning indexes to, 875
key space

MyISAM, 899
keys, 491

foreign, 33, 194
multi-column, 492
searching on two, 195

keys option
mysqlshow, 577

keys-used option
myisamchk, 522

keywords, 590
key_buffer_size myisamchk variable, 520
KEY_COLUMN_USAGE

INFORMATION_SCHEMA table, 1180
KILL, 877
known errors, 1662
Korean, 626
Korean, Chinese, Japanese character sets

frequently asked questions, 623

L
language option

mysqld, 234
language support

error messages, 384
large-pages option

mysqld, 234
last row

unique ID, 1287
LAST_DAY(), 705
LAST_INSERT_ID(), 33, 778
LAST_INSERT_ID() and stored routines, 1146
LAST_INSERT_ID() and triggers, 1146
LAST_INSERT_ID([expr]), 736
layout of installation, 56
LCASE(), 682
LD_LIBRARY_PATH environment variable, 166
LD_RUN_PATH environment variable, 135, 142, 166,
1933
LEAST(), 674
LEAVE, 1144
ledir option

mysqld_safe, 299
LEFT JOIN, 466, 797
LEFT OUTER JOIN, 797
LEFT(), 682
leftmost prefix of indexes, 493
legal names, 584
length option

myisam_ftdump, 518
LENGTH(), 682
less than (<), 671
less than or equal (<=), 671
libmysqld, 1197
libraries

list of, 1715
library

mysqlclient, 1197
mysqld, 1197

License, 1952
LIKE, 687

and indexes, 494
and wildcards, 494

LIMIT, 479, 735, 795
limitations

design, 443
MySQL Limitations, 1938
replication, 419

limitations of MySQL Cluster, 1082
limits

file-size, 10
MySQL Limits, limits in MySQL, 1938

line-numbers option
mysql, 534

linefeed (\n), 582
LineFromText(), 1113
LineFromWKB(), 1114

Index

1968

LINESTRING data type, 1112
LineString(), 1115
LineStringFromText(), 1113
LineStringFromWKB(), 1114
linking, 1288

errors, 1645
problems, 1288
speed, 507

links
symbolic, 511

Linux
binary distribution, 133
source distribution, 133

literals, 581
LN(), 693
LOAD DATA FROM MASTER, 884
LOAD DATA INFILE, 781, 1656
LOAD TABLE FROM MASTER, 885
loading

tables, 176
LOAD_FILE(), 682
local checkpoints (MySQL Cluster), 1035
local option

mysqlimport, 574
local-infile option

mysql, 534
mysqld, 321

local-load option
mysqlbinlog, 553

LOCALTIME, 705
LOCALTIMESTAMP, 705
LOCATE(), 682
LOCK IN SHARE MODE, 796
LOCK TABLES, 825
lock-all-tables option

mysqldump, 565
lock-tables option

mysqldump, 565
mysqlimport, 574

locking, 503
external, 233, 238, 263, 372, 867
page-level, 485
row-level, 33, 485
table-level, 485

locking methods, 485
LockPagesInMainMemory, 1012
log

changes, 1718
log files, 93, 389

maintaining, 394
names, 365

log files (MySQL Cluster), 1042
log option

mysqld, 234
mysqld_multi, 303
mysqlmanager, 307

LOG(), 693
log-bin option

mysqld, 234
log-bin-index option

mysqld, 235
log-bin-trust-function-creators option

mysqld, 235
log-bin-trust-routine-creators option

mysqld, 235
log-error option

mysqld, 235
mysqld_safe, 299

log-isam option
mysqld, 235

log-long-format option
mysqld, 235

log-queries-not-using-indexes option
mysqld, 235

log-short-format option
mysqld, 235

log-slave-updates option
mysqld, 426

log-slow-admin-statements option
mysqld, 236

log-slow-queries option
mysqld, 236

log-tc option
mysqld, 236

log-tc-size option
mysqld, 236

log-warnings option
mysqld, 236, 426

LOG10(), 694
LOG2(), 694
LogDestination, 1001
logging commands (MySQL Cluster), 1052
logical operators, 675
LogLevelCheckpoint (MySQL Cluster configuration
parameter), 1018
LogLevelConnection (MySQL Cluster configuration
parameter), 1018
LogLevelError, 1018
LogLevelInfo, 1018
LogLevelNodeRestart (MySQL Cluster configuration
parameter), 1018
LogLevelShutdown (MySQL Cluster configuration
parameter), 1018
LogLevelStartup (MySQL Cluster configuration para-
meter), 1017
LogLevelStatistic (MySQL Cluster configuration para-
meter), 1018
LONG data type, 657
LONGBLOB data type, 642
LongMessageBuffer, 1009
LONGTEXT data type, 642
LOOP, 1144
low-priority option

mysqlimport, 574
low-priority-updates option

mysqld, 236

Index

1969

LOWER(), 682
LPAD(), 683
LTRIM(), 683

M
Mac OS X, 1295

installation, 81
mailing list address, 1
mailing lists, 18

archive location, 18
guidelines, 20

main features of MySQL, 6
maintaining

log files, 394
tables, 382

MAKEDATE(), 705
MAKETIME(), 706
make_binary_distribution, 215
MAKE_SET(), 683
management client (MySQL Cluster), 1044
management node (MySQL Cluster)

defined, 979
management nodes (MySQL Cluster), 1043
managing MySQL Cluster, 1047
managing MySQL Cluster processes, 1040
manual

available formats, 2
online location, 1
typographical conventions, 2

master-connect-retry option
mysqld, 426

master-data option
mysqldump, 565

master-host option
mysqld, 426

master-info-file option
mysqld, 426

master-password option
mysqld, 427

master-port option
mysqld, 427

master-retry-count option
mysqld, 427

master-ssl option
mysqld, 427

master-ssl-ca option
mysqld, 427

master-ssl-capath option
mysqld, 427

master-ssl-cert option
mysqld, 427

master-ssl-cipher option
mysqld, 427

master-ssl-key option
mysqld, 427

master-user option
mysqld, 427

master/slave setup, 408

MASTER_POS_WAIT(), 740, 885
MATCH ... AGAINST(), 714
matching

patterns, 184
math, 1187
mathematical functions, 691
MAX(), 744
MAX(DISTINCT), 744
max-record-length option

myisamchk, 523
max-relay-log-size option

mysqld, 427
MAXDB SQL mode, 293
maximum memory used, 550
maximums

maximum tables per join, 1938
MaxNoOfAttributes, 1010
MaxNoOfConcurrentIndexOperations, 1008
MaxNoOfConcurrentOperations, 1007
MaxNoOfConcurrentScans, 1009
MaxNoOfConcurrentTransactions, 1006
MaxNoOfFiredTriggers, 1008
MaxNoOfIndexes, 1011
MaxNoOfLocalOperations, 1007
MaxNoOfLocalScans, 1009
MaxNoOfOpenFiles, 1010
MaxNoOfOrderedIndexes, 1011
MaxNoOfSavedMessages, 1010
MaxNoOfTables, 1011
MaxNoOfTriggers, 1011
MaxNoOfUniqueHashIndexes, 1011
MaxScanBatchSize, 1021
max_allowed_packet variable, 537
MAX_CONNECTIONS_PER_HOUR, 354
max_join_size variable, 537
MAX_QUERIES_PER_HOUR, 354
MAX_UPDATES_PER_HOUR, 354
MAX_USER_CONNECTIONS, 354
MBR, 1125
MBRContains(), 1126
MBRDisjoint(), 1126
MBREqual(), 1126
MBRIntersects(), 1126
MBROverlaps(), 1126
MBRTouches(), 1126
MBRWithin(), 1126
MD5(), 731
medium-check option

myisamchk, 522
mysqlcheck, 561

MEDIUMBLOB data type, 642
MEDIUMINT data type, 636
MEDIUMTEXT data type, 642
memlock option

mysqld, 236
MEMORY storage engine, 894, 963
memory usage

myisamchk, 524

Index

1970

memory use, 508, 550
MERGE storage engine, 894, 960
MERGE tables

defined, 960
metadata

database, 1171
method option

mysqlhotcopy, 572
methods

locking, 485
mgm (MySQL Cluster process), 1044
mgmd (MySQL Cluster process), 1043
mgmd (MySQL Cluster)

defined, 979
MICROSECOND(), 706
Microsoft Access, 1358
Microsoft ADO, 1360
Microsoft Excel, 1360
Microsoft Visual Basic, 1360
Microsoft Visual InterDev, 1360
MID(), 683
MIN(), 744
MIN(DISTINCT), 744
Minimum Bounding Rectangle, 1125
minus

unary (-), 690
MINUTE(), 706
mirror sites, 53
miscellaneous functions, 739
MIT-pthreads, 101
MLineFromText(), 1113
MLineFromWKB(), 1114
MOD (modulo), 694
MOD(), 694
modes

batch, 190
modules

list of, 9
modulo (%), 694
modulo (MOD), 694
monitor

terminal, 169
monitoring-interval option

mysqlmanager, 307
Mono, 1368
MONTH(), 706
MONTHNAME(), 706
MPointFromText(), 1113
MPointFromWKB(), 1114
MPolyFromText(), 1113
MPolyFromWKB(), 1114
mSQL compatibility, 689
MSSQL SQL mode, 293
multi-byte character sets, 1644
multi-byte characters, 387
multi-column indexes, 492
MULTILINESTRING data type, 1112
MultiLineString(), 1115

MultiLineStringFromText(), 1113
MultiLineStringFromWKB(), 1114
multiple servers, 395
multiple-part index, 756
multiplication (*), 690
MULTIPOINT data type, 1112
MultiPoint(), 1115
MultiPointFromText(), 1113
MultiPointFromWKB(), 1114
MULTIPOLYGON data type, 1112
MultiPolygon(), 1115
MultiPolygonFromText(), 1113
MultiPolygonFromWKB(), 1114
My

derivation, 6
my.cnf

and MySQL Cluster, 987, 996, 997
in MySQL Cluster, 1041

my.cnf file, 419
MyISAM

compressed tables, 901
size, 663

MyISAM key cache, 495
MyISAM storage engine, 894, 896
myisam-recover option

mysqld, 236, 898
myisamchk, 95, 515

analyze option, 524
backup option, 522
block-search option, 524
character-sets-dir option, 522
check option, 521
check-only-changed option, 521
correct-checksum option, 522
data-file-length option, 522
debug option, 519
description option, 524
example output, 377
extend-check option, 521, 522
fast option, 521
force option, 521, 522
help option, 519
information option, 522
keys-used option, 522
max-record-length option, 523
medium-check option, 522
options, 519
parallel-recover option, 523
quick option, 523
read-only option, 522
recover option, 523
safe-recover option, 523
set-auto-increment[option, 524
set-collation option, 523
silent option, 519
sort-index option, 524
sort-records option, 524
sort-recover option, 523

Index

1971

tmpdir option, 523
unpack option, 524
update-state option, 522
verbose option, 519
version option, 519
wait option, 519

myisamlog, 515
myisampack, 515, 768, 901

backup option, 527
character-sets-dir option, 527
debug option, 527
force option, 527
help option, 527
join option, 527
packlength option, 528
silent option, 528
test option, 528
tmpdir option, 528
verbose option, 528
version option, 528
wait option, 528

myisam_block_size myisamchk variable, 520
myisam_ftdump, 515

count option, 517
dump option, 518
help option, 517
length option, 518
stats option, 518
verbose option, 518

MyODBC, 1295
Borland, 1361
Borland Database Engine, 1361
reporting problems, 1367

MySQL
defined, 5
introduction, 5
pronunciation, 6

mysql, 515
auto-rehash option, 533
batch option, 533
character-sets-dir option, 533
column-names option, 533
compress option, 533
database option, 533
debug option, 533
debug-info option, 533
default-character-set option, 533
delimiter option, 533
execute option, 534
force option, 534
help option, 533
host option, 534
html option, 534
i-am-a-dummy option, 535
ignore-spaces option, 534
line-numbers option, 534
local-infile option, 534
named-commands option, 534

no-auto-rehash option, 534
no-beep option, 534
no-named-commands option, 534
no-pager option, 534
no-tee option, 535
one-database option, 535
pager option, 535
password option, 535
port option, 535
prompt option, 535
protocol option, 535
quick option, 535
raw option, 535
reconnect option, 535
safe-updates option, 535
secure-auth option, 535
show-warnings option, 536
sigint-ignore option, 536
silent option, 536
skip-column-names option, 536
skip-line-numbers option, 536
socket option, 536
SSL options, 536
table option, 536
tee option, 536
unbuffered option, 536
user option, 536
verbose option, 536
version option, 537
vertical option, 537
wait option, 537
xml option, 537

MySQL AB
defined, 4

MySQL binary distribution, 43
MYSQL C type, 1198
MySQL Cluster, 977

administration, 1044, 1044, 1045, 1045, 1047, 1047,
1050, 1057
and DNS, 983
and IP addressing, 983
and networking, 984
API node, 979, 1020
arbitrator, 1095
available platforms, 977
backups, 1059, 1059, 1060, 1061, 1063, 1064
benchmarks, 1081
CHECKPOINT Events, 1054
cluster logs, 1052, 1052
CLUSTERLOG commands, 1052
CLUSTERLOG STATISTICS command, 1057
commands, 1044, 1045, 1045, 1047, 1047, 1050
compiling from source, 993
compiling with icc, 1922
concepts, 979
configuration, 982, 993, 994, 1000, 1000, 1002,
1020, 1035, 1041, 1043
configuration (example), 997

Index

1972

configuration changes, 1038
configuration files, 987, 996
configuration parameters, 1025, 1026, 1033, 1035
configuring, 1063
CONNECTION Events, 1054
connectstring, 999
data node, 979, 1002
data nodes, 1042
data types supported, 1096
defining node hosts, 1000
direct connections between nodes, 1022
ENTER SINGLE USER MODE command, 1051
ERROR Events, 1057
error logs, 1042
error messages, 1093
event log format, 1054
event logging thresholds, 1053
event logs, 1052, 1052
event severity levels, 1053
event types, 1052, 1054
EXIT command, 1052
EXIT SINGLE USER MODE command, 1051
FAQ, 1090
general description, 978
hardware requirements, 1091
HELP command, 1050
how to obtain, 1094
importing existing tables, 1095
INFO Events, 1057
information sources, 977
installation, 982, 985, 994
interconnects, 1077
log files, 1042
logging commands, 1052
management client (mgm), 1044
management commands, 1057
management node, 979, 1000
management nodes, 1043
managing, 1047
memory requirements, 1091
mgm, 1044
mgm client, 1050
mgm management client, 1057
mgm process, 1044, 1047
mgmd, 1044
mgmd process, 1043, 1047
mysqld process, 1041, 1045
ndbd, 1044
ndbd process, 1042, 1045, 1058
ndb_mgm, 989
ndb_size.pl (utility), 1092
network configuration (SCI), 1078
network transporters, 1077, 1077
networking, 1022, 1023, 1024
networking requirements, 1090, 1093
node failure (single-user mode), 1059
node identifiers, 1023, 1024
node logs, 1052

node types, 1091
NODERESTART Events, 1055
nodes and node groups, 980
nodes and types, 979
number of computers required, 1090
obtaining, 985
partitions, 980
performance, 1081
performing queries, 989
platforms supported, 1091
process management, 1040
quick configuration, 994
QUIT command, 1052
replicas, 980
requirements, 984
resetting, 1038
RESTART command, 1051
restarting, 992
restoring backups, 1061
roles of computers, 1090
runtime statistics, 1057
SCI (Scalable Coherent Interface), 1024, 1077
SCI drivers, 1080
SCI network configuration, 1078
SCI software installation, 1078
SCI software requirements, 1077
SCI, performance vs TCP/IP, 1082
shared memory transport, 1023
SHOW command, 1051
SHUTDOWN command, 1052
shutting down, 992
single-user mode, 1051, 1058
SQL node, 979, 1020
SQL nodes, 1041
SQL statements, 1093
START BACKUP command, 1060
START command, 1051
starting and stopping, 1096
starting nodes, 988
starting or restarting, 1048
starting with --initial, 994
STARTUP Events, 1054
STATISTICS Events, 1056
STATUS command, 1051
STOP command, 1051
storage requirements, 663
terminology, 1097
trace files, 1042
transaction isolation levels supported, 1093
transactions, 1004, 1093
transporters

Scalable Coherent Interface (SCI), 1024
shared memory (SHM), 1023
TCP/IP, 1022

troubleshooting backups, 1064
upgrades and downgrades, 1037, 1037, 1038
using tables and data, 989
vs replication, 1090

Index

1973

MySQL Cluster Glossary, 1097
MySQL Cluster How-To, 982
MySQL Cluster in MySQL 5.0 and 5.1, 1088
MySQL Cluster limitations, 1082

causing errors, 1083
database objects, 1085
geometry datatypes, 1083
implementation, 1087
imposed by configuration, 1084
multiple management servers, 1087
multiple MySQL servers, 1086
performance, 1085
resolved in current version from previous versions,
1088
syntax, 1083
transactions, 1083
unsupported features, 1085, 1086

MySQL Cluster processes (types), 1040
MySQL Cluster utilities, 1064
mysql command options, 533
mysql commands

list of, 538
MySQL Dolphin name, 6
MySQL history, 6
mysql history file, 537
MySQL mailing lists, 18
MySQL name, 6
mysql prompt command, 539
MySQL source distribution, 43
mysql status command, 538
MySQL storage engines, 894
MySQL version, 53
MySQL++, 1292
mysql.server, 214
mysql.sock

changing location of, 93
protection, 1652

MYSQL323 SQL mode, 293
MYSQL40 SQL mode, 293
mysqlaccess, 515

brief option, 545
commit option, 545
copy option, 546
db option, 546
debug option, 546
help option, 545
host option, 546
howto option, 546
old_server option, 546
password option, 546
plan option, 546
preview option, 546
relnotes option, 546
rhost option, 546
rollback option, 546
spassword option, 546
superuser option, 547
table option, 547

user option, 547
version option, 547

mysqladmin, 515, 756, 769, 868, 872, 876, 877
character-sets-dir option, 550
compress option, 550
count option, 550
debug option, 550
default-character-set option, 550
force option, 551
help option, 550
host option, 551
password option, 551
port option, 551
protocol option, 551
relative option, 551
silent option, 551
sleep option, 551
socket option, 551
SSL options, 551
user option, 551
verbose option, 551
version option, 552
vertical option, 552
wait option, 552

mysqladmin command options, 550
mysqladmin option

mysqld_multi, 303
mysqlbinlog, 516

character-sets-dir option, 553
database option, 553
debug option, 553
disable-log-bin option, 553
force-read option, 553
help option, 553
hexdump option, 553
host option, 553
local-load option, 553
offset option, 554
password option, 554
port option, 554
position option, 554
protocol option, 554
read-from-remote-server option, 554
result-file option, 554
set-charset option, 554
short-form option, 554
socket option, 554
start-datetime option, 554
start-position option, 555
stop-datetime option, 555
stop-position option, 555
to-last-log option, 555
user option, 555
version option, 555

mysqlbug script, 25
mysqlcheck, 516

all-databases option, 559
all-in-1 option, 559

Index

1974

analyze option, 559
auto-repair option, 560
character-sets-dir option, 560
check option, 560
check-only-changed option, 560
check-upgrade option, 560
compress option, 560
databases option, 560
debug option, 560
default-character-set option, 560
extended option, 560
fast option, 560
force option, 560
help option, 559
host option, 560
medium-check option, 561
optimize option, 561
password option, 561
port option, 561
protocol option, 561
quick option, 561
repair option, 561
silent option, 561
socket option, 561
SSL options, 561
tables option, 561
use-frm option, 562
user option, 562
verbose option, 562
version option, 562

mysqlclient library, 1197
mysqld, 214

allow-suspicious-udfs option, 231, 321
ansi option, 231
as MySQL Cluster process, 1041, 1045
basedir option, 231
bdb-home option, 967
bdb-lock-detect option, 967
bdb-logdir option, 967
bdb-no-recover option, 967
bdb-no-sync option, 967
bdb-shared-data option, 967
bdb-tmpdir option, 967
bind-address option, 231
binlog-do-db option, 391
binlog-ignore-db option, 391
bootstrap option, 231
character-set-client-handshake option, 232
character-set-filesystem option, 232
character-set-server option, 232
character-sets-dir option, 232
chroot option, 232
collation-server option, 232
command options, 230
console option, 232
core-file option, 232
datadir option, 232
debug option, 232

default-character-set option, 232
default-collation option, 233
default-storage-engine option, 233
default-table-type option, 233
default-time-zone option, 233
delay-key-write option, 233, 898
des-key-file option, 233
enable-named-pipe option, 233
exit-info option, 233
external-locking option, 233
flush option, 234
help option, 231
init-file option, 234
innodb option, 911
innodb-safe-binlog option, 234
innodb_status_file option, 911
language option, 234
large-pages option, 234
local-infile option, 321
log option, 234
log-bin option, 234
log-bin-index option, 235
log-bin-trust-function-creators option, 235
log-bin-trust-routine-creators option, 235
log-error option, 235
log-isam option, 235
log-long-format option, 235
log-queries-not-using-indexes option, 235
log-short-format option, 235
log-slave-updates option, 426
log-slow-admin-statements option, 236
log-slow-queries option, 236
log-tc option, 236
log-tc-size option, 236
log-warnings option, 236, 426
low-priority-updates option, 236
master-connect-retry option, 426
master-host option, 426
master-info-file option, 426
master-password option, 427
master-port option, 427
master-retry-count option, 427
master-ssl option, 427
master-ssl-ca option, 427
master-ssl-capath option, 427
master-ssl-cert option, 427
master-ssl-cipher option, 427
master-ssl-key option, 427
master-user option, 427
max-relay-log-size option, 427
memlock option, 236
myisam-recover option, 236, 898
ndb-connectstring option, 237
ndbcluster option, 237
old-passwords option, 237, 322
one-thread option, 237
open-files-limit option, 237
pid-file option, 237

Index

1975

port option, 237
port-open-timeout option, 238
read-only option, 427
relay-log option, 427
relay-log-index option, 427
relay-log-info-file option, 428
relay-log-purge option, 428
relay-log-space-limit option, 428
replicate-do-db option, 428
replicate-do-table option, 428
replicate-ignore-db option, 429
replicate-ignore-table option, 429
replicate-rewrite-db option, 429
replicate-same-server-id option, 429
replicate-wild-do-table option, 429
replicate-wild-ignore-table option, 430
report-host option, 430
report-port option, 430
role in MySQL Cluster, 979
safe-mode option, 238
safe-show-database option, 238, 322
safe-user-create option, 238, 322
secure-auth option, 238, 322
shared-memory option, 238
shared-memory-base-name option, 238
skip-bdb option, 238, 967
skip-concurrent-insert option, 238
skip-external-locking option, 238
skip-grant-tables option, 238, 322
skip-host-cache option, 238
skip-innodb option, 239
skip-merge option, 239
skip-name-resolve option, 239, 322
skip-ndbcluster option, 239
skip-networking option, 239, 322
skip-safemalloc option, 239
skip-show-database option, 240, 322
skip-slave-start option, 430
skip-stack-trace option, 240
skip-symbolic-links option, 239
skip-thread-priority option, 240
slave-load-tmpdir option, 430
slave-net-timeout option, 431
slave-skip-errors option, 431
slave_compressed_protocol option, 430
socket option, 240
sql-mode option, 240
SSL options, 239, 321
standalone option, 239
starting, 324
symbolic-links option, 239
sync-bdb-logs option, 967
sysdate-is-now option, 240
tc-heuristic-recover option, 240
temp-pool option, 240
tmpdir option, 241
transaction-isolation option, 240
user option, 241

version option, 241
mysqld library, 1197
mysqld option

mysqld_multi, 303
mysqld_safe, 299

mysqld options, 504
mysqld server

buffer sizes, 503
mysqld-max, 214, 295
mysqld-version option

mysqld_safe, 299
mysqldump, 130, 516

add-drop-database option, 562
add-drop-table option, 563
add-locks option, 563
all-databases option, 563
allow-keywords option, 563
character-sets-dir option, 563
comments option, 563
compact option, 563
compatible option, 563
complete-insert option, 563
compress option, 563
create-options option, 563
databases option, 563
debug option, 564
default-character-set option, 564
delayed-insert option, 564
delete-master-logs option, 564
disable-keys option, 564
extended-insert option, 564
first-slave option, 564
flush-logs option, 564
flush-privileges option, 564
force option, 565
help option, 562
hex-blob option, 565
host option, 565
ignore-table option, 565
insert-ignore option, 565
lock-all-tables option, 565
lock-tables option, 565
master-data option, 565
no-autocommit option, 566
no-create-db option, 566
no-create-info option, 566
no-data option, 566
opt option, 566
order-by-primary option, 566
password option, 566
port option, 566
problems, 570, 1945
protocol option, 567
quick option, 567
quote-names option, 567
result-file option, 567
routines option, 567
set-charset option, 567

Index

1976

single-transaction option, 567
skip-comments option, 568
skip-opt option, 568
socket option, 568
SSL options, 568
tab option, 568
tables option, 568
triggers option, 568
tz-utc option, 568
user option, 569
verbose option, 569
version option, 569
views, 570, 1945
where option, 569
workarounds, 570, 1945
xml option, 569

mysqld_multi, 214
config-file option, 302
example option, 302
help option, 302
log option, 303
mysqladmin option, 303
mysqld option, 303
no-log option, 303
password option, 303
silent option, 303
tcp-ip option, 303
user option, 303
verbose option, 303
version option, 303

mysqld_safe, 214
autoclose option, 298
basedir option, 298
core-file-size option, 299
datadir option, 299
defaults-extra-file option, 299
defaults-file option, 299
help option, 298
ledir option, 299
log-error option, 299
mysqld option, 299
mysqld-version option, 299
nice option, 299
no-defaults option, 299
open-files-limit option, 299
pid-file option, 300
port option, 300
socket option, 300
timezone option, 300
user option, 300

mysqlhotcopy, 516
addtodest option, 571
allowold option, 571
checkpoint option, 571
chroot option, 571
debug option, 571
dryrun option, 571
flushlog option, 571

help option, 571
host option, 571
keepold option, 571
method option, 572
noindices option, 572
password option, 572
port option, 572
quiet option, 572
record_log_pos option, 572
regexp option, 572
resetmaster option, 572
resetslave option, 572
socket option, 572
suffix option, 572
tmpdir option, 572
user option, 572

mysqlimport, 130, 516, 782
character-sets-dir option, 573
columns option, 573
compress option, 573
debug option, 573
default-character-set option, 573
delete option, 573
force option, 574
help option, 573
host option, 574
ignore option, 574
ignore-lines option, 574
local option, 574
lock-tables option, 574
low-priority option, 574
password option, 574
port option, 574
protocol option, 574
replace option, 574
silent option, 575
socket option, 575
SSL options, 575
user option, 575
verbose option, 575
version option, 575

mysqlmanager, 215
angel-pid-file option, 306
bind-address option, 306
default-mysqld-path option, 306
defaults-file option, 306
help option, 306
install option, 307
log option, 307
monitoring-interval option, 307
password-file option, 307
pid-file option, 307
port option, 308
print-defaults option, 308
print-password-line option, 307
remove option, 308
run-as-service option, 308
socket option, 308

Index

1977

standalone option, 308
user option, 308
version option, 308
wait-timeout option, 308

mysqlshow, 516
character-sets-dir option, 576
compress option, 576
count option, 576
debug option, 576
default-character-set option, 576
help option, 576
host option, 576
keys option, 577
password option, 577
port option, 577
protocol option, 577
show-table-type option, 577
socket option, 577
SSL options, 577
status option, 577
user option, 577
verbose option, 577
version option, 577

mysqltest
MySQL Test Suite, 1616

mysql_affected_rows(), 1206
mysql_autocommit()., 1207
MYSQL_BIND C type, 1254
mysql_change_user(), 1207
mysql_character_set_name(), 1209
mysql_close(), 1209
mysql_commit()., 1209
mysql_connect(), 1210
mysql_create_db(), 1210
mysql_data_seek(), 1211
MYSQL_DEBUG environment variable, 516, 1928,
1933
mysql_debug(), 1211
mysql_drop_db(), 1212
mysql_dump_debug_info(), 1212
mysql_eof(), 1213
mysql_errno(), 1214
mysql_error(), 1214
mysql_escape_string(), 1215
mysql_explain_log, 515

date option, 545
host option, 545
password option, 545
printerror option, 545
socket option, 545
user option, 545

mysql_fetch_field(), 1215
mysql_fetch_fields(), 1216
mysql_fetch_field_direct(), 1216
mysql_fetch_lengths(), 1217
mysql_fetch_row(), 1217
MYSQL_FIELD C type, 1198
mysql_field_count(), 1218, 1230

MYSQL_FIELD_OFFSET C type, 1199
mysql_field_seek(), 1219
mysql_field_tell(), 1220
mysql_fix_privilege_tables, 215
mysql_free_result(), 1220
mysql_get_character_set_info(), 1220
mysql_get_client_info(), 1221
mysql_get_client_version(), 1221
mysql_get_host_info(), 1221
mysql_get_proto_info(), 1222
mysql_get_server_info(), 1222
mysql_get_server_version(), 1222
MYSQL_GROUP_SUFFIX environment variable, 1933
mysql_hex_string(), 1222
MYSQL_HISTFILE environment variable, 537, 1933
MYSQL_HOME environment variable, 1933
MYSQL_HOST environment variable, 333, 1933
mysql_info(), 754, 777, 790, 817, 1223
mysql_init(), 1224
mysql_insert_id(), 33, 778, 1224
mysql_install_db, 215
mysql_install_db script, 111
mysql_kill(), 1225
mysql_library_end(), 1226
mysql_library_init(), 1226
mysql_list_dbs(), 1226
mysql_list_fields(), 1227
mysql_list_processes(), 1228
mysql_list_tables(), 1228
mysql_more_results()., 1229
mysql_next_result()., 1229
mysql_num_fields(), 1230
mysql_num_rows(), 1231
mysql_options(), 1232
mysql_ping(), 1235
MYSQL_PS1 environment variable, 1933
MYSQL_PWD environment variable, 333, 516, 1933
mysql_query(), 1236, 1286
mysql_real_connect(), 1236
mysql_real_escape_string(), 583, 1240
mysql_real_query(), 1240
mysql_refresh(), 1241
mysql_reload(), 1242
MYSQL_RES C type, 1198
mysql_rollback()., 1243
MYSQL_ROW C type, 1198
mysql_row_seek(), 1243
mysql_row_tell(), 1244
mysql_select_db(), 1244
mysql_server_end(), 1286
mysql_server_init(), 1285
mysql_set_character_set(), 1245
mysql_set_local_infile_default(), 1245, 1245
mysql_set_server_option(), 1247
mysql_shutdown(), 1248
mysql_sqlstate(), 1248
mysql_ssl_set(), 1249
mysql_stat(), 1250

Index

1978

MYSQL_STMT C type, 1254
mysql_stmt_affected_rows(), 1260
mysql_stmt_attr_get(), 1260
mysql_stmt_attr_set(), 1261
mysql_stmt_bind_param(), 1262
mysql_stmt_bind_result(), 1263
mysql_stmt_close(), 1264
mysql_stmt_data_seek(), 1264
mysql_stmt_errno(), 1265
mysql_stmt_error()., 1265
mysql_stmt_execute(), 1266
mysql_stmt_fetch(), 1269
mysql_stmt_fetch_column(), 1273
mysql_stmt_field_count(), 1273
mysql_stmt_free_result(), 1273
mysql_stmt_init(), 1274
mysql_stmt_insert_id(), 1274
mysql_stmt_num_rows(), 1274
mysql_stmt_param_count(), 1275
mysql_stmt_param_metadata(), 1275
mysql_stmt_prepare(), 1275
mysql_stmt_reset(), 1276
mysql_stmt_result_metadata., 1277
mysql_stmt_row_seek(), 1278
mysql_stmt_row_tell(), 1278
mysql_stmt_send_long_data()., 1279
mysql_stmt_sqlstate(), 1280
mysql_stmt_store_result(), 1281
mysql_store_result(), 1250, 1286
MYSQL_TCP_PORT environment variable, 401, 401,
516, 1933
mysql_thread_end(), 1284
mysql_thread_id(), 1251
mysql_thread_init(), 1284
mysql_thread_safe(), 1284
MYSQL_TIME C type, 1255
MYSQL_UNIX_PORT environment variable, 112, 401,
401, 516, 1933
mysql_upgrade, 215, 341

basedir option, 316
datadir option, 317
force option, 317
help option, 316
user option, 317
verbose option, 317

mysql_use_result(), 1252
mysql_warning_count()., 1253
mysql_zap, 516
my_bool C type, 1199
my_bool values

printing, 1199
my_init(), 1284
my_ulonglong C type, 1199
my_ulonglong values

printing, 1199

N
named pipes, 69, 74

named-commands option
mysql, 534

names, 584
case sensitivity, 586
variables, 588

NAME_CONST(), 741
naming

releases of MySQL, 43
NATIONAL CHAR data type, 641
native functions

adding, 1628
native thread support, 41
NATURAL LEFT JOIN, 797
NATURAL LEFT OUTER JOIN, 797
NATURAL RIGHT JOIN, 797
NATURAL RIGHT OUTER JOIN, 797
NCHAR data type, 641
NDB, 1090
ndb option

perror, 579
NDB storage engine, 977
ndb-connectstring option

mysqld, 237
ndbcluster option

mysqld, 237
ndbd (MySQL Cluster process), 1042
ndbd (MySQL Cluster)

defined, 979
ndb_delete_all, 1064, 1066
ndb_desc, 1064, 1066
ndb_drop_index, 1064, 1067
ndb_drop_table, 1064, 1068
ndb_error_reporter, 1064, 1068
ndb_mgm, 1044
ndb_mgm (MySQL Cluster management node client),
989
ndb_mgmd, 1043
ndb_mgmd (MySQL Cluster)

defined, 979
ndb_print_backup_file, 1064, 1069
ndb_print_schema_file, 1064, 1069
ndb_print_sys_file, 1064, 1069
ndb_restore (MySQL Cluster program), 1061
ndb_select_all, 1064, 1070
ndb_select_count, 1064, 1072
ndb_show_tables, 1064, 1072
ndb_size.pl, 1064, 1073
ndb_size.pl (utility), 1092
ndb_waiter, 1064, 1075
negative values, 583
nested queries, 806
net etiquette, 20
netmask notation

in mysql.user table, 334
NetWare, 85
net_buffer_length variable, 537
New features in MySQL Cluster, 1088
new procedures

Index

1979

adding, 1630
new users

adding, 89, 92
newline (\n), 582
nice option

mysqld_safe, 299
no matching rows, 1657
no-auto-rehash option

mysql, 534
no-autocommit option

mysqldump, 566
no-beep option

mysql, 534
no-create-db option

mysqldump, 566
no-create-info option

mysqldump, 566
no-data option

mysqldump, 566
no-defaults option, 210

mysqld_safe, 299
no-log option

mysqld_multi, 303
no-named-commands option

mysql, 534
no-pager option

mysql, 534
no-tee option

mysql, 535
node groups (MySQL Cluster), 980
node identifiers (MySQL Cluster), 1023, 1024
node logs (MySQL Cluster), 1052
NODERESTART Events (MySQL Cluster), 1055
noindices option

mysqlhotcopy, 572
non-delimited strings, 649
Non-transactional tables, 1656
NoOfDiskPagesToDiskAfterRestartACC

calculating, 1035
NoOfDiskPagesToDiskAfterRestartACC (MySQL
Cluster configuration parameter), 1015
NoOfDiskPagesToDiskAfterRestartTUP

calculating, 1035
NoOfDiskPagesToDiskAfterRestartTUP (MySQL
Cluster configuration parameter), 1015
NoOfDiskPagesToDiskDuringRestartACC (MySQL
Cluster configuration parameter), 1015
NoOfDiskPagesToDiskDuringRestartTUP (MySQL
Cluster configuration parameter), 1015
NoOfFragmentLogFiles, 1009

calculating, 1035
NoOfReplicas, 1003
NOT

logical, 675
NOT BETWEEN, 672
not equal (!=), 671
not equal (<>), 671
NOT IN, 673

NOT LIKE, 688
NOT NULL

constraint, 37
NOT REGEXP, 688
Novell NetWare, 85
NOW(), 706
NO_AUTO_CREATE_USER SQL mode, 290
NO_AUTO_VALUE_ON_ZERO SQL mode, 290
NO_BACKSLASH_ESCAPES SQL mode, 290
NO_DIR_IN_CREATE SQL mode, 290
NO_FIELD_OPTIONS SQL mode, 290
NO_KEY_OPTIONS SQL mode, 290
NO_TABLE_OPTIONS SQL mode, 290
NO_UNSIGNED_SUBTRACTION SQL mode, 291
NO_ZERO_DATE SQL mode, 291
NO_ZERO_IN_DATE SQL mode, 291
NUL, 581
NULL, 183, 1655

ORDER BY, 477, 793
testing for null, 671, 672, 672, 677

NULL value, 183, 584
NULL values

and AUTO_INCREMENT columns, 1656
and indexes, 762
and TIMESTAMP columns, 1656
vs. empty values, 1655

NULLIF(), 677
numbers, 583
NUMERIC data type, 639
numeric types, 663
NumGeometries(), 1124
NumInteriorRings(), 1123
NumPoints(), 1121

O
Obtaining MySQL Cluster, 985
OCT(), 683
OCTET_LENGTH(), 683
ODBC, 1295
ODBC compatibility, 586, 638, 669, 672, 760, 799
offset option

mysqlbinlog, 554
OLAP, 746
old-passwords option

mysqld, 237, 322
OLD_PASSWORD(), 732
old_server option

mysqlaccess, 546
ON DUPLICATE KEY, 775
one-database option

mysql, 535
one-thread option

mysqld, 237
online location of manual, 1
ONLY_FULL_GROUP_BY

SQL mode, 748
ONLY_FULL_GROUP_BY SQL mode, 291
OPEN, 1143

Index

1980

Open Source
defined, 5

open tables, 501, 550
open-files-limit option

mysqld, 237
mysqld_safe, 299

OpenGIS, 1103
opening

tables, 501
opens, 550
OpenSSL, 358, 359
open_files_limit variable, 555
operating systems

file-size limits, 10
supported, 41
Windows versus Unix, 77

operations
arithmetic, 690

operators, 668
cast, 689, 725
logical, 675
precedence, 668

opt option
mysqldump, 566

optimization
tips, 483

optimizations, 457, 462
optimize option

mysqlcheck, 561
OPTIMIZE TABLE, 845
optimizer

controlling, 506
optimizing

DISTINCT, 466
filesort, 476
GROUP BY, 477
LEFT JOIN, 466
LIMIT, 479
tables, 376

option files, 207, 341
options

command-line
mysql, 533
mysqladmin, 550

configure, 93
myisamchk, 519
provided by MySQL, 169
replication, 419

OR, 195, 462
bitwise, 727
logical, 675

OR Index Merge optimization, 462
Oracle compatibility, 28, 745, 819
ORACLE SQL mode, 293
ORD(), 683
ORDER BY, 180, 753, 793

NULL, 477, 793
order-by-primary option

mysqldump, 566
OUTFILE, 795
Overlaps(), 1127
overview, 1

P
packages

list of, 1716
packlength option

myisampack, 528
page-level locking, 485
pager option

mysql, 535
parallel-recover option

myisamchk, 523
parameters

server, 503
parentheses (and), 669
partitions (MySQL Cluster), 980
password

root user, 118
password encryption

reversibility of, 732
password option

mysql, 535
mysqlaccess, 546
mysqladmin, 551
mysqlbinlog, 554
mysqlcheck, 561
mysqldump, 566
mysqld_multi, 303
mysqlhotcopy, 572
mysqlimport, 574
mysqlshow, 577
mysql_explain_log, 545

PASSWORD(), 335, 355, 732, 1643
password-file option

mysqlmanager, 307
passwords

for users, 350
forgotten, 1646
lost, 1646
resetting, 1646
security, 324
setting, 355, 837, 841

PATH environment variable, 88, 204, 1933
pattern matching, 184, 1934
performance

benchmarks, 446
disk issues, 510
estimating, 456
improving, 436, 490

PERIOD_ADD(), 707
PERIOD_DIFF(), 707
Perl

installing, 164
installing on Windows, 165

Perl API, 1291

Index

1981

Perl DBI/DBD
installation problems, 166

permission checks
effect on speed, 447

perror, 516
help option, 579
ndb option, 579
silent option, 579
verbose option, 579
version option, 579

PHP API, 1290
PI(), 694
pid-file option

mysqld, 237
mysqld_safe, 300
mysqlmanager, 307

PIPES_AS_CONCAT SQL mode, 292
plan option

mysqlaccess, 546
POINT data type, 1112
point in time recovery, 370
Point(), 1115
PointFromText(), 1113
PointFromWKB(), 1114
PointN(), 1121
PointOnSurface(), 1124
PolyFromText(), 1114
PolyFromWKB(), 1114
POLYGON data type, 1112
Polygon(), 1116
PolygonFromText(), 1114
PolygonFromWKB(), 1114
port option

mysql, 535
mysqladmin, 551
mysqlbinlog, 554
mysqlcheck, 561
mysqld, 237
mysqldump, 566
mysqld_safe, 300
mysqlhotcopy, 572
mysqlimport, 574
mysqlmanager, 308
mysqlshow, 577

port-open-timeout option
mysqld, 238

portability, 444
types, 666

porting
to other systems, 1922

PortNumber, 1000, 1022
position option

mysqlbinlog, 554
POSITION(), 684
post-install

multiple servers, 395
post-installation

setup and testing, 106

PostgreSQL compatibility, 30
POSTGRESQL SQL mode, 293
POW(), 694
POWER(), 694
precedence

operator, 668
precision

arithmetic, 1187
precision math, 1187
PREPARE, 890, 891

XA transactions, 829
preview option

mysqlaccess, 546
PRIMARY KEY, 752, 761

constraint, 36
primary key

deleting, 752
print-defaults option, 210

mysqlmanager, 308
print-password-line option

mysqlmanager, 307
printerror option

mysql_explain_log, 545
privilege

changes, 339
privilege information

location, 329
privilege system, 324

described, 324
privileges

access, 324
adding, 351
default, 118
deleting, 354, 832
display, 858
dropping, 354, 832
granting, 833
revoking, 840

problems
access denied errors, 1632
common errors, 1631
compiling, 98
DATE columns, 1654
date values, 649
installing on IBM-AIX, 148
installing on Solaris, 140
installing Perl, 166
linking, 1645
ODBC, 1367
reporting, 21
starting the server, 115
table locking, 488
time zone, 1653

PROCEDURE, 796
procedures

adding, 1630
stored, 33, 1132

process management (MySQL Cluster), 1040

Index

1982

process support, 41
processes

display, 862
processing

arguments, 1624
PROCESSLIST, 862
program variables

setting, 212
programs

client, 515, 1288
crash-me, 444
server side, 214
utility, 515

prompt option
mysql, 535

prompts
meanings, 172

pronunciation
MySQL, 6

protocol option
mysql, 535
mysqladmin, 551
mysqlbinlog, 554
mysqlcheck, 561
mysqldump, 567
mysqlimport, 574
mysqlshow, 577

PURGE MASTER LOGS, 880
PURGE STALE SESSIONS, 1048
Python API, 1292

Q
QUARTER(), 707
queries

entering, 170
estimating performance, 456
examples, 192
speed of, 447
Twin Studies project, 198

Query Cache, 402
questions, 549

answering, 20
quick option

myisamchk, 523
mysql, 535
mysqlcheck, 561
mysqldump, 567

quiet option
mysqlhotcopy, 572

QUIT command (MySQL Cluster), 1052
QUOTE(), 684
quote-names option

mysqldump, 567
quotes

in strings, 582
quoting, 583
quoting binary data, 583
quoting of identifiers, 585

R
RADIANS(), 695
RAND(), 695
raw option

mysql, 535
re-creating

grant tables, 112
read-from-remote-server option

mysqlbinlog, 554
read-only option

myisamchk, 522
mysqld, 427

read_buffer_size myisamchk variable, 520
REAL data type, 638
REAL_AS_FLOAT SQL mode, 292
ReceiveBufferMemory, 1022
reconfiguring, 98, 98
reconnect option

mysql, 535
record_log_pos option

mysqlhotcopy, 572
RECOVER

XA transactions, 829
recover option

myisamchk, 523
recovery

from crash, 372
point in time, 370

RedoBuffer, 1017
reducing

data size, 490
references, 753
ref_or_null, 465
REGEXP, 689
REGEXP operator, 1934
regexp option

mysqlhotcopy, 572
regular expression syntax, 1934
Related(), 1127
relational databases

defined, 5
relative option

mysqladmin, 551
relay-log option

mysqld, 427
relay-log-index option

mysqld, 427
relay-log-info-file option

mysqld, 428
relay-log-purge option

mysqld, 428
relay-log-space-limit option

mysqld, 428
release numbers, 43
RELEASE SAVEPOINT, 824
releases

naming scheme, 43

Index

1983

testing, 44
updating, 46

RELEASE_LOCK(), 741
relnotes option

mysqlaccess, 546
remove option

mysqlmanager, 308
RENAME TABLE, 770
RENAME USER, 840
renaming user accounts, 840
reordering

columns, 1661
repair option

mysqlcheck, 561
repair options

myisamchk, 522
REPAIR TABLE, 846
repairing

tables, 373
REPEAT, 1145
REPEAT(), 684
replace, 516
REPLACE, 790
replace option

mysqlimport, 574
REPLACE(), 684
replicas (MySQL Cluster), 980
replicate-do-db option

mysqld, 428
replicate-do-table option

mysqld, 428
replicate-ignore-db option

mysqld, 429
replicate-ignore-table option

mysqld, 429
replicate-rewrite-db option

mysqld, 429
replicate-same-server-id option

mysqld, 429
replicate-wild-do-table option

mysqld, 429
replicate-wild-ignore-table option

mysqld, 430
replication, 408
replication limitations, 419
replication masters

statements, 879
replication options, 419
replication slaves

statements, 882
report-host option

mysqld, 430
report-port option

mysqld, 430
reporting

bugs, 21
Connector/NET problems, 1556
Connector/ODBC problems, 1367

errors, 1, 21
MyODBC problems, 1367

REQUIRE GRANT option, 838
reserved words

exceptions, 590
RESET MASTER, 880
RESET SLAVE, 885
resetmaster option

mysqlhotcopy, 572
resetslave option

mysqlhotcopy, 572
RESTART command (MySQL Cluster), 1051
restarting

the server, 110
RestartOnErrorInsert, 1012
RESTORE TABLE, 847
restoring backups

in MySQL Cluster, 1061
restrictions

server-side cursors, 1940
stored routines, 1939
subqueries, 1941
triggers, 1939
views, 1944

result-file option
mysqlbinlog, 554
mysqldump, 567

retrieving
data from tables, 177

return (\r), 582
return values

UDFs, 1625
REVERSE(), 684
REVOKE, 840
revoking

privileges, 840
rhost option

mysqlaccess, 546
RIGHT JOIN, 797
RIGHT OUTER JOIN, 797
RIGHT(), 684
RLIKE, 689
ROLLBACK, 31, 821

XA transactions, 829
rollback option

mysqlaccess, 546
ROLLBACK TO SAVEPOINT, 824
rolling restart (MySQL Cluster), 1037
rolling upgrades and downgrades (MySQL Cluster),
1037
ROLLUP, 746
root password, 118
root user

password resetting, 1646
ROUND(), 695
rounding, 1187
rounding errors, 637
ROUTINES

Index

1984

INFORMATION_SCHEMA table, 1181
routines option

mysqldump, 567
row-level locking, 485
rows

counting, 186
deleting, 1657
locking, 33
matching problems, 1657
selecting, 178
sorting, 180

ROW_COUNT(), 738
RPAD(), 685
RPM file, 79
RPM Package Manager, 79
RTRIM(), 685
RTS-threads, 1930
run-as-service option

mysqlmanager, 308
running

ANSI mode, 27
batch mode, 190
multiple servers, 395
queries, 170

running configure after prior invocation, 98

S
safe-mode option

mysqld, 238
safe-recover option

myisamchk, 523
safe-show-database option

mysqld, 238, 322
safe-updates option, 543

mysql, 535
safe-user-create option

mysqld, 238, 322
Sakila, 6
SAVEPOINT, 824
scale

arithmetic, 1187
schema

altering, 750
creating, 756
deleting, 768

SCHEMA(), 738
SCHEMATA

INFORMATION_SCHEMA table, 1173
SCHEMA_PRIVILEGES

INFORMATION_SCHEMA table, 1176
SCI (Scalable Coherent Interface), 1024, 1077
script files, 190
scripts

mysqlbug, 25
mysql_install_db, 111

searching
and case sensitivity, 1653
full-text, 714

MySQL Web pages, 21
two keys, 195

SECOND(), 707
secure-auth option

mysql, 535
mysqld, 238, 322

security
against attackers, 320

security system, 324
SEC_TO_TIME(), 707
SELECT

LIMIT, 791
optimizing, 447
Query Cache, 402

SELECT INTO, 1140
SELECT INTO TABLE, 31
SELECT speed, 457
selecting

databases, 174
select_limit variable, 537
SendBufferMemory, 1022
SendLimit, 1025
SendSignalId, 1022, 1023, 1025
SEQUENCE, 196
sequence emulation, 737
sequences, 196
server

connecting, 169, 332
debugging, 1923
disconnecting, 169
restart, 110
shutdown, 110
starting, 108
starting and stopping, 113
starting problems, 115

server variables, 242, 872
server-side cursor restrictions, 1940
server-side programs, 214
ServerPort, 1003
servers

multiple, 395
SESSION_USER(), 738
SET, 847, 1140

AUTOCOMMIT, 847
BIG_TABLES, 847
CHARACTER SET, 601, 847
FOREIGN_KEY_CHECKS, 847
IDENTITY, 847
INSERT_ID, 847
LAST_INSERT_ID, 847
NAMES, 601, 847
ONE_SHOT, 847
size, 666
SQL_AUTO_IS_NULL, 847
SQL_BIG_SELECTS, 847
SQL_BUFFER_SELECT, 847
SQL_LOG_BIN, 847
SQL_LOG_OFF, 847

Index

1985

SQL_LOG_UPDATE, 847
SQL_NOTES, 847
SQL_QUOTE_SHOW_CREATE, 847
SQL_SAFE_UPDATES, 847
SQL_SELECT_LIMIT, 847
SQL_WARNINGS, 847
TIMESTAMP, 847
UNIQUE_CHECKS, 847

SET data type, 643, 661
SET GLOBAL SQL_SLAVE_SKIP_COUNTER, 886
SET OPTION, 847
SET PASSWORD, 841
SET PASSWORD statement, 355
SET SQL_LOG_BIN, 880
SET TRANSACTION, 827
set-auto-increment[option

myisamchk, 524
set-charset option

mysqlbinlog, 554
mysqldump, 567

set-collation option
myisamchk, 523

setting
passwords, 355

setting passwords, 841
setting program variables, 212
setup

post-installation, 106
SHA(), 732
SHA1(), 732
shared memory transporter, 1023
shared-memory option

mysqld, 238
shared-memory-base-name option

mysqld, 238
SharedBufferSize, 1025
shell syntax, 4
ShmKey, 1023
ShmSize, 1023
short-form option

mysqlbinlog, 554
SHOW

in MySQL Cluster management client, 996
SHOW BINARY LOGS, 881
SHOW BINLOG EVENTS, 853, 881
SHOW CHARACTER SET, 853
SHOW COLLATION, 853
SHOW COLUMNS, 853, 854
SHOW command (MySQL Cluster), 1051
SHOW CREATE DATABASE, 853, 854
SHOW CREATE FUNCTION, 853, 855
SHOW CREATE PROCEDURE, 853, 855
SHOW CREATE SCHEMA, 853, 854
SHOW CREATE TABLE, 853, 855
SHOW CREATE VIEW, 853, 855
SHOW DATABASES, 853, 856
SHOW ENGINE, 853, 856
SHOW ENGINES, 853, 857

SHOW ERRORS, 853, 858
SHOW extensions, 1184
SHOW FIELDS, 853
SHOW FUNCTION STATUS, 853, 862
SHOW GRANTS, 853, 858
SHOW INDEX, 853, 859
SHOW INNODB STATUS, 853
SHOW KEYS, 853, 859
SHOW MASTER LOGS, 853, 881
SHOW MASTER STATUS, 853, 881
SHOW MUTEX STATUS, 853
SHOW OPEN TABLES, 853, 861
SHOW PRIVILEGES, 853, 862
SHOW PROCEDURE STATUS, 853, 862
SHOW PROCESSLIST, 853, 862
SHOW SCHEMAS, 853, 856
SHOW SLAVE HOSTS, 853, 881
SHOW SLAVE STATUS, 853, 886
SHOW STATUS, 853
SHOW STORAGE ENGINES, 857
SHOW TABLE STATUS, 853
SHOW TABLE TYPES, 853, 857
SHOW TABLES, 853, 871
SHOW TRIGGERS, 853, 871
SHOW VARIABLES, 853
SHOW WARNINGS, 853, 873
SHOW with WHERE, 1171, 1184
show-table-type option

mysqlshow, 577
show-warnings option

mysql, 536
SHUTDOWN command (MySQL Cluster), 1052
shutdown_timeout variable, 552
shutting down

the server, 110
sigint-ignore option

mysql, 536
SIGN(), 696
silent column changes, 767
silent option

myisamchk, 519
myisampack, 528
mysql, 536
mysqladmin, 551
mysqlcheck, 561
mysqld_multi, 303
mysqlimport, 575
perror, 579

SIN(), 696
single quote (\'), 582
single-transaction option

mysqldump, 567
single-user mode (MySQL Cluster), 1051, 1058
size of tables, 10
sizes

display, 635
skip-bdb option

mysqld, 238, 967

Index

1986

skip-column-names option
mysql, 536

skip-comments option
mysqldump, 568

skip-concurrent-insert option
mysqld, 238

skip-external-locking option
mysqld, 238

skip-grant-tables option
mysqld, 238, 322

skip-host-cache option
mysqld, 238

skip-innodb option
mysqld, 239

skip-line-numbers option
mysql, 536

skip-merge option
mysqld, 239

skip-name-resolve option
mysqld, 239, 322

skip-ndbcluster option
mysqld, 239

skip-networking option
mysqld, 239, 322

skip-opt option
mysqldump, 568

skip-safemalloc option
mysqld, 239

skip-show-database option
mysqld, 240, 322

skip-slave-start option
mysqld, 430

skip-stack-trace option
mysqld, 240

skip-symbolic-links option
mysqld, 239

skip-thread-priority option
mysqld, 240

slave-load-tmpdir option
mysqld, 430

slave-net-timeout option
mysqld, 431

slave-skip-errors option
mysqld, 431

slave_compressed_protocol option
mysqld, 430

sleep option
mysqladmin, 551

SLEEP(), 741
slow queries, 550
slow query log, 394
SMALLINT data type, 636
socket location

changing, 93
socket option

mysql, 536
mysqladmin, 551
mysqlbinlog, 554

mysqlcheck, 561
mysqld, 240
mysqldump, 568
mysqld_safe, 300
mysqlhotcopy, 572
mysqlimport, 575
mysqlmanager, 308
mysqlshow, 577
mysql_explain_log, 545

Solaris
installation, 84

Solaris installation problems, 140
Solaris troubleshooting, 100
Solaris x86_64 issues, 939
sort-index option

myisamchk, 524
sort-records option

myisamchk, 524
sort-recover option

myisamchk, 523
sorting

character sets, 382
data, 180
grant tables, 336, 338
table rows, 180

sort_buffer_size myisamchk variable, 520
sort_key_blocks myisamchk variable, 520
SOUNDEX(), 685
SOUNDS LIKE, 685
source distribution

installing, 89
source distributions

on Linux, 133
SPACE(), 685
spassword option

mysqlaccess, 546
Spatial Extensions in MySQL, 1103
speed

compiling, 507
increasing with replication, 408
inserting, 480
linking, 507
of queries, 447, 457

SQL
defined, 5

SQL mode
ONLY_FULL_GROUP_BY, 748

SQL node (MySQL Cluster)
defined, 979

SQL nodes (MySQL Cluster), 1041
SQL statements

replication masters, 879
replication slaves, 882

SQL-92
extensions to, 26

sql-mode option
mysqld, 240

SQL_BIG_RESULT, 797

Index

1987

SQL_BUFFER_RESULT, 797
SQL_CACHE, 404, 797
SQL_CALC_FOUND_ROWS, 797
SQL_NO_CACHE, 404, 797
SQL_SMALL_RESULT, 797
sql_yacc.cc problems, 99
SQRT(), 697
square brackets, 635
SRID(), 1119
SSH, 364
SSL, 359
SSL and X509 Basics, 358
SSL command options, 360
ssl option, 361
SSL options

mysql, 536
mysqladmin, 551
mysqlcheck, 561
mysqld, 239, 321
mysqldump, 568
mysqlimport, 575
mysqlshow, 577

SSL related options, 838
ssl-ca option, 361
ssl-capath option, 361
ssl-cert option, 361
ssl-cipher option, 361
ssl-key option, 361
ssl-verify-server-cert option, 361
stability, 9
standalone option

mysqld, 239
mysqlmanager, 308

Standard SQL
differences from, 30, 839
extensions to, 26, 27

standards compatibility, 26
START

XA transactions, 829
START BACKUP command (MySQL Cluster), 1060
START command (MySQL Cluster), 1051
START SLAVE, 889
START TRANSACTION, 821
start-datetime option

mysqlbinlog, 554
start-position option

mysqlbinlog, 555
StartFailureTimeout (MySQL Cluster configuration
parameter), 1013
starting

comments, 35
mysqld, 324
the server, 108
the server automatically, 113

Starting many servers, 395
StartPartialTimeout, 1013
StartPartitionedTimeout (MySQL Cluster configuration
parameter), 1013

StartPoint(), 1122
STARTUP Events (MySQL Cluster), 1054
startup options

default, 207
startup parameters, 503

mysql, 533
mysqladmin, 550
tuning, 503

statements
GRANT, 351
INSERT, 352
replication masters, 879
replication slaves, 882

statically
compiling, 94

STATISTICS
INFORMATION_SCHEMA table, 1175

STATISTICS Events (MySQL Cluster), 1056
stats option

myisam_ftdump, 518
stats_method myisamchk variable, 520
status

tables, 869
status command

results, 549
STATUS command (MySQL Cluster), 1051
status option

mysqlshow, 577
status variables, 277, 868
STD(), 745
STDDEV(), 745
STDDEV_POP(), 745
STDDEV_SAMP(), 745
STOP command (MySQL Cluster), 1051
STOP SLAVE, 890
stop-datetime option

mysqlbinlog, 555
stop-position option

mysqlbinlog, 555
StopOnError, 1012
stopping

the server, 113
stopword list

user-defined, 723
storage engine

ARCHIVE, 973
storage engines

choosing, 894
storage nodes - see data nodes, ndbd, 1042
storage of data, 490
storage requirements

data type, 663
storage space

minimizing, 490
stored procedures, 1132
stored procedures and triggers

defined, 33
stored routine restrictions, 1939

Index

1988

stored routines
LAST_INSERT_ID(), 1146

STRAIGHT_JOIN, 797, 797
STRCMP(), 689
STRICT SQL mode, 289
STRICT_ALL_TABLES SQL mode, 292
STRICT_TRANS_TABLES SQL mode, 288, 292
string collating, 386
string comparison functions, 687
string comparisons

case sensitivity, 687
string functions, 678
string literal introducer, 581, 599
string types, 654
StringMemory, 1005
strings

defined, 581
escaping characters, 581
non-delimited, 649

striping
defined, 510

STR_TO_DATE(), 707
SUBDATE(), 708
subqueries, 806
subquery, 806
subquery restrictions, 1941
subselects, 806
SUBSTR(), 685
SUBSTRING(), 685
SUBSTRING_INDEX(), 686
SUBTIME(), 708
subtraction (-), 690
suffix option

mysqlhotcopy, 572
SUM(), 745
SUM(DISTINCT), 745
superuser, 118
superuser option

mysqlaccess, 547
support

for operating systems, 41
suppression

default values, 37
Sybase compatibility, 821
symbolic links, 511, 513
symbolic-links option

mysqld, 239
SymDifference(), 1125
sync-bdb-logs option

mysqld, 967
syntax

regular expression, 1934
SYSDATE(), 708
sysdate-is-now option

mysqld, 240
system

privilege, 324
security, 317

system optimization, 503
system table, 449
system variables, 242, 268, 872
SYSTEM_USER(), 738

T
tab (\t), 582
tab option

mysqldump, 568
table

changing, 750, 753, 1660
deleting, 769

table aliases, 793
table cache, 501
table is full, 849, 1641
table names

case sensitivity, 586
case-sensitivity, 27

table option
mysql, 536
mysqlaccess, 547

Table scans
avoiding, 480

table types
choosing, 894

table-level locking, 485
tables

BDB, 965
Berkeley DB, 965
BLACKHOLE, 975
changing column order, 1661
checking, 521
closing, 501
compressed format, 901
constant, 449, 458
copying, 766
counting rows, 186
creating, 175
CSV, 974
defragment, 901
defragmenting, 382, 845
deleting rows, 1657
displaying status, 869
dynamic, 900
error checking, 373
EXAMPLE, 970
FEDERATED, 971
flush, 550
fragmentation, 845
grant, 339
HEAP, 963
host, 339
improving performance, 490
information, 376
information about, 189
InnoDB, 904
loading data, 176
maintenance schedule, 382

Index

1989

maximum size, 10
MEMORY, 963
MERGE, 960
merging, 960
multiple, 188
MyISAM, 896
names, 584
open, 501
opening, 501
optimizing, 376
partitioning, 960
repairing, 373
retrieving data, 177
selecting columns, 179
selecting rows, 178
sorting rows, 180
symbolic links, 512
system, 449
too many, 503
unique ID for last row, 1287
updating, 31

TABLES
INFORMATION_SCHEMA table, 1173

tables option
mysqlcheck, 561
mysqldump, 568

table_cache, 501
TABLE_PRIVILEGES

INFORMATION_SCHEMA table, 1177
TAN(), 697
tar

problems on Solaris, 84, 140
tc-heuristic-recover option

mysqld, 240
Tcl API, 1292
tcp-ip option

mysqld_multi, 303
TCP/IP, 69, 74
tee option

mysql, 536
temp-pool option

mysqld, 240
temporary file

write access, 112
temporary tables

problems, 1662
terminal monitor

defined, 169
test option

myisampack, 528
testing

connection to the server, 334
installation, 108
of MySQL releases, 44
post-installation, 106

testing mysqld
mysqltest, 1616

TEXT

size, 665
TEXT columns

default values, 658
indexing, 491, 762

TEXT data type, 642, 657
thread packages

differences between, 1931
thread support, 41

non-native, 101
threaded clients, 1288
threads, 549, 862, 1616

display, 862
RTS, 1930

TIME data type, 639, 653
time types, 664
time zone problems, 1653
TIME(), 709
TimeBetweenGlobalCheckpoints (MySQL Cluster con-
figuration parameter), 1014
TimeBetweenInactiveTransactionAbortCheck (MySQL
Cluster configuration parameter), 1014
TimeBetweenLocalCheckpoints (MySQL Cluster con-
figuration parameter), 1014
TimeBetweenWatchDogCheck, 1012
TIMEDIFF(), 709
timeout, 248, 739, 780

connect_timeout variable, 537, 552
shutdown_timeout variable, 552

TIMESTAMP
and NULL values, 1656

TIMESTAMP data type, 639, 648
TIMESTAMP(), 709
TIMESTAMPADD(), 709
TIMESTAMPDIFF(), 710
timezone option

mysqld_safe, 300
TIME_FORMAT(), 710
TIME_TO_SEC(), 710
TINYBLOB data type, 642
TINYINT data type, 635
TINYTEXT data type, 642
tips

optimization, 483
TMPDIR environment variable, 112, 1933
tmpdir option

myisamchk, 523
myisampack, 528
mysqld, 241
mysqlhotcopy, 572

to-last-log option
mysqlbinlog, 555

TODO
symlinks, 513

tools
list of, 1716

Touches(), 1127
TO_DAYS(), 710
trace DBI method, 1926

Index

1990

trace files (MySQL Cluster), 1042
TRADITIONAL SQL mode, 289, 293
transaction-isolation option

mysqld, 240
transaction-safe tables, 31, 904
TransactionBufferMemory, 1008
TransactionDeadlockDetectionTimeout (MySQL
Cluster configuration parameter), 1014
TransactionInactiveTimeout (MySQL Cluster configura-
tion parameter), 1014
transactions

support, 31, 904
Translators

list of, 1713
trigger restrictions, 1939
trigger, creating, 1156
trigger, dropping, 1159
triggers, 33, 871, 1156

LAST_INSERT_ID(), 1146
TRIGGERS

INFORMATION_SCHEMA table, 1182
triggers option

mysqldump, 568
TRIM(), 686
troubleshooting

FreeBSD, 100
Solaris, 100

TRUE, 583, 584
testing for, 671

TRUNCATE, 816
TRUNCATE(), 697
tutorial, 169
Twin Studies

queries, 198
type conversions, 669, 670
types

column, 635
columns, 666
data, 635
date, 664
Date and Time, 647
numeric, 663
of tables, 894
portability, 666
strings, 654
time, 664

typographical conventions, 2
TZ environment variable, 1653, 1933
tz-utc option

mysqldump, 568

U
UCASE(), 686
UCS-2, 594
UDFs, 1618, 1619

compiling, 1626
defined, 1617
return values, 1625

ulimit, 1644
UMASK environment variable, 1646, 1933
UMASK_DIR environment variable, 1646, 1933
unary minus (-), 690
unbuffered option

mysql, 536
UNCOMPRESS(), 732
UNCOMPRESSED_LENGTH(), 733
UndoDataBuffer, 1016
UndoIndexBuffer, 1016
UNHEX(), 687
Unicode, 594
Unicode Collation Algorithm, 614
UNION, 195, 804
Union(), 1125
UNIQUE, 752

constraint, 36
unique ID, 1287
Unix, 1295, 1368
UNIX_TIMESTAMP(), 710
UNKNOWN

testing for, 671
unloading

tables, 177
UNLOCK TABLES, 825
unnamed views, 811
unpack option

myisamchk, 524
UNTIL, 1145
UPDATE, 816
update-state option

myisamchk, 522
updating

releases of MySQL, 46
tables, 31

upgrades
MySQL Cluster, 1037, 1037, 1038

upgrades and downgrades (MySQL Cluster)
compatibility between versions, 1038

upgrading, 121
different architecture, 130
to 5.0, 122

upgrading tables
ISAM, 124, 124

UPPER(), 687
uptime, 549
URLs for downloading MySQL, 53
USE, 821
USE INDEX, 793, 799
USE KEY, 793, 800
use-frm option

mysqlcheck, 562
user accounts

creating, 832
renaming, 840

USER environment variable, 333, 1933
user option

mysql, 536

Index

1991

mysqlaccess, 547
mysqladmin, 551
mysqlbinlog, 555
mysqlcheck, 562
mysqld, 241
mysqldump, 569
mysqld_multi, 303
mysqld_safe, 300
mysqlhotcopy, 572
mysqlimport, 575
mysqlmanager, 308
mysqlshow, 577
mysql_explain_log, 545
mysql_upgrade, 317

user privileges
adding, 351
deleting, 354, 832
dropping, 354, 832

user table
sorting, 336

user variables, 588
USER(), 738
user-defined functions

adding, 1617, 1619
User-defined functions, 1618, 1619
usernames

and passwords, 350
users

adding, 89, 92
deleting, 354, 832
root, 118

USER_PRIVILEGES
INFORMATION_SCHEMA table, 1176

uses
of MySQL, 445

using multiple disks to start data, 513
UTC_DATE(), 711
UTC_TIME(), 711
UTC_TIMESTAMP(), 712
UTF-8, 594
utility programs, 515
UUID(), 741

V
valid numbers

examples, 583
VALUES(), 742
VARBINARY data type, 642, 656
VARCHAR

size, 665
VARCHAR data type, 641, 654
VARCHARACTER data type, 641
variables

mysqld, 504
server, 242, 872
status, 277, 868
system, 242, 268, 872
user, 588

VARIANCE(), 745
VAR_POP(), 745
VAR_SAMP(), 745
verbose option

myisamchk, 519
myisampack, 528
myisam_ftdump, 518
mysql, 536
mysqladmin, 551
mysqlcheck, 562
mysqldump, 569
mysqld_multi, 303
mysqlimport, 575
mysqlshow, 577
mysql_upgrade, 317
perror, 579

version
choosing, 43
latest, 53

version option
myisamchk, 519
myisampack, 528
mysql, 537
mysqlaccess, 547
mysqladmin, 552
mysqlbinlog, 555
mysqlcheck, 562
mysqld, 241
mysqldump, 569
mysqld_multi, 303
mysqlimport, 575
mysqlmanager, 308
mysqlshow, 577
perror, 579

VERSION(), 739
vertical option

mysql, 537
mysqladmin, 552

Vietnamese, 632
view restrictions, 1944
views, 35, 1163, 1163

updatable, 35, 1163
VIEWS

INFORMATION_SCHEMA table, 1182
Views

limitations, 1945
privileges, 1945
problems, 1945

virtual memory
problems while compiling, 99

Vision, 1363
Visual Objects, 1360

W
wait option

myisamchk, 519
myisampack, 528
mysql, 537

Index

1992

mysqladmin, 552
wait-timeout option

mysqlmanager, 308
WEEK(), 712
WEEKDAY(), 713
WEEKOFYEAR(), 713
Well-Known Binary format, 1111
Well-Known Text format, 1111
WHERE, 457

with SHOW, 1171, 1184
where option

mysqldump, 569
WHILE, 1145
widths

display, 635
Wildcard character (%), 582
Wildcard character (_), 582
wildcards

and LIKE, 494
in mysql.columns_priv table, 338
in mysql.db table, 337
in mysql.host table, 337
in mysql.procs_priv table, 338
in mysql.tables_priv table, 338
in mysql.user table, 334

Windows, 1295, 1368
compiling on, 106
open issues, 79
upgrading, 76
versus Unix, 77

with-big-tables option, 93
Within(), 1128
without-server option, 93
WKB format, 1111
WKT format, 1111
wrappers

Eiffel, 1292
write access

tmp, 112
write_buffer_size myisamchk variable, 520

X
X(), 1120
X509/Certificate, 358
XA BEGIN, 829
XA COMMIT, 829
XA PREPARE, 829
XA RECOVER, 829
XA ROLLBACK, 829
XA START, 829
XA transactions, 828

transaction identifiers, 829
xid

XA transaction identifier, 829
xml option

mysql, 537
mysqldump, 569

XOR

bitwise, 728
logical, 675

Y
Y(), 1120
yaSSL, 358, 359
Year 2000 compliance, 11
Year 2000 issues, 654
YEAR data type, 640, 653
YEAR(), 713
YEARWEEK(), 713
Yen sign (Japanese), 626

Index

1993

	MySQL 5.0 Reference Manual
	Table of Contents
	Preface
	Chapter 1. General Information
	1.1. About This Manual
	1.2. Conventions Used in This Manual
	1.3. Overview of MySQL AB
	1.4. Overview of the MySQL Database Management System
	1.4.1. History of MySQL
	1.4.2. The Main Features of MySQL
	1.4.3. MySQL Stability
	1.4.4. How Large MySQL Tables Can Be
	1.4.5. Year 2000 Compliance

	1.5. Overview of the MaxDB Database Management System
	1.5.1. What is MaxDB?
	1.5.2. History of MaxDB
	1.5.3. Features of MaxDB
	1.5.4. Licensing and Support
	1.5.5. Feature Differences Between MaxDB and MySQL
	1.5.6. Interoperability Features Between MaxDB and MySQL
	1.5.7. MaxDB-Related Links

	1.6. MySQL Development Roadmap
	1.6.1. What's New in MySQL 5.0

	1.7. MySQL Information Sources
	1.7.1. MySQL Mailing Lists
	1.7.1.1. Guidelines for Using the Mailing Lists

	1.7.2. MySQL Community Support at the MySQL Forums
	1.7.3. MySQL Community Support on Internet Relay Chat (IRC)

	1.8. How to Report Bugs or Problems
	1.9. MySQL Standards Compliance
	1.9.1. What Standards MySQL Follows
	1.9.2. Selecting SQL Modes
	1.9.3. Running MySQL in ANSI Mode
	1.9.4. MySQL Extensions to Standard SQL
	1.9.5. MySQL Differences from Standard SQL
	1.9.5.1. Subquery Support
	1.9.5.2. SELECT INTO TABLE
	1.9.5.3. Transactions and Atomic Operations
	1.9.5.4. Stored Routines and Triggers
	1.9.5.5. Foreign Keys
	1.9.5.6. Views
	1.9.5.7. '--' as the Start of a Comment

	1.9.6. How MySQL Deals with Constraints
	1.9.6.1. PRIMARY KEY and UNIQUE Index Constraints
	1.9.6.2. Constraints on Invalid Data
	1.9.6.3. ENUM and SET Constraints

	Chapter 2. Installing and Upgrading MySQL
	2.1. General Installation Issues
	2.1.1. Operating Systems Supported by MySQL
	2.1.2. Choosing Which MySQL Distribution to Install
	2.1.2.1. Choosing Which Version of MySQL to Install
	2.1.2.2. Choosing a Distribution Format
	2.1.2.3. How and When Updates Are Released
	2.1.2.4. Release Philosophy—No Known Bugs in Releases
	2.1.2.5. MySQL Binaries Compiled by MySQL AB

	2.1.3. How to Get MySQL
	2.1.4. Verifying Package Integrity Using MD5 Checksums or GnuPG
	2.1.4.1. Verifying the MD5 Checksum
	2.1.4.2. Signature Checking Using GnuPG
	2.1.4.3. Signature Checking Using RPM

	2.1.5. Installation Layouts

	2.2. Standard MySQL Installation Using a Binary Distribution
	2.3. Installing MySQL on Windows
	2.3.1. Choosing An Installation Package
	2.3.2. Installing MySQL with the Automated Installer
	2.3.3. Using the MySQL Installation Wizard
	2.3.3.1. Introduction to the Installation Wizard
	2.3.3.2. Downloading and Starting the MySQL Installation Wizard
	2.3.3.3. Choosing an Install Type
	2.3.3.4. The Custom Install Dialog
	2.3.3.5. The Confirmation Dialog
	2.3.3.6. Changes Made by MySQL Installation Wizard
	2.3.3.7. Upgrading MySQL with the Installation Wizard

	2.3.4. Using the Configuration Wizard
	2.3.4.1. Introduction to the Configuration Wizard
	2.3.4.2. Starting the MySQL Configuration Wizard
	2.3.4.3. Choosing a Maintenance Option
	2.3.4.4. Choosing a Configuration Type
	2.3.4.5. The Server Type Dialog
	2.3.4.6. The Database Usage Dialog
	2.3.4.7. The InnoDB Tablespace Dialog
	2.3.4.8. The Concurrent Connections Dialog
	2.3.4.9. The Networking and Strict Mode Options Dialog
	2.3.4.10. The Character Set Dialog
	2.3.4.11. The Service Options Dialog
	2.3.4.12. The Security Options Dialog
	2.3.4.13. The Confirmation Dialog
	2.3.4.14. The Location of the my.ini File
	2.3.4.15. Editing the my.ini File

	2.3.5. Installing MySQL from a Noinstall Zip Archive
	2.3.6. Extracting the Install Archive
	2.3.7. Creating an Option File
	2.3.8. Selecting a MySQL Server type
	2.3.9. Starting the Server for the First Time
	2.3.10. Starting MySQL from the Windows Command Line
	2.3.11. Starting MySQL as a Windows Service
	2.3.12. Testing The MySQL Installation
	2.3.13. Troubleshooting a MySQL Installation Under Windows
	2.3.14. Upgrading MySQL on Windows
	2.3.15. MySQL on Windows Compared to MySQL on Unix

	2.4. Installing MySQL on Linux
	2.5. Installing MySQL on Mac OS X
	2.6. Installing MySQL on Solaris
	2.7. Installing MySQL on NetWare
	2.8. Installing MySQL on Other Unix-Like Systems
	2.9. MySQL Installation Using a Source Distribution
	2.9.1. Source Installation Overview
	2.9.2. Typical configure Options
	2.9.3. Installing from the Development Source Tree
	2.9.4. Dealing with Problems Compiling MySQL
	2.9.5. MIT-pthreads Notes
	2.9.6. Installing MySQL from Source on Windows
	2.9.6.1. Building MySQL Using VC++
	2.9.6.2. Creating a Windows Source Package from the Latest Development Source

	2.9.7. Compiling MySQL Clients on Windows

	2.10. Post-Installation Setup and Testing
	2.10.1. Windows Post-Installation Procedures
	2.10.2. Unix Post-Installation Procedures
	2.10.2.1. Problems Running mysql_install_db
	2.10.2.2. Starting and Stopping MySQL Automatically
	2.10.2.3. Starting and Troubleshooting the MySQL Server

	2.10.3. Securing the Initial MySQL Accounts

	2.11. Upgrading MySQL
	2.11.1. Upgrading from MySQL 5.0 to 5.1
	2.11.2. Upgrading from MySQL 4.1 to 5.0
	2.11.3. Copying MySQL Databases to Another Machine

	2.12. Downgrading MySQL
	2.12.1. Downgrading to MySQL 4.1

	2.13. Operating System-Specific Notes
	2.13.1. Linux Notes
	2.13.1.1. Linux Operating System Notes
	2.13.1.2. Linux Binary Distribution Notes
	2.13.1.3. Linux Source Distribution Notes
	2.13.1.4. Linux Post-Installation Notes
	2.13.1.5. Linux x86 Notes
	2.13.1.6. Linux SPARC Notes
	2.13.1.7. Linux Alpha Notes
	2.13.1.8. Linux PowerPC Notes
	2.13.1.9. Linux MIPS Notes
	2.13.1.10. Linux IA-64 Notes
	2.13.1.11. SELinux Notes

	2.13.2. Mac OS X Notes
	2.13.2.1. Mac OS X 10.x (Darwin)
	2.13.2.2. Mac OS X Server 1.2 (Rhapsody)

	2.13.3. Solaris Notes
	2.13.3.1. Solaris 2.7/2.8 Notes
	2.13.3.2. Solaris x86 Notes

	2.13.4. BSD Notes
	2.13.4.1. FreeBSD Notes
	2.13.4.2. NetBSD Notes
	2.13.4.3. OpenBSD 2.5 Notes
	2.13.4.4. BSD/OS Version 2.x Notes
	2.13.4.5. BSD/OS Version 3.x Notes
	2.13.4.6. BSD/OS Version 4.x Notes

	2.13.5. Other Unix Notes
	2.13.5.1. HP-UX Version 10.20 Notes
	2.13.5.2. HP-UX Version 11.x Notes
	2.13.5.3. IBM-AIX notes
	2.13.5.4. SunOS 4 Notes
	2.13.5.5. Alpha-DEC-UNIX Notes (Tru64)
	2.13.5.6. Alpha-DEC-OSF/1 Notes
	2.13.5.7. SGI Irix Notes
	2.13.5.8. SCO UNIX and OpenServer 5.0.x Notes
	2.13.5.9. SCO OpenServer 6.0.x Notes
	2.13.5.10. SCO UnixWare 7.1.x and OpenUNIX 8.0.0 Notes

	2.13.6. OS/2 Notes

	2.14. Perl Installation Notes
	2.14.1. Installing Perl on Unix
	2.14.2. Installing ActiveState Perl on Windows
	2.14.3. Problems Using the Perl DBI/DBD Interface

	Chapter 3. Tutorial
	3.1. Connecting to and Disconnecting from the Server
	3.2. Entering Queries
	3.3. Creating and Using a Database
	3.3.1. Creating and Selecting a Database
	3.3.2. Creating a Table
	3.3.3. Loading Data into a Table
	3.3.4. Retrieving Information from a Table
	3.3.4.1. Selecting All Data
	3.3.4.2. Selecting Particular Rows
	3.3.4.3. Selecting Particular Columns
	3.3.4.4. Sorting Rows
	3.3.4.5. Date Calculations
	3.3.4.6. Working with NULL Values
	3.3.4.7. Pattern Matching
	3.3.4.8. Counting Rows
	3.3.4.9. Using More Than one Table

	3.4. Getting Information About Databases and Tables
	3.5. Using mysql in Batch Mode
	3.6. Examples of Common Queries
	3.6.1. The Maximum Value for a Column
	3.6.2. The Row Holding the Maximum of a Certain Column
	3.6.3. Maximum of Column per Group
	3.6.4. The Rows Holding the Group-wise Maximum of a Certain Field
	3.6.5. Using User-Defined Variables
	3.6.6. Using Foreign Keys
	3.6.7. Searching on Two Keys
	3.6.8. Calculating Visits Per Day
	3.6.9. Using AUTO_INCREMENT

	3.7. Queries from the Twin Project
	3.7.1. Find All Non-distributed Twins
	3.7.2. Show a Table of Twin Pair Status

	3.8. Using MySQL with Apache

	Chapter 4. Using MySQL Programs
	4.1. Overview of MySQL Programs
	4.2. Invoking MySQL Programs
	4.3. Specifying Program Options
	4.3.1. Using Options on the Command Line
	4.3.2. Using Option Files
	4.3.2.1. Preconfigured Option Files

	4.3.3. Using Environment Variables to Specify Options
	4.3.4. Using Options to Set Program Variables

	Chapter 5. Database Administration
	5.1. Overview of Server-Side Programs
	5.2. mysqld — The MySQL Server
	5.2.1. Option and Variable Reference
	5.2.2. Command Options
	5.2.3. System Variables
	5.2.4. Using System Variables
	5.2.4.1. Structured System Variables
	5.2.4.2. Dynamic System Variables

	5.2.5. Status Variables
	5.2.6. SQL Modes
	5.2.7. The Shutdown Process
	5.2.8. Server-Side Help

	5.3. The mysqld-max Extended MySQL Server
	5.4. MySQL Server Startup Programs
	5.4.1. mysqld_safe — MySQL Server Startup Script
	5.4.2. mysql.server — MySQL Server Startup Script
	5.4.3. mysqld_multi — Manage Multiple MySQL Servers

	5.5. mysqlmanager — The MySQL Instance Manager
	5.5.1. MySQL Instance Manager Command Options
	5.5.2. MySQL Instance Manager Configuration Files
	5.5.3. Starting the MySQL Server with MySQL Instance Manager
	5.5.4. Instance Manager User and Password Management
	5.5.5. MySQL Server Instance Status Monitoring
	5.5.6. Connecting to MySQL Instance Manager
	5.5.7. MySQL Instance Manager Commands

	5.6. Installation-Related Programs
	5.6.1. mysql_fix_privilege_tables — Upgrade MySQL System Tables
	5.6.2. mysql_upgrade — Check Tables for MySQL Upgrade

	5.7. General Security Issues
	5.7.1. General Security Guidelines
	5.7.2. Making MySQL Secure Against Attackers
	5.7.3. Security-Related mysqld Options
	5.7.4. Security Issues with LOAD DATA LOCAL
	5.7.5. How to Run MySQL as a Normal User

	5.8. The MySQL Access Privilege System
	5.8.1. What the Privilege System Does
	5.8.2. How the Privilege System Works
	5.8.3. Privileges Provided by MySQL
	5.8.4. Connecting to the MySQL Server
	5.8.5. Access Control, Stage 1: Connection Verification
	5.8.6. Access Control, Stage 2: Request Verification
	5.8.7. When Privilege Changes Take Effect
	5.8.8. Causes of Access denied Errors
	5.8.9. Password Hashing as of MySQL 4.1
	5.8.9.1. Implications of Password Hashing Changes for Application Programs

	5.9. MySQL User Account Management
	5.9.1. MySQL Usernames and Passwords
	5.9.2. Adding New User Accounts to MySQL
	5.9.3. Removing User Accounts from MySQL
	5.9.4. Limiting Account Resources
	5.9.5. Assigning Account Passwords
	5.9.6. Keeping Your Password Secure
	5.9.7. Using Secure Connections
	5.9.7.1. Basic SSL Concepts
	5.9.7.2. Using SSL Connections
	5.9.7.3. SSL Command Options
	5.9.7.4. Setting Up SSL Certificates for MySQL
	5.9.7.5. Connecting to MySQL Remotely from Windows with SSH

	5.10. Backup and Recovery
	5.10.1. Database Backups
	5.10.2. Example Backup and Recovery Strategy
	5.10.2.1. Backup Policy
	5.10.2.2. Using Backups for Recovery
	5.10.2.3. Backup Strategy Summary

	5.10.3. Point-in-Time Recovery
	5.10.3.1. Specifying Times for Recovery
	5.10.3.2. Specifying Positions for Recovery

	5.10.4. Table Maintenance and Crash Recovery
	5.10.4.1. Using myisamchk for Crash Recovery
	5.10.4.2. How to Check MyISAM Tables for Errors
	5.10.4.3. How to Repair Tables
	5.10.4.4. Table Optimization
	5.10.4.5. Getting Information About a Table
	5.10.4.6. Setting Up a Table Maintenance Schedule

	5.11. MySQL Localization and International Usage
	5.11.1. The Character Set Used for Data and Sorting
	5.11.1.1. Using the German Character Set

	5.11.2. Setting the Error Message Language
	5.11.3. Adding a New Character Set
	5.11.4. The Character Definition Arrays
	5.11.5. String Collating Support
	5.11.6. Multi-Byte Character Support
	5.11.7. Problems With Character Sets
	5.11.8. MySQL Server Time Zone Support

	5.12. MySQL Server Logs
	5.12.1. The Error Log
	5.12.2. The General Query Log
	5.12.3. The Binary Log
	5.12.4. The Slow Query Log
	5.12.5. Server Log Maintenance

	5.13. Running Multiple MySQL Servers on the Same Machine
	5.13.1. Running Multiple Servers on Windows
	5.13.1.1. Starting Multiple Windows Servers at the Command Line
	5.13.1.2. Starting Multiple Windows Servers as Services

	5.13.2. Running Multiple Servers on Unix
	5.13.3. Using Client Programs in a Multiple-Server Environment

	5.14. The MySQL Query Cache
	5.14.1. How the Query Cache Operates
	5.14.2. Query Cache SELECT Options
	5.14.3. Query Cache Configuration
	5.14.4. Query Cache Status and Maintenance

	Chapter 6. Replication
	6.1. Introduction to Replication
	6.2. Replication Implementation Overview
	6.3. Replication Implementation Details
	6.3.1. Replication Master Thread States
	6.3.2. Replication Slave I/O Thread States
	6.3.3. Replication Slave SQL Thread States
	6.3.4. Replication Relay and Status Files

	6.4. How to Set Up Replication
	6.5. Replication Compatibility Between MySQL Versions
	6.6. Upgrading a Replication Setup
	6.6.1. Upgrading Replication to 5.0

	6.7. Replication Features and Known Problems
	6.8. Replication Startup Options
	6.9. How Servers Evaluate Replication Rules
	6.10. Replication FAQ
	6.11. Troubleshooting Replication
	6.12. How to Report Replication Bugs or Problems
	6.13. Auto-Increment in Multiple-Master Replication

	Chapter 7. Optimization
	7.1. Optimization Overview
	7.1.1. MySQL Design Limitations and Tradeoffs
	7.1.2. Designing Applications for Portability
	7.1.3. What We Have Used MySQL For
	7.1.4. The MySQL Benchmark Suite
	7.1.5. Using Your Own Benchmarks

	7.2. Optimizing SELECT and Other Statements
	7.2.1. Optimizing Queries with EXPLAIN
	7.2.2. Estimating Query Performance
	7.2.3. Speed of SELECT Queries
	7.2.4. WHERE Clause Optimization
	7.2.5. Range Optimization
	7.2.5.1. The Range Access Method for Single-Part Indexes
	7.2.5.2. The Range Access Method for Multiple-Part Indexes

	7.2.6. Index Merge Optimization
	7.2.6.1. The Index Merge Intersection Access Algorithm
	7.2.6.2. The Index Merge Union Access Algorithm
	7.2.6.3. The Index Merge Sort-Union Access Algorithm

	7.2.7. IS NULL Optimization
	7.2.8. DISTINCT Optimization
	7.2.9. LEFT JOIN and RIGHT JOIN Optimization
	7.2.10. Nested Join Optimization
	7.2.11. Outer Join Simplification
	7.2.12. ORDER BY Optimization
	7.2.13. GROUP BY Optimization
	7.2.13.1. Loose index scan
	7.2.13.2. Tight index scan

	7.2.14. LIMIT Optimization
	7.2.15. How to Avoid Table Scans
	7.2.16. Speed of INSERT Statements
	7.2.17. Speed of UPDATE Statements
	7.2.18. Speed of DELETE Statements
	7.2.19. Other Optimization Tips

	7.3. Locking Issues
	7.3.1. Locking Methods
	7.3.2. Table Locking Issues
	7.3.3. Concurrent Inserts

	7.4. Optimizing Database Structure
	7.4.1. Design Choices
	7.4.2. Make Your Data as Small as Possible
	7.4.3. Column Indexes
	7.4.4. Multiple-Column Indexes
	7.4.5. How MySQL Uses Indexes
	7.4.6. The MyISAM Key Cache
	7.4.6.1. Shared Key Cache Access
	7.4.6.2. Multiple Key Caches
	7.4.6.3. Midpoint Insertion Strategy
	7.4.6.4. Index Preloading
	7.4.6.5. Key Cache Block Size
	7.4.6.6. Restructuring a Key Cache

	7.4.7. MyISAM Index Statistics Collection
	7.4.8. How MySQL Opens and Closes Tables
	7.4.9. Drawbacks to Creating Many Tables in the Same Database

	7.5. Optimizing the MySQL Server
	7.5.1. System Factors and Startup Parameter Tuning
	7.5.2. Tuning Server Parameters
	7.5.3. Controlling Query Optimizer Performance
	7.5.4. How Compiling and Linking Affects the Speed of MySQL
	7.5.5. How MySQL Uses Memory
	7.5.6. How MySQL Uses DNS

	7.6. Disk Issues
	7.6.1. Using Symbolic Links
	7.6.1.1. Using Symbolic Links for Databases on Unix
	7.6.1.2. Using Symbolic Links for Tables on Unix
	7.6.1.3. Using Symbolic Links for Databases on Windows

	Chapter 8. Client and Utility Programs
	8.1. Overview of Client and Utility Programs
	8.2. myisam_ftdump — Display Full-Text Index information
	8.3. myisamchk — MyISAM Table-Maintenance Utility
	8.3.1. myisamchk General Options
	8.3.2. myisamchk Check Options
	8.3.3. myisamchk Repair Options
	8.3.4. Other myisamchk Options
	8.3.5. myisamchk Memory Usage

	8.4. myisamlog — Display MyISAM Log File Contents
	8.5. myisampack — Generate Compressed, Read-Only MyISAM Tables
	8.6. mysql — The MySQL Command-Line Tool
	8.6.1. mysql Options
	8.6.2. mysql Commands
	8.6.3. mysql Server-Side Help
	8.6.4. Executing SQL Statements from a Text File
	8.6.5. mysql Tips
	8.6.5.1. Displaying Query Results Vertically
	8.6.5.2. Using the --safe-updates Option
	8.6.5.3. Disabling mysql Auto-Reconnect

	8.7. mysql_explain_log — Use EXPLAIN on Statements in Query Log
	8.8. mysqlaccess — Client for Checking Access Privileges
	8.9. mysqladmin — Client for Administering a MySQL Server
	8.10. mysqlbinlog — Utility for Processing Binary Log Files
	8.11. mysqlcheck — A Table Maintenance and Repair Program
	8.12. mysqldump — A Database Backup Program
	8.13. mysqlhotcopy — A Database Backup Program
	8.14. mysqlimport — A Data Import Program
	8.15. mysqlshow — Display Database, Table, and Column Information
	8.16. mysql_zap — Kill Processes That Match a Pattern
	8.17. perror — Explain Error Codes
	8.18. replace — A String-Replacement Utility

	Chapter 9. Language Structure
	9.1. Literal Values
	9.1.1. Strings
	9.1.2. Numbers
	9.1.3. Hexadecimal Values
	9.1.4. Boolean Values
	9.1.5. Bit-Field Values
	9.1.6. NULL Values

	9.2. Database, Table, Index, Column, and Alias Names
	9.2.1. Identifier Qualifiers
	9.2.2. Identifier Case Sensitivity

	9.3. User-Defined Variables
	9.4. Comment Syntax
	9.5. Treatment of Reserved Words in MySQL

	Chapter 10. Character Set Support
	10.1. Character Sets and Collations in General
	10.2. Character Sets and Collations in MySQL
	10.3. Specifying Character Sets and Collations
	10.3.1. Server Character Set and Collation
	10.3.2. Database Character Set and Collation
	10.3.3. Table Character Set and Collation
	10.3.4. Column Character Set and Collation
	10.3.5. Character String Literal Character Set and Collation
	10.3.6. National Character Set
	10.3.7. Examples of Character Set and Collation Assignment
	10.3.8. Compatibility with Other DBMSs

	10.4. Connection Character Sets and Collations
	10.5. Collation Issues
	10.5.1. Using COLLATE in SQL Statements
	10.5.2. COLLATE Clause Precedence
	10.5.3. BINARY Operator
	10.5.4. Some Special Cases Where the Collation Determination Is Tricky
	10.5.5. Collations Must Be for the Right Character Set
	10.5.6. An Example of the Effect of Collation

	10.6. Operations Affected by Character Set Support
	10.6.1. Result Strings
	10.6.2. CONVERT() and CAST()
	10.6.3. SHOW Statements and INFORMATION_SCHEMA

	10.7. Unicode Support
	10.8. UTF-8 for Metadata
	10.9. Character Sets and Collations That MySQL Supports
	10.9.1. Unicode Character Sets
	10.9.2. West European Character Sets
	10.9.3. Central European Character Sets
	10.9.4. South European and Middle East Character Sets
	10.9.5. Baltic Character Sets
	10.9.6. Cyrillic Character Sets
	10.9.7. Asian Character Sets
	10.9.7.1. The cp932 Character Set

	10.10. FAQ: MySQL Chinese, Japanese, and Korean Character Sets
	10.10.1. SELECT shows non-Latin characters as "?"s. Why?
	10.10.2. Troubles with GB character sets (Chinese)
	10.10.3. Troubles with big5 character set (Chinese)
	10.10.4. Troubles with character-set conversions (Japanese)
	10.10.5. The Great Yen Sign problem (Japanese)
	10.10.6. Troubles with euckr character set (Korean)
	10.10.7. The “Data truncated” message
	10.10.8. Troubles with Access, Perl, PHP, etc.
	10.10.9. How can I get old MySQL 4.0 behaviour back?
	10.10.10. Why do some LIKE and FULLTEXT searches fail?
	10.10.11. What CJK character sets are available?
	10.10.12. Is character X available in all character sets?
	10.10.13. Strings don't sort correctly in Unicode (I)
	10.10.14. Strings don't sort correctly in Unicode (II)
	10.10.15. My supplementary characters get rejected
	10.10.16. Shouldn't it be CJKV (V for Vietnamese)?
	10.10.17. Will MySQL fix any CJK problems in version 5.1?
	10.10.18. When will MySQL translate the manual again?
	10.10.19. Whom can I talk to?

	Chapter 11. Data Types
	11.1. Data Type Overview
	11.1.1. Overview of Numeric Types
	11.1.2. Overview of Date and Time Types
	11.1.3. Overview of String Types
	11.1.4. Data Type Default Values

	11.2. Numeric Types
	11.3. Date and Time Types
	11.3.1. The DATETIME, DATE, and TIMESTAMP Types
	11.3.1.1. TIMESTAMP Properties as of MySQL 4.1

	11.3.2. The TIME Type
	11.3.3. The YEAR Type
	11.3.4. Y2K Issues and Date Types

	11.4. String Types
	11.4.1. The CHAR and VARCHAR Types
	11.4.2. The BINARY and VARBINARY Types
	11.4.3. The BLOB and TEXT Types
	11.4.4. The ENUM Type
	11.4.5. The SET Type

	11.5. Data Type Storage Requirements
	11.6. Choosing the Right Type for a Column
	11.7. Using Data Types from Other Database Engines

	Chapter 12. Functions and Operators
	12.1. Operators
	12.1.1. Operator Precedence
	12.1.2. Type Conversion in Expression Evaluation
	12.1.3. Comparison Functions and Operators
	12.1.4. Logical Operators

	12.2. Control Flow Functions
	12.3. String Functions
	12.3.1. String Comparison Functions

	12.4. Numeric Functions
	12.4.1. Arithmetic Operators
	12.4.2. Mathematical Functions

	12.5. Date and Time Functions
	12.6. What Calendar Is Used By MySQL?
	12.7. Full-Text Search Functions
	12.7.1. Boolean Full-Text Searches
	12.7.2. Full-Text Searches with Query Expansion
	12.7.3. Full-Text Stopwords
	12.7.4. Full-Text Restrictions
	12.7.5. Fine-Tuning MySQL Full-Text Search

	12.8. Cast Functions and Operators
	12.9. Other Functions
	12.9.1. Bit Functions
	12.9.2. Encryption and Compression Functions
	12.9.3. Information Functions
	12.9.4. Miscellaneous Functions

	12.10. Functions and Modifiers for Use with GROUP BY Clauses
	12.10.1. GROUP BY (Aggregate) Functions
	12.10.2. GROUP BY Modifiers
	12.10.3. GROUP BY and HAVING with Hidden Fields

	Chapter 13. SQL Statement Syntax
	13.1. Data Definition Statements
	13.1.1. ALTER DATABASE Syntax
	13.1.2. ALTER TABLE Syntax
	13.1.3. CREATE DATABASE Syntax
	13.1.4. CREATE INDEX Syntax
	13.1.5. CREATE TABLE Syntax
	13.1.5.1. Silent Column Specification Changes

	13.1.6. DROP DATABASE Syntax
	13.1.7. DROP INDEX Syntax
	13.1.8. DROP TABLE Syntax
	13.1.9. RENAME TABLE Syntax

	13.2. Data Manipulation Statements
	13.2.1. DELETE Syntax
	13.2.2. DO Syntax
	13.2.3. HANDLER Syntax
	13.2.4. INSERT Syntax
	13.2.4.1. INSERT ... SELECT Syntax
	13.2.4.2. INSERT DELAYED Syntax
	13.2.4.3. INSERT ... ON DUPLICATE KEY UPDATE Syntax

	13.2.5. LOAD DATA INFILE Syntax
	13.2.6. REPLACE Syntax
	13.2.7. SELECT Syntax
	13.2.7.1. JOIN Syntax
	13.2.7.2. UNION Syntax

	13.2.8. Subquery Syntax
	13.2.8.1. The Subquery as Scalar Operand
	13.2.8.2. Comparisons Using Subqueries
	13.2.8.3. Subqueries with ANY, IN, and SOME
	13.2.8.4. Subqueries with ALL
	13.2.8.5. Row Subqueries
	13.2.8.6. EXISTS and NOT EXISTS
	13.2.8.7. Correlated Subqueries
	13.2.8.8. Subqueries in the FROM clause
	13.2.8.9. Subquery Errors
	13.2.8.10. Optimizing Subqueries
	13.2.8.11. Rewriting Subqueries as Joins for Earlier MySQL Versions

	13.2.9. TRUNCATE Syntax
	13.2.10. UPDATE Syntax

	13.3. MySQL Utility Statements
	13.3.1. DESCRIBE Syntax
	13.3.2. HELP Syntax
	13.3.3. USE Syntax

	13.4. MySQL Transactional and Locking Statements
	13.4.1. START TRANSACTION, COMMIT, and ROLLBACK Syntax
	13.4.2. Statements That Cannot Be Rolled Back
	13.4.3. Statements That Cause an Implicit Commit
	13.4.4. SAVEPOINT and ROLLBACK TO SAVEPOINT Syntax
	13.4.5. LOCK TABLES and UNLOCK TABLES Syntax
	13.4.6. SET TRANSACTION Syntax
	13.4.7. XA Transactions
	13.4.7.1. XA Transaction SQL Syntax
	13.4.7.2. XA Transaction States

	13.5. Database Administration Statements
	13.5.1. Account Management Statements
	13.5.1.1. CREATE USER Syntax
	13.5.1.2. DROP USER Syntax
	13.5.1.3. GRANT Syntax
	13.5.1.4. RENAME USER Syntax
	13.5.1.5. REVOKE Syntax
	13.5.1.6. SET PASSWORD Syntax

	13.5.2. Table Maintenance Statements
	13.5.2.1. ANALYZE TABLE Syntax
	13.5.2.2. BACKUP TABLE Syntax
	13.5.2.3. CHECK TABLE Syntax
	13.5.2.4. CHECKSUM TABLE Syntax
	13.5.2.5. OPTIMIZE TABLE Syntax
	13.5.2.6. REPAIR TABLE Syntax
	13.5.2.7. RESTORE TABLE Syntax

	13.5.3. SET Syntax
	13.5.4. SHOW Syntax
	13.5.4.1. SHOW CHARACTER SET Syntax
	13.5.4.2. SHOW COLLATION Syntax
	13.5.4.3. SHOW COLUMNS Syntax
	13.5.4.4. SHOW CREATE DATABASE Syntax
	13.5.4.5. SHOW CREATE PROCEDURE and SHOW CREATE FUNCTION Syntax
	13.5.4.6. SHOW CREATE TABLE Syntax
	13.5.4.7. SHOW CREATE VIEW Syntax
	13.5.4.8. SHOW DATABASES Syntax
	13.5.4.9. SHOW ENGINE Syntax
	13.5.4.10. SHOW ENGINES Syntax
	13.5.4.11. SHOW ERRORS Syntax
	13.5.4.12. SHOW GRANTS Syntax
	13.5.4.13. SHOW INDEX Syntax
	13.5.4.14. SHOW INNODB STATUS Syntax
	13.5.4.15. SHOW LOGS Syntax
	13.5.4.16. SHOW MUTEX STATUS Syntax
	13.5.4.17. SHOW OPEN TABLES Syntax
	13.5.4.18. SHOW PRIVILEGES Syntax
	13.5.4.19. SHOW PROCEDURE STATUS and SHOW FUNCTION STATUS Syntax
	13.5.4.20. SHOW PROCESSLIST Syntax
	13.5.4.21. SHOW STATUS Syntax
	13.5.4.22. SHOW TABLE STATUS Syntax
	13.5.4.23. SHOW TABLES Syntax
	13.5.4.24. SHOW TRIGGERS Syntax
	13.5.4.25. SHOW VARIABLES Syntax
	13.5.4.26. SHOW WARNINGS Syntax

	13.5.5. Other Administrative Statements
	13.5.5.1. CACHE INDEX Syntax
	13.5.5.2. FLUSH Syntax
	13.5.5.3. KILL Syntax
	13.5.5.4. LOAD INDEX INTO CACHE Syntax
	13.5.5.5. RESET Syntax

	13.6. Replication Statements
	13.6.1. SQL Statements for Controlling Master Servers
	13.6.1.1. PURGE MASTER LOGS Syntax
	13.6.1.2. RESET MASTER Syntax
	13.6.1.3. SET SQL_LOG_BIN Syntax
	13.6.1.4. SHOW BINLOG EVENTS Syntax
	13.6.1.5. SHOW BINARY LOGS Syntax
	13.6.1.6. SHOW MASTER STATUS Syntax
	13.6.1.7. SHOW SLAVE HOSTS Syntax

	13.6.2. SQL Statements for Controlling Slave Servers
	13.6.2.1. CHANGE MASTER TO Syntax
	13.6.2.2. LOAD DATA FROM MASTER Syntax
	13.6.2.3. LOAD TABLE tbl_name FROM MASTER Syntax
	13.6.2.4. MASTER_POS_WAIT() Syntax
	13.6.2.5. RESET SLAVE Syntax
	13.6.2.6. SET GLOBAL SQL_SLAVE_SKIP_COUNTER Syntax
	13.6.2.7. SHOW SLAVE STATUS Syntax
	13.6.2.8. START SLAVE Syntax
	13.6.2.9. STOP SLAVE Syntax

	13.7. SQL Syntax for Prepared Statements

	Chapter 14. Storage Engines and Table Types
	14.1. The MyISAM Storage Engine
	14.1.1. MyISAM Startup Options
	14.1.2. Space Needed for Keys
	14.1.3. MyISAM Table Storage Formats
	14.1.3.1. Static (Fixed-Length) Table Characteristics
	14.1.3.2. Dynamic Table Characteristics
	14.1.3.3. Compressed Table Characteristics

	14.1.4. MyISAM Table Problems
	14.1.4.1. Corrupted MyISAM Tables
	14.1.4.2. Problems from Tables Not Being Closed Properly

	14.2. The InnoDB Storage Engine
	14.2.1. InnoDB Overview
	14.2.2. InnoDB Contact Information
	14.2.3. InnoDB Configuration
	14.2.3.1. Using Per-Table Tablespaces
	14.2.3.2. Using Raw Devices for the Shared Tablespace

	14.2.4. InnoDB Startup Options and System Variables
	14.2.5. Creating the InnoDB Tablespace
	14.2.5.1. Dealing with InnoDB Initialization Problems

	14.2.6. Creating and Using InnoDB Tables
	14.2.6.1. How to Use Transactions in InnoDB with Different APIs
	14.2.6.2. Converting MyISAM Tables to InnoDB
	14.2.6.3. How AUTO_INCREMENT Columns Work in InnoDB
	14.2.6.4. FOREIGN KEY Constraints
	14.2.6.5. InnoDB and MySQL Replication

	14.2.7. Adding and Removing InnoDB Data and Log Files
	14.2.8. Backing Up and Recovering an InnoDB Database
	14.2.8.1. Forcing InnoDB Recovery
	14.2.8.2. Checkpoints

	14.2.9. Moving an InnoDB Database to Another Machine
	14.2.10. InnoDB Transaction Model and Locking
	14.2.10.1. InnoDB Lock Modes
	14.2.10.2. InnoDB and AUTOCOMMIT
	14.2.10.3. InnoDB and TRANSACTION ISOLATION LEVEL
	14.2.10.4. Consistent Non-Locking Read
	14.2.10.5. SELECT ... FOR UPDATE and SELECT ... LOCK IN SHARE MODE Locking Reads
	14.2.10.6. Next-Key Locking: Avoiding the Phantom Problem
	14.2.10.7. An Example of Consistent Read in InnoDB
	14.2.10.8. Locks Set by Different SQL Statements in InnoDB
	14.2.10.9. Implicit Transaction Commit and Rollback
	14.2.10.10. Deadlock Detection and Rollback
	14.2.10.11. How to Cope with Deadlocks

	14.2.11. InnoDB Performance Tuning Tips
	14.2.11.1. SHOW ENGINE INNODB STATUS and the InnoDB Monitors

	14.2.12. Implementation of Multi-Versioning
	14.2.13. InnoDB Table and Index Structures
	14.2.13.1. Physical Structure of an Index
	14.2.13.2. Insert Buffering
	14.2.13.3. Adaptive Hash Indexes
	14.2.13.4. Physical Row Structure

	14.2.14. InnoDB File Space Management and Disk I/O
	14.2.14.1. InnoDB Disk I/O
	14.2.14.2. File Space Management
	14.2.14.3. Defragmenting a Table

	14.2.15. InnoDB Error Handling
	14.2.15.1. InnoDB Error Codes
	14.2.15.2. Operating System Error Codes

	14.2.16. Restrictions on InnoDB Tables
	14.2.17. InnoDB Troubleshooting
	14.2.17.1. Troubleshooting InnoDB Data Dictionary Operations

	14.3. The MERGE Storage Engine
	14.3.1. MERGE Table Problems

	14.4. The MEMORY (HEAP) Storage Engine
	14.5. The BDB (BerkeleyDB) Storage Engine
	14.5.1. Operating Systems Supported by BDB
	14.5.2. Installing BDB
	14.5.3. BDB Startup Options
	14.5.4. Characteristics of BDB Tables
	14.5.5. Restrictions on BDB Tables
	14.5.6. Errors That May Occur When Using BDB Tables

	14.6. The EXAMPLE Storage Engine
	14.7. The FEDERATED Storage Engine
	14.7.1. Description of the FEDERATED Storage Engine
	14.7.2. How to use FEDERATED Tables
	14.7.3. Limitations of the FEDERATED Storage Engine

	14.8. The ARCHIVE Storage Engine
	14.9. The CSV Storage Engine
	14.10. The BLACKHOLE Storage Engine

	Chapter 15. MySQL Cluster
	15.1. MySQL Cluster Overview
	15.2. Basic MySQL Cluster Concepts
	15.2.1. MySQL Cluster Nodes, Node Groups, Replicas, and Partitions

	15.3. Simple Multi-Computer How-To
	15.3.1. Hardware, Software, and Networking
	15.3.2. Multi-Computer Installation
	15.3.3. Multi-Computer Configuration
	15.3.4. Initial Startup
	15.3.5. Loading Sample Data and Performing Queries
	15.3.6. Safe Shutdown and Restart

	15.4. MySQL Cluster Configuration
	15.4.1. Building MySQL Cluster from Source Code
	15.4.2. Installing the Software
	15.4.3. Quick Test Setup of MySQL Cluster
	15.4.4. Configuration File
	15.4.4.1. Basic Example Configuration
	15.4.4.2. The Cluster connectstring
	15.4.4.3. Defining Cluster Computers
	15.4.4.4. Defining the Management Server
	15.4.4.5. Defining Data Nodes
	15.4.4.6. Defining SQL and Other API Nodes
	15.4.4.7. Cluster TCP/IP Connections
	15.4.4.8. TCP/IP Connections Using Direct Connections
	15.4.4.9. Shared-Memory Connections
	15.4.4.10. SCI Transport Connections

	15.4.5. Overview of Cluster Configuration Parameters
	15.4.5.1. Data Node Configuration Parameters
	15.4.5.2. Management Node Configuration Parameters
	15.4.5.3. SQL Node and API Node Configuration Parameters

	15.4.6. Configuring Parameters for Local Checkpoints

	15.5. Upgrading and Downgrading MySQL Cluster
	15.5.1. Performing a Rolling Restart of the Cluster
	15.5.2. Cluster Upgrade and Downgrade Compatibility

	15.6. Process Management in MySQL Cluster
	15.6.1. MySQL Server Process Usage for MySQL Cluster
	15.6.2. ndbd, the Storage Engine Node Process
	15.6.3. ndb_mgmd, the Management Server Process
	15.6.4. ndb_mgm, the Management Client Process
	15.6.5. Command Options for MySQL Cluster Processes
	15.6.5.1. MySQL Cluster-Related Command Options for mysqld
	15.6.5.2. Command Options for ndbd
	15.6.5.3. Command Options for ndb_mgmd
	15.6.5.4. Command Options for ndb_mgm

	15.7. Management of MySQL Cluster
	15.7.1. MySQL Cluster Startup Phases
	15.7.2. Commands in the Management Client
	15.7.3. Event Reports Generated in MySQL Cluster
	15.7.3.1. Logging Management Commands
	15.7.3.2. Log Events
	15.7.3.3. Using CLUSTERLOG STATISTICS

	15.7.4. Single-User Mode

	15.8. On-line Backup of MySQL Cluster
	15.8.1. Cluster Backup Concepts
	15.8.2. Using The Management Client to Create a Backup
	15.8.3. How to Restore a Cluster Backup
	15.8.4. Configuration for Cluster Backup
	15.8.5. Backup Troubleshooting

	15.9. Cluster Utility Programs
	15.9.1. ndb_delete_all
	15.9.2. ndb_desc
	15.9.3. ndb_drop_index
	15.9.4. ndb_drop_table
	15.9.5. ndb_error_reporter
	15.9.6. ndb_print_backup_file
	15.9.7. ndb_print_schema_file
	15.9.8. ndb_print_sys_file
	15.9.9. ndb_select_all
	15.9.10. ndb_select_count
	15.9.11. ndb_show_tables
	15.9.12. ndb_size.pl
	15.9.13. ndb_waiter

	15.10. Using High-Speed Interconnects with MySQL Cluster
	15.10.1. Configuring MySQL Cluster to use SCI Sockets
	15.10.2. Understanding the Impact of Cluster Interconnects

	15.11. Known Limitations of MySQL Cluster
	15.12. MySQL Cluster Development Roadmap
	15.12.1. MySQL Cluster Changes in MySQL 5.0
	15.12.2. MySQL 5.1 Development Roadmap for MySQL Cluster

	15.13. MySQL Cluster FAQ
	15.14. MySQL Cluster Glossary

	Chapter 16. Spatial Extensions
	16.1. Introduction to MySQL Spatial Support
	16.2. The OpenGIS Geometry Model
	16.2.1. The Geometry Class Hierarchy
	16.2.2. Class Geometry
	16.2.3. Class Point
	16.2.4. Class Curve
	16.2.5. Class LineString
	16.2.6. Class Surface
	16.2.7. Class Polygon
	16.2.8. Class GeometryCollection
	16.2.9. Class MultiPoint
	16.2.10. Class MultiCurve
	16.2.11. Class MultiLineString
	16.2.12. Class MultiSurface
	16.2.13. Class MultiPolygon

	16.3. Supported Spatial Data Formats
	16.3.1. Well-Known Text (WKT) Format
	16.3.2. Well-Known Binary (WKB) Format

	16.4. Creating a Spatially Enabled MySQL Database
	16.4.1. MySQL Spatial Data Types
	16.4.2. Creating Spatial Values
	16.4.2.1. Creating Geometry Values Using WKT Functions
	16.4.2.2. Creating Geometry Values Using WKB Functions
	16.4.2.3. Creating Geometry Values Using MySQL-Specific Functions

	16.4.3. Creating Spatial Columns
	16.4.4. Populating Spatial Columns
	16.4.5. Fetching Spatial Data

	16.5. Analyzing Spatial Information
	16.5.1. Geometry Format Conversion Functions
	16.5.2. Geometry Functions
	16.5.2.1. General Geometry Functions
	16.5.2.2. Point Functions
	16.5.2.3. LineString Functions
	16.5.2.4. MultiLineString Functions
	16.5.2.5. Polygon Functions
	16.5.2.6. MultiPolygon Functions
	16.5.2.7. GeometryCollection Functions

	16.5.3. Functions That Create New Geometries from Existing Ones
	16.5.3.1. Geometry Functions That Produce New Geometries
	16.5.3.2. Spatial Operators

	16.5.4. Functions for Testing Spatial Relations Between Geometric Objects
	16.5.5. Relations on Geometry Minimal Bounding Rectangles (MBRs)
	16.5.6. Functions That Test Spatial Relationships Between Geometries

	16.6. Optimizing Spatial Analysis
	16.6.1. Creating Spatial Indexes
	16.6.2. Using a Spatial Index

	16.7. MySQL Conformance and Compatibility

	Chapter 17. Stored Procedures and Functions
	17.1. Stored Routines and the Grant Tables
	17.2. Stored Routine Syntax
	17.2.1. CREATE PROCEDURE and CREATE FUNCTION Syntax
	17.2.2. ALTER PROCEDURE and ALTER FUNCTION Syntax
	17.2.3. DROP PROCEDURE and DROP FUNCTION Syntax
	17.2.4. CALL Statement Syntax
	17.2.5. BEGIN ... END Compound Statement Syntax
	17.2.6. DECLARE Statement Syntax
	17.2.7. Variables in Stored Routines
	17.2.7.1. DECLARE Local Variables
	17.2.7.2. Variable SET Statement
	17.2.7.3. SELECT ... INTO Statement

	17.2.8. Conditions and Handlers
	17.2.8.1. DECLARE Conditions
	17.2.8.2. DECLARE Handlers

	17.2.9. Cursors
	17.2.9.1. Declaring Cursors
	17.2.9.2. Cursor OPEN Statement
	17.2.9.3. Cursor FETCH Statement
	17.2.9.4. Cursor CLOSE Statement

	17.2.10. Flow Control Constructs
	17.2.10.1. IF Statement
	17.2.10.2. CASE Statement
	17.2.10.3. LOOP Statement
	17.2.10.4. LEAVE Statement
	17.2.10.5. ITERATE Statement
	17.2.10.6. REPEAT Statement
	17.2.10.7. WHILE Statement

	17.3. Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()
	17.4. Stored Procedures, Functions, Triggers, and Replication: Frequently Asked Questions
	17.5. Binary Logging of Stored Routines and Triggers

	Chapter 18. Triggers
	18.1. CREATE TRIGGER Syntax
	18.2. DROP TRIGGER Syntax
	18.3. Using Triggers

	Chapter 19. Views
	19.1. ALTER VIEW Syntax
	19.2. CREATE VIEW Syntax
	19.3. DROP VIEW Syntax

	Chapter 20. The INFORMATION_SCHEMA Database
	20.1. The INFORMATION_SCHEMA SCHEMATA Table
	20.2. The INFORMATION_SCHEMA TABLES Table
	20.3. The INFORMATION_SCHEMA COLUMNS Table
	20.4. The INFORMATION_SCHEMA STATISTICS Table
	20.5. The INFORMATION_SCHEMA USER_PRIVILEGES Table
	20.6. The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
	20.7. The INFORMATION_SCHEMA TABLE_PRIVILEGES Table
	20.8. The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table
	20.9. The INFORMATION_SCHEMA CHARACTER_SETS Table
	20.10. The INFORMATION_SCHEMA COLLATIONS Table
	20.11. The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table
	20.12. The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table
	20.13. The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table
	20.14. The INFORMATION_SCHEMA ROUTINES Table
	20.15. The INFORMATION_SCHEMA VIEWS Table
	20.16. The INFORMATION_SCHEMA TRIGGERS Table
	20.17. Other INFORMATION_SCHEMA Tables
	20.18. Extensions to SHOW Statements

	Chapter 21. Precision Math
	21.1. Types of Numeric Values
	21.2. DECIMAL Data Type Changes
	21.3. Expression Handling
	21.4. Rounding Behavior
	21.5. Precision Math Examples

	Chapter 22. APIs and Libraries
	22.1. libmysqld, the Embedded MySQL Server Library
	22.2. MySQL C API
	22.2.1. C API Data types
	22.2.2. C API Function Overview
	22.2.3. C API Function Descriptions
	22.2.3.1. mysql_affected_rows()
	22.2.3.2. mysql_autocommit()
	22.2.3.3. mysql_change_user()
	22.2.3.4. mysql_character_set_name()
	22.2.3.5. mysql_close()
	22.2.3.6. mysql_commit()
	22.2.3.7. mysql_connect()
	22.2.3.8. mysql_create_db()
	22.2.3.9. mysql_data_seek()
	22.2.3.10. mysql_debug()
	22.2.3.11. mysql_drop_db()
	22.2.3.12. mysql_dump_debug_info()
	22.2.3.13. mysql_eof()
	22.2.3.14. mysql_errno()
	22.2.3.15. mysql_error()
	22.2.3.16. mysql_escape_string()
	22.2.3.17. mysql_fetch_field()
	22.2.3.18. mysql_fetch_field_direct()
	22.2.3.19. mysql_fetch_fields()
	22.2.3.20. mysql_fetch_lengths()
	22.2.3.21. mysql_fetch_row()
	22.2.3.22. mysql_field_count()
	22.2.3.23. mysql_field_seek()
	22.2.3.24. mysql_field_tell()
	22.2.3.25. mysql_free_result()
	22.2.3.26. mysql_get_character_set_info()
	22.2.3.27. mysql_get_client_info()
	22.2.3.28. mysql_get_client_version()
	22.2.3.29. mysql_get_host_info()
	22.2.3.30. mysql_get_proto_info()
	22.2.3.31. mysql_get_server_info()
	22.2.3.32. mysql_get_server_version()
	22.2.3.33. mysql_hex_string()
	22.2.3.34. mysql_info()
	22.2.3.35. mysql_init()
	22.2.3.36. mysql_insert_id()
	22.2.3.37. mysql_kill()
	22.2.3.38. mysql_library_end()
	22.2.3.39. mysql_library_init()
	22.2.3.40. mysql_list_dbs()
	22.2.3.41. mysql_list_fields()
	22.2.3.42. mysql_list_processes()
	22.2.3.43. mysql_list_tables()
	22.2.3.44. mysql_more_results()
	22.2.3.45. mysql_next_result()
	22.2.3.46. mysql_num_fields()
	22.2.3.47. mysql_num_rows()
	22.2.3.48. mysql_options()
	22.2.3.49. mysql_ping()
	22.2.3.50. mysql_query()
	22.2.3.51. mysql_real_connect()
	22.2.3.52. mysql_real_escape_string()
	22.2.3.53. mysql_real_query()
	22.2.3.54. mysql_refresh()
	22.2.3.55. mysql_reload()
	22.2.3.56. mysql_rollback()
	22.2.3.57. mysql_row_seek()
	22.2.3.58. mysql_row_tell()
	22.2.3.59. mysql_select_db()
	22.2.3.60. mysql_set_character_set()
	22.2.3.61. mysql_set_local_infile_default()
	22.2.3.62. mysql_set_local_infile_handler()
	22.2.3.63. mysql_set_server_option()
	22.2.3.64. mysql_shutdown()
	22.2.3.65. mysql_sqlstate()
	22.2.3.66. mysql_ssl_set()
	22.2.3.67. mysql_stat()
	22.2.3.68. mysql_store_result()
	22.2.3.69. mysql_thread_id()
	22.2.3.70. mysql_use_result()
	22.2.3.71. mysql_warning_count()

	22.2.4. C API Prepared Statements
	22.2.5. C API Prepared Statement Data types
	22.2.6. C API Prepared Statement Function Overview
	22.2.7. C API Prepared Statement Function Descriptions
	22.2.7.1. mysql_stmt_affected_rows()
	22.2.7.2. mysql_stmt_attr_get()
	22.2.7.3. mysql_stmt_attr_set()
	22.2.7.4. mysql_stmt_bind_param()
	22.2.7.5. mysql_stmt_bind_result()
	22.2.7.6. mysql_stmt_close()
	22.2.7.7. mysql_stmt_data_seek()
	22.2.7.8. mysql_stmt_errno()
	22.2.7.9. mysql_stmt_error()
	22.2.7.10. mysql_stmt_execute()
	22.2.7.11. mysql_stmt_fetch()
	22.2.7.12. mysql_stmt_fetch_column()
	22.2.7.13. mysql_stmt_field_count()
	22.2.7.14. mysql_stmt_free_result()
	22.2.7.15. mysql_stmt_init()
	22.2.7.16. mysql_stmt_insert_id()
	22.2.7.17. mysql_stmt_num_rows()
	22.2.7.18. mysql_stmt_param_count()
	22.2.7.19. mysql_stmt_param_metadata()
	22.2.7.20. mysql_stmt_prepare()
	22.2.7.21. mysql_stmt_reset()
	22.2.7.22. mysql_stmt_result_metadata()
	22.2.7.23. mysql_stmt_row_seek()
	22.2.7.24. mysql_stmt_row_tell()
	22.2.7.25. mysql_stmt_send_long_data()
	22.2.7.26. mysql_stmt_sqlstate()
	22.2.7.27. mysql_stmt_store_result()

	22.2.8. C API Prepared statement problems
	22.2.9. C API Handling of Multiple Statement Execution
	22.2.10. C API Handling of Date and Time Values
	22.2.11. C API Threaded Function Descriptions
	22.2.11.1. my_init()
	22.2.11.2. mysql_thread_init()
	22.2.11.3. mysql_thread_end()
	22.2.11.4. mysql_thread_safe()

	22.2.12. C API Embedded Server Function Descriptions
	22.2.12.1. mysql_server_init()
	22.2.12.2. mysql_server_end()

	22.2.13. Common Questions and Problems When Using the C API
	22.2.13.1. Why mysql_store_result() Sometimes Returns NULL After mysql_query() Returns Success
	22.2.13.2. What Results You Can Get from a Query
	22.2.13.3. How to Get the Unique ID for the Last Inserted Row
	22.2.13.4. Problems Linking with the C API

	22.2.14. Building Client Programs
	22.2.15. How to Make a Threaded Client

	22.3. MySQL PHP API
	22.3.1. Common Problems with MySQL and PHP
	22.3.2. Enabling Both mysql and mysqli in PHP

	22.4. MySQL Perl API
	22.5. MySQL C++ API
	22.5.1. Borland C++

	22.6. MySQL Python API
	22.7. MySQL Tcl API
	22.8. MySQL Eiffel Wrapper
	22.9. MySQL Program Development Utilities
	22.9.1. msql2mysql — Convert mSQL Programs for Use with MySQL
	22.9.2. mysql_config — Get Compile Options for Compiling Clients

	Chapter 23. Connectors
	23.1. MySQL Connector/ODBC
	23.1.1. Introduction to MyODBC
	23.1.1.1. MyODBC Versions
	23.1.1.2. General Information About ODBC and MyODBC
	23.1.1.2.1. MyODBC Architecture
	23.1.1.2.2. ODBC Driver Managers

	23.1.2. How to Install MyODBC
	23.1.2.1. Where to Get MyODBC
	23.1.2.2. Supported Platforms
	23.1.2.3. Installing MyODBC from a binary distribution
	23.1.2.3.1. Installing MyODBC from a Binary Distribution on Windows
	23.1.2.3.1.1. Installing the Windows MyODBC Driver using an installer
	23.1.2.3.1.2. Installing the Windows MyODBC Driver using the Zipped DLL package
	23.1.2.3.1.3. Handling Installation Errors

	23.1.2.3.2. Installing MyODBC from a Binary Distribution on Unix
	23.1.2.3.2.1. Installing MyODBC from a Binary Tarball Distribution
	23.1.2.3.2.2. Installing MyODBC from an RPM Distribution

	23.1.2.3.3. Installing MyODBC on Mac OS X
	23.1.2.3.3.1. Installing the MyODBC Driver

	23.1.2.4. Installing MyODBC from a source distribution
	23.1.2.4.1. Installing MyODBC from a Source Distribution on Windows
	23.1.2.4.1.1. Building MyODBC 3.51
	23.1.2.4.1.2. Testing
	23.1.2.4.1.3. Building MyODBC 2.50

	23.1.2.4.2. Installing MyODBC from a Source Distribution on Unix
	23.1.2.4.2.1. Typical configure Options
	23.1.2.4.2.2. Additional configure Options
	23.1.2.4.2.3. Building and Compilation
	23.1.2.4.2.4. Building Shared Libraries
	23.1.2.4.2.5. Installing Driver Libraries
	23.1.2.4.2.6. Testing MyODBC on Unix
	23.1.2.4.2.7. Building MyODBC from Source on Mac OS X
	23.1.2.4.2.8. Building MyODBC from Source on HP-UX
	23.1.2.4.2.9. Building MyODBC from Source on AIX

	23.1.2.4.3. Installing MyODBC from the Development Source Tree

	23.1.3. MyODBC Configuration
	23.1.3.1. Data Source Names
	23.1.3.2. Configuring a MyODBC DSN on Windows
	23.1.3.2.1. Adding a MyODBC DSN on Windows
	23.1.3.2.2. Checking MyODBC DSN Configuration on Windows
	23.1.3.2.3. MyODBC DSN Configuration Options
	23.1.3.2.4. Errors and Debugging

	23.1.3.3. Configuring a MyODBC DSN on Mac OS X
	23.1.3.4. Configuring a MyODBC DSN on Unix
	23.1.3.5. MyODBC Connection Parameters
	23.1.3.6. Connecting Without a Predefined DSN
	23.1.3.7. ODBC Connection Pooling
	23.1.3.8. Getting an ODBC Trace File
	23.1.3.8.1. Enabling ODBC Tracing on Windows
	23.1.3.8.2. Enabling ODBC Tracing on Mac OS X
	23.1.3.8.3. Enabling ODBC Tracing on Unix
	23.1.3.8.4. Enabling a MyODBC Log

	23.1.4. MyODBC Examples
	23.1.4.1. Basic MyODBC Application Steps
	23.1.4.2. Step-by-step Guide to Connecting to a MySQL Database through MyODBC
	23.1.4.3. MyODBC and Third-Party ODBC Tools
	23.1.4.3.1. Applications Tested with MyODBC
	23.1.4.3.2. Using MyODBC with Microsoft Word or Excel
	23.1.4.3.3. Using MyODBC and Microsoft Access
	23.1.4.3.3.1. Exporting Access Data to MySQL
	23.1.4.3.3.2. Importing MySQL Data to Access
	23.1.4.3.3.3. Linking MySQL Data to Access Tables

	23.1.4.4. MyODBC Programming Examples
	23.1.4.4.1. Using MyODBC with Visual Basic Using ADO, DAO and RDO
	23.1.4.4.1.1. ADO: rs.addNew, rs.delete, and rs.update
	23.1.4.4.1.2. DAO: rs.addNew, rs.update, and Scrolling
	23.1.4.4.1.3. RDO: rs.addNew and rs.update

	23.1.4.4.2. Using MyODBC with .NET
	23.1.4.4.2.1. Using MyODBC with ODBC.NET and C# (C sharp)
	23.1.4.4.2.2. Using MyODBC with ODBC.NET and Visual Basic

	23.1.5. MyODBC Reference
	23.1.5.1. MyODBC API Reference
	23.1.5.2. MyODBC Data Types
	23.1.5.3. MyODBC Error Codes

	23.1.6. MyODBC Notes and Tips
	23.1.6.1. MyODBC General Functionality
	23.1.6.1.1. Obtaining Auto-Increment Values
	23.1.6.1.2. Dynamic Cursor Support
	23.1.6.1.3. MyODBC Performance
	23.1.6.1.4. Setting ODBC Query Timeout in Windows

	23.1.6.2. MyODBC Application Specific Tips
	23.1.6.2.1. Using MyODBC with Microsoft Applications
	23.1.6.2.1.1. Microsoft Access
	23.1.6.2.1.2. Microsoft Excel and Column Types
	23.1.6.2.1.3. Microsoft Visual Basic
	23.1.6.2.1.4. Microsoft Visual InterDev
	23.1.6.2.1.5. Visual Objects
	23.1.6.2.1.6. Microsoft ADO
	23.1.6.2.1.7. Using MyODBC with Active Server Pages (ASP)
	23.1.6.2.1.8. Using MyODBC with Visual Basic (ADO, DAO and RDO) and ASP

	23.1.6.2.2. Using MyODBC with Borland Applications
	23.1.6.2.2.1. Using MyODBC with Borland Builder 4
	23.1.6.2.2.2. Using MyODBC with Delphi
	23.1.6.2.2.3. Using MyODBC with C++ Builder

	23.1.6.2.3. Using MyODBC with ColdFusion
	23.1.6.2.4. Using MyODBC with OpenOffice
	23.1.6.2.5. Using MyODBC with Sambar Server
	23.1.6.2.6. Using MyODBC with Pervasive Software DataJunction
	23.1.6.2.7. Using MyODBC with SunSystems Vision

	23.1.6.3. MyODBC Errors and Resolutions

	23.1.7. MyODBC Support
	23.1.7.1. MyODBC Community Support
	23.1.7.2. How to Report MyODBC Problems or Bugs
	23.1.7.3. How to Submit a MyODBC Patch
	23.1.7.4. MyODBC Change History
	23.1.7.5. Credits

	23.2. Connector/NET
	23.2.1. Connector/NET Versions
	23.2.2. How to install Connector/NET
	23.2.2.1. Installing Connector/NET on Windows
	23.2.2.1.1. Installing Connector/NET using the Installer
	23.2.2.1.2. Installing Connector/NET using the Zip package

	23.2.2.2. Installing Connector/NET on Unix with Mono
	23.2.2.3. Installing Connector/NET using the Source

	23.2.3. Connector/NET Examples
	23.2.3.1. MySqlCommand
	23.2.3.1.1. Class MySqlCommand Constructor Form 1
	23.2.3.1.2. Class MySqlCommand Constructor Form 2
	23.2.3.1.3. Class MySqlCommand Constructor Form 3
	23.2.3.1.4. Class MySqlCommand Constructor Form 4
	23.2.3.1.5. ExecuteNonQuery
	23.2.3.1.6. ExecuteReader1
	23.2.3.1.7. ExecuteReader
	23.2.3.1.8. Prepare
	23.2.3.1.9. ExecuteScalar
	23.2.3.1.10. CommandText
	23.2.3.1.11. CommandTimeout
	23.2.3.1.12. CommandType
	23.2.3.1.13. Connection
	23.2.3.1.14. IsPrepared
	23.2.3.1.15. Parameters
	23.2.3.1.16. Transaction
	23.2.3.1.17. UpdatedRowSource

	23.2.3.2. MySqlCommandBuilder
	23.2.3.2.1. Class MySqlCommandBuilder Constructor
	23.2.3.2.2. Class MySqlCommandBuilder Constructor Form 1
	23.2.3.2.3. Class MySqlCommandBuilder Constructor Form 2
	23.2.3.2.4. Class MySqlCommandBuilder Constructor Form 3
	23.2.3.2.5. DataAdapter
	23.2.3.2.6. QuotePrefix
	23.2.3.2.7. QuoteSuffix
	23.2.3.2.8. DeriveParameters
	23.2.3.2.9. GetDeleteCommand
	23.2.3.2.10. GetInsertCommand
	23.2.3.2.11. GetUpdateCommand
	23.2.3.2.12. RefreshSchema

	23.2.3.3. MySqlConnection
	23.2.3.3.1. Class MySqlConnection Constructor (Default)
	23.2.3.3.2. Class MySqlConnection Constructor Form 1
	23.2.3.3.3. Open
	23.2.3.3.4. Database
	23.2.3.3.5. State
	23.2.3.3.6. ServerVersion
	23.2.3.3.7. Close
	23.2.3.3.8. CreateCommand
	23.2.3.3.9. BeginTransaction
	23.2.3.3.10. BeginTransaction1
	23.2.3.3.11. ChangeDatabase
	23.2.3.3.12. StateChange
	23.2.3.3.13. InfoMessage
	23.2.3.3.14. ConnectionTimeout
	23.2.3.3.15. ConnectionString

	23.2.3.4. MySqlDataAdapter
	23.2.3.4.1. Class MySqlDataAdapter Constructor
	23.2.3.4.2. Class MySqlDataAdapter Constructor Form 1
	23.2.3.4.3. Class MySqlDataAdapter Constructor Form 2
	23.2.3.4.4. Class MySqlDataAdapter Constructor Form 3
	23.2.3.4.5. DeleteCommand
	23.2.3.4.6. InsertCommand
	23.2.3.4.7. UpdateCommand
	23.2.3.4.8. SelectCommand

	23.2.3.5. MySqlDataReader
	23.2.3.5.1. GetBytes
	23.2.3.5.2. GetTimeSpan
	23.2.3.5.3. GetDateTime
	23.2.3.5.4. GetMySqlDateTime
	23.2.3.5.5. GetString
	23.2.3.5.6. GetDecimal
	23.2.3.5.7. GetDouble
	23.2.3.5.8. GetFloat
	23.2.3.5.9. GetGiud
	23.2.3.5.10. GetInt16
	23.2.3.5.11. GetInt32
	23.2.3.5.12. GetInt64
	23.2.3.5.13. GetUInt16
	23.2.3.5.14. GetUInt32
	23.2.3.5.15. GetUInt64

	23.2.3.6. MySqlException
	23.2.3.7. MySqlParameter
	23.2.3.8. MySqlParameterCollection
	23.2.3.9. MySqlTransaction
	23.2.3.9.1. Rollback
	23.2.3.9.2. Commit

	23.2.4. Connector/NET Reference
	23.2.4.1. MySql.Data.MySqlClient
	23.2.4.1.1. MySql.Data.MySqlClientHierarchy
	23.2.4.1.2. MySqlCommand Class
	23.2.4.1.2.1. MySqlCommand Members
	23.2.4.1.2.1.1. MySqlCommand Constructor
	23.2.4.1.2.1.1.1. MySqlCommand Constructor ()
	23.2.4.1.2.1.1.2. MySqlCommand Constructor (String)
	23.2.4.1.2.1.1.3. MySqlCommand Constructor (String, MySqlConnection)
	23.2.4.1.2.1.1.3.1. MySqlConnection Class
	23.2.4.1.2.1.1.3.1.1. MySqlConnection Members
	23.2.4.1.2.1.1.3.1.1.1. MySqlConnection Constructor
	23.2.4.1.2.1.1.3.1.1.1.1. MySqlConnection Constructor ()
	23.2.4.1.2.1.1.3.1.1.1.2. MySqlConnection Constructor (String)

	23.2.4.1.2.1.1.3.1.1.2. ConnectionString Property
	23.2.4.1.2.1.1.3.1.1.3. ConnectionTimeout Property
	23.2.4.1.2.1.1.3.1.1.4. Database Property
	23.2.4.1.2.1.1.3.1.1.5. DataSource Property
	23.2.4.1.2.1.1.3.1.1.6. ServerThread Property
	23.2.4.1.2.1.1.3.1.1.7. ServerVersion Property
	23.2.4.1.2.1.1.3.1.1.8. State Property
	23.2.4.1.2.1.1.3.1.1.9. UseCompression Property
	23.2.4.1.2.1.1.3.1.1.10. BeginTransaction Method
	23.2.4.1.2.1.1.3.1.1.10.1. MySqlConnection.BeginTransaction Method ()
	23.2.4.1.2.1.1.3.1.1.10.1.1. MySqlTransaction Class
	23.2.4.1.2.1.1.3.1.1.10.1.1.1. MySqlTransaction Members
	23.2.4.1.2.1.1.3.1.1.10.1.1.1.1. Connection Property
	23.2.4.1.2.1.1.3.1.1.10.1.1.1.2. IsolationLevel Property
	23.2.4.1.2.1.1.3.1.1.10.1.1.1.3. MySqlTransaction.Commit Method
	23.2.4.1.2.1.1.3.1.1.10.1.1.1.4. MySqlTransaction.Rollback Method

	23.2.4.1.2.1.1.3.1.1.10.2. MySqlConnection.BeginTransaction Method (IsolationLevel)

	23.2.4.1.2.1.1.3.1.1.11. MySqlConnection.ChangeDatabase Method
	23.2.4.1.2.1.1.3.1.1.12. MySqlConnection.Close Method
	23.2.4.1.2.1.1.3.1.1.13. MySqlConnection.CreateCommand Method
	23.2.4.1.2.1.1.3.1.1.14. MySqlConnection.Open Method
	23.2.4.1.2.1.1.3.1.1.15. MySqlConnection.Ping Method
	23.2.4.1.2.1.1.3.1.1.16. MySqlConnection.InfoMessage Event
	23.2.4.1.2.1.1.3.1.1.16.1. MySqlInfoMessageEventHandler Delegate
	23.2.4.1.2.1.1.3.1.1.16.1.1. MySqlInfoMessageEventArgs Class
	23.2.4.1.2.1.1.3.1.1.16.1.1.1. MySqlInfoMessageEventArgs Members
	23.2.4.1.2.1.1.3.1.1.16.1.1.1.1. MySqlInfoMessageEventArgs Constructor
	23.2.4.1.2.1.1.3.1.1.16.1.1.1.2. MySqlInfoMessageEventArgs.errors Field
	23.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1. MySqlError Class
	23.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1. MySqlError Members
	23.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1.1. MySqlError Constructor
	23.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1.2. Code Property
	23.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1.3. Level Property
	23.2.4.1.2.1.1.3.1.1.16.1.1.1.2.1.1.4. Message Property

	23.2.4.1.2.1.1.3.1.1.17. MySqlConnection.StateChange Event

	23.2.4.1.2.1.1.4. MySqlCommand Constructor (String, MySqlConnection, MySqlTransaction)

	23.2.4.1.2.1.2. CommandText Property
	23.2.4.1.2.1.3. CommandTimeout Property
	23.2.4.1.2.1.4. CommandType Property
	23.2.4.1.2.1.5. Connection Property
	23.2.4.1.2.1.6. IsPrepared Property
	23.2.4.1.2.1.7. Parameters Property
	23.2.4.1.2.1.7.1. MySqlParameterCollection Class
	23.2.4.1.2.1.7.1.1. MySqlParameterCollection Members
	23.2.4.1.2.1.7.1.1.1. MySqlParameterCollection Constructor
	23.2.4.1.2.1.7.1.1.2. Count Property
	23.2.4.1.2.1.7.1.1.3. Item Property
	23.2.4.1.2.1.7.1.1.3.1. MySqlParameter Class
	23.2.4.1.2.1.7.1.1.3.1.1. MySqlParameter Members
	23.2.4.1.2.1.7.1.1.3.1.1.1. MySqlParameter Constructor
	23.2.4.1.2.1.7.1.1.3.1.1.1.1. MySqlParameter Constructor ()
	23.2.4.1.2.1.7.1.1.3.1.1.1.2. MySqlParameter Constructor (String, MySqlDbType)
	23.2.4.1.2.1.7.1.1.3.1.1.1.2.1. MySqlDbType Enumeration

	23.2.4.1.2.1.7.1.1.3.1.1.1.3. MySqlParameter Constructor (String, MySqlDbType, Int32)
	23.2.4.1.2.1.7.1.1.3.1.1.1.4. MySqlParameter Constructor (String, MySqlDbType, Int32, ParameterDirection, Boolean, Byte, Byte, String, DataRowVersion, Object)
	23.2.4.1.2.1.7.1.1.3.1.1.1.4.1. Value Property

	23.2.4.1.2.1.7.1.1.3.1.1.1.5. MySqlParameter Constructor (String, MySqlDbType, Int32, String)
	23.2.4.1.2.1.7.1.1.3.1.1.1.6. MySqlParameter Constructor (String, Object)

	23.2.4.1.2.1.7.1.1.3.1.1.2. DbType Property
	23.2.4.1.2.1.7.1.1.3.1.1.3. Direction Property
	23.2.4.1.2.1.7.1.1.3.1.1.4. IsNullable Property
	23.2.4.1.2.1.7.1.1.3.1.1.5. IsUnsigned Property
	23.2.4.1.2.1.7.1.1.3.1.1.6. MySqlDbType Property
	23.2.4.1.2.1.7.1.1.3.1.1.7. ParameterName Property
	23.2.4.1.2.1.7.1.1.3.1.1.8. Precision Property
	23.2.4.1.2.1.7.1.1.3.1.1.9. Scale Property
	23.2.4.1.2.1.7.1.1.3.1.1.10. Size Property
	23.2.4.1.2.1.7.1.1.3.1.1.11. SourceColumn Property
	23.2.4.1.2.1.7.1.1.3.1.1.12. SourceVersion Property
	23.2.4.1.2.1.7.1.1.3.1.1.13. MySqlParameter.ToString Method

	23.2.4.1.2.1.7.1.1.3.2. Item Property (Int32)
	23.2.4.1.2.1.7.1.1.3.3. Item Property (String)

	23.2.4.1.2.1.7.1.1.4. Add Method
	23.2.4.1.2.1.7.1.1.4.1. MySqlParameterCollection.Add Method (MySqlParameter)
	23.2.4.1.2.1.7.1.1.4.2. MySqlParameterCollection.Add Method (Object)
	23.2.4.1.2.1.7.1.1.4.3. MySqlParameterCollection.Add Method (String, MySqlDbType)
	23.2.4.1.2.1.7.1.1.4.4. MySqlParameterCollection.Add Method (String, MySqlDbType, Int32)
	23.2.4.1.2.1.7.1.1.4.5. MySqlParameterCollection.Add Method (String, MySqlDbType, Int32, String)
	23.2.4.1.2.1.7.1.1.4.6. MySqlParameterCollection.Add Method (String, Object)

	23.2.4.1.2.1.7.1.1.5. MySqlParameterCollection.Clear Method
	23.2.4.1.2.1.7.1.1.6. Contains Method
	23.2.4.1.2.1.7.1.1.6.1. MySqlParameterCollection.Contains Method (Object)
	23.2.4.1.2.1.7.1.1.6.2. MySqlParameterCollection.Contains Method (String)

	23.2.4.1.2.1.7.1.1.7. MySqlParameterCollection.CopyTo Method
	23.2.4.1.2.1.7.1.1.8. IndexOf Method
	23.2.4.1.2.1.7.1.1.8.1. MySqlParameterCollection.IndexOf Method (Object)
	23.2.4.1.2.1.7.1.1.8.2. MySqlParameterCollection.IndexOf Method (String)

	23.2.4.1.2.1.7.1.1.9. MySqlParameterCollection.Insert Method
	23.2.4.1.2.1.7.1.1.10. MySqlParameterCollection.Remove Method
	23.2.4.1.2.1.7.1.1.11. RemoveAt Method
	23.2.4.1.2.1.7.1.1.11.1. MySqlParameterCollection.RemoveAt Method (Int32)
	23.2.4.1.2.1.7.1.1.11.2. MySqlParameterCollection.RemoveAt Method (String)

	23.2.4.1.2.1.8. Transaction Property
	23.2.4.1.2.1.9. UpdatedRowSource Property
	23.2.4.1.2.1.10. MySqlCommand.Cancel Method
	23.2.4.1.2.1.11. MySqlCommand.CreateParameter Method
	23.2.4.1.2.1.12. MySqlCommand.ExecuteNonQuery Method
	23.2.4.1.2.1.13. ExecuteReader Method
	23.2.4.1.2.1.13.1. MySqlCommand.ExecuteReader Method ()
	23.2.4.1.2.1.13.1.1. MySqlDataReader Class
	23.2.4.1.2.1.13.1.1.1. MySqlDataReader Members
	23.2.4.1.2.1.13.1.1.1.1. Depth Property
	23.2.4.1.2.1.13.1.1.1.2. FieldCount Property
	23.2.4.1.2.1.13.1.1.1.3. HasRows Property
	23.2.4.1.2.1.13.1.1.1.4. IsClosed Property
	23.2.4.1.2.1.13.1.1.1.5. Item Property
	23.2.4.1.2.1.13.1.1.1.5.1. Item Property (Int32)
	23.2.4.1.2.1.13.1.1.1.5.2. Item Property (String)

	23.2.4.1.2.1.13.1.1.1.6. RecordsAffected Property
	23.2.4.1.2.1.13.1.1.1.7. MySqlDataReader.Close Method
	23.2.4.1.2.1.13.1.1.1.8. MySqlDataReader.GetBoolean Method
	23.2.4.1.2.1.13.1.1.1.9. MySqlDataReader.GetByte Method
	23.2.4.1.2.1.13.1.1.1.10. MySqlDataReader.GetBytes Method
	23.2.4.1.2.1.13.1.1.1.11. MySqlDataReader.GetChar Method
	23.2.4.1.2.1.13.1.1.1.12. MySqlDataReader.GetChars Method
	23.2.4.1.2.1.13.1.1.1.13. MySqlDataReader.GetDataTypeName Method
	23.2.4.1.2.1.13.1.1.1.14. MySqlDataReader.GetDateTime Method
	23.2.4.1.2.1.13.1.1.1.15. MySqlDataReader.GetDecimal Method
	23.2.4.1.2.1.13.1.1.1.16. MySqlDataReader.GetDouble Method
	23.2.4.1.2.1.13.1.1.1.17. MySqlDataReader.GetFieldType Method
	23.2.4.1.2.1.13.1.1.1.18. MySqlDataReader.GetFloat Method
	23.2.4.1.2.1.13.1.1.1.19. MySqlDataReader.GetGuid Method
	23.2.4.1.2.1.13.1.1.1.20. MySqlDataReader.GetInt16 Method
	23.2.4.1.2.1.13.1.1.1.21. MySqlDataReader.GetInt32 Method
	23.2.4.1.2.1.13.1.1.1.22. MySqlDataReader.GetInt64 Method
	23.2.4.1.2.1.13.1.1.1.23. MySqlDataReader.GetMySqlDateTime Method
	23.2.4.1.2.1.13.1.1.1.24. MySqlDataReader.GetName Method
	23.2.4.1.2.1.13.1.1.1.25. MySqlDataReader.GetOrdinal Method
	23.2.4.1.2.1.13.1.1.1.26. MySqlDataReader.GetSchemaTable Method
	23.2.4.1.2.1.13.1.1.1.27. MySqlDataReader.GetString Method
	23.2.4.1.2.1.13.1.1.1.28. MySqlDataReader.GetTimeSpan Method
	23.2.4.1.2.1.13.1.1.1.29. MySqlDataReader.GetUInt16 Method
	23.2.4.1.2.1.13.1.1.1.30. MySqlDataReader.GetUInt32 Method
	23.2.4.1.2.1.13.1.1.1.31. MySqlDataReader.GetUInt64 Method
	23.2.4.1.2.1.13.1.1.1.32. MySqlDataReader.GetValue Method
	23.2.4.1.2.1.13.1.1.1.33. MySqlDataReader.GetValues Method
	23.2.4.1.2.1.13.1.1.1.34. MySqlDataReader.IsDBNull Method
	23.2.4.1.2.1.13.1.1.1.35. MySqlDataReader.NextResult Method
	23.2.4.1.2.1.13.1.1.1.36. MySqlDataReader.Read Method

	23.2.4.1.2.1.13.2. MySqlCommand.ExecuteReader Method (CommandBehavior)

	23.2.4.1.2.1.14. MySqlCommand.ExecuteScalar Method
	23.2.4.1.2.1.15. MySqlCommand.Prepare Method

	23.2.4.1.3. MySqlCommandBuilder Class
	23.2.4.1.3.1. MySqlCommandBuilder Members
	23.2.4.1.3.1.1. DeriveParameters Method
	23.2.4.1.3.1.1.1. MySqlCommandBuilder.DeriveParameters Method (MySqlCommand)
	23.2.4.1.3.1.1.2. MySqlCommandBuilder.DeriveParameters Method (MySqlCommand, Boolean)

	23.2.4.1.3.1.2. MySqlCommandBuilder Constructor
	23.2.4.1.3.1.2.1. MySqlCommandBuilder Constructor ()
	23.2.4.1.3.1.2.2. MySqlCommandBuilder Constructor (MySqlDataAdapter)
	23.2.4.1.3.1.2.2.1. MySqlDataAdapter Class
	23.2.4.1.3.1.2.2.1.1. MySqlDataAdapter Members
	23.2.4.1.3.1.2.2.1.1.1. MySqlDataAdapter Constructor
	23.2.4.1.3.1.2.2.1.1.1.1. MySqlDataAdapter Constructor ()
	23.2.4.1.3.1.2.2.1.1.1.2. MySqlDataAdapter Constructor (MySqlCommand)
	23.2.4.1.3.1.2.2.1.1.1.3. MySqlDataAdapter Constructor (String, MySqlConnection)
	23.2.4.1.3.1.2.2.1.1.1.4. MySqlDataAdapter Constructor (String, String)

	23.2.4.1.3.1.2.2.1.1.2. DeleteCommand Property
	23.2.4.1.3.1.2.2.1.1.3. InsertCommand Property
	23.2.4.1.3.1.2.2.1.1.4. SelectCommand Property
	23.2.4.1.3.1.2.2.1.1.5. UpdateCommand Property
	23.2.4.1.3.1.2.2.1.1.6. MySqlDataAdapter.RowUpdated Event
	23.2.4.1.3.1.2.2.1.1.6.1. MySqlRowUpdatedEventHandler Delegate
	23.2.4.1.3.1.2.2.1.1.6.1.1. MySqlRowUpdatedEventArgs Class
	23.2.4.1.3.1.2.2.1.1.6.1.1.1. MySqlRowUpdatedEventArgs Members
	23.2.4.1.3.1.2.2.1.1.6.1.1.1.1. MySqlRowUpdatedEventArgs Constructor
	23.2.4.1.3.1.2.2.1.1.6.1.1.1.2. Command Property

	23.2.4.1.3.1.2.2.1.1.7. MySqlDataAdapter.RowUpdating Event
	23.2.4.1.3.1.2.2.1.1.7.1. MySqlRowUpdatingEventHandler Delegate
	23.2.4.1.3.1.2.2.1.1.7.1.1. MySqlRowUpdatingEventArgs Class
	23.2.4.1.3.1.2.2.1.1.7.1.1.1. MySqlRowUpdatingEventArgs Members
	23.2.4.1.3.1.2.2.1.1.7.1.1.1.1. MySqlRowUpdatingEventArgs Constructor
	23.2.4.1.3.1.2.2.1.1.7.1.1.1.2. Command Property

	23.2.4.1.3.1.2.3. MySqlCommandBuilder Constructor (MySqlDataAdapter, Boolean)
	23.2.4.1.3.1.2.4. MySqlCommandBuilder Constructor (Boolean)

	23.2.4.1.3.1.3. DataAdapter Property
	23.2.4.1.3.1.4. QuotePrefix Property
	23.2.4.1.3.1.5. QuoteSuffix Property
	23.2.4.1.3.1.6. MySqlCommandBuilder.GetDeleteCommand Method
	23.2.4.1.3.1.7. MySqlCommandBuilder.GetInsertCommand Method
	23.2.4.1.3.1.8. MySqlCommandBuilder.GetUpdateCommand Method
	23.2.4.1.3.1.9. MySqlCommandBuilder.RefreshSchema Method

	23.2.4.1.4. MySqlException Class
	23.2.4.1.4.1. MySqlException Members
	23.2.4.1.4.1.1. Number Property

	23.2.4.1.5. MySqlHelper Class
	23.2.4.1.5.1. MySqlHelper Members
	23.2.4.1.5.1.1. MySqlHelper.ExecuteDataRow Method
	23.2.4.1.5.1.2. ExecuteDataset Method
	23.2.4.1.5.1.2.1. MySqlHelper.ExecuteDataset Method (MySqlConnection, String)
	23.2.4.1.5.1.2.2. MySqlHelper.ExecuteDataset Method (MySqlConnection, String, MySqlParameter[])
	23.2.4.1.5.1.2.3. MySqlHelper.ExecuteDataset Method (String, String)
	23.2.4.1.5.1.2.4. MySqlHelper.ExecuteDataset Method (String, String, MySqlParameter[])

	23.2.4.1.5.1.3. ExecuteNonQuery Method
	23.2.4.1.5.1.3.1. MySqlHelper.ExecuteNonQuery Method (MySqlConnection, String, MySqlParameter[])
	23.2.4.1.5.1.3.2. MySqlHelper.ExecuteNonQuery Method (String, String, MySqlParameter[])

	23.2.4.1.5.1.4. ExecuteReader Method
	23.2.4.1.5.1.4.1. MySqlHelper.ExecuteReader Method (String, String)
	23.2.4.1.5.1.4.2. MySqlHelper.ExecuteReader Method (String, String, MySqlParameter[])

	23.2.4.1.5.1.5. ExecuteScalar Method
	23.2.4.1.5.1.5.1. MySqlHelper.ExecuteScalar Method (MySqlConnection, String)
	23.2.4.1.5.1.5.2. MySqlHelper.ExecuteScalar Method (MySqlConnection, String, MySqlParameter[])
	23.2.4.1.5.1.5.3. MySqlHelper.ExecuteScalar Method (String, String)
	23.2.4.1.5.1.5.4. MySqlHelper.ExecuteScalar Method (String, String, MySqlParameter[])

	23.2.4.1.5.1.6. MySqlHelper.UpdateDataSet Method

	23.2.4.1.6. MySqlErrorCode Enumeration

	23.2.4.2. MySql.Data.Types
	23.2.4.2.1. MySql.Data.TypesHierarchy
	23.2.4.2.2. MySqlConversionException Class
	23.2.4.2.2.1. MySqlConversionException Members
	23.2.4.2.2.1.1. MySqlConversionException Constructor

	23.2.4.2.3. MySqlDateTime Class
	23.2.4.2.3.1. MySqlDateTime Members
	23.2.4.2.3.1.1. MySqlDateTime Explicit MySqlDateTime to DateTime Conversion
	23.2.4.2.3.1.2. Day Property
	23.2.4.2.3.1.3. Hour Property
	23.2.4.2.3.1.4. IsNull Property
	23.2.4.2.3.1.4.1. MySqlValue Class
	23.2.4.2.3.1.4.1.1. MySqlValue Members
	23.2.4.2.3.1.4.1.1.1. MySqlValue.numberFormat Field
	23.2.4.2.3.1.4.1.1.2. MySqlValue Constructor
	23.2.4.2.3.1.4.1.1.3. ValueAsObject Property
	23.2.4.2.3.1.4.1.1.4. MySqlValue.ToString Method
	23.2.4.2.3.1.4.1.1.5. MySqlValue.classType Field
	23.2.4.2.3.1.4.1.1.6. MySqlValue.dbType Field
	23.2.4.2.3.1.4.1.1.7. MySqlValue.mySqlDbType Field
	23.2.4.2.3.1.4.1.1.8. MySqlValue.mySqlTypeName Field
	23.2.4.2.3.1.4.1.1.9. MySqlValue.objectValue Field

	23.2.4.2.3.1.5. IsValidDateTime Property
	23.2.4.2.3.1.6. Minute Property
	23.2.4.2.3.1.7. Month Property
	23.2.4.2.3.1.8. Second Property
	23.2.4.2.3.1.9. Year Property
	23.2.4.2.3.1.10. MySqlDateTime.GetDateTime Method
	23.2.4.2.3.1.11. MySqlDateTime.ToString Method

	23.2.5. Connector/NET Notes and Tips
	23.2.5.1. Connecting to MySQL Using Connector/NET
	23.2.5.1.1. Introduction
	23.2.5.1.2. Creating a Connection String
	23.2.5.1.3. Opening a Connection
	23.2.5.1.4. Handling Connection Errors

	23.2.5.2. Using the Connector/NET with Prepared Statements
	23.2.5.2.1. Introduction
	23.2.5.2.2. Preparing Statements in Connector/NET

	23.2.5.3. Accessing Stored Procedures with Connector/NET
	23.2.5.3.1. Introduction
	23.2.5.3.2. Creating Stored Procedures from Connector/NET
	23.2.5.3.3. Calling a Stored Procedure from Connector/NET

	23.2.5.4. Handling BLOB Data With Connector/NET
	23.2.5.4.1. Introduction
	23.2.5.4.2. Preparing the MySQL Server
	23.2.5.4.3. Writing a File to the Database
	23.2.5.4.4. Reading a BLOB from the Database to a File on Disk

	23.2.5.5. Using Connector/NET with Crystal Reports
	23.2.5.5.1. Introduction
	23.2.5.5.2. Creating a Data Source
	23.2.5.5.3. Creating the Report
	23.2.5.5.4. Displaying the Report

	23.2.5.6. Handling Date and Time Information in Connector/NET
	23.2.5.6.1. Introduction
	23.2.5.6.2. Problems when Using Invalid Dates
	23.2.5.6.3. Restricting Invalid Dates
	23.2.5.6.4. Handling Invalid Dates
	23.2.5.6.5. Handling NULL Dates

	23.2.6. Connector/NET Support
	23.2.6.1. Connector/NET Community Support
	23.2.6.2. How to report Connector/NET Problems or Bugs
	23.2.6.3. Connector/NET Change History

	23.3. MySQL Connector/J
	23.3.1. Connector/J Versions
	23.3.1.1. Java Versions Supported

	23.3.2. Installing Connector/J
	23.3.2.1. Installing Connector/J from a Binary Distribution
	23.3.2.2. Installing the Driver and Configuring the CLASSPATH
	23.3.2.3. Upgrading from an Older Version
	23.3.2.3.1. Upgrading from MySQL Connector/J 3.0 to 3.1
	23.3.2.3.2. JDBC-Specific Issues When Upgrading to MySQL Server 4.1 or Newer

	23.3.2.4. Installing from the Development Source Tree

	23.3.3. Connector/J Examples
	23.3.4. Connector/J (JDBC) Reference
	23.3.4.1. Driver/Datasource Class Names, URL Syntax and Configuration Properties for Connector/J
	23.3.4.2. JDBC API Implementation Notes
	23.3.4.3. Java, JDBC and MySQL Types
	23.3.4.4. Using Character Sets and Unicode
	23.3.4.5. Connecting Securely Using SSL
	23.3.4.6. Using Master/Slave Replication with ReplicationConnection

	23.3.5. Connector/J Notes and Tips
	23.3.5.1. Basic JDBC Concepts
	23.3.5.1.1. Connecting to MySQL Using the DriverManager Interface
	23.3.5.1.2. Using Statements to Execute SQL
	23.3.5.1.3. Using CallableStatements to Execute Stored Procedures
	23.3.5.1.4. Retrieving AUTO_INCREMENT Column Values

	23.3.5.2. Using Connector/J with J2EE and Other Java Frameworks
	23.3.5.2.1. General J2EE Concepts
	23.3.5.2.1.1. Understanding Connection Pooling

	23.3.5.2.2. Using Connector/J with Tomcat
	23.3.5.2.3. Using Connector/J with JBoss

	23.3.5.3. Common Problems and Solutions

	23.3.6. Connector/J Support
	23.3.6.1. Connector/J Community Support
	23.3.6.2. How to Report Connector/J Bugs or Problems
	23.3.6.3. Connector/J Change History

	23.4. MySQL Connector/MXJ
	23.4.1. Introduction to Connector/MXJ
	23.4.1.1. Connector/MXJ Versions
	23.4.1.2. Connector/MXJ Overview

	23.4.2. Installing Connector/MXJ
	23.4.2.1. Supported Platforms
	23.4.2.2. Connector/MXJ Base Installation
	23.4.2.3. Connector/MXJ Quick Start Guide
	23.4.2.4. Deploying Connector/MXJ using Driver Launch
	23.4.2.5. Deploying Connector/MXJ within JBoss
	23.4.2.6. Verifying Installation using JUnit
	23.4.2.6.1. JUnit Test Requirements
	23.4.2.6.2. Running the JUnit Tests

	23.4.3. Connector/MXJ Configuration
	23.4.3.1. Running as part of the JDBC Driver
	23.4.3.2. Running within a Java Object
	23.4.3.3. Setting server options

	23.4.4. Connector/MXJ Reference
	23.4.4.1. MysqldResource API
	23.4.4.1.1. MysqldResource Constructors
	23.4.4.1.2. MysqldResource Methods

	23.4.5. Connector/MXJ Notes and Tips
	23.4.5.1. Creating your own Connector/MXJ Package
	23.4.5.2. Deploying Connector/MXJ with a pre-configured database
	23.4.5.3. Running within a JMX Agent (custom)
	23.4.5.4. Deployment in a standard JMX Agent environment (JBoss)

	23.4.6. Connector/MXJ Support
	23.4.6.1. Connector/MXJ Community Support
	23.4.6.2. How to Report Connector/MXJ Problems

	23.5. Connector/PHP

	Chapter 24. Extending MySQL
	24.1. MySQL Internals
	24.1.1. MySQL Threads
	24.1.2. MySQL Test Suite

	24.2. Adding New Functions to MySQL
	24.2.1. Features of the User-Defined Function Interface
	24.2.2. CREATE FUNCTION Syntax
	24.2.3. DROP FUNCTION Syntax
	24.2.4. Adding a New User-Defined Function
	24.2.4.1. UDF Calling Sequences for Simple Functions
	24.2.4.2. UDF Calling Sequences for Aggregate Functions
	24.2.4.3. UDF Argument Processing
	24.2.4.4. UDF Return Values and Error Handling
	24.2.4.5. Compiling and Installing User-Defined Functions
	24.2.4.6. User-Defined Function Security Precautions

	24.2.5. Adding a New Native Function

	24.3. Adding New Procedures to MySQL
	24.3.1. Procedure Analyse
	24.3.2. Writing a Procedure

	Appendix A. Problems and Common Errors
	A.1. How to Determine What Is Causing a Problem
	A.2. Common Errors When Using MySQL Programs
	A.2.1. Access denied
	A.2.2. Can't connect to [local] MySQL server
	A.2.2.1. Connection to MySQL Server Failing on Windows

	A.2.3. Client does not support authentication protocol
	A.2.4. Password Fails When Entered Interactively
	A.2.5. Host 'host_name' is blocked
	A.2.6. Too many connections
	A.2.7. Out of memory
	A.2.8. MySQL server has gone away
	A.2.9. Packet too large
	A.2.10. Communication Errors and Aborted Connections
	A.2.11. The table is full
	A.2.12. Can't create/write to file
	A.2.13. Commands out of sync
	A.2.14. Ignoring user
	A.2.15. Table 'tbl_name' doesn't exist
	A.2.16. Can't initialize character set
	A.2.17. File Not Found

	A.3. Installation-Related Issues
	A.3.1. Problems Linking to the MySQL Client Library
	A.3.2. Problems with File Permissions

	A.4. Administration-Related Issues
	A.4.1. How to Reset the Root Password
	A.4.2. What to Do If MySQL Keeps Crashing
	A.4.3. How MySQL Handles a Full Disk
	A.4.4. Where MySQL Stores Temporary Files
	A.4.5. How to Protect or Change the MySQL Unix Socket File
	A.4.6. Time Zone Problems

	A.5. Query-Related Issues
	A.5.1. Case Sensitivity in Searches
	A.5.2. Problems Using DATE Columns
	A.5.3. Problems with NULL Values
	A.5.4. Problems with Column Aliases
	A.5.5. Rollback Failure for Non-Transactional Tables
	A.5.6. Deleting Rows from Related Tables
	A.5.7. Solving Problems with No Matching Rows
	A.5.8. Problems with Floating-Point Comparisons

	A.6. Optimizer-Related Issues
	A.7. Table Definition-Related Issues
	A.7.1. Problems with ALTER TABLE
	A.7.2. How to Change the Order of Columns in a Table
	A.7.3. TEMPORARY TABLE Problems

	A.8. Known Issues in MySQL
	A.8.1. Open Issues in MySQL

	Appendix B. Error Codes and Messages
	B.1. Server Error Codes and Messages
	B.2. Client Error Codes and Messages

	Appendix C. Credits
	C.1. Developers at MySQL AB
	C.2. Contributors to MySQL
	C.3. Documenters and translators
	C.4. Libraries used by and included with MySQL
	C.5. Packages that support MySQL
	C.6. Tools that were used to create MySQL
	C.7. Supporters of MySQL

	Appendix D. MySQL Change History
	D.1. Changes in release 5.0.x (Production)
	D.1.1. Changes in release 5.0.26 (Not yet released)
	D.1.2. Changes in release 5.0.25 (15 September 2006)
	D.1.3. Changes in release 5.0.24a (25 August 2006)
	D.1.4. Changes in release 5.0.24 (27 July 2006)
	D.1.5. Changes in release 5.0.23 (Not released)
	D.1.6. Changes in release 5.0.22 (24 May 2006)
	D.1.7. Changes in release 5.0.21 (02 May 2006)
	D.1.8. Changes in release 5.0.20a (18 April 2006)
	D.1.9. Changes in release 5.0.20 (31 March 2006)
	D.1.10. Changes in release 5.0.19 (04 March 2006)
	D.1.11. Changes in release 5.0.18 (21 December 2005)
	D.1.12. Changes in release 5.0.17 (14 December 2005)
	D.1.13. Changes in release 5.0.16 (10 November 2005)
	D.1.14. Changes in release 5.0.15 (19 October 2005: Production)
	D.1.15. Changes in release 5.0.14 (Not released)
	D.1.16. Changes in release 5.0.13 (22 September 2005: Release Candidate)
	D.1.17. Changes in release 5.0.12 (02 September 2005)
	D.1.18. Changes in release 5.0.11 (06 August 2005)
	D.1.19. Changes in release 5.0.10 (27 July 2005)
	D.1.20. Changes in release 5.0.9 (15 July 2005)
	D.1.21. Changes in release 5.0.8 (Not released)
	D.1.22. Changes in release 5.0.7 (10 June 2005)
	D.1.23. Changes in release 5.0.6 (26 May 2005)
	D.1.24. Changes in release 5.0.5 (Not released)
	D.1.25. Changes in release 5.0.4 (16 April 2005)
	D.1.26. Changes in release 5.0.3 (23 March 2005: Beta)
	D.1.27. Changes in release 5.0.2 (01 December 2004)
	D.1.28. Changes in release 5.0.1 (27 July 2004)
	D.1.29. Changes in release 5.0.0 (22 December 2003: Alpha)

	D.2. Changes in MySQL Cluster
	D.2.1. Changes in MySQL Cluster-5.0.7 (10 June 2005)
	D.2.2. Changes in MySQL Cluster-5.0.6 (26 May 2005)
	D.2.3. Changes in MySQL Cluster-5.0.5 (Not released)
	D.2.4. Changes in MySQL Cluster-5.0.4 (16 April 2005)
	D.2.5. Changes in MySQL Cluster-5.0.3 (23 March 2005: Beta)
	D.2.6. Changes in MySQL Cluster-5.0.1 (27 July 2004)
	D.2.7. Changes in MySQL Cluster-4.1.13 (15 July 2005)
	D.2.8. Changes in MySQL Cluster-4.1.12 (13 May 2005)
	D.2.9. Changes in MySQL Cluster-4.1.11 (01 April 2005)
	D.2.10. Changes in MySQL Cluster-4.1.10 (12 February 2005)
	D.2.11. Changes in MySQL Cluster-4.1.9 (13 January 2005)
	D.2.12. Changes in MySQL Cluster-4.1.8 (14 December 2004)
	D.2.13. Changes in MySQL Cluster-4.1.7 (23 October 2004)
	D.2.14. Changes in MySQL Cluster-4.1.6 (10 October 2004)
	D.2.15. Changes in MySQL Cluster-4.1.5 (16 September 2004)
	D.2.16. Changes in MySQL Cluster-4.1.4 (31 August 2004)
	D.2.17. Changes in MySQL Cluster-4.1.3 (28 June 2004)

	D.3. MySQL Connector/ODBC (MyODBC) Change History
	D.3.1. Changes in MyODBC 3.51.13
	D.3.2. Changes in MyODBC 3.51.12
	D.3.3. Changes in MyODBC 3.51.11

	D.4. MySQL Connector/NET Change History
	D.4.1. Version 5.0.1 (not yet released)
	D.4.2. Version 5.0.0
	D.4.3. Version 1.0.8 (not yet released)
	D.4.4. Version 1.0.7
	D.4.5. Version 1.0.6
	D.4.6. Version 1.0.5
	D.4.7. Version 1.0.4 1-20-05
	D.4.8. Version 1.0.3-gamma 12-10-04
	D.4.9. Version 1.0.2-gamma 04-11-15
	D.4.10. Version 1.0.1-beta2 04-10-27
	D.4.11. Version 1.0.0 04-09-01
	D.4.12. Version 0.9.0 04-08-30
	D.4.13. Version 0.76
	D.4.14. Version 0.75
	D.4.15. Version 0.74
	D.4.16. Version 0.71
	D.4.17. Version 0.70
	D.4.18. Version 0.68
	D.4.19. Version 0.65
	D.4.20. Version 0.60
	D.4.21. Version 0.50

	D.5. MySQL Connector/J Change History
	D.5.1. Changes in MySQL Connector/J 5.0.3 (26 July 2006)
	D.5.2. Changes in MySQL Connector/J 5.0.2-beta (11 July 2006)
	D.5.3. Changes in MySQL Connector/J 5.0.1-beta (Not Released)
	D.5.4. Changes in MySQL Connector/J 5.0.0-beta (22 December 2005)
	D.5.5. Changes in MySQL Connector/J 3.1.14 (not yet released)
	D.5.6. Changes in MySQL Connector/J 3.1.13 (26 May 2006)
	D.5.7. Changes in MySQL Connector/J 3.1.12 (30 November 2005)
	D.5.8. Changes in MySQL Connector/J 3.1.11-stable (07 October 2005)
	D.5.9. Changes in MySQL Connector/J 3.1.10-stable (23 June 2005)
	D.5.10. Changes in MySQL Connector/J 3.1.9-stable (22 June 2005)
	D.5.11. Changes in MySQL Connector/J 3.1.8-stable (14 April 2005)
	D.5.12. Changes in MySQL Connector/J 3.1.7-stable (18 February 2005)
	D.5.13. Changes in MySQL Connector/J 3.1.6-stable (23 December 2004)
	D.5.14. Changes in MySQL Connector/J 3.1.5-gamma (02 December 2004)
	D.5.15. Changes in MySQL Connector/J 3.1.4-beta (04 September 2004)
	D.5.16. Changes in MySQL Connector/J 3.1.3-beta (07 July 2004)
	D.5.17. Changes in MySQL Connector/J 3.1.2-alpha (09 June 2004)
	D.5.18. Changes in MySQL Connector/J 3.1.1-alpha (14 February 2004)
	D.5.19. Changes in MySQL Connector/J 3.1.0-alpha (18 February 2003)
	D.5.20. Changes in MySQL Connector/J 3.0.17-ga (23 June 2005)
	D.5.21. Changes in MySQL Connector/J 3.0.16-ga (15 November 2004)
	D.5.22. Changes in MySQL Connector/J 3.0.15-production (04 September 2004)
	D.5.23. Changes in MySQL Connector/J 3.0.14-production (28 May 2004)
	D.5.24. Changes in MySQL Connector/J 3.0.13-production (27 May 2004)
	D.5.25. Changes in MySQL Connector/J 3.0.12-production (18 May 2004)
	D.5.26. Changes in MySQL Connector/J 3.0.11-stable (19 February 2004)
	D.5.27. Changes in MySQL Connector/J 3.0.10-stable (13 January 2004)
	D.5.28. Changes in MySQL Connector/J 3.0.9-stable (07 October 2003)
	D.5.29. Changes in MySQL Connector/J 3.0.8-stable (23 May 2003)
	D.5.30. Changes in MySQL Connector/J 3.0.7-stable (08 April 2003)
	D.5.31. Changes in MySQL Connector/J 3.0.6-stable (18 February 2003)
	D.5.32. Changes in MySQL Connector/J 3.0.5-gamma (22 January 2003)
	D.5.33. Changes in MySQL Connector/J 3.0.4-gamma (06 January 2003)
	D.5.34. Changes in MySQL Connector/J 3.0.3-dev (17 December 2002)
	D.5.35. Changes in MySQL Connector/J 3.0.2-dev (08 November 2002)
	D.5.36. Changes in MySQL Connector/J 3.0.1-dev (21 September 2002)
	D.5.37. Changes in MySQL Connector/J 3.0.0-dev (31 July 2002)
	D.5.38. Changes in MySQL Connector/J 2.0.14 (16 May 2002)
	D.5.39. Changes in MySQL Connector/J 2.0.13 (24 April 2002)
	D.5.40. Changes in MySQL Connector/J 2.0.12 (07 April 2002)
	D.5.41. Changes in MySQL Connector/J 2.0.11 (27 January 2002)
	D.5.42. Changes in MySQL Connector/J 2.0.10 (24 January 2002)
	D.5.43. Changes in MySQL Connector/J 2.0.9 (13 January 2002)
	D.5.44. Changes in MySQL Connector/J 2.0.8 (25 November 2001)
	D.5.45. Changes in MySQL Connector/J 2.0.7 (24 October 2001)
	D.5.46. Changes in MySQL Connector/J 2.0.6 (16 June 2001)
	D.5.47. Changes in MySQL Connector/J 2.0.5 (13 June 2001)
	D.5.48. Changes in MySQL Connector/J 2.0.3 (03 December 2000)
	D.5.49. Changes in MySQL Connector/J 2.0.1 (06 April 2000)
	D.5.50. Changes in MySQL Connector/J 2.0.0pre5 (21 February 2000)
	D.5.51. Changes in MySQL Connector/J 2.0.0pre4 (10 January 2000)
	D.5.52. Changes in MySQL Connector/J 2.0.0pre (17 August 1999)
	D.5.53. Changes in MySQL Connector/J 1.2b (04 July 1999)
	D.5.54. Changes in MySQL Connector/J 1.2a (14 April 1999)
	D.5.55. Changes in MySQL Connector/J 1.1i (24 March 1999)
	D.5.56. Changes in MySQL Connector/J 1.1h (08 March 1999)
	D.5.57. Changes in MySQL Connector/J 1.1g (19 February 1999)
	D.5.58. Changes in MySQL Connector/J 1.1f (31 December 1998)
	D.5.59. Changes in MySQL Connector/J 1.1b (03 November 1998)
	D.5.60. Changes in MySQL Connector/J 1.1 (02 September 1998)
	D.5.61. Changes in MySQL Connector/J 1.0 (24 August 1998)
	D.5.62. Changes in MySQL Connector/J 0.9d (04 August 1998)
	D.5.63. Changes in MySQL Connector/J 0.9 (28 July 1998)
	D.5.64. Changes in MySQL Connector/J 0.8 (06 July 1998)
	D.5.65. Changes in MySQL Connector/J 0.7 (01 July 1998)
	D.5.66. Changes in MySQL Connector/J 0.6 (21 May 1998)

	Appendix E. Porting to Other Systems
	E.1. Debugging a MySQL Server
	E.1.1. Compiling MySQL for Debugging
	E.1.2. Creating Trace Files
	E.1.3. Debugging mysqld under gdb
	E.1.4. Using a Stack Trace
	E.1.5. Using Server Logs to Find Causes of Errors in mysqld
	E.1.6. Making a Test Case If You Experience Table Corruption

	E.2. Debugging a MySQL Client
	E.3. The DBUG Package
	E.4. Comments about RTS Threads
	E.5. Differences Between Thread Packages

	Appendix F. Environment Variables
	Appendix G. Regular Expressions
	Appendix H. Limits in MySQL
	H.1. Limits of Joins

	Appendix I. Feature Restrictions
	I.1. Restrictions on Stored Routines and Triggers
	I.2. Restrictions on Server-Side Cursors
	I.3. Restrictions on Subqueries
	I.4. Restrictions on Views
	I.5. Restrictions on XA Transactions

	Appendix J. GNU General Public License
	Appendix K. MySQL FLOSS License Exception
	Index

